WorldWideScience

Sample records for rf cmos mixers

  1. A wideband high-linearity RF receiver front-end in CMOS

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    This paper presents a wideband high-linearity RF receiver-front-end, implemented in standard 0.18 μm CMOS technology. The design employs a noise-canceling LNA in combination with two passive mixers, followed by lowpass-filtering and amplification at IF. The achieved bandwidth is >2 GHz, with a noise

  2. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern

  3. A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network

    Science.gov (United States)

    Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.

    2018-03-01

    Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.

  4. Integrated 60GHz RF beamforming in CMOS

    CERN Document Server

    Yu, Yikun; van Roermund, Arthur H M

    2011-01-01

    ""Integrated 60GHz RF Beamforming in CMOS"" describes new concepts and design techniques that can be used for 60GHz phased array systems. First, general trends and challenges in low-cost high data-rate 60GHz wireless system are studied, and the phased array technique is introduced to improve the system performance. Second, the system requirements of phase shifters are analyzed, and different phased array architectures are compared. Third, the design and implementation of 60GHz passive and active phase shifters in a CMOS technology are presented. Fourth, the integration of 60GHz phase shifters

  5. An ultra-broadband distributed passive gate-pumped mixer in 0.18 μm CMOS

    International Nuclear Information System (INIS)

    Yu Zhenxing; Feng Jun

    2013-01-01

    A broadband distributed passive gate-pumped mixer (DPGM) using standard 0.18 μm CMOS technology is presented. By employing distributed topology, the mixer can operate at a wide frequency range. In addition, a fourth-order low pass filter is applied to improve the port-to-port isolation. This paper also analyzes the impedance match and conversion loss of the mixer, which consumes zero dc power and exhibits a measured conversion loss of 9.4–17 dB from 3 to 40 GHz with a compact size of 0.78 mm 2 . The input referred 1 dB compression point is higher than 4 dBm at a fixed IF frequency of 500 MHz and RF frequency of 23 GHz, and the measured RF-to-LO, RF-to-IF and LO-to-IF isolations are better than 21, 38 and 45 dB, respectively. The mixer is suitable for WLAN, UWB, Wi-Max, automotive radar systems and other millimeter-wave radio applications. (semiconductor integrated circuits)

  6. A high linearity current mode second IF CMOS mixer for a DRM/DAB receiver

    International Nuclear Information System (INIS)

    Xu Jian; Zhou Zheng; Wu Yiqiang; Wang Zhigong; Chen Jianping

    2015-01-01

    A passive current switch mixer was designed for the second IF down-conversion in a DRM/DAB receiver. The circuit consists of an input transconductance stage, a passive current switching stage, and a current amplifier stage. The input transconductance stage employs a self-biasing current reusing technique, with a resistor shunt feedback to increase the gain and output impedance. A dynamic bias technique is used in the switching stage to ensure the stability of the overdrive voltage versus the PVT variations. A current shunt feedback is introduced to the conventional low-voltage second-generation fully balanced multi-output current converter (FBMOCCII), which provides very low input impedance and high output impedance. With the circuit working in current mode, the linearity is effectively improved with low supply voltages. Especially, the transimpedance stage can be removed, which simplifies the design considerably. The design is verified with a SMIC 0.18 μm RF CMOS process. The measurement results show that the voltage conversation gain is 1.407 dB, the NF is 16.22 dB, and the IIP3 is 4.5 dBm, respectively. The current consumption is 9.30 mA with a supply voltage of 1.8 V. This exhibits a good compromise among the gain, noise, and linearity for the second IF mixer in DRM/DAB receivers. (paper)

  7. A 5.4mW GPS CMOS quadrature front-end based on a single-stage LNA-mixer-VCO

    DEFF Research Database (Denmark)

    Liscidini, Amtonio; Mazzanti, Andrea; Tonietto, Riccardo

    2006-01-01

    A GPS RF front-end combines the LNA, mixer, and VCO in a single stage and can operate from a 1.2V supply. The chip is implemented in a 0.13um CMOS process and occupies 1.5mm2 active area. It consumes 5.4mW with a 4.8dB NF, 36dB gain, and a P1dB of -31dBm.......A GPS RF front-end combines the LNA, mixer, and VCO in a single stage and can operate from a 1.2V supply. The chip is implemented in a 0.13um CMOS process and occupies 1.5mm2 active area. It consumes 5.4mW with a 4.8dB NF, 36dB gain, and a P1dB of -31dBm....

  8. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS

    International Nuclear Information System (INIS)

    Bao Kuan; Fan Xiangning; Li Wei; Wang Zhigong

    2013-01-01

    This paper reports a wideband passive mixer for direct conversion multi-standard receivers. A brief comparison between current-commutating passive mixers and active mixers is presented. The effect of source and load impedance on the linearity of a mixer is analyzed. Specially, the impact of the input impedance of the transimpedance amplifier (TIA), which acts as the load impedance of a mixer, is investigated in detail. The analysis is verified by a passive mixer implemented with 0.18 μm CMOS technology. The circuit is inductorless and can operate over a broad frequency range. On wafer measurements show that, with radio frequency (RF) ranges from 700 MHz to 2.3 GHz, the mixer achieves 21 dB of conversion voltage gain with a −1 dB intermediate frequency (IF) bandwidth of 10 MHz. The measured IIP3 is 9 dBm and the measured double-sideband noise figure (NF) is 10.6 dB at 10 MHz output. The chip occupies an area of 0.19 mm 2 and drains a current of 5.5 mA from a 1.8 V supply. (semiconductor integrated circuits)

  9. RF Performance of a 600-720 GHz Sideband Separating Mixer with All-Copper Micromachined Waveguide Mixer Block

    NARCIS (Netherlands)

    Mena, F. P.; Kooi, J.; Baryshev, A. M.; Lodewijk, C. F. J.; Klapwijk, T. M.; Wild, W.; Desmaris, V.; Meledin, D.; Pavolotsky, A.; Belitsky, V.; Wild, Wolfgang

    2008-01-01

    Here we report on the RF performance of a 2SB mixer (600-720 GHz) fabricated in a new method that combines traditional micromachining with waveguide components fabricated by photolithography and electroplating. The latter allows reaching, in a reproducible way, the stringent accuracies necessary for

  10. A Wideband Balun LNA I/Q-Mixer combination in 65nm CMOS

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, D.M.W.; Nauta, Bram

    2008-01-01

    An inductor-less LNA-mixer topology merges an I/Q current-commutating mixer with a noise-canceling balun/LNA. The topology achieves >18dB conversion gain, a flat NF<5.5dB, IIP2=+20dBm and IIP3=-3dBm from 500MHz to 7GHz. The core circuit consumes 16mW and occupies less than 0.01mm2 in 65nm CMOS.

  11. Charge-Domain Signal Processing of Direct RF Sampling Mixer with Discrete-Time Filters in Bluetooth and GSM Receivers

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and RF designs. We present fundamental techniques recently developed that transform the RF and analog circuit design complexity to digitally intensive domain for a wireless RF transceiver, so that it enjoys benefits of digital and switched-capacitor approaches. Direct RF sampling techniques allow great flexibility in reconfigurable radio design. Digital signal processing concepts are used to help relieve analog design complexity, allowing one to reduce cost and power consumption in a reconfigurable design environment. The ideas presented have been used in Texas Instruments to develop two generations of commercial digital RF processors: a single-chip Bluetooth radio and a single-chip GSM radio. We further present details of the RF receiver front end for a GSM radio realized in a 90-nm digital CMOS technology. The circuit consisting of low-noise amplifier, transconductance amplifier, and switching mixer offers 32.5 dB dynamic range with digitally configurable voltage gain of 40 dB down to 7.5 dB. A series of decimation and discrete-time filtering follows the mixer and performs a highly linear second-order lowpass filtering to reject close-in interferers. The front-end gains can be configured with an automatic gain control to select an optimal setting to form a trade-off between noise figure and linearity and to compensate the process and temperature variations. Even under the digital switching activity, noise figure at the 40 dB maximum gain is 1.8 dB and +50 dBm IIP2 at the 34 dB gain. The variation of the input matching versus multiple gains is less than 1 dB. The circuit in total occupies 3.1 mm 2 . The LNA, TA, and mixer consume less than 15.3 mA at a supply voltage of 1.4 V.

  12. Charge-Domain Signal Processing of Direct RF Sampling Mixer with Discrete-Time Filters in Bluetooth and GSM Receivers

    Directory of Open Access Journals (Sweden)

    Ho Yo-Chuol

    2006-01-01

    Full Text Available RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and RF designs. We present fundamental techniques recently developed that transform the RF and analog circuit design complexity to digitally intensive domain for a wireless RF transceiver, so that it enjoys benefits of digital and switched-capacitor approaches. Direct RF sampling techniques allow great flexibility in reconfigurable radio design. Digital signal processing concepts are used to help relieve analog design complexity, allowing one to reduce cost and power consumption in a reconfigurable design environment. The ideas presented have been used in Texas Instruments to develop two generations of commercial digital RF processors: a single-chip Bluetooth radio and a single-chip GSM radio. We further present details of the RF receiver front end for a GSM radio realized in a 90-nm digital CMOS technology. The circuit consisting of low-noise amplifier, transconductance amplifier, and switching mixer offers dB dynamic range with digitally configurable voltage gain of 40 dB down to dB. A series of decimation and discrete-time filtering follows the mixer and performs a highly linear second-order lowpass filtering to reject close-in interferers. The front-end gains can be configured with an automatic gain control to select an optimal setting to form a trade-off between noise figure and linearity and to compensate the process and temperature variations. Even under the digital switching activity, noise figure at the 40 dB maximum gain is 1.8 dB and dBm IIP2 at the 34 dB gain. The variation of the input matching versus multiple gains is less than 1 dB. The circuit in total occupies 3.1 . The LNA, TA, and mixer consume less than mA at a supply voltage of 1.4 V.

  13. A novel multi-actuation CMOS RF MEMS switch

    Science.gov (United States)

    Lee, Chiung-I.; Ko, Chih-Hsiang; Huang, Tsun-Che

    2008-12-01

    This paper demonstrates a capacitive shunt type RF MEMS switch, which is actuated by electro-thermal actuator and electrostatic actuator at the same time, and than latching the switching status by electrostatic force only. Since thermal actuators need relative low voltage compare to electrostatic actuators, and electrostatic force needs almost no power to maintain the switching status, the benefits of the mechanism are very low actuation voltage and low power consumption. Moreover, the RF MEMS switch has considered issues for integrated circuit compatible in design phase. So the switch is fabricated by a standard 0.35um 2P4M CMOS process and uses wet etching and dry etching technologies for postprocess. This compatible ability is important because the RF characteristics are not only related to the device itself. If a packaged RF switch and a packaged IC wired together, the parasitic capacitance will cause the problem for optimization. The structure of the switch consists of a set of CPW transmission lines and a suspended membrane. The CPW lines and the membrane are in metal layers of CMOS process. Besides, the electro-thermal actuators are designed by polysilicon layer of the CMOS process. So the RF switch is only CMOS process layers needed for both electro-thermal and electrostatic actuations in switch. The thermal actuator is composed of a three-dimensional membrane and two heaters. The membrane is a stacked step structure including two metal layers in CMOS process, and heat is generated by poly silicon resistors near the anchors of membrane. Measured results show that the actuation voltage of the switch is under 7V for electro-thermal added electrostatic actuation.

  14. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS

    Science.gov (United States)

    Yanbin, Luo; Chengyan, Ma; Yebing, Gan; Min, Qian; Tianchun, Ye

    2015-10-01

    An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm2.

  15. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS

    International Nuclear Information System (INIS)

    Luo Yanbin; Ma Chengyan; Gan Yebing; Qian Min; Ye Tianchun

    2015-01-01

    An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than −26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is −43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm 2 . (paper)

  16. Micromachined high-performance RF passives in CMOS substrate

    International Nuclear Information System (INIS)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-01-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications. (topical review)

  17. Flicker noise comparison of direct conversion mixers using Schottky and HBT dioderings in SiGe:C BiCMOS technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2015-01-01

    In this paper, we present flicker noise measurements of two X-band direct conversion mixers implemented in a SiGe:C BiCMOS technology. Both mixers use a ring structure with either Schottky diodes or diode-connected HBTs for double balanced operation. The mixers are packaged in a metal casing on a...... circuit demonstrates a 1/f noise corner frequency around 10 kHz....

  18. CMOS Silicon-on-Sapphire RF Tunable Matching Networks

    Directory of Open Access Journals (Sweden)

    Chamseddine Ahmad

    2006-01-01

    Full Text Available This paper describes the design and optimization of an RF tunable network capable of matching highly mismatched loads to 50 at 1.9 GHz. Tuning was achieved using switched capacitors with low-loss, single-transistor switches. Simulations show that the performance of the matching network depends strongly on the switch performances and on the inductor losses. A 0.5 m silicon-on-sapphire (SOS CMOS technology was chosen for network implementation because of the relatively high-quality monolithic inductors achievable in the process. The matching network provides very good matching for inductive loads, and acceptable matching for highly capacitive loads. A 1 dB compression point greater than dBm was obtained for a wide range of load impedances.

  19. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.

    Science.gov (United States)

    Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.

  20. Low Voltage Current Mode Switched-Current-Mirror Mixer

    Directory of Open Access Journals (Sweden)

    Chunhua Wang

    2009-09-01

    Full Text Available A new CMOS active mixer topology can operate at 1 V supply voltage by use of SCM (switched currentmirror. Such current-mode mixer requires less voltage headroom with good linearization. Mixing is achieved with four improved current mirrors, which are alternatively activated. For ideal switching, the operation is equivalent to a conventional active mixer. This paper analyzes the performance of the SCM mixer, in comparison with the conventional mixer, demonstrating competitive performance at a lower supply voltage. Moreover, the new mixer’s die, without any passive components, is very small, and the conversion gain is easy to adjust. An experimental prototype was designed and simulated in standard chartered 0.18μm RF CMOS Process with Spectre in Cadence Design Systems. Experimental results show satisfactory mixer performance at 2.4 GHz.

  1. Digitally-assisted analog and RF CMOS circuit design for software-defined radio

    CERN Document Server

    Okada, Kenichi

    2011-01-01

    This book describes the state-of-the-art in RF, analog, and mixed-signal circuit design for Software Defined Radio (SDR). It synthesizes for analog/RF circuit designers the most important general design approaches to take advantage of the most recent CMOS technology, which can integrate millions of transistors, as well as several real examples from the most recent research results.

  2. A circuit-level analysis of third order intermodulation mechanisms in CMOS mixers using time-invariant power and Volterra series

    NARCIS (Netherlands)

    Sakian, P.; Mahmoudi, R.; Roermund, van A.H.M.

    2011-01-01

    An in-depth analysis is performed on the third-order intermodulation distortions (IMD3) in the switching pair of active CMOS mixers. The nonlinear time-varying switching pair is described by a hypothetical circuit composed of a nonlinear time-invariant circuit cascaded with a linear time-varying

  3. An RF Energy Harvester System Using UHF Micropower CMOS Rectifier Based on a Diode Connected CMOS Transistor

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Shokrani

    2014-01-01

    Full Text Available This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18 μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier’s output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.

  4. Single-chip RF communications systems in CMOS

    DEFF Research Database (Denmark)

    Olesen, Ole

    1997-01-01

    The paper describes the state of the art of the Nordic mobile communication project ConFront. This is a cooperation project with 3 Nordic universities and local industry. The ultimate goal is to make a CMOS one-chip mobile phone.......The paper describes the state of the art of the Nordic mobile communication project ConFront. This is a cooperation project with 3 Nordic universities and local industry. The ultimate goal is to make a CMOS one-chip mobile phone....

  5. Linear CMOS RF power amplifiers a complete design workflow

    CERN Document Server

    Ruiz, Hector Solar

    2013-01-01

    The work establishes the design flow for the optimization of linear CMOS power amplifiers from the first steps of the design to the final IC implementation and tests. The authors also focuses on design guidelines of the inductor's geometrical characteristics for power applications and covers their measurement and characterization. Additionally, a model is proposed which would facilitate designs in terms of transistor sizing, required inductor quality factors or minimum supply voltage. The model considers limitations that CMOS processes can impose on implementation. The book also provides diffe

  6. Wafer-level packaged RF-MEMS switches fabricated in a CMOS fab

    NARCIS (Netherlands)

    Tilmans, H.A.C.; Ziad, H.; Jansen, Henricus V.; Di Monaco, O.; Jourdain, A.; De Raedt, W.; Rottenberg, X.; De Backer, E.; Decoussernaeker, A.; Baert, K.

    2001-01-01

    Reports on wafer-level packaged RF-MEMS switches fabricated in a commercial CMOS fab. Switch fabrication is based on a metal surface micromachining process. A novel wafer-level packaging scheme is developed, whereby the switches are housed in on-chip sealed cavities using benzocyclobutene (BCB) as

  7. Intermodulation Linearity in High-k/Metal Gate 28 nm RF CMOS Transistors

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2015-09-01

    Full Text Available This paper presents experimental characterization, simulation, and Volterra series based analysis of intermodulation linearity on a high-k/metal gate 28 nm RF CMOS technology. A figure-of-merit is proposed to account for both VGS and VDS nonlinearity, and extracted from frequency dependence of measured IIP3. Implications to biasing current and voltage optimization for linearity are discussed.

  8. Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks

    Science.gov (United States)

    Dogan, Numan S.

    2003-01-01

    The objective of this work is to design and develop Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks. We briefly report on the accomplishments in this work. We also list the impact of this work on graduate student research training/involvement.

  9. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate

    Science.gov (United States)

    Ren, Kun; Zheng, Jiachen; Lu, Haiyan; Liu, Jun; Wu, Lishu; Zhou, Wenyong; Cheng, Wei

    2018-05-01

    This paper investigated the DC and RF performance of the InP double heterojunction bipolar transistors (DHBTs) transferred to RF CMOS wafer substrate. The measurement results show that the maximum values of the DC current gain of a substrate transferred device had one emitter finger, of 0.8 μm in width and 5 μm in length, are changed unobviously, while the cut-off frequency and the maximum oscillation frequency are decreased from 220 to 171 GHz and from 204 to 154 GHz, respectively. In order to have a detailed insight on the degradation of the RF performance, small-signal models for the InP DHBT before and after substrate transferred are presented and comparably extracted. The extracted results show that the degradation of the RF performance of the device transferred to RF CMOS wafer substrate are mainly caused by the additional introduced substrate parasitics and the increase of the capacitive parasitics induced by the substrate transfer process itself. Project supported by the National Natural Science Foundation of China (No. 61331006) and the Natural Science Foundation of Zhejiang Province (No. Y14F010017).

  10. An RF Power Amplifier in a Digital CMOS Process

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck; Fallesen, Carsten

    2002-01-01

    A two stage class B power amplifier for 1.9 GHz is presented. The amplifier is fabricated in a standard digital EPI-CMOS process with low resistivity substrate. The measured output power is 29 dBm in a 50 Omega load. A design method to find the large signal parameters of the output transistor...... is presented. It separates the determination of the optimal load resistance and the determination of the large signal drain-source capacitance. Based on this method, proper values for on-chip interstage matching and off-chip output matching can be derived. A envelope linearisation circuit for the PA...... is proposed. Simulations and measurements of a fabricated linearisation circuit are presented and used to calculate the achievable linearity in terms of the spectral leakage and the error vector magnitude of a EDGE (3 pi /8-8PSK) modulated signal....

  11. Review of mixer design for low voltage - low power applications

    Science.gov (United States)

    Nurulain, D.; Musa, F. A. S.; Isa, M. Mohamad; Ahmad, N.; Kasjoo, S. R.

    2017-09-01

    A mixer is used in almost all radio frequency (RF) or microwave systems for frequency translation. Nowadays, the increase market demand encouraged the industry to deliver circuit designs to create proficient and convenient equipment with very low power (LP) consumption and low voltage (LV) supply in both digital and analogue circuits. This paper focused on different Complementary Metal Oxide Semiconductor (CMOS) design topologies for LV and LP mixer design. Floating Gate Metal Oxide Semiconductor (FGMOS) is an alternative technology to replace CMOS due to their high ability for LV and LP applications. FGMOS only required a few transistors per gate and can have a shift in threshold voltage (VTH) to increase the LP and LV performances as compared to CMOS, which makes an attractive option to replace CMOS.

  12. Charge-Domain Signal Processing of Direct RF SamplingMixer with Discrete-Time Filters in Bluetooth and GSM Receivers

    NARCIS (Netherlands)

    Ho, Y.C.; Staszewski, R.B.; Muhammad, K.; Hung, C.M.; Leipold, D.; Maggio, K.

    2006-01-01

    RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and RF designs. We present fundamental

  13. A novel compact model for on-chip stacked transformers in RF-CMOS technology

    Science.gov (United States)

    Jun, Liu; Jincai, Wen; Qian, Zhao; Lingling, Sun

    2013-08-01

    A novel compact model for on-chip stacked transformers is presented. The proposed model topology gives a clear distinction to the eddy current, resistive and capacitive losses of the primary and secondary coils in the substrate. A method to analytically determine the non-ideal parasitics between the primary coil and substrate is provided. The model is further verified by the excellent match between the measured and simulated S -parameters on the extracted parameters for a 1 : 1 stacked transformer manufactured in a commercial RF-CMOS technology.

  14. A SiGe High Gain and Highly Linear F-Band Single-Balanced Subharmonic Mixer

    OpenAIRE

    Seyedhosseinzadeh, Neda; Nabavi, Abdolreza; Carpenter, Sona; He, Zhongxia Simon; Bao, Mingquan; Zirath, Herbert

    2017-01-01

    A compact, broadband, high gain, second-order active down-converter subharmonic mixer is demonstrated using a 130-nm SiGe BiCMOS technology. The mixer adopts a bottom-LO Gilbert topology, on-chip RF and LO baluns and two emitter-follower buffers to realize a high gain wideband operation in both RF and IF frequencies. The measured performance exhibits a flat conversion gain (CG) of about 11 dB from 90 to 130 GHz with an average LO power of +3 dBm and high 2LO-RF isolation better than 60 dB. Th...

  15. A multi-mode multi-band RF receiver front-end for a TD-SCDMA/LTE/LTE-advanced in 0.18-μm CMOS process

    International Nuclear Information System (INIS)

    Guo Rui; Zhang Haiying

    2012-01-01

    A fully integrated multi-mode multi-band directed-conversion radio frequency (RF) receiver front-end for a TD-SCDMA/LTE/LTE-advanced is presented. The front-end employs direct-conversion design, and consists of two differential tunable low noise amplifiers (LNA), a quadrature mixer, and two intermediate frequency (IF) amplifiers. The two independent tunable LNAs are used to cover all the four frequency bands, achieving sufficient low noise and high gain performance with low power consumption. Switched capacitor arrays perform a resonant frequency point calibration for the LNAs. The two LNAs are combined at the driver stage of the mixer, which employs a folded double balanced Gilbert structure, and utilizes PMOS transistors as local oscillator (LO) switches to reduce flicker noise. The front-end has three gain modes to obtain a higher dynamic range. Frequency band selection and mode of configuration is realized by an on-chip serial peripheral interface (SPI) module. The front-end is fabricated in a TSMC 0.18-μm RF CMOS process and occupies an area of 1.3 mm 2 . The measured double-sideband (DSB) noise figure is below 3.5 dB and the conversion gain is over 43 dB at all of the frequency bands. The total current consumption is 31 mA from a 1.8-V supply. (semiconductor integrated circuits)

  16. HYBRID SILICON-ON-SAPPHIRE/SCALED CMOS INTERFERENCE MITIGATION FRONT END BASED ON SIMULTANEOUS NOISE CANCELLATION, ACTIVE-INTERFERENCE CANCELLATION AND N-PATH-MIXER FILTERING

    Science.gov (United States)

    2017-04-01

    supported under the RF focal plane gate array (FPGA) program, SOS CMOS in conjunction with series stacking of devices is exploited to enable...OOB IIP3 of +7 and +17.5dBm respectively. The clock path direct current (DC) power consumption at 700MHz is 90mW from a 1.2V supply. The proposed...the circulator architecture to enhance the TX-RX isolation and track ANT variations. These innovations (i) lower the overall power consumption due

  17. A 3-5GHz UWB CMOS Receiver with Digital Control Technique

    DEFF Research Database (Denmark)

    Han, Bo; Liu, Mengmeng; Ge, Ning

    2010-01-01

    This article presents a CMOS receiver that works for 3-5GHz low band SC-UWB. The receiver contains PLL, Mixer, and VGA. Double down conversion is adopted in the receiver to overcome the orthogonal clock design difficulty; digital assisted RF control method is used to increase the stability...

  18. An RF power amplifier with inter-metal-shuffled capacitor for inter-stage matching in a digital CMOS process

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xiaoxing; Zhang Xing; Ge Binjie; Wang Xin' an, E-mail: wangxa@szpku.edu.c [Key Laboratory of Integrated Microsystems, Shenzhen Graduate School of Peking University, Shenzhen 518055 (China)

    2009-06-01

    One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available, especially no high density capacitor. To address this problem, a two-stage class-AB power amplifier with inter-stage matching realized by an inter-metal coupling capacitor is designed in a 180-nm digital CMOS process. This paper compares three structures of inter-metal coupling capacitors with metal-insulator-metal (MIM) capacitor regarding their capacitor density. Detailed simulations are carried out for the leakage, the voltage dependency, the temperature dependency, and the quality factor between an inter-metal shuffled (IMS) capacitor and an MIM capacitor. Finally, an IMS capacitor is chosen to perform the inter-stage matching. The techniques are validated via the design and implement of a two-stage class-AB RF power amplifier for an UHF RFID application. The PA occupies 370 x 200 mum{sup 2} without pads in the 180-nm digital CMOS process and outputs 21.1 dBm with 40% drain efficiency and 28.1 dB power gain at 915 MHz from a single 3.3 V power supply.

  19. An RF power amplifier with inter-metal-shuffled capacitor for inter-stage matching in a digital CMOS process

    International Nuclear Information System (INIS)

    Feng Xiaoxing; Zhang Xing; Ge Binjie; Wang Xin'an

    2009-01-01

    One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available, especially no high density capacitor. To address this problem, a two-stage class-AB power amplifier with inter-stage matching realized by an inter-metal coupling capacitor is designed in a 180-nm digital CMOS process. This paper compares three structures of inter-metal coupling capacitors with metal-insulator-metal (MIM) capacitor regarding their capacitor density. Detailed simulations are carried out for the leakage, the voltage dependency, the temperature dependency, and the quality factor between an inter-metal shuffled (IMS) capacitor and an MIM capacitor. Finally, an IMS capacitor is chosen to perform the inter-stage matching. The techniques are validated via the design and implement of a two-stage class-AB RF power amplifier for an UHF RFID application. The PA occupies 370 x 200 μm 2 without pads in the 180-nm digital CMOS process and outputs 21.1 dBm with 40% drain efficiency and 28.1 dB power gain at 915 MHz from a single 3.3 V power supply.

  20. Terahertz radiation mixer

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Allen, S James [Santa Barbara, CA; Lee, Mark [Albuquerque, NM

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  1. Noise-Induced Synchronization among Sub-RF CMOS Analog Oscillators for Skew-Free Clock Distribution

    Science.gov (United States)

    Utagawa, Akira; Asai, Tetsuya; Hirose, Tetsuya; Amemiya, Yoshihito

    We present on-chip oscillator arrays synchronized by random noises, aiming at skew-free clock distribution on synchronous digital systems. Nakao et al. recently reported that independent neural oscillators can be synchronized by applying temporal random impulses to the oscillators [1], [2]. We regard neural oscillators as independent clock sources on LSIs; i. e., clock sources are distributed on LSIs, and they are forced to synchronize through the use of random noises. We designed neuron-based clock generators operating at sub-RF region (CMOS implementation with 0.25-μm CMOS parameters. Through circuit simulations, we demonstrate that i) the clock generators are certainly synchronized by pseudo-random noises and ii) clock generators exhibited phase-locked oscillations even if they had small device mismatches.

  2. 470‐MHz–698‐MHz IEEE 802.15.4m Compliant RF CMOS Transceiver

    Directory of Open Access Journals (Sweden)

    Youngho Seo

    2018-04-01

    Full Text Available This paper proposes an IEEE 802.15.4m compliant TV white‐space orthogonal frequency‐division multiplexing (TVWS‐(OFDM radio frequency (RF transceiver that can be adopted in advanced metering infrastructures, universal remote controllers, smart factories, consumer electronics, and other areas. The proposed TVWS‐OFDM RF transceiver consists of a receiver, a transmitter, a 25% duty‐cycle local oscillator generator, and a delta‐sigma fractional‐N phase‐locked loop. In the TV band from 470 MHz to 698 MHz, the highly linear RF transmitter protects the occupied TV signals, and the high‐Q filtering RF receiver is tolerable to in‐band interferers as strong as −20 dBm at a 3‐MHz offset. The proposed TVWS‐OFDM RF transceiver is fabricated using a 0.13‐μm CMOS process, and consumes 47 mA in the Tx mode and 35 mA in the Rx mode. The fabricated chip shows a Tx average power of 0 dBm with an error‐vector‐magnitude of  3%, and a sensitivity level of −103 dBm with a packet‐error‐rate of 3%. Using the implemented TVWS‐OFDM modules, a public demonstration of electricity metering was successfully carried out.

  3. A SiGe BiCMOS double-balanced mixer with active balun for X-band Doppler radar

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus S.; Johansen, Tom K.; Tamborg, Kjeld M.

    2015-01-01

    and a miniaturized Marchand balun on the LO port. Experimental results shows a conversion gain of +4 dB at 10.5 GHz with an LO drive level of 15 dBm. The LO-IF and RF-IF isolation is better than 36 dB and 26 dB, respectively, in the entire band of operation. The input referred 1 dB compression point is better than...... -11 dBm. The IIP2 is +13 dBm at a supply voltage of 3 V and +16.5 dBm at a supply voltage of 6 V. The measured noise figure is found to be ~6.5 dB at 10.5 GHz....

  4. A 900 MHz RF energy harvesting system in 40 nm CMOS technology with efficiency peaking at 47% and higher than 30% over a 22dB wide input power range

    NARCIS (Netherlands)

    Wang, J.; Jiang, Y.; Dijkhuis, J.; Dolmans, G.; Gao, H.; Baltus, P.G.M.

    2017-01-01

    A 900 MHz RF energy harvesting system is proposed for a far-field wireless power transfer application. The topology of a single-stage CMOS rectifier loaded with an integrated boost DC-DC converter is implemented in a 40 nm CMOS technology. The co-design of a cross-coupled CMOS rectifier and an

  5. Design and characterization of downconversion mixers and the on-chip calibration techniques for monolithic direct conversion radio receivers

    OpenAIRE

    Kivekäs, Kalle

    2002-01-01

    This thesis consists of eight publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis is focused on the design of downconversion mixers and direct conversion radio receivers for UTRA/FDD WCDMA and GSM standards. The main interest of the work is in the 1-3 GHz frequency range and in the Silicon and Silicon-Germanium BiCMOS technologies. The RF front-end, and especially the mixer, limits the performance of direct conversion ...

  6. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2013-08-01

    Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  7. Frequency-Tunable antenna by input-impedance-tunable CMOS RF-Frontend

    NARCIS (Netherlands)

    Haider, Nadia; Oude Alink, M.S.; Caratelli, Diego; Klumperink, Eric A.M.; Yarovoy, Alexander G.

    2013-01-01

    Variable-impedance matching between the antenna and the RF-frontend provides several potential advantages, including changing operational frequency, compensating for unintentional mismatch, improving scanning capability, and reducing noise and interference signal levels. In this article a concept of

  8. 基于DLL的RF CMOS振荡器中电荷泵电流源失配%Current Mismatches in Charge Pumps of DLL-Based RF CMOS Oscillators

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    研究了电荷泵中电流源失配造成的假频分量,推导出了一个用于计算假频分量的公式.提供了两个数表用于直观了解参数改变时假频变化情况.最后对设计基于DLL的RF CMOS振荡器提供了一些参考方法.%A research on the spurious tones due to the current mismatch in charge pumps of DLL (Delay Locked Loop) -based RF CMOS oscillators is performed. An equation for strength evaluation of the spurious tones is derived. Two tables are provided to make it obvious to understand for the characteristics of spurious tones changing with related parameters. Some suggestions are given for the design of a DLL-based RF CMOS oscillators.

  9. A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2-dBm Sensitivity

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2018-01-09

    This paper proposes an RF-to-dc power converter for ambient wireless powering that is efficient, highly sensitive, and less dependent on the load resistance with an extended dynamic range. The proposed rectifier utilizes a variable biasing technique to control the conduction of the rectifying transistors selectively, hence minimizing the leakage current; unlike the prior work that has a fixed feedback resistors, which limits the efficient operation to a relatively high RF power and causes a drop in the peak power conversion efficiency (PCE). The proposed design is fabricated using a 0.18-μm standard CMOS technology and occupies an area of 8800 μm². The measurement results show an 86% PCE and -19.2-dBm (12 μW) sensitivity when operating at the medical band 433 MHz with a 100-kΩ load. Furthermore, the PCE is 66%, and the sensitivity is -18.2 dBm (15.1 μW) when operating at UHF 900 MHz with a 100-kΩ load.

  10. A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2-dBm Sensitivity

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2018-01-01

    This paper proposes an RF-to-dc power converter for ambient wireless powering that is efficient, highly sensitive, and less dependent on the load resistance with an extended dynamic range. The proposed rectifier utilizes a variable biasing technique to control the conduction of the rectifying transistors selectively, hence minimizing the leakage current; unlike the prior work that has a fixed feedback resistors, which limits the efficient operation to a relatively high RF power and causes a drop in the peak power conversion efficiency (PCE). The proposed design is fabricated using a 0.18-μm standard CMOS technology and occupies an area of 8800 μm². The measurement results show an 86% PCE and -19.2-dBm (12 μW) sensitivity when operating at the medical band 433 MHz with a 100-kΩ load. Furthermore, the PCE is 66%, and the sensitivity is -18.2 dBm (15.1 μW) when operating at UHF 900 MHz with a 100-kΩ load.

  11. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  12. A flicker noise/IM3 cancellation technique for active mixer using negative impedance

    NARCIS (Netherlands)

    Cheng, W.; Annema, Anne J.; Wienk, Gerhardus J.M.; Nauta, Bram

    2013-01-01

    Abstract—This paper presents an approach to simultaneously cancel flicker noise and IM3 in Gilbert-type mixers, utilizing negative impedances. For proof of concept, two prototype double-balanced mixers in 0.16- m CMOS are fabricated. The first demonstration mixer chip was optimized for full IM3

  13. 5.2-GHz RF Power Harvester in 0.18-/spl mu/m CMOS for Implantable Intraocular Pressure Monitoring

    KAUST Repository

    Ouda, Mahmoud H.

    2013-04-17

    A first fully integrated 5.2-GHz CMOS-based RF power harvester with an on-chip antenna is presented in this paper. The design is optimized for sensors implanted inside the eye to wirelessly monitor the intraocular pressure of glaucoma patients. It includes a five-stage RF rectifier with an on-chip antenna, a dc voltage limiter, two voltage sensors, a low dropout voltage regulator, and MOSCAP based on-chip storage. The chip has been designed and fabricated in a standard 0.18-μm CMOS technology. To emulate the eye environment in measurements, a custom test setup is developed that comprises Plexiglass cavities filled with saline solution. Measurements in this setup show that the proposed chip can be charged to 1 V wirelessly from a 5-W transmitter 3 cm away from the harvester chip. The energy that is stored on the 5-nF on-chip MOSCAP when charged to 1 V is 2.5 nJ, which is sufficient to drive an arbitrary 100-μW load for 9 μs at regulated 0.8 V. Simulated efficiency of the rectifier is 42% at -7 dBm of input power.

  14. An integrated CMOS high data rate transceiver for video applications

    International Nuclear Information System (INIS)

    Liang Yaping; Sun Lingling; Che Dazhi; Liang Cheng

    2012-01-01

    This paper presents a 5 GHz CMOS radio frequency (RF) transceiver built with 0.18 μm RF-CMOS technology by using a proprietary protocol, which combines the new IEEE 802.11n features such as multiple-in multiple-out (MIMO) technology with other wireless technologies to provide high data rate robust real-time high definition television (HDTV) distribution within a home environment. The RF frequencies cover from 4.9 to 5.9 GHz: the industrial, scientific and medical (ISM) band. Each RF channel bandwidth is 20 MHz. The transceiver utilizes a direct up transmitter and low-IF receiver architecture. A dual-quadrature direct up conversion mixer is used that achieves better than 35 dB image rejection without any on chip calibration. The measurement shows a 6 dB typical receiver noise figure and a better than 33 dB transmitter error vector magnitude (EVM) at −3 dBm output power. (semiconductor integrated circuits)

  15. An I/Q mixer with an integrated differential quadrature all-pass filter for on-chip quadrature LO signal generation

    International Nuclear Information System (INIS)

    Amin, Najam Muhammad; Wang Zhigong; Li Zhiqun

    2015-01-01

    A down-conversion in-phase/quadrature (I/Q) mixer employing a folded-type topology, integrated with a passive differential quadrature all-pass filter (D-QAF), in order to realize the final down-conversion stage of a 60 GHz receiver architecture is presented in this work. Instead of employing conventional quadrature generation techniques such as a polyphase filter or a frequency divider for the local oscillator (LO) of the mixer, a passive D-QAF structure is employed. Fabricated in a 65 nm CMOS process, the mixer exhibits a voltage gain of 7–8 dB in an intermediate frequency (IF) band ranging from 10 MHz–1.75 GHz. A fixed LO frequency of 12 GHz is used to down-convert a radio frequency (RF) band of 10.25–13.75 GHz. The mixer displays a third order input referred intercept point (IIP 3 ) ranging from −8.75 to −7.37 dBm for a fixed IF frequency of 10 MHz and a minimum single-sideband noise figure (SSB-NF) of 11.3 dB. The mixer draws a current of 6 mA from a 1.2 V supply voltage dissipating a power of 7.2 mW. (paper)

  16. A 1.2-V CMOS front-end for LTE direct conversion SAW-less receiver

    International Nuclear Information System (INIS)

    Wang Riyan; Li Zhengping; Zhang Weifeng; Zeng Longyue; Huang Jiwei

    2012-01-01

    A CMOS RF front-end for the long-term evolution (LTE) direct conversion receiver is presented. With a low noise transconductance amplifier (LNA), current commutating passive mixer and transimpedance operational amplifier (TIA), the RF front-end structure enables high-integration, high linearity and simple frequency planning for LTE multi-band applications. Large variable gain is achieved using current-steering transconductance stages. A current commutating passive mixer with 25% duty-cycle LO improves gain, noise and linearity. A direct coupled current-input filter (DCF) is employed to suppress the out-of-band interferer. Fabricated in a 0.13-μm CMOS process, the RF front-end achieves a 45 dB conversion voltage gain, 2.7 dB NF, −7 dBm IIP3, and +60 dBm IIP2 with calibration from 2.3 to 2.7 GHz. The total RF front end with divider draws 40 mA from a single 1.2-V supply. (semiconductor integrated circuits)

  17. Beyond CMOS nanodevices 2

    CERN Document Server

    Balestra, Francis

    2014-01-01

    This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students. The book will particularly focus on the interest of nanostructures and nanodevices (nanowires, small slope switches, 2D layers, nanostructured materials, etc.) for advanced More than Moore (RF-nanosensors-energy harvesters, on-chip electronic cooling, etc.) and Beyond-CMOS logic and memories applications.

  18. Beyond CMOS nanodevices 1

    CERN Document Server

    Balestra, Francis

    2014-01-01

    This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students.  It particularly focuses on the interest of nanostructures and nanodevices (nanowires, small slope switches, 2D layers, nanostructured materials, etc.) for advanced More than Moore (RF-nanosensors-energy harvesters, on-chip electronic cooling, etc.) and Beyond-CMOS logic and memories applications

  19. An X-band Schottky diode mixer in SiGe technology with tunable Marchand balun

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2017-01-01

    In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can...

  20. Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer

    Science.gov (United States)

    Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping

    2018-04-01

    In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.

  1. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process.......In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...

  2. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad; Masri, Assaad Rachid

    2014-01-01

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable

  3. A differential low-voltage high gain current-mode integrated RF receiver front-end

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chunhua; Ma Minglin; Sun Jingru; Du Sichun; Guo Xiaorong; He Haizhen, E-mail: wch1227164@sina.com [School of Information Science and Technology, Hunan University, Changsha 410082 (China)

    2011-02-15

    A differential low-voltage high gain current-mode integrated RF front end for an 802.11b WLAN is proposed. It contains a differential transconductance low noise amplifier (G{sub m}-LNA) and a differential current-mode down converted mixer. The single terminal of the G{sub m}-LNA contains just one MOS transistor, two capacitors and two inductors. The gate-source shunt capacitors, C{sub x1} and C{sub x2}, can not only reduce the effects of gate-source C{sub gs} on resonance frequency and input-matching impedance, but they also enable the gate inductance L{sub g1,2} to be selected at a very small value. The current-mode mixer is composed of four switched current mirrors. Adjusting the ratio of the drain channel sizes of the switched current mirrors can increase the gain of the mixer and accordingly increase the gain of RF receiver front-end. The RF front-end operates under 1 V supply voltage. The receiver RFIC was fabricated using a chartered 0.18 {mu}m CMOS process. The integrated RF receiver front-end has a measured power conversion gain of 17.48 dB and an input referred third-order intercept point (IIP3) of -7.02 dBm. The total noise figure is 4.5 dB and the power is only 14 mW by post-simulations. (semiconductor integrated circuits)

  4. A low power 3-5 GHz CMOS UWB receiver front-end

    International Nuclear Information System (INIS)

    Li Weinan; Huang Yumei; Hong Zhiliang

    2009-01-01

    A novel low power RF receiver front-end for 3-5 GHz UWB is presented. Designed in the 0.13 μm CMOS process, the direct conversion receiver features a wideband balun-coupled noise cancelling transconductance input stage, followed by quadrature passive mixers and transimpedance loading amplifiers. Measurement results show that the receiver achieves an input return loss below -8.5 dB across the 3.1-4.7 GHz frequency range, maximum voltage conversion gain of 27 dB, minimum noise figure of 4 dB, IIP3 of -11.5 dBm, and IIP2 of 33 dBm. Working under 1.2 V supply voltage, the receiver consumes total current of 18 mA including 10 mA by on-chip quadrature LO signal generation and buffer circuits. The chip area with pads is 1.1 x 1.5 mm 2 .

  5. A 3.1-4.8 GHz CMOS receiver for MB-OFDM UWB

    International Nuclear Information System (INIS)

    Yang Guang; Yao Wang; Yin Jiangwei; Zheng Renliang; Li Wei; Li Ning; Ren Junyan

    2009-01-01

    An integrated fully differential ultra-wideband CMOS receiver for 3.1-4.8 GHz MB-OFDM systems is presented. A gain controllable low noise amplifier and a merged quadrature mixer are integrated as the RF front-end. Five order Gm-C type low pass filters and VGAs are also integrated for both I and Q IF paths in the receiver. The ESD protected chip is fabricated in a Jazz 0.18 μm RF CMOS process and achieves a maximum total voltage gain of 65 dB, an AGC range of 45 dB with about 6 dB/step, an averaged total noise figure of 6.4 to 8.8 dB over 3 bands and an in-band IIP3 of -5.1 dBm. The receiver occupies 2.3 mm 2 and consumes 110 mA from a 1.8 V supply including test buffers and a digital module.

  6. A 3.1-4.8 GHz CMOS receiver for MB-OFDM UWB

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guang; Yao Wang; Yin Jiangwei; Zheng Renliang; Li Wei; Li Ning; Ren Junyan, E-mail: w-li@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-01-15

    An integrated fully differential ultra-wideband CMOS receiver for 3.1-4.8 GHz MB-OFDM systems is presented. A gain controllable low noise amplifier and a merged quadrature mixer are integrated as the RF front-end. Five order Gm-C type low pass filters and VGAs are also integrated for both I and Q IF paths in the receiver. The ESD protected chip is fabricated in a Jazz 0.18 mum RF CMOS process and achieves a maximum total voltage gain of 65 dB, an AGC range of 45 dB with about 6 dB/step, an averaged total noise figure of 6.4 to 8.8 dB over 3 bands and an in-band IIP3 of -5.1 dBm. The receiver occupies 2.3 mm{sup 2} and consumes 110 mA from a 1.8 V supply including test buffers and a digital module.

  7. Design of a CMOS integrated on-chip oscilloscope for spin wave characterization

    Directory of Open Access Journals (Sweden)

    Eugen Egel

    2017-05-01

    Full Text Available Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA. Then, it is down-converted by a mixer to Intermediate Frequency (IF. Finally, an Operational Amplifier (OpAmp brings the IF signal to higher voltages (50-300 mV. The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.

  8. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  9. A wideband large dynamic range and high linearity RF front-end for U-band mobile DTV

    International Nuclear Information System (INIS)

    Liu Rongjiang; Liu Shengyou; Guo Guiliang; Cheng Xu; Yan Yuepeng

    2013-01-01

    A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced, and includes a noise-cancelling low-noise amplifier (LNA), an RF programmable gain amplifier (RFPGA) and a current communicating passive mixer. The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA. An RFPGA with five stages provides large dynamic range and fine gain resolution. A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor, and optimum linearity and symmetrical mixing is obtained at the same time. The RF front-end is implemented in a 0.25 μm CMOS process. Tests show that it achieves an IIP3 (third-order intercept point) of −17 dBm, a conversion gain of 39 dB, and a noise figure of 5.8 dB. The RFPGA achieves a dynamic range of −36.2 to 23.5 dB with a resolution of 0.32 dB. (semiconductor integrated circuits)

  10. The BLIXER, a Wideband Balun-LNA-I/Q-Mixer Topology

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2008-01-01

    Abstract—This paper proposes to merge an I/Q current-commutating mixer with a noise-canceling balun-LNA. To realize a high bandwidth, the real part of the impedance of all RF nodes is kept low, and the voltage gain is not created at RF but in baseband where capacitive loading is no problem. Thus a

  11. A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2008-01-01

    The paper presents analysis and design of a Q-band subharmonic mixer (SHM) with high conversion gain. The SHM consists of a local oscillator (LO) frequency doubler, RF pre-amplifier, and single-ended mixer. The SHM has been fabricated in a high-speed InP double heterojunction bipolar transistor (...

  12. Noise and Spurious Tones Management Techniques for Multi-GHz RF-CMOS Frequency Synthesizers Operating in Large Mixed Analog-Digital SOCs

    Directory of Open Access Journals (Sweden)

    Maxim Adrian

    2006-01-01

    Full Text Available This paper presents circuit techniques and power supply partitioning, filtering, and regulation methods aimed at reducing the phase noise and spurious tones in frequency synthesizers operating in large mixed analog-digital system-on-chip (SOC. The different noise and spur coupling mechanisms are presented together with solutions to minimize their impact on the overall PLL phase noise performance. Challenges specific to deep-submicron CMOS integration of multi-GHz PLLs are revealed, while new architectures that address these issues are presented. Layout techniques that help reducing the parasitic noise and spur coupling between digital and analog blocks are described. Combining system-level and circuit-level low noise design methods, low phase noise frequency synthesizers were achieved which are compatible with the demanding nowadays wireless communication standards.

  13. Design of a 0.13-μm CMOS cascade expandable ΣΔ modulator for multi-standard RF telecom systems

    Science.gov (United States)

    Morgado, Alonso; del Río, Rocío; de la Rosa, José M.

    2007-05-01

    This paper reports a 130-nm CMOS programmable cascade ΣΔ modulator for multi-standard wireless terminals, capable of operating on three standards: GSM, Bluetooth and UMTS. The modulator is reconfigured at both architecture- and circuit- level in order to adapt its performance to the different standards specifications with optimized power consumption. The design of the building blocks is based upon a top-down CAD methodology that combines simulation and statistical optimization at different levels of the system hierarchy. Transistor-level simulations show correct operation for all standards, featuring 13-bit, 11.3-bit and 9-bit effective resolution within 200-kHz, 1-MHz and 4-MHz bandwidth, respectively.

  14. Microwave mixer technology and applications

    CERN Document Server

    Henderson, Bert

    2013-01-01

    Although microwave mixers play a critical role in wireless communication and other microwave applications employing frequency conversion circuits, engineers find that most books on this subject emphasize theoretical aspects, rather than practical applications. That's about to change with the forthcoming release of Microwave Mixer Technology and Applications. Based on a review of over one thousand patents on mixers and frequency conversion, authors Bert Henderson and Edmar Camargo have written a comprehensive book for mixer designers who want solid ideas for solving their own design challenges.

  15. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    Science.gov (United States)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  16. Hydrodynamic studies in a mixer of mixer settler system

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, K T; Ghosh, S K; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Pump-mix mixer settlers, with high throughput, are widely used in hydrometallurgical processing for recovery of uranium, copper etc. by solvent extraction. Detailed knowledge of hydrometallurgic behaviour in the mixer and settler is necessary for design. The paper presents the experimental study carried out on mixer hydrodynamics. The work was carried out on 40 litre, cubical, continuous flow mixer with bottom inlet and top discharge. The impeller was top shrouded turbine and working medium was water. Parameters such as impeller diameter, impeller clearance, inlet orifice size, impeller speed and flow rate were studied for effect on pumping head developed and power consumed by the mixer. Data are presented in the terms of dimensionless groups. Importance of the design variables is discussed. (author). 2 refs., 7 figs., 2 tabs.

  17. Hydrodynamic studies in a mixer of mixer settler system

    International Nuclear Information System (INIS)

    Shenoy, K.T.; Ghosh, S.K.; Keni, V.S.

    1994-01-01

    Pump-mix mixer settlers, with high throughput, are widely used in hydrometallurgical processing for recovery of uranium, copper etc. by solvent extraction. Detailed knowledge of hydrometallurgic behaviour in the mixer and settler is necessary for design. The paper presents the experimental study carried out on mixer hydrodynamics. The work was carried out on 40 litre, cubical, continuous flow mixer with bottom inlet and top discharge. The impeller was top shrouded turbine and working medium was water. Parameters such as impeller diameter, impeller clearance, inlet orifice size, impeller speed and flow rate were studied for effect on pumping head developed and power consumed by the mixer. Data are presented in the terms of dimensionless groups. Importance of the design variables is discussed. (author)

  18. Topology optimization of microfluidic mixers

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Gersborg, Allan Roulund; Sigmund, Ole

    2009-01-01

    This paper demonstrates the application of the topology optimization method as a general and systematic approach for microfluidic mixer design. The mixing process is modeled as convection dominated transport in low Reynolds number incompressible flow. The mixer performance is maximized by altering...

  19. Superconducting terahertz mixer using a transition-edge microbolometer

    Science.gov (United States)

    Prober, D. E.

    1993-01-01

    We present a new device concept for a mixer element for THz frequencies. This uses a superconducting transition-edge microbridge biased at the center of its superconducting transition near 4.2 K. It is fed from an antenna or waveguide structure. Power from a local oscillator and an RF signal produce a temperature and resulting resistance variation at the difference frequency. The new aspect is the use of a very short bridge in which rapid (less than 0.1 ns) outdiffusion of hot electrons occurs. This gives large intermediate frequency (IF) response. The mixer offers about 4 GHz IF bandwidth, about 80 ohm RF resistive impedance, good match to the IF amplifier, and requires only 1-20 nW of local oscillator power. The upper RF frequency is determined by antenna or waveguide properties. Predicted mixer conversion efficiency is 1/8, and predicted double-sideband receiver noise temperatures are 260 and 90 K for transition widths of 0.1 and 0.5 Tc, respectively.

  20. The Media Mixer

    DEFF Research Database (Denmark)

    Vestergaard, Vitus; Mortensen, Christian Hviid

    In recent years many museums have experimented with different approaches to involving users through digital media. We explore how remixing and content sharing can be used as a means for user participation. Remix culture is seen as a culture that allows and encourages the production of derivative...... works; works that are based on already existing works. This cultural practice thrives throughout the Internet, most notably on web2.0 sites like YouTube. The Media Museum has embraced the remix paradigm with the development of an interactive media experience centre called the Media Mixer. Here...... the museum users can produce, deconstruct, reconstruct and finally publish and share digital media content. The media content is created by the user in the museums physical environment, but it can be mixed with material from local or global archives. In that way the gap between the analogue and the digital...

  1. The Media Mixer

    DEFF Research Database (Denmark)

    Vestergaard, Vitus; Mortensen, Christian Hviid

    2011-01-01

    content. The media content is created by the user in the museum's physical environment, but it can be mixed with material from web archives. It is the intention that the users learn about media through participatory and creative processes with media where the borders between producing, playing......We explore how remixing and content sharing can be used as a means for user participation in a digital museum age. Remix culture is seen as a culture that allows and encourages the production of derivative works; works that are based on already existing works. This cultural practice thrives...... throughout the Internet, most notably on web 2.0 sites like YouTube. The Media Museum has embraced the remix paradigm with the development of an interactive media experience centre called the Media Mixer. Here the museum users can produce, deconstruct, reconstruct and finally publish and share digital media...

  2. Design of a ×4 subharmonic sub-millimeter wave diode mixer, based on an analytic expression for small-signal conversion admittance parameters

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Krozer, Viktor

    2013-01-01

    Instead of using frequency multipliers before a fundamental mixer, subharmonic mixers can be used. In order to develop novel subharmonic mixer architectures it is necessary to know the exact signal phase at the nonlinear element. The purpose of this paper is to generalize the description of the s....... With an RF frequency of 640 GHz, this design achieves a conversion gain of −13.5 dB with a LO-power of only −2.5 dBm....

  3. High linearity current communicating passive mixer employing a simple resistor bias

    International Nuclear Information System (INIS)

    Liu Rongjiang; Guo Guiliang; Yan Yuepeng

    2013-01-01

    A high linearity current communicating passive mixer including the mixing cell and transimpedance amplifier (TIA) is introduced. It employs the resistor in the TIA to reduce the source voltage and the gate voltage of the mixing cell. The optimum linearity and the maximum symmetric switching operation are obtained at the same time. The mixer is implemented in a 0.25 μm CMOS process. The test shows that it achieves an input third-order intercept point of 13.32 dBm, conversion gain of 5.52 dB, and a single sideband noise figure of 20 dB. (semiconductor integrated circuits)

  4. MM wave quasioptical SIS mixers

    International Nuclear Information System (INIS)

    Hu, Qing; Mears, C.A.; Richards, P.L.; Lloyd, F.L.

    1988-08-01

    We have tested the performance of planar SIS mixers with log-periodic antennas at near millimeter and submillimeter wave frequencies from 90 to 360 GHz. The large ωR/sub N/C product (/approximately/10 at 90 GHz) of our Nb/NbO/sub x//Pb-In-Au junctions requires an integrated inductive tuning element to resonate the junction capacitance at the operating frequencies. We have used two types of integrated tuning element, which were designed with the aid of measurements using a Fourier transform spectrometer. Preliminary results indicate that the tuning elements can give very good mixer performance up to at least 200 GHz. An inductive wire in parallel with a 5-junction array gives a minimum mixer noise temperature of 115K (DSB) at 90 GHz with a FWHM bandwidth of 8 GHz. An open-ended microstrip stub in parallel with a single junction, gives minimum mixer noise temperatures of 150 and 200K (DSB) near 90 and 180 GHz with FWHM bandwidths of 4 and 3 GHz, respectively. The relatively high mixer noise temperatures compared to those of waveguide SIS mixers in a similar frequency range are attributed mainly to the losses in our optical system, which is being improved. 13 refs., 6 figs., 1 tab

  5. Simplified unified analysis of switched-RC passive mixers, samplers, and N -Path filters using the adjoint network

    NARCIS (Netherlands)

    Pavan, Shanthi; Klumperink, Eric A.M.

    2017-01-01

    Recent innovations in software defined CMOS radio transceiver architectures heavily rely on high linearity switched-RC sampler and passive-mixer circuits, driven by digitally programmable multiphase clocks. Although seemingly simple, the frequency domain analysis of these linear periodically time

  6. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    Science.gov (United States)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; hide

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  7. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad

    2014-09-18

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.

  8. Quasi-optical antenna-mixer-array design for terahertz frequencies

    Science.gov (United States)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  9. Design of a 40-nm CMOS integrated on-chip oscilloscope for 5-50 GHz spin wave characterization

    Science.gov (United States)

    Egel, Eugen; Csaba, György; Dietz, Andreas; Breitkreutz-von Gamm, Stephan; Russer, Johannes; Russer, Peter; Kreupl, Franz; Becherer, Markus

    2018-05-01

    Spin wave (SW) devices are receiving growing attention in research as a strong candidate for low power applications in the beyond-CMOS era. All SW applications would require an efficient, low power, on-chip read-out circuitry. Thus, we provide a concept for an on-chip oscilloscope (OCO) allowing parallel detection of the SWs at different frequencies. The readout system is designed in 40-nm CMOS technology and is capable of SW device characterization. First, the SWs are picked up by near field loop antennas, placed below yttrium iron garnet (YIG) film, and amplified by a low noise amplifier (LNA). Second, a mixer down-converts the radio frequency (RF) signal of 5 - 50 GHz to lower intermediate frequencies (IF) around 10 - 50 MHz. Finally, the IF signal can be digitized and analyzed regarding the frequency, amplitude and phase variation of the SWs. The power consumption and chip area of the whole OCO are estimated to 166.4 mW and 1.31 mm2, respectively.

  10. Mixer Assembly for a Gas Turbine Engine

    Science.gov (United States)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Smith, Lance L. (Inventor); Hautman, Donald J. (Inventor)

    2018-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  11. Distributed CMOS Bidirectional Amplifiers Broadbanding and Linearization Techniques

    CERN Document Server

    El-Khatib, Ziad; Mahmoud, Samy A

    2012-01-01

    This book describes methods to design distributed amplifiers useful for performing circuit functions such as duplexing, paraphrase amplification, phase shifting power splitting and power combiner applications.  A CMOS bidirectional distributed amplifier is presented that combines for the first time device-level with circuit-level linearization, suppressing the third-order intermodulation distortion. It is implemented in 0.13μm RF CMOS technology for use in highly linear, low-cost UWB Radio-over-Fiber communication systems. Describes CMOS distributed amplifiers for optoelectronic applications such as Radio-over-Fiber systems, base station transceivers and picocells; Presents most recent techniques for linearization of CMOS distributed amplifiers; Includes coverage of CMOS I-V transconductors, as well as CMOS on-chip inductor integration and modeling; Includes circuit applications for UWB Radio-over-Fiber networks.

  12. Integrated 60GHz RF Beamforming in CMOS

    NARCIS (Netherlands)

    Yu, Yikun; Baltus, P.G.M.; Roermund, van A.H.M.

    2011-01-01

    The 60GHz band is promising for applications such as high-speed short-range wireless personal area network (WPAN), real time video streaming at rates of several Gbps, automotive radar, and mm-Wave imaging, since it provides a large amount of bandwidth that can freely (i.e. without a license) be used

  13. Analysis and design of a high-linearity receiver RF front-end with an improved 25%-duty-cycle LO generator for WCDMA/GSM applications

    International Nuclear Information System (INIS)

    Hu Song; Li Weinan; Huang Yumei; Hong Zhiliang

    2012-01-01

    A fully integrated receiver RF front-end that meets WCDMA/GSM system requirements is presented. It supports SAW-less operation for WCDMA. To improve the linearity in terms of both IP3 and IP2, the RF front-end is comprised of multiple-gated LNAs with capacitive desensitization, current-mode passive mixers with the proposed IP2 calibration circuit and reconfigurable Tow-Thomas-like biquad TIAs. A new power-saving multi-mode divider with low phase noise is proposed to provide the 4-phase 25%-duty-cycle LO. In addition, a constant-g m biasing with a non-chip resistor is adopted to make the conversion gain invulnerable to the process and temperature variations of the transimpedance. This RF front-end is integrated in a receiver with an on-chip frequency synthesizer in 0.13 μm CMOS. The measurement results show that owing to this high-linearity RF front-end, the receiver achieves −6 dBm IIP3 and better than +60 dBm IIP2 for all modes and bands. (semiconductor integrated circuits)

  14. CMOS circuits manual

    CERN Document Server

    Marston, R M

    1995-01-01

    CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu

  15. Hot-electron bolometer terahertz mixers for the Herschel Space Observatory.

    Science.gov (United States)

    Cherednichenko, Sergey; Drakinskiy, Vladimir; Berg, Therese; Khosropanah, Pourya; Kollberg, Erik

    2008-03-01

    We report on low noise terahertz mixers (1.4-1.9 THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5 to 2.5 THz, with 30 GHz resolution) and also by measuring the mixer noise temperature at a limited number of discrete frequencies. The lowest mixer noise temperature recorded was 750 K [double sideband (DSB)] at 1.6 THz and 950 K DSB at 1.9 THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4-4.8 GHz, the mixer noise temperature was 1100 K DSB at 1.6 THz and 1450 K DSB at 1.9 THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200-500 nW range.

  16. Numerical simulation of experimental data from planar SIS mixers with integrated tuning elements

    International Nuclear Information System (INIS)

    Mears, C.A.; Hu, Qing; Richards, P.L.

    1988-08-01

    We have used the full Tucker theory including the quantum susceptance to fit data from planar lithographed mm-wave mixers with bow tie antennas and integrated RF coupling elements. Essentially perfect fits to pumped IV curves have been obtained. The deduced imbedding admittances agree well with those independently calculated from the geometry of the antenna and matching structures. We find that the quantum susceptance is essential to the fit and thus to predictions of the mixer performance. For junctions with moderately sharp gap structures, the quantum susceptance is especially important in the production of steps with low and/or negative dynamic conductance. 15 refs., 4 figs

  17. Technology CAD for germanium CMOS circuit

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.R. [Department of Electronics and ECE, IIT Kharagpur, Kharagpur-721302 (India)]. E-mail: ars.iitkgp@gmail.com; Maiti, C.K. [Department of Electronics and ECE, IIT Kharagpur, Kharagpur-721302 (India)

    2006-12-15

    Process simulation for germanium MOSFETs (Ge-MOSFETs) has been performed in 2D SILVACO virtual wafer fabrication (VWF) suite towards the technology CAD for Ge-CMOS process development. Material parameters and mobility models for Germanium were incorporated in simulation via C-interpreter function. We also report on the device design issues along with the DC and RF characterization of the bulk Ge-MOSFETs, AC parameter extraction and circuit simulation of Ge-CMOS. Simulation results are compared with bulk-Si devices. Simulations predict a cut-off frequency, f {sub T} of about 175 GHz for Ge-MOSFETs compared to 70 GHz for a similar gate-length Si MOSFET. For a single stage Ge-CMOS inverter circuit, a GATE delay of 0.6 ns is predicted.

  18. Technology CAD for germanium CMOS circuit

    International Nuclear Information System (INIS)

    Saha, A.R.; Maiti, C.K.

    2006-01-01

    Process simulation for germanium MOSFETs (Ge-MOSFETs) has been performed in 2D SILVACO virtual wafer fabrication (VWF) suite towards the technology CAD for Ge-CMOS process development. Material parameters and mobility models for Germanium were incorporated in simulation via C-interpreter function. We also report on the device design issues along with the DC and RF characterization of the bulk Ge-MOSFETs, AC parameter extraction and circuit simulation of Ge-CMOS. Simulation results are compared with bulk-Si devices. Simulations predict a cut-off frequency, f T of about 175 GHz for Ge-MOSFETs compared to 70 GHz for a similar gate-length Si MOSFET. For a single stage Ge-CMOS inverter circuit, a GATE delay of 0.6 ns is predicted

  19. Realization of THz Band Mixer Using Graphene

    Directory of Open Access Journals (Sweden)

    E. Ghasemi Mizuji

    2014-05-01

    Full Text Available In this article a new method for creating mixer component in infrared and THz is suggested. Since the nonlinear property of admittance creates frequency components that do not exist in the input signal and the electrical conductivity is associated with admittance, in our work we have proven and simulated that the nonlinear property of graphene admittance can produce mixer component. The simulation results show that the mixer component is larger than other components, therefore the mixer works properly. Because of nano scale of graphene structure, this method paves the road to achieve super compact circuits.

  20. Power Amplifiers in CMOS Technology: A contribution to power amplifier theory and techniques

    NARCIS (Netherlands)

    Acar, M.

    2011-01-01

    In order to meet the demands from the market on cheaper, miniaturized mobile communications devices realization of RF power amplifiers in the mainstream CMOS technology is essential. In general, CMOS Power Amplifiers (PAs) require high voltage to decrease the matching network losses and for high

  1. Flashback resistant pre-mixer assembly

    Science.gov (United States)

    Laster, Walter R [Oviedo, FL; Gambacorta, Domenico [Oviedo, FL

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  2. Spare mitigation/retrieval mixer pumps

    International Nuclear Information System (INIS)

    Taylor, S.

    1995-01-01

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a waste tank mixer pump. The mixer pump will be operated to eliminate the periodic releases of large quantities of flammable gas (e.g., hydrogen) from Hanford Site waste tanks and also to accommodate retrieval of tank waste

  3. RF measurements I: signal receiving techniques

    CERN Document Server

    Caspers, F

    2011-01-01

    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniq...

  4. Submersible canned motor mixer pump

    International Nuclear Information System (INIS)

    Guardiani, R.F.; Pollick, R.D.

    1997-01-01

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs

  5. Design and Characterization of Vertical Mesh Capacitors in Standard CMOS

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais

    2001-01-01

    This paper shows how good RF capacitors can be made in a standard digital CMOS process. The capacitors which are also well suited for binary weighted switched capacitor banks show very good RF performance: Q-values of 57 at 4.0 GHz, a density of 0.27 fF/μ2, 2.2 μm wide shielded unit capacitors, 6...

  6. Photonics-Based Microwave Image-Reject Mixer

    Directory of Open Access Journals (Sweden)

    Dan Zhu

    2018-03-01

    Full Text Available Recent developments in photonics-based microwave image-reject mixers (IRMs are reviewed with an emphasis on the pre-filtering method, which applies an optical or electrical filter to remove the undesired image, and the phase cancellation method, which is realized by introducing an additional phase to the converted image and cancelling it through coherent combination without phase shift. Applications of photonics-based microwave IRM in electronic warfare, radar systems and satellite payloads are described. The inherent challenges of implementing photonics-based microwave IRM to meet specific requirements of the radio frequency (RF system are discussed. Developmental trends of the photonics-based microwave IRM are also discussed.

  7. RF transport

    International Nuclear Information System (INIS)

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems. (author)

  8. Twin Screw Mixer/Fine Grind Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 40-mm Twin-Screw Mixer/Extruder (TSE) pilot plant is a continuous, remotely operated, flexible facility that can significantly enhance safety and environmental...

  9. RF MEMS

    Indian Academy of Sciences (India)

    At the bare die level the insertion loss, return loss and the isolation ... ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. ..... follows the power law based on the asperity deformation model given by Pattona & ... Surface mount style RF packages (SMX series 580465) from Startedge Corp.

  10. RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, AlphaSense, Inc. and the Carnegie Mellon University propose to develop a RF receiver front end based on CMOS-MEMS components for miniaturized...

  11. Integrated X-band FMCW front-end in SiGe BiCMOS

    NARCIS (Netherlands)

    Suijker, Erwin; de Boer, Lex; Visser, Guido; van Dijk, Raymond; Poschmann, Michael; van Vliet, Frank Edward

    2010-01-01

    An integrated X-band FMCW front-end is reported. The front-end unites the core functionality of an FMCW transmitter and receiver in a 0.25 μm SiGe BiCMOS process. The chip integrates a PLL for the carrier generation, and single-side band and image-reject mixers for up- and down-conversion of the

  12. Quantum limited quasiparticle mixers at 100 GHz

    International Nuclear Information System (INIS)

    Mears, C.A; Hu, Qing; Richards, P.L.; Worsham, A.H.; Prober, D.E.; Raeisaenen, A.V.

    1990-09-01

    We have made accurate measurements of the noise and gain of superconducting-insulating-superconducting (SIS) mixers employing small area (1μm 2 ) Ta/Ta 2 O 5 /Pb 0.9 Bi 0.1 tunnel junctions. We have measured an added mixer noise of 0.61 +/- 0.31 quanta at 95.0 GHz, which is within 25 percent of the quantum limit of 0.5 quanta. We have carried out a detailed comparison between theoretical predictions of the quantum theory of mixing and experimentally measured noise and gain. We used the shapes of I-V curves pumped at the upper and lower sideband frequencies to deduce values of the embedding admittances at these frequencies. Using these admittances, the mixer noise and gain predicted by quantum theory are in excellent agreement with experiment. 21 refs., 9 figs

  13. Apparatus for controlled mixing in a high intensity mixer

    International Nuclear Information System (INIS)

    Crocker, Z.; Gupta, V.P.

    1982-01-01

    An apparatus and a process is disclosed for controlled mixing of a mixable material in a high intensity mixer. The system enables instantaneous, precise and continual monitoring of a batch in a high intensity mixer which heretofore could not be achieved. The process comprises the steps of feeding a batch of material into a high intensity mixer, agitating the batch in the mixer, monitoring batch temperature separately from mixer temperature and discharging the batch from the mixer when the batch temperature reaches a final predetermined level. The apparatus includes means for monitoring batch temperature in a high intensity mixer separately from mixer temperature, and means responsive to the batch temperature to discharge the batch when the batch temperature reaches a final predetermined level

  14. Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications

    KAUST Repository

    Chandran, Akhil A.; Younis, Mohammad I.

    2016-01-01

    Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator's nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli's beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.

  15. Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications

    KAUST Repository

    Chandran, Akhil A.

    2016-09-15

    Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator\\'s nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli\\'s beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.

  16. 21 CFR 888.4210 - Cement mixer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...

  17. Mixer pump test plan for double shell tank AZ-101

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    1999-01-01

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151

  18. Mixed-signal 0.18μm CMOS and SiGe BiCMOS foundry technologies for ROIC applications

    Science.gov (United States)

    Kar-Roy, Arjun; Howard, David; Racanelli, Marco; Scott, Mike; Hurwitz, Paul; Zwingman, Robert; Chaudhry, Samir; Jordan, Scott

    2010-10-01

    Today's readout integrated-circuits (ROICs) require a high level of integration of high performance analog and low power digital logic. TowerJazz offers a commercial 0.18μm CMOS technology platform for mixed-signal, RF, and high performance analog applications which can be used for ROIC applications. The commercial CA18HD dual gate oxide 1.8V/3.3V and CA18HA dual gate oxide 1.8V/5V RF/mixed signal processes, consisting of six layers of metallization, have high density stacked linear MIM capacitors, high-value resistors, triple-well isolation and thick top aluminum metal. The CA18HA process also has scalable drain extended LDMOS devices, up to 40V Vds, for high-voltage sensor applications, and high-performance bipolars for low noise requirements in ROICs. Also discussed are the available features of the commercial SBC18 SiGe BiCMOS platform with SiGe NPNs operating up to 200/200GHz (fT/fMAX frequencies in manufacturing and demonstrated to 270 GHz fT, for reduced noise and integrated RF capabilities which could be used in ROICs. Implementation of these technologies in a thick film SOI process for integrated RF switch and power management and the availability of high fT vertical PNPs to enable complementary BiCMOS (CBiCMOS), for RF enabled ROICs, are also described in this paper.

  19. A Formal Model of Identity Mixer

    DEFF Research Database (Denmark)

    Camenisch, Jan; Mödersheim, Sebastian Alexander; Sommer, Dieter

    2010-01-01

    Identity Mixer is an anonymous credential system developed at IBM that allows users for instance to prove that they are over 18 years old without revealing their name or birthdate. This privacy-friendly tech- nology is realized using zero-knowledge proofs. We describe a formal model of Identity...

  20. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  1. A general numerical analysis of the superconducting quasiparticle mixer

    Science.gov (United States)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1985-01-01

    For very low noise millimeter-wave receivers, the superconductor-insulator-superconductor (SIS) quasiparticle mixer is now competitive with conventional Schottky mixers. Tucker (1979, 1980) has developed a quantum theory of mixing which has provided a basis for the rapid improvement in SIS mixer performance. The present paper is concerned with a general method of numerical analysis for SIS mixers which allows arbitrary terminating impedances for all the harmonic frequencies. This analysis provides an approach for an examination of the range of validity of the three-frequency results of the quantum mixer theory. The new method has been implemented with the aid of a Fortran computer program.

  2. Pre-design mixer-settler based on phase inversion

    International Nuclear Information System (INIS)

    Widiatmo, Djarot S.W

    1998-01-01

    The mixer settler was designed to extract uranium from organic phase by n-Dodecane and to separate heavy metal from liquid waste. The mixer settler was designed to save solvent without reducing the extraction efficiency. Extraction efficiency depend on : two phase dispersion on mixing, the type of droplet formation and completeness phase separation. The mixer settler has three main part i.e. mixer chamber, droplet formation device and phase inversion column. Mixer chamber was operated in laminar mixing, the total flow rate 200 ml.second -1 . The mixer chamber dimensions was 5 cm diameter and 7 cm height. It was completed with paddle mixer 3 cm diameter, 1 cm height and the speed rotation was 300 rpm. The droplet formation device was perforated plate 5 cm diameter with 1 mm holes. Phase Inversion column dimensions was 5 cm diameter and 50 cm height. (author)

  3. High-k Scattering Receiver Mixer Performance for NSTX-U

    Science.gov (United States)

    Barchfeld, Robert; Riemenschneider, Paul; Domier, Calvin; Luhmann, Neville; Ren, Yang; Kaita, Robert

    2016-10-01

    The High-k Scattering system detects primarily electron-scale turbulence k θ spectra for studying electron thermal transport in NSTX-U. A 100 mW, 693 GHz probe beam passes through plasma, and scattered power is detected by a 4-pixel quasi optical, mixer array. Remotely controlled receiving optics allows the scattering volume to be located from core to edge with a k θ span of 7 to 40 cm-1. The receiver array features 4 RF diagonal input horns, where the electric field polarization is aligned along the diagonal of a square cross section horn, at 30 mm channel spacing. The local oscillator is provided by a 14.4 GHz source followed by a x48 multiplier chain, giving an intermediate frequency of 1 GHz. The receiver optics receive 4 discreet scattering angles simultaneously, and then focus the signals as 4 parallel signals to their respective horns. A combination of a steerable probe beam, and translating receiver, allows for upward or downward scattering which together can provide information about 2D turbulence wavenumber spectrum. IF signals are digitized and stored for later computer analysis. The performance of the receiver mixers is discussed, along with optical design features to enhance the tuning and performance of the mixers. Work supported in part by U.S. DOE Grant DE-FG02-99ER54518 and DE-AC02-09CH1146.

  4. Low-Noise Wide Bandwith, Hot Electron Bolometer Mixers for Submillimeter Wavelengths

    Science.gov (United States)

    McGrath, W. R.

    1995-01-01

    Recently a novel superconductive hot-electron micro-bolometer has been proposed which is both fast and sensitive (D. E. Prober, Appl. Phys. Lett. 62, 2119, 1993). This device has several important properties which make it useful as a heterodyne sensor for radioastronomy applications at frequencies above 1 THz. The thermal response time of the device is fast enough, several 10's of picoseconds, to allow for IF's of several GHz. This bolometer mixer should operate well up to at least 10 THz. There is no energy gap limitation as in an SIS mixer, since the mixing process relies on heating of the electron gas. In fact, rf power is absorbed more uniformly above the gap frequency. The mixer noise should be near quantum-limited, and the local oscillator (LO) power requirement is very low: / 10 nW for a Nb device. One of the unique features of this device is that it employs rapid electron diffusion into a normal metal, rather than phonon emission, as the thermal conductance that cools the heated electrons. In order for diffusion to dominate over phonon emission, the device must be short, less than 0.5.

  5. CMOS dot matrix microdisplay

    Science.gov (United States)

    Venter, Petrus J.; Bogalecki, Alfons W.; du Plessis, Monuko; Goosen, Marius E.; Nell, Ilse J.; Rademeyer, P.

    2011-03-01

    Display technologies always seem to find a wide range of interesting applications. As devices develop towards miniaturization, niche applications for small displays may emerge. While OLEDs and LCDs dominate the market for small displays, they have some shortcomings as relatively expensive technologies. Although CMOS is certainly not the dominating semiconductor for photonics, its widespread use, favourable cost and robustness present an attractive potential if it could find application in the microdisplay environment. Advances in improving the quantum efficiency of avalanche electroluminescence and the favourable spectral characteristics of light generated through the said mechanism may afford CMOS the possibility to be used as a display technology. This work shows that it is possible to integrate a fully functional display in a completely standard CMOS technology mainly geared towards digital design while using light sources completely compatible with the process and without any post processing required.

  6. Wideband CMOS receivers

    CERN Document Server

    Oliveira, Luis

    2015-01-01

    This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology.  The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.

  7. All-Digital I/Q RF-DAC

    NARCIS (Netherlands)

    Alavi, S.M.

    2014-01-01

    Due to the severe cost pressure of consumer electronics, a migration to an advanced nanoscale CMOS processes, which is primarily developed for fast and low-power digital circuits operating at low supply voltages, is necessary, but it forces wireless RF transceivers to exploit more and more digital

  8. A monolithic 3.1-4.8 GHz MB-OFDM UWB transceiver in 0.18-μm CMOS

    International Nuclear Information System (INIS)

    Zheng Renliang; Jiang Xudong; Yao Wang; Yang Guang; Yin Jiangwei; Zheng Jianqin; Ren Junyan; Li Wei; Li Ning

    2010-01-01

    A monolithic RF transceiver for an MB-OFDM UWB system in 3.1-4.8 GHz is presented. The transceiver adopts direct-conversion architecture and integrates all building blocks including a gain controllable wideband LNA, a I/Q merged quadrature mixer, a fifth-order Gm-C bi-quad Chebyshev LPF/VGA, a fast-settling frequency synthesizer with a poly-phase filter, a linear broadband up-conversion quadrature modulator, an active D2S converter and a variable-gain power amplifier. The ESD protected transceiver is fabricated in Jazz Semiconductor's 0.18-μm RF CMOS with an area of 6.1 mm 2 and draws a total current of 221 mA from 1.8-V supply. The receiver achieves a maximum voltage gain of 68 dB with a control range of 42 dB in 6 dB/step, noise figures of 5.5-8.8 dB for three sub-bands, and an in-band/out-band IIP3 better than -4 dBm/+9 dBm. The transmitter achieves an output power ranging from -10.7 to -3 dBm with gain control, an output P 1dB better than -7.7 dBm, a sideband rejection about 32.4 dBc, and LO suppression of 31.1 dBc. The hopping time among sub-bands is less than 2.05 ns. (semiconductor integrated circuits)

  9. A monolithic 3.1-4.8 GHz MB-OFDM UWB transceiver in 0.18-{mu}m CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Renliang; Jiang Xudong; Yao Wang; Yang Guang; Yin Jiangwei; Zheng Jianqin; Ren Junyan; Li Wei; Li Ning, E-mail: jyren@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2010-06-15

    A monolithic RF transceiver for an MB-OFDM UWB system in 3.1-4.8 GHz is presented. The transceiver adopts direct-conversion architecture and integrates all building blocks including a gain controllable wideband LNA, a I/Q merged quadrature mixer, a fifth-order Gm-C bi-quad Chebyshev LPF/VGA, a fast-settling frequency synthesizer with a poly-phase filter, a linear broadband up-conversion quadrature modulator, an active D2S converter and a variable-gain power amplifier. The ESD protected transceiver is fabricated in Jazz Semiconductor's 0.18-{mu}m RF CMOS with an area of 6.1 mm{sup 2} and draws a total current of 221 mA from 1.8-V supply. The receiver achieves a maximum voltage gain of 68 dB with a control range of 42 dB in 6 dB/step, noise figures of 5.5-8.8 dB for three sub-bands, and an in-band/out-band IIP3 better than -4 dBm/+9 dBm. The transmitter achieves an output power ranging from -10.7 to -3 dBm with gain control, an output P{sub 1dB} better than -7.7 dBm, a sideband rejection about 32.4 dBc, and LO suppression of 31.1 dBc. The hopping time among sub-bands is less than 2.05 ns. (semiconductor integrated circuits)

  10. A niobiumnitride mixer with niobium tuning circuit

    International Nuclear Information System (INIS)

    Plathner, B.; Schicke, M.; Lehnert, T.; Gundlach, K.H.; Rothermel, H.; Aoyagi, M.; Takada, S.

    1996-01-01

    This letter reports a low noise submillimeter-wave mixer using NbN tunnel junctions integrated in Nb matching circuits. The double side band receiver noise temperature was 245 K at 345 GHz. Plasma conditions for NbN film deposition on quartz substrates at room temperature are created by using a second Nb target as a selective nitrogen pump. Electrodes for tunnel junctions with critical temperatures above 15 K and normal state resistivities in the range from 130 to 160 μΩcm were obtained. This permits integrating NbN junctions into normal metal or non-NbN superconducting matching circuits, which is of great interest for THz mixers. copyright 1996 American Institute of Physics

  11. Study on installation of the submersible mixer

    International Nuclear Information System (INIS)

    Tian, F; Shi, W D; He, X H; Xu, Y H; Jiang, H

    2013-01-01

    Study on installation of the submersible mixer for sewage treatment has been limited. In this article, large-scale computational fluid dynamics software FLUENT6.3 was adopted. ICEM software was used to build an unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. Agitation pools on four different installation location cases were simulated respectively, and the external characteristic of the submersible mixer and the velocity cloud of the axial section were respectively comparatively analyzed. The best stirring effect can be reached by the installation location of case C, which is near the bottom of the pool 600 mm and blade distance the bottom at least for 200 mm wide and wide edge and narrow edge distance by 4:3. The conclusion can guide the engineering practice

  12. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  13. Matlab GUI for a Fluid Mixer

    Science.gov (United States)

    Barbieri, Enrique

    2005-01-01

    The Test and Engineering Directorate at NASA John C. Stennis Space Center developed an interest to study the modeling, evaluation, and control of a liquid hydrogen (LH2) and gas hydrogen (GH2) mixer subsystem of a ground test facility. This facility carries out comprehensive ground-based testing and certification of liquid rocket engines including the Space Shuttle Main engine. A software simulation environment developed in MATLAB/SIMULINK (M/S) will allow NASA engineers to test rocket engine systems at relatively no cost. In the progress report submitted in February 2004, we described the development of two foundation programs, a reverse look-up application using various interpolation algorithms, a variety of search and return methods, and self-checking methods to reduce the error in returned search results to increase the functionality of the program. The results showed that these efforts were successful. To transfer this technology to engineers who are not familiar with the M/S environment, a four-module GUI was implemented allowing the user to evaluate the mixer model under open-loop and closed-loop conditions. The progress report was based on an udergraduate Honors Thesis by Ms. Jamie Granger Austin in the Department of Electrical Engineering and Computer Science at Tulane University, during January-May 2003, and her continued efforts during August-December 2003. In collaboration with Dr. Hanz Richter and Dr. Fernando Figueroa we published these results in a NASA Tech Brief due to appear this year. Although the original proposal in 2003 did not address other components of the test facility, we decided in the last few months to extend our research and consider a related pressurization tank component as well. This report summarizes the results obtained towards a Graphical User Interface (GUI) for the evaluation and control of the hydrogen mixer subsystem model and for the pressurization tank each taken individually. Further research would combine the two

  14. CMOS/SOS processing

    Science.gov (United States)

    Ramondetta, P.

    1980-01-01

    Report describes processes used in making complementary - metal - oxide - semiconductor/silicon-on-sapphire (CMOS/SOS) integrated circuits. Report lists processing steps ranging from initial preparation of sapphire wafers to final mapping of "good" and "bad" circuits on a wafer.

  15. Design of a SiGe BiCMOS canceller for low frequency noise reduction in direct conversion receivers

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Johansen, Tom Keinicke; Michaelsen, Rasmus Schandorph

    of the local oscillator (LO) toward the RF port of the mixer (Figure 1(a)). This causes the LO self-mixing phenomenon, which is responsible of a significant DC offset at the output of the receiver (Figure 1(b)). In turn, this DC offset gives rise to a high level of low frequency noise affecting the signal...

  16. The Robust Control Mixer Module Method for Control Reconfiguration

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, M.

    1999-01-01

    into a LTI dynamical system, and furthermore multiple dynamical control mixer modules can be employed in our consideration. The H_{\\infty} control theory is used for the analysis and design of the robust control mixer modules. Finally, one practical robot arm system as benchmark is used to test the proposed......The control mixer concept is efficient in improving an ordinary control system into a fault tolerant one, especially for these control systems of which the real-time and on-line redesign of the control laws is very difficult. In order to consider the stability, performance and robustness...... of the reconfigurated system simultaneously, and to deal with a more general controller reconfiguration than the static feedback mechanism by using the control mixer approach, the robust control mixer module method is proposed in this paper. The form of the control mixer module extends from a static gain matrix...

  17. Theory, analysis and design of RF interferometric sensors

    CERN Document Server

    Nguyen, Cam

    2012-01-01

    Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...

  18. Transitory powder flow dynamics during emptying of a continuous mixer

    OpenAIRE

    Ammarcha , Chawki; Gatumel , Cendrine; Dirion , Jean-Louis; Cabassud , Michel; Mizonov , Vadim; Berthiaux , Henri

    2013-01-01

    International audience; This article investigates the emptying process of a continuous powder mixer, from both experimental and modelling points of view. The apparatus used in this work is a pilot scale commercial mixer Gericke GCM500, for which a specific experimental protocol has been developed to determine the hold up in the mixer and the real outflow. We demonstrate that the dynamics of the process is governed by the rotational speed of the stirrer, as it fixes characteristic values of th...

  19. Work plan, AP-102 mixer pump removal and pump replacement

    International Nuclear Information System (INIS)

    Jimenez, R.F.

    1994-01-01

    The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ''green house'' will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken

  20. CMOS analog circuit design

    CERN Document Server

    Allen, Phillip E

    1987-01-01

    This text presents the principles and techniques for designing analog circuits to be implemented in a CMOS technology. The level is appropriate for seniors and graduate students familiar with basic electronics, including biasing, modeling, circuit analysis, and some familiarity with frequency response. Students learn the methodology of analog integrated circuit design through a hierarchically-oriented approach to the subject that provides thorough background and practical guidance for designing CMOS analog circuits, including modeling, simulation, and testing. The authors' vast industrial experience and knowledge is reflected in the circuits, techniques, and principles presented. They even identify the many common pitfalls that lie in the path of the beginning designer--expert advice from veteran designers. The text mixes the academic and practical viewpoints in a treatment that is neither superficial nor overly detailed, providing the perfect balance.

  1. CERN Entrepreneur Mixer | 21 June | Pas perdus

    CERN Multimedia

    2016-01-01

      CERN Knowledge Transfer group is hosting an Entrepreneur Mixer, an event dedicated to building bridges between CERN innovative entrepreneurs. This will be a unique opportunity to discover business projects initiated by former CERN people, and to see how CERN technology is being exploited by start-up companies. The deadline for registration is Friday, 17 June. For more information, please visit the Indico page of the event: https://indico.cern.ch/event/537167/

  2. A 6-9 GHz 5-band CMOS synthesizer for MB-OFDM UWB

    International Nuclear Information System (INIS)

    Chen Pufeng; Li Zhiqiang; Wang Xiaosong; Zhang Haiying; Ye Tianchun

    2010-01-01

    An ultra-wideband frequency synthesizer is designed to generate carrier frequencies for 5 bands distributed from 6 to 9 GHz with less than 3 ns switching time. It incorporates two phase-locked loops and one single-sideband (SSB) mixer. A 2-to-1 multiplexer with high linearity is proposed. A modified wideband SSB mixer, quadrature VCO, and layout techniques are also employed. The synthesizer is fabricated in a 0.18 μm CMOS process and operates at 1.5-1.8 V while consuming 40 mA current. The measured phase noise is -128 dBc/Hz at 10 MHz offset, and the sideband rejection is -22 dBc at 7.656 GHz.

  3. A 6-9 GHz 5-band CMOS synthesizer for MB-OFDM UWB

    Energy Technology Data Exchange (ETDEWEB)

    Chen Pufeng; Li Zhiqiang; Wang Xiaosong; Zhang Haiying; Ye Tianchun, E-mail: chenpufeng@ime.ac.c [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2010-07-15

    An ultra-wideband frequency synthesizer is designed to generate carrier frequencies for 5 bands distributed from 6 to 9 GHz with less than 3 ns switching time. It incorporates two phase-locked loops and one single-sideband (SSB) mixer. A 2-to-1 multiplexer with high linearity is proposed. A modified wideband SSB mixer, quadrature VCO, and layout techniques are also employed. The synthesizer is fabricated in a 0.18 {mu}m CMOS process and operates at 1.5-1.8 V while consuming 40 mA current. The measured phase noise is -128 dBc/Hz at 10 MHz offset, and the sideband rejection is -22 dBc at 7.656 GHz.

  4. Analysis of Different Topologies of Inverter in 0.18μm CMOS Technology and its Comparision

    OpenAIRE

    Ashish Panchal; Rajkumar Gehlot; Nidhi Maheshwari; Prafful Dubey

    2011-01-01

    In this paper we study inverter topologies under various criteria and caracteristics using Cadence tool.This paper includes analysis of inveter topologies utilized in VLSI that includes CMOS, Pseudo NMOS and Dynamic families. The characteristics include DC transfer characteristics, current Vs voltage characteristics,area and delay. The inverter topologies has been designed in 0.18μm CMOS technology with 1.8V supply voltage. SPECTRA RF simulator is used for circuit simulation. This paper also ...

  5. A CMOS-compatible silicon substrate optimization technique and its application in radio frequency crosstalk isolation

    International Nuclear Information System (INIS)

    Li Chen; Liao Huailin; Huang Ru; Wang Yangyuan

    2008-01-01

    In this paper, a complementary metal-oxide semiconductor (CMOS)-compatible silicon substrate optimization technique is proposed to achieve effective isolation. The selective growth of porous silicon is used to effectively suppress the substrate crosstalk. The isolation structures are fabricated in standard CMOS process and then this post-CMOS substrate optimization technique is carried out to greatly improve the performances of crosstalk isolation. Three-dimensional electro-magnetic simulation is implemented to verify the obvious effect of our substrate optimization technique. The morphologies and growth condition of porous silicon fabricated have been investigated in detail. Furthermore, a thick selectively grown porous silicon (SGPS) trench for crosstalk isolation has been formed and about 20dB improvement in substrate isolation is achieved. These results demonstrate that our post-CMOS SGPS technique is very promising for RF IC applications. (cross-disciplinary physics and related areas of science and technology)

  6. Design and Fabrication of a Foundry Sand Mixer Using Locally ...

    African Journals Online (AJOL)

    Most small foundry shops mix their sand manually which is not efficient since homogenous mix cannot be guaranteed and even when foundry mixer are available most of them are imported costing the nation huge foriegn exchange. A foundry sand mixer capable of mixing foundry sand has been designed and fabricated ...

  7. CONTINUOUS PRODUCTION OF HYDROXYPROPYL STARCH IN A STATIC MIXER REACTOR

    NARCIS (Netherlands)

    LAMMERS, G; STAMHUIS, EJ; BEENACKERS, AACM

    A novel type of reactor for the chemical derivatization of starch pastes is presented. The design is based on the application of static mixers. The reactor shows excellent plug flow behaviour with a Peclet number of about 100. The viscosity behaviour of concentrated starch pastes in the static mixer

  8. Class 1 bluetooth power amplifier with 24dBm output power and 48% PAE at 2.4GHz in 0.25um CMOS

    NARCIS (Netherlands)

    Vathulay, V.; Sowlati, T.; Leenaerts, D.M.W.

    2001-01-01

    In this paper, we report an RF power amplifier design in digital CMOS technology for the Class 1 power level specification (20 dBm) in the Bluetooth Communications standard. We have also investigated hot carrier effects under large signal RF operation of the power amplifier. The two stage circuit,

  9. Criticality calculation method for mixer-settlers

    International Nuclear Information System (INIS)

    Gonda, Kozo; Aoyagi, Haruki; Nakano, Ko; Kamikawa, Hiroshi.

    1980-01-01

    A new criticality calculation code MACPEX has been developed to evaluate and manage the criticality of the process in the extractor of mixer-settler type. MACPEX can perform the combined calculation with the PUREX process calculation code MIXSET, to get the neutron flux and the effective multiplication constant in the mixer-settlers. MACPEX solves one-dimensional diffusion equation by the explicit difference method and the standard source-iteration technique. The characteristics of MACPEX are as follows. 1) Group constants of 4 energy groups for the 239 Pu-H 2 O solution, water, polyethylene and SUS 28 are provided. 2) The group constants of the 239 Pu-H 2 O solution are given by the functional formulae of the plutonium concentration, which is less than 50 g/l. 3) Two boundary conditions of the vacuum condition and the reflective condition are available in this code. 4) The geometrical bucklings can be calculated for a certain energy group and/or region by using the three dimentional neutron flux profiles obtained by CITATION. 5) The buckling correction search can be carried out in order to get a desired k sub(eff). (author)

  10. Scale-up of the mixer of a mixer-settler model used in a uranium solvent extraction process

    International Nuclear Information System (INIS)

    Santana, A.O. de; Dantas, C.C.

    1995-01-01

    Scale-up relations were obtained for the mixer of a box type mixer-settler used in an uranium extraction process from chloridric leaches. Three box type mixers of different sizes and with the same geometry were used for batch and continuous-flow experiments. The correlations between the extraction rate and he specific power input, D/T ratio(=turbine diameter/mixer width) and residence time were experimentally determined. The results showed that the extraction rate increases with the power input at a constant D/T ratio equal to 1/3, remaining however, independent from the mixer size for a specific value of the power input. This behaviour was observed for power input values ranging from 100 to 750 W/m 3 . (author) 8 refs.; 8 figs.; 4 tabs

  11. Structured Analog CMOS Design

    CERN Document Server

    Stefanovic, Danica

    2008-01-01

    Structured Analog CMOS Design describes a structured analog design approach that makes it possible to simplify complex analog design problems and develop a design strategy that can be used for the design of large number of analog cells. It intentionally avoids treating the analog design as a mathematical problem, developing a design procedure based on the understanding of device physics and approximations that give insight into parameter interdependences. The proposed transistor-level design procedure is based on the EKV modeling approach and relies on the device inversion level as a fundament

  12. Mechatronic thermostatic water mixer for building automation

    Directory of Open Access Journals (Sweden)

    Stefano Mauro

    2015-05-01

    Full Text Available The use of sanitary water is a main aspect of comfort and healthiness within a house or a public environment as gyms or beauty farms. At the same time, water waste should be limited to a minimum in order to preserve both water and the energy required to warm it. To obtain these results, it is necessary to rule quickly and in a precise way the temperature. It is also necessary to check the presence of possible contemporary flow requested by different users in order to optimize distribution in the house network. This work describes a mechatronic water mixer that was developed to ensure fast and precise control of flow and temperature of delivered water. The flow control is based on modulating digital valves driven in pulse code modulation and on a microcontroller board. The electronic unit is designed to interface with a domotic network for remote control and total consumption monitoring and optimization.

  13. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    Science.gov (United States)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  14. Methodology for calculating power consumption of planetary mixers

    Science.gov (United States)

    Antsiferov, S. I.; Voronov, V. P.; Evtushenko, E. I.; Yakovlev, E. A.

    2018-03-01

    The paper presents the methodology and equations for calculating the power consumption necessary to overcome the resistance of a dry mixture caused by the movement of cylindrical rods in the body of a planetary mixer, as well as the calculation of the power consumed by idling mixers of this type. The equations take into account the size and physico-mechanical properties of mixing material, the size and shape of the mixer's working elements and the kinematics of its movement. The dependence of the power consumption on the angle of rotation in the plane perpendicular to the axis of rotation of the working member is presented.

  15. Two-phase LMMHD mixer-development experiments

    International Nuclear Information System (INIS)

    Fabris, G.; Dunn, P.F.; Chow, J.C.F.

    1978-01-01

    The results of a series of experiments conducted to evaluate the fluid mechanical performance of various two-phase LMMHD mixer designs are presented. The results from both flow visualization studies of the local two-phase flows downstream from various mixer-element configurations and local measurements performed to characterize these flows are presented. A conceptual LMMHD mixer design is described that insures the generation of small bubbles, prevents the formation of gas slugs and separated regions, and favors the stabilization of a homogeneous foam flow

  16. Investigation on the performance of an optically generated RF local oscillator signal in Ku-band DVB-S systems

    NARCIS (Netherlands)

    Khan, M.R.H.; Marpaung, D.A.I.; Burla, M.; Roeloffzen, C.G.H.; Bernhardi, Edward; de Ridder, R.M.

    2011-01-01

    We investigate a way to externally generate the local oscillator (LO) signal used for downconversion of the Ku-band (10.7 − 12.75 GHz) RF signal received from a phased array antenna (PAA). The signal is then translated to an intermediate frequency (950 − 2150 MHz) at the output of the mixer of

  17. A CMOS Morlet Wavelet Generator

    Directory of Open Access Journals (Sweden)

    A. I. Bautista-Castillo

    2017-04-01

    Full Text Available The design and characterization of a CMOS circuit for Morlet wavelet generation is introduced. With the proposed Morlet wavelet circuit, it is possible to reach a~low power consumption, improve standard deviation (σ control and also have a small form factor. A prototype in a double poly, three metal layers, 0.5 µm CMOS process from MOSIS foundry was carried out in order to verify the functionality of the proposal. However, the design methodology can be extended to different CMOS processes. According to the performance exhibited by the circuit, may be useful in many different signal processing tasks such as nonlinear time-variant systems.

  18. System and Circuit Design Aspects for CMOS Wireless Handset Receivers

    DEFF Research Database (Denmark)

    Mikkelsen, Jan H.

    and it is shown that, depending on the size of the guard-ring, the Q-value reduction is found to be significantly reduced at RF frequencies. In continuation of this, various coupling effects for CMOS on-chip co-planar spiral inductors are presented. Simple guard-rings are shown to improve isolation between...... closely spaced adjacent inductors by approximately 10-15dB. At larger distances the gain of having a guard-ring reduces and eventually the gain reduces to zero dB. For modeling purposes an extended lumped element model is proposed and found to fit very well with crosstalk measurements....

  19. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    OpenAIRE

    Danson John; Plett Calvin; Tait Niall

    2006-01-01

    A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA) operating at GHz and GHz, and a tunable power amplifier (PA) at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB no...

  20. The development of terahertz superconducting hot-electron bolometric mixers

    International Nuclear Information System (INIS)

    Semenov, Alexei; Richter, Heiko; Smirnov, Konstantin; Voronov, Boris; Gol'tsman, Gregory; Huebers, Heinz-Wilhelm

    2004-01-01

    We present recent advances in the development of NbN hot-electron bolometric (HEB) mixers for flying terahertz heterodyne receivers. Three important issues have been addressed: the quality of the source NbN films, the effect of the bolometer size on the spectral properties of different planar feed antennas, and the local oscillator (LO) power required for optimal operation of the mixer. Studies of the NbN films with an atomic force microscope indicated a surface structure that may affect the performance of the smallest mixers. Measured spectral gain and noise temperature suggest that at frequencies above 2.5 THz the spiral feed provides better overall performance than the double-slot feed. Direct measurements of the optimal LO power support earlier estimates made in the framework of the uniform mixer model

  1. Development of air pulsed ejector mixer settlers of different capacities

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, C V; Periasamy, K; Koganti, S B [Reprocessing Programme, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-06-01

    Nuclear industry has made significant contributions in the development of liquid-liquid contactors, for the separation of one or more solutes from feed solutions wherein they provide a more economical alternative compared to other unit operations. The various equipment that are used can be broadly classified into three categories: (1) mixer settlers (2) liquid pulsed sieve plate columns (3) centrifugal contactors. Each one has its own merits and demerits. Mixer settlers score over the other contactors in their simple design and reliable operation over a wide range of process conditions. Air pulsed mixer settlers of different designs are in use in the fuel reprocessing industry. The present paper describes the development of a new type of mixer settler based on ejector as the mixing device. (author). 7 refs., 3 figs., 1 tab.

  2. Scale-up of mixer-settler for uranium extraction

    International Nuclear Information System (INIS)

    Santana, A.O. de.

    1990-05-01

    The aim of this work was to obtain scale-up relations for a box type mixer-settler used in uranium extraction process for chloridric leaches. Three box type units with different sizes and with the same geometry were used for scale-up of the mixer. The correlation between extraction rate and specific power input, D/T ratio (stirrer diameter/mixer length) and residence time were experimentally obtained. The results showed that the extraction increases with power input for a constant value of D/T equal to 1/3, remaining however independent from mixer sizes for a specific value of power input. This behavior was observed for power input values ranging from 100 to 750 w/m 9 . (author). 23 refs, 22 figs, 23 tabs

  3. Electrical Interconnections Through CMOS Wafers

    DEFF Research Database (Denmark)

    Rasmussen, Frank Engel

    2003-01-01

    Chips with integrated vias are currently the ultimate miniaturizing solution for 3D packaging of microsystems. Previously the application of vias has almost exclusively been demonstrated within MEMS technology, and only a few of these via technologies have been CMOS compatible. This thesis...... describes the development of vias through a silicon wafer containing Complementary Metal-Oxide Semiconductor (CMOS) circuitry. Two via technologies have been developed and fabricated in blank silicon wafers; one based on KOH etching of wafer through-holes and one based on DRIE of wafer through......-holes. The most promising of these technologies --- the DRIE based process --- has been implemented in CMOS wafers containing hearing aid amplifiers. The main challenges in the development of a CMOS compatible via process depend on the chosen process for etching of wafer through-holes. In the case of KOH etching...

  4. Mixer-settler performance evaluation in actinide extraction

    International Nuclear Information System (INIS)

    Camilo, R.L.; Goncalves, M.A.; Carvalho, E.I.; Nakazone, A.K.; Araujo, B.F. de; Araujo, J.A.

    1988-07-01

    This paper deals with four conceptions of mixer-settlers used for actinide purification and recovery. By means of the uranium concentration profiles in the organic and aqueous phases, the evaluation of each mixer-settler was made. The main purpose of this work is the data acquisition, for adapting the different contactor types to actinide recovery by liquid-liquid extraction, in the nuclear fuel cycle. (autor) [pt

  5. Development of digital low level rf system

    International Nuclear Information System (INIS)

    Michizono, Shinichiro; Anami, Shozo; Katagiri, Hiroaki; Fang, Zhigao; Matsumoto, Toshihiro; Miura, Takako; Yano, Yoshiharu; Yamaguchi, Seiya; Kobayashi, Tetsuya

    2008-01-01

    One of the biggest advantages of the digital low level rf (LLRF) system is its flexibility. Owing to the recent rapid progress in digital devices (such as ADCs and DACs) and telecommunication devices (mixers and IQ modulators), digital LLRF system becomes popular in these 10 years. The J-PARC linac LLRF system adopted cPCI crates and FPGA based digital feedback system. Since the LLRF control of the normal conducting cavities are more difficult than super conducting cavities due to its lower Q values, fast processing using the FPGA was the essential to the feedback control. After the successful operation of J-PARC linac LLRF system, we developed the STF (ILC test facility in KEK) LLRF system. Since the klystron drives eight cavities in STF phase 1, we modified the FPGA board. Basic configuration and the performances of these systems are summarized. The future R and D projects (ILC and ERL) is also described from the viewpoints of LLRF. (author)

  6. RF applications in digital signal processing

    CERN Document Server

    Schilcher, T

    2008-01-01

    Ever higher demands for stability, accuracy, reproducibility, and monitoring capability are being placed on Low-Level Radio Frequency (LLRF) systems of particle accelerators. Meanwhile, continuing rapid advances in digital signal processing technology are being exploited to meet these demands, thus leading to development of digital LLRF systems. The rst part of this course will begin by focusing on some of the important building-blocks of RF signal processing including mixer theory and down-conversion, I/Q (amplitude and phase) detection, digital down-conversion (DDC) and decimation, concluding with a survey of I/Q modulators. The second part of the course will introduce basic concepts of feedback systems, including examples of digital cavity eld and phase control, followed by radial loop architectures. Adaptive feed-forward systems used for the suppression of repetitive beam disturbances will be examined. Finally, applications and principles of system identi cation approaches will be summarized.

  7. Observational demonstration of a high image rejection SIS mixer receiver using a new waveguide filter at 230 GHz

    Science.gov (United States)

    Hasegawa, Yutaka; Asayama, Shinichiro; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu

    2017-12-01

    A new sideband separation method was developed for use in millimeter-/submillimeter-band radio receivers using a novel waveguide frequency separation filter (FSF), which consists of two branch line hybrid couplers and two waveguide high-pass filters. The FSF was designed to allow the radio frequency (RF) signal to pass through to an output port when the frequency is higher than a certain value (225 GHz), and to reflect the RF signal back to another output port when the frequency is lower. The FSF is connected to two double sideband superconductor-insulator-superconductor (SIS) mixers, and an image rejection ratio (IRR) is determined by the FSF characteristics. With this new sideband separation method, we can achieve good and stable IRR without the balancing two SIS mixers such as is necessary for conventional sideband-separating SIS mixers. To demonstrate the applicability of this method, we designed and developed an FSF for simultaneous observations of the J = 2-1 rotational transition lines of three CO isotopes (12CO, 13CO, and C18O): the 12CO line is in the upper sideband and the others are in the lower sideband with an intermediate-frequency range of 4-8 GHz at the radio frequency of 220/230 GHz. This FSF was then installed in the receiver system of the 1.85 m radio telescope of Osaka Prefecture University, and was used during the 2014 observation season. The observation results indicate that the IRR of the proposed receiver is 25 dB or higher for the 12CO line, and no significant fluctuation larger than 1 dB in the IRR was observed throughout the season. These results demonstrate the practical utility of the FSF receiver for observations like extensive molecular cloud surveys in specified lines with a fixed frequency setting.

  8. Spectrometric Analysis for Pulse Jet Mixer Testing

    International Nuclear Information System (INIS)

    ZEIGLER, KRISTINE

    2004-01-01

    The Analytical Development Section (ADS) was tasked with providing support for a Hanford River Protection Program-Waste Treatment Program (RPP-WTP) project test involving absorption analysis for non-Newtonian pulse jet mixer testing for small scale (PJM) and prototype (CRV) tanks with sparging. Tanks filled with clay were mixed with various amounts of powdered dye as a tracer. The objective of the entire project was to determine the best mixing protocol (nozzle velocity, number of spargers used, total air flow, etc.) by determining the percent mixed volume through the use of an ultraviolet-visible (UV-Vis) spectrometer. The dye concentration within the sample could be correlated to the volume fraction mixed in the tank. Samples were received in vials, a series of dilutions were generated from the clay, allowed to equilibrate, then centrifuged and siphoned for the supernate liquid to analyze by absorption spectroscopy. Equilibration of the samples and thorough mixing of the samples were a continuous issue with dilution curves being difficult to obtain. Despite these technical issues, useful data was obtained for evaluation of various mix conditions

  9. A Matlab-Based Graphical User Interface for Simulation and Control Design of a Hydrogen Mixer

    Science.gov (United States)

    Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A Graphical User Interface (GUI) that facilitates prediction and control design tasks for a propellant mixer is described. The Hydrogen mixer is used in rocket test stand operations at the NASA John C. Stennis Space Center. The mixer injects gaseous hydrogen (GH2) into a stream of liquid hydrogen (LH2) to obtain a combined flow with desired thermodynamic properties. The flows of GH2 and LH2 into the mixer are regulated by two control valves, and a third control valve is installed at the exit of the mixer to regulate the combined flow. The three valves may be simultaneously operated in order to achieve any desired combination of total flow, exit temperature and mixer pressure within the range of operation. The mixer, thus, constitutes a three-input, three-output system. A mathematical model of the mixer has been obtained and validated with experimental data. The GUI presented here uses the model to predict mixer response under diverse conditions.

  10. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  11. Large area CMOS image sensors

    International Nuclear Information System (INIS)

    Turchetta, R; Guerrini, N; Sedgwick, I

    2011-01-01

    CMOS image sensors, also known as CMOS Active Pixel Sensors (APS) or Monolithic Active Pixel Sensors (MAPS), are today the dominant imaging devices. They are omnipresent in our daily life, as image sensors in cellular phones, web cams, digital cameras, ... In these applications, the pixels can be very small, in the micron range, and the sensors themselves tend to be limited in size. However, many scientific applications, like particle or X-ray detection, require large format, often with large pixels, as well as other specific performance, like low noise, radiation hardness or very fast readout. The sensors are also required to be sensitive to a broad spectrum of radiation: photons from the silicon cut-off in the IR down to UV and X- and gamma-rays through the visible spectrum as well as charged particles. This requirement calls for modifications to the substrate to be introduced to provide optimized sensitivity. This paper will review existing CMOS image sensors, whose size can be as large as a single CMOS wafer, and analyse the technical requirements and specific challenges of large format CMOS image sensors.

  12. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  13. Research of UHPC properties prepared with industrial mixer

    Science.gov (United States)

    Šerelis, E.; Vaitkevičius, V.; Kerševičius, V.

    2017-09-01

    Ultra-high performance concrete (UHPC) mixture with advanced mechanical and durability properties was created using decent Zyklos ZZ50HE mixer. Zyklos ZZ50HE rotating pan mixer is similar to mixer which has common concrete plants. In experiment UHPC was prepared with Zyklos ZZ50HE mixer and thereafter best composition was selected and prepared with industrial HPGM 1125 mixer. Experiment results revealed that UHPC with W/C=0.29 and advanced mechanical and durability properties can be prepared. In experiment tremendous amount of micro steel fibres (up to 147 kg/m3) were incorporated in UHPC. Concrete with excellent salt scaling resistance and great mechanical properties was obtained. Compressive strength was increased about 30 % from 116 MPa to 150 MPa and flexural strength was increased about 5 times from 6.7 to 36.2 MPa. Salt-scaling resistance at 40 cycles in 3 % NaCl solution varied from 0.006 kg/m2 to 0.197 kg/m2. There were a few attempts to create UHPC and UHPFRC with decent technology, however, unsuccessfully till now. In the world practice this new material is currently used in the construction of bridges and viaducts.

  14. Study on velocity distribution in a pool by submersible mixers

    International Nuclear Information System (INIS)

    Tian, F; Shi, W D; Lu, X N; Chen, B; Jiang, H

    2012-01-01

    To study the distribution of submersible mixers and agitating effect in the sewage treatment pool, Pro/E software was utilized to build the three-dimensional model. Then, the large-scale computational fluid dynamics software FLUENT6.3 was used. ICEM software was used to build unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. The macro fluid field and each section velocity flow field distribution were analyzed to observe the efficiency of each submersible mixer. The average velocity and mixing area in the sewage pool were studied simultaneously. Results show that: the preferred project B, two submersible mixers speed is 980 r/min, and setting angles are all 30°. Fluid mixing area in the pool has reached more than 95%. Under the action of two mixers, the fluid in the sewage pool form a continuous circulating water flow. The fluid is mixed adequately and average velocity of fluid in the pool is at around 0.241m/s, which agreed with the work requirements. Consequently it can provide a reference basis for practical engineering application of submersible mixers by using this method.

  15. rf beam-current, -phase, and -position monitors

    International Nuclear Information System (INIS)

    Young, L.

    1984-01-01

    A prototype rf beam monitor has been tested on the Racetrack Microtron's (RTM) 100 kV injector beam line at the National Bureau of Standards (NBS). This beam monitor is capable of measuring the current, the relative phase, and the position of the beam. The beam is bunched at 2380 MHz for acceleration by the linac in the injector beam line. This train of beam bunches passing through the beam monitor cavities excites the cavities at this resonance frequency of 2380 MHz. Probes in the cavities couple some of the beam-excited rf power out of the cavities. This rf power can be amplified if necessary and then analyzed by a double balanced mixer (DBM). The DBM can also be used as a phase detector. The effective shunt impedance of the cavities was measured with the CW beam. For the position monitor cavity, the shunt impedance is proportional to the displacement from the axis. The measured response of the prototype rf beam current monitor setup is a linear function of beam current. Response of the rf beam-position monitor is also shown

  16. Signal processing circuitry for CMOS-based SAW gas sensors with low power and area

    International Nuclear Information System (INIS)

    Mohd-Yasin, F.; Tye, K.F.; Reaz, M.B.I.

    2009-06-01

    The design and development of interface circuitries for CMOS-based SAW gas sensor is presented in this paper. The SAW gas sensor devices typically run at RF, requiring most designs to have complex signal conditioning circuitry. The proposed approach attempts to design a simple architecture with reduced power consumption. The SAW gas sensors operate at 354MHz. Simulation data show that the interface circuitries are ten times smaller with lower power supply, comparing to existing work. (author)

  17. Linearization and efficiency enhancement techniques for silicon power amplifiers from RF to mmW

    CERN Document Server

    Kerhervé, Eric

    2015-01-01

    This book provides an overview of current efficiency enhancement and linearization techniques for silicon power amplifier designs. It examines the latest state of the art technologies and design techniques to address challenges for RF cellular mobile, base stations, and RF and mmW WLAN applications. Coverage includes material on current silicon (CMOS, SiGe) RF and mmW power amplifier designs, focusing on advantages and disadvantages compared with traditional GaAs implementations. With this book you will learn: The principles of linearization and efficiency improvement techniquesThe arch

  18. RF-Frontend Design for Process-Variation-Tolerant Receivers

    CERN Document Server

    Sakian, Pooyan; van Roermund, Arthur

    2012-01-01

    This book discusses a number of challenges faced by designers of wireless receivers, given complications caused by the shrinking of electronic and mobile devices circuitry into ever-smaller sizes and the resulting complications on the manufacturability, production yield, and the end price of the products.  The authors describe the impact of process technology on the performance of the end product and equip RF designers with countermeasures to cope with such problems.  The mechanisms by which these problems arise are analyzed in detail and novel solutions are provided, including design guidelines for receivers with robustness to process variations and details of circuit blocks that obtain the required performance level. Describes RF receiver frontends and their building blocks from a system- and circuit-level perspective; Provides system-level analysis of a generic RF receiver frontend with robustness to process variations; Includes details of CMOS circuit design at 60GHz and reconfigurable circuits at 60GHz...

  19. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-01-01

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  20. A monolithic 180 nm CMOS dosimeter for In Vivo Dosimetry medical application

    International Nuclear Information System (INIS)

    Villani, E.G.; Crepaldi, M.; DeMarchi, D.; Gabrielli, A.; Khan, A.; Pikhay, E.; Roizin, Y.; Rosenfeld, A.; Zhang, Z.

    2014-01-01

    The design and development of a monolithic system-on-chip dosimeter fabricated in a standard 180 nm CMOS technology is described. The device is intended for real time In Vivo measurement of dose of radiation during radiotherapy sessions. Owing to its proposed small size, of approximately 1 mm 3 , such solution could be made in-body implantable and, as such, provide a much-enhanced high-resolution, real-time dose measurement for quality assurance in radiation therapy. The device transmits the related information on dose of radiation wirelessly to an external receiver operating in the MICS band. The various phases of this two years project, started in 2011, including the design and development of radiation sensors and integrated RF to perform the readout, will be described. - Highlights: • A novel monolithic CMOS dosimeter of size of 1 mm 3 has been proposed. • Three different fabrications using a CMOS 180 nm technology have been carried out. • Radiation tests results showed a sensitivity of 1 cGy with accuracy better than 3%. • Preliminary RF tests showed that an RF signal is detectable in free air

  1. A 24 GHz CMOS oscillator transmitter with an inkjet printed on-chip antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2016-08-15

    CMOS based RF circuits have demonstrated efficient performance over the decades. However, one bottle neck with this technology is its lossy nature for passive components such as inductors, antennas etc. Due to this drawback, passives are either implemented off chip or the designers work with the inefficient passives. This problem can be alleviated by using inkjet printing as a post process on CMOS chip. In this work, we demonstrate inkjet printing of a patterned polymer (SU8) layer on a 24 GHz oscillator chip to isolate the lossy Si substrate from the passives which are inkjet printed on top of the SU8 layer. As a proof of concept, a monopole antenna is printed on top of the SU8 layer integrating it with the oscillator through the exposed RF pads to realize an oscillator transmitter. The proposed hybrid fabrication technique can be extended to multiple dielectric and conductive printed layers to demonstrate complete RF systems on CMOS chips which are efficient, cost-effective and above all small in size. © 2016 IEEE.

  2. Antenna-coupled 30 THz hot electron bolometer mixers

    OpenAIRE

    Shcherbatenko, M.; Lobanov, Y.; Benderov, O.; Shurakov, A.; Ignatov, A.; Titova, N.; Finkel, M.; Maslennikov, S.; Kaurova, N.; Voronov, B.M.; Rodin, A.; Klapwijk, T.M.; Gol'tsman, G.N.

    2015-01-01

    We report on design and characterization of a superconducting Hot Electron Bolometer Mixer integrated with a logarithmic spiral antenna for mid-IR range observations. The antenna parameters have been adjusted to achieve the ultimate performance at 10 ?m (30 THz) range where O3, NH3, CO2, CH4, N2O, …. lines in the Earth’s atmosphere, in planetary atmospheres and in the interstellar space can be observed. The HEB mixer is made of a thin NbN film deposited onto a GaAs substrate. To couple the ra...

  3. Quantum noise in a terahertz hot electron bolometer mixer

    OpenAIRE

    Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.

    2010-01-01

    We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The ?-factor (the quantum efficiency ...

  4. AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)

    International Nuclear Information System (INIS)

    THOMAS, W.K.

    2000-01-01

    Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field

  5. CMOS MEMS Fabrication Technologies and Devices

    Directory of Open Access Journals (Sweden)

    Hongwei Qu

    2016-01-01

    Full Text Available This paper reviews CMOS (complementary metal-oxide-semiconductor MEMS (micro-electro-mechanical systems fabrication technologies and enabled micro devices of various sensors and actuators. The technologies are classified based on the sequence of the fabrication of CMOS circuitry and MEMS elements, while SOI (silicon-on-insulator CMOS MEMS are introduced separately. Introduction of associated devices follows the description of the respective CMOS MEMS technologies. Due to the vast array of CMOS MEMS devices, this review focuses only on the most typical MEMS sensors and actuators including pressure sensors, inertial sensors, frequency reference devices and actuators utilizing different physics effects and the fabrication processes introduced. Moreover, the incorporation of MEMS and CMOS is limited to monolithic integration, meaning wafer-bonding-based stacking and other integration approaches, despite their advantages, are excluded from the discussion. Both competitive industrial products and state-of-the-art research results on CMOS MEMS are covered.

  6. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  7. RF guns: a review

    International Nuclear Information System (INIS)

    Travier, C.

    1990-06-01

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  8. 7 CFR 58.228 - Dump hoppers, screens, mixers and conveyors.

    Science.gov (United States)

    2010-01-01

    ... Service 1 Equipment and Utensils § 58.228 Dump hoppers, screens, mixers and conveyors. The product contact surfaces of dump hoppers, screens, mixers and conveyors which are used in the process of transferring dry... 7 Agriculture 3 2010-01-01 2010-01-01 false Dump hoppers, screens, mixers and conveyors. 58.228...

  9. Numerical study of fluid motion in bioreactor with two mixers

    Energy Technology Data Exchange (ETDEWEB)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  10. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    Science.gov (United States)

    Hendricks, Eric, S.; Seidel, Jonathan, A.

    2012-01-01

    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.

  11. A Sideband-Separating Mixer Upgrade for ALMA Band 9

    NARCIS (Netherlands)

    Hesper, R.; Gerlofsma, G.; Mena, P.; Spaans, M.; Baryshev, A.

    2009-01-01

    The ALMA band 9 (600-720 GHz) receiver cartridge, as currently being produced, features two single-ended (dual sideband) SIS mixers in orthogonal polarisations. In the case of spectral line observations in the presence of atmospheric backgound, the integration time to reach a certain desired signal

  12. Sideband Separating Mixer for 600-720 GHz

    NARCIS (Netherlands)

    Khudchenko, Andrey; Hesper, Ronald; Barychev, Andrey; Gerlofma, Gerrit; Mena, Patricio; Zijlstra, Tony; Klapwijk, Teun; Spaans, Marco; Kooi, Jacob W.; Zhang, C; Zhang, XC; Siegel, PH; He, L; Shi, SC

    2010-01-01

    The ALMA Band 9 receiver cartridge (600-720 GHz) based on Dual Sideband (DSB) superconductor-insulator-superconductor (SIS) mixer is currently in full production. In the case of spectral line observations, the integration time to reach a certain signal-to-noise level can be reduced by about a factor

  13. Quantum noise in a terahertz hot electron bolometer mixer

    NARCIS (Netherlands)

    Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.

    2010-01-01

    We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model

  14. Numerical study of agglomerate abrasion in a tumbling mixer

    NARCIS (Netherlands)

    Thanh Nguyen, [No Value; Willemsz, Tofan; Frijlink, Henderik; Maarschalk, Kees van der Voort

    2014-01-01

    A numerical simulation using the Discrete Element Method (DEM) was performed to investigate the phenomena concerning the abrasion and breakage of agglomerates in a diffusion powder mixer. Agglomerates were created by defining a single structure of particles with bonds of different strengths using

  15. PEMISAHAN Zr – Hf SECARA SINAMBUNG MENGGUNAKAN MIXER SETTLER

    Directory of Open Access Journals (Sweden)

    Dwi Biyantoro

    2017-01-01

    Full Text Available ABSTRAK PEMISAHAN Zr – Hf SECARA SINAMBUNG MENGGUNAKANMIXER SETTLER. Telah dilakukan pemisahanZr – Hf secara sinambung menggunakan pengaduk pengenap (mixer settler 16 stage. Larutan umpan adalah zirkon nitrat dengan kadar Zr = 30786 ppm dan Hf = 499 ppm. Ekstraktan dipakai adalah solven 60 % TBP dalam kerosen dan larutan scrubbingyang dipakai adalah asam nitrat 1 M. Umpan masuk pada stageke 5 dikontakkan secara berlawanan arah dengan solven masuk pada stage ke 16 dan larutan scrubbing masuk pada stage ke 1. Tujuan penelitian ini adalah memisahkan unsur Zr dan Hf dari hasil olah pasir zirkon menggunakan solven TBP dengan alat mixer settler16 stage. Analisis umpan dan hasil proses pemisahan untuk zirkonium (Zr dilakukan dengan menggunakan alat pendar sinar-X, sedangkananalisis unsur hafnium (Hf menggunakan Analisis Pengaktifan Neutron (APN. Parameter penelitian dilakukan dengan variasi keasaman asam nitrat dalam umpan dan variasi waktu pada berbagai laju pengadukan. Hasil penelitian pemisahan unsur Zr dengan Hf diperolehkondisi optimum pada keasaman umpan 4 N HNO3, keseimbangan dicapai setelah 3jam dan laju pengadukan 3300 rpm. Hasil ekstrak  unsur zirkon (Zr diperoleh kadar sebesar 28577 ppm dengan efisiensi 92,76 % serta kadar pengotor hafnium (Hf sebesar 95 ppm. Kata Kunci: pemisahan Zr, Hf, ekstraksi, mixer settler, alat pendar sinar-X, APN. ABSTRACT SEPARATION of Zr - Hf CONTINUOUSLY USE THE MIXER SETTLER. Separation of Zr - Hf continuously using mixer settler 16 stage has been done. The feed solution is zircon nitrate concentration of Zr = 30786 ppm  and Hf = 499 ppm. As the solvent used extractant 60 % TBP in 40 % kerosene. Nitric acid solution used srubbing 1 M. The feed entered into stage to 5 is contacted with solvents direction on the stage to 16 and the scrubbing solution enter the stage to 1. The purpose of this study is to separate Zr and Hf of the results from the process of zircon sand using solvent TBP using 16 stage

  16. Acceptance test report: Field test of mixer pump for 241-AN-107 caustic addition project

    International Nuclear Information System (INIS)

    Leshikar, G.A.

    1997-01-01

    The field acceptance test of a 75 HP mixer pump (Hazleton serial number N-20801) installed in Tank 241-AN-107 was conducted from October 1995 thru February 1996. The objectives defined in the acceptance test were successfully met, with two exceptions recorded. The acceptance test encompassed field verification of mixer pump turntable rotation set-up and operation, verification that the pump instrumentation functions within established limits, facilitation of baseline data collection from the mixer pump mounted ultrasonic instrumentation, verification of mixer pump water flush system operation and validation of a procedure for its operation, and several brief test runs (bump) of the mixer pump

  17. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-01-01

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  18. RF Energy Compressor

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1980-02-01

    The RF Energy Compressor, REC described here, transforms cw rf into periodic pulses using an energy storage cavity, ESC, whose charging is controlled by 180 0 bi-phase modulation, PSK, and external Q switching, βs. Compression efficiency, C/sub e/, of 100% can be approached at any compression factor C/sub f/

  19. Practical RF system design

    CERN Document Server

    Egan, William F

    2003-01-01

    he ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily available in the existing literature. The author, an expert in the field of RF module and system design, provides powerful techniques for analyzing real RF systems, with emphasis on some that are currently not well understood. Combining theoretical results and models with examples, he challenges readers to address such practical issues as: * How standing wave ratio affects system gain * How noise on a local oscillator will affec...

  20. Design of a broadband passive X-band double-balanced mixer in SiGe HBT technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2014-01-01

    ) and the radio frequency (RF) port. A break out of the Marchand balun is measured. This demonstrates good phase and magnitude match of 0.7° and 0.11 dB, respectively. The Marchand baluns are broadband with a measured 3 dB bandwidth of 6.4 GHz, while still having a magnitude imbalance better than 0.4 d...... frequency of 8.5 GHz is −9.8 dB at an LO drive level of 15 dBm. The whole mixer is very broadband with 3 dB bandwidth from 7 to 12 GHz covering the entire X-band. The LO–IF, RF–IF, and RF–LO isolation is better than 46, 36, and 36 dB, respectively, in the entire band of operation.......B and a phase imbalance better than 5°. Unfortunately with a rather high loss of 2.5 dB, mainly due to the low Q-factor of the inductors used. The mixer is optimized for use in doppler radars and is highly linear with a 1 dB compression point above 12 dBm IIP2 of 66 dBm. The conversion gain at the center...

  1. Neutron absorbed dose in a pacemaker CMOS

    International Nuclear Information System (INIS)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L.

    2012-01-01

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10 -17 Gy per neutron emitted by the source. (Author)

  2. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  3. CMOS test and evaluation a physical perspective

    CERN Document Server

    Bhushan, Manjul

    2015-01-01

    This book extends test structure applications described in Microelectronic Test Struc­tures for CMOS Technology (Springer 2011) to digital CMOS product chips. Intended for engineering students and professionals, this book provides a single comprehensive source for evaluating CMOS technology and product test data from a basic knowledge of the physical behavior of the constituent components. Elementary circuits that exhibit key properties of complex CMOS chips are simulated and analyzed, and an integrated view of design, test and characterization is developed. Appropriately designed circuit monitors embedded in the CMOS chip serve to correlate CMOS technology models and circuit design tools to the hardware and also aid in test debug. Impact of silicon process variability, reliability, and power and performance sensitivities to a range of product application conditions are described. Circuit simulations exemplify the methodologies presented, and problems are included at the end of the chapters.

  4. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  5. A submillimetre-wave SIS mixer using NbN/MgO/NbN trilayers grown epitaxially on an MgO substrate

    CERN Document Server

    Uzawa, Y; Saito, A; Takeda, M; Wang, Z

    2002-01-01

    We have designed, fabricated and tested a quasi-optical superconductor-insulator-superconductor (SIS) mixer employing distributed NbN/MgO/NbN tunnel junctions and NbN/MgO/NbN microstriplines at submillimetre-wave frequencies. These trilayers were fabricated by dc- and rf-magnetron sputtering on an MgO substrate at ambient temperature so that the NbN and MgO films were grown epitaxially. Our SIS mixer consists of an MgO hyperhemispherical lens with an antireflection cap and a self-complementary log-periodic antenna made of a single-crystal NbN film, on which the distributed SIS junctions and the two-section impedance transformers were mirror-symmetrically placed at the feed point of the antenna. As designed, the junctions are 0.6 mu m wide and 15.5 mu m long, which is sufficient to absorb the incoming signal along this lossy transmission line, assuming a current density of 10 kA cm sup - sup 2. The mixer showed good I-V characteristics, with subgap-to-normal resistance ratios of about 13, although weak-link br...

  6. CMOS Analog IC Design: Fundamentals

    OpenAIRE

    Bruun, Erik

    2018-01-01

    This book is intended for use as the main textbook for an introductory course in CMOS analog integrated circuit design. It is aimed at electronics engineering students who have followed basic courses in mathematics, physics, circuit theory, electronics and signal processing. It takes the students directly from a basic level to a level where they can start working on simple analog IC design projects or continue their studies using more advanced textbooks in the field. A distinct feature of thi...

  7. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  8. Cancellation of OpAmp virtual ground imperfections by a negative conductance applied to improve RF receiver linearity

    NARCIS (Netherlands)

    Mahrof, D.H.; Klumperink, Eric A.M.; Ru, Z.; Oude Alink, M.S.; Nauta, Bram

    2014-01-01

    High linearity CMOS radio receivers often exploit linear V-I conversion at RF, followed by passive down-mixing and an OpAmp-based Transimpedance Amplifier at baseband. Due to nonlinearity and finite gain in the OpAmp, virtual ground is imperfect, inducing distortion currents. This paper proposes a

  9. High-voltage CMOS detectors

    International Nuclear Information System (INIS)

    Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.

    2016-01-01

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented. - Highlights: • High-voltage CMOS sensors will be used in Mu3e experiment at PSI (Switzerland). • HVCMOS sensors are considered as an option for ATLAS (LHC/CERN) and CLIC (CERN). • Efficiency of more than 95% (99%) has been measured with (un-)irradiated chips. • The time resolution measured in the beam tests is nearly 100 ns. • We plan to improve time resolution and efficiency by using high-resistive substrate.

  10. High-voltage CMOS detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ehrler, F., E-mail: felix.ehrler@student.kit.edu; Blanco, R.; Leys, R.; Perić, I.

    2016-07-11

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented. - Highlights: • High-voltage CMOS sensors will be used in Mu3e experiment at PSI (Switzerland). • HVCMOS sensors are considered as an option for ATLAS (LHC/CERN) and CLIC (CERN). • Efficiency of more than 95% (99%) has been measured with (un-)irradiated chips. • The time resolution measured in the beam tests is nearly 100 ns. • We plan to improve time resolution and efficiency by using high-resistive substrate.

  11. CMOS optimization for radiation hardness

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Fossum, J.G.

    1975-01-01

    Several approaches to the attainment of radiation-hardened MOS circuits have been investigated in the last few years. These have included implanting the SiO 2 gate insulator with aluminum, using chrome-aluminum layered gate metallization, using Al 2 O 3 as the gate insulator, and optimizing the MOS fabrication process. Earlier process optimization studies were restricted primarily to p-channel devices operating with negative gate biases. Since knowledge of the hardness dependence upon processing and design parameters is essential in producing hardened integrated circuits, a comprehensive investigation of the effects of both process and design optimization on radiation-hardened CMOS integrated circuits was undertaken. The goals are to define and establish a radiation-hardened processing sequence for CMOS integrated circuits and to formulate quantitative relationships between process and design parameters and the radiation hardness. Using these equations, the basic CMOS design can then be optimized for radiation hardness and some understanding of the basic physics responsible for the radiation damage can be gained. Results are presented

  12. A Fully Integrated Bluetooth Low-Energy Transmitter in 28 nm CMOS With 36% System Efficiency at 3 dBm

    NARCIS (Netherlands)

    Babaie, M.; Kuo, F.W.; Chen, H; Cho, L.C.; Jou, C.P.; Hsueh, F.L.; Shahmohammadi, M.; Staszewski, R.B.

    2016-01-01

    We propose a new transmitter architecture for ultra-low power radios in which the most energy-hungry RF circuits operate at a supply just above a threshold voltage of CMOS transistors. An all-digital PLL employs a digitally controlled oscillator with switching current sources to reduce supply

  13. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  14. Microelectronic test structures for CMOS technology

    CERN Document Server

    Ketchen, Mark B

    2011-01-01

    Microelectronic Test Structures for CMOS Technology and Products addresses the basic concepts of the design of test structures for incorporation within test-vehicles, scribe-lines, and CMOS products. The role of test structures in the development and monitoring of CMOS technologies and products has become ever more important with the increased cost and complexity of development and manufacturing. In this timely volume, IBM scientists Manjul Bhushan and Mark Ketchen emphasize high speed characterization techniques for digital CMOS circuit applications and bridging between circuit performance an

  15. Versatile rf controller

    International Nuclear Information System (INIS)

    Howard, D.

    1985-05-01

    The low level rf system developed for the new Bevatron local injector provides precise control and regulation of the rf phase and amplitude for three 200 MHz linac cavities. The main features of the system are: extensive use of inexpensive, off-the-shelf components, ease of maintenance, and adaptability to a wide range of operation frequencies. The system utilizes separate function, easily removed rf printed circuit cards interconnected via the edge connectors. Control and monitoring are available both locally and through the computer. This paper will describe these features as well as the few component changes that would be required to adapt the techniques to other operating frequencies. 2 refs

  16. A fast-hopping 3-band CMOS frequency synthesizer for MB-OFDM UWB system

    International Nuclear Information System (INIS)

    Zheng Yongzheng; Xia Lingli; Li Weinan; Huang Yumei; Hong Zhiliang

    2009-01-01

    A fast-hopping 3-band (mode 1) multi-band orthogonal frequency division multiplexing ultra-wideband frequency synthesizer is presented. This synthesizer uses two phase-locked loops for generating steady frequencies and one quadrature single-sideband mixer for frequency shifting and quadrature frequency generation. The generated carriers can hop among 3432 MHz, 3960 MHz, and 4488 MHz. Implemented in a 0.13 μm CMOS process, this fully integrated synthesizer consumes 27 mA current from a 1.2 V supply. Measurement shows that the out-of-band spurious tones are below -50 dBc, while the in-band spurious tones are below -34 dBc. The measured hopping time is below 2 ns. The core die area is 1.0 x 1.8 mm 2 .

  17. A fast-hopping 3-band CMOS frequency synthesizer for MB-OFDM UWB system

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yongzheng; Xia Lingli; Li Weinan; Huang Yumei; Hong Zhiliang, E-mail: yumeihuang@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-09-15

    A fast-hopping 3-band (mode 1) multi-band orthogonal frequency division multiplexing ultra-wideband frequency synthesizer is presented. This synthesizer uses two phase-locked loops for generating steady frequencies and one quadrature single-sideband mixer for frequency shifting and quadrature frequency generation. The generated carriers can hop among 3432 MHz, 3960 MHz, and 4488 MHz. Implemented in a 0.13 {mu}m CMOS process, this fully integrated synthesizer consumes 27 mA current from a 1.2 V supply. Measurement shows that the out-of-band spurious tones are below -50 dBc, while the in-band spurious tones are below -34 dBc. The measured hopping time is below 2 ns. The core die area is 1.0 x 1.8 mm{sup 2}.

  18. Numerical simulation and PEPT measurements of a 3D conical helical-bla de mixer: A high potential solids mixer for solid-state fermentation

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Schutyser, M.A.I.; Briels, Willem J.; Rinzema, A.; Boom, R.M.; Boom, R.M.

    2003-01-01

    Helical-blade solids mixers have a large potential as bioreactors for solid-state fermentation (SSF). Fundamental knowledge of the flow and mixing behavior is required for robust operation of these mixers. In this study predictions of a discrete particle model were compared to experiments with

  19. Numerical simulation and PEPT measurements of a 3D conical helical-blade mixer: a high potential solids mixer for solid-state fermentation

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Briels, W.J.; Rinzema, A.; Boom, R.M.

    2003-01-01

    Helical-blade solids mixers have a large potential as bioreactors for solid-state fermentation (SSF). Fundamental knowledge of the flow and mixing behavior is required for robust operation of these mixers. In this study predictions of a discrete particle model were compared to experiments with

  20. Development of Low-Noise Small-Area 24 GHz CMOS Radar Sensor

    Directory of Open Access Journals (Sweden)

    Min Yoon

    2016-01-01

    Full Text Available We present a low-noise small-area 24 GHz CMOS radar sensor for automotive collision avoidance. This sensor is based on direct-conversion pulsed-radar architecture. The proposed circuit is implemented using TSMC 0.13 μm RF (radio frequency CMOS (fT/fmax=120/140 GHz technology, and it is powered by a 1.5 V supply. This circuit uses transmission lines to reduce total chip size instead of real bulky inductors for input and output impedance matching. The layout techniques for RF are used to reduce parasitic capacitance at the band of 24 GHz. The proposed sensor has low cost and low power dissipation since it is realized using CMOS process. The proposed sensor showed the lowest noise figure of 2.9 dB and the highest conversion gain of 40.2 dB as compared to recently reported research results. It also showed small chip size of 0.56 mm2, low power dissipation of 39.5 mW, and wide operating temperature range of −40 to +125°C.

  1. Rheumatoid factor (RF)

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003548.htm Rheumatoid factor (RF) To use the sharing features on this ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  2. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  3. Influence of melt mixer on injection molding of thermoset elastomers

    Science.gov (United States)

    Rochman, Arif; Zahra, Keith

    2016-10-01

    One of the drawbacks in injection molding is that the plasticizing screw is short such that polymers having high concentrations of additives, such as thermoset elastomers, might not mix homogeneously within the short period of time during the plasticizing stage. In this study, various melt mixers inside the nozzle chamber, together forming a mixing nozzle, were developed. Three different materials were investigated, namely nitrile butadiene rubber (NBR), ethylene propylene-diene monomer (EPDM) and fluorocarbon (FKM). The use of these melt mixers resulted in better homogeneity and properties of the molded parts despite a curing time reduction of 10 s. This was due to the increase in mixing and shearing introduced a higher rate of crosslinking formation in the molded parts.

  4. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  5. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-05-01

    This paper covers RF power sources for accelerator applications. The approach has been with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. This paper is confined to electron-positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. 11 refs., 13 figs

  6. Terahertz hot electron bolometer waveguide mixers for GREAT

    OpenAIRE

    Pütz, P.; Honingh, C. E.; Jacobs, K.; Justen, M.; Schultz, M.; Stutzki, J.

    2012-01-01

    Supplementing the publications based on the first-light observations with the German Receiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on the...

  7. A general numerical analysis program for the superconducting quasiparticle mixer

    Science.gov (United States)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1986-01-01

    A user-oriented computer program SISCAP (SIS Computer Analysis Program) for analyzing SIS mixers is described. The program allows arbitrary impedance terminations to be specified at all LO harmonics and sideband frequencies. It is therefore able to treat a much more general class of SIS mixers than the widely used three-frequency analysis, for which the harmonics are assumed to be short-circuited. An additional program, GETCHI, provides the necessary input data to program SISCAP. The SISCAP program performs a nonlinear analysis to determine the SIS junction voltage waveform produced by the local oscillator. The quantum theory of mixing is used in its most general form, treating the large signal properties of the mixer in the time domain. A small signal linear analysis is then used to find the conversion loss and port impedances. The noise analysis includes thermal noise from the termination resistances and shot noise from the periodic LO current. Quantum noise is not considered. Many aspects of the program have been adequately verified and found accurate.

  8. Design of CMOS RFIC ultra-wideband impulse transmitters and receivers

    CERN Document Server

    Nguyen, Cam

    2017-01-01

    This book presents the design of ultra-wideband (UWB) impulse-based transmitter and receiver frontends, operating within the 3.1-10.6 GHz frequency band, using CMOS radio-frequency integrated-circuits (RFICs). CMOS RFICs are small, cheap, low power devices, better suited for direct integration with digital ICs as compared to those using III-V compound semiconductor devices. CMOS RFICs are thus very attractive for RF systems and, in fact, the principal choice for commercial wireless markets.  The book comprises seven chapters. The first chapter gives an introduction to UWB technology and outlines its suitability for high resolution sensing and high-rate, short-range ad-hoc networking and communications. The second chapter provides the basics of CMOS RFICs needed for the design of the UWB RFIC transmitter and receiver presented in this book. It includes the design fundamentals, lumped and distributed elements for RFIC, layout, post-layout simulation, and measurement. The third chapter discusses the basics of U...

  9. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    Directory of Open Access Journals (Sweden)

    Danson John

    2006-01-01

    Full Text Available A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA operating at GHz and GHz, and a tunable power amplifier (PA at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB noise figure. MEMS switches are used to implement a variable matching network that allows the PA to realize up to 37% PAE improvement at low input powers.

  10. Photoresponse analysis of the CMOS photodiodes for CMOS x-ray image sensor

    International Nuclear Information System (INIS)

    Kim, Young Soo; Ha, Jang Ho; Kim, Han Soo; Yeo, Sun Mok

    2012-01-01

    Although in the short term CMOS active pixel sensors (APSs) cannot compete with the conventionally used charge coupled devices (CCDs) for high quality scientific imaging, recent development in CMOS APSs indicate that CMOS performance level of CCDs in several domains. CMOS APSs possess thereby a number of advantages such as simpler driving requirements and low power operation. CMOS image sensors can be processed in standard CMOS technologies and the potential of on-chip integration of analog and digital circuitry makes them more suitable for several vision systems where system cost is of importance. Moreover, CMOS imagers can directly benefit from on-going technological progress in the field of CMOS technologies. Due to these advantages, the CMOS APSs are currently being investigated actively for various applications such as star tracker, navigation camera and X-ray imaging etc. In most detection systems, it is thought that the sensor is most important, since this decides the signal and noise level. So, in CMOS APSs, the pixel is very important compared to other functional blocks. In order to predict the performance of such image sensor, a detailed understanding of the photocurrent generation in the photodiodes that comprise the CMOS APS is required. In this work, we developed the analytical model that can calculate the photocurrent generated in CMOS photodiode comprising CMOS APSs. The photocurrent calculations and photo response simulations with respect to the wavelength of the incident photon were performed using this model for four types of photodiodes that can be fabricated in standard CMOS process. n + /p - sub and n + /p - epi/p - sub photodiode show better performance compared to n - well/p - sub and n - well/p - epi/p - sub due to the wider depletion width. Comparing n + /p - sub and n + /p - epi/p - sub photodiode, n + /p - sub has higher photo-responsivity in longer wavelength because of the higher electron diffusion current

  11. JPL CMOS Active Pixel Sensor Technology

    Science.gov (United States)

    Fossum, E. R.

    1995-01-01

    This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.

  12. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starch – starch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  13. Research on Mixer Parametric Modeling System Based on Redevelopment of ANSYS

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available In this paper, the mixer parametric modeling system software was developed by using VB which was taken as the foreground development program, and the paper combined with ANSYS software to create the finite element model of mixer blade and cylinder for the following numerical simulation of the flow field and parameter optimization of mixer. The software user interface was developed by VB and the pre-process model was created by invoking APDL of ANSYS in background. Therefore, the operation of modeling, meshing, component-building of mixer blade and cylinder were completed by using APDL and the graphic and text were outputted and displayed on the mixer parametric modeling system user interface which was developed by VB. Practice proved that it is convenient to modify the mixer solid model created by the parametric design language of ANSYS due to the similar structure.

  14. Hybrid CMOS/Molecular Integrated Circuits

    Science.gov (United States)

    Stan, M. R.; Rose, G. S.; Ziegler, M. M.

    CMOS silicon technologies are likely to run out of steam in the next 10-15 years despite revolutionary advances in the past few decades. Molecular and other nanoscale technologies show significant promise but it is unlikely that they will completely replace CMOS, at least in the near term. This chapter explores opportunities for using CMOS and nanotechnology to enhance and complement each other in hybrid circuits. As an example of such a hybrid CMOS/nano system, a nanoscale programmable logic array (PLA) based on majority logic is described along with its supplemental CMOS circuitry. It is believed that such systems will be able to sustain the historical advances in the semiconductor industry while addressing manufacturability, yield, power, cost, and performance challenges.

  15. Optoelectronic circuits in nanometer CMOS technology

    CERN Document Server

    Atef, Mohamed

    2016-01-01

    This book describes the newest implementations of integrated photodiodes fabricated in nanometer standard CMOS technologies. It also includes the required fundamentals, the state-of-the-art, and the design of high-performance laser drivers, transimpedance amplifiers, equalizers, and limiting amplifiers fabricated in nanometer CMOS technologies. This book shows the newest results for the performance of integrated optical receivers, laser drivers, modulator drivers and optical sensors in nanometer standard CMOS technologies. Nanometer CMOS technologies rapidly advanced, enabling the implementation of integrated optical receivers for high data rates of several Giga-bits per second and of high-pixel count optical imagers and sensors. In particular, low cost silicon CMOS optoelectronic integrated circuits became very attractive because they can be extensively applied to short-distance optical communications, such as local area network, chip-to-chip and board-to-board interconnects as well as to imaging and medical...

  16. Turbulent measurements in the lobe mixer of a turbofan engine. Turbofan engine lobe mixer nagare no ranryu keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Makoto; Ogawa, Yuji; Arakawa, Chuichi; Tagori, Tetsuo [Ishikawajima-Harima Heavy Industries, Co., Ltd., Tokyo, (Japan) Nippon Steel Corp., Tokyo, (Japan) The Univ. of Tokyo, Tokyo, (Japan). Faculty of Engineering The Univ. of Tsukuba, Tsukuba, (Japan)

    1990-01-25

    In order to examine the flow generated by the lobe mixer of a turbofan engine precisely, after measuring a three dimensional turbulent flow by a hot-wire anemometer, the mixing process of a bypass flow and a core flow with cross-sectional vortexes, and factors generating the vortex were clarified experimentally using the scale model of an exhaust duct with the lobe mixer. As a result, the mixing process was strongly affected by a lobe tip figure and a lobe figure near a center-body, and affected by the minimum gap between the lobe and center-body. The subsequent mixing process was scarcely affected by the ratio of a core flow velocity to a bypass flow one, although strongly affected by flow conditions on a lobe surface. Since the lobe mixer promoted the mixing around a center axis shifting a fast core flow outwards, it was unfavorable to mixing, however, it was expected to be useful for reducing engine jet noise. 3 refs., 7 figs.

  17. Calculation of lobe mixer flow with reynolds stress model. Oryoku hoteishiki model ni yoru lobe mixer ryu no suchi keisan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Makoto; Arakawa, Chuichi; Tagori, Tetsuo [Ishikawajima-Harima Heavy Industries, Co., Ltd., Tokyo (Japan) Univ. of Tokyo, Tokyo (Japan). Faculty of Engineering Univ. of Tsukuba, Tsukuba (Japan)

    1990-02-25

    It is considered that exhaust gas energy of turbofan engine is partly collected to realize the improvement of propulsion efficiency together with the reduction of noise appeared by the change in velocity distribution of exhaust gas flow. Then Lobe mixer was studied and its effectiveness was widely recognized, however the development of more realistic prediction method of exhaust nozzle system including Lobe mixer, is not completed yet. The stress equation model with low Reynolds Number which is easily used by the expansion of Launder Reece Rodi model in three dimension coordinate system was newly constructed. Applicability of the stress equation in more complicated flow field was greatly improved. While the above model was applied to Lobe mixer system, then the qualitative reproduction of mixing process accompanied with flow around Lobe and longitudinal eddy of core or bi-pass flow, was realized. There is room for improvement of pressure strain correlation term and behavior of Reynolds stress very close by wall surface in this model. 16 refs., 9 figs., 1 tab.

  18. CMOS foveal image sensor chip

    Science.gov (United States)

    Bandera, Cesar (Inventor); Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Xia, Shu (Inventor)

    2002-01-01

    A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.

  19. MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY

    International Nuclear Information System (INIS)

    Kane, A; Hertzog, D; Baumgartel, P; Lengefeld, J; Horsley, D; Schuler, B; Bakajin, O

    2006-01-01

    The purpose of this study is to design, fabricate and optimize microfluidic mixers to investigate the kinetics of protein secondary structure formation with Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The mixers are designed to rapidly initiate protein folding reaction through the dilution of denaturant. The devices are fabricated out of fused silica, so that they are transparent in the UV. We present characterization of mixing in the fabricated devices, as well as the initial SRCD data on proteins inside the mixers

  20. Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers

    International Nuclear Information System (INIS)

    Fetterman, H.R.; Tannenwald, P.E.; Clifton, B.J.; Parker, C.D.; Fitzgerald, W.D.; Erickson, N.R.

    1978-01-01

    We have made heterodyne radiometric measurements with GaAs Schottky diode mixers, mounted in a corner-reflector configuration, over the spectral range 170 μm to 1 mm. At 400 μm, system noise temperatures of 9700 K DSB (NEP=1.4 x 10 - 19 W/Hz) and mixer noise temperatures of 5900 K have been achieved. This same quasioptical mixer has also been used to generate 10 - 7 W of tunable radiation suitable for spectroscopic applications

  1. Modeling and Characterization of VCOs with MOS Varactors for RF Transceivers

    Directory of Open Access Journals (Sweden)

    Siu Chris

    2006-01-01

    Full Text Available As more broadband wireless standards are introduced and ratified, the complexity of wireless communication systems increases, which necessitates extra care and vigilance in their design. In this paper, various aspects of popular voltage-controlled oscillators (VCOs as key components in RF transceivers are discussed. The importance of phase noise of these key blocks in the overall performance of RF transceivers is highlighted. Varactors are identified as an important component of LC-based oscillators. A new model for accumulation-mode MOS varactors is introduced. The model is experimentally verified through measurements on LC-based VCOs designed in a standard m CMOS process.

  2. Design and Fabrication of Millimeter Wave Hexagonal Nano-Ferrite Circulator on Silicon CMOS Substrate

    Science.gov (United States)

    Oukacha, Hassan

    The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of

  3. A Low-power CMOS BFSK Transceiver for Health Monitoring Systems.

    Science.gov (United States)

    Kim, Sungho; Lepkowski, William; Wilk, Seth J; Thornton, Trevor J; Bakkaloglu, Bertan

    2011-01-01

    A CMOS low-power transceiver for implantable and external health monitoring devices operating in the MICS band is presented. The LNA core has an integrated mixer in a folded configuration to reuse the bias current, allowing high linearity with a low power supply levels. The baseband strip consists of a pseudo differential MOS-C band-pass filter achieving demodulation of 150kHz-offset BFSK signals. An all digital frequency-locked loop is used for LO generation in the RX mode and for driving a class AB power amplifier in the TX mode. The MICS transceiver is designed and fabricated in a 0.18μm 1-poly, 6-metal CMOS process. The sensitivities of -70dBm and -98dBm were achieved with NF of 40dB and 11dB at the data rate of 100kb/s while consuming only 600μW and 1.5mW at 1.2V and 1.8V, respectively. The BERs are less than 10 -3 at the input powers of -70dBm at 1.2V and -98dBm at 1.8V at the data rate of 100kb/s. Finally, the output power of the transmitter is 0dBm for a power consumption of 1.8mW.

  4. A CMOS silicon spin qubit

    Science.gov (United States)

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; de Franceschi, S.

    2016-11-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  5. The FELIX RF system

    International Nuclear Information System (INIS)

    Manintveld, P.; Delmee, P.F.M.; Geer, C.A.J. van der; Meddens, B.J.H.; Meer, A.F.G. van der; Amersfoort, P.W. van

    1992-01-01

    The performance of the RF system for the Free Electron Laser for Infrared eXperiments (FELIX) is discussed. The RF system provides the input power for a triode gun (1 GHz, 100 W), a prebuncher (1 GHz, 10 kW), a buncher (3 GHz, 20 MW), and two linacs (3 GHz, 8 MW each). The pulse length in the system is 20 μs. The required electron beam stability imposes the following demands on the RF system: a phase stability better than 0.3 deg for the 1 GHz signals and better than 1 deg for the 3 GHz signals; the amplitude stability has to be better than 1% for the 1 GHz and better than 0.2% for the 3 GHz signals. (author) 3 refs.; 6 figs

  6. RF and feedback systems

    International Nuclear Information System (INIS)

    Boussard, D.

    1994-01-01

    The radiofrequency system of the Tau Charm Factory accelerating 10 11 particles per bunch and a circulating current of 0.5 A is presented. In order to produce the very short bunches required, the RF system of TCF must provide a large RF voltage (8 MV) at a frequency in the neighbourhood of 400-500 MHz. It appears very attractive to produce the high voltage required with superconducting cavities, for which wall losses are negligible. A comparison between the sc RF system proposed and a possible copper system run at an average 1 MV/m, shows the clear advantage of sc cavities for TCF. (R.P.). 2 figs,. 1 tab

  7. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  8. Conventional RF system design

    International Nuclear Information System (INIS)

    Puglisi, M.

    1994-01-01

    The design of a conventional RF system is always complex and must fit the needs of the particular machine for which it is planned. It follows that many different design criteria should be considered and analyzed, thus exceeding the narrow limits of a lecture. For this reason only the fundamental components of an RF system, including the generators, are considered in this short seminar. The most common formulas are simply presented in the text, while their derivations are shown in the appendices to facilitate, if desired, a more advanced level of understanding. (orig.)

  9. Introduction and utilization of mixer-settler for uranium purification

    International Nuclear Information System (INIS)

    Tri-Murni

    2002-01-01

    A mixer settler made by Amersham was designed to separate U from the waste arising from 9 9 M o production using enriched U > 93 % 2 35 U as the raw material to be fissioned. The separation is based on liquid-liquid extraction, organic and aqueous phase, with counter current, the solution continuously flows while the two phases are mixed and settled. This equipment consists of two cycles, the first one for separation U from fission products while the second cycle for separating U from Pu. Each cycle consists of 10 extraction stages, 6 scrubbing stages, 12 stripping stages, 1 stages for solvent washing and another 1 stage for solvent conditioning. From the first cycle to the second one is equipped with solvent washing unit so that the solvent can be used continuously. It is also equipped with micro pumps to regulate the suction and emission of the waste and feed thanks of feed and solvent, as well as burette containing the reagent. Ever since the commissioning this mixer settler has been utilized. This equipment can be utilized for U purification from heavy metals using the product of U processing as the feed material by studying the appropriate solution and applicable solvent. The same also will do for U separation from impurities is the waste of fuel production and other wastes solvent. The same also will do for U separation from impurities in the waste of fuel production and other wastes containing U generated from research activities. The centers within BATAN that can utilize this mixer settler are P2BGGN, P2TBDU, P2PLR, P3TkN and P3TM

  10. Carbon Nanotube Integration with a CMOS Process

    Science.gov (United States)

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330

  11. Design and Fabrication of an Industrial Poultry Feed Tumble Mixer

    Directory of Open Access Journals (Sweden)

    Osokam Shadrach ONYEGU

    2012-08-01

    Full Text Available This paper presents the design and fabrication of a poultry feed industrial tumble mixer. The design computations to handle a 50Kg mass of feed was done in the MS Excel environment for proper machine design approach. The machine was designed using AUTOCAD 2D/3D design software and proper material selection was done before the assembling and fabrication of parts. The efficiency of the machine, its associated cost of production and the product obtained after few minutes of mixing were outstanding, thereby, making the design acceptable and cost effective.

  12. High-Tc superconducting Josephson mixers for terahertz heterodyne detection

    International Nuclear Information System (INIS)

    Malnou, M.; Feuillet-Palma, C.; Olanier, L.; Lesueur, J.; Bergeal, N.; Ulysse, C.; Faini, G.; Febvre, P.; Sirena, M.

    2014-01-01

    We report on an experimental and theoretical study of the high-frequency mixing properties of ion-irradiated YBa 2 Cu 3 O 7 Josephson junctions embedded in THz antennas. We investigated the influence of the local oscillator power and frequency on the device performances. The experimental data are compared with theoretical predictions of the general three-port model for mixers in which the junction is described by the resistively shunted junction model. A good agreement is obtained for the conversion efficiency in different frequency ranges, spanning above and below the characteristic frequencies f c of the junctions

  13. Modeling emulsification processes in rotary-disk mixers

    Science.gov (United States)

    Laponov, S. V.; Shulaev, N. S.; Ivanov, S. P.; Bondar', K. E.; Suleimanov, D. F.

    2017-10-01

    This article presents the experimental studies results of emulsification processes in liquid-liquid systems in rotary-disk mixers, allowing regulating the distribution of dispersed particles by changing the process conditions and the ratio of the dispersed phase. It is shown that with the increase of mixer’s revolutions per minute (RPM), both the size of dispersed particles and the deviation of dispersed particles sizes from the average decrease. The increase of the dispersed particles part results in the increase of particles average sizes at the current energy consumption. Discovered relationships can be used in the design of industrial equipment and laboratory research.

  14. CMOS sensors for atmospheric imaging

    Science.gov (United States)

    Pratlong, Jérôme; Burt, David; Jerram, Paul; Mayer, Frédéric; Walker, Andrew; Simpson, Robert; Johnson, Steven; Hubbard, Wendy

    2017-09-01

    Recent European atmospheric imaging missions have seen a move towards the use of CMOS sensors for the visible and NIR parts of the spectrum. These applications have particular challenges that are completely different to those that have driven the development of commercial sensors for applications such as cell-phone or SLR cameras. This paper will cover the design and performance of general-purpose image sensors that are to be used in the MTG (Meteosat Third Generation) and MetImage satellites and the technology challenges that they have presented. We will discuss how CMOS imagers have been designed with 4T pixel sizes of up to 250 μm square achieving good charge transfer efficiency, or low lag, with signal levels up to 2M electrons and with high line rates. In both devices a low noise analogue read-out chain is used with correlated double sampling to suppress the readout noise and give a maximum dynamic range that is significantly larger than in standard commercial devices. Radiation hardness is a particular challenge for CMOS detectors and both of these sensors have been designed to be fully radiation hard with high latch-up and single-event-upset tolerances, which is now silicon proven on MTG. We will also cover the impact of ionising radiation on these devices. Because with such large pixels the photodiodes have a large open area, front illumination technology is sufficient to meet the detection efficiency requirements but with thicker than standard epitaxial silicon to give improved IR response (note that this makes latch up protection even more important). However with narrow band illumination reflections from the front and back of the dielectric stack on the top of the sensor produce Fabry-Perot étalon effects, which have been minimised with process modifications. We will also cover the addition of precision narrow band filters inside the MTG package to provide a complete imaging subsystem. Control of reflected light is also critical in obtaining the

  15. The TESLA RF System

    International Nuclear Information System (INIS)

    Choroba, S.

    2003-01-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ∼600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components

  16. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  17. Beyond the RF photogun

    NARCIS (Netherlands)

    Luiten, O.J.; Rozenzweig, J.; Travish, G.

    2003-01-01

    Laser-triggered switching of MV DC voltages enables acceleration gradients an order of magnitude higher than in state-of-the-art RF photoguns. In this way ultra-short, high-brightness electron bunches may be generated without the use of magnetic compression. The evolution of the bunch during the

  18. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G [Jefferson Lab (United States)

    2014-07-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  19. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  20. The modeling of continuous mixers. Part I: The corotating twin-screw extruder

    NARCIS (Netherlands)

    Meijer, H.E.H.; Elemans, P.H.M.

    1988-01-01

    In many operations in polymer processing, such as polymer blending, devolatilization, or incorporation of fillers in a polymeric matrix, continuous mixers are used; e.g., corotating twin-screw extruders (ZSK), Buss Cokneaders and Farrel Continuous Mixers. Theoretical analysis of these machines tends

  1. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    International Nuclear Information System (INIS)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site

  2. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site.

  3. Side-band-separating heterodyne mixer for band 9 of ALMA.

    NARCIS (Netherlands)

    Mena, F. P.; Baryshev, A. M.; Kooi, J.; Lodewijk, C. F. J.; Gerlofsma, G.; Hesper, R.; Wild, W.; Shen, XC; Lu, W; Zhang, J; Dou, WB

    2006-01-01

    Here we present the realization of a side-band-separating (2SB) heterodyne mixer for the frequency range from 602 to 720 GHz (corresponding to ALMA band 9). The mixer, in brief, consists of a quadrature hybrid, two LO injectors, two SIS junctions, and three dumping loads. All the parts were modeled

  4. First Results of the Sideband-Separating Mixer for ALMA Band 9 Upgrade

    NARCIS (Netherlands)

    Khudchenko, Andrey; Hesper, Ronald; Baryshev, Andrey; Mena, F. Patricio; Gerlofma, Gerrit; Zijlstra, Tony; Klapwijk, Teun M.; Kooi, Jacob W.; Spaans, Marco

    2011-01-01

    Last year, the design and implementation details of a new modular sideband-separating mixer block, intended as an upgrade for the current single-ended ALMA Band 9 mixers, were presented at this conference. In high-frequency observation bands like ALMA Band 9 (600-720 GHz), which is strongly

  5. Conversion Matrix Analysis of SiGe HBT Gilbert Cell Mixers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2004-01-01

    The frequency response of SiGe HBT active mixers based on the Gilbert cell topology is analyzed theoretically. The time-varying operation of the Gilbert cell mixer is taken into account by applying conversion matrix analysis. The main bandwidth limiting mechanisms experienced in SiGe HBT Gilbert ...

  6. A Passive X-Band Double Balanced Mixer Utilizing Diode Connected SiGe HBTs

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2013-01-01

    In this paper, a passive double balanced mixer in SiGe HBT technology is presented. Due to lack of suitable passive mixing elements in the technology, the mixing elements are formed by diode connected HBTs. The mixer is optimized for use in doppler radars and is highly linear with 1 dB compressio...

  7. Conversion Matrix Analysis of GaAs HEMT Active Gilbert Cell Mixers

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Johansen, Tom Keinicke; Krozer, Viktor

    2006-01-01

    In this paper, the nonlinear model of the GaAs HEMT active Gilbert cell mixer is investigated. Based on the model, the conversion gain expression of active Gilbert cell mixers is derived theoretically by using conversion matrix analysis method. The expression is verified by harmonic balance simul...

  8. MOSFET-Only Mixer/IIR Filter with Gain using Parametric Amplification

    DEFF Research Database (Denmark)

    Custódio, José R.; Oliveira, J.; Oliveira, L. B.

    2010-01-01

    This paper describes the design of a discrete-time passive Mixer/IIR filter. The use of an improved MOS Parametric Amplification leads to a moderate gain in the signal path and improved noise performance, instead of the conversion loss inherent to passive mixers. Simulation results demonstrate th...

  9. Heat transfer and the continuous production of hydroxypropyl starch in a static mixer reactor

    NARCIS (Netherlands)

    Lammers, Gerard; Beenackers, Antonie A. C. M.

    1994-01-01

    A novel continuous reactor for the chemical derivation of aqueous starch solutions based on static mixers is proposed. Both the experimentally observed axial and radial temperature gradients in the static mixer could be accurately described by a pseudohomogeneous two-dimensional heat transfer (PTHT)

  10. Deviations from mass transfer equilibrium and mathematical modeling of mixer-settler contactors

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.; Chung, H.F.; Bennett, J.E.

    1980-01-01

    This paper presents the mathematical basis for the computer model PUBG of mixer-settler contactors which accounts for deviations from mass transfer equilibrium. This is accomplished by formulating the mass balance equations for the mixers such that the mass transfer rate of nuclear materials between the aqueous and organic phases is accounted for. 19 refs

  11. Low noise Nb-SIS mixers at far above the gap frequency

    NARCIS (Netherlands)

    Gao, [No Value; vandeStadt, H; Jegers, JBM; Kovtonyuk, S; Hulshoff, W; Whyborn, ND; Klapwijk, TM; deGraauw, T; Liao, FJ; Liu, JY

    1996-01-01

    There are great interests in developing Nb SIS mixers because of the extremely low noise temperatures and because of the need of low local oscillator (LO) power. Several groups have demonstrated experimentally that Nb SIS mixers with integrated tuning elements can perform near the quantum noise

  12. Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces

    Science.gov (United States)

    Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W

    2012-10-23

    An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.

  13. Granular flow in static mixers by coupled DEM/CFD approach

    Directory of Open Access Journals (Sweden)

    Pezo Lato

    2016-01-01

    Full Text Available The mixing process greatly influence the mixing efficiency, as well as the quality and the price of the intermediate and/or the final product. Static mixer is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. In this article, the novel numerical approach called Discrete Element Method is used for modelling of granular flow in multiple static mixer applications (1 - 3 Komax or Ross mixing elements were utilized, while the Computational Fluid Dynamic method was chosen for fluid flow modelling, using the Eulerian multiphase model. The main aim of this article is to predict the behaviour of granules being gravitationally transported in different mixer configuration and to choose the best configuration of the mixer taking into account the total particle path, the number of mixing elements and the quality of the obtained mixture. The results of the numerical simulations in the static mixers were compared to experimental results, the mixing quality is examined by RSD (relative standard deviation criterion, and the effects on the mixer type and the number of mixing elements on mixing process were studied. The effects of the mixer type and the number of mixing elements on mixing process were studied using analysis of variance (ANOVA. Mathematical modelling is used for optimization of number of Ross and Komax segments in mixer in order to gain desirable mixing results. [Projekat Ministarstva nauke Republike Srbije, br. TR31055

  14. An RF energy harvesting power management circuit for appropriate duty-cycled operation

    Science.gov (United States)

    Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.

  15. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  16. Latch-up in CMOS integrated circuits

    International Nuclear Information System (INIS)

    Estreich, D.B.; Dutton, R.W.

    1978-04-01

    An analysis is presented of latch-up in CMOS integrated circuits. A latch-up prediction algorithm has been developed and used to evaluate methods to control latch-up. Experimental verification of the algorithm is demonstrated

  17. Nanometer CMOS ICs from basics to ASICs

    CERN Document Server

    J M Veendrick, Harry

    2017-01-01

    This textbook provides a comprehensive, fully-updated introduction to the essentials of nanometer CMOS integrated circuits. It includes aspects of scaling to even beyond 12nm CMOS technologies and designs. It clearly describes the fundamental CMOS operating principles and presents substantial insight into the various aspects of design implementation and application. Coverage includes all associated disciplines of nanometer CMOS ICs, including physics, lithography, technology, design, memories, VLSI, power consumption, variability, reliability and signal integrity, testing, yield, failure analysis, packaging, scaling trends and road blocks. The text is based upon in-house Philips, NXP Semiconductors, Applied Materials, ASML, IMEC, ST-Ericsson, TSMC, etc., courseware, which, to date, has been completed by more than 4500 engineers working in a large variety of related disciplines: architecture, design, test, fabrication process, packaging, failure analysis and software.

  18. Design of Ka-band antipodal finline mixer and detector

    International Nuclear Information System (INIS)

    Yao Changfei; Xu Jinping; Chen Mo

    2009-01-01

    This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via holes are implemented along the mounting edge of the substrate embedded in the split-block of the WG-finline-microstrip transition. Meanwhile, a Ka band slow-wave and bandstop filter, which represents a reactive termination, is designed for the utilization of idle frequencies and operation frequencies energy. Full-wave analysis is carried out to optimize the input matching network of the mixer and the detector circuit using lumped elements to model the nonlinear diode. The exported S-matrix of the optimized circuit is used for conversion loss and voltage sensitivity analysis. The lowest measured conversion loss is 3.52 dB at 32.2 GHz; the conversion loss is flat and less than 5.68 dB in the frequency band of 29-34 GHz. The highest measured zero-bias voltage sensitivity is 1450 mV/mW at 38.6 GHz, and the sensitivity is better than 1000 mV/mW in the frequency band of 38-40 GHz.

  19. Open source laboratory sample rotator mixer and shaker

    Directory of Open Access Journals (Sweden)

    Karankumar C. Dhankani

    2017-04-01

    Full Text Available An open-source 3-D printable laboratory sample rotator mixer is developed here in two variants that allow users to opt for the level of functionality, cost saving and associated complexity needed in their laboratories. First, a laboratory sample rotator is designed and demonstrated that can be used for tumbling as well as gentle mixing of samples in a variety of tube sizes by mixing them horizontally, vertically, or any position in between. Changing the mixing angle is fast and convenient and requires no tools. This device is battery powered and can be easily transported to operate in various locations in a lab including desktops, benches, clean hoods, chemical hoods, cold rooms, glove boxes, incubators or biological hoods. Second, an on-board Arduino-based microcontroller is incorporated that adds the functionality of a laboratory sample shaker. These devices can be customized both mechanically and functionally as the user can simply select the operation mode on the switch or alter the code to perform custom experiments. The open source laboratory sample rotator mixer can be built by non-specialists for under US$30 and adding shaking functionality can be done for under $20 more. Thus, these open source devices are technically superior to the proprietary commercial equipment available on the market while saving over 90% of the costs.

  20. A planar microfluidic mixer based on logarithmic spirals

    International Nuclear Information System (INIS)

    Scherr, Thomas; Nandakumar, Krishnaswamy; Quitadamo, Christian; Tesvich, Preston; Park, Daniel Sang-Won; Hayes, Daniel; Monroe, W Todd; Tiersch, Terrence; Choi, Jin-Woo

    2012-01-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as the Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional (3D) simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing. (paper)

  1. 241-SY-101 mixer pump lifetime expectancy. Final report

    International Nuclear Information System (INIS)

    Shaw, C.P.

    1995-01-01

    The purpose of WHC-SD-WM-TI-726, Rev. 0 241-SY-101 Mixer Pump Lifetime Expectancy is to determine a best estimate of the mean lifetime of non-repairable (located in the waste) essential features of the hydrogen mitigation mixer pump presently installed in 101-SY. The estimated mean lifetime is 9.1 years. This report does not demonstrate operation of the entire pump assembly within the Tank Farm ''safety envelope''. It was recognized by the Defense Nuclear Facilities Safety Board (DNFSB) this test pump was not specifically designed for long term service in tank 101-SY. In June 95 the DNFSB visited Hanford and ask the question, ''how long will this test pump last and how will the essential features fail?'' During the 2 day meeting with the DNFSB it was discussed and defined within the meeting just exactly what essential features of the pump must operate. These essential features would allow the pump to operate for the purpose of extending the window for replacement. Operating with only essential features would definitely be outside the operating safety envelope and would require a waiver. There are three essential features: 1. The pump itself (i.e. the impeller and motor) must operate 2. Nozzles and discharges leg must remain unplugged 3. The pump can be re-aimed, new waste targeted, even if manually

  2. Continuous mixer, process and use in a pumping plant for a high viscosity fluid

    Energy Technology Data Exchange (ETDEWEB)

    Cholet, H.

    1993-03-12

    The invention concerns a novel continuous mixer comprising a rotary shaft carrying two or more vanes for mixing two or more fluids of different viscosities supplied at the inlet of the mixer body and for providing, at the mixer body outlet, a mixture of viscosity lower than that of the more or most viscous fluid. Preferentially, the vane profile is such that, without fluid circulation, rotation of the vanes produces a reaction force parallel to the rotational axis and in the same direction as the resulting flow or does not produce a reaction force of significant magnitude parallel to the rotational axis. The mixer shaft is connected to a pump shaft which is rotated by hydraulic motor driven by pressurized fluid injection. The mixer is used especially for facilitating viscous crude oil pumping from directional wells including horizontal or inclined portions.

  3. Variationen und ihre Kompensation in CMOS Digitalschaltungen

    OpenAIRE

    Baumann, Thomas

    2010-01-01

    Variationen bei der Herstellung und während des Betriebs von CMOS Schaltungen beeinflussen deren Geschwindigkeit und erschweren die Verifikation der in der Spezifikation zugesicherten Eigenschaften. In dieser Arbeit wird eine abstraktionsebenenübergreifende Vorgehensweise zur Abschätzung des Einflusses von Prozess- und betriebsbedingten Umgebungsvariationen auf die Geschwindigkeit einer Schaltung vorgestellt. Neben Untersuchungen der Laufzeitsensitivität in low-power CMOS Technologien von...

  4. Batch Processing of CMOS Compatible Feedthroughs

    DEFF Research Database (Denmark)

    Rasmussen, F.E.; Heschel, M.; Hansen, Ole

    2003-01-01

    . The feedthrough technology employs a simple solution to the well-known CMOS compatibility issue of KOH by protecting the CMOS side of the wafer using sputter deposited TiW/Au. The fabricated feedthroughs exhibit excellent electrical performance having a serial resistance of 40 mOmega and a parasitic capacitance...... of 2.5 pF. (C) 2003 Elsevier Science B.V. All rights reserved....

  5. Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications

    Science.gov (United States)

    Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.

    2000-01-01

    Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.

  6. 26 CFR 48.4061-1 - Temporary regulations with respect to floor stock refunds or credits on cement mixers.

    Science.gov (United States)

    2010-04-01

    ... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January 1...

  7. Problems of bentonite rebonding of synthetic system sands in turbine mixers

    Directory of Open Access Journals (Sweden)

    A. Fedoryszyn

    2008-12-01

    Full Text Available Turbine (rotor mixers are widely used in foundries for bentonite rebonding of synthetic system sands. They form basic equipment in modern sand processing plants. Their major advantage is the short time of the rebond mixing cycle.Until now, no complete theoretical description of the process of mixing in turbine mixers has been offered. Neither does it seem reasonable to try to adapt the theoretical backgrounds of the mixing process carried out in mixers of other types, for example, rooler mixers [1], to the description of operation of the turbine mixers. Truly one can risk the statement that the individual fundamental operations of mixing in rooler mixers, like kneading, grinding, mixing and thinning, are also performed in turbine mixers. Yet, even if so, in turbine mixers these processes are proceeding at a rate and intensity different than in the roller mixers. The fact should also be recalled that the theoretical backgrounds usually relate to the preparation of sand mixtures from new components, and this considerably restricts the field of application of these descriptions when referred to rebond mixing of the system sand. The fundamentals of the process of the synthetic sand rebonding with bentonite require determination and description of operations, like disaggregation, even distribution of binder and water within the entire volume of the rebonded sand batch, sand grains coating, binder activation and aeration.This study presents the scope of research on the sand rebonding process carried out in turbine mixers. The aim has been to determine the range and specific values of the designing and operating parameters to get optimum properties of the rebonded sand as well as energy input in the process.

  8. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  9. Racetrack microtron rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Keffeler, D.R.

    1985-01-01

    The rf system for the National Bureau of Standards (NBS)/Los Alamos cw racetrack microtron is described. The low-power portion consists of five 75-W amplifers that drive two input ports in each of two chopper deflection cavities and one port in the prebuncher cavity. A single 500-kW klystron drives four separate 2380-MHz cavity sections: the two main accelerator sections, a capture section, and a preaccelerator section. The phases and amplitudes in all cavities are controlled by electronic or electromechanical controls. The 1-MW klystron power supply and crowbar system were purchased as a unit; several modifications are described that improve power-supply performance. The entire rf system has been tested and shipped to the NBS, and the chopper-buncher system has been operated with beam at the NBS. 5 refs., 2 figs

  10. RF Gun Optimization Study

    International Nuclear Information System (INIS)

    Alicia Hofler; Pavel Evtushenko

    2007-01-01

    Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. A genetic algorithm (GA) has been successfully used to optimize DC photo injector designs at Cornell University [1] and Jefferson Lab [2]. We propose to apply GA techniques to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize a system that has been benchmarked with beam measurements and simulation

  11. Fabrication of CMOS-compatible nanopillars for smart bio-mimetic CMOS image sensors

    KAUST Repository

    Saffih, Faycal; Elshurafa, Amro M.; Mohammad, Mohammad Ali; Nelson-Fitzpatrick, Nathan E.; Evoy, S.

    2012-01-01

    . The fabrication of the nanopillars was carried out keeping the CMOS process in mind to ultimately obtain a CMOS-compatible process. This work serves as an initial step in the ultimate objective of integrating photo-sensors based on these nanopillars seamlessly

  12. Pulsed rf operation analysis

    International Nuclear Information System (INIS)

    Puglisi, M.; Cornacchia, M.

    1981-01-01

    The need for a very low final amplifier output impedance, always associated with class A operation, requires a very large power waste in the final tube. The recently suggested pulsed rf operation, while saving a large amount of power, increases the inherent final amplifier non linearity. A method is presented for avoiding the large signal non linear analysis and it is shown how each component of the beam induced voltage depends upon all the beam harmonics via some coupling coefficients which are evaluated

  13. RF pulse compression development

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Weaver, J.N.

    1987-10-01

    The body of this paper discusses the theory and some rules for designing a multistage Binary Energy Compressor (BEC) including its response to nonstandard phase coding, describes some proof-of-principle experiments with a couple of low power BECs, presents the design parameters for some sample linear collider rf systems that could possibly use a BEC to advantage and outlines in the conclusion some planned R and D efforts. 8 refs., 26 figs., 4 tabs

  14. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  15. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  16. Photoresponse analysis of the CMOS photodiodes for CMOS x-ray image sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Soo; Ha, Jang Ho; Kim, Han Soo; Yeo, Sun Mok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-11-15

    Although in the short term CMOS active pixel sensors (APSs) cannot compete with the conventionally used charge coupled devices (CCDs) for high quality scientific imaging, recent development in CMOS APSs indicate that CMOS performance level of CCDs in several domains. CMOS APSs possess thereby a number of advantages such as simpler driving requirements and low power operation. CMOS image sensors can be processed in standard CMOS technologies and the potential of on-chip integration of analog and digital circuitry makes them more suitable for several vision systems where system cost is of importance. Moreover, CMOS imagers can directly benefit from on-going technological progress in the field of CMOS technologies. Due to these advantages, the CMOS APSs are currently being investigated actively for various applications such as star tracker, navigation camera and X-ray imaging etc. In most detection systems, it is thought that the sensor is most important, since this decides the signal and noise level. So, in CMOS APSs, the pixel is very important compared to other functional blocks. In order to predict the performance of such image sensor, a detailed understanding of the photocurrent generation in the photodiodes that comprise the CMOS APS is required. In this work, we developed the analytical model that can calculate the photocurrent generated in CMOS photodiode comprising CMOS APSs. The photocurrent calculations and photo response simulations with respect to the wavelength of the incident photon were performed using this model for four types of photodiodes that can be fabricated in standard CMOS process. n{sup +}/p{sup -}sub and n{sup +}/p{sup -}epi/p{sup -}sub photodiode show better performance compared to n{sup -}well/p{sup -}sub and n{sup -}well/p{sup -}epi/p{sup -}sub due to the wider depletion width. Comparing n{sup +}/p{sup -}sub and n{sup +}/p{sup -}epi/p{sup -}sub photodiode, n{sup +}/p{sup -}sub has higher photo-responsivity in longer wavelength because of

  17. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  18. SiGe BiCMOS manufacturing platform for mmWave applications

    Science.gov (United States)

    Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker

    2010-10-01

    TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.

  19. Low modulation index RF signal detection for a passive UHF RFID transponder

    International Nuclear Information System (INIS)

    Liu Zhongqi; Zhang Chun; Li Yongming; Wang Zhihua

    2009-01-01

    In a typical RFID system the reader transmits modulated RF power to provide both data and energy for the passive transponder. Low modulation index RF energy is preferable for an adequate tag power supply and increase in communication range but gives rise to difficulties for near-field conventional demodulation. Therefore, a novel ASK demodulator for minimum 20% modulation index RF signal detection over a range of 23 dB is presented. Thanks to the proposed innovative divisional linear conversion from the power into voltage signal, the detection sensitivity is ensured over a wide power range with low power consumption of 8.6 μW. The chip is implemented in UMC 0.18 μm mix-mode CMOS technology, and the chip area is 0.06 mm 2 .

  20. Low modulation index RF signal detection for a passive UHF RFID transponder

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhongqi [Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China); Zhang Chun; Li Yongming; Wang Zhihua, E-mail: liu-zq04@mails.tsinghua.edu.c [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    In a typical RFID system the reader transmits modulated RF power to provide both data and energy for the passive transponder. Low modulation index RF energy is preferable for an adequate tag power supply and increase in communication range but gives rise to difficulties for near-field conventional demodulation. Therefore, a novel ASK demodulator for minimum 20% modulation index RF signal detection over a range of 23 dB is presented. Thanks to the proposed innovative divisional linear conversion from the power into voltage signal, the detection sensitivity is ensured over a wide power range with low power consumption of 8.6 {mu}W. The chip is implemented in UMC 0.18 {mu}m mix-mode CMOS technology, and the chip area is 0.06 mm{sup 2}.

  1. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  2. An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 μ m CMOS.

    Science.gov (United States)

    Mansano, Andre L; Li, Yongjia; Bagga, Sumit; Serdijn, Wouter A

    2016-06-01

    The design of a 13.56 MHz/402 MHz autonomous wireless sensor node with asynchronous ECG monitoring for near field communication is presented. The sensor node consists of an RF energy harvester (RFEH), a power management unit, an ECG readout, a data encoder and an RF backscattering transmitter. The energy harvester supplies the system with 1.25 V and offers a power conversion efficiency of 19% from a -13 dBm RF source at 13.56 MHz. The power management unit regulates the output voltage of the RFEH to supply the ECG readout with VECG = 0.95 V and the data encoder with VDE = 0.65 V . The ECG readout comprises an analog front-end (low noise amplifier and programmable voltage to current converter) and an asynchronous level crossing ADC with 8 bits resolution. The ADC output is encoded by a pulse generator that drives a backscattering transmitter at 402 MHz. The total power consumption of the sensor node circuitry is 9.7 μ W for a data rate of 90 kb/s and a heart rate of 70 bpm. The chip has been designed in a 0.18 μm CMOS process and shows superior RF input power sensitivity and lower power consumption when compared to previous works.

  3. Sandwich-format 3D printed microfluidic mixers: a flexible platform for multi-probe analysis

    International Nuclear Information System (INIS)

    Kise, Drew P; Reddish, Michael J; Brian Dyer, R

    2015-01-01

    We report on a microfluidic mixer fabrication platform that increases the versatility and flexibility of mixers for biomolecular applications. A sandwich-format design allows the application of multiple spectroscopic probes to the same mixer. A polymer spacer is ‘sandwiched’ between two transparent windows, creating a closed microfluidic system. The channels of the mixer are defined by regions in the polymer spacer that lack material and therefore the polymer need not be transparent in the spectral region of interest. Suitable window materials such as CaF 2 make the device accessible to a wide range of optical probe wavelengths, from the deep UV to the mid-IR. In this study, we use a commercially available 3D printer to print the polymer spacers to apply three different channel designs into the passive, continuous-flow mixer, and integrated them with three different spectroscopic probes. All three spectroscopic probes are applicable to each mixer without further changes. The sandwich-format mixer coupled with cost-effective 3D printed fabrication techniques could increase the applicability and accessibility of microfluidic mixing to intricate kinetic schemes and monitoring chemical synthesis in cases where only one probe technique proves insufficient. (paper)

  4. Flexible CMOS low-noise amplifiers for beyond-3G wireless hand-held devices

    Science.gov (United States)

    Becerra-Alvarez, Edwin C.; Sandoval-Ibarra, Federico; de la Rosa, José M.

    2009-05-01

    This paper explores the use of reconfigurable Low-Noise Amplifiers (LNAs) for the implementation of CMOS Radio Frequency (RF) front-ends in the next generation of multi-standard wireless transceivers. Main circuit strategies reported so far for multi-standard LNAs are reviewed and a novel flexible LNA intended for Beyond-3G RF hand-held terminals is presented. The proposed LNA circuit consists of a two-stage topology that combines inductive-source degeneration with PMOS-varactor based tuning network and a programmable load to adapt its performance to different standard specifications without penalizing the circuit noise and with a reduced number of inductors as compared to previous reported reconfigurable LNAs. The circuit has been designed in a 90-nm CMOS technology to cope with the requirements of the GSM, WCDMA, Bluetooth and WLAN (IEEE 802.11b-g) standards. Simulation results, including technology and packaging parasitics, demonstrate correct operation of the circuit for all the standards under study, featuring NF13.3dB and IIP3>10.9dBm, over a 1.85GHz-2.4GHz band, with an adaptive power consumption between 17mW and 22mW from a 1-V supply voltage. Preliminary experimental measurements are included, showing a correct reconfiguration operation within the operation band.

  5. Development of maleated starches using an internal mixer

    International Nuclear Information System (INIS)

    Dias, Fernanda T.G.; Andrade, Cristina T.

    2009-01-01

    Novel maleated starches (MSt) were prepared by chemical modification of cornstarch with maleic anhydride (MA), using an internal mixer as a reactor. Benzoyl peroxide (BPO) was chosen as initiator. Physico-chemical parameters were determined for the process carried out at different MA contents, under the same reaction conditions. Processing was carried out at 50 deg C, 30 rpm for 8 min.Torque developed during processing was given by the digital display of the rheometer, and the total specific mechanical energy (SME) input was estimated. FTIR measurements confirmed the successful incorporation of MA into the starch backbone. In addition, WAXS diffraction analyses revealed disruption of the crystalline structure of native starch for the products. Such reactions promoted by MA reduced the crystallinity of the products. The results indicated that the MA content had a significant effect on the characteristics of the processed starch samples. (author)

  6. Phase separation in an experimental mixer-settler

    International Nuclear Information System (INIS)

    Eckert, N.L.; Gormely, L.S.

    1989-01-01

    An experimental investigation was undertaken to study the factors affecting phase separation in a laboratory scale mixer-settler using a laboratory-prepared commercial oxime-copper system, and a system obtained from the Key Lake uranium extraction circuit. Besides being dependent on specific settler flow, the dispersion band thickness was found to be a function of the phase ratio and dispersion introduction level (uranium system only), and temperature. Drop size was found to be independent of dispersion throughout, a weak function of impeller speed, and a relatively strong function of the phase ratio. Microscopic examination of the uranium dispersion revealed the existence of drops within drops. With the exception of the organic continuous copper system, it was possible to distinguish two horizontal sublayers within the dispersion band. This structure conforms to the model provided by Barnea and Mizrahi. (author)

  7. Design Mixers to Minimize Effects of Erosion and Corrosion Erosion

    Directory of Open Access Journals (Sweden)

    Julian Fasano

    2012-01-01

    Full Text Available A thorough review of the major parameters that affect solid-liquid slurry wear on impellers and techniques for minimizing wear is presented. These major parameters include (i chemical environment, (ii hardness of solids, (iii density of solids, (iv percent solids, (v shape of solids, (vi fluid regime (turbulent, transitional, or laminar, (vii hardness of the mixer's wetted parts, (viii hydraulic efficiency of the impeller (kinetic energy dissipation rates near the impeller blades, (ix impact velocity, and (x impact frequency. Techniques for minimizing the wear on impellers cover the choice of impeller, size and speed of the impeller, alloy selection, and surface coating or coverings. An example is provided as well as an assessment of the approximate life improvement.

  8. Advanced Design Mixer Pump Tank 18 Design Modifications Summary Report

    International Nuclear Information System (INIS)

    Adkins, B.J.

    2002-01-01

    The Westinghouse Savannah River Company (WSRC) is preparing to retrieve high level waste (HLW) from Tank 18 in early FY03 to provide feed for the Defense Waste Processing Facility (DWPF) and to support tank closure in FY04. As part of the Tank 18 project, WSRC will install a single Advanced Design Mixer Pump (ADMP) in the center riser of Tank 18 to mobilize, suspend, and mix radioactive sludge in preparation for transfer to Tank 7. The use of a single ADMP is a change to the current baseline of four (4) standard slurry pumps used during previous waste retrieval campaigns. The ADMP was originally conceived by Hanford and supported by SRS to provide a more reliable and maintainable mixer pump for use throughout the DOE complex. The ADMP underwent an extensive test program at SRS between 1998 and 2002 to assess reliability and hydraulic performance. The ADMP ran for approximately 4,200 hours over the four-year period. A detailed tear down and inspection of the pump following the 4,2 00-hour run revealed that the gas mechanical seals and anti-friction bearings would need to be refurbished/replaced prior to deployment in Tank 18. Design modifications were also needed to meet current Authorization Basis safety requirements. This report documents the modifications made to the ADMP in support of Tank 18 deployment. This report meets the requirements of Tanks Focus Area (TFA) Milestone 3591.4-1, ''Issue Report on Modifications Made to the ADMP,'' contained in Technical Task Plan (TTP) SR16WT51, ''WSRC Retrieval and Closure.''

  9. Numerical investigation of the effects of geometric parameters on transverse motion with slanted-groove micro-mixers

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joo; Cho, Jae Yong; Choi, Se Bin; Lee, Joon Sang [School of Mechanical Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-08-15

    We investigated hydrodynamic phenomena inside several passive microfluidic mixers using a Lattice Boltzmann method (LBM) based on particle mesoscopic kinetic equations. Mixing processes were simulated in a Slanted grooved micro-mixer (SGM), a Staggered herringbone grooved micro-mixer (SHM), and a Bi-layered staggered herringbone grooved micro-mixer (BSHM). Then, the effects of six geometric mixer parameters (i.e., groove height to channel height ratio, groove width to groove pitch length ratio, groove pitch to groove height ratio, groove intersection angle, herringbone groove asymmetric ratio and bi-layered groove asymmetric ratio) on mixing were investigated using computed cross-flow velocity and helicity density distributions in the flow cross-section. We demonstrated that helicity density provides sufficient information to analyze micro helical motion within a micro-mixer, allowing for micro-mixer design optimization.

  10. Decal electronics for printed high performance cmos electronic systems

    KAUST Repository

    Hussain, Muhammad Mustafa; Sevilla, Galo Torres; Cordero, Marlon Diaz; Kutbee, Arwa T.

    2017-01-01

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications

  11. CMOS Thermal Ox and Diffusion Furnace: Tystar Tytan 2000

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Names: CMOS Wet Ox, CMOS Dry Ox, Boron Doping (P-type), Phos. Doping (N-Type)This four-stack furnace bank is used for the thermal growth of silicon...

  12. Design and Characterization of 1.8-3.2 THz Schottky-based Harmonic Mixers

    OpenAIRE

    Bulcha, BT; Hesler, JL; Drakinskiy, V; Stake, J; Valavanis, A; Dean, P; Li, LH; Barker, NS

    2016-01-01

    A room-temperature Schottky diode-based WM-86 (WR-0.34) harmonic mixer was developed to build high-resolution spectrometers, and multi-pixel receivers in the THz region for applications such as radio astronomy, plasma diagnostics, and remote sensing. The mixer consists of a quartz-based Local Oscillator (LO), Intermediate-Frequency (IF) circuits, and a GaAs-based beam-lead THz circuit with an integrated diode. Measurements of the harmonic mixer were performed using a 2 THz solid-state source ...

  13. Alternate paddle configuration for improved wear resistance in the saltstone mixer

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-09-23

    The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configuration similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the

  14. An Implantable Cardiovascular Pressure Monitoring System with On-Chip Antenna and RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Yu-Chun Liu

    2015-08-01

    Full Text Available An implantable wireless system with on-chip antenna for cardiovascular pressure monitor is studied. The implantable device is operated in a batteryless manner, powered by an external radio frequency (RF power source. The received RF power level can be sensed and wirelessly transmitted along with blood pressure signal for feedback control of the external RF power. The integrated electronic system, consisting of a capacitance-to-voltage converter, an adaptive RF powering system, an RF transmitter and digital control circuitry, is simulated using a TSMC 0.18 μm CMOS technology. The implanted RF transmitter circuit is combined with a low power voltage-controlled oscillator resonating at 5.8 GHz and a power amplifier. For the design, the simulation model is setup using ADS and HFSS software. The dimension of the antenna is 1 × 0.6 × 4.8 mm3 with a 1 × 0.6 mm2 on-chip circuit which is small enough to place in human carotid artery.

  15. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  16. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  17. Low frequency rf current drive

    International Nuclear Information System (INIS)

    Hershkowitz, N.

    1992-01-01

    An unshielded antenna for rf heating has been developed and tested during this report period. In addition to design specifications being given, some experimental results are presented utilizing: (1) an unprotected Faraday shield, (2) insulating guard limiters, (3) unshielded antenna experiments, (4) method for detecting small rf driven currents, (5) rf fast wave current drive experiments, (6) alfven wave interactions with electrons, and (7) machine conditioning, impurity generation and density control

  18. Resistor Extends Life Of Battery In Clocked CMOS Circuit

    Science.gov (United States)

    Wells, George H., Jr.

    1991-01-01

    Addition of fixed resistor between battery and clocked complementary metal oxide/semiconductor (CMOS) circuit reduces current drawn from battery. Basic idea to minimize current drawn from battery by operating CMOS circuit at lowest possible current consistent with use of simple, fixed off-the-shelf components. Prolongs lives of batteries in such low-power CMOS circuits as watches and calculators.

  19. A Standard CMOS Humidity Sensor without Post-Processing

    OpenAIRE

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    A 2 ?W power dissipation, voltage-output, humidity sensor accurate to 5% relative humidity was developed using the LFoundry 0.15 ?m CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a Intervia Photodielectric 8023?10 humidity-sensitive layer, and a CMOS capacitance to voltage converter.

  20. Ion traps fabricated in a CMOS foundry

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, K. K.; Ram, R. J. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Eltony, A. M.; Chuang, I. L. [Center for Ultracold Atoms, Research Laboratory of Electronics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bruzewicz, C. D.; Sage, J. M., E-mail: jsage@ll.mit.edu; Chiaverini, J., E-mail: john.chiaverini@ll.mit.edu [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States)

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  1. Design of 340 GHz 2× and 4× Sub-Harmonic Mixers Using Schottky Barrier Diodes in Silicon-Based Technology

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-05-01

    Full Text Available This paper presents the design of terahertz 2× and 4× sub-harmonic down-mixers using Schottky Barrier Diodes fabricated in standard 0.13 μm SiGe BiCMOS technology. The 340 GHz sub-harmonic mixers (SHMs are designed based on anti-parallel-diode-pairs (APDPs. With the 2nd and 4th harmonic, local oscillator (LO frequencies of 170 GHz and 85 GHz are used to pump the two 340 GHz SHMs. With LO power of 7 dBm, the 2× SHM exhibits a conversion loss of 34.5–37 dB in the lower band (320–340 GHz and 35.5–41 dB in the upper band (340–360 GHz; with LO power of 9 dBm, the 4× SHM exhibits a conversion loss of 39–43 dB in the lower band (320–340 GHz and 40–48 dB in the upper band (340–360 GHz. The measured input 1-dB conversion gain compression point for the 2× and 4× SHMs are −8 dBm and −10 dBm at 325 GHz, respectively. The simulated LO-IF (intermediate frequency isolation of the 2× SHM is 21.5 dB, and the measured LO-IF isolation of the 4× SHM is 32 dB. The chip areas of the 2× and 4× SHMs are 330 μm × 580 μm and 550 μm × 610 μm, respectively, including the testing pads.

  2. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  3. rf experiments on PLT

    International Nuclear Information System (INIS)

    Hosea, J.; Wilson, J.R.; Hooke, W.

    1986-01-01

    A variety of rf experiments are being conducted on PLT in order to explore rf techniques which could improve tokamak performance parameters. Of special importance are the studies of ion Bernstein wave (IBW) heating, lower hybrid MHD stabilization and electron heating, down-shifted electron cyclotron heating, and fast wave current drive. Ion Bernstein wave heating results at modest power indicate that the particle confinement time could be enhanced relative to that for fast wave heating in the ion cyclotron range of frequencies (ICRF) and neutral beam heating. At these power levels a conclusive determination of energy confinement scaling with power cannot yet be given. Central sawtooth and m = 1 MHD stabilization is being obtained with centrally peaked lower hybrid (LH) current drive and the central electron temperature is peaking to values (approx.5 keV) well outside the bounds of ''profile consistency.'' In this case the electron energy confinement is apparently increased relative to the ohmic value. The production of relativistic electrons via heating at the down-shifted electron cyclotron (EC) frequency is found to be consistent with theoretical predictions and lends support to the use of this method for heating in relatively high magnetic field devices

  4. Linearisation of RF Power Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck

    2001-01-01

    and an amplitude detection circuit is given. The purpose is to explore the limitation on commercial available parts and to recognize the challenges in polar loop linearisation. The design of a fabricated CMOS PA is presented. The design is carried out in a standard digital Epi-CMOS which allows integration...... different detectors were designed. Two non-linear detectors and one linear. The two former AM-detectors have been measured. Based on these measurements the achievable spectral leakage and error vector magnitude were predicted....

  5. Accurate modeling of complete functional RF blocks: CHAMELEON RF

    NARCIS (Netherlands)

    Janssen, H.H.J.M.; Niehof, J.; Schilders, W.H.A.; Ciuprina, G.; Ioan, D.

    2007-01-01

    Next-generation nano-scale RF-IC designs have an unprecedented complexity and performance that will inevitably lead to costly re-spins and loss of market opportunities. In order to cope with this, the aim of the European Framework 6 CHAMELEON RF project is to develop methodologies and prototype

  6. The Spallation Neutron Source RF Reference System

    CERN Document Server

    Piller, Maurice; Crofford, Mark; Doolittle, Lawrence; Ma, Hengjie

    2005-01-01

    The Spallation Neutron Source (SNS) RF Reference System includes the master oscillator (MO), local oscillator(LO) distribution, and Reference RF distribution systems. Coherent low noise Reference RF signals provide the ability to control the phase relationships between the fields in the front-end and linear accelerator (linac) RF cavity structures. The SNS RF Reference System requirements, implementation details, and performance are discussed.

  7. CMOS circuit design, layout and simulation

    CERN Document Server

    Baker, R Jacob

    2010-01-01

    The Third Edition of CMOS Circuit Design, Layout, and Simulation continues to cover the practical design of both analog and digital integrated circuits, offering a vital, contemporary view of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and much more. Regardless of one's integrated circuit (IC) design skill level, this book allows readers to experience both the theory behind, and the hands-on implementation of, complementary metal oxide semiconductor (CMOS) IC design via detailed derivations, discussions, and hundreds of design, layout, and simulation examples.

  8. CMOS Compressed Imaging by Random Convolution

    OpenAIRE

    Jacques, Laurent; Vandergheynst, Pierre; Bibet, Alexandre; Majidzadeh, Vahid; Schmid, Alexandre; Leblebici, Yusuf

    2009-01-01

    We present a CMOS imager with built-in capability to perform Compressed Sensing. The adopted sensing strategy is the random Convolution due to J. Romberg. It is achieved by a shift register set in a pseudo-random configuration. It acts as a convolutive filter on the imager focal plane, the current issued from each CMOS pixel undergoing a pseudo-random redirection controlled by each component of the filter sequence. A pseudo-random triggering of the ADC reading is finally applied to comp...

  9. Challenges & Roadmap for Beyond CMOS Computing Simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Arun F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frank, Michael P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Simulating HPC systems is a difficult task and the emergence of “Beyond CMOS” architectures and execution models will increase that difficulty. This document presents a “tutorial” on some of the simulation challenges faced by conventional and non-conventional architectures (Section 1) and goals and requirements for simulating Beyond CMOS systems (Section 2). These provide background for proposed short- and long-term roadmaps for simulation efforts at Sandia (Sections 3 and 4). Additionally, a brief explanation of a proof-of-concept integration of a Beyond CMOS architectural simulator is presented (Section 2.3).

  10. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  11. Fabrication of High-T(sub c) Hot-Electron Bolometric Mixers for Terahertz Applications

    Science.gov (United States)

    Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.; Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.

    1996-01-01

    Superocnducting hot-electron bolometers (HEB) represent a promising candidate for heterodyne mixing at frequencies exceeding 1 THz. Nb HEB mixers offer performance competitive with tunnel junctions without the frequency limit imposed by the superconducting energy gap.

  12. A discussion on the safety classification of the tank 241-SY-101 mixer pump

    International Nuclear Information System (INIS)

    Van Vleet, R.J.

    1997-01-01

    An analysis, consistent with the methodology used in the draft TWRS FSAR (HNF-SD-WM-SAR-067), is presented to show that the classification of the mixer pump in tank 241-SY-101 should be safety significant

  13. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    TEMPLETON, A.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications

  14. FDC Mentor-Mentee Mixer Breaks the Ice Between Investigators and Trainees | Poster

    Science.gov (United States)

    The Frederick Diversity Committee’s mentor-mentee mixer gave research trainees, senior investigators, scientists, and administrative staff a chance to meet and mingle over refreshments and games following the Spring Research Festival.

  15. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    Directory of Open Access Journals (Sweden)

    Đặng Van Uy

    2018-03-01

    Full Text Available The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixed fuel supplying to diesel engines inline. In order to ensure a quality of the mixed fuel created by continuous mixer, a homogeneous testing was introduced with believable results. Then, the continuous mixer has been installed into fuel supply system of diesel engine 6LU32 at a lab of Vietnam Maritime University in terms of checking a real operation of the fuel continuous mixer with diesel engine.

  16. On-line separation of iodine species in reactor water using mixer-settlers

    International Nuclear Information System (INIS)

    Malmbeck, R.; Skarnemark, G.

    1995-01-01

    A method for separation of iodine species from water has been developed. It is based on liquid-liquid extraction and separation is achieved in four extraction steps. A system based on this method for continuous separation of iodine species using mixer-settlers has been developed. It consists of four mixer-settler batteries with 4,4,6 and 6 mixer-settler stages each. As organic phase an aliphatic kerosene is used and the separation is improved if the organic solvent has been pretreated with iodine carrier, stripped and washed. With an aqueous feed flowrate of 10 ml/min and mixer-settler battery phase flowratios of approximately 0.1 except for the elementary iodine strip battery with a phase flowratio of 1, the system separation performance is 92% for methyl iodide, 97% for iodate and elementary iodine and 99% for iodide. (orig.)

  17. Extraction of indium from sulphate solutions with D2EHPA solutions using static mixers

    International Nuclear Information System (INIS)

    Nacevski, N.; Poposka, F.; Nikov, B.

    1995-01-01

    The possible use of static mixers as a reactor for the extraction of indium from sulphate solutions was investigated. The experimental work was focused on ''Kenics'' type static mixers, since these were found simplest and cheapest among a variety of models, and yet yielded acceptable preliminary results with low pressure drop along the reactor. A series of experiments was carried out in a stirred continuous flow reactor to compare the results. It was found that under certain (different) conditions both reactors perform satisfactorily. The energy consumption of a static mixer is of the same order of magnitude as that of a stirred vessel. The most significant achievement of the experimental work is establishing that the residence time in a static mixer is about two orders of magnitude less than that in a stirred reactor. (orig.)

  18. An enhanced close-in phase noise LC-VCO using parasitic V-NPN transistors in a CMOS process

    International Nuclear Information System (INIS)

    Gao Peijun; Min Hao; Oh, N J

    2009-01-01

    A differential LC voltage controlled oscillator (VCO) employing parasitic vertical-NPN (V-NPN) transistors as a negative g m -cell is presented to improve the close-in phase noise. The V-NPN transistors have lower flicker noise compared to MOS transistors. DC and AC characteristics of the V-NPN transistors are measured to facilitate the VCO design. The proposed VCO is implemented in a 0.18 μm CMOS RF/mixed signal process, and the measurement results show the close-in phase noise is improved by 3.5-9.1 dB from 100 Hz to 10 kHz offset compared to that of a similar CMOS VCO. The proposed VCO consumes only 0.41 mA from a 1.5 V power supply. (semiconductor integrated circuits)

  19. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method.

    Science.gov (United States)

    Kawasaki, Shin-ichiro; Sue, Kiwamu; Ookawara, Ryuto; Wakashima, Yuichiro; Suzuki, Akira

    2010-01-01

    Novel micro swirl mixers were developed to synthesize nanoparticles, and the effect of their mixing performance on the characteristics of the synthesized nanoparticles was determined. The results were compared with those obtained using simple T-shaped mixers under the same reaction conditions. The synthesis of NiO, whose characteristics depend on the mixing performance of the mixer, was chosen as a model reaction. Initial investigations highlighted that the average particle size decreased from 32 to 23 to 20 nm as the inner diameter of the swirl mixers was decreased from 3.2 mm (Swirl mixer, SM-3.2) to 0.8 mm (Micro swirl mixer, MSM-0.8) to 0.5 mm (Micro swirl mixer, MSM-0.5), respectively. On the other hand, a similar decrease in the average particle size from 34 to 20 nm was observed with a decrease in the inner diameter of the T-shaped mixers from 1.3 mm (Tee union, T-1.3) to 0.3 mm (Micro tee union, T-0.3), respectively. Further, narrow particle size distributions were observed with a decrease in the inner diameter of each mixer. Furthermore, a computational fluid dynamics (CFD) simulation indicated an excellent mixing mechanism, which contributed to the improvement in the heating rate and the formation of nanoparticles of smaller size with a narrow particle size distribution. The result presented here indicates that the micro swirl mixers produce high-quality metal oxide nanoparticles. The size of the obtained particles with improved size distributions was comparable to that of the particles obtained using the T-shaped mixers, although the inner diameter of the swirl mixers was larger. Therefore, preliminary evidence suggests that the swirl flow mixers have the ability to produce rapid and homogeneous fluid mixing, thus controlling the particle size.

  20. Design of the ME-I powder mixer. Report of the design and construction of the powder mixer, according to the safety requisites of the pellets fabrication process

    International Nuclear Information System (INIS)

    Mariano H, E.

    1991-03-01

    In order to fulfill the requirements of preparation of powder of UO 2 ; according to procedure P-M-PP-01, rev. 0, for the process of production of pellets, it was designed and manufactured a powders mixer to incorporate the lubricant one (zinc stearate) to the powder of UO 2 . This equipment allows to mix the powder of UO 2 evenly with the one zinc stearate, without forming considerable quantities of fine of UO 2 , besides a sure control for the operators of the process and an easy access to the mixer to inspect the mixture. (Author)

  1. Numerical Investigation on Aerodynamic and Combustion Performance of Chevron Mixer Inside an Afterburner.

    Science.gov (United States)

    Yong, Shan; JingZhou, Zhang; Yameng, Wang

    2014-11-01

    To improve the performance of the afterburner for the turbofan engine, an innovative type of mixer, namely, the chevron mixer, was considered to enhance the mixture between the core flow and the bypass flow. Computational fluid dynamics (CFD) simulations investigated the aerodynamic performances and combustion characteristics of the chevron mixer inside a typical afterburner. Three types of mixer, namely, CC (chevrons tilted into core flow), CB (chevrons tilted into bypass flow), and CA (chevrons tilted into core flow and bypass flow alternately), respectively, were studied on the aerodynamic performances of mixing process. The chevrons arrangement has significant effect on the mixing characteristics and the CA mode seems to be advantageous for the generation of the stronger streamwise vortices with lower aerodynamic loss. Further investigations on combustion characteristics for CA mode were performed. Calculation results reveal that the local temperature distribution at the leading edge section of flame holder is improved under the action of streamwise vortices shedding from chevron mixers. Consequently, the combustion efficiency increased by 3.5% compared with confluent mixer under the same fuel supply scheme.

  2. The effects of arbitrary injection angle and flow conditions on venturi-jet mixer

    Directory of Open Access Journals (Sweden)

    Sundararaj S.

    2012-01-01

    Full Text Available This paper describes the effect of jet injection angle, cross flow Reynolds number and velocity ratio on entrainment and mixing of jet with incompressible cross flow in venturi-jet mixer. Five different jet injection angles 45o, 60o, 90o, 125o, 135o are tested to evaluate the entrainment of jet and mixing performances of the mixer. Tracer concentration along the downstream of the jet injection, cross flow velocity, jet velocity and pressure drop across the mixer are determined experimentally to characterize the mixing performance of the mixer. The experiments show that the performance of a venturi-jet-mixer substantially improves at high injection angle and can be augmented still by increasing velocity ratio. The jet deflects much and penetrates less in the cross flow as the cross flow Reynolds number is increased. The effect could contribute substantially to the better mixing index with moderate pressure drop. Normalized jet profile, concentration decay, jet velocity profile are computed from equations of conservation of mass, momentum and concentration written in natural co-ordinate systems. The comparison between the experimental and numerical results confirms the accuracy of the simulations. Correlations for jet trajectory and entrainment ratio of the mixer are obtained by multivariate-linear regression analysis using power law.

  3. Flow regimes in a T-mixer operating with a binary mixture

    Science.gov (United States)

    Camarri, Simone; Siconolfi, Lorenzo; Galletti, Chiara; Salvetti, Maria Vittoria

    2015-11-01

    Efficient mixing in small volumes is a key target in many processes. Among the most common micro-devices, passive T-shaped micro-mixers are widely used. For this reason, T-mixers have been studied in the literature and its working flow regimes have been identified. However, in most of the available theoretical studies it is assumed that only one working fluid is used, i.e. that the same fluid at the same thermodynamic conditions is entering the two inlet conduits of the mixer. Conversely, the practical use of micro-devices often involves the mixing of two different fluids or of the same fluid at different thermodynamic conditions. In this case flow regimes significantly different than those observed for a single working fluid may occur. The present work aims at investigating the flow regimes in a T-mixers when water at two different temperatures, i.e. having different viscosity and density, is entering the mixer. The effect of the temperature difference on the flow regimes in a 3D T-mixer is investigated by DNS and stability analysis and the results are compared to the case in which a single working fluid is employed.

  4. Design of mixer settler extraction cycles II for recovery uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Abdul Jami; Hafni Lissa Nuri

    2013-01-01

    Mixer settler is technically designed for extraction and separation process of uranium from phosphoric acid solution. Design calculation results shows that: the mixer settler consists of two parts: part of extraction process in the mixer tank and part of separation process in settler tank. The mixer tank type of box with 4 baffles, the size of mixer tank, 0.8 m width, 0.8 m length, 1 m high of liquid, 1.05 m high of mixer tank, stirrer type of disk 6 blade, and power of mixing 4 hp and the settler tank type of rectangular with size of settler tank, 0.8 m width 5 m length, 1 m high of liquid, 1.05 m high of settler tank. For uranium recovery efficiency up to 91%, extraction process is done in 3 stage counter current flow using a solvent Organic (O) DEHPA-TOPO in Kerosene at a phase of ratio A/O of 2:1. The aqueous enter through stage 3 and the organic solvent enter through stage 1. The process of settling occurred with the value of settling velocity is 0.000694 m/s, dispersion factor Ψ = 0.3638 and the light fraction as the dispersed phase and value of Reynolds number (NRE) = 3,438. Because of the Reynolds number is lower than 5,000, it indicates that the quality of the separation is very good. (author)

  5. The development of mixer machine for organic animal feed production: Proposed study

    Science.gov (United States)

    Leman, A. M.; Wahab, R. Abdul; Zakaria, Supaat; Feriyanto, Dafit; Nor, M. I. F. Che Mohd; Muzarpar, Syafiq

    2017-09-01

    Mixer machine plays a major role in producing homogenous composition of animal feed. Long time production, inhomogeneous and minor agglomeration has been observed by existing mixer. Therefore, this paper proposed continuous mixer to enhance mixing efficiency with shorter time of mixing process in order to abbreviate the whole process in animal feed production. Through calculation of torque, torsion, bending, power and energy consumption will perform in mixer machine process. Proposed mixer machine is designed by two layer buckets with purpose for continuity of mixing process. Mixing process was performed by 4 blades which consists of various arm length such as 50, 100,150 and 225 mm in 60 rpm velocity clockwise rotation. Therefore by using this machine will produce the homogenous composition of animal feed through nutrition analysis and short operation time of mixing process approximately of 5 minutes. Therefore, the production of animal feed will suitable for various animals including poultry and aquatic fish. This mixer will available for various organic material in animal feed production. Therefore, this paper will highlights some areas such as continues animal feed supply chain and bio-based animal feed.

  6. Study of a new static mixer for two-phase and single-phase flows

    International Nuclear Information System (INIS)

    Foucrier, Michel

    1996-01-01

    The subject of this work is the study of OptimiX, a new static mixer, which is fully designed using an inverse method taking the final product features as input and based on the physical properties of the fluid to mix. The work began with the construction of an experimental loop which allowed us to qualify the mixer in two-phase and single-phase flow conditions. Next, a chemical method using a new test reaction and a micro-mixing model have been used to further characterise the mixer. This test reaction and the micro-mixing model have been developed by the 'Laboratoire des Sciences du Genie Chimique' of Nancy. The mixer OptimiX has proved to be an excellent device for both macro- and micro-mixing. The capability of this mixer to foster rapid reactions was also demonstrated. The well organised flow pattern of OptimiX, which results from its design, provides it with the unusual feature of being fully calculable. This work emphasizes the internal hydrodynamics of this mixer, justifies the universality of the design procedures, which validation is supported by the completed qualification work. (author) [fr

  7. Circuit design for RF transceivers

    CERN Document Server

    Leenaerts, Domine; Vaucher, Cicero S

    2007-01-01

    Second edition of this successful 2001 RF Circuit Design book, has been updated, latest technology reviews have been added as well as several actual case studies. Due to the authors being active in industry as well as academia, this should prove to be an essential guide on RF Transceiver Design for students and engineers.

  8. RF-Station control crate

    International Nuclear Information System (INIS)

    Beuzekom, M.G. van; Es, J.T. van.

    1992-01-01

    This report gives a description of the electronic control-system for the RF-station of AmPS. The electronics form the connection between the computer-system and the hardware of the RF-station. Only the elements of the systems which are not described in the other NIKHEF-reports are here discussed in detail. (author). 7 figs

  9. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-01-01

    zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF

  10. Refurbishments of RF systems

    International Nuclear Information System (INIS)

    Baelde, J.L.

    1998-01-01

    This document describes the activities of the R.F. System group during the years 1995-1996 in the frame of the refurbishment of the control system at GANIL accelerator. Modifications concerning the following sub-assemblies are mentioned: 1. voltage standards; 2. link card between the step by step motor control and the local control systems; 3. polarization system; 4. computer software for different operations. Also reported is the installation of ECR 4 source for the CO2. In this period the R2 Regrouping system has been installed, tested and put into operation. Several problems concerning the mechanical installation of the coupling loop and other problems related to the electronics operation were solved. The results obtained with the THI machine are presented

  11. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  12. On the integration of ultrananocrystalline diamond (UNCD with CMOS chip

    Directory of Open Access Journals (Sweden)

    Hongyi Mi

    2017-03-01

    Full Text Available A low temperature deposition of high quality ultrananocrystalline diamond (UNCD film onto a finished Si-based CMOS chip was performed to investigate the compatibility of the UNCD deposition process with CMOS devices for monolithic integration of MEMS on Si CMOS platform. DC and radio-frequency performances of the individual PMOS and NMOS devices on the CMOS chip before and after the UNCD deposition were characterized. Electrical characteristics of CMOS after deposition of the UNCD film remained within the acceptable ranges, namely showing small variations in threshold voltage Vth, transconductance gm, cut-off frequency fT and maximum oscillation frequency fmax. The results suggest that low temperature UNCD deposition is compatible with CMOS to realize monolithically integrated CMOS-driven MEMS/NEMS based on UNCD.

  13. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  14. Low noise monolithic CMOS front end electronics

    International Nuclear Information System (INIS)

    Lutz, G.; Bergmann, H.; Holl, P.; Manfredi, P.F.

    1987-01-01

    Design considerations for low noise charge measurement and their application in CMOS electronics are described. The amplifier driver combination whose noise performance has been measured in detail as well as the analog multiplexing silicon strip detector readout electronics are designed with low power consumption and can be operated in pulsed mode so as to reduce heat dissipation even further in many applications. (orig.)

  15. CMOS VHF transconductance-C lowpass filter

    NARCIS (Netherlands)

    Nauta, Bram

    1990-01-01

    Experimental results of a VHF CMOS transconductance-C lowpass filter are described. The filter is built with transconductors as published earlier. The cutoff frequency can be tuned from 22 to 98 MHz and the measured filter response is very close to the ideal response

  16. CMOS switched current phase-locked loop

    NARCIS (Netherlands)

    Leenaerts, D.M.W.; Persoon, G.G.; Putter, B.M.

    1997-01-01

    The authors present an integrated circuit realisation of a switched current phase-locked loop (PLL) in standard 2.4 µm CMOS technology. The centre frequency is tunable to 1 MHz at a clock frequency of 5.46 MHz. The PLL has a measured maximum phase error of 21 degrees. The chip consumes

  17. CMOS digital integrated circuits a first course

    CERN Document Server

    Hawkins, Charles; Zarkesh-Ha, Payman

    2016-01-01

    This book teaches the fundamentals of modern CMOS technology and covers equal treatment to both types of MOSFET transistors that make up computer circuits; power properties of logic circuits; physical and electrical properties of metals; introduction of timing circuit electronics and introduction of layout; real-world examples and problem sets.

  18. A 24GHz Radar Receiver in CMOS

    NARCIS (Netherlands)

    Kwok, K.C.

    2015-01-01

    This thesis investigates the system design and circuit implementation of a 24GHz-band short-range radar receiver in CMOS technology. The propagation and penetration properties of EM wave offer the possibility of non-contact based remote sensing and through-the-wall imaging of distance stationary or

  19. Toward CMOS image sensor based glucose monitoring.

    Science.gov (United States)

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2012-09-07

    Complementary metal oxide semiconductor (CMOS) image sensor is a powerful tool for biosensing applications. In this present study, CMOS image sensor has been exploited for detecting glucose levels by simple photon count variation with high sensitivity. Various concentrations of glucose (100 mg dL(-1) to 1000 mg dL(-1)) were added onto a simple poly-dimethylsiloxane (PDMS) chip and the oxidation of glucose was catalyzed with the aid of an enzymatic reaction. Oxidized glucose produces a brown color with the help of chromogen during enzymatic reaction and the color density varies with the glucose concentration. Photons pass through the PDMS chip with varying color density and hit the sensor surface. Photon count was recognized by CMOS image sensor depending on the color density with respect to the glucose concentration and it was converted into digital form. By correlating the obtained digital results with glucose concentration it is possible to measure a wide range of blood glucose levels with great linearity based on CMOS image sensor and therefore this technique will promote a convenient point-of-care diagnosis.

  20. Fully CMOS-compatible titanium nitride nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Justin A., E-mail: jabriggs@stanford.edu [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Naik, Gururaj V.; Baum, Brian K.; Dionne, Jennifer A. [Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Petach, Trevor A.; Goldhaber-Gordon, David [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States)

    2016-02-01

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  1. Measured performance of the GTA rf systems

    International Nuclear Information System (INIS)

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation

  2. Interfacial effects in a multistage mixer-settler operation

    International Nuclear Information System (INIS)

    Jiinshiung Horng; Daluh Lu; Yingchu Hoh

    1988-01-01

    A pilot-scale mixer-settler with twenty-one stages was used to investigate the interfacial tension change during extraction cycle for the complicated system: NdCl 3 -SmCl 3 -EuCl 3 -GdCl 3 -TbCl 3 -DyCl 3 -HCl- 1 M D2EHPA-kerosene. Interfacial tension, total rare earth (TRE) concentrations in both phases, aqueous acidities, and organic entrainment in the raffinate, etc., were measured for each stage. Murphree stage efficiencies based on organic phase were calculated and related to the interfacial tension profiles. In general, the lower the interfacial tension, the higher the stage efficiency observed. For the extraction section, the stage efficiency ranged from 80% - 100%, but for stripping (including scrubbing) section, it varied from 100% - 15%. For high acidic stripping agent, 5 M HCl, the relatively lower stage efficiency might be due to the protonation of the acidic extractant, therefore the interfacial resistance increased significantly. From the information of stage efficiency, mass transfer direction, and interfacial tension versus solute concentration etc., the Marangoni effect could be used to explain the interfacial phenomena of this complicated extraction system. The results of real stream tests in this investigation will be useful in future plant design. (author)

  3. Can fractal objects operate as efficient inline mixers?

    Science.gov (United States)

    Laizet, Sylvain; Vassilicos, John; Turbulence, Mixing; Flow Control Group Team

    2011-11-01

    Recently, Hurst & Vassilicos, PoF 2007, Seoud & Vassilicos, PoF 2007, Mazellier & Vassilicos, PoF, 2010 used different multiscale grids to generate turbulence in a wind tunnel and have shown that complex multiscale boundary/initial conditions can drastically influence the behaviour of a turbulent flow, but that the detailled specific nature of the multiscale geometry matters too. Multiscale (fractal) objects can be designed to be immersed in any fluid flow where there is a need to control and design the turbulence generated by the object. Different types of multiscale objects can be designed as different types of energy-efficient mixers with varying degrees of high turbulent intensities, small pressure drop and downstream distance from the grid where the turbulence is most vigorous. Here, we present a 3D DNS study of the stirring and mixing of a passive scalar by turbulence generated with either a fractal square grid or a regular grid in the presence of a mean scalar gradient. The results show that: (1) there is a linear increase for the passive scalar variance for both grids, (2) the passive scalar variance is ten times bigger for the fractal grid, (3) the passive scalar flux is constant after the production region for both grids, (4) the passive scalar flux is enhanced by an order of magnitude for the fractal grid. We acknowledge support from EPSRC, UK.

  4. Comparison of SX of uranium using mixer settler and columns

    International Nuclear Information System (INIS)

    Grinbaum, B.; Kotze, M.; Buchalter, E.

    2010-01-01

    Two types of equipment are used in the industry for solvent extraction (SX) of U: mixer-settlers (MS) and columns. Currently the only published type of columns applied in U SX is the Bateman Pulsed Columns (BPC). These columns have been applied for extraction of U for more than 13 years in Olympic Dam plant in Australia and in recent years were also introduced to additional plants in Australia and South Africa. Other plants are using MS of various types. The columns are currently used in the extraction battery only. For stripping and scrubbing only MS are currently used. Although pilot tests prove that the pH gradient required in the stripping may be successfully obtained in the BPC, they have not yet been applied in the industry. The paper compares the extraction and stripping in both types of equipment, regarding the capital cost, operating costs and operating conditions. The capital cost of the BPC is lower by 33-40%, depending on the size of the plant and the quality of the ore. The operating costs with the BPC are slightly lower, due to smaller losses of solvent. From operating point of view the BPC has the ability to recover from phase inversion and precipitation of yellow cake without the need to shut down the plant, if the problem is addressed within a few minutes. (author)

  5. Automatic Control of the Concrete Mixture Homogeneity in Cycling Mixers

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The article describes the factors affecting the concrete mixture quality related to the moisture content of aggregates, since the effectiveness of the concrete mixture production is largely determined by the availability of quality management tools at all stages of the technological process. It is established that the unaccounted moisture of aggregates adversely affects the concrete mixture homogeneity and, accordingly, the strength of building structures. A new control method and the automatic control system of the concrete mixture homogeneity in the technological process of mixing components have been proposed, since the tasks of providing a concrete mixture are performed by the automatic control system of processing kneading-and-mixing machinery with operational automatic control of homogeneity. Theoretical underpinnings of the control of the mixture homogeneity are presented, which are related to a change in the frequency of vibrodynamic vibrations of the mixer body. The structure of the technical means of the automatic control system for regulating the supply of water is determined depending on the change in the concrete mixture homogeneity during the continuous mixing of components. The following technical means for establishing automatic control have been chosen: vibro-acoustic sensors, remote terminal units, electropneumatic control actuators, etc. To identify the quality indicator of automatic control, the system offers a structure flowchart with transfer functions that determine the ACS operation in transient dynamic mode.

  6. Performance analysis of vortex based mixers for confined flows

    Science.gov (United States)

    Buschhagen, Timo

    The hybrid rocket is still sparsely employed within major space or defense projects due to their relatively poor combustion efficiency and low fuel grain regression rate. Although hybrid rockets can claim advantages in safety, environmental and performance aspects against established solid and liquid propellant systems, the boundary layer combustion process and the diffusion based mixing within a hybrid rocket grain port leaves the core flow unmixed and limits the system performance. One principle used to enhance the mixing of gaseous flows is to induce streamwise vorticity. The counter-rotating vortex pair (CVP) mixer utilizes this principle and introduces two vortices into a confined flow, generating a stirring motion in order to transport near wall media towards the core and vice versa. Recent studies investigated the velocity field introduced by this type of swirler. The current work is evaluating the mixing performance of the CVP concept, by using an experimental setup to simulate an axial primary pipe flow with a radially entering secondary flow. Hereby the primary flow is altered by the CVP swirler unit. The resulting setup therefore emulates a hybrid rocket motor with a cylindrical single port grain. In order to evaluate the mixing performance the secondary flow concentration at the pipe assembly exit is measured, utilizing a pressure-sensitive paint based procedure.

  7. SQIF Arrays as RF Sensors (Briefing Charts)

    National Research Council Canada - National Science Library

    Yukon, Stanford P

    2007-01-01

    ... (Superconducting Quantum Interference Filter) arrays may be employed as sensitive RF sensors. RF SQIF arrays fabricated with high Tc Josephson junctions can be cooled with small Sterling microcoolers...

  8. CMOS-compatible spintronic devices: a review

    Science.gov (United States)

    Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried

    2016-11-01

    For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.

  9. CMOS MEMS capacitive absolute pressure sensor

    International Nuclear Information System (INIS)

    Narducci, M; Tsai, J; Yu-Chia, L; Fang, W

    2013-01-01

    This paper presents the design, fabrication and characterization of a capacitive pressure sensor using a commercial 0.18 µm CMOS (complementary metal–oxide–semiconductor) process and postprocess. The pressure sensor is capacitive and the structure is formed by an Al top electrode enclosed in a suspended SiO 2 membrane, which acts as a movable electrode against a bottom or stationary Al electrode fixed on the SiO 2 substrate. Both the movable and fixed electrodes form a variable parallel plate capacitor, whose capacitance varies with the applied pressure on the surface. In order to release the membranes the CMOS layers need to be applied postprocess and this mainly consists of four steps: (1) deposition and patterning of PECVD (plasma-enhanced chemical vapor deposition) oxide to protect CMOS pads and to open the pressure sensor top surface, (2) etching of the sacrificial layer to release the suspended membrane, (3) deposition of PECVD oxide to seal the etching holes and creating vacuum inside the gap, and finally (4) etching of the passivation oxide to open the pads and allow electrical connections. This sensor design and fabrication is suitable to obey the design rules of a CMOS foundry and since it only uses low-temperature processes, it allows monolithic integration with other types of CMOS compatible sensors and IC (integrated circuit) interface on a single chip. Experimental results showed that the pressure sensor has a highly linear sensitivity of 0.14 fF kPa −1 in the pressure range of 0–300 kPa. (paper)

  10. Design of millimeter-wave MEMS-based reconfigurable front-end circuits using the standard CMOS technology

    International Nuclear Information System (INIS)

    Chang, Chia-Chan; Hsieh, Sheng-Chi; Chen, Chien-Hsun; Huang, Chin-Yen; Yao, Chun-Han; Lin, Chun-Chi

    2011-01-01

    This paper describes the designs of three reconfigurable CMOS-MEMS front-end components for V-/W-band applications. The suspended MEMS structure is released through post-CMOS micromachining. To achieve circuit reconfigurability, dual-state and multi-state fishbone-beam-drive actuators are proposed herein. The reconfigurable bandstop is fabricated in a 0.35 µm CMOS process with the chip size of 0.765 × 0.98 mm 2 , showing that the stop-band frequency can be switched from 60 to 50 GHz with 40 V actuation voltage. The measured isolation is better than 38 dB at 60 GHz and 34 dB at 50 GHz, respectively. The bandpass filter-integrated single-pole single-throw switch, using the 0.18 µm CMOS process, demonstrates that insertion loss and return loss are better than 6.2 and 15 dB from 88 to 100 GHz in the on-state, and isolation is better than 21 dB in the off-state with an actuation voltage of 51 V. The chip size is 0.7 × 1.04 mm 2 . The third component is a reconfigurable slot antenna fabricated in a 0.18 µm CMOS process with the chip size of 1.2 × 1.2 mm 2 . By utilizing the multi-state actuators, the frequencies of this antenna can be switched to 43, 47, 50.5, 54, 57.5 GHz with return loss better than 20 dB. Those circuits demonstrate good RF performance and are relatively compact by employing several size miniaturizing techniques, thereby enabling a great potential for the future single-chip transceiver.

  11. Monolithic silicon photonics in a sub-100nm SOI CMOS microprocessor foundry: progress from devices to systems

    Science.gov (United States)

    Popović, Miloš A.; Wade, Mark T.; Orcutt, Jason S.; Shainline, Jeffrey M.; Sun, Chen; Georgas, Michael; Moss, Benjamin; Kumar, Rajesh; Alloatti, Luca; Pavanello, Fabio; Chen, Yu-Hsin; Nammari, Kareem; Notaros, Jelena; Atabaki, Amir; Leu, Jonathan; Stojanović, Vladimir; Ram, Rajeev J.

    2015-02-01

    We review recent progress of an effort led by the Stojanović (UC Berkeley), Ram (MIT) and Popović (CU Boulder) research groups to enable the design of photonic devices, and complete on-chip electro-optic systems and interfaces, directly in standard microelectronics CMOS processes in a microprocessor foundry, with no in-foundry process modifications. This approach allows tight and large-scale monolithic integration of silicon photonics with state-of-the-art (sub-100nm-node) microelectronics, here a 45nm SOI CMOS process. It enables natural scale-up to manufacturing, and rapid advances in device design due to process repeatability. The initial driver application was addressing the processor-to-memory communication energy bottleneck. Device results include 5Gbps modulators based on an interleaved junction that take advantage of the high resolution of the sub-100nm CMOS process. We demonstrate operation at 5fJ/bit with 1.5dB insertion loss and 8dB extinction ratio. We also demonstrate the first infrared detectors in a zero-change CMOS process, using absorption in transistor source/drain SiGe stressors. Subsystems described include the first monolithically integrated electronic-photonic transmitter on chip (modulator+driver) with 20-70fJ/bit wall plug energy/bit (2-3.5Gbps), to our knowledge the lowest transmitter energy demonstrated to date. We also demonstrate native-process infrared receivers at 220fJ/bit (5Gbps). These are encouraging signs for the prospects of monolithic electronics-photonics integration. Beyond processor-to-memory interconnects, our approach to photonics as a "More-than- Moore" technology inside advanced CMOS promises to enable VLSI electronic-photonic chip platforms tailored to a vast array of emerging applications, from optical and acoustic sensing, high-speed signal processing, RF and optical metrology and clocks, through to analog computation and quantum technology.

  12. A monolithic 180 nm CMOS dosimeter for wireless In Vivo Dosimetry

    International Nuclear Information System (INIS)

    Villani, E.G.; Crepaldi, M.; DeMarchi, D.; Gabrielli, A.; Khan, A.; Pikhay, E.; Roizin, Y.; Rosenfeld, A.; Zhang, Z.

    2016-01-01

    The design, fabrication and testing of a novel monolithic system-on-chip dosimeter fabricated in a standard 180 nm CMOS technology is described. The device, implementing a radiation sensor and an RF transmitter, is proposed to address the need for real-time In Vivo Dosimetry (IVD) of radiation during Linac radiotherapy sessions. Owing to its small size, of approximately 1 mm"3, such solution could be made in-body implantable and, as such, provide a much-enhanced high-resolution, real-time dose measurement to improve Quality Assurance (QA) in radiation therapy. The device transmits the related information on dose of radiation wirelessly to a remote receiver operating in the Medical Implant Communication Service (MICS) band. Comprehensive description of the various phases of this project, including the development of the radiation sensors and integrated RF transmitter to perform the readout, along with the final test results using a radiation beam, will be given. - Highlights: • A Monolithic Dosimeter for real time dosimetry during radiotherapy is proposed. • The proposed device is 1 mm3 in size and could potentially be body implantable. • The device includes a radiation sensor and RF readout, operating in the MICS band. • Detailed tests have been performed under radiation beam in a clinical environment. • Reported sensitivity is 1 cGy over 50 Gy, with an accuracy of better than 3%.

  13. SPEAR 2 RF SYSTEM LOADS

    International Nuclear Information System (INIS)

    2002-01-01

    The design and performance of higher order mode (HOM) dampers for the SPEAR 2 RF system is presented. The SPEAR beam had experienced occasional periods of instability due to transverse oscillations which were driven by HOMs in the RF cavities. A substantial fraction of this RF energy was coupled out of the cavity into the waveguide connecting the cavity to the klystron. This waveguide was modified by adding a stub of smaller cross section, terminated by a ferrite tile load, to the system. Design considerations of the load, and its effect on HOMs and beam stability will be discussed

  14. Performance analysis of a low power low noise tunable band pass filter for multiband RF front end

    International Nuclear Information System (INIS)

    Manjula, J.; Malarvizhi, S.

    2014-01-01

    This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor of a gyrator to reduce the noise voltage. Also, this structure provides possible negative resistance to reduce the inductor loss with wide inductive bandwidth and high resonance frequency. The RF band pass filter is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multiband operation is achieved through the controllable current source. The designed active inductor and RF band pass filter are simulated in 180 nm and 45 nm CMOS process using the Synopsys HSPICE simulation tool and their performances are compared. The parameters, such as resonance frequency, tuning capability, noise and power dissipation, are analyzed for these CMOS technologies and discussed. The design of a third order band pass filter using an active inductor is also presented. (semiconductor integrated circuits)

  15. DC and RF Characterization of Laser Annealed Metal-Gate SOI CMOS Field-Effect Transistors

    National Research Council Canada - National Science Library

    Lu, R. P; Offord, B. W; Popp, J. D; Ramirez, A. D; Rowland, J. F; Russell, S. D

    2005-01-01

    .... The 0.25-micron devices were found to be more sensitive to the laser energy which showed up in the DC measurements in threshold voltage variations and larger leakage currents in the subthreshold characteristics...

  16. RF superconductivity at CEBAF

    International Nuclear Information System (INIS)

    1990-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a 4 GeV continuous beam electron accelerator being constructed to perform nuclear physics research. Construction began in February 1987 and initial operation is scheduled for February 1994. The present report describes its prototyping, problems/solutions, further development, facilities, design status, production and upgrade potential. The accelerator is 1.4 km in circumference, and has a race-track shape. It is of the recirculated linear accelerator type, and employs a total of five passes. Two linacs on opposite sides of the race-track each provide 400 MeV per pass. Beams of various energies are transported by separated arcs at each end of the straight sections to provide the recirculation. There are 4 recirculation arcs at the injector end, and 5 arcs at the other end. The full energy beam is routed by an RF separator to between one and three end stations, as desired, on a bucket-by-bucket basis. The average output beam current is 200 microamperes. Acceleration is provided by 338 superconducting cavities, which are arranged in pairs, each of which is enclosed in a helium vessel and suspended inside a vacuum jacket without ends. (N.K.)

  17. A monolithic RF transceiver for DC-OFDM UWB

    International Nuclear Information System (INIS)

    Chen Yunfeng; Li Wei; Fu Haipeng; Gao Ting; Chen Danfeng; Zhou Feng; Cai Deyun; Li Dan; Niu Yangyang; Zhou Hanchao; Zhu Ning; Li Ning; Ren Junyan

    2012-01-01

    This paper presents a first monolithic RF transceiver for DC-OFDM UWB applications. The proposed direct-conversion transceiver integrates all the building blocks including two receiver (Rx) cores, two transmitter (Tx) cores and a dual-carrier frequency synthesizer (DC-FS) as well as a 3-wire serial peripheral interface (SPI) to set the operating status of the transceiver. The ESD-protected chip is fabricated by a TSMC 0.13-μm RF CMOS process with a die size of 4.5 × 3.6 mm 2 . The measurement results show that the wideband Rx achieves an NF of 5–6.2 dB, a max gain of 76–84 dB with 64-dB variable gain, an in-/out-of-band IIP3 of −6/+4 dBm and an input loss S 11 of < −10 in all bands. The Tx achieves an LOLRR/IMGRR of −34/-33 dBc, a typical OIP3 of +6 dBm and a maximum output power of −5 dBm. The DC-FS outputs two separate carriers simultaneously with an inter-band hopping time of < 1.2 ns. The full chip consumes a maximum current of 420 mA under a 1.2-V supply. (semiconductor integrated circuits)

  18. Design of a Novel W-Sinker RF LDMOS

    Directory of Open Access Journals (Sweden)

    Xiangming Xu

    2015-01-01

    Full Text Available A novel RF LDMOS device structure and corresponding manufacturing process are presented in this paper. Deep trench W-sinker (tungsten sinker is employed in this technology to replace the traditional heavily doped diffusion sinker which can shrink chip size of the LDMOS transistor by more than 30% and improve power density. Furthermore, the W-sinker structure reduces the parasitic resistance and inductance and improves thermal conductivity of the device as well. Combined with the adoption of the techniques, like grounded shield, step gate oxide, LDD optimization, and so forth, an advanced technology for RF LDMOS based on conventional 0.35 μm CMOS technology is well established. An F+A power amplifier product with frequency range of 1.8–2.1 GHz is developed for the application of 4G LTE base station and industry leading performance is achieved. The qualification results show that the device reliability and ruggedness can also meet requirement of the application.

  19. A 1 MHz BW 34.2 fJ/step Continuous Time Delta Sigma Modulator With an Integrated Mixer for Cardiac Ultrasound.

    Science.gov (United States)

    Kaald, Rune; Eggen, Trym; Ytterdal, Trond

    2017-02-01

    Fully digitized 2D ultrasound transducer arrays require one ADC per channel with a beamforming architecture consuming low power. We give design considerations for per-channel digitization and beamforming, and present the design and measurements of a continuous time delta-sigma modulator (CTDSM) for cardiac ultrasound applications. By integrating a mixer into the modulator frontend, the phase and frequency of the input signal can be shifted, thereby enabling both improved conversion efficiency and narrowband beamforming. To minimize the power consumption, we propose an optimization methodology using a simulated annealing framework combined with a C++ simulator solving linear electrical networks. The 3rd order single-bit feedback type modulator, implemented in a 65 nm CMOS process, achieves an SNR/SNDR of 67.8/67.4 dB across 1 MHz bandwidth consuming 131 [Formula: see text] of power. The achieved figure of merit of 34.2 fJ/step is comparable with state-of-the-art feedforward type multi-bit designs. We further demonstrate the influence to the dynamic range when performing dynamic receive beamforming on recorded delta-sigma modulated bit-stream sequences.

  20. Water cooling of RF structures

    International Nuclear Information System (INIS)

    Battersby, G.; Zach, M.

    1994-06-01

    We present computer codes for heat transfer in water cooled rf cavities. RF parameters obtained by SUPERFISH or analytically are operated on by a set of codes using PLOTDATA, a command-driven program developed and distributed by TRIUMF [1]. Emphasis is on practical solutions with designer's interactive input during the computations. Results presented in summary printouts and graphs include the temperature, flow, and pressure data. (authors). 4 refs., 4 figs

  1. Unbalanced field RF electron gun

    Science.gov (United States)

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  2. Safety basis for the 241-AN-107 mixer pump installation and caustic addition

    International Nuclear Information System (INIS)

    Van Vleet, R.J.

    1994-01-01

    This safety Basis was prepared to determine whether or not the proposed activities of installing a 76 HP jet mixer pump and the addition of approximately 50,000 gallons of 19 M (50:50 wt %) aqueous caustic are within the safety envelope as described by Tank Farms (chapter six of WHC-SD-WM-ISB-001, Rev. 0). The safety basis covers the components, structures and systems for the caustic addition and mixer pump installation. These include: installation of the mixer pump and monitoring equipment; operation of the mixer pump, process monitoring equipment and caustic addition; the pump stand, caustic addition skid, the electrical skid, the video camera system and the two densitometers. Also covered is the removal and decontamination of the mixer pump and process monitoring system. Authority for this safety basis is WHC-IP-0842 (Waste Tank Administration). Section 15.9, Rev. 2 (Unreviewed Safety Questions) of WHC-IP-0842 requires that an evaluation be performed for all physical modifications

  3. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck

    Science.gov (United States)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.

    2018-03-01

    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  4. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers

    Directory of Open Access Journals (Sweden)

    Mubashshir Ahmad Ansari

    2018-04-01

    Full Text Available Vortex flow increases the interface area of fluid streams by stretching along with providing continuous stirring action to the fluids in micromixers. In this study, experimental and numerical analyses on a design of micromixer that creates vortex flow were carried out, and the mixing performance was compared with a simple micro T-mixer. In the vortex micro T-mixer, the height of the inlet channels is half of the height of the main mixing channel. The inlet channel connects to the main mixing channel (micromixer at the one end at an offset position in a fashion that creates vortex flow. In the simple micro T-mixer, the height of the inlet channels is equal to the height of the channel after connection (main mixing channel. Mixing of fluids and flow field have been analyzed for Reynolds numbers in a range from 1–80. The study has been further extended to planar serpentine microchannels, which were combined with a simple and a vortex T-junction, to evaluate and verify their mixing performances. The mixing performance of the vortex T-mixer is higher than the simple T-mixer and significantly increases with the Reynolds number. The design is promising for efficiently increasing mixing simply at the T-junction and can be applied to all micromixers.

  5. Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection.

    Science.gov (United States)

    Kise, Drew P; Magana, Donny; Reddish, Michael J; Dyer, R Brian

    2014-02-07

    We report a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection, with an experimentally determined, submillisecond mixing time. The simple and robust mixer design has the microfluidic channels cut through a polymer spacer that is sandwiched between two IR transparent windows. The mixer hydrodynamically focuses the sample stream with two side flow channels, squeezing it into a thin jet and initiating mixing through diffusion and advection. The detection system generates a mid-infrared hyperspectral absorbance image of the microfluidic sample stream. Calibration of the hyperspectral image yields the mid-IR absorbance spectrum of the sample versus time. A mixing time of 269 μs was measured for a pD jump from 3.2 to above 4.5 in a D2O sample solution of adenosine monophosphate (AMP), which acts as an infrared pD indicator. The mixer was further characterized by comparing experimental results with a simulation of the mixing of an H2O sample stream with a D2O sheath flow, showing good agreement between the two. The IR microfluidic mixer eliminates the need for fluorescence labeling of proteins with bulky, interfering dyes, because it uses the intrinsic IR absorbance of the molecules of interest, and the structural specificity of IR spectroscopy to follow specific chemical changes such as the protonation state of AMP.

  6. Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers

    International Nuclear Information System (INIS)

    Liu, Yu-Chia; Tsai, Ming-Han; Fang, Weileun; Tang, Tsung-Lin

    2011-01-01

    This study presents a simple approach to improve the performance of the CMOS-MEMS capacitive accelerometer by means of the post-CMOS metal electroplating process. The metal layer can be selectively electroplated on the MEMS structures at low temperature and the thickness of the metal layer can be easily adjusted by this process. Thus the performance of the capacitive accelerometer (i.e. sensitivity, noise floor and the minimum detectable signal) can be improved. In application, the proposed accelerometers have been implemented using (1) the standard CMOS 0.35 µm 2P4M process by CMOS foundry, (2) Ti/Au seed layers deposition/patterning by MEMS foundry and (3) in-house post-CMOS electroplating and releasing processes. Measurements indicate that the sensitivity is improved 2.85-fold, noise is decreased near 1.7-fold and the minimum detectable signal is improved from 1 to 0.2 G after nickel electroplating. Moreover, unwanted structure deformation due to the temperature variation is significantly suppressed by electroplated nickel.

  7. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2001-01-01

    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved. A continuous-time offset-compensation technique is utilized in order to minimize impact...... on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0.5 μm CMOS single poly, n-well process. The prototype amplifier features a gain of 80 dB over a 3.6 kHz bandwidth, a CMRR of more than 87 dB and a PSRR...

  8. Recent developments with CMOS SSPM photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Stapels, Christopher J. [Radiation Monitoring Devices, Inc., Watertown, MA (United States)], E-mail: CStapels@RMDInc.com; Barton, Paul [University of Michigan, Ann Arbor, MI (United States); Johnson, Erik B. [Radiation Monitoring Devices, Inc., Watertown, MA (United States); Wehe, David K. [University of Michigan, Ann Arbor, MI (United States); Dokhale, Purushottam; Shah, Kanai [Radiation Monitoring Devices, Inc., Watertown, MA (United States); Augustine, Frank L. [Augustine Engineering, Encinitas, CA (United States); Christian, James F. [Radiation Monitoring Devices, Inc., Watertown, MA (United States)

    2009-10-21

    Experiments and simulations using various solid-state photomultiplier (SSPM) designs have been performed to evaluate pixel layouts and explore design choices. SPICE simulations of a design for position-sensing SSPMs showed charge division in the resistor network, and anticipated timing performance of the device. The simulation results predict good position information for resistances in the range of 1-5 k{omega} and 150-{omega} preamplifier input impedance. Back-thinning of CMOS devices can possibly increase the fill factor to 100%, improve spectral sensitivity, and allow for the deposition of anti-reflective coatings after fabrication. We report initial results from back illuminating a CMOS SSPM, and single Geiger-mode avalanche photodiode (GPD) pixels, thinned to 50 {mu}m.

  9. Desenvolvimento de uma matriz de portas CMOS

    OpenAIRE

    Jose Geraldo Mendes Taveira

    1991-01-01

    Resumo: É apresentado o projeto de uma matriz deportas CMOS. O capítulo 11 descreve as etapas de projeto, incluindo desde a escolha da topologia das células internas e de interface, o projeto e a simulação elétrica, até a geração do lay-out. Ocaprtulo III apresenta o projeto dos circuitos de aplicação, incluídos para permitir a validação da matriz. Os circuitos de apl icação são : Oscilador em anel e comparador de códigos. A matriz foi difundida no Primeiro Projeto Multi-Usuário CMOS Brasile...

  10. CMOS SPDT switch for WLAN applications

    International Nuclear Information System (INIS)

    Bhuiyan, M A S; Reaz, M B I; Rahman, L F; Minhad, K N

    2015-01-01

    WLAN has become an essential part of our today's life. The advancement of CMOS technology let the researchers contribute low power, size and cost effective WLAN devices. This paper proposes a single pole double through transmit/receive (T/R) switch for WLAN applications in 0.13 μm CMOS technology. The proposed switch exhibit 1.36 dB insertion loss, 25.3 dB isolation and 24.3 dBm power handling capacity. Moreover, it only dissipates 786.7 nW power per cycle. The switch utilizes only transistor aspect ratio optimization and resistive body floating technique to achieve such desired performance. In this design the use of bulky inductor and capacitor is avoided to evade imposition of unwanted nonlinearities to the communication signal. (paper)

  11. Cmos spdt switch for wlan applications

    Science.gov (United States)

    Bhuiyan, M. A. S.; Reaz, M. B. I.; Rahman, L. F.; Minhad, K. N.

    2015-04-01

    WLAN has become an essential part of our today's life. The advancement of CMOS technology let the researchers contribute low power, size and cost effective WLAN devices. This paper proposes a single pole double through transmit/receive (T/R) switch for WLAN applications in 0.13 μm CMOS technology. The proposed switch exhibit 1.36 dB insertion loss, 25.3 dB isolation and 24.3 dBm power handling capacity. Moreover, it only dissipates 786.7 nW power per cycle. The switch utilizes only transistor aspect ratio optimization and resistive body floating technique to achieve such desired performance. In this design the use of bulky inductor and capacitor is avoided to evade imposition of unwanted nonlinearities to the communication signal.

  12. Registration of Large Motion Blurred CMOS Images

    Science.gov (United States)

    2017-08-28

    raju@ee.iitm.ac.in - Institution : Indian Institute of Technology (IIT) Madras, India - Mailing Address : Room ESB 307c, Dept. of Electrical ...AFRL-AFOSR-JP-TR-2017-0066 Registration of Large Motion Blurred CMOS Images Ambasamudram Rajagopalan INDIAN INSTITUTE OF TECHNOLOGY MADRAS Final...NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) INDIAN INSTITUTE OF TECHNOLOGY MADRAS SARDAR PATEL ROAD Chennai, 600036

  13. The CMOS Integration of a Power Inverter

    OpenAIRE

    Mannarino, Eric Francis

    2016-01-01

    Due to their falling costs, the use of renewable energy systems is expanding around the world. These systems require the conversion of DC power into grid-synchronous AC power. Currently, the inverters that carry out this task are built using discrete transistors. TowerJazz Semiconductor Corp. has created a commercial CMOS process that allows for blocking voltages of up to 700 V, effectively removing the barrier to integrating power inverters onto a single chip. This thesis explores this proce...

  14. Advanced CMOS Radiation Effects Testing and Analysis

    Science.gov (United States)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; hide

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  15. Plasmonic Modulator Using CMOS Compatible Material Platform

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Kinsey, Nathaniel; Naik, Gururaj V.

    2014-01-01

    In this work, a design of ultra-compact plasmonic modulator is proposed and numerically analyzed. The device l ayout utilizes alternative plas monic materials such as tr ansparent conducting oxides and titanium nitride which potentially can be applied for CMOS compatible process. The modulation i...... for integration with existing insulator-metal-insu lator plasmonic waveguides as well as novel photonic/electronic hybrid circuits...

  16. Ultra-low Voltage CMOS Cascode Amplifier

    OpenAIRE

    Lehmann, Torsten; Cassia, Marco

    2000-01-01

    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique, which reduces the MOST threshold voltage by forcing a constant current though the transistor bulk terminal. We also look at limitations and improvements of this CDB technique.

  17. Aging sensor for CMOS memory cells

    OpenAIRE

    Santos, Hugo Fernandes da Silva

    2016-01-01

    Dissertação de Mestrado, Engenharia e Tecnologia, Instituto Superior de Engenharia, Universidade do Algarve, 2016 As memórias Complementary Metal Oxide Semiconductor (CMOS) ocupam uma percentagem de área significativa nos circuitos integrados e, com o desenvolvimento de tecnologias de fabrico a uma escala cada vez mais reduzida, surgem problemas de performance e de fiabilidade. Efeitos como o BTI (Bias Thermal Instability), TDDB (Time Dependent Dielectric Breakdown), HCI (Hot Carrier Injec...

  18. Ultra-low Voltage CMOS Cascode Amplifier

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Cassia, Marco

    2000-01-01

    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique......, which reduces the MOST threshold voltage by forcing a constant current though the transistor bulk terminal. We also look at limitations and improvements of this CDB technique....

  19. Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs

    KAUST Repository

    Ouda, Mahmoud H.

    2016-07-27

    A wide-range, differential, cross-coupled rectifier is proposed with an extended dynamic range of input RF power that enables wireless powering from varying distances. The proposed architecture mitigates the reverse-leakage problem in conven- tional, cross-coupled rectifiers without degrading sensitivity. A prototype is designed for UHF RFID applications, and is imple- mented using 0.18 μ m CMOS technology. On-chip measurements demonstrate a sensitivity of − 18 dBm for 1 V output over a 100 k Ω load and a peak RF-to-DC power conversion efficiency of 65%. A conventional, fully cross-coupled rectifier is fabricated along- side for comparison and the proposed rectifier shows more than 2 × increase in dynamic range and a 25% boosting in output voltage than the conventional rectifier

  20. Design of 2.4Ghz CMOS Floating Active Inductor LNA using 130nm Technology

    Science.gov (United States)

    Muhamad, M.; Soin, N.; Ramiah, H.

    2018-03-01

    This paper presents about design and optimization of CMOS active inductor integrated circuit. This active inductor implements using Silterra 0.13μm technology and simulated using Cadence Virtuoso and Spectre RF. The center frequency for this active inductor is at 2.4 GHz which follow IEEE 802.11 b/g/n standard. To reduce the chip size of silicon, active inductor is used instead of passive inductor at low noise amplifier LNA circuit. This inductor test and analyse by low noise amplifier circuit. Comparison between active with passive inductor based on LNA circuit has been performed. Result shown that the active inductor has significantly reduce the chip size with 73 % area without sacrificing the noise figure and gain of LNA which is the most important criteria in LNA. The best low noise amplifier provides a power gain (S21) of 20.7 dB with noise figure (NF) of 2.1dB.

  1. MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes

    Science.gov (United States)

    Jang, Munseon; Yun, Kwang-Seok

    2017-12-01

    In this paper, we presents a MEMS pressure sensor integrated with a readout circuit on a chip for an on-chip signal processing. The capacitive pressure sensor is formed on a CMOS chip by using a post-CMOS MEMS processes. The proposed device consists of a sensing capacitor that is square in shape, a reference capacitor and a readout circuitry based on a switched-capacitor scheme to detect capacitance change at various environmental pressures. The readout circuit was implemented by using a commercial 0.35 μm CMOS process with 2 polysilicon and 4 metal layers. Then, the pressure sensor was formed by wet etching of metal 2 layer through via hole structures. Experimental results show that the MEMS pressure sensor has a sensitivity of 11 mV/100 kPa at the pressure range of 100-400 kPa.

  2. CMOS image sensors: State-of-the-art

    Science.gov (United States)

    Theuwissen, Albert J. P.

    2008-09-01

    This paper gives an overview of the state-of-the-art of CMOS image sensors. The main focus is put on the shrinkage of the pixels : what is the effect on the performance characteristics of the imagers and on the various physical parameters of the camera ? How is the CMOS pixel architecture optimized to cope with the negative performance effects of the ever-shrinking pixel size ? On the other hand, the smaller dimensions in CMOS technology allow further integration on column level and even on pixel level. This will make CMOS imagers even smarter that they are already.

  3. Flux intensification during microfiltration of distillery stillage using a kenics static mixer

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2017-01-01

    Full Text Available The present work studies the effect of operating parameters (pH, feed flow rate, and transmembrane pressure on microfiltration of distillery stillage. Experiments were conducted in the presence of a Kenics static mixer as a turbulence promoter, and its influence on the flux improvement and specific energy consumption was examined. Response surface methodology was used to investigate the effect of selected factors on microfiltration performances. The results showed that response surface methodology is an appropriate model for mathematical presentation of the process. It was found that the use of a static mixer is justified at the feed flow rates higher than 100 L/h. In contrast, the use of a static mixer at low values of feed flow rate and transmembrane pressure has no justification from an economic point of view. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 31002

  4. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    Science.gov (United States)

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  5. Drug residues recovered in feed after various feedlot mixer truck cleanout procedures.

    Science.gov (United States)

    Van Donkersgoed, Joyce; Sit, Dan; Gibbons, Nicole; Ramogida, Caterina; Hendrick, Steve

    2010-01-01

    A study was conducted to determine the effectiveness of two methods of equipment cleanout, sequencing or flushing, for reducing drug carryover in feedlot mixer trucks. Feed samples were collected from total mixed rations before and after various feed mixer equipment cleanout procedures. Medicated rations contained either 11 ppm of tylosin or 166 or 331 ppm of chlortetracycline. There were no differences between sequencing and flushing or between flushing with dry barley and flushing with barley silage in the median proportion of drug recovered in the next ration. A larger drug reduction was achieved using flush material at a volume of 10 versus 5% of the mixer capacity and mixing the flush material for 3 versus 4 min. Regardless of the drug or prescription concentrations in the total mixed rations or the equipment cleanout procedure used, concentrations of chlortetracycline and tylosin recovered were very low.

  6. Complete Procedure for Fabrication of a Fused Silica Ultrarapid Microfluidic Mixer Used in Biophysical Measurements

    Directory of Open Access Journals (Sweden)

    Dena Izadi

    2017-01-01

    Full Text Available In this paper we present a method to fabricate a fused silica microfluidic device by employing low viscosity KMPR photoresists. The resulting device is a continuous-flow microfluidic mixer based on hydrodynamic focusing. The advantages of this new fabrication method compared to the traditional approach using a poly-silicon mask are simplification, and time and cost reduction, while still preserving the quality and the performance of the mixers. This process results in devices in which the focusing channel has an aspect ratio of 10:1. The newly-fabricated mixer is successfully used to observe the folding of the Pin1 WW domain at the microsecond time scale.

  7. Development of a multi-channel horn mixer array for microwave imaging plasma diagnostics

    International Nuclear Information System (INIS)

    Ito, Naoki; Kuwahara, Daisuke; Nagayama, Yoshio

    2015-01-01

    Microwave to millimeter-wave diagnostics techniques, such as interferometry, reflectometry, scattering, and radiometry, have been powerful tools for diagnosing magnetically confined plasmas. The resultant measurements have clarified several physics issues, including instability, wave phenomena, and fluctuation-induced transport. Electron cyclotron emission imaging has been an important tool in the investigation of temperature fluctuations, while reflectometry has been employed to measure plasma density profiles and their fluctuations. We have developed a horn-antenna mixer array (HMA), a 50 - 110 GHz 1D antenna array, which can be easily stacked as a 2D array. This article describes an upgrade to the horn mixer array that combines well-characterized mixers, waveguide-to-microstrip line transitions, intermediate frequency amplifiers, and internal local oscillator modules using a monolithic microwave integrated circuit technology to improve system performance. We also report on the use of a multi-channel HMA system. (author)

  8. Hydrodynamic study of the rotating cylinder mixer of a laboratory centrifugal extractor

    International Nuclear Information System (INIS)

    Philipponeau, Yannick.

    1979-08-01

    As part of a research programme on solvent extraction kinetics the Fontenay-aux-Roses Nuclear Research Centre has undertaken to build a new centrifugal extractor prototype. The work was centred on a hydrodynamic study of the rotating cylinder mixer of the extractor, using a test apparatus specially designed for this purpose. This apparatus was used to determine the flow conditions of a liquid alone in the annular space of the mixer as a function of the working specifications. The existence of several types of flow was established. The stability region of which was determined as a function of different parameters for a number of liquid-liquid systems. The experiments showed in addition that two kinds of dispersion can be obtained, differing by the nature of the continuous phase. This was determined for various parameters of certain liquid-liquid systems. From this research the hydrodynamic behavior of the CEA centrifugal extractor prototype mixer is thus known [fr

  9. Study on hydrodynamics and mass transfer of the critically safe multistage mixer-settler

    International Nuclear Information System (INIS)

    Zhang Weibo; Jiao Rongzhou; Liu Bingren

    1992-08-01

    The study on structure of critically safe multistage mixer-settler for the extraction process of high enriched uranium and plutonium has been completed. The mixer-settler has simple structure, good critical safety, flexibility in operation (O/A from 0.5 to 5) and high extraction efficiency (E x > 90%). These performances have been proved in the hydrodynamics and mass transfer experiments at a three stages cascade mixer-settler. Based on the others experience, a trapezoidal impeller combined with half-open turbine is developed which has stronger pumping and well mixing function at low rotating speed. The optimal rotating speed is 250 to 280 r/min obtained by experiments

  10. The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, Mogens; Verhagen, M.

    2001-01-01

    This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form....... By regarding the nominal control system as the desired model, an augmented control system is constructed through the model-matching formulation, such that the current robust control techniques can be usedto synthesize these dynamical modules. One extension of this method with respect to the performance...... recovery besides the functionality recovery is also discussed under this framework. Comparing with the conventional control mixer method, the proposed method considers the recon gured system's stability, performance and robustness simultaneously. Finally, the proposed method is illustrated by a case study...

  11. Development of a Depleted Monolithic CMOS Sensor in a 150 nm CMOS Technology for the ATLAS Inner Tracker Upgrade

    CERN Document Server

    Wang, T.

    2017-01-01

    The recent R&D focus on CMOS sensors with charge collection in a depleted zone has opened new perspectives for CMOS sensors as fast and radiation hard pixel devices. These sensors, labelled as depleted CMOS sensors (DMAPS), have already shown promising performance as feasible candidates for the ATLAS Inner Tracker (ITk) upgrade, possibly replacing the current passive sensors. A further step to exploit the potential of DMAPS is to investigate the suitability of equipping the outer layers of the ATLAS ITk upgrade with fully monolithic CMOS sensors. This paper presents the development of a depleted monolithic CMOS pixel sensor designed in the LFoundry 150 nm CMOS technology, with the focus on design details and simulation results.

  12. Design of CMOS Tunable Image-Rejection Low-Noise Amplifier with Active Inductor

    Directory of Open Access Journals (Sweden)

    Ler Chun Lee

    2008-01-01

    Full Text Available A fully integrated CMOS tunable image-rejection low-noise amplifier (IRLNA has been designed using Silterra's industry standard 0.18 μm RF CMOS process. The notch filter is designed using an active inductor. Measurement results show that the notch filter designed using active inductor contributes additional 1.19 dB to the noise figure of the low-noise amplifier (LNA. A better result is possible if the active inductor is optimized. Since active inductors require less die area, the die area occupied by the IRLNA is not significantly different from a conventional LNA, which was designed for comparison. The proposed IRLNA exhibits S21 of 11.8 dB, S11 of −17.8 dB, S22 of −10.7 dB, and input 1 dB compression point of −12 dBm at 3 GHz

  13. Fabrication of a Micromachined Capacitive Switch Using the CMOS-MEMS Technology

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Lin

    2015-11-01

    Full Text Available The study investigates the design and fabrication of a micromachined radio frequency (RF capacitive switch using the complementary metal oxide semiconductor-microelectromechanical system (CMOS-MEMS technology. The structure of the micromachined switch is composed of a membrane, eight springs, four inductors, and coplanar waveguide (CPW lines. In order to reduce the actuation voltage of the switch, the springs are designed as low stiffness. The finite element method (FEM software CoventorWare is used to simulate the actuation voltage and displacement of the switch. The micromachined switch needs a post-CMOS process to release the springs and membrane. A wet etching is employed to etch the sacrificial silicon dioxide layer, and to release the membrane and springs of the switch. Experiments show that the pull-in voltage of the switch is 12 V. The switch has an insertion loss of 0.8 dB at 36 GHz and an isolation of 19 dB at 36 GHz.

  14. Russian Pulsating Mixer Pump Deployment in the Gunite and Associated Tanks at ORNL

    International Nuclear Information System (INIS)

    Hatchell, Brian K.; Lewis, Ben; Johnson, Marshall A.; Randolph, J. G.

    2001-01-01

    In FY 1998, Pulsating Mixer Pump (PMP) technology, consisting of a jet mixer powered by a reciprocating air supply, was selected for deployment in one of the Gunite and Associated Tanks at Oak Ridge National Laboratory (ORNL) to mobilize settled solids. The pulsating mixer pump technology was identified during FY 1996 and FY 1997 technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the DOE complex. During FY 1997, the pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to suspend settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for remote sludge mobilization of Gunite tank sludge and reduce the cost of operation and maintenance of more expensive mixing systems. The functions and requirements of the system were developed by combining the results and recommendations from the pulsating mixer pump demonstration at PNNL with the requirements identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks. The PMP is comprised of a pump chamber, check valve, a working gas supply pipe, a discharge manifold, and four jet nozzles. The pump uses two distinct cycles, fill and discharge, to perform its mixing action. During the fill cycle, vacuum is applied to the pump chamber by an eductor, which draws liquid into the pump. When the liquid level inside the chamber reaches a certain level, the chamber is pressurized with compressed air to discharge the liquid through the jet nozzles and back into the tank to mobilize sludge and settled solids.

  15. Effect of mixing time and speed on experimental baking and dough testing with a 200g pin-mixer

    Science.gov (United States)

    Under mixing or over mixing the dough results in varied experimental loaf volumes. Bread preparation requires a trained baker to evaluate dough development and determine stop points of mixer. Instrumentation and electronic control of the dough mixer would allow for automatic mixing. This study us...

  16. Investigation of LO-leakage cancellation and DC-offset influence on flicker-noise in X-band mixers

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus; Johansen, Tom; Tamborg, Kjeld

    2012-01-01

    This paper describes an investigation on the influences in 1/f noise of LO-leakage and DC-offset cancellation for X-band mixers. Conditions for LO-leakage cancellation and zero DC-offset is derived. Measurements on a double balanced diode mixer shows an improvement in noise figure from 14.3dB to ...

  17. Packaging design criteria, transfer and disposal of 102-AP mixer pump

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1994-01-01

    A mixer pump installed in storage tank 241-AP-102 (102-AP) has failed. This pump is referred to as the 102-AP mixer pump (APMP). The APMP will be removed from 102-AP 1 and a new pump will be installed. The main purpose of the Packaging Design Criteria (PDC) is to establish criteria necessary to design and fabricate a shipping container for the transfer and storage of the APMP from 102-AP. The PDC will be used as a guide to develop a Safety Evaluation for Packaging (SEP)

  18. Design of an Efficient Turbulent Micro-Mixer for Protein Folding Experiments

    Science.gov (United States)

    Inguva, Venkatesh; Perot, Blair

    2015-11-01

    Protein folding studies require the development of micro-mixers that require less sample, mix at faster rates, and still provide a high signal to noise ratio. Chaotic to marginally turbulent micro-mixers are promising candidates for this application. In this study, various turbulence and unsteadiness generation concepts are explored that avoid cavitation. The mixing enhancements include flow turning regions, flow splitters, and vortex shedding. The relative effectiveness of these different approaches for rapid micro-mixing is discussed. Simulations found that flow turning regions provided the best mixing profile. Experimental validation of the optimal design is verified through laser confocal microscopy experiments. This work is support by the National Science Foundation.

  19. The status of simulation codes for extraction process using mixer-settler

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Lee, Eil Hee; Kwon, Seong Gil; Kim, Kwang Wook; Yang, Han Beom; Chung, Dong Yong; Lim, Jae Kwan; Shin, Hyun Kyoo; Kim, Soo Ho

    1999-10-01

    We have studied and analyzed the mixer-settler simulation codes such as three kinds of SEPHIS series, PUBG, and EXTRA.M, which is the most recently developed code. All of these are sufficiently satisfactory codes in the fields of process/device modeling, but it is necessary to formulate the accurate distribution data and chemical reaction mechanism for the aspect of accuracy and reliability. In the aspect of application to be the group separation process, the mixer-settler model of these codes have no problems, but the accumulation and formulation of partitioning and reaction equilibrium data of chemical elements used in group separation process is very important. (author)

  20. Robust Control Mixer Method for Reconfigurable Control Design Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Blanke, Mogens; Verhagen, Michel

    2007-01-01

    A novel control mixer method for recon¯gurable control designs is developed. The proposed method extends the matrix-form of the conventional control mixer concept into a LTI dynamic system-form. The H_inf control technique is employed for these dynamic module designs after an augmented control...... system is constructed through a model-matching strategy. The stability, performance and robustness of the reconfigured system can be guaranteed when some conditions are satisfied. To illustrate the effectiveness of the proposed method, a robot system subjected to failures is used to demonstrate...

  1. Fabrication of microfluidic mixers with varying topography in glass using the powder-blasting process

    International Nuclear Information System (INIS)

    Sayah, Abdeljalil; Thivolle, Pierre-Antoine; Parashar, Virendra K; Gijs, Martin A M

    2009-01-01

    The powder-blasting method is used to fabricate structures with a three-dimensional topography in glass using elastomeric masks. The relation between the mask opening width and the erosion depth is exploited to fabricate microstructures with varying depth in a single micropatterning step. As an application, planar three-dimensional micro-mixers were fabricated, which consist of a repeating convergent microfluidic nozzle structure. Three different designs of the micro-mixers were considered. The mixing of co-flowing laminar streams results from the generation of multiple vortices at the exit of the different convergent nozzles

  2. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  3. RF Group Annual Report 2011

    CERN Document Server

    Angoletta, M E; Betz, M; Brunner, O; Baudrenghien, P; Calaga, R; Caspers, F; Ciapala, E; Chambrillon, J; Damerau, H; Doebert, S; Federmann, S; Findlay, A; Gerigk, F; Hancock, S; Höfle, W; Jensen, E; Junginger, T; Liao, K; McMonagle, G; Montesinos, E; Mastoridis, T; Paoluzzi, M; Riddone, G; Rossi, C; Schirm, K; Schwerg, N; Shaposhnikova, E; Syratchev, I; Valuch, D; Venturini Delsolaro, W; Völlinger, C; Vretenar, M; Wuensch, W

    2012-01-01

    The highest priority for the RF group in 2011 was to contribute to a successful physics run of the LHC. This comprises operation of the superconducting 400 MHz accelerating system (ACS) and the transverse damper (ADT) of the LHC itself, but also all the individual links of the injector chain upstream of the LHC – Linac2, the PSB, the PS and the SPS – don’t forget that it is RF in all these accelerators that truly accelerates! A large variety of RF systems had to operate reliably, often near their limit. New tricks had to be found and implemented to go beyond limits; not to forget the equally demanding operation with Pb ions using in addition Linac3 and LEIR. But also other physics users required the full attention of the RF group: CNGS required in 2011 beams with very short, intense bunches, AD required reliable deceleration and cooling of anti-protons, Isolde the post-acceleration of radioactive isotopes in Rex, just to name a few. In addition to the supply of beams for physics, the RF group has a num...

  4. Rf system specifications for a linear accelerator

    International Nuclear Information System (INIS)

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  5. Klystron equalization for RF feedback

    International Nuclear Information System (INIS)

    Corredoura, P.

    1993-01-01

    The next generation of colliding beam storage rings support higher luminosities by significantly increasing the number of bunches and decreasing the spacing between respective bunches. The heavy beam loading requires large RF cavity detuning which drives several lower coupled bunch modes very strongly. One technique which has proven to be very successful in reducing the coupled bunch mode driving impedance is RF feedback around the klystron-cavity combination. The gain and bandwidth of the feedback loop is limited by the group delay around the feedback loop. Existing klystrons on the world market have not been optimized for this application and contribute a large portion of the total loop group delay. This paper describes a technique to reduce klystron group delay by adding an equalizing filter to the klystron RF drive. Such a filter was built and tested on a 500 kill klystron as part of the on going PEP-II R ampersand D effort here at SLAC

  6. Design of a 2.4-GHz CMOS monolithic fractional-N frequency synthesizer

    Science.gov (United States)

    Shu, Keliu

    The wireless communication technology and market have been growing rapidly since a decade ago. The high demand market is a driving need for higher integration in the wireless transceivers. The trend is to achieve low-cost, small form factor and low power consumption. With the ever-reducing feature size, it is becoming feasible to integrate the RF front-end together with the baseband in the low-cost CMOS technology. The frequency synthesizer is a key building block in the RF front-end of the transceivers. It is used as a local oscillator for frequency translation and channel selection. The design of a 2.4-GHz low-power frequency synthesizer in 0.35mum CMOS is a challenging task mainly due to the high-speed prescaler. In this dissertation, a brief review of conventional PLL and frequency synthesizers is provided. Design techniques of a 2.4-GHz monolithic SigmaDelta fractional-N frequency synthesizer are investigated. Novel techniques are proposed to tackle the speed and integration bottlenecks of high-frequency PLL. A low-power and inherently glitch-free phase-switching prescaler and an on-chip loop filter with capacitance multiplier are developed. Compared with the existing and popular dual-path topology, the proposed loop filter reduces circuit complexity and its power consumption and noise are negligible. Furthermore, a third-order three-level digital SigmaDelta modulator topology is employed to reduce the phase noise generated by the modulator. Suitable PFD and charge-pump designs are employed to reduce their nonlinearity effects and thus minimize the folding of the SigmaDelta modulator-shaped phase noise. A prototype of the fractional-N synthesizer together with some standalone building blocks is designed and fabricated in TSMC 0.35mum CMOS through MOSIS. The prototype frequency synthesizer and standalone prescaler and loop filter are characterized. The feasibility and practicality of the proposed prescaler and loop filter are experimentally verified.

  7. RF Loads for Energy Recovery

    CERN Document Server

    Federmann, S; Caspers, F

    2012-01-01

    Different conceptional designs for RF high power loads are presented. One concept implies the use of solid state rectifier modules for direct RF to DC conversion with efficiencies beyond 80%. In addition, robust metallic low-Q resonant structures, capable of operating at high temperatures (>150 ◦C) are discussed. Another design deals with a very high temperature (up to 800 ◦C) air cooled load using a ceramic foam block inside a metal enclosure. This porous ceramic block is the microwave absorber and is not brazed to the metallic enclosure.

  8. rf reference line for PEP

    International Nuclear Information System (INIS)

    Schwarz, H.D.; Weaver, J.N.

    1979-03-01

    A rf phase reference line in 6 segments around the 2200 meter circumference PEP storage ring is described. Each segment of the reference line is phase stabilized by its own independent feedback system, which uses an amplitude modulated reflection from the end of each line. The modulation is kept small and decoupled from the next segment to avoid crosstalk and significant modulation of the rf drive signal. An error evaluation of the system is made. The technical implementation and prototype performance are described. Prototype tests indicate that the phase error around the ring can be held below 1 degree with this relatively simple system

  9. rf reference line for PEP

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, H.D.; Weaver, J.N.

    1979-03-01

    A rf phase reference line in 6 segments around the 2200 meter circumference PEP storage ring is described. Each segment of the reference line is phase stabilized by its own independent feedback system, which uses an amplitude modulated reflection from the end of each line. The modulation is kept small and decoupled from the next segment to avoid crosstalk and significant modulation of the rf drive signal. An error evaluation of the system is made. The technical implementation and prototype performance are described. Prototype tests indicate that the phase error around the ring can be held below 1 degree with this relatively simple system.

  10. BioCMOS Interfaces and Co-Design

    CERN Document Server

    Carrara, Sandro

    2013-01-01

    The application of CMOS circuits and ASIC VLSI systems to problems in medicine and system biology has led to the emergence of Bio/CMOS Interfaces and Co-Design as an exciting and rapidly growing area of research. The mutual inter-relationships between VLSI-CMOS design and the biophysics of molecules interfacing with silicon and/or onto metals has led to the emergence of the interdisciplinary engineering approach to Bio/CMOS interfaces. This new approach, facilitated by 3D circuit design and nanotechnology, has resulted in new concepts and applications for VLSI systems in the bio-world. This book offers an invaluable reference to the state-of-the-art in Bio/CMOS interfaces. It describes leading-edge research in the field of CMOS design and VLSI development for applications requiring integration of biological molecules onto the chip. It provides multidisciplinary content ranging from biochemistry to CMOS design in order to address Bio/CMOS interface co-design in bio-sensing applications.

  11. Cryo-CMOS Circuits and Systems for Quantum Computing Applications

    NARCIS (Netherlands)

    Patra, B; Incandela, R.M.; van Dijk, J.P.G.; Homulle, H.A.R.; Song, Lin; Shahmohammadi, M.; Staszewski, R.B.; Vladimirescu, A.; Babaie, M.; Sebastiano, F.; Charbon, E.E.E.

    2018-01-01

    A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising

  12. High performance flexible CMOS SOI FinFETs

    KAUST Repository

    Fahad, Hossain M.; Sevilla, Galo T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2014-01-01

    We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due

  13. First principle leakage current reduction technique for CMOS devices

    CSIR Research Space (South Africa)

    Tsague, HD

    2015-12-01

    Full Text Available This paper presents a comprehensive study of leakage reduction techniques applicable to CMOS based devices. In the process, mathematical equations that model the power-performance trade-offs in CMOS logic circuits are presented. From those equations...

  14. From VHF to UHF CMOS-MEMS Monolithically Integrated Resonators

    DEFF Research Database (Denmark)

    Teva, Jordi; Berini, Abadal Gabriel; Uranga, A.

    2008-01-01

    This paper presents the design, fabrication and characterization of microresonators exhibiting resonance frequencies in the VHF and UHF bands, fabricated using the available layers of the standard and commercial CMOS technology, AMS-0.35mum. The resonators are released in a post-CMOS process cons...

  15. Complex modeling of technological processes in pneumatic mixers for production of dry construction mixtures

    Science.gov (United States)

    Orekhova, T. N.; Nosov, O. A.; Prokopenko, V. S.; Kachaev, A. E.

    2018-03-01

    The improvement of the design of the pneumatic mixers aimed at the possibility of obtaining homogeneous disperse systems, while the resource and energy saving issues play an important role in the conditions of enterprises that use this type of equipment in their technological chain, is described in the article.

  16. Unified Frequency-Domain Analysis of Switched-Series-RC Passive Mixers and Samplers

    NARCIS (Netherlands)

    Soer, M.C.M.; Klumperink, Eric A.M.; de Boer, Pieter-Tjerk; van Vliet, Frank Edward; Nauta, Bram

    2010-01-01

    Abstract—A wide variety of voltage mixers and samplers are implemented with similar circuits employing switches, resistors, and capacitors. Restrictions on duty cycle, bandwidth, or output frequency are commonly used to obtain an analytical expression for the response of these circuits. This paper

  17. Experiments on Josephson mixers for heterodyne reception at 0.3 mm wavelength

    International Nuclear Information System (INIS)

    Blaney, T.G.; Knight, D.J.E.

    1974-01-01

    A point contact Josephson junction was investigated as a heterodyne mixer at 337 μm. The conversion efficiency reached about -32 dB using a laser local oscillator and about -42 dB using 9th or 12th harmonic mixing with a klystron

  18. Analysis of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applications

    Science.gov (United States)

    Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.

    1996-01-01

    The prospects of a YBa2Cu3O7(delta)(YBCO) hot-electron bolometer (HEB) mixer for a THz heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate.

  19. Design of a side-band-separating heterodyne mixer for band 9 of ALMA

    NARCIS (Netherlands)

    Baryshev, AM; Kooi, J; Mena, FR; Lodewijk, CRJ; Wild, W

    2005-01-01

    A side-band-separating (SBS) heterodyne mixer has been designed for the Atacama Large Millimeter Array (ALMA) 602-720 GHz band, as it will present a great improvement over the current double-side-band configuration under development at the moment. Here we present design details and the results of

  20. A simple image-reject mixer based on two parallel phase modulators

    Science.gov (United States)

    Hu, Dapeng; Zhao, Shanghong; Zhu, Zihang; Li, Xuan; Qu, Kun; Lin, Tao; Zhang, Kun

    2018-02-01

    A simple photonic microwave image-reject mixer (IRM) using two parallel phase modulators is proposed. First, a photonic microwave mixer with phase shift ability is achieved using two parallel phase modulators (PMs), an optical bandpass filter, three polarization controllers, three polarization beam splitters and two balanced photodetectors. At the output of the mixer, two frequency downconverted signals with tunable frequency difference can be obtained. By adjusting the phase difference as 90° and utilizing an electrical 90° hybrid, the useless components can be eliminated, and the image reject operation is realized. The key advantage of the proposed scheme is the usage of PM, which avoid the DC bias shifting problem and make the system simple and stable. A simulation is performed to verify the proposed scheme, a relative - 90° or 90° phase shift can be obtained between the two output ports of the photonic microwave mixer, at the output of the IRM, 60 dB image-reject ratio is obtained.

  1. Quantitative characterization of magnetic separators: Comparison of systems with and without integrated microfluidic mixers

    DEFF Research Database (Denmark)

    Lund-Olesen, Torsten; Bruus, Henrik; Hansen, Mikkel Fougt

    2006-01-01

    micrographs, and simulations and analytical models of bead trajectories, capture efficiencies, and capture distributions. We show that the efficiencies of both systems compare favorably to those in the literature. For the studied geometries, the mixer is demonstrated to increase the bead capture...

  2. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-06-27

    This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.

  3. The presence and growth of Legionella species in thermostatic shower mixer taps: an exploratory field study

    NARCIS (Netherlands)

    Joost van Hoof; P.W.J.J. van der Wielen; E. van der Blom; O.W.W. Nuijten; L. Hornstra

    2014-01-01

    Legislation in the Netherlands requires routine analysis of drinking water samples for cultivable Legionella species from high-priority installations. A field study was conducted to investigate the presence of Legionella species in thermostatic shower mixer taps. Water samples and the interior of

  4. Mixer pump long term operations plan for Tank 241-SY-101 mitigation

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1994-01-01

    This document provides the general Operations Plan for performance of the mixer pump long term operations for Tank 241-SY-101 mitigation of gas retention and periodic release in Tank 101-SY. This operations plan will utilize a 112 kW (150 hp) mixing pump to agitate/suspend the particulates in the tank

  5. Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment

    Science.gov (United States)

    Barber, T.; Paterson, R. W.; Skebe, S. A.

    1988-01-01

    A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.

  6. design and fabrication of a fou fabrication of a foundry sand mixer

    African Journals Online (AJOL)

    eobe

    favourably with the the imported existing one which urably with the the imported existing one which foundry shops will eliminate the use manual effort save the the country of huge save the the country of huge foreign exchange used i foreign exchange used i. Keywords: Keywords:foundry,sand mixer,fabrication,design,bla.

  7. An InP HBT sub-harmonic mixer for E-band wireless communication

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2010-01-01

    This paper reports on a novel balanced HBT subharmonic mixer (SHM) for E-band wireless communication. An LO spiral type Marchand balun is integrated with the SHM. The SHM has been fabricated in a InP double heterojunction bipolar transistor (DHBT) circuit-oriented technology with fT /fmax = 180GHz...

  8. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    KAUST Repository

    Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Erqiang; Thoroddsen, Sigurdur T; Salama, Khaled N.

    2016-01-01

    in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted

  9. Development of a micro-mixer-settler for nuclear solvent extraction

    International Nuclear Information System (INIS)

    Shekhar Kumar; Bijendra Kumar; Sampath, M.; Sivakumar, D.; Kamachi Mudali, U.; Natarajan, R.

    2012-01-01

    Nuclear solvent extraction was traditionally performed with packed columns, pulse columns, mixer-settlers and centrifugal extractors. However for rapid separations at micro-flow level, micro mixer-settlers were desired and in the past, few of them were actually designed and operated in nuclear solvent extraction research. In the current era of micro-reactor and microchannel devices, there is a renewed interest for micro-mixer-settlers for costly solvents and specialty solutes where small flow-rate is not an issue. In this article, development of a simple but effective micro-mixer-settler for nuclear solvent extraction is reported. The developed unit was tested with 30% TBP/n-dodecane/nitric acid system and in both the regimes of mass transfer c → d (mass transfer from continuous phase to dispersed phase, also written as c → d) and d → c (mass transfer from dispersed phase to continuous phase, also written as d → c) nearly 100% efficiency was observed in extraction as well as stripping modes of operation. (author)

  10. AlGaAs/GaAs quasi-bulk effect mixers: Analysis and experiments

    Science.gov (United States)

    Yngvesson, K. S.; Yang, J.-X.; Agahi, F.; Dai, D.; Musante, C.; Grammer, W.; Lau, K. M.

    1992-01-01

    The lowest noise temperature for any receiver in the 0.5 to 1 THz range has been achieved with the bulk InSb hot electron mixer, which unfortunately suffers from the problem of having a very narrow bandwidth (1-2 MHz). We have demonstrated a three order of magnitude improvement in the bandwidth of hot electron mixers, by using the two-dimensional electron gas (2DEG) medium at the hetero-interface between AlGaAs and GaAs. We have tested both inhouse MOCVD-grown material, and MBE materials, with similar results. The conversion loss (L(sub c)) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that L(sub c) can be decreased to about 10 dB in future devices. Calculated and measured curves of L(sub c), versus PLO and IDC, respectively, agree well. We argue that there are several different configurations of hot electron mixers, which will also show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  11. Double Modulation Scheme for Switching Mixers Controlled by Sigma-Delta Modulators

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck; Fallesen, Carsten

    1998-01-01

    . This modification can be carried out on a large variety of mixers including the above mentioned. Although the principle was meant to be used to down convert analog signals, the principle is general and can be used in digital circuits too. This paper verifies the new mixing scheme and compares it to the traditional...

  12. Influence of gas inlet angle on the mixing process in a Venturi mixer

    Directory of Open Access Journals (Sweden)

    Romańczyk Mathias

    2017-01-01

    Full Text Available In this paper numerical analysis were performed to investigate the influence of gas inlet angle on mixing process in a Venturi mixer. Performance of an industrial gas engine depends significantly on the quality of mixing air and fuel; therefore, on the homogeneity of the mixture. In addition, there must be a suitable, adapted to the current load of fuel, air ratio. Responsible for this fact, among others, is the mixer located before entering the combustion chamber of the engine. Incorrect mixture proportion can lead to unstable operation of the engine, as well as higher emissions going beyond current environmental standards in the European Union. To validate the simulation the Air-Fuel Ratio (AFR was mathematically calculated for the air-fuel mixture of lean combustion gas engine. In this study, an open source three-dimensional computational fluid dynamics (CFD modelling software OpenFOAM has been used, to investigate and analyse the influence of different gas inlet angles on mixer characteristics and their performances. Attention was focused on the air-fuel ratio changes, pressure loss, as well as improvement of the mixing quality in the Venturi mixer.

  13. Variation-aware advanced CMOS devices and SRAM

    CERN Document Server

    Shin, Changhwan

    2016-01-01

    This book provides a comprehensive overview of contemporary issues in complementary metal-oxide semiconductor (CMOS) device design, describing how to overcome process-induced random variations such as line-edge-roughness, random-dopant-fluctuation, and work-function variation, and the applications of novel CMOS devices to cache memory (or Static Random Access Memory, SRAM). The author places emphasis on the physical understanding of process-induced random variation as well as the introduction of novel CMOS device structures and their application to SRAM. The book outlines the technical predicament facing state-of-the-art CMOS technology development, due to the effect of ever-increasing process-induced random/intrinsic variation in transistor performance at the sub-30-nm technology nodes. Therefore, the physical understanding of process-induced random/intrinsic variations and the technical solutions to address these issues plays a key role in new CMOS technology development. This book aims to provide the reade...

  14. Simulations of depleted CMOS sensors for high-radiation environments

    CERN Document Server

    Liu, J.; Bhat, S.; Breugnon, P.; Caicedo, I.; Chen, Z.; Degerli, Y.; Godiot-Basolo, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Hügging, F.; Krüger, H.; Moustakas, K.; Pangaud, P.; Rozanov, A.; Rymaszewski, P.; Schwemling, P.; Wang, M.; Wang, T.; Wermes, N.; Zhang, L.

    2017-01-01

    After the Phase II upgrade for the Large Hadron Collider (LHC), the increased luminosity requests a new upgraded Inner Tracker (ITk) for the ATLAS experiment. As a possible option for the ATLAS ITk, a new pixel detector based on High Voltage/High Resistivity CMOS (HV/HR CMOS) technology is under study. Meanwhile, a new CMOS pixel sensor is also under development for the tracker of Circular Electron Position Collider (CEPC). In order to explore the sensor electric properties, such as the breakdown voltage and charge collection efficiency, 2D/3D Technology Computer Aided Design (TCAD) simulations have been performed carefully for the above mentioned both of prototypes. In this paper, the guard-ring simulation for a HV/HR CMOS sensor developed for the ATLAS ITk and the charge collection efficiency simulation for a CMOS sensor explored for the CEPC tracker will be discussed in details. Some comparisons between the simulations and the latest measurements will also be addressed.

  15. Decal electronics for printed high performance cmos electronic systems

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-11-23

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications. While there exist bulk material reduction methods to flex them, such thinned CMOS electronics are fragile and vulnerable to handling for high throughput manufacturing. Here, we show a fusion of a CMOS technology compatible fabrication process for flexible CMOS electronics, with inkjet and conductive cellulose based interconnects, followed by additive manufacturing (i.e. 3D printing based packaging) and finally roll-to-roll printing of packaged decal electronics (thin film transistors based circuit components and sensors) focusing on printed high performance flexible electronic systems. This work provides the most pragmatic route for packaged flexible electronic systems for wide ranging applications.

  16. Broadband image sensor array based on graphene-CMOS integration

    Science.gov (United States)

    Goossens, Stijn; Navickaite, Gabriele; Monasterio, Carles; Gupta, Shuchi; Piqueras, Juan José; Pérez, Raúl; Burwell, Gregory; Nikitskiy, Ivan; Lasanta, Tania; Galán, Teresa; Puma, Eric; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Konstantatos, Gerasimos; Koppens, Frank

    2017-06-01

    Integrated circuits based on complementary metal-oxide-semiconductors (CMOS) are at the heart of the technological revolution of the past 40 years, enabling compact and low-cost microelectronic circuits and imaging systems. However, the diversification of this platform into applications other than microcircuits and visible-light cameras has been impeded by the difficulty to combine semiconductors other than silicon with CMOS. Here, we report the monolithic integration of a CMOS integrated circuit with graphene, operating as a high-mobility phototransistor. We demonstrate a high-resolution, broadband image sensor and operate it as a digital camera that is sensitive to ultraviolet, visible and infrared light (300-2,000 nm). The demonstrated graphene-CMOS integration is pivotal for incorporating 2D materials into the next-generation microelectronics, sensor arrays, low-power integrated photonics and CMOS imaging systems covering visible, infrared and terahertz frequencies.

  17. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  18. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2003-01-01

    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. The amplifier is constructed in a fully differential topology to maximize noise rejection. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved....... A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0...

  19. CMOS current controlled fully balanced current conveyor

    International Nuclear Information System (INIS)

    Wang Chunhua; Zhang Qiujing; Liu Haiguang

    2009-01-01

    This paper presents a current controlled fully balanced second-generation current conveyor circuit (CF-BCCII). The proposed circuit has the traits of fully balanced architecture, and its X-Y terminals are current controllable. Based on the CFBCCII, two biquadratic universal filters are also proposed as its applications. The CFBCCII circuits and the two filters were fabricated with chartered 0.35-μm CMOS technology; with ±1.65 V power supply voltage, the total power consumption of the CFBCCII circuit is 3.6 mW. Comparisons between measured and HSpice simulation results are also given.

  20. CMOS Current-mode Operational Amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1992-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-range ±700¿A) and a (theoretically) unlimited slew-rate. The amplifier is realized in a standard CMOS 2......A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  1. A CMOS current-mode operational amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1993-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain-bandwidth product of 3 MHz, an offset current of 0.8 μA (signal range ±700 μA), and a (theoretically) unlimited slew rate. The amplifier is realized in a standard CMOS 2......A fully differential-input, differential-output, current-mode operational amplifier (COA) is described. The amplifier utilizes three second-generation current conveyors (CCIIs) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  2. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Pikor, A.; Reiss, E.M.

    1980-01-01

    Substantial effort has been directed at radiation-hardening CMOS integrated circuits using various oxide processes. While most of these integrated circuits have been successful in demonstrating megarad hardness, further investigations have shown that the 'wet-oxide process' is most compatible with the RCA CD4000 Series process. This article describes advances in the wet-oxide process that have resulted in multimegarad hardness and yield to MIL-M-38510 screening requirements. The implementation of these advances into volume manufacturing is geared towards supplying devices for aerospace requirements such as the Defense Meterological Satellite program (DMSP) and the Global Positioning Satellite (GPS). (author)

  3. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  4. Nano-CMOS gate dielectric engineering

    CERN Document Server

    Wong, Hei

    2011-01-01

    According to Moore's Law, not only does the number of transistors in an integrated circuit double every two years, but transistor size also decreases at a predictable rate. At the rate we are going, the downsizing of CMOS transistors will reach the deca-nanometer scale by 2020. Accordingly, the gate dielectric thickness will be shrunk to less than half-nanometer oxide equivalent thickness (EOT) to maintain proper operation of the transistors, leaving high-k materials as the only viable solution for such small-scale EOT. This comprehensive, up-to-date text covering the physics, materials, devic

  5. CMOS biomicrosystems where electronics meets biology

    CERN Document Server

    2011-01-01

    "The book will address the-state-of-the-art in integrated Bio-Microsystems that integrate microelectronics with fluidics, photonics, and mechanics. New exciting opportunities in emerging applications that will take system performance beyond offered by traditional CMOS based circuits are discussed in detail. The book is a must for anyone serious about microelectronics integration possibilities for future technologies. The book is written by top notch international experts in industry and academia. The intended audience is practicing engineers with electronics background that want to learn about integrated microsystems. The book will be also used as a recommended reading and supplementary material in graduate course curriculum"--

  6. RF Device for Acquiring Images of the Human Body

    Science.gov (United States)

    Gaier, Todd C.; McGrath, William R.

    2010-01-01

    A safe, non-invasive method for forming images through clothing of large groups of people, in order to search for concealed weapons either made of metal or not, has been developed. A millimeter wavelength scanner designed in a unique, ring-shaped configuration can obtain a full 360 image of the body with a resolution of less than a millimeter in only a few seconds. Millimeter waves readily penetrate normal clothing, but are highly reflected by the human body and concealed objects. Millimeter wave signals are nonionizing and are harmless to human tissues when used at low power levels. The imager (see figure) consists of a thin base that supports a small-diameter vertical post about 7 ft (=2.13 m) tall. Attached to the post is a square-shaped ring 2 in. (=5 cm) wide and 3 ft (=91 cm) on a side. The ring is oriented horizontally, and is supported halfway along one side by a connection to a linear bearing on the vertical post. A planar RF circuit board is mounted to the inside of each side of the ring. Each circuit board contains an array of 30 receivers, one transmitter, and digitization electronics. Each array element has a printed-circuit patch antenna coupled to a pair of mixers by a 90 coupler. The mixers receive a reference local oscillator signal to a subharmonic of the transmitter frequency. A single local oscillator line feeds all 30 receivers on the board. The resulting MHz IF signals are amplified and carried to the edge of the board where they are demodulated and digitized. The transmitted signal is derived from the local oscillator at a frequency offset determined by a crystal oscillator. One antenna centrally located on each side of the square ring provides the source illumination power. The total transmitted power is less than 100 mW, resulting in an exposure level that is completely safe to humans. The output signals from all four circuit boards are fed via serial connection to a data processing computer. The computer processes the approximately 1-MB

  7. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    Science.gov (United States)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  8. Emittance growth in rf linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1979-01-01

    As the space-charge limit is approached, the current that can be accelerated in an rf linac and the output emittance that can be expected are discussed. The role of the envelope equations to estimate limits is outlined. The results of numerical experiments to explore general properties of emittance growth are given

  9. Field emission in RF cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    Electron field emission limits the accelerating gradient in superconducting cavities. It is shown how and why it is an important problem. The phenomenology of field emission is then described, both in DC and RF regimes. Merits of a few plausible 'remedies' to field emission are discussed. (author)

  10. Modern technologies in rf superconductivity

    International Nuclear Information System (INIS)

    Lengeler, H.

    1994-01-01

    The development and application of superconducting rf cavities in particle accelerators is a fine example of advanced technology and of close cooperation with industry. This contribution examines the theoretical and present-day practical limitations of sc cavities and describes some advanced technologies needed for their large scale applications. (orig.)

  11. Introduction to RF linear accelerators

    International Nuclear Information System (INIS)

    Weiss, M.

    1994-01-01

    The basic features of RF linear accelerators are described. The concept of the 'loaded cavity', essential for the synchronism wave-particle, is introduced, and formulae describing the action of electromagnetic fields on the beam are given. The treatment of intense beams is mentioned, and various existing linear accelerators are presented as examples. (orig.)

  12. MOSFET Degradation Under RF Stress

    NARCIS (Netherlands)

    Sasse, G.T.; Kuper, F.G.; Schmitz, Jurriaan

    2008-01-01

    We report on the degradation of MOS transistors under RF stress. Hot-carrier degradation, negative-bias temperature instability, and gate dielectric breakdown are investigated. The findings are compared to established voltage- and field-driven models. The experimental results indicate that the

  13. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  14. Simulation of synchrotron motion with rf noise

    International Nuclear Information System (INIS)

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking

  15. Comparative evaluation of a two stroke compressed natural gas mixer design using simulation and experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, D.; Bakar, R.A.; Rahim, M.F.; Noor, M.M. [Malaysia Pahang Univ., Pahang (Malaysia). Automotive Focus Group

    2008-07-01

    A study was conducted in which a two-stroke engine was converted for use with bi-fuel, notably compressed natural gas and gasoline. The excessive by-products generated by two-stroke engine combustion can be attributed to the inefficient combustion process. This prototype uniflow-type single-cylinder engine was equipped with a bi-fuel conversion system. A dedicated mixer was also developed to meter the gaseous fuel through the engine intake system. It was designed to meet air and fuel requirement similar to its gasoline counterpart. The mixer was modeled to obtain optimum orifice diameter using three different sizes of 14, 16 and 18 mm respectively. A standard computational fluid dynamics (CFD) software package was used to simulate the flow. A pressure reading was obtained during the prototype test. The drop in pressure across the venturi was shown to be an important parameter as it determined the actual fuel-air ratio in the actual engine. A good agreement of CFD outputs with that of the experimental outputs was recorded. The experimental technique validated the pressure distribution predicted by CFD means on the effects of the three insert rings in the CNG mixer. The simulation exercise can be used to predict the amount of CNG consumed by the engine. It was concluded that the 14 mm throat ring was best suited for the CNG mixer because it provided the best suction. Once the mixer is tested on a real engine, it will clear any doubts as to whether the throat can function at high engine speeds. 5 refs., 3 tabs., 8 figs.

  16. RF gun using laser-triggered photocathode

    International Nuclear Information System (INIS)

    Akiyama, H.; Otake, Y.; Naito, T.; Takeuchi, Y.; Yoshioka, M.

    1992-01-01

    An RF gun using laser-triggered photocathode has many advantages as an injector of the linear colliders since it can generate a low emittance and high current pulsed beam. The experimental facility for the RF gun, such as an RF system, a laser system and a photocathode have been fabricated to study the fundamental characteristics. The dynamics of the RF gun has also studied by the 1D sheet beam model. (author)

  17. A Biologically Inspired CMOS Image Sensor

    CERN Document Server

    Sarkar, Mukul

    2013-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The eye is a compound of individual lenses with their own photoreceptor arrays.  The visual system of insects allows them to fly with a limited intelligence and brain processing power. A CMOS image sensor replicating the perception of vision in insects is discussed and designed in this book for industrial (machine vision) and medical applications. The CMOS metal layer is used to create an embedded micro-polarizer able to sense polarization information. This polarization information is shown to be useful in applications like real time material classification and autonomous agent navigation. Further the sensor is equipped with in pixel analog and digital memories which allow variation of the dynamic range and in-pixel b...

  18. A new CMOS Hall angular position sensor

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, R.S.; Drljaca, P. [Swiss Federal Inst. of Tech., Lausanne (Switzerland); Schott, C.; Racz, R. [SENTRON AG, Zug (Switzerland)

    2001-06-01

    The new angular position sensor consists of a combination of a permanent magnet attached to a shaft and of a two-axis magnetic sensor. The permanent magnet produces a magnetic field parallel with the magnetic sensor plane. As the shaft rotates, the magnetic field also rotates. The magnetic sensor is an integrated combination of a CMOS Hall integrated circuit and a thin ferromagnetic disk. The CMOS part of the system contains two or more conventional Hall devices positioned under the periphery of the disk. The ferromagnetic disk converts locally a magnetic field parallel with the chip surface into a field perpendicular to the chip surface. Therefore, a conventional Hall element can detect an external magnetic field parallel with the chip surface. As the direction of the external magnetic field rotates in the chip plane, the output voltage of the Hall element varies as the cosine of the rotation angle. By placing the Hall elements at the appropriate places under the disk periphery, we may obtain the cosine signals shifted by 90 , 120 , or by any other angle. (orig.)

  19. CMOS latch-up analysis and prevention

    International Nuclear Information System (INIS)

    Shafer, B.D.

    1975-06-01

    An analytical model is presented which develops relationships between ionization rates, minority carrier lifetimes, and latch-up in bulk CMOS integrated circuits. The basic mechanism for latch-up is the SCR action reported by Gregory and Shafer. The SCR is composed of a vertical NPN transistor formed by the N-channel source diffusion, the P-Well, and the N-substrate. The second part of the SCR is the lateral PNP transistor made up of the P-channel source diffusion, the N-substrate, and P-Well. It is shown that the NPN transistor turns on due to photocurrent-induced lateral voltage drops in the base of the transistor. The gain of this double diffused transistor has been shown to be as high as 100. Therefore, the transistor action of this device produces a much larger current flow in the substrate. This transistor current adds to that produced by the P-Well diode photocurrent in the substrate. It is found that the combined flow of current in the substrate forward biases the base emitter junction of the PNP device long before this could occur due to the P-Well photocurrent alone. The analysis indicated that a CD4007A CMOS device biased in the normal mode of operation should latch at about 2 . 10 8 rads/sec. Experimental results produced latch-up at 1 to 3 . 10 8 rads/sec. (U.S.)

  20. Planar pixel sensors in commercial CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the ATLAS experiment at the high luminosity LHC, an all-silicon tracker is foreseen to cope with the increased rate and radiation levels. Pixel and strip detectors will have to cover an area of up to 200m2. To produce modules in high number at reduced costs, new sensor and bonding technologies have to be investigated. Commercial CMOS technologies on high resistive substrates can provide significant advantages in this direction. They offer cost effective, large volume sensor production. In addition to this, production is done on 8'' wafers allowing wafer-to-wafer bonding to the electronics, an interconnection technology substantially cheaper than the bump bonding process used for hybrid pixel detectors at the LHC. Both active and passive n-in-p pixel sensor prototypes have been submitted in a 150 nm CMOS technology on a 2kΩ cm substrate. The passive sensor design will be used to characterize sensor properties and to investigate wafer-to-wafer bonding technologies. This first prototype is made of a matrix of 36 x 16 pixels of size compatible with the FE-I4 readout chip (i.e. 50 μm x 250 μm). Results from lab characterization of this first submission are shown together with TCAD simulations. Work towards a full size FE-I4 sensor for wafer-to-wafer bonding is discussed.

  1. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  2. Discussion of high brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    The fundamental aspects of high-brightness rf linacs are outlined, showing the breadth and complexity of the technology and indicating that synergism with advancements in other areas is important. Areas of technology reviewed include ion sources, injectors, rf accelerator structures, beam dynamics, rf power, and automatic control

  3. High-brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines

  4. RF phase distribution systems at the SLC

    International Nuclear Information System (INIS)

    Jobe, R.K.; Schwarz, H.D.

    1989-04-01

    Modern large linear accelerators require RF distribution systems with minimal phase drifts and errors. Through the use of existing RF coaxial waveguides, and additional installation of phase reference cables and monitoring equipment, stable RF distribution for the SLC has been achieved. This paper discusses the design and performance of SLAC systems, and some design considerations for future colliders. 6 refs., 4 figs

  5. Linear collider RF: Introduction and summary

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1995-01-01

    The relation of acceleration gradient with RF frequency is examined, and approximate general RF power requirements are derived. Considerations of efficiency and cost are discussed. RF Sources, presented at the conference, are reviewed. Overall efficiencies of the linear collider proposals are compared. copyright 1995 American Institute of Physics

  6. All-CMOS night vision viewer with integrated microdisplay

    Science.gov (United States)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Faure, Nicolaas M.; Janse van Rensburg, Christo; Rademeyer, Pieter

    2014-02-01

    The unrivalled integration potential of CMOS has made it the dominant technology for digital integrated circuits. With the advent of visible light emission from silicon through hot carrier electroluminescence, several applications arose, all of which rely upon the advantages of mature CMOS technologies for a competitive edge in a very active and attractive market. In this paper we present a low-cost night vision viewer which employs only standard CMOS technologies. A commercial CMOS imager is utilized for near infrared image capturing with a 128x96 pixel all-CMOS microdisplay implemented to convey the image to the user. The display is implemented in a standard 0.35 μm CMOS process, with no process alterations or post processing. The display features a 25 μm pixel pitch and a 3.2 mm x 2.4 mm active area, which through magnification presents the virtual image to the user equivalent of a 19-inch display viewed from a distance of 3 meters. This work represents the first application of a CMOS microdisplay in a low-cost consumer product.

  7. An ultra-low-power RF transceiver for WBANs in medical applications

    International Nuclear Information System (INIS)

    Zhang Qi; Wu Nanjian; Kuang Xiaofei

    2011-01-01

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 μm CMOS process. Its core area is 1.6 mm 2 . The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 μA current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%. (semiconductor integrated circuits)

  8. An ultra-low-power RF transceiver for WBANs in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qi; Wu Nanjian [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Kuang Xiaofei, E-mail: nanjian@semi.ac.cn [College of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2011-06-15

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 {mu}m CMOS process. Its core area is 1.6 mm{sup 2}. The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 {mu}A current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%. (semiconductor integrated circuits)

  9. rf impedance of the accelerating beam gap and its significance to the TRIUMF rf system

    International Nuclear Information System (INIS)

    Poirier, R.

    1979-03-01

    The rf system at TRIUMF is now operating with the highest Q, the lowest rf leakage into the beam gap, the best voltage stability, and the lowest resonator strongback temperatures ever measured since it was first put into operation. This paper describes the calculation of the rf impedance of the beam gap and its correlation to the rf problems encountered, which eventually led to modifications to the flux guides and resonator tips to accomplish the improved operation of the rf system

  10. CONTROL OF BOUNCING IN RF MEMS SWITCHES USING DOUBLE ELECTRODE

    KAUST Repository

    Abdul Rahim, Farhan

    2014-01-01

    MEMS based mechanical switches are seen to be the likely replacements for CMOS based switches due to the several advantages that these mechanical switches have over CMOS switches. Mechanical switches can be used in systems under extreme conditions

  11. CMOS-NEMS Copper Switches Monolithically Integrated Using a 65 nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Jose Luis Muñoz-Gamarra

    2016-02-01

    Full Text Available This work demonstrates the feasibility to obtain copper nanoelectromechanical (NEMS relays using a commercial complementary metal oxide semiconductor (CMOS technology (ST 65 nm following an intra CMOS-MEMS approach. We report experimental demonstration of contact-mode nano-electromechanical switches obtaining low operating voltage (5.5 V, good ION/IOFF (103 ratio, abrupt subthreshold swing (4.3 mV/decade and minimum dimensions (3.50 μm × 100 nm × 180 nm, and gap of 100 nm. With these dimensions, the operable Cell area of the switch will be 3.5 μm (length × 0.2 μm (100 nm width + 100 nm gap = 0.7 μm2 which is the smallest reported one using a top-down fabrication approach.

  12. Development of a CMOS process using high energy ion implantation

    International Nuclear Information System (INIS)

    Stolmeijer, A.

    1986-01-01

    The main interest of this thesis is the use of complementary metal oxide semiconductors (CMOS) in electronic technology. Problems in developing a CMOS process are mostly related to the isolation well of p-n junctions. It is shown that by using high energy ion implantation, it is possible to reduce lateral dimensions to obtain a rather high packing density. High energy ion implantation is also presented as a means of simplifying CMOS processing, since extended processing steps at elevated temperatures are superfluous. Process development is also simplified. (Auth.)

  13. Prevention of CMOS latch-up by gold doping

    International Nuclear Information System (INIS)

    Dawes, W.R.; Derbenwick, G.F.

    1976-01-01

    CMOS integrated circuits fabricated with the bulk silicon technology typically exhibit latch-up effects in either an ionizing radiation environment or an overvoltage stress condition. The latch-up effect has been shown to arise from regenerative switching, analogous to an SCR, in the adjacent parasitic bipolar transistors formed during the fabrication of a bulk CMOS device. Once latch-up has been initiated, it is usually self-sustaining and eventually destructive. Naturally, the circuit is inoperative during latch-up. This paper discusses a generic process technique that prevents the latch-up mechanism in CMOS devices

  14. CMOS analog integrated circuit design technology; CMOS anarogu IC sekkei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H.; Fujisawa, A. [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-08-10

    In the field of the LSI (large scale integrated circuit) in rapid progress toward high integration and advanced functions, CAD (computer-aided design) technology has become indispensable to LSI development within a short period. Fuji Electric has developed design technologies and automatic design system to develop high-quality analog ICs (integrated circuits), including power supply ICs. within a short period. This paper describes CMOS (complementary metal-oxide semiconductor) analog macro cell, circuit simulation, automatic routing, and backannotation technologies. (author)

  15. Stochastic cooling with a double rf system

    International Nuclear Information System (INIS)

    Wei, Jie.

    1992-01-01

    Stochastic cooling for a bunched beam of hadrons stored in an accelerator with a double rf system of two different frequencies has been investigated. The double rf system broadens the spread in synchrotron-oscillation frequency of the particles when they mostly oscillate near the center of the rf bucket. Compared with the ease of a single rf system, the reduction rates of the bunch dimensions are significantly increased. When the rf voltage is raised, the reduction rate, instead of decreasing linearly, now is independent of the ratio of the bunch area to the bucket area. On the other hand, the spread in synchrotron-oscillation frequency becomes small with the double rf system, if the longitudinal oscillation amplitudes of the particles are comparable to the dimension of the rf bucket. Consequently, stochastic cooling is less effective when the bunch area is close to the bucket area

  16. Superconductors for pulsed rf accelerators

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1985-04-01

    The choice of superconducting materials for accelerator rf cavities has been determined in the past only in part by basic properties of the superconductors, such as the critical field, and to a larger extent by criteria which include fabrication processes, surface conditions, heat transfer capabilities and so on. For cw operated cavities the trend has been toward choosing materials with higher critical temperatures and lower surface resistance, from Lead to Niobium, from Niobium to Nb 3 Sn. This trend has been dictated by the specific needs of storage ring cw system and by the relatively low fields which could be reached without breakdown. The work performed at SLAC on superconducting cavities using microsecond long high power rf pulses has shown that in Pb, Nb, and Nb 3 Sn fields close to the critical magnetic fields can be reached without magnetic breakdown

  17. Fabrication of CMOS-compatible nanopillars for smart bio-mimetic CMOS image sensors

    KAUST Repository

    Saffih, Faycal

    2012-06-01

    In this paper, nanopillars with heights of 1μm to 5μm and widths of 250nm to 500nm have been fabricated with a near room temperature etching process. The nanopillars were achieved with a continuous deep reactive ion etching technique and utilizing PMMA (polymethylmethacrylate) and Chromium as masking layers. As opposed to the conventional Bosch process, the usage of the unswitched deep reactive ion etching technique resulted in nanopillars with smooth sidewalls with a measured surface roughness of less than 40nm. Moreover, undercut was nonexistent in the nanopillars. The proposed fabrication method achieves etch rates four times faster when compared to the state-of-the-art, leading to higher throughput and more vertical side walls. The fabrication of the nanopillars was carried out keeping the CMOS process in mind to ultimately obtain a CMOS-compatible process. This work serves as an initial step in the ultimate objective of integrating photo-sensors based on these nanopillars seamlessly along with the controlling transistors to build a complete bio-inspired smart CMOS image sensor on the same wafer. © 2012 IEEE.

  18. Design of a mixer for the thrust-vectoring system on the high-alpha research vehicle

    Science.gov (United States)

    Pahle, Joseph W.; Bundick, W. Thomas; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    One of the advanced control concepts being investigated on the High-Alpha Research Vehicle (HARV) is multi-axis thrust vectoring using an experimental thrust-vectoring (TV) system consisting of three hydraulically actuated vanes per engine. A mixer is used to translate the pitch-, roll-, and yaw-TV commands into the appropriate TV-vane commands for distribution to the vane actuators. A computer-aided optimization process was developed to perform the inversion of the thrust-vectoring effectiveness data for use by the mixer in performing this command translation. Using this process a new mixer was designed for the HARV and evaluated in simulation and flight. An important element of the Mixer is the priority logic, which determines priority among the pitch-, roll-, and yaw-TV commands.

  19. Noise and conversion performance of a high-Tc superconducting Josephson junction mixer at 0.6 THz

    Science.gov (United States)

    Gao, Xiang; Du, Jia; Zhang, Ting; Guo, Yingjie Jay

    2017-11-01

    This letter presents both theoretical and experimental investigations on the noise and conversion performance of a high-Tc superconducting (HTS) step-edge Josephson-junction mixer at the frequency of 0.6 THz and operating temperatures of 20-40 K. Based on the Y-factor and U-factor methods, a double-sideband noise temperature of around 1000 K and a conversion gain of -3.5 dB were experimentally obtained at 20 K. At the temperature of 40 K, the measured mixer noise and conversion efficiency are around 2100 K and -10 dB, respectively. The experimental data are in good agreement with the numerical analysis results using the three-port model. A detailed performance comparison with other reported HTS terahertz mixers has confirmed the superior performance of our presented mixer device.

  20. AZ-101 Mixer Pump Demonstration Data Acquisition System and Gamma Cart Data Acquisition Control System Software Configuration Management Plan

    International Nuclear Information System (INIS)

    WHITE, D.A.

    1999-01-01

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the AZ1101 Mixer Pump Demonstration Data Acquisition System (DAS) and the Sludge Mobilization Cart (Gamma Cart) Data Acquisition and Control System (DACS)