WorldWideScience

Sample records for rf field interaction

  1. Approximate Integrals of rf-driven Particle Motion in Magnetic Field

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2004-01-01

    For a particle moving in nonuniform magnetic field under the action of an rf wave, ponderomotive effects result from rf-driven oscillations nonlinearly coupled with Larmor rotation. Using Lagrangian and Hamiltonian formalism, we show how, despite this coupling, two independent integrals of the particle motion are approximately conserved. Those are the magnetic moment of free Larmor rotation and the quasi-energy of the guiding center motion parallel to the magnetic field. Under the assumption of non-resonant interaction of the particle with the rf field, these integrals represent adiabatic invariants of the particle motion

  2. RF-plasma interactions in the antenna near fields

    Energy Technology Data Exchange (ETDEWEB)

    Colestock, P.; Greene, G.J.; Hosea, J.C.; Phillips, C.K.; Stevens, J.E.; Ono, M.; Wilson, J.R. (Princeton Univ., NJ (USA). Plasma Physics Lab.); D' Ippolito, D.A.; Myra, J.R. (Lodestar Research Corp., Boulder, CO (USA)); Lehrman, I.S. (Grumman Aerospace Corp., Bethpage, NY (USA))

    1990-04-01

    An assessment is made of the various linear and nonlinear mechanisms that are likely to play a role in the near-field of Faraday shielded inductive antennas commonly used in ICRF heating experiments. A number of low-level, but potentially important, RF loss mechanisms have been proposed as candidates to explain the observed surface phenomena and impurity production associated with ICRF. These range from edge heating via linear processes, such as surface wave or Bernstein wave generation to a variety of nonlinear phenomena including parametric decay and RF-driven sheath effects. The various proposed mechanisms will be examined in this work in terms of the available experimental data and an evaluation will be made of the scaling of these phenomena to higher density and temperature plasmas. (orig.).

  3. Unbalanced field RF electron gun

    Science.gov (United States)

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  4. Nonlinear interactions of focused resonance cone fields with plasmas

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Gekelman, W.

    1977-01-01

    A simple yet novel rf exciter structure has been developed for generating remotely intense rf fields in a magnetoplasma. It is a circular line source of radius R in a plane perpendicularB 0 driven with an rf signal at ω 0 E/sub rf/ 2 /nkT/sub e/>0.2, a strong density depression in the focal region (deltan/n>40%) is observed. The density perturbation modifies the cone angle and field distribution. This nonlinear interaction leads to a rapid growth of ion acoustic wave turbulence and a corresponding random rf field distribution in a broadened focal region. The development of the interaction is mapped in space and time

  5. On losses caused in RF cavities by longitudinal electric fields

    International Nuclear Information System (INIS)

    Halbritter, J.

    1976-02-01

    Rf modes with large longitudinal electric fields (div E vector unequal to 0) at the cavity wall systematically show worse rf properties than modes with div E vector identical with 0; e.g. enlarged rf residual losses. While magnetic residual losses R sub(res) proportional f 2 are due to uncharged inhomogeneities in the oxide coating the metal, the electric residual losses R sub(orthogonal) occur via charged states in the oxide: the recharging of those states by tunnel exchange causes excitation across the energy gap of the superconductor yielding residual losses at high rf field strengths. The interaction of E sub(orthogonal) with the charges generate (longitudinal) phonons showing up as contribution to R sub(orthogonal). The resulting R sub(orthogonal) increases with E sub(orthogonal) and is nearly independent of frequency f, indicating the importance of R sub(orthogonal) for low frequency sc cavities, especially at high field strengths. In addition R sub(orthogonal) can account for the observed large residual losses of strip line modes in narrow junctions and joints between superconductors. (orig.) [de

  6. RF sheaths for arbitrary B field angles

    Science.gov (United States)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  7. Field emission in RF cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    Electron field emission limits the accelerating gradient in superconducting cavities. It is shown how and why it is an important problem. The phenomenology of field emission is then described, both in DC and RF regimes. Merits of a few plausible 'remedies' to field emission are discussed. (author)

  8. A Coupled Field Multiphysics Modeling Approach to Investigate RF MEMS Switch Failure Modes under Various Operational Conditions

    Directory of Open Access Journals (Sweden)

    Khaled Sadek

    2009-10-01

    Full Text Available In this paper, the reliability of capacitive shunt RF MEMS switches have been investigated using three dimensional (3D coupled multiphysics finite element (FE analysis. The coupled field analysis involved three consecutive multiphysics interactions. The first interaction is characterized as a two-way sequential electromagnetic (EM-thermal field coupling. The second interaction represented a one-way sequential thermal-structural field coupling. The third interaction portrayed a two-way sequential structural-electrostatic field coupling. An automated substructuring algorithm was utilized to reduce the computational cost of the complicated coupled multiphysics FE analysis. The results of the substructured FE model with coupled field analysis is shown to be in good agreement with the outcome of previously published experimental and numerical studies. The current numerical results indicate that the pull-in voltage and the buckling temperature of the RF switch are functions of the microfabrication residual stress state, the switch operational frequency and the surrounding packaging temperature. Furthermore, the current results point out that by introducing proper mechanical approaches such as corrugated switches and through-holes in the switch membrane, it is possible to achieve reliable pull-in voltages, at various operating temperatures. The performed analysis also shows that by controlling the mean and gradient residual stresses, generated during microfabrication, in conjunction with the proposed mechanical approaches, the power handling capability of RF MEMS switches can be increased, at a wide range of operational frequencies. These design features of RF MEMS switches are of particular importance in applications where a high RF power (frequencies above 10 GHz and large temperature variations are expected, such as in satellites and airplane condition monitoring.

  9. Experimental study of the interaction between RF antennas and the edge plasma of a tokamak

    International Nuclear Information System (INIS)

    Kubic, Martin

    2013-01-01

    Antennas operating in the ion cyclotron range of frequency (ICRF) provide a useful tool for plasma heating in many tokamaks and are foreseen to play an important role in ITER. However, in addition to the desired heating in the core plasma, spurious interactions with the plasma edge and material boundary are known to occur. Many of these deleterious effects are caused by the formation of radio-frequency (RF) sheaths. The aim of this thesis is to study, mainly experimentally, scrape-off layer (SOL) modifications caused by RF sheaths effects by means of Langmuir probes that are magnetically connected to a powered ICRH antenna. Effects of the two types of Faraday screens' operation on RF-induced SOL modifications are studied for different plasma and antenna configurations - scans of strap power ratio imbalance, injected power and SOL density. In addition to experimental work, the influence of RF sheaths on retarding field analyzer (RFA) measurements of sheath potential is investigated with one-dimensional particle-in-cell code. One-dimensional particle-in-cell simulations show that the RFA is able to measure reliably the sheath potential only for ion plasma frequencies ω π similar to RF cyclotron frequency ω rf , while for the real SOL conditions (ω π ≥ ω rf ), when the RFA is magnetically connected to RF region, it is strongly underestimated. An alternative method to investigate RF sheaths effects is proposed by using broadening of the ion distribution function as an evidence of the RF electric fields in the sheath. RFA measurements in Tore Supra indicate that RF potentials do indeed propagate from the antenna 12 m along magnetic field lines. (author) [fr

  10. RF Sheath-Enhanced Plasma Surface Interaction Studies using Beryllium Optical Emission Spectroscopy in JET ITER-Like Wall

    Energy Technology Data Exchange (ETDEWEB)

    Agarici, G. [Fusion for Energy (F4E), Barcelona, Spain; Klepper, C Christopher [ORNL; Colas, L. [French Atomic Energy Commission (CEA); Krivska, Alena [Ecole Royale Militaire, Brussels Belgium; Bobkov, V. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Jacquet, P. [Culham Centre for Fusion Energy (CCFE), Abingdon, UK; Delabie, Ephrem G. [ORNL; Giroud, C. [EURATOM / UKAEA, UK; Kirov, K K. [Association EURATOM-CCFE, Abingdon, UK; Lasa Esquisabel, Ane [ORNL; Lerche, E. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Dumortier, P. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Durodie, Frederic [Ecole Royale Militaire, Brussels Belgium

    2017-10-01

    A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5 MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.

  11. New mechanism of cluster-field evaporation in rf breakdown

    Directory of Open Access Journals (Sweden)

    Z. Insepov

    2004-12-01

    Full Text Available Using a simple field evaporation model and molecular dynamics simulations of nanoscale copper tip evolution in a high electric field gradient typical for linacs, we have studied a new mechanism for rf-field evaporation. The mechanism consists of simultaneous (collective field evaporation of a large group of tip atoms in high-gradient fields. Thus, evaporation of large clusters is energetically more favorable when compared with the conventional, “one-by-one” mechanism. The studied mechanism could also be considered a new mechanism for the triggering of rf-vacuum breakdown. This paper discusses the mechanism and the experimental data available for electric field evaporation of field-emission microscopy tips.

  12. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    Science.gov (United States)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  13. GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.

    Science.gov (United States)

    Chi, Jieru; Liu, Feng; Weber, Ewald; Li, Yu; Crozier, Stuart

    2011-06-01

    The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4 T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.

  14. Resonance properties of the biological objects in the RF field

    International Nuclear Information System (INIS)

    Cocherova, E; Kupec, P; Stofanik, V

    2011-01-01

    Irradiation of people with electromagnetic fields emitted from miscellaneous devices working in the radio-frequency (RF) range may have influence, for example may affect brain processes. The question of health impact of RF electromagnetic fields on population is still not closed. This article is devoted to an investigation of resonance phenomena of RF field absorption in the models of whole human body and body parts (a head) of different size and shape. The values of specific absorption rate (SAR) are evaluated for models of the different shapes: spherical, cylindrical, realistic shape and for different size of the model, that represents the case of new-born, child and adult person. In the RF frequency region, absorption depends nonlinearly on frequency. Under certain conditions (E-polarization), absorption reaches maximum at frequency, that is called r esonance frequency . The whole body absorption and the resonance frequency depends on many further parameters, that are not comprehensively clarified. The simulation results showed the dependence of the whole-body average SAR and resonance frequency on the body dimensions, as well as the influence of the body shape.

  15. Superconducting niobium in high rf magnetic fields

    International Nuclear Information System (INIS)

    Mueller, G.

    1988-01-01

    The benefit of superconducting cavities for accelerator applications depends on the field and Q/sub 0/ levels which can be achieved reliably in mass producible multicell accelerating structures. The presently observed field and Q/sub 0/ limitations are caused by anomalous loss mechanisms which are not correlated with the intrinsic properties of the pure superconductor but rather due to defects or contaminants on the superconducting surface. The ultimate performance levels of clean superconducting cavities built from pure Nb will be given by the rf critical field and the surface resistance of the superconductor. In the first part of this paper a short survey is given of the maximum surface magnetic fields achieved in single-cell cavities. The results of model calculations for the thermal breakdown induced by very small defects and for the transition to the defect free case is discussed in part 2. In the last chapter, a discussion is given for the rf critical field of Nb on the basis of the Ginzburg-Landau Theory. It is shown that not only purity but also the homogeneity of the material should become important for the performance of superconducting Nb cavities at field levels beyond 100mT. Measurement results of the upper critical field for different grades of commercially available Nb sheet materials are given. 58 references, 20 figures, 1 table

  16. Revisiting the Anomalous rf Field Penetration into a Warm Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg V.; Theodosiou, Constantine E.

    2005-01-01

    Radio-frequency [rf] waves do not penetrate into a plasma and are damped within it. The electric field of the wave and plasma current are concentrated near the plasma boundary in a skin layer. Electrons can transport the plasma current away from the skin layer due to their thermal motion. As a result, the width of the skin layer increases when electron temperature effects are taken into account. This phenomenon is called anomalous skin effect. The anomalous penetration of the rf electric field occurs not only for transversely propagating to the plasma boundary wave (inductively coupled plasmas) but also for the wave propagating along the plasma boundary (capacitively coupled plasmas). Such anomalous penetration of the rf field modifies the structure of the capacitive sheath. Recent advances in the nonlinear, non-local theory of the capacitive sheath are reported. It is shown that separating the electric field profile into exponential and non-exponential parts yields an efficient qualitative and quantitative description of the anomalous skin effect in both inductively and capacitively coupled plasma

  17. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  18. Experimental study on the luminous radiation associated to the field emission of samples submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Luong, M.; Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    The accelerating gradient of the RF cavities is limited by the strong field emission (FE) of electrons stemming from the metallic walls. Previous experiments evidenced luminous radiations associated with electron emission of cathodes subjected to intense DC electric field. These observations invoked the proposal of new theoretical models of the field emission phenomenon. This experimental study extends the previous DC works to the RF case. A special copper RF cavity has been developed equipped with an optical window and a removable sample. It has been designed for measuring both electron current and luminous radiation emitted by the sample, subjected to maximum RF electric field. The optical apparatus attached to the cavity permits to characterize the radiation in terms of intensity, glowing duration and spectral distribution. The results concerning different niobium or copper samples, whom top was either scratched or intentionally contaminated with metallic or dielectric particles are summarized. (author)

  19. Study of luminous spots observed on metallic surfaces subjected to high RF fields

    International Nuclear Information System (INIS)

    Junquera, T.; Maissa, S.; Fouaidy, M.; Le Goff, A.; Bonin, B.; Luong, M.; Safa, H.; Tan, J.

    1995-01-01

    The performance of high gradient superconducting RF cavities for electron accelerators is mainly limited by field emission. Major improvements have been recently obtained using different surface conditioning techniques confirming the involvement of metallic particles in field emission enhancement. Results obtained with an optical apparatus attached to an RF copper cavity equipped with a removable sample which is subjected to high RF fields are presented. Stable light spots are observed on the sample surface and their intensities and optical spectra are measured as a function of the surface electric field. The total emitted current is simultaneously measured by an isolated hollow electrode facing the sample. (K.A.)

  20. Modelling of DC electric fields induced by RF sheath in front of ICRF antenna

    International Nuclear Information System (INIS)

    Faudot, E.; Heuraux, S.; Colas, L.

    2003-01-01

    Reducing the ICRF (ion cyclotron range frequency) antenna-plasma interaction is one of the key points for reaching very long tokamak discharges. One problem which limits such discharges, is the appearance of hot spots on the surface of the antenna: Radio Frequency (RF) sheaths modify the properties of the edge plasma by rectifying the RF potential along open magnetic field lines and can induce hot spots. This paper investigates the corrections to sheath potentials introduced by the interactions between adjacent flux tubes. Our theoretical study started from an oscillating double Langmuir probe model, in which a transverse influx of current was included. This model was confronted with 1D PIC simulations along a magnetic field line, and demonstrated that current exchanges can decrease mean potentials. A 2D electrostatic fluid code was then developed, which couples adjacent flux tubes in a poloidal cross section with collisional conductivity or polarization currents. It showed that transverse currents are able to smooth structures smaller than a characteristic size in the sheath potential maps (results for Tore Supra). These computed rectified potentials can be used to obtain the DC electric fields in front of the antenna. And then, it gives an estimate of the particle drift and the energy flux on the antenna structure, which can explain hot spots. (author)

  1. Experimental study on the luminous radiation associated to the field emission of samples submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Luong, M.; Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    Nowadays the accelerating gradient of the RF cavities is limited by the strong field emission (FE) of electrons stemming from the metallic walls. Previous experiments evidenced luminous radiations associated with electron emission on cathodes subjected to intense DC electric field. These observations led these authors to propose new theoretical models of the field emission phenomenon. The presented experimental study extends these previous DC works to the RF case. A special copper RF cavity has been developed equipped with an optical window and a removable sample. It has been designed for measuring both electron current and luminous radiation emitted by the sample, subjected to maximum RF electric field. The optical apparatus attached to the cavity permits to characterize the radiation in terms of intensity, glowing duration and spectral distribution. The results concerning different niobium or copper samples, whom top was either scratched or intentionally contaminated with metallic or dielectric particles are summarized. (author)

  2. Current sustaining by RF travelling field in a collisional toroidal plasma

    International Nuclear Information System (INIS)

    Fukuda, Masaji; Matsuura, Kiyokata

    1978-01-01

    The relation between the current generated by RF travelling field and the absorbed power is studied in a collisional toroidal plasma, parameters being phase velocity and filling gap pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (author)

  3. Current sustaining by RF travelling field in a collisional toroidal plasma

    International Nuclear Information System (INIS)

    Fukuda, Masaji; Matsuura, Kiyokata.

    1977-06-01

    The relation between the current generation by RF travelling field and the accompanied power absorption is studied in a collisional toroidal plasma, parameters being phase velocity and filling gas pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (auth.)

  4. Particle melting and particle/plasma interactions in DC and RF plasmas: a modeling study. (Volumes I and II)

    International Nuclear Information System (INIS)

    Wei, D.Y.C.

    1987-01-01

    Integral process models were developed to predict particle melting in both DC and RF plasmas. Specifically, a numerical model has been developed to predict the temperature history of particles injected in a low pressure DC plasma jet. The temperature and velocity fields of the plasma jet are predicted as a free jet by solving the parabolized Navier-Stokes equations using a spatial marching scheme. Correction factors were introduced to take into account non continuum effects encountered in the low pressure environment. The plasma jet profiles as well as the particle/plasma interactions under different jet pressure ratios (from underexpanded to overexpanded) were investigated. The flow and temperature fields in the RF plasma torch are calculated using the axisymmetric Navier-Stokes equations based on the primitive variables, along with pseudo two-dimensional electromagnetic field equations. Particle trajectories and heat transfer characteristics in both DC and RF plasmas are calculated using predicted plasma jet profiles. Particle melting efficiencies in both DC and RF plasmas are evaluated and compared using model alloy systems. Based on the theoretical considerations, an alternative route of plasma spraying process (hybrid plasma spraying process) is proposed. An evaluation of particle melting in hybrid plasma jets had indicated that further improvement in deposit properties could be made

  5. Self-consistent particle distribution of a bunched beam in RF field

    CERN Document Server

    Batygin, Y K

    2002-01-01

    An analytical solution for the self-consistent particle equilibrium distribution in an RF field with transverse focusing is found. The solution is attained in the approximation of a high brightness beam. The distribution function in phase space is determined as a stationary function of the energy integral. Equipartitioning of the beam distribution between degrees of freedom follows directly from the choice of the stationary distribution function. Analytical expressions for r-z equilibrium beam profile and maximum beam current in RF field are obtained.

  6. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    Science.gov (United States)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  7. Synchronization of RF fields of Indus 2 RF cavities for proper injection and acceleration of beam

    International Nuclear Information System (INIS)

    Tiwari, Nitesh; Bagduwal, Pritam S.; Lad, M.; Hannurkar, P.R.

    2009-01-01

    Indus-2 is a synchrotron light source with designed parameters of 2.5 GeV, 300 mA beam current. Four RF cavities fed from four RF power stations have been used for beam acceleration from 550 MeV to 2.5 GeV and synchrotron loss compensation. Particle should reach the RF cavity at the proper phase for proper acceptance of the beam in ring. At injection if the phase is not proper the acceptance efficiency reduces and the maximum stored current in the ring also gets limited. Equal contribution from four cavities at every value of current and energy level is very important. Improper phase will cause the imbalance of the power among different station hence will limit maximum stored current and reduce life time of the stored beam. Phase optimization was done in two-step, first at injection to have better injection rate and the stations were operated at the sufficient power for control loops to operate. Then at 2 GeV and 2.5 GeV energy so that beam extracts equal power from all four RF stations. Phase synchronization of all four cavities from injection to 2.5 GeV has already been done at 50 mA stored beam current. If phases of RF fields inside four RF cavities is not proper then beam will not see the total RF voltage as summation of all four cavity gap voltages, hence it is a very important parameter to be optimized and maintained during operation. (author)

  8. Dependence of the microwave surface resistance of superconducting niobium on the magnitude of the rf field

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, A.; Grassellino, A. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2013-06-24

    Utilizing difference in temperature dependencies we decoupled Bardeen-Cooper-Schrieffer (BCS) and residual components of the microwave surface resistance of superconducting niobium at all rf fields up to B{sub rf}{approx}115 mT. We reveal that the residual resistance decreases with field at B{sub rf} Less-Than-Or-Equivalent-To 40 mT and strongly increases in chemically treated niobium at B{sub rf}>80 mT. We find that BCS surface resistance is weakly dependent on field in the clean limit, whereas a strong and peculiar field dependence emerges after 120 Degree-Sign C vacuum baking.

  9. Study of luminous phenomena observed on contaminated metallic surfaces submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Bonin, B.; Luong, M.; Safa, H.; Tan, J.

    1995-01-01

    The RF field emission from a sample subjected to high RF fields in a copper cavity has been investigated. The study is focused on the luminous emissions occurring on the RF surface simultaneously with the electron emission. The optical apparatus attached to the cavity permits to observe the evolution of the emitters and the direct effects of the surface conditioning. Also, the parameters of the emitted radiation (intensity, glowing duration, spectral distribution) may provide additional informations on the field emission phenomena. Some results concerning samples intentionally contaminated with particles (metallic or dielectric) are presented. (K.A.)

  10. Calculation of rf fields in axisymmetric cavities

    International Nuclear Information System (INIS)

    Iwashita, Y.

    1985-01-01

    A new code, PISCES, has been developed for calculating a complete set of rf electromagnetic modes in an axisymmetric cavity. The finite-element method is used with up to third-order shape functions. Although two components are enough to express these modes, three components are used as unknown variables to take advantage of the symmetry of the element matrix. The unknowns are taken to be either the electric field components or the magnetic field components. The zero-divergence condition will be satisfied by the shape function within each element

  11. Stroboscopic topographies on iron borate crystal in 9.6 MHz rf magnetic field

    International Nuclear Information System (INIS)

    Mitsui, Takaya; Imai, Yasuhiko; Kikuta, Seishi

    2003-01-01

    The influence of magnetoacoustic wave on the crystal deformation was studied by stroboscopic double crystal X-ray topography. The acoustic wave was excited by the rf magnetic field, which was synchronized with synchrotron radiation X-ray pulse. In measured rocking curves of FeBO 3 (4 4 4) reflection, we observed, for the first time, that the application of rf magnetic field (|H rf | max >8.4 Oe) brought about the extreme narrowing of full width at half maximum (FWHM). Recorded topographs showed that the narrowing of FWHM was due to the magnetoacoustic standing wave which is excited in FeBO 3 crystal. In our experiments, the influence of additional static magnetic field on the magnetoacoustic standing wave of FeBO 3 crystal was investigated too

  12. Simulation of RF power and multi-cusp magnetic field requirement for H{sup −} ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manish [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Senecha, V.K., E-mail: kumarvsen@gmail.com [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Kumar, Rajnish; Ghodke, Dharmraj V. [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)

    2016-12-01

    A computer simulation study for multi-cusp RF based H{sup −} ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H{sup −} Linac project for SNS applications. The average reaction rates for different reactions responsible for H{sup −} ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H{sup -} ion source for a maximum possible H{sup −} ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H{sup −} ion source like excited hydrogen molecular density, H{sup −} ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H{sup −} ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H{sup −} ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  13. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  14. Sequential modelling of ICRF wave near RF fields and asymptotic RF sheaths description for AUG ICRF antennas

    Directory of Open Access Journals (Sweden)

    Jacquot Jonathan

    2017-01-01

    Full Text Available A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing. Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.

  15. Moessbauer study of the fast magnetization reversal forced in permalloy and invar by an external rf magnetic field

    International Nuclear Information System (INIS)

    Kopcewicz, M.

    1978-01-01

    The effect of fast magnetization reversal leading to fast relaxation of the hyperfine field (collapse effect) forced by an external rf magnetic field is studied using the Moessbauer technique for permalloy and invar. The rf collapse and sideband effects are investigated as a function of external rf field, frequency, and intensity. The collapse of the hfs spectrum through unresolved hfs spectrum, triangular shape to a single line, as well as the formation of sidebands is observed. The rf collapse effect is attributed to the rf forced uniform rotation of internal magnetization which causes fast magnetization reversal leading to fast relaxation of the hyperfine field as a result of which the average field at the Moessbauer nuclei is reduced to zero. The difference of the magnetization reversal process in permalloy and invar are discussed. It is shown that the origin of collapse and sideband effects is totaly different: the collapse effect being of purely magnetic origin while the formation of sidebands is due to the rf induced mechanical vibrations of iron atoms within the sample. It is possible to damp sidebands without affecting the collapse effect. The results obtained show that the application of the rf field to ferromagnetic materials gives a unique possibility to force, simulate, and control the relaxation effects in ferromagnetic materials. (author)

  16. Review of laser-induced fluorescence methods for measuring rf- and microwave electric fields in discharges

    International Nuclear Information System (INIS)

    Gavrilenko, V.; Oks, E.

    1994-01-01

    Development of methods for measuring rf- or μ-wave electric fields E(t) = E 0 cosωt in discharge plasmas is of a great practical importance. First, these are fields used for producing rf- or μ-wave discharges. Second, the fields E(t) may represent electromagnetic waves penetrating into a plasma from the outside. This paper reviews methods for diagnostics of the fields E(t) in low temperature plasmas based on Laser-Induced Fluorescence (LIF). Compared to emission (passive) methods, LIF-methods have a higher sensitivity as well as higher spatial and temporal resolutions. Underlying physical effects may be highlighted by an example of LIF of hydrogen atoms in a plasma. After a presentation of the underlying physical principles, the review focuses on key experiments where these principles were implemented for measurements of rf- and μ-wave electric fields in various discharges

  17. Low-level RF control system issues for an ADTT accelerator

    International Nuclear Information System (INIS)

    Ziomek, C.D.; Regan, A.H.; Lynch, M.T.; Bowling, P.S.

    1994-01-01

    The RF control system for a charged-particle accelerator must maintain the correct amplitude and phase of RF field inside the accelerator cavity in the presence of perturbations, noises, and time varying system components. For an accelerator with heavy beam-loading, fluctuations in the beam current cause large perturbations to the RF field amplitude and phase that must be corrected by the RF control system. The ADTT applications require a high-current, heavily beam-loaded, continuous-wave (CW) accelerator. Additional concerns created by the CW operation include system start-up, beam interruption, and fault recovery. Also, the RF control system for an ADTT facility must include sophisticated automation to reduce the operator interaction and support. This paper describes an RF control system design that addresses these various issues by evaluation a combination of feedback and feed forward control techniques. Experience from the high-current Ground Test Accelerator (GTA) is drawn upon for this RF control system design. Comprehensive computer modeling with the Matrix x software has been used to predict the performance of this RF control system

  18. BRICTEST: a code for charge breeding simulations in RF quadrupolar field

    International Nuclear Information System (INIS)

    Variale, V.; Claudione, M.

    2005-01-01

    In the framework of the SPES project (Study for Production of Exotic Species), funded by Istituto Nazionale Fisica Nucleare (INFN) at the Laboratori Nazionali Legnaro (LNL) (Padua) for Radioactive Ion Beam (RIB) production, an R and D experiment of a charge breeder device, called BRIC (BReeding Ion Charge), is in progress at LNL. BRIC is an Electron Beam Ion Source (EBIS) type ion charge state breeder in which a radio frequency (RF) quadrupolar field has been superimposed in the trapped ion region to introduce a selective containment with the aim of increasing the wanted ion trapping efficiency. A code that studies the motion and the ion charge state evolution in the trap region of the BRIC device has been recently developed in the Bari INFN section. That code has the aim of showing if, in the presence of an axial magnetic field and electron beam space charge force, the RF quadrupole field can still give a selective ion containment in the EBIS trap region. The code, furthermore, should allow choosing the RF quadrupole parameters to optimize the ion charge containment efficiency. In this paper the main feature of the code, named BRICTEST, and the simulation test will be presented and shortly discussed

  19. Far-field RF energy transfer and harvesting

    NARCIS (Netherlands)

    Visser, H.J.; Vullers, R.; Briand, D.; Yeatman, E.; Roundy, S.

    2015-01-01

    This chapter deals with radio frequency (RF) energy transfer over a distance. After explaining the differences between nonradiative and radiative RF energy transfer, the chapter gives definitions for transfer and harvesting. Nonradiative RF energy transfer is mostly employed in inductive systems,

  20. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    CERN Document Server

    Merminga, L; Benson, S; Bolshakov, A; Doolittle, L; Neil, George R

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed...

  1. Influence of DC arc jets on flow fields analyzed by an integrated numerical model for a DC-RF hybrid plasma

    International Nuclear Information System (INIS)

    Seo, Jun Ho; Park, Jin Myung; Hong, Sang Hee

    2008-01-01

    The influence of DC arc jets on the flow fields in a hybrid plasma torch is numerically analyzed by an integrated direct current-radio frequency (DC-RF) plasma model based on magneto-hydrodynamic formulations. The calculated results reveal that the increase in DC arc gas flow rate raises the axial flow velocity along the central column of the DC-RF hybrid plasma together with the enhanced backflow streams in the peripheral wall region. The temperature profiles on the torch exit plane are little affected due to the reheating process of the central column by the combined RF plasma. Accordingly, the exit enthalpy emitted from the DC-RF hybrid torch can be concentrated to the central column of the plasma and controlled by adjusting the DC arc gas flow rate. The swirl in the sheath gas flow turns out to have the opposite effect on the DC arc gas flow rate. The swirling motion of the sheath gas can reduce the back flows near the induction tube wall as well as the axial velocities in the central column of the plasma. Accordingly, the swirl in the sheath gas flow can be used for the functional operation of the DC-RF hybrid plasma along with the DC arc gas flow rate to suppress the back flows at the wall region and to reduce the excessive interactions between the DC arc jet and the ambient RF plasmas. The effects of DC input current on the flow fields of hybrid plasma are similar to those of the DC arc gas flow rate, but the axial velocities for the higher current relatively quickly decay along the centerline. This is in contrast to the increase in the axial velocity remaining in proportion to the increase in the DC arc gas flow rate all the way up to the exit of the DC-RF hybrid plasma. Accordingly, the present integrated numerical analysis suggests that the hybrid plasma field profiles and the entrainment of ambient air from the torch exit are controllable by adjusting the DC arc gas flow rate, the DC input current and swirl in the sheath gas flow taking advantage of

  2. The effects of electromagnetic space-charge fields in RF photocathode guns

    International Nuclear Information System (INIS)

    Park, C.S.; Hess, M.

    2010-01-01

    In high-brightness rf photocathode guns, the effects of space-charge are important for electron bunches with high bunch charge. In an effort to accurately simulate the effects of these space-charge fields without the presence of numerical grid dispersion, a Green's function based code called IRPSS (Indiana Rf Photocathode Source Simulator) was developed. In this paper, we show the results of numerical simulations of the Argonne Wakefield Accelerator photocathode gun using IRPSS, and compare them with the results of an electrostatic Green's function version of IRPSS.

  3. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  4. Understanding the Double Quantum Muonium RF Resonance

    Science.gov (United States)

    Kreitzman, S. R.; Cottrell, S. P.; Fleming, D. G.; Sun-Mack, S.

    A physically intuitive analytical solution to the Mu + RF Hamiltonian and lineshape is developed. The method is based on reformulating the problem in a basis set that explicitly accounts for the 1q RF transitions and identifying an isolated upper 1q quasi-eigenstate within that basis. Subsequently the double quantum resonance explicitly manifests itself via the non-zero interaction term between the pair of lower ortho-normalized 1q basis states, which in this field region are substantially the | \\uparrow \\uparrow > and | \\downarrow \\downarrow > Mu states.

  5. High-field electron-photon interactions

    International Nuclear Information System (INIS)

    Hartemann, F V.

    1999-01-01

    Recent advances in novel technologies (including chirped-pulse amplification, femtosecond laser systems operating in the TW-PW range, high-gradient rf photoinjectors, and synchronized relativistic electron bunches with subpicosecond durations and THz bandwidths) allow experimentalists to study the interaction of relativistic electrons with ultrahigh-intensity photon fields. Ponderomotive scattering can accelerate these electrons with extremely high gradients in a three-dimensional vacuum laser focus. The nonlinear Doppler shift induced by relativistic radiation pressure in Compton backscattering is shown to yield complex nonlinear spectra which can be modified by using temporal laser pulse shaping techniques. Colliding laser pulses, where ponderomotive acceleration and Compton backscattering are combined, could also yield extremely short wavelength photons. Finally, one expects strong radiative corrections when the Doppler-upshifted laser wavelength approaches the Compton scale. These are discussed within the context of high-field classical electrodynamics, a new discipline borne out of the aforementioned innovations

  6. RF field control for KAON Factory booster cavities

    International Nuclear Information System (INIS)

    Craig, S.T.; de Jong, M.S.

    1990-11-01

    A conceptual design is developed for control of the KAON Factory Booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluated the proposed controllers. These simulations indicated that adequate tuning performance can be obtained with the combination of adaptive feed-forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feedforward and proportional feedback control

  7. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, L.; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G.

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  8. Analysis of the FEL-RF interaction in recirculating energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, Lia; Alexeev, P.; Benson, Steve; Bolshakov, A.; Doolittle, Lawrence; Neil, George

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  9. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    Energy Technology Data Exchange (ETDEWEB)

    Merminga, L. E-mail: merminga@jlab.org; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G

    1999-06-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab.

  10. Modelling RF sources using 2-D PIC codes

    Energy Technology Data Exchange (ETDEWEB)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  11. Modelling RF sources using 2-D PIC codes

    Energy Technology Data Exchange (ETDEWEB)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  12. Modelling RF sources using 2-D PIC codes

    International Nuclear Information System (INIS)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (''port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation

  13. Superconducting rf and beam-cavity interactions

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1987-01-01

    Beam-cavity interactions can limit the beam quality and current handling capability of linear and circular accelerators. These collective effects include cumulative and regenerative transverse beam breakup (BBU) in linacs, transverse multipass beam breakup in recirculating linacs and microtrons, longitudinal and transverse coupled-bunch instabilities in storage rings, and a variety of transverse and longitudinal single-bunch phenomena (instabilities, beam breakup, and energy deposition). The superconducting radio frequency (SRF) environment has a number of features which distinguish it from room temperature configuration with regard to these beam-cavity interactions. Typically the unloaded Qs of the lower higher order modes (HOM) are at the 10 9 level and require significant damping through couplers. High gradient CW operation, which is a principal advantage of SRF, allows for better control of beam quality, which for its preservation requires added care which respect to collective phenomena. Gradients are significantly higher than those attainable with copper in CW operation but remain significantly lower than those obtainable with pulsed copper cavities. Finally, energy deposition by the beam into the cavity can occur in a cryogenic environment. In this note those characteristics of beam-cavity interactions which are of particular importance for superconducting RF cavities are highlighted. 6 refs., 4 figs

  14. Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging.

    Science.gov (United States)

    Vavoulas, Alexander; Vaiopoulos, Nicholas; Hedström, Erik; Xanthis, Christos G; Sandalidis, Harilaos G; Aletras, Anthony H

    2016-08-01

    An experimental setup for characterizing the magnetic field of MRI RF coils was proposed and tested. The setup consisted of a specially configured 3D-printer, a network analyzer and a mid-performance desktop PC. The setup was tested on a single loop RF coil, part of a phased array for fetal imaging. Then, the setup was used for determining the magnetic field characteristics of a high-pass birdcage coil used for neonatal MR imaging with a vertical static field. The scattering parameter S21, converted into power ratio, was used for mapping the B1 magnetic field. The experimental measurements from the loop coil were close to the theoretical results (R=0.924). A high degree of homogeneity was measured for the neonatal birdcage RF coil. The development of MR RF coils is time consuming and resource intensive. The proposed experimental setup provides an alternative method for magnetic field characterization of RF coils used in MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    Science.gov (United States)

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  16. Experimental investigation of heating phenomena in linac mechanical interfaces due to RF field penetration

    International Nuclear Information System (INIS)

    Fazio, M.V.; Reid, D.W.; Potter, J.M.

    1981-01-01

    In a high duty-factor, high-current, drift-tube linear accelerator, a critical interface exists between the drift-tube stem and the tank wall. This interface must provide vacuum integrity and RF continuity, while simultaneously allowing alignment flexibility. Because of past difficulties with RF heating of vacuum bellows and RF joints encountered by others, a paucity of available information, and the high reliability requirement for the Fusion Materials Irradiation Test (FMIT) accelerator, a program was initiated to study the problem. Because RF heating is the common failure mode, an attempt was made to find a correlation between the drift-tube-stem/linac-tank interface geometry and RF field penetration from the tank into the interface region. Experiments were performed at 80 MHz on an RF structure designed to simulate the conditions to which a drift-tube stem and vacuum bellows are exposed in a drift-tube linac. Additional testing was performed on a 367-MHz model of the FMIT prototype drift-tube linac. Experimental results, and a method to predict excessive RF heating, is presented. An experimentally tested solution to the problem is discussed

  17. RF field control for Kaon Factory booster cavities

    International Nuclear Information System (INIS)

    Craig, S.T.; de Jong, M.S.

    1992-08-01

    A conceptual design is developed for control of the Kaon Factory booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluate the proposed controllers. These simulations indicate that adequate tuning performance can be obtained with the combination of adaptive feed forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feed forward and proportional feedback control. (Author) (figs., tabs.)

  18. Spin flipping a stored polarized proton beam with an rf magnetic field

    International Nuclear Information System (INIS)

    Hu, S.Q.; Blinov, B.B.; Caussyn, D.D.

    1995-01-01

    The authors studied the spin flipping of a vertically polarized, stored 139 MeV proton beam with an rf solenoid magnetic field. By sweeping the rf frequency through an rf depolarizing resonance, they made the spin flip. The spin flipping was more efficient for slower ramp times, and the spin flip efficiency peaked at some optimum ramp time that is not yet fully understood. Since frequent spin flipping could significantly reduce the systematic errors in scattering experiments using a stored polarized beam, it is very important to minimize the depolarization after each spin flip. In this experiment, with multiple spin flips, the authors found a polarization loss of 0.0000 ± 0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions

  19. Design and Calibration of an RF Actuator for Low-Level RF Systems

    Science.gov (United States)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  20. The RF Design of an HOM Polarized RF Gun for the ILC

    International Nuclear Information System (INIS)

    Wang, J.W.; Clendenin, J.E.; Colby, E.R.; Miller, R.A.; Lewellen, J.W.

    2006-01-01

    The ILC requires a polarized electron beam. While a highly polarized beam can be produced by a GaAs-type cathode in a DC gun of the type currently in use at SLAC, JLAB and elsewhere, the ILC injector system can be simplified and made more efficient if a GaAs-type cathode can be combined with a low emittance RF gun. Since this type of cathode is known to be extremely sensitive to vacuum contamination including back bombardment by electrons and ions, any successful polarized RF gun must have a significantly improved operating vacuum compared to existing RF guns. We present a new RF design for an L-Band normal conducting (NC) RF gun for the ILC polarized electron source. This design incorporates a higher order mode (HOM) structure, whose chief virtue in this application is an improved conductance for vacuum pumping on the cathode. Computer simulation models have been used to optimize the RF parameters with two principal goals: first to minimize the required RF power; second to reduce the peak surface field relative to the field at the cathode in order to suppress field emitted electron bombardment. The beam properties have been simulated initially using PARMELA. Vacuum and other practical issues for implementing this design are discussed

  1. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  2. Trapping and cooling of rf-dressed atoms in a quadrupole magnetic field

    International Nuclear Information System (INIS)

    Morizot, O; Alzar, C L Garrido; Pottie, P-E; Lorent, V; Perrin, H

    2007-01-01

    We observe the spontaneous evaporation of atoms confined in a bubble-like radio frequency (rf)-dressed trap (Zobay and Garraway 2001 Phys. Rev. Lett. 86 1195; 2004 Phys. Rev. A 69 023605). The atoms are confined in a quadrupole magnetic trap and are dressed by a linearly polarized rf field. The evaporation is related to the presence of holes in the trap, at the positions where the rf coupling vanishes, due to its vectorial character. The final temperature results from a competition between residual heating and evaporation efficiency, which is controlled via the height of the holes with respect to the bottom of the trap. The experimental data are modelled by a Monte Carlo simulation predicting a small increase in phase-space density limited by the heating rate. This increase was within the phase-space density determination uncertainty of the experiment

  3. Controlling the dynamics of a self-organized structure using a rf-field

    International Nuclear Information System (INIS)

    Talasman, S.J.; Ignat, M.

    2004-01-01

    We investigate the influence of an external rf-field upon a plasma self-organized structure. We show that depending on the intensity of this field, though it is at very low values, the dynamics of the structure can be easily controlled over a wide range of the state parameters values. This could be considered as a non-feedback method of dynamics control

  4. RF fields due to Schottky noise in a coasting particle beam

    CERN Document Server

    Faltin, L

    1977-01-01

    The RF fields inside a rectangular chamber excited by the Schottky noise current inherently present in a coasting particle beam are calculated, using a simple beam model. Vertical betatron oscillations are assumed. The power flow accompanying the beam is given as well as the resulting characteristic impedance. Numerical results are presented.

  5. Modeling and Simulation of the Longitudinal Beam Dynamics - RF Station Interaction in the LHC Rings

    International Nuclear Information System (INIS)

    Mastorides, T

    2008-01-01

    A non-linear time-domain simulation has been developed to study the interaction between longitudinal beam dynamics and RF stations in the LHC rings. The motivation for this tool is to determine optimal LLRF configurations, to study system sensitivity on various parameters, and to define the operational and technology limits. It will be also used to study the effect of RF station noise, impedance, and perturbations on the beam life time and longitudinal emittance. It allows the study of alternative LLRF implementations and control algorithms. The insight and experience gained from our PEP-II simulation is important for this work. In this paper we discuss properties of the simulation tool that will be helpful in analyzing the LHC RF system and its initial results. Partial verification of the model with data taken during the LHC RF station commissioning is presented

  6. MgB_{2} nonlinear properties investigated under localized high rf magnetic field excitation

    Directory of Open Access Journals (Sweden)

    Tamin Tai

    2012-12-01

    Full Text Available The high transition temperature and low surface resistance of MgB_{2} attracts interest in its potential application in superconducting radio frequency accelerating cavities. However, compared to traditional Nb cavities, the viability of MgB_{2} at high rf fields is still open to question. Our approach is to study the nonlinear electrodynamics of the material under localized rf magnetic fields. Because of the presence of the small superconducting gap in the π band, the nonlinear response of MgB_{2} at low temperature is potentially complicated compared to a single-gap s-wave superconductor such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB_{2}, as well as extrinsic sources of nonlinearity, is an urgent requirement. A localized and strong rf magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [T. Tai et al., IEEE Trans. Appl. Supercond. 21, 2615 (2011ITASE91051-822310.1109/TASC.2010.2096531]. MgB_{2} films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that several possible mechanisms are responsible for this nonlinear response.

  7. Industrial RF Linac Experiences and Laboratory Interactions

    CERN Document Server

    Peiniger, M

    2004-01-01

    Since more than two decades ACCEL Instruments GmbH at Bergisch Gladbach (formerly Siemens/Interatom) is supplying the worldwide accelerator labs with key components like rf cavities and power couplers, s.c. magnets, insertion devices, vacuum chambers and x-ray beamline equipment. Starting with the design and production of turn key SRF accelerating modules in the late 80th, meanwhile ACCEL is engineering, manufacturing, on site commissioning and servicing complete accelerators with guaranteed beam performance. Today, with a staff of more than 100 physicists and engineers and about the same number of manufacturing specialists in our dedicated production facilities, ACCEL's know how and sales volume in this field has accumulated to more than 2000 man years and several hundred Mio €, respectively. Basis of our steady development is a cooperative partnership with the world leading research labs in the respective fields. As an example, for the supply of a turn key 100 MeV injector linac for the Swiss Ligh...

  8. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    Directory of Open Access Journals (Sweden)

    Jenkins Thomas G.

    2017-01-01

    Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.

  9. Preliminary results of a broad beam RF ion source with electron plasma interaction. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E; Zakhary, S G; Ghanem, A A; Abdel-Ghaffar, A M [Ion Sources and Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    A new design of a broad beam RF ion source is made to be capable to deliver wide and uniform beam with currents reaching (100 {mu} A up to 30 mA) at extraction voltages (200 V up to 2 kV). Its plasma intensifying system is made with the addition of electrons from an immersed filament in the discharge and axial magnetic field (70 up to 300 G). A uniform beam distribution is made with a planner graphite cathode which has a number of holes arranged to produce perveance matching with the normal Gaussian distribution of the beam density. These holes are arranged in a consequent orbits with equal distance between the adjacent holes in each orbit. These holes increase in diameter with increasing the orbit radius. This allows increasing the extracted ion currents at the source outer edges and decreases its value at the source inner region; producing wide and uniform beam which is suitable for material modifications. The beam profiles are traced with electromechanical scanner and X-Y recorder. The perveance matching is found to produce a beam uniformity of =66% of its width which reaches =6 cm. The variation of the output currents are with the variation of extraction voltages, magnetic field, discharge pressure and electron injection into the plasma. The extracted current increases with the increase of the discharge pressure, RF power and magnetic field intensity. The influence of electron plasma interaction is found to have a great effect on increasing the ion currents to about four times its value without electron interaction, however, this increase is limited due to presence of breakdown at V{sub ex} > 2 kV. The simple design of this source, its cleanness due to the use of pyrex discharge bottle, easy operation and maintenance adds other features to this broad beam type ion source which makes it suitable for metallurgical applications in broad beam accelerators. 6 figs.

  10. Confinement improvement with rf poloidal current drive in the reversed-field pinch

    International Nuclear Information System (INIS)

    Hokin, S.; Sarff, J.; Sovinec, C.; Uchimoto, E.

    1994-01-01

    External control of the current profile in a reversed-field pinch (RFP), by means such as rf poloidal current drive, may have beneficial effects well beyond the direct reduction of Ohmic input power due to auxiliary heating. Reduction of magnetic turbulence associated with the dynamo, which drives poloidal current in a conventional RFP, may allow operation at lower density and higher electron temperature, for which rf current drive becomes efficient and the RFP operates in a more favorable regime on the nτ vs T diagram. Projected parameters for RFX at 2 MA axe studied as a concrete example. If rf current drive allows RFX to operate with β = 10% (plasma energy/magnetic energy) at low density (3 x 10 19 m -3 ) with classical resistivity (i.e. without dynamo-enhanced power input), 40 ms energy confinement times and 3 keV temperatures will result, matching the performance of tokamaks of similar size

  11. RF properties of high-T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Bohn, C.L.; Delayen, J.R.; Dos Santos, D.I.; Lanagan, M.T.; Shepard, K.W.

    1988-01-01

    We have investigated the rf properties of high-T/sub c/ superconductors over a wide range of temperature, frequency, and rf field amplitude. We have tested both bulk polycrystalline samples and thick films on silver substrates. At 150 MHz and 4.2 K, we have measured a surface resistance of 18 μ/sup /OMEGA// at low rf field and 3.6 m/sup /OMEGA// at an rf field of 270 gauss. All samples showed a strong dependence of the surface resistance on rf field; however, no breakdown of the superconducting state has been observed up to the highest field achieved (320 gauss). 9 refs., 4 figs., 1 tab

  12. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  13. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  14. Filtering peripheral high temperature electrons in a cylindrical rf-driven plasmas by an axisymmetric radial magnetic field

    Science.gov (United States)

    Akahoshi, Hikaru; Takahashi, Kazunori; Ando, Akira

    2018-03-01

    High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf) inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.

  15. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)

  16. Performance enhancement of high-field asymmetric waveform ion mobility spectrometry by applying differential-RF-driven operation mode.

    Science.gov (United States)

    Zeng, Yue; Tang, Fei; Zhai, Yadong; Wang, Xiaohao

    2017-09-01

    The traditional operation mode of high-field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) uses a one-way radio frequency (RF) voltage input as the dispersion voltage. This requires a high voltage input and limits power consumption reduction and miniaturization of instruments. With higher dispersion voltages or larger compensation voltages, there also exist problems such as low signal intensity or the fact that the dispersion voltage is no longer much larger than the compensation voltage. In this paper, a differential-RF-driven operation mode of FAIMS is proposed. The two-way RF is used to generate the dispersion field, and a phase difference is added between the two RFs to generate a single step waveform field. Theoretical analysis, and experimental results from an ethanol sample, showed that the peak positions of the ion spectra changed linearly (R 2 = 0.9992) with the phase difference of the two RFs in the differential-RF-driven mode and that the peak intensity of the ion spectrum could be enhanced by more than eight times for ethanol ions. In this way, it is possible to convert the ion spectrum peaks outside the separation or compensation voltage range into a detectable range, by changing the phase difference. To produce the same separation electric field, the high-voltage direct current input voltage can be maximally reduced to half of that in the traditional operation mode. Without changing the drift region size or drift condition, the differential-RF-driven operation mode can reduce power consumption, increase signal-to-noise ratio, extend the application range of the dispersion voltage and compensation voltage, and improve FAIMS detection performance.

  17. Impact of device engineering on analog/RF performances of tunnel field effect transistors

    Science.gov (United States)

    Vijayvargiya, V.; Reniwal, B. S.; Singh, P.; Vishvakarma, S. K.

    2017-06-01

    The tunnel field effect transistor (TFET) and its analog/RF performance is being aggressively studied at device architecture level for low power SoC design. Therefore, in this paper we have investigated the influence of the gate-drain underlap (UL) and different dielectric materials for the spacer and gate oxide on DG-TFET (double gate TFET) and its analog/RF performance for low power applications. Here, it is found that the drive current behavior in DG-TFET with a UL feature while implementing dielectric material for the spacer is different in comparison to that of DG-FET. Further, hetero gate dielectric-based DG-TFET (HGDG-TFET) is more resistive against drain-induced barrier lowering (DIBL) as compared to DG-TFET with high-k (HK) gate dielectric. Along with that, as compared to DG-FET, this paper also analyses the attributes of UL and dielectric material on analog/RF performance of DG-TFET in terms of transconductance (gm ), transconductance generation factor (TGF), capacitance, intrinsic resistance (Rdcr), cut-off frequency (F T), and maximum oscillation frequency (F max). The LK spacer-based HGDG-TFET with a gate-drain UL has the potential to improve the RF performance of device.

  18. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  19. New results on RF and DC field emission

    International Nuclear Information System (INIS)

    Padamsee, H.; Kirchgessner, J.; Moffat, D.; Noer, R.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper reviews progress in RF and DC field emission since the last workshop held two years ago at Argonne National Laboratory. Through better characterization, progress has been made towards improved understanding of FE in cavities. Through development of new cures, gains have made towards higher fields. Through better rinsing procedures low-frequency (500 and 350 MHz) cavities regularly reach surface electric fields of 20 MV/m. Processing times are substantially reduced. Through heat treatment at 1350degC high frequency (1500 MHz) cavities have reached 53 MV/m, and 3000 MHz cavities have reached 70 MV/m. The state of the art in Epk is described first. Then, benefits of high temperature treatment are discussed, focusing on highest temperature (1300-1350degC) treatment, intermediate heat treatments, and heat treatment without final methanol rinsing. He processing, heat treatment of 3-GHz cavitie, general inferences concerning emitter properties, influence of condensed gases, and sources of emitters are also addressed. Finally, lessons to be learned from copper cavities and high power processing is pointed out and discussed. (N.K.)

  20. Filtering peripheral high temperature electrons in a cylindrical rf-driven plasmas by an axisymmetric radial magnetic field

    Directory of Open Access Journals (Sweden)

    Hikaru Akahoshi

    2018-03-01

    Full Text Available High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.

  1. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Energy Technology Data Exchange (ETDEWEB)

    Teng, J.; Gu, Y.Q., E-mail: tengjian@mail.ustc.edu.cn; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-11-21

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  2. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  3. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    International Nuclear Information System (INIS)

    Teng, J.; Gu, Y.Q.; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-01-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator

  4. Effect of low-frequency ambient magnetic fields on the control unit and RF head of a commercial SQUID magnetometer

    Science.gov (United States)

    Marcus, C. M.

    1984-01-01

    The control unit and RF head of the SHE model 330XRFSQUID system are shown to be sensitive to ambient ac magnetic fields below 1 HZ, which cause the appearance of false signals corresponding to a magnetometer signal of 0.000001 phi(0) per gauss of field applied. The control unit shows a sensitivity that is linear with frequency, suggesting that the signal is generated by Faraday induction. In contrast, the RF head response is independent of frequency and shows a strong second-harmonic coversion. This response may be due to the magnetic field sensitivity of the ferrite core inductor in the tuned amplifier of the RF head. These signals induced by ambient fields are a potential source of error in Stanford's Relativity Gyroscope experiment, which uses SQUID's on board a rolling satellite as part of the gyroscope readout system. The extent of the magnetic field sensitivity in these components necessitates the use of additional magnetic shielding aboard the satellite.

  5. Observation of enhanced electric field in an RF-plugged sheet plasma in the RFC-XX-M open-ended machine

    International Nuclear Information System (INIS)

    Oda, T.; Takiyama, K.; Kadota, K.

    1987-12-01

    We report nonperturbing observation of the electric field in the sheet plasma for RF end-plugging on the RFC XX-M open-ended machine by using the Stark effect with a combined technique of beam-probe and laser-induced fluorescence. Under the optimum condition for the RF plugging, enhanced electric field is found in the sheet plasma by about 2.5 times with respect to the electric field when no plasma is produced. The field spatial profile is also measured, which is discussed in connection with the electrostatic eigenmode. (author)

  6. Rf and space-charge induced emittances in laser-driven rf guns

    International Nuclear Information System (INIS)

    Kim, Kwang-Je; Chen, Yu-Jiuan.

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs

  7. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI.

    Science.gov (United States)

    Welbourne, Lauren E; Morland, Antony B; Wade, Alex R

    2018-02-15

    The spatial sensitivity of the human visual system depends on stimulus color: achromatic gratings can be resolved at relatively high spatial frequencies while sensitivity to isoluminant color contrast tends to be more low-pass. Models of early spatial vision often assume that the receptive field size of pattern-sensitive neurons is correlated with their spatial frequency sensitivity - larger receptive fields are typically associated with lower optimal spatial frequency. A strong prediction of this model is that neurons coding isoluminant chromatic patterns should have, on average, a larger receptive field size than neurons sensitive to achromatic patterns. Here, we test this assumption using functional magnetic resonance imaging (fMRI). We show that while spatial frequency sensitivity depends on chromaticity in the manner predicted by behavioral measurements, population receptive field (pRF) size measurements show no such dependency. At any given eccentricity, the mean pRF size for neuronal populations driven by luminance, opponent red/green and S-cone isolating contrast, are identical. Changes in pRF size (for example, an increase with eccentricity and visual area hierarchy) are also identical across the three chromatic conditions. These results suggest that fMRI measurements of receptive field size and spatial resolution can be decoupled under some circumstances - potentially reflecting a fundamental dissociation between these parameters at the level of neuronal populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  9. High-quality laser-produced proton beam realized by the application of a synchronous RF electric field

    International Nuclear Information System (INIS)

    Nakamura, Shu; Ikegami, Masahiro; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Souda, Hikaru; Noda, Akira; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Pirozhkov, Alexander S.; Bulanov, Sergei V.; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Takeuchi, Takeshi; Fukumi, Atsushi; Li, Zhong

    2007-01-01

    A short-pulse (∼210fs) high-power (∼1 TW) laser was focused on a tape target 3 and 5 μm in thickness to a size of 11 x 15 μm 2 with an intensity of 3 x 10 17 W/cm 2 . Protons produced by this laser with an energy spread of 100% were found to be improved to create peaks in the energy distribution with a spread of ∼7% by the application of the RF electric field with an amplitude of ±40kV synchronous to the pulsed laser. This scheme combines the conventional RF acceleration technique with laser-produced protons for the first time. It is possible to be operated up to 10 Hz, and is found to have good reproducibility for every laser shot with the capability of adjusting the peak positions by control of the relative phase between the pulsed laser and the RF electric field. (author)

  10. Simulations of S-band RF gun with RF beam control

    Science.gov (United States)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  11. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  12. High-brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines

  13. Reduction of field emission in superconducting cavities with high power pulsed RF

    International Nuclear Information System (INIS)

    Graber, J.; Crawford, C.; Kirchgessner, J.; Padamsee, H.; Rubin, D.; Schmueser, P.

    1994-01-01

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were E peak =72 MV/m and H peak =1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach E peak =113 MV/m (H peak =1600 Oe) and subsequent CW low power measurement reached E peak =100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  14. Low frequency rf current drive

    International Nuclear Information System (INIS)

    Hershkowitz, N.

    1992-01-01

    An unshielded antenna for rf heating has been developed and tested during this report period. In addition to design specifications being given, some experimental results are presented utilizing: (1) an unprotected Faraday shield, (2) insulating guard limiters, (3) unshielded antenna experiments, (4) method for detecting small rf driven currents, (5) rf fast wave current drive experiments, (6) alfven wave interactions with electrons, and (7) machine conditioning, impurity generation and density control

  15. Asymmetric focusing study from twin input power couplers using realistic rf cavity field maps

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2011-03-01

    Full Text Available Advanced simulation codes now exist that can self-consistently solve Maxwell’s equations for the combined system of an rf cavity and a beam bunch. While these simulations are important for a complete understanding of the beam dynamics in rf cavities, they require significant time and computing power. These techniques are therefore not readily included in real time simulations useful to the beam physicist during beam operations. Thus, there exists a need for a simplified algorithm which simulates realistic cavity fields significantly faster than self-consistent codes, while still incorporating enough of the necessary physics to ensure accurate beam dynamics computation. To this end, we establish a procedure for producing realistic field maps using lossless cavity eigenmode field solvers. This algorithm incorporates all relevant cavity design and operating parameters, including beam loading from a nonrelativistic beam. The algorithm is then used to investigate the asymmetric quadrupolelike focusing produced by the input couplers of the Cornell ERL injector cavity for a variety of beam and operating parameters.

  16. Pulsed rf superconductivity program at SLAC

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1984-08-01

    Recent tests performed at SLAC on superconducting TM 010 caavities using short rf pulses (less than or equal to 2.5 μs) have established that at the cavity surface magnetic fields can be reached in the vicinity of the theoretical critical fields without an appreciable increase in average losses. Tests on niobium and lead cavities are reported. The pulse method seems to be best suited to study peak field properties of superconductors in the microwave band, without the limitations imposed by defects. The short pulses also seem to be more effective in decreasing the causes of field emission by rf processing. Applications of the pulsed rf superconductivity to high-gradient linear accelerators are also possible

  17. The Spallation Neutron Source RF Reference System

    CERN Document Server

    Piller, Maurice; Crofford, Mark; Doolittle, Lawrence; Ma, Hengjie

    2005-01-01

    The Spallation Neutron Source (SNS) RF Reference System includes the master oscillator (MO), local oscillator(LO) distribution, and Reference RF distribution systems. Coherent low noise Reference RF signals provide the ability to control the phase relationships between the fields in the front-end and linear accelerator (linac) RF cavity structures. The SNS RF Reference System requirements, implementation details, and performance are discussed.

  18. RF current drive in a toroidal plasna in the banana regime

    International Nuclear Information System (INIS)

    Belikov, V.S.; Kolesnichenko, Ya.I.; Plotnik, I.S.

    1982-01-01

    The use of travelling waves for the steady-state current drive in an axisymmetric toroidal plasma in the banana regime is studied. The treatment is based on a quasi-linear equation for the electron distribution function averaged over the period of the particle motion along the small azimuth of the torus. It is show that the trapped electrons do not absorb the energy of the monochromatic (over frequency) RF field and thus only the circulating electrons contribute to the driving current and to the absorbed RF power. The current and the absorbed power are calculated by using the electron distribution function obtained for the case of narrow wave packet, both the toroidal magnetic field and the distortion of the electron distribution over transverse velocities being taken into consideration. The significant role of the barely carculating electrons is revealed. It is pointed out that the toroidal satellite resonances can affect the RF current drive by spreading and splitting the region of the wave-marticle interaction

  19. Nonlinear Near-Field Microwave Microscopy for RF Defect Localization in Nb-Based Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Tai, Tamin

    2011-03-01

    Niobium Superconducting Radio Frequency (SRF) cavities are very sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these defects via scanning microscopy, and to further understand the origins of the quench under high radio frequency excitation (1-3 GHz), a scanning probe with localized and up to ~ 200 mT RF magnetic field is required for low temperature microscopy to achieve sub-micron resolution. For this purpose, we developed a micro loop probe on silicon substrate with outer diameter 20 μ m and inner diameter 17 μ m and successfully fabricated it by lithography. The probe has been used to identify a signal arising from the nonlinear Meissner effect in a Nb thin film. In addition, a magnetic write head is another promising candidate to achieve this goal of understanding localized defect behavior under high RF magnetic field at low temperatures. We will discuss and compare both types of probe for nonlinear scanning microscopy and RF defect localization in superconductors. We acknowledge the support of DOE/HEP.

  20. Stimulated resonance Raman spectroscopy: An alternative to laser-rf double resonance for ion spectroscopy

    International Nuclear Information System (INIS)

    Young, L.; Dinneen, T.; Mansour, N.B.

    1988-01-01

    Stimulated resonance Raman spectroscopy is presented as an alternative to laser-rf double resonance for obtaining high-precision measurements in ion beams. By use of a single-phase modulated laser beam to derive the two required fields, the laser--ion-beam alignment is significantly simplified. In addition, this method is especially useful in the low-frequency regime where the laser-rf double-resonance method encounters difficulties due to modifications of the ion-beam velocity distribution. These modifications, which result from interaction with the traveling rf wave used to induce magnetic dipole transitions, are observed and quantitatively modeled

  1. RF field measurements in the vicinity of an ICRF antenna

    International Nuclear Information System (INIS)

    Majeski, R.; Intrator, T.; Roberts, D.; Hershkowitz, N.; Tataronis, J.; Grossmann, W.

    1988-01-01

    Measurements of the rf fields near an ICRF antenna installed in the central cell of the Phaedrus-B tandem mirror have been made, both in vacuum and in the presence of plasma. The antenna is a Faraday shielded partial turn loop. The front surface of the Faraday shield is composed of cylindrical elements in an arrangement similar to the Faraday shield design employed on TFTR. The antenna is run at relatively low power levels, in the 3.5-10 MHz frequency range. Two other ICRF systems in the phaedrus-B central cell sustain and heat the plasma at the 400 KW level. The vacuum field measurements are compared with the predictions of the ARGUS code, which models details of the Faraday shield structure. Fields in the plasma are modelled by the ANTENA code. Particle currents collected by the Faraday shield during plasma operation are also observed

  2. Short-Period RF Undulator for a SASE Nanometer source

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2011-01-01

    Analysis is described towards development of a RF undulator with a period < 1 cm, an undulator parameter K of the order of unity, and a gap greater than 2.25 mm. The application for the undulator is for a SASE source to produce 1 nm wavelength radiation using a low energy electron beam in the range 1-2 GeV. Particle orbit calculations in a conventional standing-wave resonator configuration show that the presence of a co-propagating component of RF field can cause deleterious motion for the undulating electrons that can seriously degrade their radiation spectrum. To obviate this problem, resonator designs were devised in which only the counter-propagating field components interact with the particles. Two resonator configurations with the same undulator parameter K = 0.4 have been devised and are described in this report.

  3. Measured performance of the GTA rf systems

    International Nuclear Information System (INIS)

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation

  4. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)˜ {10}10{--}{10}11 achieved on the Nb cavities at 1.3-2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  5. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field

    Science.gov (United States)

    Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.

    2018-03-01

    Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.

  6. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  7. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    OpenAIRE

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    INTRODUCTION: The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS: Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each...

  8. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  9. Modelling RF-plasma interaction in ECR ion sources

    Directory of Open Access Journals (Sweden)

    Mascali David

    2017-01-01

    Full Text Available This paper describes three-dimensional self-consistent numerical simulations of wave propagation in magnetoplasmas of Electron cyclotron resonance ion sources (ECRIS. Numerical results can give useful information on the distribution of the absorbed RF power and/or efficiency of RF heating, especially in the case of alternative schemes such as mode-conversion based heating scenarios. Ray-tracing approximation is allowed only for small wavelength compared to the system scale lengths: as a consequence, full-wave solutions of Maxwell-Vlasov equation must be taken into account in compact and strongly inhomogeneous ECRIS plasmas. This contribution presents a multi-scale temporal domains approach for simultaneously including RF dynamics and plasma kinetics in a “cold-plasma”, and some perspectives for “hot-plasma” implementation. The presented results rely with the attempt to establish a modal-conversion scenario of OXB-type in double frequency heating inside an ECRIS testbench.

  10. Application to the conservation of RF tags in the radiation environment

    International Nuclear Information System (INIS)

    Teraura, Nobuyuki; Ito, Kunio; Takahashi, Naoki; Sakurai, Kouichi

    2011-01-01

    RF tags that are implemented RFID technology as tag has been used in various fields. Tags have been developed, such as resistance to chemicals and high temperature resistant RF tags are also used in specialized fields. The RF tag apply to the existing nuclear field, had been concerned about the effects of radiation to the RF tags. Now, since the RF tag with a goal to develop radiation-proof, we have examined, such as applying for maintenance of nuclear facilities under radiation environment. We report the results and RF tags to be radiation resistant. (author)

  11. Development of L-band niobium superconducting RF cavities with high accelerating field

    International Nuclear Information System (INIS)

    Saito, Kenji; Noguchi, Shuichi; Ono, Masaaki; Kako, Eiji; Shishido, Toshio; Matsuoka, Masanori; Suzuki, Takafusa; Higuchi, Tamawo.

    1994-01-01

    Superconducting RF cavity is a candidate for the TeV energy e + /e - linear collider of next generation if the accelerating field is improved to 25-30 MV/m and much cost down is achieved in cavity fabrication. Since 1990, KEK has continued R and D of L-band niobium superconducting cavities focusing on the high field issue. A serious problem like Q-degradation due to vacuum discharge came out on the way, however, it has been overcome and presently all of cavities which were annealed at 1400degC achieved the accelerating field of >25 MV/m with enough Qo value. Recent results on single cell cavities are described in this paper. (author)

  12. A thermodynamical analysis of rf current drive with fast electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, João P. S., E-mail: bizarro@ipfn.tecnico.ulisboa.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-08-15

    The problem of rf current drive (CD) by pushing fast electrons with high-parallel-phase-velocity waves, such as lower-hybrid (LH) or electron-cyclotron (EC) waves, is revisited using the first and second laws, the former to retrieve the well-known one-dimensional (1D) steady-state CD efficiency, and the latter to calculate a lower bound for the rate of entropy production when approaching steady state. The laws of thermodynamics are written in a form that explicitly takes care of frictional dissipation and are thus applied to a population of fast electrons evolving under the influence of a dc electric field, rf waves, and collisions while in contact with a thermal, Maxwellian reservoir with a well-defined temperature. Besides the laws of macroscopic thermodynamics, there is recourse to basic elements of kinetic theory only, being assumed a residual dc electric field and a strong rf drive, capable of sustaining in the resonant region, where waves interact with electrons, a raised fast-electron tail distribution, which becomes an essentially flat plateau in the case of the 1D theory for LHCD. Within the 1D model, particularly suited for LHCD as it solely retains fast-electron dynamics in velocity space parallel to the ambient magnetic field, an H theorem for rf CD is also derived, which is written in different forms, and additional physics is recovered, such as the synergy between the dc and rf power sources, including the rf-induced hot conductivity, as well as the equation for electron-bulk heating. As much as possible 1D results are extended to 2D, to account for ECCD by also considering fast-electron velocity-space dynamics in the direction perpendicular to the magnetic field, which leads to a detailed discussion on how the definition of an rf-induced conductivity may depend on whether one works at constant rf current or power. Moreover, working out the collisional dissipated power and entropy-production rate written in terms of the fast-electron distribution, it

  13. Improving the beam quality of rf guns by correction of rf and space-charge effects

    International Nuclear Information System (INIS)

    Serafini, L.

    1992-01-01

    In this paper we describe two possible strategies to attain ultra-low emittance electron beam generation by laser-driven RF guns. The first one is based on the exploitation of multi-mode resonant cavities to neutralize the emittance degradation induced by RF effects. Accelerating cigar-like (long and thin) electron bunches in multi-mode operated RF guns the space charge induced emittance is strongly decreased at the same time: high charged bunches, as typically requested by future TeV e - e + colliders, can be delivered by the gun at a quite low transverse emittance and good behaviour in the longitudinal phase space, so that they can be magnetically compressed to reach higher peak currents. The second strategy consists in using disk-like electron bunches, produced by very short laser pulses illuminating the photocathode. By means of an analytical study a new regime has been found, where the normalized transverse emittance scales like the inverse of the peak current, provided that the laser pulse intensity distribution is properly shaped in the transverse direction. Preliminary numerical simulations confirm the analytical predictions and show that the minimum emittance achievable is set up, in this new regime, by the wake-field interaction between the bunch and the cathode metallic wall

  14. Optimization of L-shaped tunneling field-effect transistor for ambipolar current suppression and Analog/RF performance enhancement

    Science.gov (United States)

    Li, Cong; Zhao, Xiaolong; Zhuang, Yiqi; Yan, Zhirui; Guo, Jiaming; Han, Ru

    2018-03-01

    L-shaped tunneling field-effect transistor (LTFET) has larger tunnel area than planar TFET, which leads to enhanced on-current ION . However, LTFET suffers from severe ambipolar behavior, which needs to be further optimized for low power and high-frequency applications. In this paper, both hetero-gate-dielectric (HGD) and lightly doped drain (LDD) structures are introduced into LTFET for suppression of ambipolarity and improvement of analog/RF performance of LTFET. Current-voltage characteristics, the variation of energy band diagrams, distribution of band-to-band tunneling (BTBT) generation and distribution of electric field are analyzed for our proposed HGD-LDD-LTFET. In addition, the effect of LDD on the ambipolar behavior of LTFET is investigated, the length and doping concentration of LDD is also optimized for better suppression of ambipolar current. Finally, analog/RF performance of HGD-LDD-LTFET are studied in terms of gate-source capacitance, gate-drain capacitance, cut-off frequency, and gain bandwidth production. TCAD simulation results show that HGD-LDD-LTFET not only drastically suppresses ambipolar current but also improves analog/RF performance compared with conventional LTFET.

  15. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G [Jefferson Lab (United States)

    2014-07-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  16. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  17. Alternative RF coupling configurations for H− ion sources

    International Nuclear Information System (INIS)

    Briefi, S.; Fantz, U.; Gutmann, P.

    2015-01-01

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H − current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been set up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region

  18. Practical RF system design

    CERN Document Server

    Egan, William F

    2003-01-01

    he ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily available in the existing literature. The author, an expert in the field of RF module and system design, provides powerful techniques for analyzing real RF systems, with emphasis on some that are currently not well understood. Combining theoretical results and models with examples, he challenges readers to address such practical issues as: * How standing wave ratio affects system gain * How noise on a local oscillator will affec...

  19. RF Design of the LCLS Gun

    International Nuclear Information System (INIS)

    Limborg-Deprey, C.

    2010-01-01

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun (1), referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee (2). Files and reference documents are compiled in Section IV.

  20. Suppressing RF breakdown of powerful backward wave oscillator by field redistribution

    Directory of Open Access Journals (Sweden)

    W. Song

    2012-03-01

    Full Text Available An over mode method for suppressing the RF breakdown on metal surface of resonant reflector cavity in powerful backward wave oscillator is investigated. It is found that the electric field is redistributed and electron emission is restrained with an over longitudinal mode cavity. Compared with the general device, a frequency band of about 5 times wider and a power capacity of at least 1.7 times greater are obtained. The results were verified in an X-band high power microwave generation experiment with the output power near 4 gigawatt.

  1. Transport coefficients for electrons in argon in crossed electric and magnetic rf fields

    International Nuclear Information System (INIS)

    Raspopovic, Z M; Dujko, S; Makabe, T; Petrovic, Z Lj

    2005-01-01

    Monte Carlo simulations of electron transport have been performed in crossed electric and magnetic rf fields in argon. It was found that a magnetic field strongly affects electron transport, producing complex behaviour of the transport coefficients that cannot be predicted on the basis of dc field theory. In particular, it is important that a magnetic field, if it has sufficiently high amplitude, allows energy gain from the electric field only over a brief period of time, which leads to a pulse of directed motion and consequently to cyclotron oscillations being imprinted on the transport coefficients. Furthermore, this may lead to negative diffusion. The behaviour of drift velocities is also interesting, with a linear (sawtooth) dependence for the perpendicular drift velocity and bursts of drift for the longitudinal. Non-conservative effects are, on the other hand, reduced by the increasing magnetic field

  2. Magnetic field effects on electrical parameters of rf excited CO{sub 2} lasers

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, S.H. [Laser Research Institute and Physics Department of Shahid Beheshti University, Evin, Tehran (Iran, Islamic Republic of)]. E-mail: h-tavassoli@cc.sbu.ac.ir; Latifi, H. [Laser Research Institute and Physics Department of Shahid Beheshti University, Evin, Tehran (Iran, Islamic Republic of)

    2005-02-14

    In the present Letter a rf excited CO{sub 2} laser embedded in an external, constant, and homogeneous magnetic field is considered. The magnetic field effects on some discharge parameters such as V-I characteristics, impedance of sheaths and positive column of plasma, intensity of visible emission from plasma and thickness of positive column are investigated. There is an increase in thickness of positive column and output power in presence of magnetic field. Magnetic field leads to an increase in the discharge voltage and impedance for lower current densities and a decrease for higher ones. There is a current density in which the magnetic field has no effects on discharge voltage and impedance. There are two peaks on intensity of visible emission from the discharge which at higher magnetic field are pushed out toward the electrodes.

  3. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  4. High field side launch of RF waves: A new approach to reactor actuators

    Science.gov (United States)

    Wallace, G. M.; Baek, S. G.; Bonoli, P. T.; Faust, I. C.; LaBombard, B. L.; Lin, Y.; Mumgaard, R. T.; Parker, R. R.; Shiraiwa, S.; Vieira, R.; Whyte, D. G.; Wukitch, S. J.

    2015-12-01

    Launching radio frequency (RF) waves from the high field side (HFS) of a tokamak offers significant advantages over low field side (LFS) launch with respect to both wave physics and plasma material interactions (PMI). For lower hybrid (LH) waves, the higher magnetic field opens the window between wave accessibility (n∥≡c k∥/ω >√{1 -ωpi 2/ω2+ωpe 2/ωce 2 }+ωp e/|ωc e| ) and the condition for strong electron Landau damping (n∥˜√{30 /Te } with Te in keV), allowing LH waves from the HFS to penetrate into the core of a burning plasma, while waves launched from the LFS are restricted to the periphery of the plasma. The lower n∥ of waves absorbed at higher Te yields a higher current drive efficiency as well. In the ion cyclotron range of frequencies (ICRF), HFS launch allows for direct access to the mode conversion layer where mode converted waves absorb strongly on thermal electrons and ions, thus avoiding the generation of energetic minority ion tails. The absence of turbulent heat and particle fluxes on the HFS, particularly in double null configuration, makes it the ideal location to minimize PMI damage to the antenna structure. The quiescent SOL also eliminates the need to couple LH waves across a long distance to the separatrix, as the antenna can be located close to plasma without risking damage to the structure. Improved impurity screening on the HFS will help eliminate the long-standing issues of high Z impurity accumulation with ICRF. Looking toward a fusion reactor, the HFS is the only possible location for a plasma-facing RF antenna that will survive long-term. By integrating the antenna into the blanket module it is possible to improve the tritium breeding ratio compared with an antenna occupying an equatorial port plug. Blanket modules will require remote handling of numerous cooling pipes and electrical connections, and the addition of transmission lines will not substantially increase the level of complexity. The obvious engineering

  5. Assessment of the characteristics of MRI coils in terms of RF non-homogeneity using routine spin echo sequences

    International Nuclear Information System (INIS)

    Oghabian, M. A.; Mehdipour, Sh.; RiahicAlam, N.; Rafie, B.; Ghanaati, H.

    2005-01-01

    One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged. In this study, RF field non-homogeneity of surface and volume coils is measured using an oil phantom. The method employed in this work is based on a routine Spin Echo based sequence as proposed by this group previously. Materials and Methods: For the determination of RF non-uniformity, a method based on Spin Echo sequence (8θ-180) was used as reported previously by the same author. In this method, several images were obtained from one slice using different flip angles while keeping all other imaging parameters constant. Then, signal intensity at a ROI from all of these images were measured and fitted to the MRI defined mathematical model. Since this mathematical model describes the relation between signal intensity and flip angle in a (8θ-180) Spin Echo sequence, it is possible to obtain the variation in receive and transmit sensitivity in terms of the variation of signal intensity from the actual expected values. Since surface coils are functioning as only receiver (RF transmission is done by Body coil), first the results of receive coil homogeneity is measured, then characteristic of transmit coil (for the body coil) is evaluated Results: The coefficient of variation (C.V.) found for T(r) value obtained from images using head coils was in the order of 0.6%. Since the head coil is functioning as both transmitter and receiver, any non-uniformity in either transmit or receive stage can lead to non-homogeneity in RF field. A part from the surface coils, the amount of non-homogeneity due to receive coil was less than that of the transmit coil. In the case of the surface coils the variation in receive

  6. X-Band RF Gun Development

    International Nuclear Information System (INIS)

    Vlieks, A.E.

    2012-01-01

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

  7. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Directory of Open Access Journals (Sweden)

    Oliver Weinberger

    Full Text Available The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation.Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated.Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit.Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  8. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  9. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  10. International policy and advisory response regarding children's exposure to radio frequency electromagnetic fields (RF-EMF).

    Science.gov (United States)

    Redmayne, Mary

    2016-01-01

    Radiofrequency electromagnetic field (RF-EMF) exposure regulations/guidelines generally only consider acute effects, and not chronic, low exposures. Concerns for children's exposure are warranted due to the amazingly rapid uptake of many wireless devices by increasingly younger children. This review of policy and advice regarding children's RF-EMF exposure draws material from a wide variety of sources focusing on the current situation. This is not a systematic review, but aims to provide a representative cross-section of policy and advisory responses within set boundaries. There are a wide variety of approaches which I have categorized and tabulated ranging from ICNIRP/IEEE guidelines and "no extra precautions needed" to precautionary or scientific much lower maxima and extensive advice to minimize RF-EMF exposure, ban advertising/sale to children, and add exposure information to packaging. Precautionary standards use what I term an exclusion principle. The wide range of policy approaches can be confusing for parents/carers of children. Some consensus among advisory organizations would be helpful acknowledging that, despite extensive research, the highly complex nature of both RF-EMF and the human body, and frequent technological updates, means simple assurance of long-term safety cannot be guaranteed. Therefore, minimum exposure of children to RF-EMF is recommended. This does not indicate need for alarm, but mirrors routine health-and-safety precautions. Simple steps are suggested. ICNIRP guidelines need to urgently publish how the head, torso, and limbs' exposure limits were calculated and what safety margin was applied since this exposure, especially to the abdomen, is now dominant in many children.

  11. Single-side electron multipacting at the photocathode in rf guns

    Directory of Open Access Journals (Sweden)

    Jang-Hui Han

    2008-01-01

    Full Text Available Multiple electron impacting (multipacting can take place in rf fields when the rf components are composed of materials with a secondary electron yield greater than one. In rf gun cavities, multipacting may change the properties of the vacuum components or even damage them. First systematic measurements of the multipacting occurring in a photocathode rf gun were made at the Fermilab/NICADD Photoinjector Laboratory in 2000. The multipacting properties were found to depend on the cathode material and the solenoid field configuration. In this study, we measure the multipacting properties in more detail and model the secondary electron generation for numerical simulation. Measurements and simulations for the photoinjectors at Fermilab and DESY are compared. The multipacting takes place at the photocathode in rf guns and is categorized as single-side multipacting. In a low rf field, the electrons emitted from the cathode area do not leave the gun cavity within one rf cycle and have an opportunity to travel back and hit the cathode. The solenoid field distribution in the vicinity of the cathode changes the probability of electron bombardment of the cathode and makes a major contribution to the multipacting behavior.

  12. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  13. RF system considerations for large high-duty-factor linacs

    International Nuclear Information System (INIS)

    Lynch, M.T.; Ziomek, C.D.; Tallerico, P.J.; Regan, A.H.; Eaton, L.; Lawrence, G.

    1994-01-01

    RF systems are often a major cost item for linacs, but this is especially true for large high-duty-factor linacs (up to and including CW) such as the Accelerator for Production of Tritium (APT) or the Accelerator for Transmutation of nuclear Waste (ATW). In addition, the high energy and high average beam current of these machines (approximately 1 GeV, 100--200 mA) leads to a need for excellent control of the accelerating fields in order to minimize the possibility of beam loss in the accelerator and the resulting activation. This paper will address the key considerations and limitations in the design of the RF system. These considerations impact the design of both the high power RF components and the RF controls. As might be expected, the two concerns sometimes lead to conflicting design requirements. For example minimum RF operating costs lead to a desire for operation near saturation of the high power RF generators in order to maximize the operating efficiency. Optimal control of the RF fields leads to a desire for maximum overdrive capability in those same generators in order to respond quickly to disturbances of the accelerator fields

  14. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    Zhang Renshan; Ben-Zvi, I.; Xie Jialin

    1993-01-01

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  15. High time resolution beam-based measurement of the rf-to-laser jitter in a photocathode rf gun

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-03-01

    Full Text Available Characterizing the rf-to-laser jitter in the photocathode rf gun and its possible origins is important for improving the synchronization and beam quality of the linac based on the photocathode rf gun. A new method based on the rf compression effect in the photocathode rf gun is proposed to measure the rf-to-laser jitter in the gun. By taking advantage of the correlation between the rf compression and the laser injection phase, the error caused by the jitter of the accelerating field in the gun is minimized and thus 10 fs time resolution is expected. Experimental demonstration at the Tsinghua Thomson scattering x-ray source with a time resolution better than 35 fs is reported in this paper. The experimental results are successfully used to obtain information on the possible cause of the jitter and the accompanying drifts.

  16. Simple Theory of Thermal Fatigue Caused by RF Pulse Heating

    CERN Document Server

    Kuzikov, S

    2004-01-01

    The projects of electron-positron linear colliders imply that accelerating structures and other RF components will undergo action of extremely high RF fields. Except for breakdown threat there is an effect of the damage due to multi-pulse mechanical stress caused by Ohmic heating of the skin layer. A new theory of the thermal fatigue is considered. The theory is based on consideration of the quasi-elastic interaction between neighbor grains of metal due to the expansion of the thermal skin-layer. The developed theory predicts a total number of the RF pulses needed for surface degradation in dependence on temperature rise, pulse duration, and average temperature. The unknown coefficients in the final formula were found, using experimental data obtained at 11.4 GHz for the copper. In order to study the thermal fatigue at higher frequencies and to compare experimental and theoretical results, the experimental investigation of degradation of the copper cavity exposed to 30 GHz radiation is carried out now, basing...

  17. Bose-Einstein condensation and study of inelastic collisions due to dipolar interactions

    International Nuclear Information System (INIS)

    Beaufils, Q.

    2009-01-01

    Its large magnetic moment in the ground state makes chromium a good candidate for the study of dipolar interactions in a degenerate gas. We have built an experimental setup for trapping and cooling atoms of "5"2Cr down to Bose-Einstein condensation (BEC). Evaporative cooling takes place in a purely optical trap, which is loaded from the magneto-optical trap using a novel process of continuous accumulation of metastable states. We produce a condensate of typically 15000 atoms in a time of 15 s. We have studied the possibility to bring all the Zeeman substates of a chromium BEC to degeneracy in a non-zero static magnetic field, using a radiofrequency (rf) magnetic field, and demonstrated a new process of rf-assisted dipolar relaxation. We have also studied a narrow Feshbach resonance induced by dipolar interaction, which implies a d-wave collisional channel. We analyzed this resonance in the presence of a rf magnetic field and we reinterpreted rf association of molecules as a mere Feshbach resonance between rf dressed states. Finally, we have set up an optical lattice in the perspective of studying the effects of dipole-dipole interactions in reduced dimension. (author)

  18. Electron drift velocity in SF{sub 6} in strong electric fields determined from rf breakdown curves

    Energy Technology Data Exchange (ETDEWEB)

    Lisovskiy, V; Yegorenkov, V [Department of Physics and Technology, Kharkov National University, Svobody sq.4, Kharkov 61077 (Ukraine); Booth, J-P [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau 91128 (France); Landry, K [Unaxis Displays Division France SAS, 5, Rue Leon Blum, Palaiseau 91120 (France); Douai, D [Physical Sciences Division, Institute for Magnetic Fusion Research, CEA Centre de Cadarache, F-13108 Saint Paul lez Durance Cedex (France); Cassagne, V, E-mail: lisovskiy@yahoo.co [Developpement Photovoltaique Couches Minces, Total, 2, place Jean Millier, La Defense 6, 92400 Courbevoie (France)

    2010-09-29

    This paper presents measurements of the electron drift velocity V{sub dr} in SF{sub 6} gas for high reduced electric fields (E/N = 330-5655 Td (1 Td = 10{sup -17} V cm{sup 2})). The drift velocities were obtained using the method of Lisovskiy and Yegorenkov (1998 J. Phys. D: Appl. Phys. 31 3349) based on the determination of the pressure and voltage of the turning points of rf capacitive discharge breakdown curves for a range of electrode spacings. The V{sub dr} values thus obtained were in good agreement with those calculated from the cross-sections of Phelps and Van Brunt (1988 J. Appl. Phys. 64 4269) using the BOLSIG code. The validity of the Lisovskiy-Yegorenkov method is discussed and we show that it is applicable over the entire E/N range where rf discharge ignition at breakdown occurs for rf frequencies of 13.56 MHz or above.

  19. EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Lynch, M.; Kwon, S.

    2001-01-01

    A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within ±0.5% and ±0.5 o [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin

  20. RF Breakdown in Normal Conducting Single-Cell Structures

    International Nuclear Information System (INIS)

    Dolgashev, V.A.; Nantista, C.D.; Tantawi, S.G.; Higashi, Y.; Higo, T.

    2006-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM 01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. Simple 2D geometry of the test structures simplifies modeling of the breakdown currents and their thermal effects

  1. Steering Electromagnetic Fields in MRI: Investigating Radiofrequency Field Interactions with Endogenous and External Dielectric Materials for Improved Coil Performance at High Field

    Science.gov (United States)

    Vaidya, Manushka

    Although 1.5 and 3 Tesla (T) magnetic resonance (MR) systems remain the clinical standard, the number of 7 T MR systems has increased over the past decade because of the promise of higher signal-to-noise ratio (SNR), which can translate to images with higher resolution, improved image quality and faster acquisition times. However, there are a number of technical challenges that have prevented exploiting the full potential of ultra-high field (≥ 7 T) MR imaging (MRI), such as the inhomogeneous distribution of the radiofrequency (RF) electromagnetic field and specific energy absorption rate (SAR), which can compromise image quality and patient safety. To better understand the origin of these issues, we first investigated the dependence of the spatial distribution of the magnetic field associated with a surface RF coil on the operating frequency and electrical properties of the sample. Our results demonstrated that the asymmetries between the transmit (B1+) and receive (B 1-) circularly polarized components of the magnetic field, which are in part responsible for RF inhomogeneity, depend on the electric conductivity of the sample. On the other hand, when sample conductivity is low, a high relative permittivity can result in an inhomogeneous RF field distribution, due to significant constructive and destructive interference patterns between forward and reflected propagating magnetic field within the sample. We then investigated the use of high permittivity materials (HPMs) as a method to alter the field distribution and improve transmit and receive coil performance in MRI. We showed that HPM placed at a distance from an RF loop coil can passively shape the field within the sample. Our results showed improvement in transmit and receive sensitivity overlap, extension of coil field-of-view, and enhancement in transmit/receive efficiency. We demonstrated the utility of this concept by employing HPM to improve performance of an existing commercial head coil for the

  2. Recoupling and decoupling of nuclear spin interactions at high MAS frequencies: numerical design of CNnν symmetry-based RF pulse schemes

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    The CN n ν class of RF pulse schemes, commonly employed for recoupling and decoupling of nuclear spin interactions in magic angle spinning solid state NMR studies of biological systems, involves the application of a basic 'C' element corresponding to an RF cycle with unity propagator. In this study, the design of CN n ν symmetry-based RF pulse sequences for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated 13 C- 13 C chemical shift correlation has been examined at high MAS frequencies employing broadband, constant-amplitude, phase-modulated basic 'C' elements. The basic elements were implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by an RF phase value. The phase-modulation profile of the 'C' element was optimised numerically so as to generate efficient RF pulse sequences. The performances of the sequences were evaluated via numerical simulations and experimental measurements and are presented here

  3. RF Processing Experience with the GTF Prototype RF Gun

    International Nuclear Information System (INIS)

    Schmerge, J.F.

    2010-01-01

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. A total of five different metal cathodes (4 Cu and 1 Mg) have been installed on the GTF gun. The rf processing history with the different cathodes will be presented including peak field achieved at the cathode. The LCLS gun is intended to operate at 120 MV/m and fields up to 140 MV/m have been achieved in the GTF gun. After installing a new cathode the number of rf pulses required to reach 120 MV/m is approximately 5-10 million. Total emitted dark current and Fowler Nordheim plots are also shown over the life of the cathode. The GTF photo-injector gun is an S-band standing-wave structure, with two resonant cavities and an intervening thick washer (Figure 1). The flat, back wall of the first cavity is a copper plate that serves as photocathode when illuminated with ultraviolet light from a pulsed, high-power laser. RF power enters the gun through an iris on the outer wall of the second cavity, and is coupled to the first through the axial opening of the washer. The first cavity is often referred to as a half cell, because its full-cell length has been truncated by the cathode plate and the second cavity is called the full cell. The gun is designed to operate in a π mode, with the peak field on axis in each cell approximately equal. The maximum in the half cell occurs at the cathode, and in the full cell near the center of the cavity. The field profile and tuning procedures are discussed in a separate tech note (1).

  4. Water cooling of RF structures

    International Nuclear Information System (INIS)

    Battersby, G.; Zach, M.

    1994-06-01

    We present computer codes for heat transfer in water cooled rf cavities. RF parameters obtained by SUPERFISH or analytically are operated on by a set of codes using PLOTDATA, a command-driven program developed and distributed by TRIUMF [1]. Emphasis is on practical solutions with designer's interactive input during the computations. Results presented in summary printouts and graphs include the temperature, flow, and pressure data. (authors). 4 refs., 4 figs

  5. Radial focusing and energy compression of a laser-produced proton beam by a synchronous rf field

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2009-06-01

    Full Text Available The dynamics of a MeV laser-produced proton beam affected by a radio frequency (rf electric field has been studied. The proton beam was emitted normal to the rear surface of a thin polyimide target irradiated with an ultrashort pulsed laser with a power density of 4×10^{18}  W/cm^{2}. The energy spread was compressed to less than 11% at the full width at half maximum (FWHM by an rf field. Focusing and defocusing effects of the transverse direction were also observed. These effects were analyzed and reproduced by Monte Carlo simulations. The simulation results show that the transversely focused protons had a broad continuous spectrum, while the peaks in the proton spectrum were defocused. Based on this new information, we propose that elimination of the continuous energy component of laser-produced protons is possible by utilizing a focal length difference between the continuous spectral protons and the protons included in the spectral peak.

  6. Beam emittance and the effects of the rf, space charge and wake fields: Application to the ATF photoelectron beam

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    Laser driven photoelectron guns are of interest for use in new methods of accelerations, future development of Linear Colliders and new experiments such as Free Electron laser (IFEL). Such guns are potential source of low emittance-high current and short bunch length electron beams, where the emitted electrons are accelerated quickly to a relativistic energy by a strong rf, electric field in the cavity. We present a brief overview of the beam dynamic studies, e.g. emittance for the Brookhaven National Laboratory (BNL) ATF high brightness photocathode radio frequency gun (now in operation), and show the effects of the rf, Space Charge, and Wake fields on the photoelectrons. 4 refs., 7 figs

  7. Computational Tools for RF Structure Design

    CERN Document Server

    Jensen, E

    2004-01-01

    The Finite Differences Method and the Finite Element Method are the two principally employed numerical methods in modern RF field simulation programs. The basic ideas behind these methods are explained, with regard to available simulation programs. We then go through a list of characteristic parameters of RF structures, explaining how they can be calculated using these tools. With the help of these parameters, we introduce the frequency-domain and the time-domain calculations, leading to impedances and wake-fields, respectively. Subsequently, we present some readily available computer programs, which are in use for RF structure design, stressing their distinctive features and limitations. One final example benchmarks the precision of different codes for calculating the eigenfrequency and Q of a simple cavity resonator.

  8. A new approach in simulating RF linacs using a general, linear real-time signal processor

    International Nuclear Information System (INIS)

    Young, A.; Jachim, S.P.

    1991-01-01

    Strict requirements on the tolerances of the amplitude and phase of the radio frequency (RF) cavity field are necessary to advance the field of accelerator technology. Due to these stringent requirements upon modern accelerators,a new approach of modeling and simulating is essential in developing and understanding their characteristics. This paper describes the implementation of a general, linear model of an RF cavity which is used to develop a real-time signal processor. This device fully emulates the response of an RF cavity upon receiving characteristic parameters (Q 0 , ω 0 , Δω, R S , Z 0 ). Simulating an RF cavity with a real-time signal processor is beneficial to an accelerator designer because the device allows one to answer fundamental questions on the response of the cavity to a particular stimulus without operating the accelerator. In particular, the complex interactions between the RF power and the control systems, the beam and cavity fields can simply be observed in a real-time domain. The signal processor can also be used upon initialization of the accelerator as a diagnostic device and as a dummy load for determining the closed-loop error of the control system. In essence, the signal processor is capable of providing information that allows an operator to determine whether the control systems and peripheral devices are operating properly without going through the tedious procedure of running the beam through a cavity

  9. Development of human exposure standards for radio frequency fields

    International Nuclear Information System (INIS)

    Lin, James C.

    2000-01-01

    Historical aspects of the problem of developing human exposure standards for radio frequency (RF) electromagnetic fields are discussed. It is shown that biological effects and health implications of radiofrequency (RF) electromagnetic fields have been a subject of scientific investigation for more than 50 years. It has become a focus of attention because of the expanded use of RF radiation in the frequency range between 300 MHz and 6 GHz for wireless communication over the past decade. Another cause for the attention is the uncertainty of some observed responses and lack of understanding of the mechanism of interaction of RF electromagnetic fields with biological systems. At present, considerable efforts are devoted to developing and revising RF exposure standards. Each of these efforts should aim to make explicit the philosophy and process by which they reason and decide guidelines for deeming exposure as safe. Furthermore, the reconciliation of philosophies of protection will definitely be an asset, in practice, to those interested in international harmonization of RF exposure standards [ru

  10. Electromagnetic considerations for RF current density imaging [MRI technique].

    Science.gov (United States)

    Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M

    1995-01-01

    Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.

  11. Electric field measurements in the sheath of an argon RF discharge by probing with microparticles under varying gravity conditions

    NARCIS (Netherlands)

    Beckers, J.; Stoffels, W.W.; Kroesen, G.M.W.; Ockenga, T.; Wolter, M.; Kersten, H.

    2010-01-01

    The electric field profile in the plasma sheath of an argon rf plasma has been determined by measuring the equilibrium height and the resonance frequency of plasma-confined microparticles. In order to determine the electric field structure at any position in the plasma sheath without the discharge

  12. Investigation and Prediction of RF Window Performance in APT Accelerators

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1997-01-01

    The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate β superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electron multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak-RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak-RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak-RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics

  13. Coupling of RF antennas to large volume helicon plasma

    Directory of Open Access Journals (Sweden)

    Lei Chang

    2018-04-01

    Full Text Available Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.

  14. Particle tracking code of simulating global RF feedback

    International Nuclear Information System (INIS)

    Mestha, L.K.

    1991-09-01

    It is well known in the ''control community'' that a good feedback controller design is deeply rooted in the physics of the system. For example, when accelerating the beam we must keep several parameters under control so that the beam travels within the confined space. Important parameters include the frequency and phase of the rf signal, the dipole field, and the cavity voltage. Because errors in these parameters will progressively mislead the beam from its projected path in the tube, feedback loops are used to correct the behavior. Since the feedback loop feeds energy to the system, it changes the overall behavior of the system and may drive it to instability. Various types of controllers are used to stabilize the feedback loop. Integrating the beam physics with the feedback controllers allows us to carefully analyze the beam behavior. This will not only guarantee optimal performance but will also significantly enhance the ability of the beam control engineer to deal effectively with the interaction of various feedback loops. Motivated by this theme, we developed a simple one-particle tracking code to simulate particle behavior with feedback controllers. In order to achieve our fundamental objective, we can ask some key questions: What are the input and output parameters? How can they be applied to the practical machine? How can one interface the rf system dynamics such as the transfer characteristics of the rf cavities and phasing between the cavities? Answers to these questions can be found by considering a simple case of a single cavity with one particle, tracking it turn-by-turn with appropriate initial conditions, then introducing constraints on crucial parameters. Critical parameters are rf frequency, phase, and amplitude once the dipole field has been given. These are arranged in the tracking code so that we can interface the feedback system controlling them

  15. RF field measurement of a four-vane type RFQ with PISLs

    International Nuclear Information System (INIS)

    Ueno, A.; Yamajaki, Y.

    1992-01-01

    Field instability due to a dipole mode mixing is the most significant disadvantage of an original four-vane type radio-frequency quadrupole (RFQ) linac. In order to avoid any dipole mode mixing, several pairs of vane coupling rings (VCRs) have mainly been used so far. However the VCR has complicated shape and is difficult to fabricate, particularly in the RFQ linac operated with a high-duty factor. Thus, a new field-stabilization concept was proposed and was referred to as a π-mode stabilizing loop (PISL) in a previous paper. The results of rf characteristics measurements on a low-power model cavity with or without PISLs are presented in this paper. The measurements showed that the PISLs were capable of stabilizing the accelerating mode, reducing the ratio of a dipole mode mixing from 7% to less than 1.5% (Author) 4 figs., tab., 10 refs

  16. First experimental data on the FEL - RF interaction at the Jefferson Lab IRFEL

    International Nuclear Information System (INIS)

    L. Merminga; P. Alexeev; S.V. Benson; A. Bolshakov; L.R. Doolittle; D.R. Douglas; C. Hovater; G.R. Neil

    1999-01-01

    High power FELs driven by recirculating, energy-recovering linacs can exhibit instabilities in the beam energy and laser output power. Fluctuations in the accelerating cavity fields can cause beam loss on apertures, phase oscillations and optical cavity detuning. These can affect the laser power and in turn the beam-induced voltage to further enhance the fluctuations of the rf fields. A theoretical model was developed to study the dynamics of the coupled system and was presented last year. Recently, a first set of experimental data was obtained at the Jefferson Lab IRFEL for direct comparisons with the model. The authors describe the experiment, present the data together with the modeling predictions and outline future directions

  17. RF-sheath assessment of ICRF antenna geometry for long pulses

    International Nuclear Information System (INIS)

    Colas, L.; Bremond, S.

    2003-01-01

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  18. Superconductors for pulsed rf accelerators

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1985-04-01

    The choice of superconducting materials for accelerator rf cavities has been determined in the past only in part by basic properties of the superconductors, such as the critical field, and to a larger extent by criteria which include fabrication processes, surface conditions, heat transfer capabilities and so on. For cw operated cavities the trend has been toward choosing materials with higher critical temperatures and lower surface resistance, from Lead to Niobium, from Niobium to Nb 3 Sn. This trend has been dictated by the specific needs of storage ring cw system and by the relatively low fields which could be reached without breakdown. The work performed at SLAC on superconducting cavities using microsecond long high power rf pulses has shown that in Pb, Nb, and Nb 3 Sn fields close to the critical magnetic fields can be reached without magnetic breakdown

  19. Measurements of RF-induced sol modifications in Tore Supra tokamak

    International Nuclear Information System (INIS)

    Kubic, Martin; Gunn, James P.; Colas, Laurent; Heuraux, Stephane; Faudot, Eric

    2012-01-01

    Since spring 2011, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra (TS) tokamak is equipped with a new type of Faraday screen (FS). Results from Radio Frequency (RF) simulations of the new Faraday screen suggest the innovative structure with cantilevered bars and 'shark tooth' openings significantly changes the current flow pattern on the front of the antenna which in turn reduces the RF potential and RF electrical field in particular parallel to the magnetic field lines which contributes to generating RF sheaths. Effects of the new FS operation on RF-induced scrape-off layer (SOL) modifications are studied for different plasma and antenna configurations - scans of strap power ratio imbalance, phasing, injected power and SOL density. (authors)

  20. Theoretical and experimental studies of a planar inductive coupled rf plasma source as the driver in simulator facility (ISTAPHM) of interactions of waves with the edge plasma on tokamaks

    Science.gov (United States)

    Ghanei, V.; Nasrabadi, M. N.; Chin, O.-H.; Jayapalan, K. K.

    2017-11-01

    This research aims to design and build a planar inductive coupled RF plasma source device which is the driver of the simulator project (ISTAPHM) of the interactions between ICRF Antenna and Plasma on tokamak by using the AMPICP model. For this purpose, a theoretical derivation of the distribution of the RF magnetic field in the plasma-filled reactor chamber is presented. An experimental investigation of the field distributions is described and Langmuir measurements are developed numerically. A comparison of theory and experiment provides an evaluation of plasma parameters in the planar ICP reactor. The objective of this study is to characterize the plasma produced by the source alone. We present the results of the first analysis of the plasma characteristics (plasma density, electron temperature, electron-ion collision frequency, particle fluxes and their velocities, stochastic frequency, skin depth and electron energy distribution functions) as function of the operating parameters (injected power, neutral pressure and magnetic field) as measured with fixed and movable Langmuir probes. The plasma is currently produced only by the planar ICP. The exact goal of these experiments is that the produced plasma by external source can exist as a plasma representative of the edge of tokamaks.

  1. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  2. A low-power RF system with accurate synchronization for a S-band RF-gun using a laser-triggered photocathode

    International Nuclear Information System (INIS)

    Otake, Y.; Naito, T.; Shintake, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    An S-band RF-gun using a laser-triggered photocathode and its low-power RF system have been constructed. The main elements of the low-power RF system comprise a 600-W amplifier, an amplitude modulator, a phase detector, a phase shifter and a frequency-divider module. Synchronization between the RF fields for acceleration and the mode-locked laser pulses for beam triggering are among the important points concerning the RF-gun. The frequency divider module which down-converts from 2856 MHz(RF) to 89.25 MHz(laser), and the electrical phase-shifter were specially developed for stable phase control. The phase jitter of the frequency divider should be less than 10 ps to satisfy our present requirements. The first experiments to trigger and accelerate beams with the above-mentioned system were carried out in January, 1992. (Author) 6 figs., 5 refs

  3. ICH antenna development on the ORNL RF Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Bigelow, T.S.; Haste, G.R.; Hoffman, D.J.; Livesey, R.L.

    1987-01-01

    A compact resonant loop antenna is installed on the ORNL Radio Frequency Test Facility (RFTF). Facility characteristics include a steady-state magnetic field of ∼ 0.5 T at the antenna, microwave-generated plasmas with n e ∼ 10 12 cm -3 and T e ∼ 8 eV, and 100 kW of 25-MHz rf power. The antenna is tunable from ∼22--75 MHz, is designed to handle ≥1 MW of rf power, and can be moved 5 cm with respect to the port flange. Antenna characteristics reported and discussed include the effect of magnetic field on rf voltage breakdown at the capacitor, the effects of magnetic field and plasma on rf voltage breakdown between the radiating element and the Faraday shield, the effects of graphite on Faraday shield losses, and the efficiency of coupling to the plasma. 2 refs., 4 figs

  4. Radiofrequency (RF) radiation measurement for diathermy machine

    International Nuclear Information System (INIS)

    Rozaimah Abdul Rahim; Roha Tukimin; Mohd Amirul Nizam; Ahmad Fadzli; Mohd Azizi

    2010-01-01

    Full-text: Diathermy machine is one of medical device that use widely in hospital and clinic. During the diathermy treatment, high radiofrequency (RF) currents (shortwave and microwave) are used to heat deep muscular tissues through electromagnetic energy to body tissues. The heat increases blood flow, relieve pain and speeding up recovery. The stray RF radiation from the machine can exposes to unintended tissue of the patient, to the operator (physical therapist) and also can cause electromagnetic interference (EMI) effect to medical devices around the machine. The main objective of this study is to establish a database of the RF radiation exposure levels experienced by the operator and patient during the treatments. RF radiation (electric and magnetic field) produced by the diathermy machines were measured using special RF survey meters. The finding of this study confirms that radiation levels on the surface and near the applicator of the diathermy machine much more elevated due to the much closer distance to the source and they exceeding the occupational and general public exposure limit. The results also shows the field strengths drop very significantly when the distance of measurement increase. (author)

  5. An improved cylindrical FDTD method and its application to field-tissue interaction study in MRI.

    Science.gov (United States)

    Chi, Jieru; Liu, Feng; Xia, Ling; Shao, Tingting; Mason, David G; Crozier, Stuart

    2010-01-01

    This paper presents a three dimensional finite-difference time-domain (FDTD) scheme in cylindrical coordinates with an improved algorithm for accommodating the numerical singularity associated with the polar axis. The regularization of this singularity problem is entirely based on Ampere's law. The proposed algorithm has been detailed and verified against a problem with a known solution obtained from a commercial electromagnetic simulation package. The numerical scheme is also illustrated by modeling high-frequency RF field-human body interactions in MRI. The results demonstrate the accuracy and capability of the proposed algorithm.

  6. Sensing RF signals with the optical wideband converter

    Science.gov (United States)

    Valley, George C.; Sefler, George A.; Shaw, T. J.

    2013-01-01

    The optical wideband converter (OWC) is a system for measuring properties of RF signals in the GHz band without use of high speed electronics. In the OWC the RF signal is modulated on a repetitively pulsed optical field with a large wavelength chirp, the optical field is diffracted onto a spatial light modulator (SLM) whose pixels are modulated with a pseudo-random bit sequences (PRBSs), and finally the optical field is directed to a photodiode and the resulting current integrated for each PRBS. When the number of PRBSs and measurements equals the number of SLM pixels, the RF signal can be obtained in principle by multiplying the measurement vector by the inverse of the square matrix given by the PRBSs and the properties of the optics. When the number of measurements is smaller than the number of pixels, a compressive sensing (CS) measurement can be performed, and sparse RF signals can be obtained using one of the standard CS recovery algorithms such as the penalized l1 norm (also known as basis pursuit) or one of the variants of matching pursuit. Accurate reconstruction of RF signals requires good calibration of the OWC. In this paper, we present results using the OWC for RF signals consisting of 2 sinusoids recovered using 3 techniques (matrix inversion, basis pursuit, and matching pursuit). We compare results obtained with orthogonal matching pursuit with nonlinear least squares to basis pursuit with an over-complete dictionary.

  7. New developments in RF power sources

    International Nuclear Information System (INIS)

    Miller, R.H.

    1994-06-01

    The most challenging rf source requirements for high-energy accelerators presently being studied or designed come from the various electron-positron linear collider studies. All of these studies except TESLA (the superconducting entry in the field) have specified rf sources with much higher peak powers than any existing tubes at comparable high frequencies. While circular machines do not, in general, require high peak power, the very high luminosity electron-positron rings presently being designed as B factories require prodigious total average rf power. In this age of energy conservation, this puts a high priority on high efficiency for the rf sources. Both modulating anodes and depressed collectors are being investigated in the quest for high efficiency at varying output powers

  8. Experimental study of rf pulsed heating

    Directory of Open Access Journals (Sweden)

    Lisa Laurent

    2011-04-01

    Full Text Available Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop®, copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110°C and remained at this temperature for approximately 10×10^{6} rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  9. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  10. Beam self-excited rf cavity driver for a deflector or focusing system

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1996-01-01

    A bunched beam from and accelerator can excite and power an rf cavity which then drives either a deflecting or focusing (including nonlinear focusing) rf cavity with and amplitude related to beam current. Rf power, generated when a bunched beam loses energy to an rf field when traversing an electric field that opposes the particle's motion, is used to drive a separate (or the same) cavity to either focus or deflect the beam. The deflected beam can be stopped by an apertures or directed to a different area of a target depending on beam current. The beam-generated rf power can drive a radio-frequency quadrupole (RFQ) that can change the focusing properties of a beam channel as a function of beam current (space- charge force compensation or modifying the beam distribution on a target). An rf deflector can offset a beam to a downstream sextupole, effectively producing a position-dependent quadrupole field. The combination of rf deflector plus sextupole will produce a beam current dependent quadropole-focusing force. A static quadrupole magnet plus another rf deflector can place the beam back on the optic axis. This paper describes the concept, derives the appropriate equations for system analysis, and fives examples. A variation on this theme is to use the wake field generated in an rf cavity to cause growth in the beam emittance. The beam current would then be apertured by emittance defining slits

  11. Beam self-excited rf cavity driver for a deflector or focusing system

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1996-01-01

    A bunched beam from an accelerator can excite and power an rf cavity which then drives either a deflecting or focusing (including nonlinear focusing) rf cavity with an amplitude related to beam current. Rf power, generated when a bunched beam loses energy to an rf field when traversing an electric field that opposes the particle's motion, is used to drive a separate (or the same) cavity to either focus or deflect the beam. The deflected beam can be stopped by an aperture or directed to a different area of a target depending on beam current. The beam-generated rf power can drive a radiofrequency quadrupole that can change the focusing properties of a beam channel as a function of beam current (space-charge-force compensation or modifying the beam distribution on a target). An rf deflector can offset a beam to a downstream sextupole, effectively producing a position-dependent quadrupole field. The combination of rf deflector plus sextupole will produce a beam current dependent quadrupole-focusing force. A static quadrupole magnet plus another rf deflector can place the beam back on the optic axis. This paper describes the concept, derives the appropriate equations for system analysis, and gives examples. A variation on this theme is to use the wake field generated in an rf cavity to cause growth in the beam emittance. The beam current would then be apertured by emittance defining slits. (author)

  12. De-repression of RaRF-mediated RAR repression by adenovirus E1A in the nucleolus.

    Science.gov (United States)

    Um, Soo-Jong; Youn, Hye Sook; Kim, Eun-Joo

    2014-02-21

    Transcriptional activity of the retinoic acid receptor (RAR) is regulated by diverse binding partners, including classical corepressors and coactivators, in response to its ligand retinoic acid (RA). Recently, we identified a novel corepressor of RAR called the retinoic acid resistance factor (RaRF) (manuscript submitted). Here, we report how adenovirus E1A stimulates RAR activity by associating with RaRF. Based on immunoprecipitation (IP) assays, E1A interacts with RaRF through the conserved region 2 (CR2), which is also responsible for pRb binding. The first coiled-coil domain of RaRF was sufficient for this interaction. An in vitro glutathione-S-transferase (GST) pull-down assay was used to confirm the direct interaction between E1A and RaRF. Further fluorescence microscopy indicated that E1A and RaRF were located in the nucleoplasm and nucleolus, respectively. However, RaRF overexpression promoted nucleolar translocation of E1A from the nucleoplasm. Both the RA-dependent interaction of RAR with RaRF and RAR translocation to the nucleolus were disrupted by E1A. RaRF-mediated RAR repression was impaired by wild-type E1A, but not by the RaRF binding-defective E1A mutant. Taken together, our data suggest that E1A is sequestered to the nucleolus by RaRF through a specific interaction, thereby leaving RAR in the nucleoplasm for transcriptional activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Method of electron emission control in RF guns

    International Nuclear Information System (INIS)

    Khodak, I.V.; Kushnir, V.A.

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described

  14. Method of electron emission control in RF guns

    CERN Document Server

    Khodak, I V

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described.

  15. Study of Arc-Related RF Faults in the CEBAF Cryomodules

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Curry; Ganapati Myneni; Ganapati Rao Myneni; John Musson; Thomas Powers; Timothy Whitlatch; Isidoro Campisi; Haipeng Wang

    2004-07-01

    A series of measurements has been conducted on two superconducting radio-frequency (RF) cavity pairs, installed in cryomodules and routinely operated in the Continuous Electron Beam Accelerator Facility, in order to study the RF-vacuum interaction during an RF fault. These arc-related fault rates increase with increasing machine energy, contribute to system downtime, and directly affect the accelerator's availability. For this study, the fundamental power coupler waveguides have been instrumented with vacuum gauges, additional arc detectors, additional infrared sensors, and temperature sensors in order to measure the system response during both steady-state operations and RF fault conditions. Residual gas analyzers have been installed on the waveguide vacuum manifolds to monitor the gas species present during cooldown, RF processing, and operation. Measurements of the signals are presented, a comparison with analysis is shown and results are discussed. The goal of this study is to characterize the RF-vacuum interaction during normal operations. With a better understanding of the installed system response, methods for reducing the fault rate may be devised, ultimately leading to improvements in availability.

  16. RF System description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system, and RF Reference generation subsystem, and a tetrode as a high-power amplifier (HPA) that can deliver up to 300 kW of peak power to the RFQ cavity at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I and Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities

  17. The MuCool Test Area and RF Program

    International Nuclear Information System (INIS)

    Torun, Y.; Huang, D.; Norem, J.; Palmer, Robert B.; Stratakis, Diktys; Bross, A.; Chung, M.; Jansson, A.; Moretti, A.; Yonehara, K.; Li, D.

    2010-01-01

    The MuCool RF Program focuses on the study of normal conducting RF structures operating in high magnetic field for applications in muon ionization cooling for Neutrino Factories and Muon Colliders. Here we give an overview of the program, which includes a description of the test facility and its capabilities, the current test program, and the status of a cavity that can be rotated in the magnetic field, which allows for a detailed study of the maximum stable operating gradient vs. magnetic field strength and angle.

  18. Design and development of RF system for vertical test stand for characterization of superconducting RF cavities

    International Nuclear Information System (INIS)

    Mohania, Praveen; Rajput, Vikas; Baxy, Deodatta; Agrawal, Ankur; Mahawar, Ashish; Adarsh, Kunver; Singh, Pratap; Shrivastava, Purushottam

    2011-01-01

    RRCAT is developing a Vertical Test Stand (VTS) to test and qualify 1.3 GHz/650 MHz, SCRF Cavities in collaboration with Fermi National Accelerator Laboratory (FNAL) under Indian Institutions' Fermilab Collaboration. The technical details for VTS is being provided by FNAL, USA. The RF System of VTS needs to provide stable RF power to SCRF cavity with control of amplitude, relative phase and frequency. The incident, reflected, transmitted power and field decay time constant of the cavity are measured to evaluate cavity performance parameters (E, Qo). RF Power is supplied via 500 W Solid State amplifier, 1270-1310 MHz being developed by PHPMS, RRCAT. VTS system is controlled by PXI Platform and National Instruments LabVIEW software. Low Level RF (LLRF) system is used to track the cavity frequency using Phase Locked Loop (PLL). The system is comprised of several integrated functional modules which would be assembled, optimized, and tested separately. Required components and instruments have been identified and procurement for the same is underway. Inhouse development for the Solid State RF amplifier and instrument interfacing is in progress. This paper describes the progress on the development of the RF system for VTS. (author)

  19. Interaction between beam control and rf feedback loops for high Q cavities an heavy beam loading. Revision A

    International Nuclear Information System (INIS)

    Mestha, L.K.; Kwan, C.M.; Yeung, K.S.

    1994-04-01

    An open-loop state space model of all the major low-level rf feedback control loops is derived. The model has control and state variables for fast-cycling machines to apply modern multivariable feedback techniques. A condition is derived to know when exactly we can cross the boundaries between time-varying and time-invariant approaches for a fast-cycling machine like the Low Energy Booster (LEB). The conditions are dependent on the Q of the cavity and the rate at which the frequency changes with time. Apart from capturing the time-variant characteristics, the errors in the magnetic field are accounted in the model to study the effects on synchronization with the Medium Energy Booster (MEB). The control model is useful to study the effects on beam control due to heavy beam loading at high intensities, voltage transients just after injection especially due to time-varying voltages, instability thresholds created by the cavity tuning feedback system, cross coupling between feedback loops with and without direct rf feedback etc. As a special case we have shown that the model agrees with the well known Pedersen model derived for the CERN PS booster. As an application of the model we undertook a detailed study of the cross coupling between the loops by considering all of them at once for varying time, Q and beam intensities. A discussion of the method to identify the coupling is shown. At the end a summary of the identified loop interactions is presented

  20. Rf system considerations for a large hadron collider

    International Nuclear Information System (INIS)

    Raka, E.

    1988-01-01

    In this paper, we shall discuss how we arrive at a particular choice of voltage and frequency; the type of acceleration structure that would be suitable for obtaining the required voltage and resonant impedance; static beam loading including a simplified beam stability criterion involving the beam current and total rf system shunt impedance; the basic principle of rf phase and frequency control loops; and the effect of rf noise and its interaction with these loops. Finally, we shall consider the need for and design of rf systems to damp independently coherent oscillations of individual bunches or groups of bunches. 30 refs., 17 figs., 2 tabs

  1. RF system design for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Schwarz, H.; Rimmer, R.

    1994-06-01

    The paper presents an overview of the design of the RF system for the PEP-II B Factory. An RF station consists of either two or four single-cell cavities driven by a 1.2 MW klystron through a waveguide distribution network. A variety of feedback loops stabilize the RF and its interaction with the beam. System parameters and all the relevant parameters of klystron and cavities are given

  2. The RF Probe: providing space situational awareness through broad-spectrum detection and characterization

    Science.gov (United States)

    Zenick, Raymond; Kohlhepp, Kimberly; Partch, Russell

    2004-09-01

    AeroAstro's patented RF Probe is a system designed to address the needs of spacecraft developers and operators interested in measuring and analyzing near-field RF emissions emanating from a nearby spacecraft of interest. The RF Probe consists of an intelligent spectrum analyzer with digital signal processing capabilities combined with a calibrated, wide-bandwidth antenna and RF front end that covers the 50 kHz to 18 GHz spectrum. It is capable of acquiring signal level and signal vector information, classifying signals, assessing the quality of a satellite"s transponders, and characterizing near-field electromagnetic emissions. The RF Probe is intended for either incorporation as part of a suite of spacecraft sensors, or as a stand-alone sensor on spacecraft or other platforms such as Unmanned Aerial Vehicles (UAVs). The RF Probe was initially conceived as a tool to detect and aid in diagnosis of malfunctions in a spacecraft of interest. However, the utility of the RF Probe goes far beyond this initial concept, spanning a wide range of military applications. Most importantly, the RF Probe can provide space situational awareness for critical on-orbit assets by detecting externally induced RF fields, aiding in protection against potentially devastating attacks.

  3. Optical Near-field Interactions and Forces for Optoelectronic Devices

    Science.gov (United States)

    Kohoutek, John Michael

    Throughout history, as a particle view of the universe began to take shape, scientists began to realize that these particles were attracted to each other and hence came up with theories, both analytical and empirical in nature, to explain their interaction. The interaction pair potential (empirical) and electromagnetics (analytical) theories, both help to explain not only the interaction between the basic constituents of matter, such as atoms and molecules, but also between macroscopic objects, such as two surfaces in close proximity. The electrostatic force, optical force, and Casimir force can be categorized as such forces. A surface plasmon (SP) is a collective motion of electrons generated by light at the interface between two mediums of opposite signs of dielectric susceptibility (e.g. metal and dielectric). Recently, surface plasmon resonance (SPR) has been exploited in many areas through the use of tiny antennas that work on similar principles as radio frequency (RF) antennas in optoelectronic devices. These antennas can produce a very high gradient in the electric field thereby leading to an optical force, similar in concept to the surface forces discussed above. The Atomic Force Microscope (AFM) was introduced in the 1980s at IBM. Here we report on its uses in measuring these aforementioned forces and fields, as well as actively modulating and manipulating multiple optoelectronic devices. We have shown that it is possible to change the far field radiation pattern of an optical antenna-integrated device through modification of the near-field of the device. This modification is possible through change of the local refractive index or reflectivity of the "hot spot" of the device, either mechanically or optically. Finally, we have shown how a mechanically active device can be used to detect light with high gain and low noise at room temperature. It is the aim of several of these integrated and future devices to be used for applications in molecular sensing

  4. RF electrodynamics in small particles of oxides - a review

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2008-01-01

    Full Text Available RF electrodynamics, particularly, the low field rf absorption in small superconducting and manganite particles is reviewed and compared with their respective bulk counterparts. Experimental and theoretical aspects of the small particle...

  5. A design and performance analysis tool for superconducting RF systems

    International Nuclear Information System (INIS)

    Schilcher, T.; Simrock, S.N.; Merminga, L.; Wang, D.X.

    1997-01-01

    Superconducting rf systems are usually operated with continuous rf power or with rf pulse lengths exceeding 1 ms to maximize the overall wall plug power efficiency. Typical examples are CEBAF at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the TESLA Test Facility at DESY. The long pulses allow for effective application of feedback to stabilize the accelerating field in presence of microphonics, Lorentz force detuning, and fluctuations of the beam current. In this paper the authors describe a set of tools to be used with MATLAB and SIMULINK, which allow to analyze the quality of field regulation for a given design. The tools include models for the cavities, the rf power source, the beam, sources of field perturbations, and the rf feedback system. The rf control relevant electrical and mechanical characteristics of the cavity are described in form of time-varying state space models. The power source is modeled as a current generator and includes saturation characteristics and noise.An arbitrary time structure can be imposed on the beam current to reflect a macro-pulse structure and bunch charge fluctuations. For rf feedback several schemes can be selected: Traditional amplitude and phase control as well as I/Q control. The choices for the feedback controller include analog or digital approaches and various choices of frequency response. Feed forward can be added to further suppress repetitive errors. The results of a performance analysis of the CEBAF and the TESLA Linac rf system using these tools are presented

  6. RF power generation for future linear colliders

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper

  7. Heavy ions acceleration in RF wells of 2-frequency electromagnetic field and in the inverted FEL

    International Nuclear Information System (INIS)

    Dzergach, A.I.; Kabanov, V.S.; Nikulin, M.G.; Vinogradov, S.V.

    1995-03-01

    Last results of the study of heavy ions acceleration by electrons trapped in moving 2-frequency 3-D RF wells are described. A linearized theoretical model of ions acceleration in a polarized spheroidal plasmoid is proposed. The equilibrium state of this plasmoid is described by the modified microcanonical distribution of the Courant-Snyder invariant (open-quotes quasienergyclose quotes of electrons). Some new results of computational simulation of the acceleration process are given. The method of computation takes into account the given cylindrical field E 011 (var-phi,r,z) and the self fields of electrons and ions. The results of the computation at relatively short time intervals confirm the idea and estimated parameters of acceleration. The heavy ion accelerator using this principle may be constructed with the use of compact cm band iris-loaded and biperiodical waveguides with double-sided 2-frequency RF feeding. It can accelerate heavy ions with a charge number Z i from small initial energies ∼ 50 keV/a.u. with the rate ∼ Z i · 10 MeV/m. Semirelativistic ions may be accelerated with similar rate also in the inverted FEL

  8. Radio-frequency electromagnetic field (RF-EMF) exposure levels in different European outdoor urban environments in comparison with regulatory limits

    NARCIS (Netherlands)

    Urbinello, Damiano; Joseph, Wout; Huss, Anke|info:eu-repo/dai/nl/331385880; Verloock, Leen; Beekhuizen, Johan|info:eu-repo/dai/nl/34472641X; Vermeulen, Roel|info:eu-repo/dai/nl/216532620; Martens, Luc; Röösli, Martin

    Background: Concerns of the general public about potential adverse health effects caused by radio-frequency electromagnetic fields (RF-EMFs) led authorities to introduce precautionary exposure limits, which vary considerably between regions. It may be speculated that precautionary limits affect the

  9. Mössbauer forward scattering spectra of ferromagnets in radio-frequency magnetic field

    Directory of Open Access Journals (Sweden)

    A. Ya. Dzyublik

    2012-03-01

    Full Text Available The transmission of Mössbauer radiation through a thick ferromagnetic crystal, subjected to the radio-frequency (rf magnetic field, is studied. A quantum-mechanical dynamical scattering theory is developed, taking into account both the periodical reversals of the magnetic field at the nuclei and their coherent vibrations. The Mössbauer forward scattering (FS spectra of the weak ferromagnet FeBO3 exposed to the rf field are measured. It is discovered that the coherent gamma wave in the crystal, interacting with Mössbauer nuclei, absorbs or emits only couples of the rf photons. As a result, the FS spectra consist of equidistant lines spaced by twice the frequency of the rf field in contrast to the absorption spectra. Our experimental data and calculations well agree if we assume that the hyperfine field at the nuclei in FeBO3 periodically reverses and there are no coherent vibrations.

  10. Muon spin rotation studies of niobium for superconducting rf applications

    Directory of Open Access Journals (Sweden)

    A. Grassellino

    2013-06-01

    Full Text Available In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (μSR technique. We employ for the first time the μSR technique to study samples that are cut out from large and small grain 1.5 GHz radio frequency (rf single cell niobium cavities. The rf test of these cavities was accompanied by full temperature mapping to characterize the rf losses in each of the samples. Results of the μSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field rf losses and field dependence of the sample magnetic volume fraction measured via μSR. The μSR line width observed in zero-field-μSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. A lower and an upper bound for the upper critical field H_{c2} of these cutouts is found.

  11. Reduced dose uncertainty in MRI-based polymer gel dosimetry using parallel RF transmission with multiple RF sources

    International Nuclear Information System (INIS)

    Sang-Young Kim; Jung-Hoon Lee; Jin-Young Jung; Do-Wan Lee; Seu-Ran Lee; Bo-Young Choe; Hyeon-Man Baek; Korea University of Science and Technology, Daejeon; Dae-Hyun Kim; Jung-Whan Min; Ji-Yeon Park

    2014-01-01

    In this work, we present the feasibility of using a parallel RF transmit with multiple RF sources imaging method (MultiTransmit imaging) in polymer gel dosimetry. Image quality and B 1 field homogeneity was statistically better in the MultiTransmit imaging method than in conventional single source RF transmission imaging method. In particular, the standard uncertainty of R 2 was lower on the MultiTransmit images than on the conventional images. Furthermore, the MultiTransmit measurement showed improved dose resolution. Improved image quality and B 1 homogeneity results in reduced dose uncertainty, thereby suggesting the feasibility of MultiTransmit MR imaging in gel dosimetry. (author)

  12. RF energy harvesting and transport for wireless autonomous sensor network applications

    NARCIS (Netherlands)

    Keyrouz, S.; Visser, H.J.

    2013-01-01

    "RF Energy Harvesting and Transport for Wireless Autonomous Sensor Network Applications: Principles and Requirements" - For wireless energy transfer over longer distances, the far-field transfer of RF energy may be used. We make a distinction between harvesting RF energy from signals present in the

  13. RF installation for the grain disinfestation

    CERN Document Server

    Zajtzev, B V; Kobetz, A F; Rudiak, B I

    2001-01-01

    The ecologically pure method of grain product disinfestations through the grain treatment with the RF electric field is described. The experimental data obtained showed that with strengths of the electrical RF field of E=5 kV/cm and frequency of 80 MHz the relative death rate is 100%.The time of the grain treatment it this case is 1 sec. The pulses with a duration of 600 mu s and repetition rate of 2 Hz were used, the duration of the front was 10 mu s. The schematic layout of installation with a productivity of 50 tones/h and power of 10 kW is given.

  14. Perception of the risk to electromagnetic RF fields in INMA-Gipuzkoa cohort

    Directory of Open Access Journals (Sweden)

    Mara Gallastegi

    2016-12-01

    Full Text Available Perception of environmental risks to the population is a priority issue for the bodies and administrations responsible for managing them. There are few studies on the perception of the risk to RF, but all of them report high levels of concern. This study describes and analyzes the RF risk perception of mothers belonging to the INMA-Gipuzkoa project.Data on perception were collected by means of two questionnaires given to mothers in two different periods. During pregnancy, 625 mothers chose the five relevant environmental issues in their place of residence from a list of 16. When their children were 8, 386 mothers rated, on a scale from 0 to 10, their perception of their levels of exposure to RF and the health risk derived from such exposure.During pregnancy, 31.8 % of mothers chose proximity to RF antennas as one of the 5 most important environmental problems. When their children were 8, 98.0 % and 90.3 % of women reported medium or high perception values (between 5 and 10 regarding exposure and health risk, respectively. A moderate correlation was found between exposure perception and risk perception (0.5. There is no association between RF exposure perception and actual levels measured inside homes.Knowing the factors associated with the perception of risks by the population will be useful to manage them properly.

  15. Summary of the 3rd workshop on high power RF-systems for accelerators

    International Nuclear Information System (INIS)

    Sigg, P.K.

    2005-01-01

    The aim of this workshop was to bring together experts from the field of CW and high average power RF systems. The focus was on operational and reliability issues of high-power amplifiers using klystrons and tubes, large power supplies; as well as cavity design and low-level RF and feedback control systems. All these devices are used in synchrotron radiation facilities, high power linacs and collider rings, and cyclotrons. Furthermore, new technologies and their applications were introduced, amongst other: high power solid state amplifiers, IOT amplifiers, and high voltage power supplies employing solid state controllers/crowbars. Numerical methods for complete rf-field modeling of complex RF structures like cyclotrons were presented, as well as integrated RF-cavity designs (electro-magnetic fields and mechanical structure), using numerical methods. (author)

  16. DESIGN OF A DC/RF PHOTOELECTRON GUN

    International Nuclear Information System (INIS)

    YU, D.; NEWSHAM, Y.; SMIRONOV, A.; YU, J.; SMEDLEY, J.; SRINIVASAN RAU, T.; LEWELLEN, J.; ZHOLENTS, A.

    2003-01-01

    An integrated dc/rf photoelectron gun produces a low-emittance beam by first rapidly accelerating electrons at a high gradient during a short (∼1 ns), high-voltage pulse, and then injecting the electrons into an rf cavity for subsequent acceleration. Simulations show that significant improvement of the emittance appears when a high field (∼ 0.5-1 GV/m) is applied to the cathode surface. An adjustable dc gap ((le) 1 mm) which can be integrated with an rf cavity is designed for initial testing at the Injector Test Stand at Argonne National Laboratory using an existing 70-kV pulse generator. Plans for additional experiments of an integrated dc/rf gun with a 250-kV pulse generator are being made

  17. Development of C-band High-Power Mix-Mode RF Window

    CERN Document Server

    Michizono, S; Matsumoto, T; Nakao, K; Takenaka, T

    2004-01-01

    High power c-band (5712 MHz) rf system (40 MW, 2 μs, 50 Hz) is under consideration for the electron-linac upgrade aimed for the super KEKB project. An rf window, which isolates the vacuum and pass the rf power, is one of the most important components for the rf system. The window consists of a ceramic disk and a pill-box housing. The mix-mode rf window is designed so as to decrease the electric field on the periphery of the ceramic disk. A resonant ring is assembled in order to examine the high-power transmission test. The window was tested up to the transmission power of 160 MW. The rf losses are also measured during the rf operation.

  18. Rf system description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field used for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system that uses a tetrode as a high-power amplifier (HPA) as part of its plant to deliver up to 300 kW of peak power to the RFQ at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I ampersand Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities. This paper describes the identified components and presents measured performance data. The user interface with the systems is described, and cavity field measurements are included

  19. Effects of RF low levels electromagnetic fields on Paramecium primaurelia

    International Nuclear Information System (INIS)

    Tofani, S.; Testa, B.; Agnesod, G.; Tartagbino, L.; Bonazzola, G.C.

    1988-01-01

    In the last years many studies have been performed to examine biological effects of prolonged exposure at electric field low levels. This great interest is linked to a specific interaction possibility, also related to the exposure length, between electromagnetic fields and biological systems without remarkable enhancement of organism's temperature. Hence the need to investigate in vitro the possible cellular regulation mechanisms involved in these interactions, varying physical exposure parameters

  20. Multiple channel space lattice focusing and features of its use in applied RF linac

    International Nuclear Information System (INIS)

    Kushin, V.; Plotnikov, S.; Zarubin, A.; Bondarev, B.; Durkin, A.

    2000-01-01

    Nowadays the use of multiple channel accelerator systems is well known with some hundred channels helps us to increase total beam intensity proportional to the number of channels while the divergence of the total beam is roughly equal to the divergence of single channel. The accelerator structure for multiple beam linac must provide both transversal and longitudinal stability for every small beam taking into account Coulomb interactions of all the micro beams. The most convenient for accelerator structures with 100 and more beams are the systems that use RF focusing such as RFQ, APF and DTL with rectangular profiles. The common disadvantage of all those systems is connected with decreasing of focusing forces of RF field with particle velocity increase. Our analysis shows that the disadvantage may be overcome in structures with rectangular profiles. For this purpose some additional thin (3-5 mm) focusing electrodes called space lattices (SL) must be arranged within accelerator gaps. The distance between these electrodes is chosen roughly equal to the thickness of additional electrodes. The number of the electrodes must be increased with length of accelerator gaps and may be equal n=1,2...6 and even more. The arrangement of n thin electrodes in accelerator gaps helps us to reach qualitative change of accelerator structure parameters. Firstly, they make n times amplification of the sign-alternate component of RF focusing field without appreciable influence to phasing action of accelerating field. Secondly, introducing of additional electrodes that divide the gap on n small accelerator gaps provides beams shielding from each other within the region of beam acceleration in RF fields between drift tubes. The analysis shows that if n=4-6, it is possible to reach transversal stability of all particles independently of their input phases in RF field. On the other hand, the analysis shows that adiabatic change of synchronous phase at the input stage of acceleration helps us

  1. High power rf component testing for the NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    1998-09-01

    In the Next Linear Collider (NLC), the high power rf components must be capable of handling peak rf power levels in excess of 600 MW. In the current view of the NLC, even the rectangular waveguide components must transmit at least 300 MW rf power. At this power level, peak rf fields can greatly exceed 100 MV/m. The authors present recent results of high power tests performed at the Accelerator Structure Test Area (ASTA) at SLAC. These tests are designed to investigate the rf breakdown limits of several new components potentially useful for the NLC. In particular, the authors tested a new TE 01 --TE 10 circular to rectangular wrap-around mode converter, a modified (internal fin) Magic Tee hybrid, and an upgraded flower petal mode converter

  2. Land and Undersea Field Testing of Very Low Frequency RF Antennas and Loop Transceivers

    Science.gov (United States)

    2017-12-01

    report presents experiments and findings for VLF RF communications using both commercial off-the-shelf (COTS) transceivers acquired from vendor...RF) communication in the ocean environment. This report presents experiments and findings for VLF RF communications using both commercial off the...work described in this report was performed for the Office of Naval Research (ONR) Forward Deployed Energy and Communications Outpost (FDECO) Innovative

  3. EM modeling of RF drive in DTL tank 4

    International Nuclear Information System (INIS)

    Kurennoy, Sergey S.

    2012-01-01

    A 3-D MicroWave Studio model for the RF drive in the LANSCE DTL tank 4 has been built. Both eigensolver and time-domain modeling are used to evaluate maximal fields in the drive module and RF coupling. The LANSCE DTL tank 4 has recently been experiencing RF problems, which may or may not be related to its replaced RF coupler. This situation stimulated a request by Dan Rees to provide EM modeling of the RF drive in the DTL tank 4 (T4). Jim O'Hara provided a CAD model that was imported into the CST Microwave Studio (MWS) and after some modifications became a part of a simplified MWS model of the T4 RF drive. This technical note describes the model and presents simulation results.

  4. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  5. RF-field generation in wide frequency range by electron beam

    International Nuclear Information System (INIS)

    Bogdanovich, B.; Nesterovich, A.; Minaev, S.

    1996-01-01

    A simple device for generating powerful RF oscillations in the frequency range of 100-250 MHz is considered. The two-gaps cavity is based on the quarter-wavelength coaxial line loaded by drift tubes. Frequency tuning is accomplished by using the movable shorting plunger. A permanent electron beam being modulated at the first gap return the energy at the second one. The additional tube with the permanent decelerating potential, introduced into the main drift tube, allows to decrease the drift tube length and keep the excitation conditions in frequency tuning. Both autogeneration and amplification modes are under consideration. RF-parameters of the cavity and experimental results are described. (author)

  6. Indoor Wireless RF Energy Transfer for Powering Wireless Sensors

    Directory of Open Access Journals (Sweden)

    H. Visser

    2012-12-01

    Full Text Available For powering wireless sensors in buildings, rechargeable batteries may be used. These batteries will be recharged remotely by dedicated RF sources. Far-field RF energy transport is known to suffer from path loss and therefore the RF power available on the rectifying antenna or rectenna will be very low. As a consequence, the RF-to-DC conversion efficiency of the rectenna will also be very low. By optimizing not only the subsystems of a rectenna but also taking the propagation channel into account and using the channel information for adapting the transmit antenna radiation pattern, the RF energy transport efficiency will be improved. The rectenna optimization, channel modeling and design of a transmit antenna are discussed.

  7. The RF voltage dependence of the electron sheath heating in low pressure capacitively coupled rf discharges

    International Nuclear Information System (INIS)

    Buddemeier, U.; Kortshagen, U.; Pukropski, I.

    1995-01-01

    In low pressure capacitively coupled RF discharges two competitive electron heating mechanisms have been discussed for some time now. At low pressures the stochastic sheath heating and for somewhat higher pressures the Joule heating in the bulk plasma have been proposed. When the pressure is increased at constant RF current density a transition from concave electron distribution functions (EDF) with a pronounced cold electron group to convex EDFs with a missing strong population of cold electrons is found. This transition was interpreted as the transition from dominant stochastic to dominant Joule heating. However, a different interpretation has been given by Kaganovich and Tsendin, who attributed the concave shaped EDFs to the spatially inhomogeneous RF field in combination with the nonlocality of the EDF

  8. Cavity design and beam simulations for the APS rf gun

    International Nuclear Information System (INIS)

    Borland, M.

    1991-01-01

    An earlier note discussed the preliminary design of the 1-1/2 cell RF cavity for the APS RF gun. This note describes the final design, including cavity properties and simulation results from the program rf gun. The basic idea for the new design was that the successful SSRL design could be improved upon by reducing fields that had nonlinear dependence on radius. As discussed previously, this would reduce the emittance and produce tighter momentum and time distributions. In addition, it was desirable to increase the fields in the first half-cell relative to the fields in the second half-cell, in order to allow more rapid initial acceleration, which would reduce the effects of space charge. Both of these goals were accomplished in the new design

  9. PUBLIC EXPOSURE TO MULTIPLE RF SOURCES IN GHANA.

    Science.gov (United States)

    Deatanyah, P; Abavare, E K K; Menyeh, A; Amoako, J K

    2018-03-16

    This paper describes an effort to respond to the suggestion in World Health Organization (WHO) research agenda to better quantify potential exposure levels from a range of radiofrequency (RF) sources at 200 public access locations in Ghana. Wide-band measurements were performed-with a spectrum analyser and a log-periodic antenna using three-point spatial averaging method. The overall results represented a maximum of 0.19% of the ICNIRP reference levels for public exposure. These results were generally lower than found in some previous but were 58% (2.0 dB) greater, than found in similar work conducted in the USA. Major contributing sources of RF fields were identified to be FM broadcast and mobile base station sites. Three locations with the greatest measured RF fields could represent potential areas for epidemiological studies.

  10. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    International Nuclear Information System (INIS)

    Colas, L.; Heuraux, S.; Bremond, S.; Bosia, G.

    2005-01-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pecoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed

  11. MEASUREMENT OF RF LOSSES DUE TO TRAPPED FLUX IN A LARGE-GRAIN NIOBIUM CAVITY

    International Nuclear Information System (INIS)

    Gianluigi Ciovati; Alex Gurevich

    2008-01-01

    Trapped magnetic field in superconducting niobium is a well known cause of radio-frequency (RF) residual losses. In this contribution, we present the results of RF tests on a single-cell cavity made of high-purity large grain niobium before and after allowing a fraction of the Earth's magnetic field to be trapped in the cavity during the cooldown below the critical temperature Tc. This experiment has been done on the cavity before and after a low temperature baking. Temperature mapping allowed us to determine the location of hot-spots with high losses and to measure their field dependence. The results show not only an increase of the low-field residual resistance, but also a larger increase of the surface resistance for intermediate RF field (higher ''medium field Qslope''), which depends on the amount of the trapped flux. These additional field-dependent losses can be described as losses of pinned vortices oscillating under the applied RF magnetic field

  12. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    Science.gov (United States)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  13. Review of the Hatfield and Dawson RF assessment for Bechtel

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Ron J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-10-05

    The construction project at the Russell City Energy Center (RCEC) in Hayward, CA encountered a complication due to RF induction into the construction cranes resulting from operation of the two AM broadcast systems located immediately south of the site. The consulting firm Hatfield and Dawson was contacted by Bechtel for the assessment and mitigation of the induced currents and voltages and their recommendations were implemented by Bechtel. The staff at the Lawrence Livermore National Laboratory (LLNL) was subsequently asked to review the analysis of the Hatfield and Dawson work, provide an independent assessment and offer further mitigation comments. LLNL has examined the work by Hatfield and Dawson, the numerical analyses of both agrees and correlates well with local field measurements. The mitigation efforts follow the OSHA rules and have been adapted to further reduce the possibility of worker injury through specialized training, daily task planning and specific assignments to workers to minimize exposure of all to the induced RF currents. LLNL further recommends that Bechtel formalize the RF training to provide additional value to the individual workers as well as for Bechtel to maintain documentation so that future work could make use of experienced workers. There is a possibility that the RF energy will couple into the actuator and sensors as the facility is built out. The operation of the two transmitters could introduce interference formed from the interaction of the signals in nonlinear circuit responses producing intermodulation distortion. The result is interference at unexpected frequencies, some of which can be low and not filtered out of the sensors unless specifically identified. Future testing is planned for evaluating the likelihood for RF interference issues.

  14. RF Breakdown Studies Using a 1.3 GHZ Test Cell

    International Nuclear Information System (INIS)

    Sah, R.; Johnson, R.P.; Neubauer, M.; Conde, M.; Gai, W.; Moretti, A.; Popovic, M.; Yonehara, K.; Byrd, J.; Li, D.; BastaniNejad, M.

    2009-01-01

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Recent studies have shown that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas without the need for long conditioning times, because the dense gas can dramatically reduce dark currents and multipacting. In this project we use this high pressure technique to suppress effects of residual vacuum and geometry found in evacuated cavities to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. A 1.3-GHz RF test cell with replaceable electrodes (e.g. Mo, Cu, Be, W, and Nb) and pressure barrier capable of operating both at high pressure and in vacuum has been designed and built, and preliminary testing has been completed. A series of detailed experiments is planned at the Argonne Wakefield Accelerator. At the same time, computer simulations of the RF Breakdown process will be carried out to help develop a consistent physics model of RF Breakdown. In order to study the effect of the radiofrequency on RF Breakdown, a second test cell will be designed, fabricated, and tested at a lower frequency, most likely 402.5 MHz.

  15. Radiation measurements during cavities conditioning on APS RF test stand

    International Nuclear Information System (INIS)

    Grudzien, D.M.; Kustom, R.L.; Moe, H.J.; Song, J.J.

    1993-01-01

    In order to determine the shielding structure around the Advanced Photon Source (APS) synchrotron and storage ring RF stations, the X-ray radiation has been measured in the near field and far field regions of the RF cavities during the normal conditioning process. Two cavity types, a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity, are used on the APS and are conditioned in the RF test stand. Vacuum measurements are also taken on a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity. The data will be compared with data on the five-cell cavities from CERN

  16. New type low loss, strong field, RF coils for commercial nuclear fusion

    International Nuclear Information System (INIS)

    Ikegami, Shigetaka

    1990-01-01

    New RF coils of L-C-R connection loops type are proposed. One of the coils is only a bundle of μ order diameter isolated conductor, facing the both sides of the bundle ends each other for a capacity. The next characters were found by experiments. (1) This type coils show a sharp first resonance mode and few other modes are measured. (2) The complete proportional relation between the number of the conductors and the conductance of the bundle. (3) The ratio of the RF current resistance to the direct current resistance can be 1. Variational principle for eigenvalue problem was considered for it. The loss due to the vortex current in the conductor itself when exposed in the magnetic field was calculated accurately. And it was found that when the diameter of the conductor is 1/3 of the high frequency skin depth δ, the vortex current is very small. The litz wire can be used below 10 kHz. But this coil can be used above 100 MHz(δ≅7μ), because this coil need not to be stranded. For example, the turbulent heating at the axis of a tokamak plasma in μs order is possible, when a large amplitude stationary magnetosonic wave is excited by the magnetic piston of these coils array around the plasma. And the distance between the plasma and the coils can be large. The commercial nuclear fusion is thought to be possible. (author)

  17. Effect of RF Parameters on Breakdown Limits in High-Vacuum X-Band Structures

    International Nuclear Information System (INIS)

    Dolgashev, Valery A.

    2003-01-01

    RF breakdown is one of the major factors determining performance of high power rf components and rf sources. RF breakdown limits working power and produces irreversible surface damage. The breakdown limit depends on the rf circuit, structure geometry, and rf frequency. It is also a function of the input power, pulse width, and surface electric and magnetic fields. In this paper we discuss multi-megawatt operation of X-band rf structures at pulse width on the order of one microsecond. These structures are used in rf systems of high gradient accelerators. Recent experiments at Stanford Linear Accelerator Center (SLAC) have explored the functional dependence of breakdown limit on input power and pulse width. The experimental data covered accelerating structures and waveguides. Another breakdown limit of accelerating structures was associated with high magnetic fields found in waveguide-to-structure couplers. To understand and quantify these limits we simulated 3D structures with the electrodynamics code Ansoft HFSS and the Particle-In-Cell code MAGIC3D. Results of these simulations together with experimental data will be discussed in this paper

  18. Control electronics of the PEP RF system

    International Nuclear Information System (INIS)

    Pellegrin, J.L.; Schwarz, H.

    1981-01-01

    The operation of the major components used for controlling the phase and field level of the PEP RF cavities is described. The control electronics of one RF station is composed of several control loops: each cavity has a tuners' servo loop which maintains the frequency constant and also keeps the fields of each cavity balanced; the total gap voltage developed by a pair of cavities is regulated by a gap voltage controller; finally, the phase variation along the amplification chain, the klystron and the cavities are compensated by a phase lock loop. The design criteria of each loop are set forth and the circuit implementation and test results are presented

  19. Transport analysis of rf drift-velocity filter employing crossed DC and AC electric fields for ion swarm experiments

    International Nuclear Information System (INIS)

    Iinuma, K.; Takebe, M.

    1995-01-01

    The operational characteristics of the RF drift-velocity filter developed to separate a mixture of gaseous ions are examined theoretically. The solutions of the appropriate transport equations provide an analytical formula for the transmission efficiency of the filter in terms of the mobility and diffusion coefficient of the ions, the electric field strength, the RF frequency and the filter dimension. Using the experimental transport data for Li + /Xe and Cs + /Xe, the formula was tested and it was found that it adequately accounts for the degree of ion separation achieved by the filter at high gas pressures. The variation of the profiles of the arrival time spectra for Li + , Na + and Cs + ions in CO 2 , obtained by drift-tube experiments, also supports this analysis. 4 refs., 10 figs

  20. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Horan, D.

    1999-01-01

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control and permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands

  1. Study of Electron Swarm in High Pressure Hydrogen Gas Filled RF Cavities

    International Nuclear Information System (INIS)

    Yonehara, K.; Chung, M.; Jansson, A.; Moretti, A.; Popovic, M.; Tollestrup, A.; Alsharo'a, M.; Johnson, R.P.; Notani, M.; Oka, T.; Wang, H.

    2010-01-01

    A high pressure hydrogen gas filled RF cavity has been proposed for use in the muon collection system for a muon collider. It allows for high electric field gradients in RF cavities located in strong magnetic fields, a condition frequently encountered in a muon cooling channel. In addition, an intense muon beam will generate an electron swarm via the ionization process in the cavity. A large amount of RF power will be consumed into the swarm. We show the results from our studies of the HV RF breakdown in a cavity without a beam and present some results on the resulting electron swarm dynamics. This is preliminary to actual beam tests which will take place late in 2010.

  2. RF system for the super conducting proton linac

    International Nuclear Information System (INIS)

    Touchi, Y.

    2001-01-01

    In this paper, we introduce the several types of RF sources used for proton liner accelerators. Also we discus the undesirable characteristics of super-conducting cavities, and the influence of the large beam loading for an accelerating field. We propose the RF system for the super-conducting proton linear accelerators using the Diacrode or IOT taking these effects into account. (author)

  3. MOSFET Degradation Under RF Stress

    NARCIS (Netherlands)

    Sasse, G.T.; Kuper, F.G.; Schmitz, Jurriaan

    2008-01-01

    We report on the degradation of MOS transistors under RF stress. Hot-carrier degradation, negative-bias temperature instability, and gate dielectric breakdown are investigated. The findings are compared to established voltage- and field-driven models. The experimental results indicate that the

  4. Adaptive feedforward in the LANL rf control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feedforward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF field feedback control system can be eliminated with a feedforward system. Many RF field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feedforward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feedforward system are presented

  5. RF MEMS theory, design, and technology

    CERN Document Server

    Rebeiz, Gabriel M

    2003-01-01

    Ultrasmall Radio Frequency and Micro-wave Microelectromechanical systems (RF MEMs), such as switches, varactors, and phase shifters, exhibit nearly zero power consumption or loss. For this reason, they are being developed intensively by corporations worldwide for use in telecommunications equipment. This book acquaints readers with the basics of RF MEMs and describes how to design practical circuits and devices with them. The author, an acknowledged expert in the field, presents a range of real-world applications and shares many valuable tricks of the trade.

  6. RF Power Requirements for PEFP SRF Cavity Test

    International Nuclear Information System (INIS)

    Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub

    2011-01-01

    For the future extension of the PEFP (Proton Engineering Frontier Project) Proton linac, preliminary study on the SRF (superconducting radio-frequency) cavity is going on including a five-cell prototype cavity development to confirm the design and fabrication procedures and to check the RF and mechanical properties of a low-beta elliptical cavity. The main parameters of the cavity are like followings. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m (1.21 Kilp.) - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Stiffening structure: Double ring - Effective length: 0.45 m For the test of the cavity at low temperature of 4.2 K, many subsystems are required such as a cryogenic system, RF system, vacuum system and radiation shielding. RF power required to generate accelerating field inside cavity depends on the RF coupling parameters of the power coupler and quality factor of the SRF cavity and the quality factor itself is affected by several factors such as operating temperature, external magnetic field level and surface condition. Therefore, these factors should be considered to estimate the required RF power for the SRF cavity test

  7. Analysis of a high brightness photo electron beam with self field and wake field effects

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    High brightness sources are the basic ingredients in the new accelerator developments such as Free-Electron Laser experiments. The effects of the interactions between the highly charged particles and the fields in the accelerating structure, e.g. R.F., Space charge and Wake fields can be detrimental to the beam and the experiments. We present and discuss the formulation used, some simulation and results for the Brookhaven National Laboratory high brightness beam that illustrates effects of the accelerating field, space charge forces (e.g. due to self field of the bunch), and the wake field (e.g. arising from the interaction of the cavity surface and the self field of the bunch)

  8. RF Processing of the Couplers for the SNS Superconducting Cavities

    International Nuclear Information System (INIS)

    Y.Kang; I.E. Campisi; D. Stout; A. Vassioutchenko; M. Stirbet; M. Drury; T. Powers

    2005-01-01

    All eighty-one fundamental power couplers for the 805 MHz superconducting cavities of the SNS linac have been RF conditioned and installed in the cryomodules successfully. The couplers were RF processed at JLAB or at the SNS in ORNL: more than forty couplers have been RF conditioned in the SNS RF Test Facility (RFTF) after the first forty couplers were conditioned at JLAB. The couplers were conditioned up to 650 kW forward power at 8% duty cycle in traveling and standing waves. They were installed on the cavities in the cryomodules and then assembled with the airside waveguide transitions. The couplers have been high power RF tested with satisfactory accelerating field gradients in the cooled cavities

  9. RF assisted switching in magnetic Josephson junctions

    Science.gov (United States)

    Caruso, R.; Massarotti, D.; Bolginov, V. V.; Ben Hamida, A.; Karelina, L. N.; Miano, A.; Vernik, I. V.; Tafuri, F.; Ryazanov, V. V.; Mukhanov, O. A.; Pepe, G. P.

    2018-04-01

    We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications.

  10. High-gradient normal-conducting RF structures for muon cooling channels

    International Nuclear Information System (INIS)

    Corlett, J.N.; Green, M.A.; Hartman, N.; Ladran, A.; Li, D.; MacGill, R.; Rimmer, R.; Moretti, A.; Jurgens, T.; Holtkamp, N.; Black, E.; Summers, D.; Booke, M.

    2001-01-01

    We present a status report on the research and development of high-gradient normal-conducting RF structures for the ionization cooling of muons in a neutrino factory or muon collider. High-gradient RF structures are required in regions enclosed in strong focusing solenoidal magnets, precluding the application of superconducting RF technology [1]. We propose using linear accelerating structures, with individual cells electromagnetically isolated, to achieve the required gradients of over 15 MV/m at 201 MHz and 30 MV/m at 805 MHz. Each cell will be powered independently, and cell length and drive phase adjusted to optimize shunt impedance of the assembled structure. This efficient design allows for relatively small field enhancement on the structure walls, and an accelerating field approximately 1.7 times greater than the peak surface field. The electromagnetic boundary of each cell may be provided by a thin Be sheet, or an assembly of thin-walled metal tubes. Use of thin, low-Z materials will allow passage of the muon beams without significant deterioration in beam quality due to scattering. R and D in design and analysis of robust structures that will operate under large electric and magnetic fields and RF current heating are discussed, including the experimental program based in a high-power test laboratory developed for this purpose

  11. Fluxon interaction with external rf radiation in Josephson junctions

    DEFF Research Database (Denmark)

    Kivshar, Yuri S.; Olsen, Ole H.; Samuelsen, Mogens Rugholm

    1993-01-01

    . It is shown that due to excitation of a standing linear wave by the driving force, the fluxon motion is strongly influenced by a periodic (averaged) potential similar to the Peierls-Nabarro potential in a discrete chain. This effective potential decreases in the direction of the boundary where the external rf...

  12. Autopsy on an RF-Processed X-band Travelling Wave Structure

    International Nuclear Information System (INIS)

    Le Pimpec, Frederic

    2002-01-01

    In an effort to locate the cause(s) of high electric-field breakdown in x-band accelerating structures, we have cleanly-autopsied (no debris added by post-operation structure disassembly) an RF-processed structure. Macroscopic localization provided operationally by RF reflected wave analysis and acoustic sensor pickup was used to connect breakdowns to autopsied crater damage areas. Surprisingly, the microscopic analyses showed breakdown craters in areas of low electric field. High currents induced by the magnetic field on sharp corners of the input coupler appears responsible for the extreme breakdown damage observed

  13. Low-level rf system for the AGS Light Ion Program

    International Nuclear Information System (INIS)

    Kovarik, V.; Ahrens, L.; Barton, D.S.; Frankel, R.; Otis, A.; Pope, D.; Pritsker, M.; Raka, E.; Warkentien, R.

    1987-01-01

    The new low level rf system for the light ion acceleration program features direct digital control of a phase continuous rf synthesizer clocked by finite changes in the B field. The system, its operation and testing are described. The system covers the complete rf frequency range and switches over from single cavity acceleration to multiple cavity acceleration with no beam loss. It also switches from the programmed drive to the normal bootstrap system

  14. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  15. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  16. High power tests of X-band RF windows at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Otake, Yuji [Earthquake Research Inst., Tokyo Univ., Tokyo (Japan); Tokumoto, Shuichi; Kazakov, Sergei Yu.; Odagiri, Junichi; Mizuno, Hajime

    1997-04-01

    Various RF windows comprising a short pill-box, a long pill-box, a TW (traveling wave)-mode and three TE11-mode horn types have been developed for an X-band high-power pulse klystron with two output windows for JLC (Japan Linear Collider). The output RF power of the klystron is designed to be 130 MW with the 800 ns pulse duration. Since this X-band klystron has two output windows, the maximum RF power of the window must be over 85 MW. The design principle for the windows is to reduce the RF-power density and/or the electric-field strength at the ceramic part compared with that of an ordinary pill-box-type window. Their reduction is effective to increase the handling RF power of the window. To confirm that the difference among the electric-field strengths depends on their RF structures, High-power tests of the above-mentioned windows were successfully carried out using a traveling-wave resonator (TWR) for the horns and the TW-mode type and, installing them directly to klystron output waveguides for the short and long pill-box type. Based upon the operation experience of S-band windows, two kinds of ceramic materials were used for these tests. The TE11-mode 1/2{lambda}g-1 window was tested up to the RF peak-power of 84 MW with the 700 ns pulse duration in the TWR. (J.P.N)

  17. Rf breakdown studies in room temperature electron linac structures

    International Nuclear Information System (INIS)

    Loew, G.A.; Wang, J.W.

    1988-05-01

    This paper is an overall review of studies carried out by the authors and some of their colleagues on RF breakdown, Field Emission and RF processing in room temperature electron linac structure. The motivation behind this work is twofold: in a fundamental way, to contribute to the understanding of the RF breakdown phenomenon, and as an application, to determine the maximum electric field gradient that can be obtained and used safely in future e/sup +-/ linear colliders. Indeed, the next generation of these machines will have to reach into the TeV (10 12 eV) energy range, and the accelerating gradient will be to be of the crucial parameters affecting their design, construction and cost. For a specified total energy, the gradient sets the accelerator length, and once the RF structure, frequency and pulse repetition rate are selected, it also determines the peak and average power consumption. These three quantities are at the heart of the ultimate realizability and cost of these accelerators. 24 refs., 19 figs., 4 tabs

  18. RF phase focusing in portable x-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.M.; Schonberg, R.G.; Weaver, J.N.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp = c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  19. RF phase focusing in portable X-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.W.; Schonberg, R.G.; Weaver, J.W.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp=c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  20. Experimental study of rf pulsed heating

    CERN Document Server

    Laurent, L; Nantista, C; Dolgashev, V; Higashi, Y; Aicheler, M; Tantawi, S; Wuensch, W

    2011-01-01

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop (R), copper silver, and silver plated co...

  1. Study of RF flux penetration on Nb for SRF Applications

    Science.gov (United States)

    Oripov, Bakhrom; Anlage, Steven

    Superconducting Radio Frequency (SRF) cavities are being widely used in new generation particle accelerators. Based on the needs of the SRF community to identify defects on Nb surfaces, a novel near-field magnetic field microwave microscope was successfully built using a magnetic writer from a conventional perpendicular magnetic recording hard-disk drive. Using our probe, we performed microwave measurement of both third P3f\\ (Pf,T) and fifth P5f (Pf,T) harmonic responses and its dependence on temperature and rf input power by applying a strong and localized RF magnetic field on high quality Nb films. Our preliminary results show significant difference in low-field and high-field harmonic responses. Above a temperature-dependent onset field H1 periodic structures in the harmonic response vs rf field amplitude data emerges. Similar behavior is observed in both bulk Nb and thin film Nb samples. We attribute this periodic response to vortex nonlinearity. Using our microscope, we are able to measure a local lower critical field for vortex formation Hc,v (in arbitrary units), and compare the Hc,v's of samples produced with different techniques and chemical treatments. This work is funded by US Department of Energy through Grant # DE-SC0012036T and CNAM.

  2. Linear collider applications of superconducting RF

    International Nuclear Information System (INIS)

    Rubin, D.L.

    1990-01-01

    The most promising technology for producing interactions of electrons and positrons in TeV energy range is the linear collider. In the linear collider each and every collision of charged particles depends on the production of the charges at rest and then the acceleration of those charges to full energy. The particles that exit the interaction region are discharded. A consequence of this mode of operation is that the luminosity of the machine is ultimately determined by the efficiency with which AC power can be converted into beam power. The consideration of superconducting cavities is motivated by the need for high efficiency. Thus, the high emittance around a beam collider and low emittance around beams are discussed first in the present report. Flat beams are then addressed focusing on the characteristics of the source, final focus, and beam stability. The beam stability, in particular, is discussed in detail in relation to the multiple bunch transverse stability, wake field induced energy spread, trapped modes, pulse width, duty cycle, RF power, and refrigerator power. (N.K.)

  3. Function of bunching segment in multi-cell RF gun

    International Nuclear Information System (INIS)

    Yang Xingfan; Xu Zhou Liu Xisan

    2001-01-01

    With a bunching segment and a shortened first cell, the 4 + 1/2 cell RF gun produced in CAEP has been proved experimentally to be effective in reducing electron back bombardment. The analysis of the electric field distribution and electron motion in bunching segment of multi-cell RF gun is presented. The electron capture efficiency and electron trajectory with different initial phase are calculated using Runge-Kutta method. The function of the bunching segment is discussed. The calculated parameters of the 4 + 1/2 cell RF gun agree well with the experimental results

  4. Low-Level RF Control of Microphonics in Superconducting Spoke-Loaded Cavities

    International Nuclear Information System (INIS)

    Conway, Z.A.; Kelly, M.P.; Sharamentov, S.I.; Shepard, K.W.; Davis, G.; Delayen, Jean; Doolittle, Lawrence

    2007-01-01

    This paper presents the results of cw RF frequency control and RF phase-stabilization experiments performed with a piezoelectric fast tuner mechanically coupled to a superconducting, 345 MHz, < = 0.5 triple-spoke-loaded cavity operating at 4.2K. The piezoelectric fast tuner damped low-frequency microphonic-noise by an order of magnitude. Two methods of RF phase-stabilization were characterized: overcoupling with negative phase feedback, and also fast mechanical tuner feedback. The = 0.5 triple-spoke-loaded cavity RF field amplitude and phase errors were controlled to ±0.5% and ±30 respectively.

  5. Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field

    International Nuclear Information System (INIS)

    Houlding, Thomas K.; Gao, Pengzhao; Degirmenci, Volkan; Tchabanenko, Kirill; Rebrov, Evgeny V.

    2015-01-01

    Highlights: • Novel NiFe 2 O 4 –TiO 2 composite magnetic catalysts have been prepared by mechanochemical synthesis. • The synthesis time of 30 min provides the highest specific absorption rate (SAR) in RF heating. • Formation of NiTiO 3 phase during calcination decreases the SAR of the catalysts. • High stability of the NiFe 2 O 4 –TiO 2 catalyst was observed in a continuous amide bond synthesis under RF heating. - Abstract: Composite NiFe 2 O 4 –TiO 2 magnetic catalysts were prepared by mechanochemical synthesis from a mixture of titania supported nickel ferrite nanoparticles and P25 titania (Evonic). The former provides fast and efficient heating under radiofrequency field, while the latter serves as an active catalyst or catalyst support. The highest heating rate was observed over a catalyst prepared for a milling time of 30 min. The catalytic activity was measured over the sulfated composite catalysts in the condensation of aniline and 3-phenylbutyric acid in a stirred tank reactor and in a continuous RF heated flow reactor in the 140–170 °C range. The product yield of 47% was obtained over the sulfated P25 titania catalyst in the flow reactor

  6. About of the Electrostatic fields excitation theory by a RF wave in a plasma

    International Nuclear Information System (INIS)

    Gutierrez T, C.R.

    1991-01-01

    In an unidimensional model is shown in the cases of a semi limited plasma and a layer of plasma the excitement mechanism of electrostatic fields for a radiofrequency wave (RF) polarized lineally. This phenomenon depends strongly on the combined action of the Miller force and that of impulsion. It is shown that the action of these forces is carried out in different characteristic times when the front of wave crosses through the plasma. The cases of a semi limited plasma and of a layer of plasma without and with current are analyzed. It is shown that near the frontiers of the plasma where the field is sufficiently big arise oscillations of the width of the field that are slowly muffled in the space in an exponential way. In the cases of a plasma layer its are shown that the processes that arise near the frontier x = L are similar to the processes that arise near the frontier x = 0. The existence of current in the plasma layer leads to the blockade of the excited perturbations in the frontier x = L. (Author)

  7. Determination of the rf leakage field in the vacuum tank of the TRIUMF cyclotron

    International Nuclear Information System (INIS)

    Hohback; Dohan, D.; Dutto, G.; Enegren, T.A.; Fong, K.; Pacak, V.

    1983-01-01

    In the TRIUMF cyclotron the dees are partially defined by the two halves of the quasi-circular vacuum chamber, which completely contains the 1 MW resonating cavity. A stray electric field or ''RF leakage'' exists inside the dees and has occasionally caused problems to probes or other tank equipment. In order to understand the nature of this field a precise 1:10 scale metal model of the entire tank and resonator system has been built and is being investigated. Various resonances have been identified: the push-pull mode at 226 MHz and the push-push mode at 233 MHz; cross modes along the dee gap resonate at 243 MHz and 253 MHz. In the quasicircular tank region outside of the main resonating cavity the Tm 310 and Tm 410 modes are mainly responsible for the configuration of the leakage field since they are closer to the operating frequency. The measurements are in reasonable agreement with the results of numerical relaxation calculation and with measurements in the cyclotron tank

  8. Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil.

    Science.gov (United States)

    Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar

    2008-12-01

    Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.

  9. High power RF test of an 805 MHz RF cavity for a muon cooling channel

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Rimmer, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Summers, D.; Norem, J.

    2002-01-01

    We present recent high power RF test results on an 805 MHz cavity for a muon cooling experiment at Lab G in Fermilab. In order to achieve high accelerating gradient for large transverse emittance muon beams, the cavity design has adopted a pillbox like shape with 16 cm diameter beam iris covered by thin Be windows, which are demountable to allow for RF tests of different windows. The cavity body is made from copper with stiff stainless steel rings brazed to the cavity body for window attachments. View ports and RF probes are available for visual inspections of the surface of windows and cavity and measurement of the field gradient. Maximum of three thermo-couples can be attached to the windows for monitoring the temperature gradient on the windows caused by RF heating. The cavity was measured to have Q 0 of about 15,000 with copper windows and coupling constant of 1.3 before final assembling. A 12 MW peak power klystron is available at Lab G in Fermilab for the high power test. The cavity and coupler designs were performed using the MAFIA code in the frequency and the time domain. Numerical simulation results and cold test measurements on the cavity and coupler will be presented for comparisons

  10. SOL RF physics modelling in Europe, in support of ICRF experiments

    Directory of Open Access Journals (Sweden)

    Colas Laurent

    2017-01-01

    Full Text Available A European project was undertaken to improve the available SOL ICRF physics simulation tools and confront them with measurements. This paper first reviews code upgrades within the project. Using the multi-physics finite element solver COMSOL, the SSWICH code couples RF full-wave propagation with DC plasma biasing over “antenna-scale” 2D (toroidal/radial domains, via non-linear RF and DC sheath boundary conditions (SBCs applied at shaped plasma-facing boundaries. For the different modules and associated SBCs, more elaborate basic research in RF-sheath physics, SOL turbulent transport and applied mathematics, generally over smaller spatial scales, guides code improvement. The available simulation tools were applied to interpret experimental observations on various tokamaks. We focus on robust qualitative results common to several devices: the spatial distribution of RF-induced DC bias; left-right asymmetries over strap power unbalance; parametric dependence and antenna electrical tuning; DC SOL biasing far from the antennas, and RF-induced density modifications. From these results we try to identify the relevant physical ingredients necessary to reproduce the measurements, e.g. accurate radiated field maps from 3D antenna codes, spatial proximity effects from wave evanescence in the near RF field, or DC current transport. Pending issues towards quantitative predictions are also outlined.

  11. Adaptive feed forward in the LANL RF control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feed forward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF-field feedback control system can be eliminated with a feed forward system. Many RF-field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feed forward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feed forward system are presented. (Author) 3 figs., 2 refs

  12. Fast digital feedback control systems for accelerator RF system using FPGA

    International Nuclear Information System (INIS)

    Bagduwal, Pritam Singh; Sharma, Dheeraj; Tiwari, Nitesh; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Feedback control system plays important role for proper injection and acceleration of beam in particle accelerators by providing the required amplitude and phase stability of RF fields in accelerating structures. Advancement in the field of digital technology enables us to develop fast digital feedback control system for RF applications. Digital Low Level RF (LLRF) system offers the inherent advantages of Digital System like flexibility, adaptability, good repeatability and reduced long time drift errors compared to analog system. To implement the feedback control algorithm, I/Q control scheme is used. By properly sampling the down converted IF signal using fast ADC we get accurate feedback signal and also eliminates the need of two separate detectors for amplitude and phase detection. Controller is implemented in Vertex-4 FPGA. Codes for control algorithms which controls the amplitude and phase in all four quadrants with good accuracy are written in the VHDL. I/Q modulator works as common actuator for both amplitude and phase correction. Synchronization between RF, LO and ADC clock is indispensable and has been achieved by deriving the clock and LO signal from RF signal itself. Control system has been successfully tested in lab with phase and amplitude stability better then ±1% and ±1° respectively. High frequency RF signal is down converted to IF using the super heterodyne technique. Super heterodyne principal not only brings the RF signal to the Low IF frequency at which it can be easily processed but also enables us to use the same hardware and software for other RF frequencies with some minor modification. (author)

  13. Eighth CW and High Average Power RF Workshop

    CERN Document Server

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  14. Influences of the RF power ratio on the optical and electrical properties of GZO thin films by DC coupled RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yao, Tingting, E-mail: yaott0815@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yang, Yong; Zhang, Kuanxiang; Jiang, Jiwen; Jin, Kewu; Li, Gang; Cao, Xin; Xu, Genbao; Wang, Yun [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China)

    2016-12-15

    Ga-doped zinc oxide (GZO) thin films were deposited by closed field unbalanced DC coupled RF magnetron sputtering system at room temperature. The RF sputtering power ratio was adjusted from 0% to 100%. The crystal structure, surface morphology, transmittance and electrical resistivity of GZO films mainly influenced by RF sputtering power ratio were investigated by X-ray diffractometer, scanning electronic microscope, ultraviolet-visible spectrophotometer and Hall effect measurement. The research results indicate that the increasing RF power ratio can effectively reduce the discharge voltage of system and increase the ionizing rate of particles. Meanwhile, the higher RF power ratio can increase the carrier mobility in GZO thin film and improve the optical and electrical properties of GZO thin film significantly. Within the optimal discharge voltage window, the film deposits at 80% RF power ratio exhibits the lowest resistivity of 2.6×10{sup −4} Ω cm. We obtain the GZO film with the best average optical transmittance is approximately 84% in the visible wavelength. With the increasing RF power ratio, the densification of GZO film is enhanced. The densification of GZO film is decrease when the RF power ratio is 100%.

  15. Neoclassical effects on RF current drive in tokamaks

    International Nuclear Information System (INIS)

    Yoshioka, K.; Antonsen, T.M. Jr.

    1986-01-01

    Neoclassical effects on RF current drive which arise because of the inhomogeneity of the magnetic field in tokamak devices are analysed. A bounce averaged 2-D Fokker-Planck equation is derived from the drift kinetic equation and is solved numerically. The model features current drive due to a strong RF wave field. The efficiency of current drive by electron cyclotron waves is significantly reduced when the waves are absorbed at the low magnetic field side of a given flux surface, whereas the efficiency remains at the same level as in the homogeneous ideal plasma when the waves are absorbed at the high field side. The efficiency of current drive by fast waves (compressional Alfven waves) with low phase velocity (vsub(parallel)/vsub(th)<1) is significantly degraded by neoclassical effects, no matter where the wave is absorbed, and the applicability of this wave seems, therefore, to be doubtful. (author)

  16. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  17. Optimum Choice of RF Frequency for Two Beam Linear Colliders

    CERN Document Server

    Braun, Hans Heinrich

    2003-01-01

    Recent experimental results on normal conducting RF structures indicate that the scaling of the gradient limit with frequency is less favourable than what was believed. We therefore reconsider the optimum choice of RF frequency and iris aperture for a normal conducting, two-beam linear collider with E_CMS=3 TeV, a loaded accelerating gradient of 150 MV/m and a luminosity of 8 10^34 cm-^2 s^-1. The optimisation criterion is minimizing overall RF costs for investment and operation with constraints put on peak surface electric fields and pulsed heating of accelerating structures. Analytical models are employed where applicable, while interpolation on simulation program results is used for the calculation of luminosity and RF structure properties.

  18. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  19. Dependence of beam emittance on plasma electrode temperature and rf-power, and filter-field tuning with center-gapped rod-filter magnets in J-PARC rf-driven H− ion source

    International Nuclear Information System (INIS)

    Ueno, A.; Koizumi, I.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Yamazaki, S.; Oguri, H.

    2014-01-01

    The prototype rf-driven H − ion-source with a nickel plated oxygen-free-copper (OFC) plasma chamber, which satisfies the Japan Proton Accelerator Research Complex (J-PARC) 2nd stage requirements of a H − ion beam current of 60 mA within normalized emittances of 1.5 π mm mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500 μs × 25 Hz) and a life-time of more than 50 days, was reported at the 3rd international symposium on negative ions, beams, and sources (NIBS2012). The experimental results of the J-PARC ion source with a plasma chamber made of stainless-steel, instead of nickel plated OFC used in the prototype source, are presented in this paper. By comparing these two sources, the following two important results were acquired. One was that the about 20% lower emittance was produced by the rather low plasma electrode (PE) temperature (T PE ) of about 120 °C compared with the typically used T PE of about 200 °C to maximize the beam current for the plasma with the abundant cesium (Cs). The other was that by using the rod-filter magnets with a gap at each center and tuning the gap-lengths, the filter-field was optimized and the rf-power necessary to produce the J-PARC required H − ion beam current was reduced typically 18%. The lower rf-power also decreases the emittances

  20. An 8-channel transceiver 7-channel receive RF coil setup for high SNR ultrahigh-field MRI of the shoulder at 7T.

    Science.gov (United States)

    Rietsch, Stefan H G; Pfaffenrot, Viktor; Bitz, Andreas K; Orzada, Stephan; Brunheim, Sascha; Lazik-Palm, Andrea; Theysohn, Jens M; Ladd, Mark E; Quick, Harald H; Kraff, Oliver

    2017-12-01

    In this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder. A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points. Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B 1 + of 19 μT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution. The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming. © 2017 American Association of Physicists in Medicine.

  1. The modeling of the RF system performance in TCA/BR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.; Galvao, R.M.O.; Nascimento, I.; Ozono, E.; Lerche, E.; Degasperi, F.T.; Tuszel, A.G.

    1996-01-01

    The results of numerical simulation of RF Alfven wave heating system that is intended to be used in TCA/BR tokamak are presented. The problem of monochromatic travelling RF field excitation in TCA/BR tokamak is analyzed by means of numerical simulation. The spectrum of the excited Alfven waves is determined using a one-dimensional MHD code. The transient time and AC analysis of the RF generator performance with antenna loading are discussed. (author). 9 refs., 6 figs

  2. RF Photoelectric injectors using needle cathodes

    International Nuclear Information System (INIS)

    Lewellen, J.W.; Brau, C.A.

    2003-01-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2 , with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR

  3. RF Photoelectric injectors using needle cathodes

    Science.gov (United States)

    Lewellen, J. W.; Brau, C. A.

    2003-07-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2, with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR.

  4. Exploiting adiabatically switched RF-field for manipulating spin hyperpolarization induced by parahydrogen

    International Nuclear Information System (INIS)

    Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Lukzen, Nikita N.; Ivanov, Konstantin L.; Vieth, Hans-Martin

    2015-01-01

    A method for precise manipulation of non-thermal nuclear spin polarization by switching a RF-field is presented. The method harnesses adiabatic correlation of spin states in the rotating frame. A detailed theory behind the technique is outlined; examples of two-spin and three-spin systems prepared in a non-equilibrium state by Para-Hydrogen Induced Polarization (PHIP) are considered. We demonstrate that the method is suitable for converting the initial multiplet polarization of spins into net polarization: compensation of positive and negative lines in nuclear magnetic resonance spectra, which is detrimental when the spectral resolution is low, is avoided. Such a conversion is performed for real two-spin and three-spin systems polarized by means of PHIP. Potential applications of the presented technique are discussed for manipulating PHIP and its recent modification termed signal amplification by reversible exchange as well as for preparing and observing long-lived spin states

  5. Coating power RF components with TiN

    International Nuclear Information System (INIS)

    Kuchnir, M.; Hahn, E.

    1995-03-01

    A facility for coating RF power components with thin films of Ti and/or TiN has been in operation for some time at Fermilab supporting the Accelerator Division RF development work and the TESLA program. It has been experimentally verified that such coatings improve the performance of these components as far as withstanding higher electric fields. This is attributed to a reduction in the secondary electron emission coefficient of the surfaces when coated with a thin film containing titanium. The purpose of this Technical Memorandum is to describe the facility and the procedure used

  6. Sources of Emittance in RF Photocathode Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-11

    Advances in electron beam technology have been central to creating the current generation of x-ray free electron lasers and ultra-fast electron microscopes. These once exotic devices have become essential tools for basic research and applied science. One important beam technology for both is the electron source which, for many of these instruments, is the photocathode RF gun. The invention of the photocathode gun and the concepts of emittance compensation and beam matching in the presence of space charge and RF forces have made these high-quality beams possible. Achieving even brighter beams requires a taking a finer resolution view of the electron dynamics near the cathode during photoemission and the initial acceleration of the beam. In addition, the high brightness beam is more sensitive to degradation by the optical aberrations of the gun’s RF and magnetic lenses. This paper discusses these topics including the beam properties due to fundamental photoemission physics, space charge effects close to the cathode, and optical distortions introduced by the RF and solenoid fields. Analytic relations for these phenomena are derived and compared with numerical simulations.

  7. Introduction to RF linear accelerators

    International Nuclear Information System (INIS)

    Weiss, M.

    1994-01-01

    The basic features of RF linear accelerators are described. The concept of the 'loaded cavity', essential for the synchronism wave-particle, is introduced, and formulae describing the action of electromagnetic fields on the beam are given. The treatment of intense beams is mentioned, and various existing linear accelerators are presented as examples. (orig.)

  8. Hearing aids' electromagnetic immunity to environmental RF fields

    International Nuclear Information System (INIS)

    Facta, S.; Benedetto, A.; Anglesio, L.; D'Amore, G.

    2004-01-01

    In this work, the electromagnetic interference on hearing aids was evaluated. Electromagnetic (EM) immunity tests on different types of hearing aids were carried out, using signals of intensity and modulation comparable to those present in the environment. The purpose of this work is to characterise the interference, establishing the immunity threshold for different frequencies and finding out which types of hearing aids are more susceptible, and in which frequency range. The tests were carried out in a GTEM cell on seven hearing aids, using AM and GSM signals in the radiofrequency (RF) range. (authors)

  9. A survey of the urban radiofrequency (RF) environment

    International Nuclear Information System (INIS)

    Tell, Richard A.; Kavet, Robert

    2014-01-01

    In 1980, Tell and Mantiply published a study of radiofrequency (RF) fields measured across 15 major metropolitan areas in the USA. They required a van fully equipped with instrumentation and computing capability for their measurements. This study aimed to assess whether and how hand-held instrumentation available today would facilitate and enhance the efficiency of large-scale surveys of ambient RF fields. In addition, the data would provide a suggestion as to how the profile of ambient RF fields has changed with respect to frequency content and magnitude. Not unexpectedly, the relative power densities were orders of magnitude lower than the Federal Communications Commission's (FCC) maximum permissible exposure (MPE) for the general public, with a maximum time-averaged value across the VHF-FM-UHF-cellular bands of 0.12 % of the MPE (AM's contribution was negligible). In both the 1980 and the present study, the power density in the FM band was a major contributor to overall power density, but over time, power densities in the VHF and UHF band decreased and increased, respectively. From the perspective of absolute power density, the wideband values in the 1980 study, this study and any number of assessments conducted in European nations are not generally different from one another. (authors)

  10. RF-Based Accelerators for HEDP Research

    CERN Document Server

    Staples, John W; Keller, Roderich; Ostroumov, Peter; Sessler, Andrew M

    2005-01-01

    Accelerator-driven High-Energy Density Physics experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the "warm dense matter" regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with either multiple parallel beams (combined at the target) or a single beam and a small stacking ring that accumulates 1 microcoulomb of charge. In either case, the beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  11. theoretical and experimental study of plasma acceleration by means of R.F. and static magnetic field gradient

    International Nuclear Information System (INIS)

    Bardet, Rene; Consoli, Terenzio; Geller, Richard

    1964-09-01

    In the first part of the paper, the theory of the physical mechanism of ion dragging by accelerated electrons due to the superimposition of the gradient of a electromagnetic field and the gradient of a static magnetic field, is described. The resulting trajectory of the electrons is a helicoid and one shows the variations of the diameter and the path of the spirals along the axis as a function of the difference between the gyrofrequency and the applied R.F. frequency. The ion acceleration is due to an electron space charge effect. The grouping of the equations of the electronic and ionic fluid motions leads to the introduction of a tensor mass: along the x and y direction the transverse motion of the fluid is controlled by the relativistic mass of electrons whereas along the z direction the axial motion is determined by the ionic mass. Then we deduce physical consequences of the theoretical study and give three experimental evidences. The second part of the paper is devoted to the experimental device called Pleiade which allowed us to verify some of the theoretical predictions. Pleiade produces a D.C. operating plasma beam in which the electrons exhibit radially oriented energies whereas the ionic energy is mainly axial. The experimental results indicate that the energy of the particles is in the keV range. In the third part we deal with the reflecting properties of the device. We show that the R.F. static magnetic field gradients are not only capable of accelerating a Plasma beam along the axially decreasing magnetic field, but are also capable of stopping and reflecting such a beam when the latter is moving along an axially increasing magnetic field. We describe finally a plasma accumulation experiment in which two symmetric structures form simultaneously an accelerator and a 'dynamic mirror' for the particles. Evidence of accumulation is given. (authors) [fr

  12. Modeling high-power RF accelerator cavities with SPICE

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1992-01-01

    The dynamical interactions between RF accelerator cavities and high-power beams can be treated on personal computers using a lumped circuit element model and the SPICE circuit analysis code. Applications include studies of wake potentials, two-beam accelerators, microwave sources, and transverse mode damping. This report describes the construction of analogs for TM mn0 modes and the creation of SPICE input for cylindrical cavities. The models were used to study continuous generation of kA electron beam pulses from a vacuum cavity driven by a high-power RF source

  13. Prediction of multipactor in the iris region of rf deflecting mode cavities

    Directory of Open Access Journals (Sweden)

    G. Burt

    2011-12-01

    Full Text Available Multipactor is a major cause of field limitation in many superconducting rf cavities. Multipacting is a particular issue for deflecting mode cavities as the typical behavior is not well studied, understood, or parametrized. In this paper an approximate analytical model for the prediction of multipactor in the iris region of deflecting mode cavities is developed. This new but simple model yields a clear explanation on the broad range of rf field levels over which the multipactor can occur. The principle multipactors under investigation here are two-point multipactors associated with cyclotron motion in the cavity’s rf magnetic field. The predictions from the model are compared to numerical simulations and good agreement is obtained. The results are also compared to experimental results previously reported by KEK and are also found in good agreement.

  14. Development of a novel rf waveguide vacuum valve

    CERN Document Server

    Grudiev, A

    2006-01-01

    The development of a novel rf waveguide vacuum valve is presented. The rf design is based on the use of TE0n modes of circular waveguides. In the device, the TE01 mode at the input is converted into a mixture of several TE0n modes which provide low-loss rf power transmission across the vacuum valve gap, these modes are then converted back into the TE01 mode at the output. There are a number of advantages associated with the absence of surface fields in the region of the valve: • Possibility to use commercially available vacuum valves equipped with two specially designed mode converter sections. • No necessity for an rf contact between these two sections. • Increased potential for high power rf transmission. This technology can be used for all frequencies for which vacuum waveguides are used. In rectangular waveguides, mode converters from the operating mode into the TE01 mode and back again are necessary. Experimental results for the 30 GHz valves developed for the CLIC Test Facility 3 (CTF3) a...

  15. Introduction to RF power amplifier design and simulation

    CERN Document Server

    Eroglu, Abdullah

    2015-01-01

    Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book:Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiersDescribes the high-frequency model and transient characteristics of metal-oxide-semiconductor field-effect transistorsDetails activ

  16. Excitation of surface waves and electrostatic fields by a RF (radiofrequency systems) wave in a plasma sheath with current

    International Nuclear Information System (INIS)

    Gutierrez Tapia, C.

    1990-01-01

    It is shown in a one-dimensional model that when a current in a plasma sheath is present, the excitation of surface waves and electrostatic fields by a RF wave is possible in the sheath. This phenomena depends strongly on the joint action of Miller's and driven forces. It is also shown that the action of these forces are carried out at different characteristic times when the wave front travels through the plasma sheath. The influence of the current, in the steady limit, is taken into account by a small functional variation of the density perturbations and generated electrostatic field. (Author)

  17. Studies of RF sheaths and diagnostics on IShTAR

    Energy Technology Data Exchange (ETDEWEB)

    Crombé, K., E-mail: Kristel.Crombe@UGent.be [Department of Applied Physics, Ghent University, Ghent (Belgium); LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Devaux, S.; Faudot, E.; Heuraux, S.; Moritz, J. [YIJL, UMR7198 CNRS-Université de Lorraine, Nancy (France); D’Inca, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Ochoukov, R. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Louche, F.; Tripsky, M.; Van Eester, D.; Wauters, T. [LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Noterdaeme, J.-M. [Department of Applied Physics, Ghent University, Ghent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed to excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.

  18. Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality.

    Science.gov (United States)

    Cranfield, Charles G; Wieser, Heinz Gregor; Dobson, Jon

    2003-09-01

    The interaction of mobile phone RF emissions with biogenic magnetite in the human brain has been proposed as a potential mechanism for mobile phone bioeffects. This is of particular interest in light of the discovery of magnetite in human brain tissue. Previous experiments using magnetite-containing bacteria exposed directly to emissions from a mobile phone have indicated that these emissions might be causing greater levels of cell death in these bacterial populations when compared to sham exposures. A repeat of these experiments examining only the radio frequency (RF) global system for mobile communication (GSM) component of the mobile phone signal in a well-defined waveguide system (REFLEX), shows no significant change in cell mortality compared to sham exposures. A nonmagnetite containing bacterial cell strain (CC-26) with similar genotype and phenotype to the magnetotactic bacteria was used as a control. These also showed no significant change in cell mortality between RF and sham exposed samples. Results indicate that the RF components of mobile phone exposure do not appear to be responsible for previous findings indicating cell mortality as a result of direct mobile phone exposure. A further mobile phone emission component that should be investigated is the 2-Hz magnetic field pulse generated by battery currents during periods of discontinuous transmission.

  19. RF transport

    International Nuclear Information System (INIS)

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems. (author)

  20. Accelerating field step-up transformer in wake-field accelerators

    International Nuclear Information System (INIS)

    Chojnacki, E.; Gai, W.; Schoessow, P.; Simpson, J.

    1991-01-01

    In the wake-field scheme of particle acceleration, a short, intense drive bunch of electrons passes through a slow-wave structure, leaving behind high rf power in its wake field. The axial accelerating electric field associated with the rf can be quite large, > 100 MeV/m, and is used to accelerate a much less intense ''witness'' beam to eventual energies > 1 TeV. The rf power is deposited predominantly in the fundamental mode of the structure, which, for dielectric-lined waveguide as used at Argonne, is the TM 01 mode. In all likelihood on the field amplitude will be limited only by rf breakdown of the dielectric material, the limit of which is currently unknown in the short time duration, high frequency regime of wake-field acceleration operation. To obtain such strong electric fields with given wake-field rf power, the dimensions of the dielectric-lined waveguide have to be fairly small, OD of the order of a cm and ID of a few mm, and this gives rise to the generation of strong deflection modes with beam misalignment. While a scheme exists to damp such deflection modes on a bunch-to-bunch time scale, head-tail beam deflection could still be a problem and BNS damping as well as FODO focusing are incomplete cures. Presented here are details of a scheme by which the rf power is generated by in a large-diameter wake-field tube, where deflection mode generation by the intense drive beam is tolerable, and then fed into a small-diameter acceleration tube where the less intense witness beam is accelerated by the greatly enhanced axial electric field. The witness beam generates little deflection-mode power itself, even in the small acceleration tube, thus a final high-quality, high-energy electron beam is produced

  1. Pc based RF control system for the Vincy cyclotron

    International Nuclear Information System (INIS)

    Samardzic, B.J.; Drndarevic, V.R.

    1999-01-01

    The concept and design procedure for the RF control system of the VINCY cyclotron are described. Special attention has been paid to the choice of computer support of this system. The merits and limitations of the chosen solution have been analyzed. A PC type computer has been selected as the platform for performing the functions of initiation, control, and supervision of the RF system. The integration of the hardware is carried out by direct connection to the PC bus via standard communication interfaces. The system software operates under a graphic oriented Windows operating system applying the modern concept of virtual instrumentation. The application of this concept allowed considerable simplification of the operator-RF system interaction and resulted in additional flexibility of the software to further extensions or modifications of the system. The selected open architecture of the computer platform allows a simple and economic upgrading of the realized system in accordance with future requirements. Tests of the realized RF control system prototype are in progress. (authors)

  2. Rf stability, control and bunch lengthening in electron synchrotron storage rings

    International Nuclear Information System (INIS)

    Wachtel, J.M.

    1989-09-01

    A self-consistent theory for nonlinear longitudinal particle motion and rf cavity excitation in a high energy electron storage ring is developed. Coupled first order equations for the motion of an arbitrary number of particles and for the field in several rf cavities are given in the form used in control system theory. Stochastic quantum excitation of synchrotron motion is included, as are the effects of rf control system corrections. Results of computations for double cavity bunch lengthening are given. 11 refs., 4 figs., 1 tab

  3. Perpendicular biased ferrite tuned RF cavity for the TRIUMF KAON Factory booster ring

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.; Haddock, C.

    1989-03-01

    The rf cavity for the booster ring requires a frequency swing of 46 MHz to 62 MHz at a repetition rate of 50 Hz. The possibility of using the LANL booster cavity design with a yttrium garnet ferrite tuner biased perpendicular to the rf field, in the longitudinal direction, is being investigated. In order to minimize the stray magnetic biasing field on the beam axis, an alternative scheme similar to the design being proposed for the LANL main ring cavity in which the ferrite is perpendicular biased in the radial direction, is being considered. The behaviour of the rf cavity and the magnetizing circuit for both designs are discussed

  4. Control of total voltage in the large distributed RF system of LEP

    CERN Document Server

    Ciapala, Edmond

    1995-01-01

    The LEP RF system is made up of a large number of independent RF units situated around the ring near the interaction points. These have different available RF voltages depending on their type and they may be inactive or unable to provide full voltage for certain periods. The original RF voltage control system was based on local RF unit voltage function generators pre-loaded with individual tables for energy ramping. This was replaced this year by a more flexible global RF voltage control system. A central controller in the main control room has direct access to the units over the LEP TDM system via multiplexers and local serial links. It continuously checks the state of all the units and adjusts their voltages to maintain the desired total voltage under all conditions. This voltage is distributed among the individual units to reduce the adverse effects of RF voltage asymmetry around the machine as far as possible. The central controller is a VME system with 68040 CPU and real time multitasking operating syste...

  5. Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma

    Science.gov (United States)

    Upadhyay, J.; Palczewski, A.; Popović, S.; Valente-Feliciano, A.-M.; Im, Do; Phillips, H. L.; Vušković, L.

    2017-12-01

    An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF) accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity's inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented.

  6. Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma

    Directory of Open Access Journals (Sweden)

    J. Upadhyay

    2017-12-01

    Full Text Available An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity’s inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented.

  7. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    International Nuclear Information System (INIS)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-01-01

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  8. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn

    2017-03-21

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  9. Feasibility study of a unilateral RF array coil for MR-scintimammography

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seunghoon; Hamamura, Mark J; Roeck, Werner W; Nalcioglu, Orhan [Tu and Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA (United States); Hugg, James; Wagenaar, Douglas J; Patt, Bradley E [Gamma Medica, Inc. (Clinical Division), Northridge, CA (United States); Meier, Dirk, E-mail: seunghoh@uci.edu [Gamma Medica, Inc. (Industrial Division), Fornebu (Norway)

    2011-11-07

    Despite its high sensitivity, the variable specificity of magnetic resonance imaging (MRI) in breast cancer diagnosis can lead to unnecessary biopsies and over-treatment. Scintimammography (SMM) could potentially supplement MRI to improve the diagnostic specificity. The synergistic combination of MRI and SMM (MRSMM) could result in both high sensitivity from MRI and high specificity from SMM. Development of such a dual-modality system requires the integration of a radio frequency (RF) coil and radiation detector in a strong magnetic field without significant mutual interference. In this study, we developed and tested a unilateral breast array coil specialized for MRSMM imaging. The electromagnetic field, specific absorption ratio and RF coil parameters with cadmium-zinc-telluride detectors encapsulated in specialized RF and gamma-ray shielding mounted within the RF coil were investigated through simulation and experimental measurements. Simultaneous MR and SMM images of a breast phantom were also acquired using the integrated MRSMM system. This work, we feel, represents an important step toward the fabrication of a working MRSMM system.

  10. Feasibility study of a unilateral RF array coil for MR-scintimammography

    International Nuclear Information System (INIS)

    Ha, Seunghoon; Hamamura, Mark J; Roeck, Werner W; Nalcioglu, Orhan; Hugg, James; Wagenaar, Douglas J; Patt, Bradley E; Meier, Dirk

    2011-01-01

    Despite its high sensitivity, the variable specificity of magnetic resonance imaging (MRI) in breast cancer diagnosis can lead to unnecessary biopsies and over-treatment. Scintimammography (SMM) could potentially supplement MRI to improve the diagnostic specificity. The synergistic combination of MRI and SMM (MRSMM) could result in both high sensitivity from MRI and high specificity from SMM. Development of such a dual-modality system requires the integration of a radio frequency (RF) coil and radiation detector in a strong magnetic field without significant mutual interference. In this study, we developed and tested a unilateral breast array coil specialized for MRSMM imaging. The electromagnetic field, specific absorption ratio and RF coil parameters with cadmium-zinc-telluride detectors encapsulated in specialized RF and gamma-ray shielding mounted within the RF coil were investigated through simulation and experimental measurements. Simultaneous MR and SMM images of a breast phantom were also acquired using the integrated MRSMM system. This work, we feel, represents an important step toward the fabrication of a working MRSMM system.

  11. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    Science.gov (United States)

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. The evolutionary ecology of cytonuclear interactions in angiosperms.

    Science.gov (United States)

    Caruso, Christina M; Case, Andrea L; Bailey, Maia F

    2012-11-01

    Interactions between cytoplasmic and nuclear genomes have significant evolutionary consequences. In angiosperms, the most common cytonuclear interaction is between mitochondrial genes that disrupt pollen production (cytoplasmic male sterility, CMS) and nuclear genes that restore it (nuclear male fertility restorers, Rf). The outcome of CMS/Rf interactions can depend on whether Rf alleles have negative pleiotropic effects on fitness. Although these fitness costs are often considered to be independent of the ecological context, we argue that the effects of Rf alleles on fitness should be context dependent. Thus, measuring the cost of restoration across a range of environments could help explain geographic and phylogenetic variation in the distribution of Rf alleles and the outcome of CMS/Rf interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-01-01

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  14. RF and constructional issues in the RFQ for the CERN laser ion source

    International Nuclear Information System (INIS)

    Bourquin, P.; Pirkl, W.; Umstatter, H.-H.

    1996-01-01

    An expandable RFQ has been designed and built. Its length can be modified in steps to match the different phases of the Laser Ion Source (LIS) study. This paper describes the basic design approach, the field simulations using MAFIA, the establishment of a lumped-element equivalent circuit using PSPICE, model measurements, RF cold measurements and the strategy to trim longitudinal field flatness. Results of RF power tests are also given. (author)

  15. Short-range wireless communication fundamentals of RF system design and application

    CERN Document Server

    Bensky, Alan

    2004-01-01

    The Complete "Tool Kit” for the Hottest Area in RF/Wireless Design!Short-range wireless-communications over distances of less than 100 meters-is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field.You'll find coverage of such cutting-edge topics as: architectural trends in RF/wireless integrated circuits compatibility and conflict issues between differen

  16. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  17. Numerical design of RNnν symmetry-based RF pulse schemes for recoupling and decoupling of nuclear spin interactions at high MAS frequencies

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the efficient implementation of RN n ν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RN n ν symmetry involve the repeated application of the pulse sandwich {R φ R -φ }, corresponding to a propagator U RF = exp(-i4φI z ), where φ = πν/N and R is typically a pulse that rotates the nuclear spins through 180 o about the x-axis. In this study, broadband, phase-modulated 180 o pulses of constant amplitude were employed as the initial 'R' element and the phase-modulation profile of this 'R' element was numerically optimised for generating RN n ν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here

  18. Cw rf operation of the FMIT RFQ

    International Nuclear Information System (INIS)

    Fazio, M.V.; Brandeberry, F.E.

    1985-01-01

    The 80-MHz RFQ for the Fusion Materials Irradiation Test Facility prototype accelerator has been rf conditioned for cw operation to the design field level of 17.5 MV/m (1.68 x Kilpatrick limit). Experimental results and operating experience will be discussed

  19. Field emission studies at Saclay and Orsay

    International Nuclear Information System (INIS)

    Tan, J.

    1996-01-01

    During the last five years, DC and RF equipment for field emission studies have been developed at Saclay and Orsay laboratories. Combining these devices, straight comparison has been carried out between DC and RF field emission from artificial emission sites on the same sample. Other topics are also reviewed: high field cleaning, plausible origins of thermal effects that occurred on emission sites in RF, behaviour of alumina particles under RF field, and optical observations and measurements. (author)

  20. RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Science.gov (United States)

    Abouzied, Mohamed Ali Mohamed

    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various

  1. RF Plasma modeling of the Linac4 H− ion source

    CERN Document Server

    Mattei, S; Hatayama, A; Lettry, J; Kawamura, Y; Yasumoto, M; Schmitzer, C

    2013-01-01

    This study focuses on the modelling of the ICP RF-plasma in the Linac4 H− ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The use of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.

  2. Interaction of the geomagnetic field with northward interplanetary magnetic field

    Science.gov (United States)

    Bhattarai, Shree Krishna

    The interaction of the solar wind with Earth's magnetic field causes the transfer of momentum and energy from the solar wind to geospace. The study of this interaction is gaining significance as our society is becoming more and more space based, due to which, predicting space weather has become more important. The solar wind interacts with the geomagnetic field primarily via two processes: viscous interaction and the magnetic reconnection. Both of these interactions result in the generation of an electric field in Earth's ionosphere. The overall topology and dynamics of the magnetosphere, as well as the electric field imposed on the ionosphere, vary with speed, density, and magnetic field orientation of the solar wind as well as the conductivity of the ionosphere. In this dissertation, I will examine the role of northward interplanetary magnetic field (IMF) and discuss the global topology of the magnetosphere and the interaction with the ionosphere using results obtained from the Lyon-Fedder-Mobarry (LFM) simulation. The electric potentials imposed on the ionosphere due to viscous interaction and magnetic reconnection are called the viscous and the reconnection potentials, respectively. A proxy to measure the overall effect of these potentials is to measure the cross polar potential (CPP). The CPP is defined as the difference between the maximum and the minimum of the potential in a given polar ionosphere. I will show results from the LFM simulation showing saturation of the CPP during periods with purely northward IMF of sufficiently large magnitude. I will further show that the viscous potential, which was assumed to be independent of IMF orientation until this work, is reduced during periods of northward IMF. Furthermore, I will also discuss the implications of these results for a simulation of an entire solar rotation.

  3. Scattering of the radiofrequency electromagnetic field by orthopedic bone support frame implants

    International Nuclear Information System (INIS)

    Mohsin, S.A.; Sheikh, N.M.

    2009-01-01

    The interaction of the fields in MRI (Magnetic Resonance Imaging) with orthopedic implants is investigated. The primary interaction is the scattering of the MRI RF (Radiofrequency) field by the implants. As a specific case study, the scattel-cd field due to a bone support frame implant is computed by the finite-element-method. The support frame has steel pins of significant length embedded in tissue. The induced surface current distributions on the steel pins and the spatial electric field distributions in the surrounding tissue have been obtained. (author)

  4. Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

    Science.gov (United States)

    Buakor, K.; Rimjaem, S.

    2017-09-01

    Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

  5. MuRF1 activity is present in cardiac mitochondria and regulates reactive oxygen species production in vivo

    DEFF Research Database (Denmark)

    Mattox, Taylor A; Young, Martin E; Rubel, Carrie E

    2014-01-01

    MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1's role in regulating mitoc...

  6. Prospects for advanced RF theory and modeling

    International Nuclear Information System (INIS)

    Batchelor, D. B.

    1999-01-01

    This paper represents an attempt to express in print the contents of a rather philosophical review talk. The charge for the talk was not to summarize the present status of the field and what we can do, but to assess what we will need to do in the future and where the gaps are in fulfilling these needs. The objective was to be complete, covering all aspects of theory and modeling in all frequency regimes, although in the end the talk mainly focussed on the ion cyclotron range of frequencies (ICRF). In choosing which areas to develop, it is important to keep in mind who the customers for RF modeling are likely to be and what sorts of tasks they will need for RF to do. This occupies the first part of the paper. Then we examine each of the elements of a complete RF theory and try to identify the kinds of advances needed. (c) 1999 American Institute of Physics

  7. REMOTE RF LABORATORY REQUIREMENTS: Engineers’ and Technicians’ Perspective

    Directory of Open Access Journals (Sweden)

    Nergiz Ercil CAGILTAY

    2007-10-01

    Full Text Available ABSTRACT This study aims to find out requirements and needs to be fulfilled in developing remote Radio Frequency (RF laboratory. Remote laboratories are newly emerging solutions for better supporting of e-learning platforms and for increasing their efficiency and effectiveness in technical education. By this way, modern universities aim to provide lifelong learning environments to extend their education for a wider area and support learners anytime and anywhere when they need help. However, as far as the authors concern, there is no study investigating the requirements and needs of remote laboratories in that particular field in the literature. This study is based on electrical engineers’ and technicians’ perspectives on the requirements of a remote laboratory in RF domain. Its scope covers investigation of the participants’ perceptions toward computer mediated communication and it attempts to answer the questions: which studying strategies are preferred by the learners and what kind of RF laboratory content should be provided. The analysis of the results showed that, geographic independence, finding quickly the elements of past communication and temporal independence are declared as the most important advantages of computer-mediated communication. However, reading significant amount of information is a problem of these environments. In the context of how to show the content, respondents want to see shorter text on the screen. Therefore the instructions should include little amount of text and must be supported with figures and interactive elements. The instructional materials developed for such learner groups should support both linear and non-linear instructions. While analyzing the content to be provided, we have seen that, most of the participants do not have access to high level equipments and traditional experiments are considered as the necessary ones for both engineers and technicians.

  8. Performance of the Brookhaven photocathode rf gun

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Ingold, G.; Kirk, H.G.; Leung, K.P.; Malone, R.; Pogorelsky, I.; Srinivasan-Rao, T.; Rogers, J.; Tsang, T.; Sheehan, J.; Ulc, S.; Woodle, M.; Xie, J.; Zhang, R.S.; Lin, L.Y.; McDonald, K.T.; Russell, D.P.; Hung, C.M.; Wang, X.J.

    1991-01-01

    The Brookhaven Accelerator Test Facility (ATF) uses a photocathode rf gun to provide a high-brightness electron beam intended for FEL and laser-acceleration experiments. The rf gun consists of 1 1/2 cells driven at 2856 MHz in π-mode with a maximum cathode field of 100 MV/m. To achieve long lifetimes, the photocathode development concentrates on robust metals such as copper, yttrium and samarium. We illuminate these cathodes with a 10-ps, frequency-quadrupled Nd:YAG laser. We describe the initial operation of the gun, including measurements of transverse and longitudinal emittance, quantum efficiencies, and peak current. The results are compared to models

  9. Designing focusing solenoids for superconducting RF accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.; Kashikhin, V.V.; Page, T.; Terechkine, I.; Tompkins, J.; Wokas, T.; /Fermilab

    2006-08-01

    The design of a focusing solenoid for use in a superconducting RF linac requires resolving a range of problems with conflicting requirements. Providing the required focusing strength contradicts the goal of minimizing the stray field on the surfaces of adjacent superconducting RF cavities. The requirement of a compact solenoid, able to fit into a gap between cavities, contradicts the need of mechanical support necessary to restrain electromagnetic forces that can result in coil motion and subsequent quenching. In this report we will attempt to address these and other issues arising during the development of focusing solenoids. Some relevant test data will also be presented.

  10. TOPGUN: a new way to increase the beam brightness of rf guns

    International Nuclear Information System (INIS)

    Serafini, L.; Pagani, C.; Rivolta, R.; Ferrarion, M.

    1991-01-01

    A new method is presented to neutralize the RF induced emittance blow up generated inside RF electron Guns. The method is based on a multi-mode operation of the RF Gun cavity, which must be able to support both the accelerating mode (TM 010-π ) and a higher harmonic mode. The analytical study of the beam dynamics, which has been found in good agreement with the numerical simulations, shows that the growth of the normalized rms emittance, produced by the time dependent RF forces during the acceleration in the Gun, can be cancelled up to fourth order terms. This is of great relevance for the improvement of RF Gun performances, since the RF field contribution to the emittance blow up becomes negligible and no more dependent on the unch size. As shown in this paper, with such a new Gun, which is called 'TOPGUN', the way to attain high brightness beams becomes straightforward

  11. Fundamental mode rf power dissipated in a waveguide attached to an accelerating cavity

    International Nuclear Information System (INIS)

    Kang, Y.W.

    1993-01-01

    An accelerating RF cavity usually requires accessory devices such as a tuner, a coupler, and a damper to perform properly. Since a device is attached to the wall of the cavity to have certain electrical coupling of the cavity field through the opening. RF power dissipation is involved. In a high power accelerating cavity, the RF power coupled and dissipated in the opening and in the device must be estimated to design a proper cooling system for the device. The single cell cavities of the APS storage ring will use the same accessories. These cavities are rotationally symmetric and the fields around the equator can be approximated with the fields of the cylindrical pillbox cavity. In the following, the coupled and dissipated fundamental mode RF power in a waveguide attached to a pillbox cavity is discussed. The waveguide configurations are (1) aperture-coupled cylindrical waveguide with matched load termination; (2) short-circuited cylindrical waveguide; and (3) E-probe or H-loop coupled coaxial waveguide. A short-circuited, one-wavelength coaxial structure is considered for the fundamental frequency rejection circuit of an H-loop damper

  12. Effective interactions from q-deformed quark fields

    International Nuclear Information System (INIS)

    Timoteo, V. S.; Lima, C. L.

    2007-01-01

    From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed

  13. Review of tearing mode stabilization by RF power in tokamaks

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.; Zohm, H.

    1999-01-01

    Control of tearing modes by means of heating and current drive inside the magnetic islands is one of the most important applications of RF power in tokamak reactors. The theoretical basis of this concept is reviewed, focusing on aspects related to RF-plasma interaction. Applications to the stabilization of neoclassical tearing modes in ITER by Electron Cyclotron Current Drive are presented to illustrate the basic physical dependences. The most significant experimental results and prospects for future applications are also discussed

  14. Assessment and Monitoring of RF Safety for Ultra-High Field MRI

    NARCIS (Netherlands)

    Restivo, MC

    2017-01-01

    The radio frequency (RF) energy deposited in a human subject undergoing a 7T MRI scan has the potential to cause localized tissue heating. The use of parallel transmit MRI at 7T increases the risk of localized heating due interference effects among the simultaneously transmitting channels. The

  15. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants

    Science.gov (United States)

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-01

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  16. Absorption efficiency and heating kinetics of nanoparticles in the RF range for selective nanotherapy of cancer.

    Science.gov (United States)

    Letfullin, Renat R; Letfullin, Alla R; George, Thomas F

    2015-02-01

    Radio-frequency (RF) waves have an excellent ability to penetrate into the human body, giving a great opportunity to activate/heat nanoparticles delivered inside the body as a contrast agent for diagnosis and treatment purposes. However the heating of nanoparticles in the RF range of the spectrum is controversial in the research community because of the low power load of RF waves and low absorption of nanoparticles in the RF range. This study uses a phenomenological approach to estimate the absorption efficiency of metal and dielectric nanoparticles in the RF range through a study of heating kinetics of those particles in radio wave field. We also discuss the specific features of heating kinetics of nanoparticles, such as a short time scale for heating and cooling of nanoparticles in a liquid biological environment, and the effect of the radiation field structure on the heating kinetics by single-pulse and multipulse RF radiation. In this study a phenomenological approach was applied to estimate the absorption efficiency of radiofrequency radiation (RF) by metal and dielectric nanoparticles. Such nanoparticles can be designed and used for therapeutic purposes, like for localized heating and to activate nanoparticles by RF. The authors also discuss the differences in heating kinetics using single-pulse and multi-pulse RF radiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Calculation of wake field and couple impedance of upgraded and old RF cavity in Hefei electron storage ring

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Sun Baogen; Li Weimin; Liu Jinying; He Duohui

    2003-01-01

    The phase II upgrading project of Hefei 800 MeV electron storage ring is being done, and the important component of the project, the RF cavity, will be finished soon. The old RF cavity with many disadvantages will be replaced by the new one. To estimate the effect of RF cavity coupling impedance to storing bunch intensity fully, the wake potential and the broad band couple impedance of RF cavity were calculated with MAFIA program. And the calculation results were compared between new and old cavity, it is found that the impedance of the new is bigger than that of the old

  18. A New RF System for the CEBAF Normal Conducting Cavities

    International Nuclear Information System (INIS)

    Curt Hovater; Hai Dong; Alicia Hofler; George Lahti; John Musson; Tomasz Plawski

    2004-01-01

    The CEBAF Accelerator at Jefferson Lab is a 6 GeV five pass electron accelerator consisting of two superconducting linacs joined by independent magnetic transport arcs. CEBAF also has numerous normal conducting cavities for beam conditioning in the injector and for RF extraction to the experimental halls. The RF systems that presently control these cavities are becoming expensive to maintain, therefore a replacement RF control system is now being developed. For the new RF system, cavity field control is maintained digitally using an FPGA which contains the feedback algorithm. The system incorporates digital down conversion, using quadrature under-sampling at an IF frequency of 70 MHz. The VXI bus-crate was chosen as the operating platform because of its excellent RFI/EMI properties and its compatibility with the EPICS control system. The normal conducting cavities operate at both the 1497 MHz accelerating frequency and the sub-harmonic frequency of 499 MHz. To accommodate this, the ne w design will use different receiver-transmitter daughter cards for each frequency. This paper discusses the development of the new RF system and reports on initial results

  19. An Automated 476 MHz RF Cavity Processing Facility at SLAC

    CERN Document Server

    McIntosh, P; Schwarz, H

    2003-01-01

    The 476 MHz accelerating cavities currently used at SLAC are those installed on the PEP-II B-Factory collider accelerator. They are designed to operate at a maximum accelerating voltage of 1 MV and are routinely utilized on PEP-II at voltages up to 750 kV. During the summer of 2003, SPEAR3 will undergo a substantial upgrade, part of which will be to replace the existing 358.54 MHz RF system with essentially a PEP-II high energy ring (HER) RF station operating at 476.3 MHz and 3.2 MV (or 800 kV/cavity). Prior to installation, cavity RF processing is required to prepare them for use. A dedicated high power test facility is employed at SLAC to provide the capability of conditioning each cavity up to the required accelerating voltage. An automated LabVIEW based interface controls and monitors various cavity and test stand parameters, increasing the RF fields accordingly such that stable operation is finally achieved. This paper describes the high power RF cavity processing facility, highlighting the features of t...

  20. Multiplacting analysis on 650 MHz, BETA 0.61 superconducting RF LINAC cavity

    International Nuclear Information System (INIS)

    Seth, Sudeshna; Som, Sumit; Mandal, Aditya; Ghosh, Surajit; Saha, S.

    2013-01-01

    Design, analysis and development of high-β multi-cell elliptical shape Superconducting RF linac cavity has been taken up by VECC, Kolkata as a part of IIFC collaboration. The project aims to provide the-art technology achieving very high electric field gradient in superconducting linac cavity, which can be used in high energy high current proton linear accelerator to be built for ADSS/SNS programme in India and in Project-X at Fermilab, USA. The performance of this type of superconducting RF structure can be greatly affected due to multipacting when we feed power to the cavity. Multipacting is a phenomenon of resonant electron multiplication in which a large number of electrons build up an electron Avalanche which absorbs RF Energy leading to remarkable power losses and heating of the walls, making it impossible to raise the electric field by increasing the RF Power. Multipacting analysis has been carried out for 650 MHz, β=0.61, superconducting elliptical cavity using 2D code MultiPac 2.1 and 3 D code CST particle studio and the result is presented in this paper. (author)

  1. Designing of RF ion source and the power sources system

    International Nuclear Information System (INIS)

    Rusdiyanto.

    1978-01-01

    An RF ion source prototype is being developed for the particle accelerator at the Gama Research Centre. Supply of the gas is fed into the plasma chamber by means of neadle valve system. Magnetic field strength of about 500 gauss is applied to the system to improve the ionization efficiency. Components and spare parts of the RF ion source are made based on locally available materials and are discussed in this report. (author)

  2. Hybrid finite element/waveguide mode analysis of passive RF devices

    Science.gov (United States)

    McGrath, Daniel T.

    1993-07-01

    A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.

  3. Effect on antenna structure of high power rf during plasma operation

    International Nuclear Information System (INIS)

    Haste, G.R.; Thomas, C.E.; Fadnek, A.; Carter, M.D.; Beaumont, B.; Becoulet, A.; Kuus, H.; Saoutic, B.

    1993-01-01

    High-power, long-pulse operation on the Tore Supra tokamak results in considerable stress on the plasma-facing components. The ICH antennas must deliver high-power rf(up to 4 MW per antenna) in this environment. The antenna structure is therefore subjected to the power flux resulting from the interaction between rf and the edge plasma. The structure's response during operation is described, as is the condition of the antenna after prolonged use

  4. RF characterization and testing of ridge waveguide transitions for RF power couplers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh; Jose, Mentes; Singh, G.N. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Girish [Department of Electrical Engineering, IIT Bombay, Mumbai 400076,India (India); Bhagwat, P.V. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-12-01

    RF characterization of rectangular to ridge waveguide transitions for RF power couplers has been carried out by connecting them back to back. Rectangular waveguide to N type adapters are first calibrated by TRL method and then used for RF measurements. Detailed information is obtained about their RF behavior by measurements and full wave simulations. It is shown that the two transitions can be characterized and tuned for required return loss at design frequency of 352.2 MHz. This opens the possibility of testing and conditioning two transitions together on a test bench. Finally, a RF coupler based on these transitions is coupled to an accelerator cavity. The power coupler is successfully tested up to 200 kW, 352.2 MHz with 0.2% duty cycle.

  5. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  6. MRI compatibility study of an integrated PET/RF-coil prototype system at 3 T

    Science.gov (United States)

    Akram, Md Shahadat Hossain; Obata, Takayuki; Suga, Mikio; Nishikido, Fumihiko; Yoshida, Eiji; Saito, Kazuyuki; Yamaya, Taiga

    2017-10-01

    We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255 mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200 mm and axial-length of 100 mm), an increase of about a maximum of 3 μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system

  7. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  8. Exposure Knowledge and Risk Perception of RF EMF

    Science.gov (United States)

    Freudenstein, Frederik; Wiedemann, Peter M.; Varsier, Nadège

    2015-01-01

    The presented study is part of the EU-Project Low EMF Exposure Future Networks (LEXNET), which deals among other things with the issue of whether a reduction of the radiofrequency (RF) electro-magnetic fields (EMF) exposure will result in more acceptance of wireless communication networks in the public sphere. We assume that the effects of any reduction of EMF exposure will depend on the subjective link between exposure perception and risk perception (RP). Therefore we evaluated respondents’ RP of different RF EMF sources and their subjective knowledge about various exposure characteristics with regard to their impact on potential health risks. The results show that participants are more concerned about base stations than about all other RF EMF sources. Concerning the subjective exposure knowledge the results suggest that people have a quite appropriate impact model. The question how RF EMF RP is actually affected by the knowledge about the various exposure characteristics was tested in a linear regression analysis. The regression indicates that these features – except distance – do influence people’s general RF EMF RP. In addition, we analyzed the effect of the quality of exposure knowledge on RF EMF RP of various sources. The results show a tendency that better exposure knowledge leads to higher RP, especially for mobile phones. The study provides empirical support for models of the relationships between exposure perception and RP. It is not the aim to extrapolate these findings to the whole population because the samples are not exactly representative for the general public in the participating countries. PMID:25629026

  9. Exposure knowledge and risk perception of RF EMF

    Directory of Open Access Journals (Sweden)

    Frederik eFreudenstein

    2015-01-01

    Full Text Available The presented study is part of the EU Project LEXNET (Low EMF Exposure Future Networks, which deals among other things with the issue of whether a reduction of the radiofrequency (RF electro-magnetic fields (EMF exposure will result in more acceptance of wireless communication networks in the public sphere.We assume that the effects of any reduction of EMF exposure will depend on the subjective link between exposure perception and risk perception. Therefore we evaluated respondents’ risk perceptions of different RF EMF sources and their subjective knowledge about various exposure characteristics with regard to their impact on potential health risks. The results show that participants are more concerned about base stations than about all other RF EMF sources. Concerning the subjective exposure knowledge the results suggest that people have a quite appropriate impact model. The question how RF EMF risk perception is actually affected by the knowledge about the various exposure characteristics was tested in a linear regression analysis. The regression indicates that these features - except distance - do influence people’s general RF EMF risk perceptions. In addition, we analyzed the effect of the quality of exposure knowledge on RF EMF risk perception of various sources. The results show a tendency that better exposure knowledge leads to higher risk perception, especially for mobile phones. The study provides empirical support for models of the relationships between exposure perception and risk perception. It is not the aim to extrapolate these findings to the whole population because the samples are not exactly representative for the general public in the participating countries.

  10. Optimization of an RF driven H- ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; DiVergilio, W.F.; Hauck, C.A.; Kunkel, W.B.; McDonald, D.S.

    1991-04-01

    A radio-frequency driven multicusp source has recently been developed to generate volume-produced H - ion beams with extracted current density higher than 200 mA/cm 2 . We have improved the output power of the rf generator and the insulation coating of the antenna coil. We have also optimized the antenna positions and geometry and the filter magnetic field for high power pulsed operation. A total H - current of 30 mA can be obtained with a 5.4-mm-diam extraction aperture and with an rf input power of 50 kW. 4 refs., 5 figs

  11. Accurate modeling of complete functional RF blocks: CHAMELEON RF

    NARCIS (Netherlands)

    Janssen, H.H.J.M.; Niehof, J.; Schilders, W.H.A.; Ciuprina, G.; Ioan, D.

    2007-01-01

    Next-generation nano-scale RF-IC designs have an unprecedented complexity and performance that will inevitably lead to costly re-spins and loss of market opportunities. In order to cope with this, the aim of the European Framework 6 CHAMELEON RF project is to develop methodologies and prototype

  12. Electron runaway in rf discharges

    International Nuclear Information System (INIS)

    Chen, F.F.

    1992-10-01

    The critical electric field is computed as a function of pressure and starting energy for electrons to run away to high energies in moderate pressure discharges. The runaway conditions depend critically on the shape of the elastic cross section vs. energy curve. Computations are made for H, H 2 , and He gases, and it is shown that runaway occurs much more readily in atomic hydrogen than in the other gases. The values of the runaway fields are larger than would normally occur in dc discharges, where large voltages would lead to arc formation. However, in rf discharges such electric fields can be sustained over times long compared to electron transit times but short compared to ion transit times. (author)

  13. RF MEMS

    Indian Academy of Sciences (India)

    At the bare die level the insertion loss, return loss and the isolation ... ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. ..... follows the power law based on the asperity deformation model given by Pattona & ... Surface mount style RF packages (SMX series 580465) from Startedge Corp.

  14. Quantized fields in interaction with external fields. Pt. 1

    International Nuclear Information System (INIS)

    Bellissard, J.

    1975-01-01

    We consider a massive, charged, scalar quantized field interacting with an external classical field. Guided by renormalized perturbation theory we show that whenever the integral equations defining the Feynman or retarded or advanced interaction kernel possess non perturbative solutions, there exists an S-operator which satisfies, up to a phase, the axioms of Bogoliubov, and is given for small external fields by a power series which converges on coherent states. Furthermore this construction is shown to be equivalent to the one based on the Yang-Kaellen-Feldman equation. This is a consequence of the relations between chronological and retarded Green's functions which are described in detail. (orig.) [de

  15. RF feedback development for the PEP-II B Factory

    Energy Technology Data Exchange (ETDEWEB)

    Corredoura, P.; Sapozhnikov, L.; Tighe, R.

    1994-06-01

    In PEP-II heavy beam loading along with a relatively long revolution period combine to strongly drive lower coupled-bunch modes through interaction with the fundamental cavity mode. Feedback techniques can be applied to reduce the cavity impedance seen by the beam. Several RF feedback loops are planned to reduce the growth rates down to a level which can be damped by the relatively low power bunch-by-bunch longitudinal feedback system. This paper describes the RF feedback loops as well as hardware tests using a 500 kW klystron, analog and digital feedback loops, and a low power test cavity.

  16. RF feedback development for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Corredoura, P.; Sapozhnikov, L.; Tighe, R.

    1994-06-01

    In PEP-II heavy beam loading along with a relatively long revolution period combine to strongly drive lower coupled-bunch modes through interaction with the fundamental cavity mode. Feedback techniques can be applied to reduce the cavity impedance seen by the beam. Several RF feedback loops are planned to reduce the growth rates down to a level which can be damped by the relatively low power bunch-by-bunch longitudinal feedback system. This paper describes the RF feedback loops as well as hardware tests using a 500 kW klystron, analog and digital feedback loops, and a low power test cavity

  17. Thermal Analysis of AlGaN/GaN High-Electron-Mobility Transistor and Its RF Power Efficiency Optimization with Source-Bridged Field-Plate Structure.

    Science.gov (United States)

    Kwak, Hyeon-Tak; Chang, Seung-Bo; Jung, Hyun-Gu; Kim, Hyun-Seok

    2018-09-01

    In this study, we consider the relationship between the temperature in a two-dimensional electron gas (2-DEG) channel layer and the RF characteristics of an AlGaN/GaN high-electron-mobility transistor by changing the geometrical structure of the field-plate. The final goal is to achieve a high power efficiency by decreasing the channel layer temperature. First, simulations were performed to compare and contrast the experimental data of a conventional T-gate head structure. Then, a source-bridged field-plate (SBFP) structure was used to obtain the lower junction temperature in the 2-DEG channel layer. The peak electric field intensity was reduced, and a decrease in channel temperature resulted in an increase in electron mobility. Furthermore, the gate-to-source capacitance was increased by the SBFP structure. However, under the large current flow condition, the SBFP structure had a lower maximum temperature than the basic T-gate head structure, which improved the device electron mobility. Eventually, an optimum position of the SBFP was used, which led to higher frequency responses and improved the breakdown voltages. Hence, the optimized SBFP structure can be a promising candidate for high-power RF devices.

  18. Assessment and comparison of total RF-EMF exposure in femtocell and macrocell base station scenarios

    OpenAIRE

    Aerts, Sam; Plets, David; Verloock, Leen; Martens, Luc; Joseph, Wout

    2014-01-01

    The indoor coverage of a mobile service can be drastically improved by deployment of an indoor femtocell base station (FBS). However, the impact of its proximity on the total exposure of the human body to radio-frequency (RF) electromagnetic fields (EMFs) is unknown. Using a framework designed for the combination of near-field and far-field exposure, the authors assessed and compared the RF-EMF exposure of a mobile-phone (MP) user that is either connected to an FBS or a conventional macrocell...

  19. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    Science.gov (United States)

    Dolgashev, Valery A.

    2016-06-28

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.

  20. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-01-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current

  1. A low-level rf control system for a quarter-wave resonator

    Science.gov (United States)

    Kim, Jongwon; Hwang, Churlkew

    2012-06-01

    A low-level rf control system was designed and built for an rf deflector, which is a quarter wave resonator, and was designed to deflect a secondary electron beam to measure the bunch length of an ion beam. The deflector has a resonance frequency near 88 MHz, its required phase stability is approximately ±1° and its amplitude stability is less than ±1%. The control system consists of analog input and output components and a digital system based on a field-programmable gate array for signal processing. The system is cost effective, while meeting the stability requirements. Some basic properties of the control system were measured. Then, the capability of the rf control was tested using a mechanical vibrator made of a dielectric rod attached to an audio speaker system, which could induce regulated perturbations in the electric fields of the resonator. The control system was flexible so that its parameters could be easily configured to compensate for the disturbance induced in the resonator.

  2. Analytic analysis on asymmetrical micro arcing in high plasma potential RF plasma systems

    International Nuclear Information System (INIS)

    Yin, Y; McKenzie, D R; Bilek, M M M

    2006-01-01

    We report experimental and analytical results on asymmetrical micro arcing in a RF (radio frequency) plasma. Micro arcing, resulting from high plasma potential, in RF plasma was found to occur only on the grounded electrode for a variety of electrode and surface configurations. The analytic derivation was based on a simple RF time-dependent Child-Langmuir sheath model and electric current continuity. We found that the minimum potential difference in one RF period across the grounded electrode sheath depends on the area ratio of the grounded electrode to the powered electrode. As the area ratio increases, the minimum potential difference across a sheath increases for the grounded electrode but not for the RF powered electrode. We showed that discharge time in micro arcing is more than 100 RF periods; thus the presence of a continuous high electric field in one RF cycle results in micro arcing on the grounded electrode. However, the minimum potential difference in one RF period across the powered electrode sheath is always small so that it prevents micro arcing occurring even though the average sheath voltage can be large. This simple analytic model is consistent with particle-in-cell simulation results

  3. Results of the SLAC LCLS Gun High-Power RF Tests

    International Nuclear Information System (INIS)

    Dowell, D.H.; Jongewaard, E.; Limborg-Deprey, C.; Schmerge, J.F.; Li, Z.; Xiao, L.; Wang, J.; Lewandowski, J.; Vlieks, A.

    2007-01-01

    The beam quality and operational requirements for the Linac Coherent Light Source (LCLS) currently being constructed at SLAC are exceptional, requiring the design of a new RF photocathode gun for the electron source. Based on operational experience at SLAC's GTF and SDL and ATF at BNL as well as other laboratories, the 1.6cell s-band (2856MHz) gun was chosen to be the best electron source for the LCLS, however a significant redesign was necessary to achieve the challenging parameters. Detailed 3-D analysis and design was used to produce near-perfect rotationally symmetric rf fields to achieve the emittance requirement. In addition, the thermo-mechanical design allows the gun to operate at 120Hz and a 140MV/m cathode field, or to an average power dissipation of 4kW. Both average and pulsed heating issues are addressed in the LCLS gun design. The first LCLS gun is now fabricated and has been operated with high-power RF. The results of these high-power tests are presented and discussed

  4. RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  5. RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; Delong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  6. Auto-tuning systems for J-PARC LINAC RF cavities

    International Nuclear Information System (INIS)

    Fang, Z.; Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S.; Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E.

    2014-01-01

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  7. Auto-tuning systems for J-PARC LINAC RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z., E-mail: fang@post.kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E. [Japan Atomic Energy Agency (JAEA), 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2014-12-11

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  8. Spin-flipping a stored polarized proton beam with an rf dipole

    International Nuclear Information System (INIS)

    Blinov, B.B.; Derbenev, Ya.S.; Kageya, T.; Kantsyrev, D.Yu.; Krisch, A.D.; Morozov, V.S.; Sivers, D.W.; Wong, V.K.; Anferov, V.A.; Schwandt, P.; Przewoski, B. von

    2000-01-01

    Frequent polarization reversals, or spin-flips, of a stored polarized high-energy beam may greatly reduce systematic errors of spin asymmetry measurements in a scattering asymmetry experiment. We studied the spin-flipping of a 120 MeV horizontally-polarized proton beam stored in the IUCF Cooler Ring by ramping an rf-dipole magnet's frequency through an rf-induced depolarizing resonance in the presence of a nearly-full Siberian snake. After optimizing the frequency ramp parameters, we used multiple spin-flips to measure a spin-flip efficiency of 86.5±0.5%. The spin-flip efficiency was apparently limited by the rf-dipole's field strength. This result indicates that an efficient spin-flipping a stored polarized beam should be possible in high energy rings such as RHIC and HERA where Siberian snakes are certainly needed and only dipole rf-flipper-magnets are practical

  9. Effects of rf breakdown on the beam in the Compact Linear Collider prototype accelerator structure

    Directory of Open Access Journals (Sweden)

    A. Palaia

    2013-08-01

    Full Text Available Understanding the effects of rf breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. During a rf breakdown high currents are generated causing parasitic magnetic fields that interact with the accelerated beam affecting its orbit. The beam energy is also affected because the power is partly reflected and partly absorbed thus reducing the available energy to accelerate the beam. We discuss here measurements of such effects observed on an electron beam accelerated in a CLIC prototype structure. Measurements of the trajectory of bunch trains on a nanosecond time scale showed fast changes in correspondence of breakdown that we compare with measurements of the relative beam spots on a scintillating screen. We identify different breakdown scenarios for which we offer an explanation based also on measurements of the power at the input and output ports of the accelerator structure. Finally we present the distribution of the magnitude of the observed changes in the beam position and we discuss its correlation with rf power and breakdown location in the accelerator structure.

  10. Design study of a low-emittance high-repetition rate thermionic rf gun

    Directory of Open Access Journals (Sweden)

    A. Opanasenko

    2017-05-01

    Full Text Available We propose a novel gridless continuous-wave radiofrequency (rf thermionic gun capable of generating nC ns electron bunches with a rms normalized slice emittance close to the thermal level of 0.3 mm mrad. In order to gate the electron emission, an externally heated thermionic cathode is installed into a stripline-loop conductor. Two high-voltage pulses propagating towards each other in the stripline-loop overlap in the cathode region and create a quasielectrostatic field gating the electron emission. The repetition rate of pulses is variable and can reach up to one MHz with modern solid-state pulsers. The stripline attached to a rf gun cavity wall has with the wall a common aperture that allows the electrons to be injected into the rf cavity for further acceleration. Thanks to this innovative gridless design, simulations suggest that the bunch emittance is approximately at the thermal level after the bunch injection into the cavity provided that the geometry of the cathode and aperture are properly designed. Specifically, a concave cathode is adopted to imprint an Ƨ-shaped distribution onto the beam transverse phase-space to compensate for an S-shaped beam distribution created by the spherical aberration of the aperture-cavity region. In order to compensate for the energy spread caused by rf fields of the rf gun cavity, a 3rd harmonic cavity is used. A detailed study of the electrodynamics of the stripline and rf gun cavity as well as the beam optics and bunch dynamics are presented.

  11. Cancellation of RF Coupler-Induced Emittance Due to Astigmatism

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David H.; /SLAC

    2016-12-11

    It is well-known that the electron beam quality required for applications such as FEL’s and ultra-fast electron diffraction can be degraded by the asymmetric fields introduced by the RF couplers of superconducting linacs. This effect is especially troublesome in the injector where the low energy beam from the gun is captured into the first high gradient accelerator section. Unfortunately modifying the established cavity design is expensive and time consuming, especially considering that only one or two sections are needed for an injector. Instead, it is important to analyze the coupler fields to understand their characteristics and help find less costly solutions for their cancellation and mitigation. This paper finds the RF coupler-induced emittance for short bunches is mostly due to the transverse spatial sloping or tilt of the field, rather than the field’s time-dependence. It is shown that the distorting effects of the coupler can be canceled with a static (DC) quadrupole lens rotated about the z-axis.

  12. Patterns of cellular phone use among young people in 12 countries : Implications for RF exposure

    NARCIS (Netherlands)

    Langer, Chelsea Eastman; de Llobet Viladoms, Patricia; Dalmau-Bueno, Albert; Wiart, Joe; Goedhart, Geertje; Hours, Martine; Benke, Geza P; Bouka, Evdoxia; Bruchim, Revital; Choi, Kyung-Hwa; Eng, Amanda; Ha, Mina; Karalexi, Maria; Kiyohara, Kosuke; Kojimahara, Noriko; Krewski, Daniel; Kromhout, Hans; Lacour, Brigitte; 't Mannetje, Andrea; Maule, Milena; Migliore, Enrica; Mohipp, Charmaine; Momoli, Franco; Petridou, Eleni; Radon, Katja; Remen, Thomas; Sadetzki, Siegal; Sim, Malcolm R; Weinmann, Tobias; Vermeulen, Roel; Cardis, Elisabeth; Vrijheid, Martine

    2017-01-01

    Characterizing exposure to radiofrequency (RF) fields from wireless telecommunications technologies during childhood and adolescence is a research priority in investigating the health effects of RF. The Mobi-Expo study aimed to describe characteristics and determinants of cellular phone use in 534

  13. RF power dependent formation of amorphous MoO3-x nanorods by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Navas, I.; Vinodkumar, R.; Detty, A.P.; Mahadevan Pillai, V.P.

    2009-01-01

    Full text: The fabrication of nanorods has received increasing attention for their unique physical and chemical properties and a wide range of potential applications such as photonics and nanoelectronics Molybdenum oxide nanorods with high activity can be used in a wide variety of applications such as cathodes in rechargeable batteries, field emission devices, solid lubricants, superconductors thermoelectric materials, and electrochromic devices. In this paper, amorphous MoO 3-x nanorods can find excellent applications in electrochromic and gas sensing have been successfully prepared by varying the R F power in R F Magnetron Sputtering system without heating the substrate; other parameters which are optimised in our earlier studies. We have found that the optimum RF power for nanorod formation is 200W. At a moderate RF power (200W), sputtering redeposition takes places constructively which leads to formation of fine nanorods. Large RF power creates high energetic ion bombardment on the grains surfaces which can lead to re-nucleation, so the grains become smaller and columnar growth is interrupted. Beyond the RF power 200W, the etching effect of the plasma became more severe and damaged the surface of the nanorods. All the molybdenum oxide films prepared are amorphous; the XRD patterns exhibit no characteristic peak corresponds to MoO 3 . The amorphous nature is preferred for good electrochromic colouration The spectroscopic properties of the nanorods have been investigated systematically using atomic force microscopy, x-ray diffraction, micro-Raman, UV-visible and photoluminescence (PL) spectroscopy. The films exhibit two emission bands; a near band edge UV emission and a defect related deep level visible emission

  14. Time Dependent Quantum Efficiency and Dark Current Measurements in an RF Photocathode Injector with a High Quantum Efficiency Cathode

    CERN Document Server

    Fliller, Raymond P; Hartung, Walter

    2005-01-01

    A system was developed at INFN Milano for preparing cesium telluride photo-cathodes and transferring them into an RF gun under ultra-high vacuum. This system has been in use at the Fermilab NICADD Photo-Injector Laboratory (FNPL) since 1997. A similar load-lock system is used at the TeSLA Test Facility at DESY-Hamburg. Two 1.625-cell high duty cycle RF guns have been fabricated for the project. Studies of the photo-emission and field emission ("dark current") behavior of both RF guns have been carried out. Unexpected phenomena were observed in one of the RF guns. In situ changes in the cathode's quantum efficiency and dark current with time were seen during operation of the photo-injector. These changes were correlated with the magnetostatic field at the cathode.* In addition, multipacting is observed in the RF guns under certain conditions. Recent measurements indicate a correlation between multipacting, anomalous photo-emission behavior, and anomalous field emission behavior. Results will be presented.

  15. Radiofrequency fields in MAS solid state NMR probes

    Science.gov (United States)

    Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O.; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J.; Reif, Bernd

    2017-11-01

    We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.

  16. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  17. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  18. On the evaluation of currents in a tokamak plasma during combined Ohmic and RF current drive

    International Nuclear Information System (INIS)

    Eckhartt, D.

    1986-09-01

    By taking into account the rf-generated enhancement of the plasma electric conductivity (as formulated by Fisch in the limit of weak dc electric fields) a relation is derived between the ratio of rf to Ohmically driven currents and other plasma parameters to be measured before and after the rf onset under the condition of constant net plasma current. (author)

  19. Evaluation of gamma ray durability and its application of shielded RF tags

    International Nuclear Information System (INIS)

    Teraura, Nobuyuki; Ito, Kunio; Kobayashi, Daisuke; Sakurai, Kouichi

    2015-01-01

    In this study, the RF (Radio Frequency) tag with radiation shield is developed and its gamma ray durability is evaluated. RFID (RF Identification) is a radio-wave-based identification technology that can be used for various items. RF tags find use in many applications, including item tracing, access control, etc. RF tags can be classified as active RF tags, which have inbuilt voltaic cells, and passive RF tags without these cells. Passive RF tags, known for their low price and durability, are used in various fields. For instance, they are used for equipment maintenance in factories and thermal power plants. Several frequencies are used for RF tags. Further, RF tagging on the UHF (Ultra High Frequency) frequencies allows a communication range of approximately 10 m, and thus, remote reading is possible. When used in radiation environments such as in nuclear power plants, remote reading can contribute to the reduction of radiation exposure. However, because semiconductors are the primary elements used in the manufacture of RF tags, they can be damaged by radiation, and operational errors can occur. Therefore, this technology has not been used in environments affected by relatively high radiation levels. Therefore, in nuclear power plants, the use of RF tags is limited in areas of low radiation levels. In our study, we develop and manufacture a new RF tag with a radiation shield cover that provides error correction functionality. It is expected that radiation shielded RF tags will improve the radiation-proof feature, and its application range will be expanded. Using the radiation-proof RF tag, we have conducted radiation durability tests. These tests are of two types: one using low energy gamma ray, and the other using high-energy gamma ray. Experimental results are then analyzed. The number of applications for radiation shielded RF tags is considerably increasing, because it can be used in various radiation environments other than nuclear power plants as well, such as

  20. Reduction of Ag–Si electrical contact resistance by selective RF heating

    International Nuclear Information System (INIS)

    De Wijs, W-J A; Ljevar, S; Van de Sande, M J; De With, G

    2016-01-01

    Fast and selective inductive heating of pre-sintered silver lines on silicon as present in solar cells using 27 MHz radio-frequency inductive fields is shown. IR measurements of silicon substrates show that above 450 °C the heating rate of the samples increases sharply, indicating that both the silver and the silicon are heated. By moving the substrate with respect to the RF antenna and modulation of the RF field, silicon wafers were heated reproducibly above 450 °C with heating rates in excess of 200 °C s −1 . Furthermore, selective heating of lines of pre-sintered silver paste was shown below the 450 °C threshold on silicon substrates. The orientation of the silver tracks relative to the RF antenna appeared to be crucial for homogeneity of heating. Transmission line measurements show a clear effect on contact formation between the silver lines and the silicon substrate. To lower the contact resistance sufficiently for industrial feasibility, a high temperature difference between the Si substrate and the Ag tracks is required. The present RF heating process does not match the time scale needed for contact formation between silver and silicon sufficiently, but the significantly improved process control achieved shows promise for applications requiring fast heating and cooling rates. (paper)

  1. Proposed rf system for the fusion materials irradiation test facility

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Hoffert, W.J.; Boyd, T.J.

    1979-01-01

    Preliminary rf system design for the accelerator portion of the Fusion Materials Irradiation Test (FMIT) Facility is in progress. The 35-MeV, 100-mA, cw deuteron beam will require 6.3 MW rf power at 80 MHz. Initial testing indicates the EIMAC 8973 tetrode is the most suitable final amplifier tube for each of a series of 15 amplifier chains operating at 0.5-MW output. To satisfy the beam dynamics requirements for particle acceleration and to minimize beam spill, each amplifier output must be controlled to +-1 0 in phase and the field amplitude in the tanks must be held within a 1% tolerance. These tolerances put stringent demands on the rf phase and amplitude control system

  2. Possible role of rf melted microparticles on the operation of high-gradient accelerating structures

    Directory of Open Access Journals (Sweden)

    G. S. Nusinovich

    2009-10-01

    Full Text Available High-gradient accelerating structures should operate reliably for a long time. Therefore studies of various processes which may lead to disruption of such an operation are so important. In the present paper, the dissipation of rf electromagnetic energy in metallic microparticles is analyzed accounting for the temperature dependence of the skin depth. Such particles may appear in structures, for example, due to mechanical fracture of irises in strong rf electric fields. It is shown that such microparticles with dimensions on the order of the skin depth, being immersed in the region of strong rf magnetic field, can absorb enough energy in long-pulse operation to be melted. Then, the melted clumps can impinge on the surface of a structure and create nonuniformities leading to field enhancement and corresponding emission of dark current. Results are given for several geometries and materials of microparticles.

  3. Emittance measurement and optimization for the photocathode RF gun with laser profile shaping

    International Nuclear Information System (INIS)

    Liu Shengguang; Masafumi Fukuda; Sakae Araki; Nobuhiro Terunuma; Junji Urakawa

    2010-01-01

    The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm.mrad to 3.66 πmm·mrad. (authors)

  4. Characteristic performance of radio-frequency(RF) plasma heating using inverter RF power supplies

    International Nuclear Information System (INIS)

    Imai, Takahiro; Uesugi, Yoshihiko; Takamura, Shuichi; Sawada, Hiroyuki; Hattori, Norifumi

    2000-01-01

    High heat flux plasma are produced by high powe (∼14 kW) ICRF heating using inverter power supplies in the linear divertor simulator NAGDIS-II. The power flow of radiated rf power is investigated by a calorimetric method. Conventional power calculation using antenna voltage and current gives that about 70% of the rf power is radiated into the plasma. But increase of the heat load at the target and anode is about 10% of the rf power. Through this experiment, we find that about half of the rf power is lost at the antenna surface through the formation of rf induced sheath. And about 30% of the power is lost into the vacuum vessel through the charge exchange and elastic collision of ions with neutrals. (author)

  5. Linear collider RF structure design using ARGUS

    International Nuclear Information System (INIS)

    Kwok Ko

    1991-01-01

    In a linear collider, both the driving system (klystrons) and the accelerating system (linac) consists of RF structures that are inherently three-dimensional. These structures which are responsible for power input/output, have to satisfy many requirements in order that instabilities, beam or RF related, are to be avoided. At the same time, system efficiencies have to be maintained at optimal to minimize cost. Theoretical analysis on these geometrically complex structures are difficult and until recently, numerical solutions have been limited. At SLAC, there has been a continuing and close collaboration among accelerator physicists, engineers and numericists to integrate supercomputing into the design procedure which involves 3-D RF structures. The outcome is very encouraging. Using the 3-D/electromagnetic code ARGUS (developed by SAIC) on the Cray computers at NERSC in conjunction with supporting theories, a wide variety of critical components have been simulated and evaluated. Aside from structures related to the linear collider, the list also includes the RF cavity for the proposed Boson Factory and the anode circuit for the Cross-Field Amplifier, once considered as an alternative to the klystron as a possible power source. This presentation will focus on two specific structures: (1) the klystron output cavity; and (2) the linac input coupler. As the results demonstrate, supercomputing is fast becoming a viable technology that could conceivably replace actual cold-testing in the near future

  6. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  7. rf impedance of the accelerating beam gap and its significance to the TRIUMF rf system

    International Nuclear Information System (INIS)

    Poirier, R.

    1979-03-01

    The rf system at TRIUMF is now operating with the highest Q, the lowest rf leakage into the beam gap, the best voltage stability, and the lowest resonator strongback temperatures ever measured since it was first put into operation. This paper describes the calculation of the rf impedance of the beam gap and its correlation to the rf problems encountered, which eventually led to modifications to the flux guides and resonator tips to accomplish the improved operation of the rf system

  8. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  9. Quantum principles in field interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1986-01-01

    The concept of quantum principle is intruduced as a principle whosee formulation is based on specific quantum ideas and notions. We consider three such principles, viz. those of quantizability, local gauge symmetry, and supersymmetry, and their role in the development of the quantum field theory (QFT). Concerning the first of these, we analyze the formal aspects and physical contents of the renormalization procedure in QFT and its relation to ultraviolet divergences and the renorm group. The quantizability principle is formulated as an existence condition of a self-consistent quantum version with a given mechanism of the field interaction. It is shown that the consecutive (from a historial point of view) use of these quantum principles puts still larger limitations on possible forms of field interactions

  10. Lepton-photon interactions in external background fields

    Energy Technology Data Exchange (ETDEWEB)

    Akal, Ibrahim [Theory Group, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg (Germany); Moortgat-Pick, Gudrid [II. Institute for Theoretical Physics, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2016-07-01

    We investigate lepton-photon interactions in a class of generalized external background fields with periodic plane-wave character. Considering the full interaction with the background, S-matrix elements are calculated exactly. We apply those general expressions to interaction schemes like Compton scattering in specific field configurations, as for instance provided in modern laser facilities, or in high intense regions of future linear colliders. Results are extended to the case of frontal colliding high-energy field photons with leptons such that new insights beyond the usual soft terms become accessible.

  11. Pressurized rf cavities in ionizing beams

    Directory of Open Access Journals (Sweden)

    B. Freemire

    2016-06-01

    Full Text Available A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF_{6} and O_{2} were measured.

  12. Influence of the electric field frequency on the performance of a RF excited CO2 waveguide laser

    NARCIS (Netherlands)

    Ochkin, V.N.; Witteman, W.J.; Ilukhin, B.I.; Kochetov, I.V.; Peters, P.J.M.; Udalov, Yu.B.; Tskhai, S.N.

    1996-01-01

    An analysis is presented of the effect of the RF frequency on the active media of CO2 waveguide lasers. It is found that the characteristics are improved with increasing RF frequency because the space charge sheath width decreases with increasing excitation frequency. We also found that the sheath

  13. Report of the workshop on rf heating in mirror systems

    International Nuclear Information System (INIS)

    Price, R.E.; Woo, J.T.

    1980-08-01

    This report is prepared from the proceedings of the Workshop on RF Heating in Magnetic Mirror Systems held at DOE Headquarters in Washington, DC, on March 10-12, 1980. The workshop was organized into four consecutive half-day sessions of prepared talks and one half-day discussion. The first session on tandem mirror concepts and program plans served to identify the opportunities for the application of rf power and the specific approaches that are being pursued. A summary of the ideas presented in this session is given. The following sessions of the workshop were devoted to an exposition of current theoretical and experimental knowledge on the interaction of rf power with magnetically confined, dense, high temperature plasmas at frequencies near the electron cyclotron resonance, lower hybrid resonance and ion cyclotron resonance (including magnetosonic) ranges. The conclusions from these proceedings are presented

  14. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  15. RF generation in the DARHT Axis-II beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  16. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  17. Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility

    International Nuclear Information System (INIS)

    Tanaka, M.; Uda, T.; Wang, J.; Fujiwara, O.

    2012-01-01

    For safety management at a magnetic confinement fusion-test facility, protection from not only ionising radiation, but also non-ionising radiation such as the leakage of static magnetic and electromagnetic fields is an important issue. Accordingly, the use of a commercially available personal RF monitor for multipoint area monitoring is proposed. In this study, the performance of both fast- and slow-type personal RF monitors was investigated by using a transverse electromagnetic cell system. The range of target frequencies was between 10 and 300 MHz, corresponding to the ion cyclotron range of frequency in a fusion device. The personal RF monitor was found to have good linearity, frequency dependence and isotropic response. However, the time constant for the electric field sensor of the slow-type monitor was much longer than that for the fast-type monitor. Considering the time-varying field at the facility, it is found that the fast-type monitor is suitable for multipoint monitoring at magnetic confinement fusion test facilities. (authors)

  18. Formation of a high quality electron beam using photo cathode RF electron gun

    International Nuclear Information System (INIS)

    Washio, Masakazu

    2000-01-01

    Formation of a high quality electron beam using photo cathode RF electron gun is expected for formation of a next generation high brilliant X-ray beam and a source for electron and positron collider. And, on a field of material science, as is possible to carry out an experiment under ultra short pulse and extremely high precision in time, it collects large expectation. Recently, formation of high quality beam possible to develop for multi directions and to use by everyone in future has been able to realize. Here were explained on electron beam source, principle and component on RF electron gun, working features on RF gun, features and simulation of RF gun under operation, and some views in near future. (G.K.)

  19. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    Science.gov (United States)

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Electronics for the control of the rf system

    International Nuclear Information System (INIS)

    Pellegrin, J.L.; Schwarz, H.

    1980-03-01

    This note describes the operation of the major components used for controlling the phase and the field level of the PEP rf cavities. The block diagram of one rf station is decomposed into several control loops: each cavity has a tuners' servo loop which maintains the frequency constant and also keeps the field of each cell at the same level; the total gap voltage developed by a pair of cavities is obeying the command of the gap voltage controller; finally, the phase variation along the amplification chain and the klystron are compensated by a phase lock loop. The design criteria of each loop are set forth and the circuit implementation and test results are presented. The purpose of this report is to acquaint interested people with the design philosophy and to allow them to evaluate the capabilities of this system and its behavior during operation of the machine. 5 refs., 16 figs

  1. Duality rotations for interacting fields

    International Nuclear Information System (INIS)

    Gaillard, M.K.; Zumino, Bruno

    1981-05-01

    We study the properties of interacting field theories which are invariant under duality rotations which transform a vector field strength into its dual. We consider non-abelian duality groups and find that the largest group for n interacting field strengths is the non-compact Sp(2n,R), which has U(n) as its maximal compact subgroup. We show that invariance of the equations of motion requires that the Lagrangian change in a particular way under duality. We use this property to demonstrate the existence of conserved currents, the invariance of the energy momentum tensor, and also in the general construction of the Lagrangian. Finally we comment on the existence of zero mass spin one bound states in N=8 supergravity, which possesses a non-compact E 7 dual invariance

  2. Sub-micron resolution rf cavity beam position monitor system at the SACLA XFEL facility

    Science.gov (United States)

    Maesaka, H.; Ego, H.; Inoue, S.; Matsubara, S.; Ohshima, T.; Shintake, T.; Otake, Y.

    2012-12-01

    We have developed and constructed a C-band (4.760 GHz) rf cavity beam position monitor (RF-BPM) system for the XFEL facility at SPring-8, SACLA. The demanded position resolution of the RF-BPM is less than 1 μm, because an electron beam and x-rays must be overlapped within 4 μm precision in the undulator section for sufficient FEL interaction between the electrons and x-rays. In total, 57 RF-BPMs, including IQ demodulators and high-speed waveform digitizers for signal processing, were produced and installed into SACLA. We evaluated the position resolutions of 20 RF-BPMs in the undulator section by using a 7 GeV electron beam having a 0.1 nC bunch charge. The position resolution was measured to be less than 0.6 μm, which was sufficient for the XFEL lasing in the wavelength region of 0.1 nm, or shorter.

  3. RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials

    Science.gov (United States)

    Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).

  4. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2013-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital

  5. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2014-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital

  6. An algorithm for the design and tuning of RF accelerating structures with variable cell lengths

    Science.gov (United States)

    Lal, Shankar; Pant, K. K.

    2018-05-01

    An algorithm is proposed for the design of a π mode standing wave buncher structure with variable cell lengths. It employs a two-parameter, multi-step approach for the design of the structure with desired resonant frequency and field flatness. The algorithm, along with analytical scaling laws for the design of the RF power coupling slot, makes it possible to accurately design the structure employing a freely available electromagnetic code like SUPERFISH. To compensate for machining errors, a tuning method has been devised to achieve desired RF parameters for the structure, which has been qualified by the successful tuning of a 7-cell buncher to π mode frequency of 2856 MHz with field flatness algorithm and tuning method have demonstrated the feasibility of developing an S-band accelerating structure for desired RF parameters with a relatively relaxed machining tolerance of ∼ 25 μm. This paper discusses the algorithm for the design and tuning of an RF accelerating structure with variable cell lengths.

  7. Sheared electric field-induced suppression of edge turbulence using externally driven R.F. waves

    International Nuclear Information System (INIS)

    Craddock, G.G.; Diamond, P.H.

    1991-01-01

    Here the authors propose a novel method for active control and suppression of edge turbulence by sheared ExB flows driven by externally launched RF waves. The theory developed addresses the problem of open-quotes flow driveclose quotes, which is somewhat analogous to the problem of plasma current drive. As originally demonstrated for the case of spontaneously driven flows, a net difference in the gradient of the fluid and magnetic Reynolds' stresses produced by radially propagating waves can drive the plasma flow. For the prototypical case of the Alfven wave flow drive considered here, ρ 0 r v θ > - r B θ > is proportional to k perpendicular 2 ρ s 2 in the case of the kinetic Alfven wave, and [(ηk perpendicular 2 -vk perpendicular 2 )/ω] 2 in the case of resistive MHD. Both results reflect the dependence of flow drive on the net stress imbalance. The shear layer width is determined by the waves evanescence length (determined by dissipation) that sets the stress gradient scale length, while the direction of the flow is determined by the poloidal orientation of the launched waves. In particular, it should be noted that both positive and negative E r may be driven, so that enhanced confinement need not be accompanied by impurity accumulation, as commonly encountered in spontaneous H-modes. The efficiency is determined by the criterion that the radial electric field shear be large enough to suppress turbulence. For typical TEXT parameters, and unity efficiency, 300 kW of absorbed power is needed to suppress turbulence over 3 cm radially. For DIII-D, 300 kW over 4 cm is needed. Also, direct transport losses induced by RF have been shown to be small. Extensions of the theory to ICRF are underway and are discussed. They also discuss the analogous problem of current drive using kinetic Alfven waves. 2 refs

  8. Observation of String Ion Cloud in a Linear RF Trap

    International Nuclear Information System (INIS)

    Aramaki, M.; Kameyama, S.; Kono, A.; Sakawa, Y.; Shoji, T.

    2009-01-01

    We aim to study the effect of the long-range correlation among ions on their statistical characteristics using ion clouds confined in a linear rf ion trap. It is important to keep the ion cloud in one dimension, where the influence of the rf heating is negligible, for the detailed research on the effect of the Coulomb interaction on the statistical characteristics of the ion cloud. In this paper, the method of the generation of an ideal ion string is proposed. We also briefly report the performances of our experimental equipment and the preliminary results of generation of ideal 1D ion cloud.

  9. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  10. Low-pressure gas breakdown in longitudinal combined electric fields

    International Nuclear Information System (INIS)

    Lisovskiy, V A; Kharchenko, N D; Yegorenkov, V D

    2010-01-01

    This paper contains the complete experimental and analytical picture of gas breakdown in combined electric fields for arbitrary values of rf and dc fields. To obtain it, we continued the study of the discharge ignition modes in nitrogen with simultaneous application of dc and rf electric fields presented in Lisovskiy et al (2008 J. Phys. D: Appl. Phys. 41 125207). To this end, we studied the effect of rf voltage on dc discharge ignition. When we applied an rf voltage exceeding the one corresponding to the minimum breakdown voltage of a self-sustained rf discharge, the curve of dependence of the dc breakdown voltage of a combined discharge on gas pressure was found to consist of two sections. We got the generalized gas breakdown criterion in the combined field valid for arbitrary values of rf and dc electric fields. The calculation results agree with experimental data satisfactorily.

  11. Effective field theory for NN interactions

    International Nuclear Information System (INIS)

    Tran Duy Khuong; Vo Hanh Phuc

    2003-01-01

    The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)

  12. RF start-up and sustainment experiments on the TST-2-K spherical tokamak

    International Nuclear Information System (INIS)

    Ejiri, A.; Takase, Y.; Kasahara, H.; Yamada, T.; Hanada, K.; Sato, K. N.; Zushi, H.; Nakamura, K.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Iyomasa, A.; Imamura, N.; Esaki, K.; Kitaguchi, M.; Sasaki, K.; Hoshika, H.; Mitarai, O.; Nishino, N.

    2006-01-01

    Plasma start-up and sustainment without an inductive field have been studied in the TST-2-K spherical tokamak using high power RF sources (8.2 GHz/up to 170 kW). Steady state discharges with a plasma current of 4 kA were achieved. The line integrated density was about 3 x 10 17 m -2 and the electron temperature was 160 eV. A truncated equilibrium was introduced to reproduce magnetic measurements. It was found that a positive Pfirsch-Schlueter current in the open field line region at the outboard boundary makes a significant contribution to the current. Insensitivity of the current to variations in the vertical field and RF power variation was also found

  13. An investigation of r.f. travelling wave current drive using the model

    International Nuclear Information System (INIS)

    Bertram, W.K.

    1988-01-01

    Previous experimental investigations in the use of travelling r.f. waves to drive steady toroidal currents in a toroidal plasma have shown that I t , the amount of current driven, is strongly dependent on the ratio of the static toroidal magnetic field B z , to the strength of the r.f. magnetic field B ω . This dependence is characterised by an initial increase and subsequent decrease of I t when B t /B ω increases. It is shown that this observed behaviour is entirely consistent with the behaviour predicted by the current drive model. Results from numerical computations using the model show good quantitative agreement with the published experimental results

  14. Progress in the Study of RF Heating and Stabilization on HANBIT Mirror Device

    International Nuclear Information System (INIS)

    Kwon, M.; Bak, J.G.; Choh, K.; Choi, J.H.; Choi, J.W.; England, A.C.; Hong, J.S.; Jhang, H.G.; Kim, J.Y.; Kim, S.S.; Ko, W.H.; Lee, D.K.; Lee, J.H.; Lee, S.G.; Lee, H.G.; Lho, T.; Na, H.K.; Park, B.H.; Park, M.K.; Seo, D.C.; Seo, S.H.; Yeom, J.H.; Yoo, S.J.; You, K.I.; Yoon, J.S.; Yoon, S.W.

    2005-01-01

    The HANBIT device is a simple mirror-type device of which the length, radius, and magnetic field are about 5 m, 0.18 m, and 0.1-0.3 T, respectively, in the central cell. In HANBIT, two antenna systems are used for the plasma production, heating, and MHD stabilization; one is the slot antenna located near the center region with the maximum power of 500 kW and the typical frequency of 3.5 MHz, and the other DHT antenna located near the mirror throat with the maximum power of 100 kW and the frequency of 3.75 MHz. Recent experimental studies in HANBIT indicate that the slot antenna system can produce stable, high-density plasmas in apparently two different regimes; one is the fast wave regime with the ratio w/Wci∼2 and the other is the slow wave regime with w< Wci, where w and Wci are the RF and ion cyclotron resonance frequencies, respectively. The possible stabilization mechanism appears to be the ponderomotive force by the fast wave in the regime of w/Wci∼2, while the RF side-band coupling force by the slow wave in the regime of w< Wci. A clear excitation of the flute-type, interchange modes with the axial mode number n=0 is observed when the RF power is not enough for the stabilization, particularly, in the slow wave regime. Here, we report the results of these experimental and theoretical studies on the RF heating and stabilization processes by the slot antenna in HANBIT. In addition, we introduce briefly the results of the other on-going research works in HANBIT, which include the beach-wave ion heating experiment using DHT antenna, the pre-ionization experiment using the thermal electron cathode or ECH, and the analysis of plasma-wall interaction and neutral transport

  15. Digital Low-Level RF Controls for Future Superconducting Linear Colliders

    CERN Document Server

    Simrock, Stefan

    2005-01-01

    The requirements for RF Control Systems of Superconducting Linear Colliders are not only defined in terms of the quality of field control but also with respect to operability, availability, and maintainability of the RF System, and the interfaces to other subsystems. The field control of the vector-sum of many cavities driven by one klystron in pulsed mode at high gradients is a challenging task since severe Lorentz force detuning, microphonics and beam induced field errors must be suppressed by several orders of magnitude. This is accomplished by a combination of local and global feedback and feedforward control. Sensors monitor individual cavity probe signals, and forward and reflected wave as well as the beam properties including beam energy and phase while actuators control the incident wave of the klystron and individual cavity resonance frequencies. The operability of a large llrf system requires a high degree of automation while the high availability requires robust algorithms, redundancy, and extremel...

  16. rf experiments on PLT

    International Nuclear Information System (INIS)

    Hosea, J.; Wilson, J.R.; Hooke, W.

    1986-01-01

    A variety of rf experiments are being conducted on PLT in order to explore rf techniques which could improve tokamak performance parameters. Of special importance are the studies of ion Bernstein wave (IBW) heating, lower hybrid MHD stabilization and electron heating, down-shifted electron cyclotron heating, and fast wave current drive. Ion Bernstein wave heating results at modest power indicate that the particle confinement time could be enhanced relative to that for fast wave heating in the ion cyclotron range of frequencies (ICRF) and neutral beam heating. At these power levels a conclusive determination of energy confinement scaling with power cannot yet be given. Central sawtooth and m = 1 MHD stabilization is being obtained with centrally peaked lower hybrid (LH) current drive and the central electron temperature is peaking to values (approx.5 keV) well outside the bounds of ''profile consistency.'' In this case the electron energy confinement is apparently increased relative to the ohmic value. The production of relativistic electrons via heating at the down-shifted electron cyclotron (EC) frequency is found to be consistent with theoretical predictions and lends support to the use of this method for heating in relatively high magnetic field devices

  17. Workgroup report: base stations and wireless networks-radiofrequency (RF) exposures and health consequences.

    Science.gov (United States)

    Valberg, Peter A; van Deventer, T Emilie; Repacholi, Michael H

    2007-03-01

    Radiofrequency (RF) waves have long been used for different types of information exchange via the air waves--wireless Morse code, radio, television, and wireless telephone (i.e., construction and operation of telephones or telephone systems). Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. The World Health Organization convened an expert workshop to discuss the current state of cellular-telephone health issues, and this article brings together several of the key points that were addressed. The possibility of RF health effects has been investigated in epidemiology studies of cellular telephone users and workers in RF occupations, in experiments with animals exposed to cell-phone RF, and via biophysical consideration of cell-phone RF electric-field intensity and the effect of RF modulation schemes. As summarized here, these separate avenues of scientific investigation provide little support for adverse health effects arising from RF exposure at levels below current international standards. Moreover, radio and television broadcast waves have exposed populations to RF for > 50 years with little evidence of deleterious health consequences. Despite unavoidable uncertainty, current scientific data are consistent with the conclusion that public exposures to permissible RF levels from mobile telephone and base stations are not likely to adversely affect human health.

  18. Workgroup Report: Base Stations and Wireless Networks—Radiofrequency (RF) Exposures and Health Consequences

    Science.gov (United States)

    Valberg, Peter A.; van Deventer, T. Emilie; Repacholi, Michael H.

    2007-01-01

    Radiofrequency (RF) waves have long been used for different types of information exchange via the airwaves—wireless Morse code, radio, television, and wireless telephony (i.e., construction and operation of telephones or telephonic systems). Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. The World Health Organization convened an expert workshop to discuss the current state of cellular-telephone health issues, and this article brings together several of the key points that were addressed. The possibility of RF health effects has been investigated in epidemiology studies of cellular telephone users and workers in RF occupations, in experiments with animals exposed to cell-phone RF, and via biophysical consideration of cell-phone RF electric-field intensity and the effect of RF modulation schemes. As summarized here, these separate avenues of scientific investigation provide little support for adverse health effects arising from RF exposure at levels below current international standards. Moreover, radio and television broadcast waves have exposed populations to RF for > 50 years with little evidence of deleterious health consequences. Despite unavoidable uncertainty, current scientific data are consistent with the conclusion that public exposures to permissible RF levels from mobile telephony and base stations are not likely to adversely affect human health. PMID:17431492

  19. Modulator considerations for the SNS RF system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The Spallation Neutron Source (SNS) is an intense neutron source for neutron scattering experiments. The project is in the research stage, with construction funding beginning next year. The SNS is comprised of an ion source, a 1,000 MeV, H - linear accelerator, an accumulator ring, a neutron producing target, and experimental area to utilize the scattering of the neutrons. The linear accelerator is RF driven, and the peak beam current is 27 mA and the beam duty factor is 5.84%. The peak RF power required is 104 MW, and the H - beam pulse length is 0.97 ms at a 60 Hz repetition rate. The RF pulses must be about 0.1 ms longer than the beam pulses, due to the Q of the accelerating cavities, and the time required to establish control of the cavity fields. The modulators for the klystrons in this accelerator are discussed in this paper. The SNS is designed to be expandable, so the beam power can be doubled or even quadrupled in the future. One of the double-power options is to double the beam pulse length and duty factor. The authors are specifying the klystrons to operate in this twice-duty-factor mode, and the modulator also should be expandable to 2 ms pulses at 60 Hz. Due to the long pulse length and low RF frequency of 805 MHz, the klystron power is specified at 2.5 MW peak, and the RF system will have 56 klystrons at 805 MHz, and three 1.25 MW peak power klystrons at 402.5 MHz for the low energy portion of the accelerator. The low frequency modulators are conventional floating-deck modulation anode control systems

  20. Versatile rf controller

    International Nuclear Information System (INIS)

    Howard, D.

    1985-05-01

    The low level rf system developed for the new Bevatron local injector provides precise control and regulation of the rf phase and amplitude for three 200 MHz linac cavities. The main features of the system are: extensive use of inexpensive, off-the-shelf components, ease of maintenance, and adaptability to a wide range of operation frequencies. The system utilizes separate function, easily removed rf printed circuit cards interconnected via the edge connectors. Control and monitoring are available both locally and through the computer. This paper will describe these features as well as the few component changes that would be required to adapt the techniques to other operating frequencies. 2 refs

  1. Development of an RF-EMF Exposure Surrogate for Epidemiologic Research.

    Science.gov (United States)

    Roser, Katharina; Schoeni, Anna; Bürgi, Alfred; Röösli, Martin

    2015-05-22

    Exposure assessment is a crucial part in studying potential effects of RF-EMF. Using data from the HERMES study on adolescents, we developed an integrative exposure surrogate combining near-field and far-field RF-EMF exposure in a single brain and whole-body exposure measure. Contributions from far-field sources were modelled by propagation modelling and multivariable regression modelling using personal measurements. Contributions from near-field sources were assessed from both, questionnaires and mobile phone operator records. Mean cumulative brain and whole-body doses were 1559.7 mJ/kg and 339.9 mJ/kg per day, respectively. 98.4% of the brain dose originated from near-field sources, mainly from GSM mobile phone calls (93.1%) and from DECT phone calls (4.8%). Main contributors to the whole-body dose were GSM mobile phone calls (69.0%), use of computer, laptop and tablet connected to WLAN (12.2%) and data traffic on the mobile phone via WLAN (6.5%). The exposure from mobile phone base stations contributed 1.8% to the whole-body dose, while uplink exposure from other people's mobile phones contributed 3.6%. In conclusion, the proposed approach is considered useful to combine near-field and far-field exposure to an integrative exposure surrogate for exposure assessment in epidemiologic studies. However, substantial uncertainties remain about exposure contributions from various near-field and far-field sources.

  2. Structural features of Fab fragments of rheumatoid factor IgM-RF in solution

    International Nuclear Information System (INIS)

    Volkov, V. V.; Lapuk, V. A.; Shtykova, E. V.; Stepina, N. D.; Dembo, K. A.; Sokolova, A. V.; Amarantov, S. V.; Timofeev, V. P.; Ziganshin, R. Kh.; Varlamova, E. Yu.

    2008-01-01

    The structural features of the Fab fragments of monoclonal (Waldenstroem's disease) immunoglobulin M (IgM) and rheumatoid immunoglobulin M (IgM-RF) were studied by a complex of methods, including small-angle X-ray scattering (SAXS), electron spin resonance (ESR), and mass spectrometry (MS). The Fab-RF fragment was demonstrated to be much more flexible in the region of interdomain contacts, the molecular weights and the shapes of the Fab and Fab-RF macromolecules in solution being only slightly different. According to the ESR data, the rotational correlation time for a spin label introduced into the peptide sequence for Fab is twice as large as that for Fab-RF (21±2 and 11±1 ns, respectively), whereas the molecular weights of these fragments differ by only 0.5% (mass-spectrometric data), which correlates with the results of molecular-shape modeling by small-angle X-ray scattering. The conclusion about the higher flexibility of the Fab-RF fragment contributes to an understanding of the specificity of interactions between the rheumatoid factor and the antigens of the own organism.

  3. Linearized interactions of scalar and vector fields with the higher spin field in AdSD

    International Nuclear Information System (INIS)

    Mkrtchyan, K.

    2011-01-01

    The explicit form of linearized gauge and generalized 'Weyl invariant' interactions of scalar and general higher even spin fields in the AdS D space is reviewed. Also a linearized interaction of vector field with general higher even spin gauge field is obtained. It is shown that the gauge-invariant action of linearized vector field interacting with the higher spin field also includes the whole tower of invariant actions for couplings of the same vector field with the gauge fields of smaller even spin

  4. A high temperature superconductor tape RF receiver coil for a low field magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Cheng, M C; Yan, B P; Lee, K H; Ma, Q Y; Yang, E S

    2005-01-01

    High temperature superconductor (HTS) thin films have been applied in making a low loss RF receiver coil for improving magnetic resonance imaging image quality. However, the application of these coils is severely limited by their limited field of view (FOV). Stringent fabrication environment requirements and high cost are further limitations. In this paper, we propose a simpler method for designing and fabricating HTS coils. Using industrial silver alloy sheathed Bi (2-x) Pb x Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) HTS tapes, a five-inch single-turn HTS solenoid coil has been developed, and human wrist images have been acquired with this coil. The HTS tape coil has demonstrated an enhanced FOV over a six-inch YBCO thin film surface coil at 77 K with comparable signal-to-noise ratio

  5. Simulations of the BNL/SLAC/UCLA 1.6 cell emittance compensated photocathode RF gun low energy beam line

    International Nuclear Information System (INIS)

    Palmer, D.T.; Miller, R.H.; Winick, H.

    1995-01-01

    A dedicated low energy (2 to 10 MeV) experimental beam line is now under construction at Brookhaven National Laboratories Accelerator Test Facility (BNL/ATF) for photocathode RF gun testing and photoemission experiments. The design of the experimental line, using the 1.6 cell photocathode RF gun developed by the BNL/SLAC/UCLA RF gun collaboration is presented. Detailed beam dynamics simulations were performed for the 1.6 cell RF gun injector using a solenoidal emittance compensation technique. An experimental program for testing the 1.6 cell RF gun is presented. This program includes beam loading caused by dark current, higher order mode field measurements, integrated and slice emittance measurements using a pepper-pot and RF kicker cavity

  6. Electromagnetic and Thermal Aspects of Radiofrequency Field Propagation in Ultra-High Field MRI

    NARCIS (Netherlands)

    van Lier, A.L.H.M.W.

    2012-01-01

    In MRI, a radiofrequency (RF) pulse is used to generate a signal from the spins that are polarized by a strong magnetic field. For higher magnetic field strengths, a higher frequency of the RF pulse is required in order to match the Larmor frequency. A higher frequency, in turn, leads to a shorter

  7. RF Tests of an 805 MHz Pillbox Cavity at Lab G of Fermilab

    International Nuclear Information System (INIS)

    D. Li; J. Corlett; R. MacGill; M. Zisman; J. Norem; A. Moretti; Z. Qian; J. Wallig; V. Wu; Y. Torun; R.A. Rimmer

    2003-01-01

    We report recent high power RF tests on an 805 MHz RF pillbox cavity with demountable windows over beam apertures at Lab G of Fermilab, a dedicated facility for testing of MUCOOL (muon cooling) components. The cavity is installed inside a superconducting solenoidal magnet. A 12 MW peak RF power klystron is used for the tests. The cavity has been processed both with and without magnetic field. Without magnetic field, a gradient of 34 MV/m was reached rather quickly with very low sparking rate. In a 2.5 T solenoidal field, a 16 MV/m gradient was achieved, following several weeks of conditioning. Strong multipacting effects associated with high radiation levels were measured during processing with the magnetic field. More recently Be windows with TiN-coated surface have been installed and tested with and without the external magnetic field. 16 MV/m gradient without magnetic field was reached quickly as planned. Less multipacting was observed during the conditioning, indicating that the TiN-coated surface on the windows had indeed helped to reduce the secondary electron emission significantly. A gradient of 16.5 MV/m was finally achieved with magnet on in solenoidal mode and the field up to 4 T. Preliminary inspection of the Be window surface found no visual damage, in comparison with Cu windows where substantial surface damage was found. Preliminary understanding of conditioning the cavity in a strong magnetic field has been developed. More thorough window and cavity surface inspection is under way

  8. RF tests of an 805 MHz pillbox cavity at Lab G of Fermilab

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Rimmer, R.; Norem, J.; Torun, Y.

    2003-01-01

    We report recent high power RF tests on an 805 MHz RF pillbox cavity with demountable windows for beam apertures at Lab G of Fermilab, a dedicated facility for testing of MUCOOL (muon cooling) components. The cavity is installed inside a superconducting solenoidal magnet. A 12 MW peak RF power klystron is used for the tests. The cavity has been processed both with and without magnetic field. Without magnetic field, a gradient of 34 MV/m was reached rather quickly with very low sparking rate. In a 2.5 T solenoidal field, a 16 MV/m gradient was achieved, and it had to take many weeks of conditioning. Strong multipacting effects associated with high radiation levels were measured during the processing with the magnetic field. More recently Be windows with TiN-coated surface have been installed and tested at conditions of with and without the external magnetic field. A conservative 16 MV/m gradient without magnetic field was reached quickly as planned. Less multipacting was observed during the conditioning, it indicated that the TiN-coated surface on the windows had indeed helped to reduce the secondary electron emissions significantly. A modest gradient of 16.5 MV/m was finally achieved with magnet on in solenoidal mode and the field up to 4 T. Preliminary inspection on Be windows surface found no damage at all, in comparison with Cu windows where substantial surface damage was found. Preliminary understanding of conditioning cavity in a strong magnetic field has been developed. More through window and cavity surface inspection is under way

  9. The characteristics of RF modulated plasma boundary sheaths: An analysis of the standard sheath model

    Science.gov (United States)

    Naggary, Schabnam; Brinkmann, Ralf Peter

    2015-09-01

    The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.

  10. RF Energy Compressor

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1980-02-01

    The RF Energy Compressor, REC described here, transforms cw rf into periodic pulses using an energy storage cavity, ESC, whose charging is controlled by 180 0 bi-phase modulation, PSK, and external Q switching, βs. Compression efficiency, C/sub e/, of 100% can be approached at any compression factor C/sub f/

  11. Uncertainty quantification in capacitive RF MEMS switches

    Science.gov (United States)

    Pax, Benjamin J.

    Development of radio frequency micro electrical-mechanical systems (RF MEMS) has led to novel approaches to implement electrical circuitry. The introduction of capacitive MEMS switches, in particular, has shown promise in low-loss, low-power devices. However, the promise of MEMS switches has not yet been completely realized. RF-MEMS switches are known to fail after only a few months of operation, and nominally similar designs show wide variability in lifetime. Modeling switch operation using nominal or as-designed parameters cannot predict the statistical spread in the number of cycles to failure, and probabilistic methods are necessary. A Bayesian framework for calibration, validation and prediction offers an integrated approach to quantifying the uncertainty in predictions of MEMS switch performance. The objective of this thesis is to use the Bayesian framework to predict the creep-related deflection of the PRISM RF-MEMS switch over several thousand hours of operation. The PRISM switch used in this thesis is the focus of research at Purdue's PRISM center, and is a capacitive contacting RF-MEMS switch. It employs a fixed-fixed nickel membrane which is electrostatically actuated by applying voltage between the membrane and a pull-down electrode. Creep plays a central role in the reliability of this switch. The focus of this thesis is on the creep model, which is calibrated against experimental data measured for a frog-leg varactor fabricated and characterized at Purdue University. Creep plasticity is modeled using plate element theory with electrostatic forces being generated using either parallel plate approximations where appropriate, or solving for the full 3D potential field. For the latter, structure-electrostatics interaction is determined through immersed boundary method. A probabilistic framework using generalized polynomial chaos (gPC) is used to create surrogate models to mitigate the costly full physics simulations, and Bayesian calibration and forward

  12. Tunable Q-Factor RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, Mario D. [Fermilab; Yonehara, Katsuya [Fermilab; Moretti, Alfred [Fermilab; Kazakevitch, Gregory [Fermilab

    2018-01-01

    Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.

  13. Multipacting study of the RF window at the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Song, J. J.

    1999-01-01

    Multipacting current can cause breakdowns in high power rf components such as input couplers, waveguide windows, and higher-order mode (HOM) dampers. To understand and prevent the loss of a ceramic window or an input coupler in the Advanced Photon Source (APS) storage ring rf cavity, the multipacting phenomenon is being investigated experimentally. This paper begins with a description of simple model, presents a hardware design, and concludes with measurement of multipacting. Multipacting is explored in conjunction with conditioning the cavities and interaction with the stored beam

  14. Derivative self-interactions for a massive vector field

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán Jiménez, Jose, E-mail: jose.beltran@cpt.univ-mrs.fr [CPT, Aix Marseille Université, UMR 7332, 13288 Marseille (France); Heisenberg, Lavinia, E-mail: lavinia.heisenberg@eth-its.ethz.ch [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland)

    2016-06-10

    In this work we revisit the construction of theories for a massive vector field with derivative self-interactions such that only the 3 desired polarizations corresponding to a Proca field propagate. We start from the decoupling limit by constructing healthy interactions containing second derivatives of the Stueckelberg field with itself and also with the transverse modes. The resulting interactions can then be straightforwardly generalized beyond the decoupling limit. We then proceed to a systematic construction of the interactions by using the Levi–Civita tensors. Both approaches lead to a finite family of allowed derivative self-interactions for the Proca field. This construction allows us to show that some higher order terms recently introduced as new interactions trivialize in 4 dimensions by virtue of the Cayley–Hamilton theorem. Moreover, we discuss how the resulting derivative interactions can be written in a compact determinantal form, which can also be regarded as a generalization of the Born-Infeld lagrangian for electromagnetism. Finally, we generalize our results for a curved background and give the necessary non-minimal couplings guaranteeing that no additional polarizations propagate even in the presence of gravity.

  15. About of the Electrostatic fields excitation theory by a RF wave in a plasma; Acerca de la teoria de excitacion de campos electrostaticos por una onda de rf en un plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C.R

    1991-01-15

    In an unidimensional model is shown in the cases of a semi limited plasma and a layer of plasma the excitement mechanism of electrostatic fields for a radiofrequency wave (RF) polarized lineally. This phenomenon depends strongly on the combined action of the Miller force and that of impulsion. It is shown that the action of these forces is carried out in different characteristic times when the front of wave crosses through the plasma. The cases of a semi limited plasma and of a layer of plasma without and with current are analyzed. It is shown that near the frontiers of the plasma where the field is sufficiently big arise oscillations of the width of the field that are slowly muffled in the space in an exponential way. In the cases of a plasma layer its are shown that the processes that arise near the frontier x = L are similar to the processes that arise near the frontier x = 0. The existence of current in the plasma layer leads to the blockade of the excited perturbations in the frontier x = L. (Author)

  16. Finite-Element 2D and 3D PIC Modeling of RF Devices with Applications to Multipacting

    CERN Document Server

    De Ford, John F; Petillo, John

    2005-01-01

    Multipacting currently limits the performance of many high power radio-frequency (RF) devices, particularly couplers and windows. Models have helped researchers understand and mitigate this problem in 2D structures, but useful multipacting models for complicated 3D structures are still a challenge. A combination of three recent technologies that have been developed in the Analyst and MICHELLE codes begin to address this challenge: high-order adaptive finite-element RF field calculations, advanced particle tracking on unstructured grids, and comprehensive secondary emission models. Analyst employs high-order adaptive finite-element methods to accurately compute driven RF fields and eigenmodes in complex geometries, particularly near edges, corners, and curved surfaces. To perform a multipacting analysis, we use the mesh and fields from Analyst in a modified version of the self-consistent, finite-element gun code MICHELLE. MICHELLE has both a fast, accurate, and reliable particle tracker for unstructured grids ...

  17. Impact of technology scaling on analog and RF performance of SOI–TFET

    International Nuclear Information System (INIS)

    Kumari, P; Mishra, G P; Dash, S

    2015-01-01

    This paper presents both the analytical and simulation study of analog and RF performance for single gate semiconductor on insulator tunnel field effect transistor in an extensive manner. Here 2D drain current model has been developed using initial and final tunneling length of band-to-band process. The investigation is further extended to the quantitative and comprehensive analysis of analog parameters such as surface potential, electric field, tunneling path, and transfer characteristics of the device. The impact of scaling of gate oxide thickness and silicon body thickness on the electrostatic and RF performance of the device is discussed. The analytical model results are validated with TCAD sentaurus device simulation results. (paper)

  18. Information entropy of a time-dependent three-level trapped ion interacting with a laser field

    International Nuclear Information System (INIS)

    Abdel-Aty, Mahmoud

    2005-01-01

    Trapped and laser-cooled ions are increasingly used for a variety of modern high-precision experiments, frequency standard applications and quantum information processing. Therefore, in this communication we present a comprehensive analysis of the pattern of information entropy arising in the time evolution of an ion interacting with a laser field. A general analytic approach is proposed for a three-level trapped-ion system in the presence of the time-dependent couplings. By working out an exact analytic solution, we conclusively analyse the general properties of the von Neumann entropy and quantum information entropy. It is shown that the information entropy is affected strongly by the time-dependent coupling and exhibits long time periodic oscillations. This feature attributed to the fact that in the time-dependent region Rabi oscillation is time dependent. Using parameters corresponding to a specific three-level ionic system, a single beryllium ion in a RF-(Paul) trap, we obtain illustrative examples of some novel aspects of this system in the dynamical evolution. Our results establish an explicit relation between the exact information entropy and the entanglement between the multi-level ion and the laser field. We show that different nonclassical effects arise in the dynamics of the ionic population inversion, depending on the initial states of the vibrational motion/field and on the values of Lamb-Dicke parameter η

  19. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal, E-mail: gjos@barc.gov.in [BARC, Mumbai 400085 (India); Motiwala, Paresh D.; Randale, G.D.; Singh, Pitamber [BARC, Mumbai 400085 (India); Agarwal, Vivek; Kumar, Girish [IIT Bombay, Powai, Mumbai 400076 (India)

    2015-09-21

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.

  20. RF guns: a review

    International Nuclear Information System (INIS)

    Travier, C.

    1990-06-01

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  1. Association of Exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c and Risk of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Sultan Ayoub Meo

    2015-11-01

    Full Text Available Installation of mobile phone base stations in residential areas has initiated public debate about possible adverse effects on human health. This study aimed to determine the association of exposure to radio frequency electromagnetic field radiation (RF-EMFR generated by mobile phone base stations with glycated hemoglobin (HbA1c and occurrence of type 2 diabetes mellitus. For this study, two different elementary schools (school-1 and school-2 were selected. We recruited 159 students in total; 96 male students from school-1, with age range 12–16 years, and 63 male students with age range 12–17 years from school-2. Mobile phone base stations with towers existed about 200 m away from the school buildings. RF-EMFR was measured inside both schools. In school-1, RF-EMFR was 9.601 nW/cm2 at frequency of 925 MHz, and students had been exposed to RF-EMFR for a duration of 6 h daily, five days in a week. In school-2, RF-EMFR was 1.909 nW/cm2 at frequency of 925 MHz and students had been exposed for 6 h daily, five days in a week. 5–6 mL blood was collected from all the students and HbA1c was measured by using a Dimension Xpand Plus Integrated Chemistry System, Siemens. The mean HbA1c for the students who were exposed to high RF-EMFR was significantly higher (5.44 ± 0.22 than the mean HbA1c for the students who were exposed to low RF-EMFR (5.32 ± 0.34 (p = 0.007. Moreover, students who were exposed to high RF-EMFR generated by MPBS had a significantly higher risk of type 2 diabetes mellitus (p = 0.016 relative to their counterparts who were exposed to low RF-EMFR. It is concluded that exposure to high RF-EMFR generated by MPBS is associated with elevated levels of HbA1c and risk of type 2 diabetes mellitus.

  2. AnalogRF and mixed-signal circuit systematic design

    CERN Document Server

    Tlelo-Cuautle, Esteban; Castro-Lopez, Rafael

    2013-01-01

    Despite the fact that in the digital domain, designers can take full benefits of IPs and design automation tools to synthesize and design very complex systems, the analog designers’ task is still considered as a ‘handcraft’, cumbersome and very time consuming process. Thus, tremendous efforts are being deployed  to develop new design methodologies in the analog/RF and mixed-signal domains. This book collects 16 state-of-the-art contributions devoted to the topic of systematic design of analog, RF and mixed signal circuits. Divided in the two parts Methodologies and Techniques recent theories, synthesis techniques and design methodologies, as well as new sizing approaches in the field of robust analog and mixed signal design automation are presented for researchers and R/D engineers.  

  3. High power testing of a 17 GHz photocathode RF gun

    International Nuclear Information System (INIS)

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-01-01

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell (π mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design

  4. Design, Analysis, and Verification of Ka-Band Pattern Reconfigurable Patch Antenna Using RF MEMS Switches

    Directory of Open Access Journals (Sweden)

    Zhongliang Deng

    2016-08-01

    Full Text Available This paper proposes a radiating pattern reconfigurable antenna by employing RF Micro-electromechanical Systems (RF MEMS switches. The antenna has a low profile and small size of 4 mm × 5 mm × 0.4 mm, and mainly consists of one main patch, two assistant patches, and two RF MEMS switches. By changing the RF MEMS switches operating modes, the proposed antenna can switch among three radiating patterns (with main lobe directions of approximately −17.0°, 0° and +17.0° at 35 GHz. The far-field vector addition model is applied to analyse the pattern. Comparing the measured results with analytical and simulated results, good agreements are obtained.

  5. Dual field theory of strong interactions

    International Nuclear Information System (INIS)

    Akers, D.

    1987-01-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137

  6. rf power dependence of subharmonic voltage spectra of two-dimensional Josephson-junction arrays

    International Nuclear Information System (INIS)

    Hebboul, S.E.; Garland, J.C.

    1993-01-01

    We have measured the rf-bias-current dependence of the ν/2 subharmonic spectral response of planar 300x300 Nb-Au-Nb proximity-coupled Josephson-junction arrays. The ν/2 subharmonic voltage spectrum was examined at two rf-bias frequencies, ν/ν c ∼1.4, 2.0 (ν c ∼120 MHz), and in applied magnetic fields corresponding to f=0,1/2 flux quantum per plaquette. The measurements were compared to analytical predictions for an rf-biased asymmetric superconducting quantum interference device with non-negligble loop inductance and large rf-bias-current amplitudes, based on the resistively shunted Josephson-junction model. Reasonable agreement was found between experiment and theory, suggesting that a possible origin for the observed subharmonic behavior in arrays involves an interplay between array plaquette inductances and junction critical-current variations

  7. Rf system specifications for a linear accelerator

    International Nuclear Information System (INIS)

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  8. Self-consistent calculation of the effects of RF injection in the HHFW heating regimes on the evolution of fast ions in toroidal plasmas

    Directory of Open Access Journals (Sweden)

    Bertelli Nicola

    2017-01-01

    Full Text Available A critical question for the use of ion cyclotron range of frequency (ICRF heating in the ITER device and beyond is interaction of fast waves with energetic ion populations from neutral beam injection (NBI, fusion reactions, and minority ions accelerated by the RF waves themselves. Several experiments have demonstrated that the interaction between fast waves and fast ions can indeed be strong enough to significantly modify the NB ion population. To model the RF/fast ion interaction and the resulting fast ion distribution, a recent extension of the full wave solver TORIC v.5 that includes non-Maxwellian effects has been combined with the Monte Carlo NUBEAM code through an RF “kick” operator. In this work, we present an initial verification of the NUBEAM RF “kick” operator for high harmonic fast wave (HHFW heating regime in NSTX plasma.

  9. RF Wave Simulation Using the MFEM Open Source FEM Package

    Science.gov (United States)

    Stillerman, J.; Shiraiwa, S.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Kolev, T.

    2016-10-01

    A new plasma wave simulation environment based on the finite element method is presented. MFEM, a scalable open-source FEM library, is used as the basis for this capability. MFEM allows for assembling an FEM matrix of arbitrarily high order in a parallel computing environment. A 3D frequency domain RF physics layer was implemented using a python wrapper for MFEM and a cold collisional plasma model was ported. This physics layer allows for defining the plasma RF wave simulation model without user knowledge of the FEM weak-form formulation. A graphical user interface is built on πScope, a python-based scientific workbench, such that a user can build a model definition file interactively. Benchmark cases have been ported to this new environment, with results being consistent with those obtained using COMSOL multiphysics, GENRAY, and TORIC/TORLH spectral solvers. This work is a first step in bringing to bear the sophisticated computational tool suite that MFEM provides (e.g., adaptive mesh refinement, solver suite, element types) to the linear plasma-wave interaction problem, and within more complicated integrated workflows, such as coupling with core spectral solver, or incorporating additional physics such as an RF sheath potential model or kinetic effects. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  10. Impedance matching network systems using stub-lines of 20 kW CW RF amplifier for SKKUCY-9 compact cyclotron

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Song, Ho Seung; Kim, Jeong Hwan; Cong, Truong Van; Kim, Hui Su; Yeon, Yeong Heum; Lee, Yong seok; Chai, Jong Seo

    2015-01-01

    The SKKUCY-9 is a compact cyclotron for radioactive isotopes (RI) production of positron emission tomography (PET). Charged particles such as H-ions are accelerated azimuthally within a high intensity electric field (E-field) generated from a radio frequency (RF) system in cyclotron. A high power RF signal is transmitted from an RF amplifier to an RF resonating cavity. The RF system of the SKKUCY-9 operates in continuous wave (CW) mode. If an ion beam were accelerated in the cyclotron, the vacuum level and permittivity would be changed because of beam loading. It causes an impedance shift of the RF resonating cavity. This impedance mismatch generates reflected power that decreases the RF transmitting power. To prevent this situation, an impedance matching system is necessary. This paper describes the impedance matching system of a 20 kW RF amplifier in an SKKUCY-9 compact cyclotron. The impedance matching circuit was designed using both an input stage and output stage, which are divided between the cathode and anode in a vacuum tube that is used as an amplifying device. The equivalent circuit of the matching system is made of passive elements. The characteristic results of designed circuit were calculated using a Smith chart. In assembling, the inductors were replaced by movable stub-line structures. The dimensions of the stub-line structures were optimized with equations and the measurement results. The experiment was performed to find the result values of matching circuit impedance and RF power amplitude

  11. Radio-frequency electromagnetic field (RF-EMF) exposure levels in different European outdoor urban environments in comparison with regulatory limits.

    Science.gov (United States)

    Urbinello, Damiano; Joseph, Wout; Huss, Anke; Verloock, Leen; Beekhuizen, Johan; Vermeulen, Roel; Martens, Luc; Röösli, Martin

    2014-07-01

    Concerns of the general public about potential adverse health effects caused by radio-frequency electromagnetic fields (RF-EMFs) led authorities to introduce precautionary exposure limits, which vary considerably between regions. It may be speculated that precautionary limits affect the base station network in a manner that mean population exposure unintentionally increases. The objectives of this multicentre study were to compare mean exposure levels in outdoor areas across four different European cities and to compare with regulatory RF-EMF exposure levels in the corresponding areas. We performed measurements in the cities of Amsterdam (the Netherlands, regulatory limits for mobile phone base station frequency bands: 41-61 V/m), Basel (Switzerland, 4-6 V/m), Ghent (Belgium, 3-4.5 V/m) and Brussels (Belgium, 2.9-4.3 V/m) using a portable measurement device. Measurements were conducted in three different types of outdoor areas (central and non-central residential areas and downtown), between 2011 and 2012 at 12 different days. On each day, measurements were taken every 4s for approximately 15 to 30 min per area. Measurements per urban environment were repeated 12 times during 1 year. Arithmetic mean values for mobile phone base station exposure ranged between 0.22 V/m (Basel) and 0.41 V/m (Amsterdam) in all outdoor areas combined. The 95th percentile for total RF-EMF exposure varied between 0.46 V/m (Basel) and 0.82 V/m (Amsterdam) and the 99th percentile between 0.81 V/m (Basel) and 1.20 V/m (Brussels). All exposure levels were far below international reference levels proposed by ICNIRP (International Commission on Non-Ionizing Radiation Protection). Our study did not find indications that lowering the regulatory limit results in higher mobile phone base station exposure levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Serum LH-RF and LH levels after synthetic LH-RF administration in man as measured by radioimmunoassays

    International Nuclear Information System (INIS)

    Shiina, Masaki; Makino, Tsunehisa; Nakamura, Yukio; Iizuka, Rihachi

    1975-01-01

    Using a radioimmunoassay (RIA) which is sensitive and highly specific to lutenizing hormone releasing factors (LRF, LH-RF), diminution of an exogeously administered synthetic LH-RF in the blood and the movement of LH released into the blood from the anterior lobe of hypopysis were examined on healthy adult males. The blood LH-RF level after an intravenous administration of 200 μg of synthetic LH-RF reached a maximum (mean, 35.0 ng/ml serum) 2.5 minutes after administration, followed by a rapid decrease, and was as low as 1.0 ng/ml serum 30 minutes after administration. The diminution of the exogenous LH-RF from the blood was rapidest 2.5-15 minutes after administration (t1/2=3.9 minutes) and slowest (t1/2=7.9 minutes) 15-30 minutes after administration. On the other hand, when 200 μg of the synthetic LH-RF was administered intramuscularly, LH-RF appeared only slightly in the blood 2.5 minutes after administration, and the maximum level (10 minutes after administration) was only 1.6 ng/ml serum. It diminished from the blood drawing lenient curve. The blood LH level continued to rise significantly starting 5 minutes after administration of 200 μg of the synthetic LH-RF both in intravenous and intramuscular cases, showing hardly any differences between them. The blood endogenous LH-RF level prior to the synthetic LH-RF administration was below the measurable sensitivity (10 pg/tupe). (Mukohata, S.)

  13. Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution

    Directory of Open Access Journals (Sweden)

    Luis Amilca Andrade-Morales

    2016-09-01

    Full Text Available We study the entropy of a quantized field in interaction with a two-level atom (in a pure state when the field is initially in a mixture of two number states. We then generalise the result for a thermal state; i.e., an (infinite statistical mixture of number states. We show that for some specific interaction times, the atom passes its purity to the field and therefore the field entropy decreases from its initial value.

  14. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich

    2015-11-01

    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  15. High power tests of dressed supconducting 1.3 GHz RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hocker, A.; Harms, E.R.; Lunin, A.; Sukhanov, A.; /Fermilab

    2011-03-01

    A single-cavity test cryostat is used to conduct pulsed high power RF tests of superconducting 1.3 GHz RF cavities at 2 K. The cavities under test are welded inside individual helium vessels and are outfitted ('dressed') with a fundamental power coupler, higher-order mode couplers, magnetic shielding, a blade tuner, and piezoelectric tuners. The cavity performance is evaluated in terms of accelerating gradient, unloaded quality factor, and field emission, and the functionality of the auxiliary components is verified. Test results from the first set of dressed cavities are presented here.

  16. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    Science.gov (United States)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel

  17. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    Science.gov (United States)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is

  18. Diagnostic study of multiple double layer formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  19. Computation of wave fields and soil structure interaction

    International Nuclear Information System (INIS)

    Lysmer, J.W.

    1982-01-01

    The basic message of the lecture is that the determination of the temporal and spatial variation of the free-field motions is the most important part of any soil-structure interaction analysis. Any interaction motions may be considered as small aberrations superimposed on the free-field motions. The current definition of the soil-structure interaction problem implies that superposition must be used, directly or indirectly, in any rational method of analysis of this problem. This implies that the use of nonlinear procedures in any part of a soil-structure interaction analysis must be questioned. Currently the most important part of the soil-structure interaction analysis, the free-field problem, cannot be solved by nonlinear methods. Hence, it does not seem reasonable to spend a large effort on trying to obtain nonlinear solutions for the interaction part of the problem. Even if such solutions are obtained they cannot legally be superimposed on the free-field motions to obtain the total motions of the structure. This of course does not preclude the possibility that such an illegal procedure may lead to solutions which are close enough for engineering purposes. However, further research is required to make a decision on this issue

  20. In Depth Diagnostics for RF System Operation in the PEP-II B Factory

    International Nuclear Information System (INIS)

    Van Winkle, Daniel; Fox, John; Teytelman, Dmitry; SLAC

    2005-01-01

    The PEP-II RF systems incorporate numerous feedback loops in the low-level processing for impedance control and operating point regulation. The interaction of the multiple loops with the beam is complicated, and the systems incorporate online diagnostic tools to configure the feedback loops as well as to record fault files in the case of an RF abort. Rapid and consistent analysis of the RF-related beam aborts and other failures is critical to the reliable operation of the B-Factory, especially at the recently achieved high beam currents. Procedures and algorithms used to extract diagnostic information from time domain fault files are presented and illustrated via example interpretations of PEP-II fault file data. Example faults presented will highlight the subtle interpretation required to determine the root cause. Some such examples are: abort kicker firing asynchronously, klystron and cavity arcs, beam loss leading to longitudinal instability, tuner read back jumps and poorly configured low-level RF feedback loop

  1. Reaction of the immune system to low-level RF/MW exposures

    International Nuclear Information System (INIS)

    Szmigielski, Stanislaw

    2013-01-01

    Radiofrequency (RF) and microwave (MW) radiation have been used in the modern world for many years. The rapidly increasing use of cellular phones in recent years has seen increased interest in relation to the possible health effects of exposure to RF/MW radiation. In 2011 a group of international experts organized by the IARC (International Agency for Research on Cancer in Lyon) concluded that RF/MW radiations should be listed as a possible carcinogen (group 2B) for humans. The incomplete knowledge of RF/MW-related cancer risks has initiated searches for biological indicators sensitive enough to measure the “weak biological influence” of RF/MWs. One of the main candidates is the immune system, which is able to react in a measurable way to discrete environmental stimuli. In this review, the impacts of weak RF/MW fields, including cell phone radiation, on various immune functions, both in vitro and in vivo, are discussed. The bulk of available evidence clearly indicates that various shifts in the number and/or activity of immunocompetent cells are possible, however the results are inconsistent. For example, a number of lymphocyte functions have been found to be enhanced and weakened within single experiments based on exposure to similar intensities of MW radiation. Certain premises exist which indicate that, in general, short-term exposure to weak MW radiation may temporarily stimulate certain humoral or cellular immune functions, while prolonged irradiation inhibits the same functions

  2. Reaction of the immune system to low-level RF/MW exposures

    Energy Technology Data Exchange (ETDEWEB)

    Szmigielski, Stanislaw, E-mail: szmigielski@wihe.waw.pl

    2013-06-01

    Radiofrequency (RF) and microwave (MW) radiation have been used in the modern world for many years. The rapidly increasing use of cellular phones in recent years has seen increased interest in relation to the possible health effects of exposure to RF/MW radiation. In 2011 a group of international experts organized by the IARC (International Agency for Research on Cancer in Lyon) concluded that RF/MW radiations should be listed as a possible carcinogen (group 2B) for humans. The incomplete knowledge of RF/MW-related cancer risks has initiated searches for biological indicators sensitive enough to measure the “weak biological influence” of RF/MWs. One of the main candidates is the immune system, which is able to react in a measurable way to discrete environmental stimuli. In this review, the impacts of weak RF/MW fields, including cell phone radiation, on various immune functions, both in vitro and in vivo, are discussed. The bulk of available evidence clearly indicates that various shifts in the number and/or activity of immunocompetent cells are possible, however the results are inconsistent. For example, a number of lymphocyte functions have been found to be enhanced and weakened within single experiments based on exposure to similar intensities of MW radiation. Certain premises exist which indicate that, in general, short-term exposure to weak MW radiation may temporarily stimulate certain humoral or cellular immune functions, while prolonged irradiation inhibits the same functions.

  3. Development of an RF-EMF Exposure Surrogate for Epidemiologic Research

    Directory of Open Access Journals (Sweden)

    Katharina Roser

    2015-05-01

    Full Text Available Exposure assessment is a crucial part in studying potential effects of RF-EMF. Using data from the HERMES study on adolescents, we developed an integrative exposure surrogate combining near-field and far-field RF-EMF exposure in a single brain and whole-body exposure measure. Contributions from far-field sources were modelled by propagation modelling and multivariable regression modelling using personal measurements. Contributions from near-field sources were assessed from both, questionnaires and mobile phone operator records. Mean cumulative brain and whole-body doses were 1559.7 mJ/kg and 339.9 mJ/kg per day, respectively. 98.4% of the brain dose originated from near-field sources, mainly from GSM mobile phone calls (93.1% and from DECT phone calls (4.8%. Main contributors to the whole-body dose were GSM mobile phone calls (69.0%, use of computer, laptop and tablet connected to WLAN (12.2% and data traffic on the mobile phone via WLAN (6.5%. The exposure from mobile phone base stations contributed 1.8% to the whole-body dose, while uplink exposure from other people’s mobile phones contributed 3.6%. In conclusion, the proposed approach is considered useful to combine near-field and far-field exposure to an integrative exposure surrogate for exposure assessment in epidemiologic studies. However, substantial uncertainties remain about exposure contributions from various near-field and far-field sources.

  4. Low modulation index RF signal detection for a passive UHF RFID transponder

    International Nuclear Information System (INIS)

    Liu Zhongqi; Zhang Chun; Li Yongming; Wang Zhihua

    2009-01-01

    In a typical RFID system the reader transmits modulated RF power to provide both data and energy for the passive transponder. Low modulation index RF energy is preferable for an adequate tag power supply and increase in communication range but gives rise to difficulties for near-field conventional demodulation. Therefore, a novel ASK demodulator for minimum 20% modulation index RF signal detection over a range of 23 dB is presented. Thanks to the proposed innovative divisional linear conversion from the power into voltage signal, the detection sensitivity is ensured over a wide power range with low power consumption of 8.6 μW. The chip is implemented in UMC 0.18 μm mix-mode CMOS technology, and the chip area is 0.06 mm 2 .

  5. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  6. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla.

    Science.gov (United States)

    van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2015-08-01

    Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.

  7. Proceedings, CAS - CERN Accelerator School: RF for Accelerators, Ebeltoft, Denmark, 8 - 17 Jun 2010

    CERN Document Server

    Bailey, R

    2012-01-01

    These proceedings present the lectures given at the twenty-fourth specialized course organized by the CERN Accelerator School (CAS). The course was held in Ebeltoft, Denmark, from 8-17 June, 2010 in collaboration with Aarhus University, with the topic 'RF for Accelerators' While this topic has been covered by CAS previously, early in the 1990s and again in 2000, it was recognized that recent advances in the field warranted an updated course. Following introductory courses covering the background physics, the course attempted to cover all aspects of RF for accelerators; from RF power generation and transport, through cavity and coupler design, electronics and low level control, to beam diagnostics and RF gymnastics. The lectures were supplemented with several sessions of exercises, which were completed by discussion sessions on the solutions.

  8. Interacting massless scalar and source-free electromagnetic fields

    International Nuclear Information System (INIS)

    Ayyangar, B.R.N.; Mohanty, G.

    1985-01-01

    The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)

  9. Exploring the genetics of fertility restoration controlled by Rf1 in common wheat (Triticum aestivum L.) using high-density linkage maps.

    Science.gov (United States)

    Geyer, Manuel; Albrecht, Theresa; Hartl, Lorenz; Mohler, Volker

    2018-04-01

    Hybrid wheat breeding has the potential to significantly increase wheat productivity compared to line breeding. The induction of male sterility by the cytoplasm of Triticum timopheevii Zhuk. is a widely discussed approach to ensure cross-pollination between parental inbred lines in hybrid wheat seed production. As fertility restoration in hybrids with this cytoplasm is often incomplete, understanding the underlying genetics is a prerequisite to apply this technology. A promising component for fertility restoration is the restorer locus Rf1, which was first detected on chromosome 1A of the restorer accession R3. In the present study, we performed quantitative trait locus (QTL) analyses to locate Rf1 and estimate its effect in populations involving the restorer lines R3, R113 and L19. Molecular markers linked to Rf1 in these populations were used to analyse the genomic target region in T. timopheevii accessions and common wheat breeding lines. The QTL analyses revealed that Rf1 interacted with a modifier locus on chromosome 1BS and the restorer locus Rf4 on chromosome 6B. The modifier locus significantly influenced both the penetrance and expressivity of Rf1. Whereas Rf1 exhibited expressivity higher than that of Rf4, the effects of these loci were not additive. Evaluating the marker haplotype for the Rf1 region, we propose that the restoring Rf1 allele may be derived exclusively from T. timopheevii. The present study demonstrates that interactions between restorer and modifier loci play a critical role in fertility restoration of common wheat with the cytoplasm of T. timopheevii.

  10. Microscopic Investigation of Materials Limitations of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anlage, Steven [Univ. of Maryland, College Park, MD (United States)

    2017-08-04

    Our overall goal is to contribute to the understanding of defects that limit the high accelerating gradient performance of Nb SRF cavities. Our approach is to develop a microscopic connection between materials defects and SRF performance. We developed a near-field microwave microscope to establish this connection. The microscope is based on magnetic hard drive write heads, which are designed to create very strong rf magnetic fields in very small volumes on a surface.

  11. Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages.

    Science.gov (United States)

    Murbach, Manuel; Neufeld, Esra; Samaras, Theodoros; Córcoles, Juan; Robb, Fraser J; Kainz, Wolfgang; Kuster, Niels

    2017-05-01

    MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. RF shimming improves B 1 + uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures-up to 40.8°C-are equal in fetus and mother. Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. Magn Reson Med 77:2048-2056, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. RF wave simulation for cold edge plasmas using the MFEM library

    Science.gov (United States)

    Shiraiwa, S.; Wright, J. C.; Bonoli, P. T.; Kolev, T.; Stowell, M.

    2017-10-01

    A newly developed generic electro-magnetic (EM) simulation tool for modeling RF wave propagation in SOL plasmas is presented. The primary motivation of this development is to extend the domain partitioning approach for incorporating arbitrarily shaped SOL plasmas and antenna to the TORIC core ICRF solver, which was previously demonstrated in the 2D geometry [S. Shiraiwa, et. al., "HISTORIC: extending core ICRF wave simulation to include realistic SOL plasmas", Nucl. Fusion in press], to larger and more complicated simulations by including a 3D realistic antenna and integrating RF rectified sheath potential model. Such an extension requires a scalable high fidelity 3D edge plasma wave simulation. We used the MFEM [http://mfem.org], open source scalable C++ finite element method library, and developed a Python wrapper for MFEM (PyMFEM), and then a radio frequency (RF) wave physics module in Python. This approach allows for building a physics layer rapidly, while separating the physics implementation being apart from the numerical FEM implementation. An interactive modeling interface was built on pScope [S Shiraiwa, et. al. Fusion Eng. Des. 112, 835] to work with an RF simulation model in a complicated geometry.

  13. A high power cross-field amplifier at X-Band

    International Nuclear Information System (INIS)

    Eppley, K.; Feinstein, J.; Ko, K.; Kroll, N.; Lee, T.; Nelson, E.

    1991-05-01

    A high power cross-field amplifier is under development at SLAC with the objective of providing sufficient peak power to feed a section of an X-Band (11.424 GHz) accelerator without the need for pulse compression. The CFA being designed employs a conventional distributed secondary emission cathode but a novel anode structure which consists of an array of vane resonators alternatively coupled to a rectangular waveguide. The waveguide impedance (width) is tapered linearly from input to output so as to provide a constant RF voltage at the vane tips, leading to uniform power generation along the structure. Nominal design for this tube calls for 300 MW output power, 20 dB gain, DC voltage 142 KV, magnetic field 5 KG, anode-cathode gap 3.6 mm and total interaction length of about 60 cm. These specifications have been supported by computer simulations of both the RF slow wave structure as well as the electron space charge wave interaction. We have used ARGUS to model the cold circuit properties and CONDOR to model the electronic power conversion. An efficiency of 60 percent can be expected. We will discuss the details of the design effort. 5 refs., 6 figs

  14. Mechanism of laser and rf plasma in vibrational nonequilibrium CO-N2 gas mixture

    International Nuclear Information System (INIS)

    Lou Guofeng; Adamovich, Igor V.

    2009-01-01

    This paper investigates the mechanism of plasma created by focused CO laser and rf electric field. The plasma is created in a CO/N 2 environment, at a total pressure of 600 torr. Ionization of the gases occurs by an associative ionization mechanism, in collisions of two highly vibrationally excited molecules. These highly vibrationally excited states are populated by resonance absorption of the CO radiation followed by anharmonic vibration-vibration (V-V) pumping. Moreover N 2 also becomes vibrationally excited due to collisions with vibrationally excited CO. The coupled rf reduced electric field E/N is sufficiently low to prevent electron impact ionization that may create plasma individually, so when a subbreakdown rf field is applied to the plasma, collisions between the free electrons heated by the field and the diatomic species create additional vibrational excitation both in the region occupied by the CO laser beam and outside of the laser beam region. The numerical results show plasma created in both regions (in and out of the CO laser beam region) with the associative ionization mechanism. This suggests a method for creating a stable nonequilibrium plasma. The calculation result is verified by comparison the synthetic spectrum to a measured one.

  15. An updated overview of the LEB RF system

    International Nuclear Information System (INIS)

    Rogers, J.D.; Ferrell, J.H.; Curbow, J.E.; Friedrichs, C.

    1992-01-01

    Each of the Low Energy Booster (LEB) rf systems consists of the following major subsystems: a vacuum tube final rf amplifier driven by a solid state rf amplifier, a ferrite-tuned rf cavity used to bunch and accelerate the beam, a low-level rf system including rf feedback systems, a computer-based supervisory control system, and associated power supplies. The LEB rf system is broadband with the exception of the rf cavity, which is electronically tuned from approximately 47.5 MHz to 59.7 MHz in 50 ms. The design and development status of the LEB rf system is presented, with particular emphasis on the cavity and tuner, and the tuner bias power supply

  16. Exotic Material as Interactions Between Scalar Fields

    Directory of Open Access Journals (Sweden)

    Robertson G. A.

    2006-04-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as "wormholes" and "warp drives". However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg-Landau (GL scalar fields associated with superconductor junctions isinvestigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energyfluctuations, cosmological scalar (i.e., Higgs fields, and gravity.

  17. An rf separator for cloud muons at TRIUMF

    International Nuclear Information System (INIS)

    Macdonald, J.A.; Blackmore, E.W.; Bryman, D.A.; Doornbos, J.; Erdman, K.L.; Pearce, R.M.; Poirier, R.L.; Poutissou, J-M.; Spuller, J.

    1983-03-01

    A particle separator utilizing a magnetic field crossed with an rf electric field has been built and incorporated into the M9 secondary channel to produce a clean negative muon beam at 77 MeV/c +- 5 %. The separator is driven at the main cyclotron frequency (23 MHz) and is phase locked to the primary proton beam. Separation is achieved by using the temporal and velocity differences between the muons produced near the production target (cloud muons), and the pion and electron contaminants in the beam

  18. RF gun using laser-triggered photocathode

    International Nuclear Information System (INIS)

    Akiyama, H.; Otake, Y.; Naito, T.; Takeuchi, Y.; Yoshioka, M.

    1992-01-01

    An RF gun using laser-triggered photocathode has many advantages as an injector of the linear colliders since it can generate a low emittance and high current pulsed beam. The experimental facility for the RF gun, such as an RF system, a laser system and a photocathode have been fabricated to study the fundamental characteristics. The dynamics of the RF gun has also studied by the 1D sheet beam model. (author)

  19. RF slice profile effects in magnetic resonance fingerprinting.

    Science.gov (United States)

    Hong, Taehwa; Han, Dongyeob; Kim, Min-Oh; Kim, Dong-Hyun

    2017-09-01

    The radio frequency (RF) slice profile effects on T1 and T2 estimation in magnetic resonance fingerprinting (MRF) are investigated with respect to time-bandwidth product (TBW), flip angle (FA) level and field inhomogeneities. Signal evolutions are generated incorporating the non-ideal slice selective excitation process using Bloch simulation and matched to the original dictionary with and without the non-ideal slice profile taken into account. For validation, phantom and in vivo experiments are performed at 3T. Both simulations and experiments results show that T1 and T2 error from non-ideal slice profile increases with increasing FA level, off-resonance, and low TBW values. Therefore, RF slice profile effects should be compensated for accurate determination of the MR parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Beam Based RF Voltage Measurements and Longitudinal Beam Tomography at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Bhat, S. [Fermilab

    2017-10-19

    Increasing proton beam power on neutrino production targets is one of the major goals of the Fermilab long term accelerator programs. In this effort, the Fermilab 8 GeV Booster synchrotron plays a critical role for at least the next two decades. Therefore, understanding the Booster in great detail is important as we continue to improve its performance. For example, it is important to know accurately the available RF power in the Booster by carrying out beam-based measurements in order to specify the needed upgrades to the Booster RF system. Since the Booster magnetic field is changing continuously measuring/calibrating the RF voltage is not a trivial task. Here, we present a beam based method for the RF voltage measurements. Data analysis is carried out using computer programs developed in Python and MATLAB. The method presented here is applicable to any RCS which do not have flat-bottom and flat-top in the acceleration magnetic ramps. We have also carried out longitudinal beam tomography at injection and extraction energies with the data used for RF voltage measurements. Beam based RF voltage measurements and beam tomography were never done before for the Fermilab Booster. The results from these investigations will be very useful in future intensity upgrades.

  1. An MR/MRI compatible core holder with the RF probe immersed in the confining fluid

    Science.gov (United States)

    Shakerian, M.; Balcom, B. J.

    2018-01-01

    An open frame RF probe for high pressure and high temperature MR/MRI measurements was designed, fabricated, and tested. The open frame RF probe was installed inside an MR/MRI compatible metallic core holder, withstanding a maximum pressure and temperature of 5000 psi and 80 °C. The open frame RF probe was tunable for both 1H and 19F resonance frequencies with a 0.2 T static magnetic field. The open frame structure was based on simple pillars of PEEK polymer upon which the RF probe was wound. The RF probe was immersed in the high pressure confining fluid during operation. The open frame structure simplified fabrication of the RF probe and significantly reduced the amount of polymeric materials in the core holder. This minimized the MR background signal detected. Phase encoding MRI methods were employed to map the spin density of a sulfur hexafluoride gas saturating a Berea core plug in the core holder. The SF6 was imaged as a high pressure gas and as a supercritical fluid.

  2. Determination of the saturation magnetization, anisotropy field, mean field interaction, and switching field distribution for nanocrystalline hard magnets

    International Nuclear Information System (INIS)

    McCallum, R. William

    2005-01-01

    For a uniaxial nanocrystalline magnetic material, the determination of the saturation magnetization, M s , requires measurements of the magnetization at fields which exceed the anisotropy field. For a typical RE-Tm compound, where RE=rare earth and Tm=transition metal, this may require fields above 7 T if the approach to saturation law is used. However for an isotropic material composed of a random distribution of non-interacting uniaxial grains, both M s and the anisotropy filed, H a , may be determined by fitting the Stoner-Wohlfarth (SW) model (Philos. Trans. Roy. Soc. 240 (1948) 599) to the reversible part of the demagnetization curve in the first quadrant. Furthermore, using the mean field interaction model of Callen, Liu and Cullen [2], a quantitative measure of the interaction strength for interacting particles may be determined. In conjunction with an analytical fit to the first quadrant demagnetization curve of the SW model, this allows M s , H a and the mean field interaction constant of a nanocrystalline magnet to be determined from measurements below 5 T. Furthermore, comparison of the model solution for the reversible magnetization with experimental data in the 2nd and 3rd quadrants allows the accurate determination of the switching field distribution. In many cases the hysteresis loop may be accurately described by a normal distribution of switching fields

  3. Design for the National RF Test Facility at ORNL

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; Becraft, W.R.

    1983-01-01

    Conceptual and preliminary engineering design for the National RF Test Facility at Oak Ridge National Laboratory (ORNL) has been completed. The facility will comprise a single mirror configuration embodying two superconducting development coils from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program on either side of a cavity designed for full-scale antenna testing. The coils are capable of generating a 1.2-T field at the axial midpoint between the coils separated by 1.0 m. The vacuum vessel will be a stainless steel, water-cooled structure having an 85-cm-radius central cavity. The facility will have the use of a number of continuous wave (cw), radio-frequency (rf) sources at levels including 600 kW at 80 MHz and 100 kW at 28 GHz. Several plasma sources will provide a wide range of plasma environments, including densities as high as approx. 5 x 10 13 cm -3 and temperatures on the order of approx. 10 eV. Furthermore, a wide range of diagnostics will be available to the experimenter for accurate appraisal of rf testing

  4. RF trapping and acceleration in CSNS/RCS

    International Nuclear Information System (INIS)

    Wei Tao; Fu Shinian; Qin Qing; Tang Jingyu

    2008-01-01

    In this paper, two injection scenarios with different chopping rate are discussed. The waveforms of the RF voltage are studied and optimized, respectively. Some suggestions are made, concerning chopping and momentum painting of the injected beam. Furthermore, the momentum spread and transverse tune shift are calculated so that the beam aperture and the beam loss can be estimated. Finally, the beam loss with magnet field error is analyzed. (authors)

  5. Quantized Dirac field interacting with a classical Maxwell field

    International Nuclear Information System (INIS)

    Kolsrud, M.

    1987-10-01

    The S operator for the quantized and the s matrix for the unquantized Dirac field, both fields interacting with an unquantized Maxwell field, are shown to be related in the following way: S=exp(-ic†kc) and s=exp(-ik). Here c is the column matrix of the particle operators, and k is a Hermitian matrix. With splitting of c into an electron and a positron part, a corresponding factorization of S is performed. Exact expressions for the probability amplitude for various electron and/or positron processes are then obtained

  6. Design of rf-cavities in the funnel of accelerators for transmutation technologies

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Bultman, N.K.; Chan, K.D.C.; Martineau, R.L.; Nath, S.; Young, L.M.

    1994-01-01

    Funnels are a key component of accelerator structures proposed for transmutation technologies. In addition to conventional accelerator elements, specialized rf-cavities are needed for these structures. Simulations were done to obtain their electromagnetic field distribution and to minimize the rf-induced heat loads. Using these results a structural and thermal analysis of these cavities was performed to insure their reliability at high average power and to determine their cooling requirements. For one cavity the thermal expansion data in return was used to estimate the thermal detuning

  7. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  8. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  9. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions.

    Science.gov (United States)

    Quillet, Raphaëlle; Ayachi, Safia; Bihel, Frédéric; Elhabazi, Khadija; Ilien, Brigitte; Simonin, Frédéric

    2016-04-01

    RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The investigation of rf-squids at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, V N; Vasiliev, B V [Joint Inst. for Nuclear Research, Dubna (USSR)

    1989-12-01

    One- and two-hole YBCO ceramic rf-squids operating at liquid nitrogen temperatures have been developed. The main squid parameters: self-inductance, white noise level and magnetic flux resolution were measured. The directly measured external field sensitivity for one-hole squid was at the level of 100 fT/{radical}Hz. (orig.).

  11. Low modulation index RF signal detection for a passive UHF RFID transponder

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhongqi [Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China); Zhang Chun; Li Yongming; Wang Zhihua, E-mail: liu-zq04@mails.tsinghua.edu.c [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    In a typical RFID system the reader transmits modulated RF power to provide both data and energy for the passive transponder. Low modulation index RF energy is preferable for an adequate tag power supply and increase in communication range but gives rise to difficulties for near-field conventional demodulation. Therefore, a novel ASK demodulator for minimum 20% modulation index RF signal detection over a range of 23 dB is presented. Thanks to the proposed innovative divisional linear conversion from the power into voltage signal, the detection sensitivity is ensured over a wide power range with low power consumption of 8.6 {mu}W. The chip is implemented in UMC 0.18 {mu}m mix-mode CMOS technology, and the chip area is 0.06 mm{sup 2}.

  12. Digital low level rf control system with four different intermediate frequencies for the International Linear Collider

    Science.gov (United States)

    Wibowo, Sigit Basuki; Matsumoto, Toshihiro; Michizono, Shinichiro; Miura, Takako; Qiu, Feng; Liu, Na

    2017-09-01

    A field programmable gate array-based digital low level rf (LLRF) control system will be used in the International Linear Collider (ILC) in order to satisfy the rf stability requirements. The digital LLRF control system with four different intermediate frequencies has been developed to decrease the required number of analog-to-digital converters in this system. The proof of concept of this technique was demonstrated at the Superconducting RF Test Facility in the High Energy Accelerator Research Organization, Japan. The amplitude and phase stability has fulfilled the ILC requirements.

  13. Exotic Material as Interactions Between Scalar Fields

    Directory of Open Access Journals (Sweden)

    Robertson G. A.

    2015-10-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as “wormholes” and “warp drives”. However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg- Landau (GL scalar fields associated with superconductor junctions is investigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energy fluctuations, cosmological scalar (i. e., Higgs fields, and gravity.

  14. Source of spill ripple in the RF-KO slow-extraction method with FM and AM

    CERN Document Server

    Noda, K; Shibuya, S; Muramatsu, M; Uesugi, T; Kanazawa, M; Torikoshi, M; Takada, E; Yamada, S

    2002-01-01

    The RF-knockout (RF-KO) slow-extraction method with frequency modulation (FM) and amplitude modulation (AM) has brought high-accuracy irradiation to the treatment of a cancer tumor moving with respiration, because of a quick response to beam start/stop. However, a beam spill extracted from a synchrotron ring through RF-KO slow-extraction has a huge ripple with a frequency of around 1 kHz related to the FM. The spill ripple will disturb the lateral dose distribution in the beam scanning methods. Thus, the source of the spill ripple has been investigated through experiments and simulations. There are two tune regions for the extraction process through the RF-KO method: the extraction region and the diffusion region. The particles in the extraction region can be extracted due to amplitude growth through the transverse RF field, only when its frequency matches with the tune in the extraction region. For a large chromaticity, however, the particles in the extraction region can be extracted through the synchrotron ...

  15. RF measurements I: signal receiving techniques

    CERN Document Server

    Caspers, F

    2011-01-01

    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniq...

  16. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James; Georgiadou, Dimitra G; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-01-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  17. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James

    2017-10-30

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  18. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    Science.gov (United States)

    Semple, James; Georgiadou, Dimitra G.; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-12-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  19. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    Rama Rao, B.V.; Mishra, J.K.; Pande, Manjiri; Gupta, S.K.

    2011-01-01

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  20. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in

  1. A continuous wave RF vacuum window

    International Nuclear Information System (INIS)

    Walton, R.

    1999-09-01

    An essential part of an ICRF system to be used in fusion reactor is the RF window. This is fitted in a coaxial transmission line. It forms a vacuum and tritium boundary between the antenna, situated inside the machine, and the transmission line, which feeds it. A double window is required with a vacuum inter-space. The dielectric, which forms the vacuum boundary, must be brazed into its housing. The window must be of a robust construction, and capable of withstanding both axial and radial loads. The vacuum boundaries should be thick walled in order act as a suitable tritium barrier. A further requirement is that the window is capable of continuous operation. The design of such a window is presented below. A half scale prototype has been manufactured, which has successfully completed RF, vacuum, and mechanical testing at JET, but has no water cooling, which is a requirement for continuous operation. The design presented here is for a window to match the existing 30 Ω main transmission lines at JET. It employs two opposed ceramic dielectric cones with a much increased angle of incidence compared with existing JET windows. The housing is machined from titanium. Small corona rings are used, and the tracking distance along the ceramic surface is large. The geometry minimizes the peak electric field strength. The design uses substantial pre-stressing during manufacture, to produce a compressive stress field throughout the dielectric material. Significant tensile stresses in the ceramic, and therefore the possibility of fracture due to applied thermal and mechanical loading, are eliminated in this way. A full-scale actively cooled RF window using this basic design should be capable of continuous use at 50 kV in the 20 - 90 MHz range. A half scale, inertially cooled prototype window has been designed, built and tested successfully at JET to 48 kV for up to 20 seconds. The prototype uses alumina for the dielectric, whereas beryllia is more appropriate for continuous

  2. Linear collider RF: Introduction and summary

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1995-01-01

    The relation of acceleration gradient with RF frequency is examined, and approximate general RF power requirements are derived. Considerations of efficiency and cost are discussed. RF Sources, presented at the conference, are reviewed. Overall efficiencies of the linear collider proposals are compared. copyright 1995 American Institute of Physics

  3. Study of quality and field limitation of superconducting 1.3 GHz 9-Cell RF-cavities at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Schlander, Felix

    2013-01-15

    The European XFEL and the International Linear Collider are based on superconducting rf cavities made of niobium. Their advantages are low ohmic losses which allow high duty cycles and the possibility to use a large beam aperture which is substantial to prevent wake fields at high current accelerators. To reach the theoretical limits of superconducting cavities, it is required to understand the present performance limitations. These are field emission, thermal breakdown (quench) and the ohmic losses dependent on the accelerating field, which are expressed in the quality factor. As the limiting mechanisms themselves are understood in general, the origin of the quench is often unclear. To determine the quench locations, a localisation tool for thermal breakdown using the second sound in superfluid helium has been installed at the cavity test facility at DESY and the results for a sample of about 30 cavities have been examined. The features of the distribution of the quench locations have been analysed and it has been found that the quench locations are in the area of the highest surface magnetic field and not necessarily at the equator of the cells. The data sample has been extended in an attempt to characterise the average behaviour of the quality factor related to the accelerating field. An analysis of the surface resistance of individual cavities shows that a recently developed model for the surface resistance of niobium is not able to describe the measurement in all detail, but the application of an additional mechanism showed promising results.

  4. Study of quality and field limitation of superconducting 1.3 GHz 9-Cell RF-cavities at DESY

    International Nuclear Information System (INIS)

    Schlander, Felix

    2013-01-01

    The European XFEL and the International Linear Collider are based on superconducting rf cavities made of niobium. Their advantages are low ohmic losses which allow high duty cycles and the possibility to use a large beam aperture which is substantial to prevent wake fields at high current accelerators. To reach the theoretical limits of superconducting cavities, it is required to understand the present performance limitations. These are field emission, thermal breakdown (quench) and the ohmic losses dependent on the accelerating field, which are expressed in the quality factor. As the limiting mechanisms themselves are understood in general, the origin of the quench is often unclear. To determine the quench locations, a localisation tool for thermal breakdown using the second sound in superfluid helium has been installed at the cavity test facility at DESY and the results for a sample of about 30 cavities have been examined. The features of the distribution of the quench locations have been analysed and it has been found that the quench locations are in the area of the highest surface magnetic field and not necessarily at the equator of the cells. The data sample has been extended in an attempt to characterise the average behaviour of the quality factor related to the accelerating field. An analysis of the surface resistance of individual cavities shows that a recently developed model for the surface resistance of niobium is not able to describe the measurement in all detail, but the application of an additional mechanism showed promising results.

  5. Experimental study of a RF plasma source with helicon configuration in the mix Ar/H_2. Application to the chemical etching of carbon materials surfaces in the framework of the plasma-wall interactions studies of ITER's divertor

    International Nuclear Information System (INIS)

    Bieber, T.

    2012-01-01

    The issue of the interaction wall-plasma is important in thermonuclear devices. The purpose of this work is to design a very low pressure atomic plasma source in order to study chemical etching of carbon surfaces in the same conditions as edge plasma in tokamaks. The experimental work has consisted in 2 stages: first, the characterisation of the new helicon configuration reactor developed for this research and secondly the atomic hydrogen source used for the chemical etching. The first chapter recalls what thermonuclear fusion is. The helicon configuration reactor as well as its diagnostics (optical emission spectroscopy, laser induced fluorescence - LIF, and Langmuir probe) are described in the second chapter. The third chapter deals with the different coupling modes (RF power and plasma) identified in pure argon plasmas and how they are obtained by setting experimental parameters such as injected RF power, magnetic fields or pressure. The fourth chapter is dedicated to the study of the difference in behavior between the electronic density and the relative density of metastable Ar"+ ions. The last chapter presents the results in terms of mass losses of the carbon material surfaces obtained with the atomic hydrogen source. (A.C.)

  6. RF and feedback systems

    International Nuclear Information System (INIS)

    Boussard, D.

    1994-01-01

    The radiofrequency system of the Tau Charm Factory accelerating 10 11 particles per bunch and a circulating current of 0.5 A is presented. In order to produce the very short bunches required, the RF system of TCF must provide a large RF voltage (8 MV) at a frequency in the neighbourhood of 400-500 MHz. It appears very attractive to produce the high voltage required with superconducting cavities, for which wall losses are negligible. A comparison between the sc RF system proposed and a possible copper system run at an average 1 MV/m, shows the clear advantage of sc cavities for TCF. (R.P.). 2 figs,. 1 tab

  7. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, J.; Sakai, F.; Okada, Y.; Yorozu, M.; Yanagida, T.; Endo, A.

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91±0.28 πmm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac

  8. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    CERN Document Server

    Yang, J; Okada, Y; Yorozu, M; Yanagida, T; Endo, A

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91+-0.28 pi mm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac.

  9. A 1D ion species model for an RF driven negative ion source

    Science.gov (United States)

    Turner, I.; Holmes, A. J. T.

    2017-08-01

    A one-dimensional model for an RF driven negative ion source has been developed based on an inductive discharge. The RF source differs from traditional filament and arc ion sources because there are no primary electrons present, and is simply composed of an antenna region (driver) and a main plasma discharge region. However the model does still make use of the classical plasma transport equations for particle energy and flow, which have previously worked well for modelling DC driven sources. The model has been developed primarily to model the Small Negative Ion Facility (SNIF) ion source at CCFE, but may be easily adapted to model other RF sources. Currently the model considers the hydrogen ion species, and provides a detailed description of the plasma parameters along the source axis, i.e. plasma temperature, density and potential, as well as current densities and species fluxes. The inputs to the model are currently the RF power, the magnetic filter field and the source gas pressure. Results from the model are presented and where possible compared to existing experimental data from SNIF, with varying RF power, source pressure.

  10. Strong field QED in lepton colliders and electron/laser interactions

    Science.gov (United States)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the

  11. Stochastic cooling with a double rf system

    International Nuclear Information System (INIS)

    Wei, Jie.

    1992-01-01

    Stochastic cooling for a bunched beam of hadrons stored in an accelerator with a double rf system of two different frequencies has been investigated. The double rf system broadens the spread in synchrotron-oscillation frequency of the particles when they mostly oscillate near the center of the rf bucket. Compared with the ease of a single rf system, the reduction rates of the bunch dimensions are significantly increased. When the rf voltage is raised, the reduction rate, instead of decreasing linearly, now is independent of the ratio of the bunch area to the bucket area. On the other hand, the spread in synchrotron-oscillation frequency becomes small with the double rf system, if the longitudinal oscillation amplitudes of the particles are comparable to the dimension of the rf bucket. Consequently, stochastic cooling is less effective when the bunch area is close to the bucket area

  12. Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia.

    Science.gov (United States)

    Fazal, Sajid; Paul-Prasanth, Bindhu; Nair, Shantikumar V; Menon, Deepthy

    2017-08-30

    This work focuses on the development of a nanoparticulate system that can be used for magnetic resonance (MR) imaging and E-field noninvasive radiofrequency (RF) hyperthermia. For this purpose, an amine-functional gold ion complex (GIC), [Au(III)(diethylenetriamine)Cl]Cl 2 , which generates heat upon RF exposure, was conjugated to carboxyl-functional poly(acrylic acid)-capped iron-oxide nanoparticles (IO-PAA NPs) to form IO-GIC NPs of size ∼100 nm. The multimodal superparamagnetic IO-GIC NPs produced T2-contrast on MR imaging and unlike IO-PAA NPs generated heat on RF exposure. The RF heating response of IO-GIC NPs was found to be dependent on the RF power, exposure period, and particle concentration. IO-GIC NPs at a concentration of 2.5 mg/mL showed a high heating response (δT) of ∼40 °C when exposed to 100 W RF power for 1 min. In vitro cytotoxicity measurements on NIH-3T3 fibroblast cells and 4T1 cancer cells showed that IO-GIC NPs are cytocompatible at high NP concentrations for up to 72 h. Upon in vitro RF exposure (100 W, 1 min), a high thermal response leads to cell death of 4T1 cancer cells incubated with IO-GIC NPs (1 mg/mL). Hematoxylin and eosin imaging of rat liver tissues injected with 100 μL of 2.5 mg/mL IO-GIC NPs and exposed to low RF power of 20 W for 10 min showed significant loss of tissue morphology at the site of injection, as against RF-exposed or nanoparticle-injected controls. In vivo MR imaging and noninvasive RF exposure of 4T1-tumor-bearing mice after IO-GIC NP administration showed T2 contrast enhancement and a localized generation of high temperatures in tumors, leading to tumor tissue damage. Furthermore, the administration of IO-GIC NPs followed by RF exposure showed no adverse acute toxicity effects in vivo. Thus, IO-GIC NPs show good promise as a theranostic agent for magnetic resonance imaging and noninvasive RF hyperthermia for cancer.

  13. Effective field theory of interactions on the lattice

    DEFF Research Database (Denmark)

    Valiente, Manuel; Zinner, Nikolaj T.

    2015-01-01

    We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling consta...... constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.......We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling...

  14. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    Energy Technology Data Exchange (ETDEWEB)

    Sheerin, J. P., E-mail: jsheerin@emich.edu [Physics and Astronomy, Eastern Michigan Univ., Ypsilanti, MI 48197 (United States); Cohen, Morris B., E-mail: mcohen@gatech.edu [Electrical and Computer Engineering, Georgia Tech, Atlanta, GA 30332-0250 (United States)

    2015-12-10

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 – 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 – 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 – 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP’s unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 – 3000 Hz) and VLF (3 – 30 kHz) radio waves which are guided to global distances in the Earth

  15. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  16. Study of influences of the first bunching cavity and injection conditions of rf SW linacs on particle transverse motions

    International Nuclear Information System (INIS)

    Lin Yuzheng; Tong Dechun; Sun Xiang; Xu Guanghua; Zhao Zhentang

    1990-01-01

    For both medical and radiographic standing wave linear accelerators, a small beam spot diameter is always pursued. In order to minimize the size and weight of the machine and reduce the power dissipation, rf focusing is preferred to the focusing solenoid coil. Therefore, it is important to study behaviours of beam transverse motions in the rf fields for the design of SW linacs. The research shows that the transverse motion behaviours of the electron beam in the compact linac is mainly determined by the rf field distribution on the first bunching cavity and injection conditions of the beam. In this paper, a beam envelope equation is presented,the proprties of the E z , E r , H θ field distributions of various first bunching cavities of both symmetric and asymmetric are studied, and then the rf electric force and rf magnetic force exerting on the beam with a different injection time are analysed. It is demonstrated that the asymmetric first bunching cavity with a small gradient of E z (z) field will provide a larger transverse emittance. And an asymmetric cavity with a larger front aperture and a small back aperture is favourable to make a smaller gradient of E z (z) field. For both symmetric and asymmetric first bunching cavity, by adopting an appropriate negative injection angle the envelopes of the beam are all decreased obviously, the optimum injection angle being always around -3 deg. The measured result of the beam spot of a 4 MeV SW linac shows that the mentioned simulation calculation of the radial dynamics above is in good agreement with the measured result

  17. Aspects of operation of the Fermilab Booster RF System at very high intensity

    International Nuclear Information System (INIS)

    Griffin, J.E.

    1996-04-01

    The purpose of this note is to examine the likelihood and problems associated with operation of the Fermilab Booster rf systems as it presently exists, or with only minor modifications, at beam intensity approaching 5x10 13 protons per pulse. Beam loading of the rf system at such an intensity will be one order of magnitude larger than at the present operation level. It is assumed that the injection energy will be raised to 1 GeV with no major increase in the injected energy spread (longitudinal emittance). The beam will be bunched by adiabatic capture as is presently done although it may be necessary to remove one or two bunches prior to acceleration to allow clean extraction at 8 GeV. At very high intensity the charge in each bunch will interact with the vacuum chamber impedance (and with itself) in such a way as to reduce in some cases the bucket area generated by the rf voltage. Because this decrement must be made up by changes in the rf ring voltage if the required bucket area is to be maintained, these effects must be taken into consideration in any analysis of the capability of the rf system to accelerate very large intensity

  18. RF Group Annual Report 2011

    CERN Document Server

    Angoletta, M E; Betz, M; Brunner, O; Baudrenghien, P; Calaga, R; Caspers, F; Ciapala, E; Chambrillon, J; Damerau, H; Doebert, S; Federmann, S; Findlay, A; Gerigk, F; Hancock, S; Höfle, W; Jensen, E; Junginger, T; Liao, K; McMonagle, G; Montesinos, E; Mastoridis, T; Paoluzzi, M; Riddone, G; Rossi, C; Schirm, K; Schwerg, N; Shaposhnikova, E; Syratchev, I; Valuch, D; Venturini Delsolaro, W; Völlinger, C; Vretenar, M; Wuensch, W

    2012-01-01

    The highest priority for the RF group in 2011 was to contribute to a successful physics run of the LHC. This comprises operation of the superconducting 400 MHz accelerating system (ACS) and the transverse damper (ADT) of the LHC itself, but also all the individual links of the injector chain upstream of the LHC – Linac2, the PSB, the PS and the SPS – don’t forget that it is RF in all these accelerators that truly accelerates! A large variety of RF systems had to operate reliably, often near their limit. New tricks had to be found and implemented to go beyond limits; not to forget the equally demanding operation with Pb ions using in addition Linac3 and LEIR. But also other physics users required the full attention of the RF group: CNGS required in 2011 beams with very short, intense bunches, AD required reliable deceleration and cooling of anti-protons, Isolde the post-acceleration of radioactive isotopes in Rex, just to name a few. In addition to the supply of beams for physics, the RF group has a num...

  19. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-05-01

    This paper covers RF power sources for accelerator applications. The approach has been with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. This paper is confined to electron-positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. 11 refs., 13 figs

  20. Antenna–load interactions at optical frequencies: impedance matching to quantum systems

    International Nuclear Information System (INIS)

    Olmon, R L; Raschke, M B

    2012-01-01

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light–matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna–load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna–load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an