WorldWideScience

Sample records for reynolds stress closure

  1. Reynolds Stress Closure for Inertial Frames and Rotating Frames

    Science.gov (United States)

    Petty, Charles; Benard, Andre

    2017-11-01

    In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.

  2. Elliptic blending model : A new near-wall Reynolds-stress turbulence closure

    NARCIS (Netherlands)

    Manceau, R.; Hanjali?, K.

    2001-01-01

    A new approach to modeling the effects of a solid wall in one-point second-moment (Reynolds-stress) turbulence closures is presented. The model is based on the relaxation of an inhomogeneous (near-wall) formulation of the pressure–strain tensor towards the chosen conventional homogeneous

  3. Dynamical System Analysis of Reynolds Stress Closure Equations

    Science.gov (United States)

    Girimaji, Sharath S.

    1997-01-01

    In this paper, we establish the causality between the model coefficients in the standard pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-strain correlation models to yield observed equilibrium behavior.

  4. A Reynolds stress model for near-wall turbulence

    Science.gov (United States)

    Durbin, P. A.

    1993-01-01

    The paper formulates a tensorially consistent near-wall second-order closure model. Redistributive terms in the Reynolds stress equations are modeled by an elliptic relaxation equation in order to represent strongly nonhomogeneous effects produced by the presence of walls; this replaces the quasi-homogeneous algebraic models that are usually employed, and avoids the need for ad hoc damping functions. The model is solved for channel flow and boundary layers with zero and adverse pressure gradients. Good predictions of Reynolds stress components, mean flow, skin friction, and displacement thickness are obtained in various comparisons to experimental and direct numerical simulation data. The model is also applied to a boundary layer flowing along a wall with a 90-deg, constant-radius, convex bend.

  5. Extending the bounds of ‘steady’ RANS closures: Toward an instability-sensitive Reynolds stress model

    International Nuclear Information System (INIS)

    Jakirlić, S.; Maduta, R.

    2015-01-01

    Highlights: • A grid-spacing free, instability-sensitive Reynolds stress model is formulated. • The model is capable of capturing turbulence fluctuations. • Substantial improvement concerning proper turbulence activity enhancement is achieved. • The model is intensively validated in a series of 2D and 3D separating flows. • The model feasibility is also checked in some attached flows. - Abstract: The incapability of the conventional Unsteady RANS (Reynolds–Averaged Navier Stokes) models to adequately capture turbulence unsteadiness presents the prime motivation of the present work, which focuses on formulating an instability-sensitive, eddy-resolving turbulence model on the Second-Moment Closure level. The model scheme adopted, functioning as a ‘sub-scale’ model in the Unsteady RANS framework, represents a differential near-wall Reynolds stress model formulated in conjunction with the scale-supplying equation governing the homogeneous part of the inverse turbulent time scale ω h (ω h = ε h /k). The latter equation was straightforwardly obtained from the model equation describing the dynamics of the homogeneous part of the total viscous dissipation rate ε, defined as ε h = ε − 0.5ν∂ 2 k/(∂x j ∂x j ) (Jakirlic and Hanjalic, 2002), by applying the derivation rules to the expression for ω h . The model capability to account for vortex length and time scales variability was enabled through an additional term in the corresponding length-scale determining equation, providing a selective enhancement of its production, pertinent particularly to the highly unsteady separated shear layer region, modeled in terms of the von Karman length scale (comprising the second derivative of the velocity field) in line with the SAS (Scale-Adaptive Simulation) proposal (Menter and Egorov, 2010). The present model formulation, termed as SRANS model (Sensitized RANS), does not comprise any parameter depending explicitly on grid spacing. The predictive

  6. Reynolds stress and shear flow generation

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.

    2001-01-01

    The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding...... of improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method......, based on density measurements, to estimate the Reynolds stress, and demonstrate the validity range of this quantity, which we term the pseudo-Reynolds stress. The advantage of such a quantity is that accurate measurements of density fluctuations are much easier to obtain experimentally. Prior...

  7. Analysis of turbulent conical diffuser flow using second moment closures

    International Nuclear Information System (INIS)

    Adane, K.K.; Tachie, M.F.; Ormiston, S.J.

    2004-01-01

    A commercial CFD code, CFX-TASCflow, is used to predict a turbulent conical diffuser flow. The computation was performed using a low-Reynolds number k-ω model, a low-Reynolds number k-ω based non-linear algebraic Reynolds stress model, and a second moment closure with a wall-function. The experimental data of Kassab are used to validate the numerical results. The results show that all the turbulence models reproduce the static pressure coefficient distribution reasonably well. The low Reynolds number k-ω models give better prediction of the friction velocity than the second moment closure. The models also predict the Reynolds shear stress reasonably well but fail to reproduce the correct level of the turbulent kinetic energy. (author)

  8. Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea

    Institute of Scientific and Technical Information of China (English)

    SONG Zhi-yao; NI Zhi-hui; LU Guo-nian

    2009-01-01

    Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.

  9. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-02-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant

  10. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-01-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant. (author). 15 refs

  11. Improvement of Reynolds-Stress and Triple-Product Lag Models

    Science.gov (United States)

    Olsen, Michael E.; Lillard, Randolph P.

    2017-01-01

    The Reynolds-stress and triple product Lag models were created with a normal stress distribution which was denied by a 4:3:2 distribution of streamwise, spanwise and wall normal stresses, and a ratio of r(sub w) = 0.3k in the log layer region of high Reynolds number flat plate flow, which implies R11(+)= [4/(9/2)*.3] approximately 2.96. More recent measurements show a more complex picture of the log layer region at high Reynolds numbers. The first cut at improving these models along with the direction for future refinements is described. Comparison with recent high Reynolds number data shows areas where further work is needed, but also shows inclusion of the modeled turbulent transport terms improve the prediction where they influence the solution. Additional work is needed to make the model better match experiment, but there is significant improvement in many of the details of the log layer behavior.

  12. Modelling turbulence around and inside porous media based on the second moment closure

    International Nuclear Information System (INIS)

    Kuwata, Yusuke; Suga, Kazuhiko

    2013-01-01

    Highlights: • A novel turbulence model for flows in porous media is proposed. • Three stress tensors emerging in double averaging N–S are individually modelled. • The most advanced second moment closure is applied for the macro-scale stress. • A one equation and the Smagorinsky models are applied to the other stresses. • Promising results are obtained in test flows around and inside porous media. -- Abstract: To predict turbulence in porous media, a new approach is discussed. By double (both volume and Reynolds) averaging Navier–Stokes equations, there appear three unknown covariant terms in the momentum equation. They are namely the dispersive covariance, the macro-scale and the micro-scale Reynolds stresses, in the present study. For the macro-scale Reynolds stress, the TCL (two-component-limit) second moment closure is applied whereas the eddy viscosity models are applied to the other covariant terms: the Smagorinsky model and the one-equation eddy viscosity model, respectively for the dispersive covariance and the micro-scale Reynolds stress. The presently proposed model is evaluated in square rib array flows and porous wall channel flows with reasonable accuracy though further development is required

  13. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    Science.gov (United States)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSGLRR full second-moment Reynolds stress models are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST) two-equation models.

  14. Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure

    Science.gov (United States)

    Sen, O.; Gaul, N. J.; Davis, S.; Choi, K. K.; Jacobs, G.; Udaykumar, H. S.

    2018-05-01

    Macroscale models of shock-particle interactions require closure terms for unresolved solid-fluid momentum and energy transfer. These comprise the effects of mean as well as fluctuating fluid-phase velocity fields in the particle cloud. Mean drag and Reynolds stress equivalent terms (also known as pseudo-turbulent terms) appear in the macroscale equations. Closure laws for the pseudo-turbulent terms are constructed in this work from ensembles of high-fidelity mesoscale simulations. The computations are performed over a wide range of Mach numbers ( M) and particle volume fractions (φ ) and are used to explicitly compute the pseudo-turbulent stresses from the Favre average of the velocity fluctuations in the flow field. The computed stresses are then used as inputs to a Modified Bayesian Kriging method to generate surrogate models. The surrogates can be used as closure models for the pseudo-turbulent terms in macroscale computations of shock-particle interactions. It is found that the kinetic energy associated with the velocity fluctuations is comparable to that of the mean flow—especially for increasing M and φ . This work is a first attempt to quantify and evaluate the effect of velocity fluctuations for problems of shock-particle interactions.

  15. Application of a Full Reynolds Stress Model to High Lift Flows

    Science.gov (United States)

    Lee-Rausch, E. M.; Rumsey, C. L.; Eisfeld, B.

    2016-01-01

    A recently developed second-moment Reynolds stress model was applied to two challenging high-lift flows: (1) transonic flow over the ONERA M6 wing, and (2) subsonic flow over the DLR-F11 wing-body configuration from the second AIAA High Lift Prediction Workshop. In this study, the Reynolds stress model results were contrasted with those obtained from one- and two{equation turbulence models, and were found to be competitive in terms of the prediction of shock location and separation. For an ONERA M6 case, results from multiple codes, grids, and models were compared, with the Reynolds stress model tending to yield a slightly smaller shock-induced separation bubble near the wing tip than the simpler models, but all models were fairly close to the limited experimental surface pressure data. For a series of high-lift DLR{F11 cases, the range of results was more limited, but there was indication that the Reynolds stress model yielded less-separated results than the one-equation model near maximum lift. These less-separated results were similar to results from the one-equation model with a quadratic constitutive relation. Additional computations need to be performed before a more definitive assessment of the Reynolds stress model can be made.

  16. Generation of sheared poloidal flows via Reynolds stress and transport barrier physics

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Sanchez, E.; Balbin, R.; Lopez-Fraguas, A.; Milligen, B. van; Silva, C.; Fernandes, H.; Varandas, C.A.F.; Riccardi, C.; Carrozza, R.; Fontanesi, M.; Carreras, B.A.; Garcia, L.

    2000-01-01

    A view of the latest experimental results and progress in the understanding of the role of poloidal flows driven by fluctuations via Reynolds stress is given. Reynolds stress shows a radial gradient close to the velocity shear layer location in tokamaks and stellarators, indicating that this mechanism may drive significant poloidal flows in the plasma boundary. Observation of the generation of ExB sheared flows via Reynolds stress at the ion Bernstein resonance layer has been noticed in toroidal magnetized plasmas. The experimental evidence of sheared ExB flows linked to the location of rational surfaces in stellarator plasmas might be interpreted in terms of Reynolds stress sheared driven flows. These results show that ExB sheared flows driven by fluctuations can play an important role in the generation of transport barriers. (author)

  17. Revised Reynolds Stress and Triple Product Models

    Science.gov (United States)

    Olsen, Michael E.; Lillard, Randolph P.

    2017-01-01

    Revised versions of Lag methodology Reynolds-stress and triple product models are applied to accepted test cases to assess the improvement, or lack thereof, in the prediction capability of the models. The Bachalo-Johnson bump flow is shown as an example for this abstract submission.

  18. Assessment of Reynolds stress components and turbulent pressure loss using 4D flow MRI with extended motion encoding.

    Science.gov (United States)

    Haraldsson, Henrik; Kefayati, Sarah; Ahn, Sinyeob; Dyverfeldt, Petter; Lantz, Jonas; Karlsson, Matts; Laub, Gerhard; Ebbers, Tino; Saloner, David

    2018-04-01

    To measure the Reynolds stress tensor using 4D flow MRI, and to evaluate its contribution to computed pressure maps. A method to assess both velocity and Reynolds stress using 4D flow MRI is presented and evaluated. The Reynolds stress is compared by cross-sectional integrals of the Reynolds stress invariants. Pressure maps are computed using the pressure Poisson equation-both including and neglecting the Reynolds stress. Good agreement is seen for Reynolds stress between computational fluid dynamics, simulated MRI, and MRI experiment. The Reynolds stress can significantly influence the computed pressure loss for simulated (eg, -0.52% vs -15.34% error; P Reynolds stress (P Reynolds stress tensor. The additional information provided by this method improves the assessment of pressure gradients across a stenosis in the presence of turbulence. Unlike conventional methods, which are only valid if the flow is laminar, the proposed method is valid for both laminar and disturbed flow, a common presentation in diseased vessels. Magn Reson Med 79:1962-1971, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Some Recent Developments in Turbulence Closure Modeling

    Science.gov (United States)

    Durbin, Paul A.

    2018-01-01

    Turbulence closure models are central to a good deal of applied computational fluid dynamical analysis. Closure modeling endures as a productive area of research. This review covers recent developments in elliptic relaxation and elliptic blending models, unified rotation and curvature corrections, transition prediction, hybrid simulation, and data-driven methods. The focus is on closure models in which transport equations are solved for scalar variables, such as the turbulent kinetic energy, a timescale, or a measure of anisotropy. Algebraic constitutive representations are reviewed for their role in relating scalar closures to the Reynolds stress tensor. Seamless and nonzonal methods, which invoke a single closure model, are reviewed, especially detached eddy simulation (DES) and adaptive DES. Other topics surveyed include data-driven modeling and intermittency and laminar fluctuation models for transition prediction. The review concludes with an outlook.

  20. Shear flow generation by Reynolds stress and suppression of resistive g-modes

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1993-08-01

    Suppression of resistive g-mode turbulence by background shear flow generated from a small external flow source and amplified by the fluctuation-induced Reynolds stress is demonstrated and analyzed. The model leads to a paradigm for the low-to-high (L-H) confinement mode transition. To demonstrate the L-H transition model, single-helicity nonlinear fluid simulations using the vorticity equation for the electrostatic potential, the pressure fluctuation equation and the background poloidal flow equation are used in the sheared slab configuration. The relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the poloidal flow damping parameter ν which is given by neoclassical theory. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow and its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. In contrast, for small ν, we show that the fluctuations drive a Reynolds stress that becomes large and suddenly, at some critical point in time, shear flow much larger than the external flow is generated and leads to an abrupt, order unity reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is also found that, even in the case of no external flow, the shear flow generation due to the Reynolds stress occurs through the nonlinear interaction of the resistive g-modes and reduces the transport. To supplement the numerical solutions we derive the Landau equation for the mode amplitude of the resistive g-mode taking into account the fluctuation-induced shear flow and analyze the opposite action of the Reynolds stress in the resistive g turbulence compared with the classical shear flow Kelvin-Helmholtz (K-H) driven turbulence

  1. Modeling the flow in a 90 deg. rectangular duct using one Reynolds-stress and two eddy-viscosity models

    International Nuclear Information System (INIS)

    Yakinthos, K.; Vlahostergios, Z.; Goulas, A.

    2008-01-01

    A new effort to model the flow in a 90 deg. rectangular duct by adopting three low-Reynolds-number turbulence models, two eddy-viscosity models (a linear and a non-linear) and a Reynolds-stress model, is presented. The complex flow development is a challenge for the application of turbulence models in order to assess their capability to capture the secondary flow and the developing vortices due to curvature and strong pressure gradient effects. The numerical results show that both the non-linear eddy-viscosity and the Reynolds-stress models can provide good results, especially for the velocity distributions. The superiority of the Reynolds-stress model is shown primarily in the Reynolds-stress distributions, which have the best quality among the predictions from the other models. On the other hand, the main advantage of the non-linear model is its simplicity and the smaller needed CPU cost, compared to the Reynolds-stress model. Additionally, in some stations of the flow development, the non-linear model provides good velocity distributions. The linear model gives lower quality predictions for the Reynolds-stress distributions, although it is capable in providing quite satisfactory results for the velocity distributions

  2. Near-wall extension of a non-equilibrium, omega-based Reynolds stress model

    International Nuclear Information System (INIS)

    Nguyen, Tue; Behr, Marek; Reinartz, Birgit

    2011-01-01

    In this paper, the development of a new ω-based Reynolds stress model that is consistent with asymptotic analysis in the near wall region and with rapid distortion theory in homogeneous turbulence is reported. The model is based on the SSG/LRR-ω model developed by Eisfeld (2006) with three main modifications. Firstly, the near wall behaviors of the redistribution, dissipation and diffusion terms are modified according to the asymptotic analysis and a new blending function based on low Reynolds number is proposed. Secondly, an anisotropic dissipation tensor based on the Reynolds stress inhomogeneity (Jakirlic et al., 2007) is used instead of the original isotropic model. Lastly, the SSG redistribution term, which is activated far from the wall, is replaced by Speziale's non-equilibrium model (Speziale, 1998).

  3. First measurement of the magnetic turbulence induced Reynolds stress in a tokamak

    International Nuclear Information System (INIS)

    Xu Guosheng; Wan Baonian; Song Mei

    2003-01-01

    Reynolds stress component due to magnetic turbulence was first measured in the plasma edge region of the HT-7 superconducting tokamak using an insertable magnetic probe. A radial gradient of magnetic Reynolds stress was observed to be close to the velocity shear layer location; however, in this experiment its contribution to driving the poloidal flows is small compared to the electrostatic component. The electron heat transport driven by magnetic turbulence is quite small and cannot account for the total energy transport at the plasma edge

  4. Role of advanced refuelling and heating on edge Reynolds stress-induced poloidal flow in HL-1M

    International Nuclear Information System (INIS)

    Hong Wenyu; Wang Enyao; Li Qiang; Cao Jianyong; Yan Longwen

    2002-01-01

    The radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric fields have been measured in the plasma boundary region of the HL-1M tokamak using a multi-array of Mach/Langmuir probes. In the experiments of ohmic discharge, lower hybrid current drive, supersonic molecular beam injection (SMBI) and multi-shot pellet injection, the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The radial profile changes of the Reynolds stress and poloidal flow velocity V pol with lower hybrid wave injection power and SMBI injection are obtained. The results indicate that the sheared poloidal flow can be generated in tokamak plasma due to the radially varying Reynolds stress

  5. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves.

    Science.gov (United States)

    Grigioni, Mauro; Daniele, Carla; D'Avenio, Giuseppe; Barbaro, Vincenzo

    2002-05-01

    Turbulent flow generated by prosthetic devices at the bloodstream level may cause mechanical stress on blood particles. Measurement of the Reynolds stress tensor and/or some of its components is a mandatory step to evaluate the mechanical load on blood components exerted by fluid stresses, as well as possible consequent blood damage (hemolysis or platelet activation). Because of the three-dimensional nature of turbulence, in general, a three-component anemometer should be used to measure all components of the Reynolds stress tensor, but this is difficult, especially in vivo. The present study aimed to derive the maximum Reynolds shear stress (RSS) in three commercially available prosthetic heart valves (PHVs) of wide diffusion, starting with monodimensional data provided in vivo by echo Doppler. Accurate measurement of PHV flow field was made using laser Doppler anemometry; this provided the principal turbulence quantities (mean velocity, root-mean-square value of velocity fluctuations, average value of cross-product of velocity fluctuations in orthogonal directions) needed to quantify the maximum turbulence-related shear stress. The recorded data enabled determination of the relationship, the Reynolds stresses ratio (RSR) between maximum RSS and Reynolds normal stress in the main flow direction. The RSR was found to be dependent upon the local structure of the flow field. The reported RSR profiles, which permit a simple calculation of maximum RSS, may prove valuable during the post-implantation phase, when an assessment of valve function is made echocardiographically. Hence, the risk of damage to blood constituents associated with bileaflet valve implantation may be accurately quantified in vivo.

  6. The possible role of Reynolds stress in the creation of a transport barrier in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Vergote, M.; Van Schoor, M.; Xu, Y.; Jachmich, S.; Weynants, R.; Hron, M.; Stoeckel, J.

    2005-01-01

    To obtain a good confinement, mandatory in a fusion reactor, the understanding of the formation of transport barriers in the edge plasma of a tokamak is essential. Turbulence, the major candidate to explain anomalous transport, can be quenched by sheared flows in the edge which rip the convective cells apart, thus forming a barrier. Experimental evidence from the Chinese HT-6M tokamak [Y.H. Xu et al.: Phys. Rev. Lett. 84 (2000) 3867], points to the fact that momentum transfer from the turbulence can create these sheared flows via the Reynolds stresses. A new 1-d fluid model for the generation of the poloidal flow, has been developed taking into account the driving force of the Reynolds stress and the friction forces due to neutrals and parallel viscosity. Special attention has been dedicated to the computation of the flux-surface-averaging for the various terms. This model has been confronted with the experimental results obtained in the HT-6M tokamak, where Reynolds stresses were generated by application of a turbulent heating pulse. If the model is applied in cylindrical geometry, the calculated Reynolds stress-induced flow agrees well with the measured poloidal velocity in the plasma edge. However, when the full toroidal geometry is taken into account, it seems that the Reynolds stresses are too small to explain the observed rotation. This indicates that the role of the Reynolds stresses in inducing macroscopic flow in the torus is weakened. A combined system of probes allowing to measure the Reynolds stress and the rotation velocity simultaneously, has been developed and installed on the CASTOR tokamak. We report here on the first results obtained. (author)

  7. Recent progress in the development of the Elliptic Blending Reynolds-stress model

    International Nuclear Information System (INIS)

    Manceau, Rémi

    2015-01-01

    Highlights: • Various modifications of the Elliptic Blending Reynolds stress model, proposed during the last decade, are revisited. • Using theoretical arguments and detailed comparison with DNS data, a reference model is formulated. • The model satisfactorily reproduces the effects of spanwise rotation on turbulence, for cases without and with separation. - Abstract: The Elliptic Blending Reynolds Stress Model (EB-RSM), originally proposed by Manceau and Hanjalić (2002) to extend standard, weakly inhomogeneous Reynolds stress models to the near-wall region, has been subject to various modifications by several authors during the last decade, mainly for numerical robustness reasons. The present work revisits all these modifications from the theoretical standpoint and investigates in detail their influence on the reproduction of the physical mechanisms at the origin of the influence of the wall on turbulence. The analysis exploits recent DNS databases for high-Reynolds number channel flows, spanwise rotating channel flows with strong rotation rates, up to complete laminarization, and the separated flow after a sudden expansion without and with system rotation. Theoretical arguments and comparison with DNS results lead to the selection of a recommended formulation for the EB-RSM model. This formulation shows satisfactory predictions for the configurations described above, in particular as regards the modification of the mean flow and turbulent anisotropy on the anticyclonic or pressure side

  8. Numerical analysis of three-dimensional turbulent flow in a 90deg bent tube by algebraic Reynolds stress model

    International Nuclear Information System (INIS)

    Sugiyama, Hitoshi; Akiyama, Mitsunobu; Shinohara, Yasunori; Hitomi, Daisuke

    1997-01-01

    A numerical analysis has been performed for three dimensional developing turbulent flow in a 90deg bent tube with straight inlet and outlet sections by an algebraic Reynolds stress model. To our knowledge, very little has been reported about detailed comparison between calculated results and experimental data containing Reynolds stresses. In calculation, an algebraic Reynolds stress model together with a boundary-fitted coordinate system is applied to a 90deg bent tube in order to solve anisotropic turbulent flow precisely. The calculated results display comparatively good agreement with the experimental data of time averaged velocity and secondary vectors. In addition, the present method predicts as a characteristic feature that the intensity of secondary flow near the inner wall is increased immediately downstream from the bend outlet by the pressure gradient. With regard to comparison of Reynolds stresses, the present method is able to reproduce well the distributions of streamwise normal stress and shear stress defined streamwise and radial velocity fluctuation except for the shear stress defined streamwise and circumferential velocity fluctuation. The present calculation has been found to simulate many features of the developing flow in bent tube satisfactorily, but it has a tendency to underpredict the Reynolds stresses. (author)

  9. Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.

    Science.gov (United States)

    Örlü, R; Fiorini, T; Segalini, A; Bellani, G; Talamelli, A; Alfredsson, P H

    2017-03-13

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×10 4 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A 2 ≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A 2,w ≈A 2 /2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  10. Stress analysis of closure bolts for shipping casks

    International Nuclear Information System (INIS)

    Mok, G.C.; Fischer, L.E.; Hsu, S.T.

    1993-01-01

    This report specifies the requirements and criteria for stress analysis of closure bolts for shipping casks containing nuclear spent fuels or high level radioactive materials. The specification is based on existing information conceming the structural behavior, analysis, and design of bolted joints. The approach taken was to extend the ASME Boiler and Pressure Vessel Code requirements and criteria for bolting analysis of nuclear piping and pressure vessels to include the appropriate design and load characteristics of the shipping cask. The characteristics considered are large, flat, closure lids with metal-to-metal contact within the bolted joint; significant temperature and impact loads; and possible prying and bending effects. Specific formulas and procedures developed apply to the bolt stress analysis of a circular, flat, bolted closure. The report also includes critical load cases and desirable design practices for the bolted closure, an in-depth review of the structural behavior of bolted joints, and a comprehensive bibliography of current information on bolted joints

  11. Reynolds-Stress Budgets in an Impinging Shock Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Yoder, Dennis A.; Gaitonde, Datta V.

    2018-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Comparisons with experimental data showed a sensitivity of the current prediction to the modeling of the sidewalls. This was found to be common among various computational studies in the literature where periodic boundary conditions were used in the spanwise direction, as was the case in the present work. Thus, although the experiment was quasi-two-dimensional, the present simulation was determined to be two-dimensional. Quantities present in the exact equation of the Reynolds-stress transport, i.e., production, molecular diffusion, turbulent transport, pressure diffusion, pressure strain, dissipation, and turbulent mass flux were calculated. Reynolds-stress budgets were compared with past large-eddy simulation and direct numerical simulation datasets in the undisturbed portion of the turbulent boundary layer to validate the current approach. The budgets in SBLI showed the growth in the production term for the primary normal stress and energy transfer mechanism was led by the pressure strain term in the secondary normal stresses. The pressure diffusion term, commonly assumed as negligible by turbulence model developers, was shown to be small but non-zero in the normal stress budgets, however it played a key role in the primary shear stress budget.

  12. Shear flow generation by Reynolds stress and suppression of resistive g modes

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1993-01-01

    The authors have investigated suppression of the resistive g mode turbulence by background shear flow produced by the external source and by the fluctuation-induced Reynolds stress. For that purpose, the authors used the model consisting of the equations describing the electrostatic potential φ≡(φ 0 +φ) and the pressure fluctuation p of the resistive g mode, and the equation for the background poloidal flow. They have done the single-helicity nonlinear simulations using the model equations in the sheared slab configuration. They find that, in the nonlinear turbulent regime, significant suppression of the turbulent transport is realized only when the shear flow v' E exceeds that which makes the fastest-growing linear modes marginally stable. With the shear flow which decreases the fastest linear growth rates by about a half, the turbulent transport in the saturated state is about the same as in the case of no shear flow. As seen from the equation for the background flow v E , the relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the parameter ν. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow although its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. On the other hand, for small ν, they observe that, as the fluctuations grow, the Reynolds stress becomes large and suddenly at some critical point in time shear flow much larger than the external one is generated and leads to the significant reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is remarkable that the Reynolds stress due to the resistive g mode fluctuations works not as a conventional viscosity term weakening the shear flow but as a negative viscosity term enhancing it

  13. Analysis of Zero Reynolds Shear Stress Appearing in Dilute Surfactant Drag-Reducing Flow

    Directory of Open Access Journals (Sweden)

    Weiguo Gu

    2011-01-01

    Full Text Available Dilute surfactant solution of 25 ppm in the two-dimensional channel is investigated experimentally compared with water flow. Particle image velocimetry (PIV system is used to take 2D velocity frames in the streamwise and wall-normal plane. Based on the frames of instantaneous vectors and statistical results, the phenomenon of zero Reynolds shear stress appearing in the drag-reducing flow is discussed. It is found that 25 ppm CTAC solution exhibits the highest drag reduction at Re = 25000 and loses drag reduction completely at Re = 40000. When drag reduction lies in the highest, Reynolds shear stress disappears and reaches zero although the RMS of the velocity fluctuations is not zero. By the categorization in four quadrants, the fluctuations of 25 ppm CTAC solution are distributed in all four quadrants equally at Re = 25000, which indicates that turnaround transportation happens in drag-reducing flow besides Reynolds shear stress transportation. Moreover, the contour distribution of streamwise velocity and the fluctuations suggests that turbulence transportation is depressed in drag-reducing flow. The viscoelasticity is possible to decrease the turbulence transportation and cause the turnaround transportation.

  14. Internal stress distribution for generating closure domains in laser-irradiated Fe–3%Si(110) steels

    International Nuclear Information System (INIS)

    Iwata, Keiji; Imafuku, Muneyuki; Orihara, Hideto; Sakai, Yusuke; Ohya, Shin-Ichi; Suzuki, Tamaki; Shobu, Takahisa; Akita, Koichi; Ishiyama, Kazushi

    2015-01-01

    Internal stress distribution for generating closure domains occurring in laser-irradiated Fe–3%Si(110) steels was investigated using high-energy X-ray analysis and domain theory based on the variational principle. The measured triaxial stresses inside the specimen were compressive and the stress in the rolling direction became more dominant than stresses in the other directions. The calculations based on the variational principle of magnetic energy for closure domains showed that the measured triaxial stresses made the closure domains more stable than the basic domain without closure domains. The experimental and calculation results reveal that the laser-introduced internal stresses result in the occurrence of the closure domains

  15. The signature of the magnetorotational instability in the Reynolds and Maxwell stress tensors in accretion discs

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan; Psaltis, Dimitrios

    2006-01-01

    stresses during the late times of the exponential growth of the instability is determined only by the local shear and does not depend on the initial spectrum of perturbations or the strength of the seed magnetic. Even though we derived these properties of the stress tensors for the exponential growth...... of the instability, the mean (averaged over the disc scale-height) Reynolds stress is always positive, the mean Maxwell stress is always negative, and hence the mean total stress is positive and leads to a net outward flux of angular momentum. More importantly, we show that the ratio of the Maxwell to the Reynolds...

  16. Spatio-temporal structure of turbulent Reynolds stress zonal flow drive in 3D magnetic configuration

    International Nuclear Information System (INIS)

    Schmid, B; Ramisch, M; Manz, P; Stroth, U

    2017-01-01

    The poloidal dependence of the zonal flow drive and the underlying Reynolds stress structure are studied at the stellarator experiment TJ-K by means of a poloidal Langmuir-probe array. This gives the unique possibility to study the locality of the Reynolds stress in a complex toroidal magnetic geometry. It is found that the Reynolds stress is not homogeneously distributed along the flux surface but has a strong poloidal asymmetry where it is concentrated on the outboard side with a maximum above the midplane. The average tilt of the turbulent structures is thereby reflected in the anisotropy of the bivariant velocity distribution. Using a conditional averaging technique the temporal dynamics reveal that the zonal flow drive is also maximal in this particular region. The results suggest an influence of the magnetic field line curvature, which controls the underlying plasma turbulence. The findings are a basis for further comparison with turbulence simulations in 3D geometry and demonstrate the need for a global characterisation of plasma turbulence. (paper)

  17. Generation of sheared poloidal flows by electrostatic and magnetic Reynolds stress in the boundary plasma of HT-7 tokamak

    International Nuclear Information System (INIS)

    Xu, G.S.; Wan, B.N.; Li, J.

    2005-01-01

    The radial profiles of electrostatic and magnetic Reynolds stress (Maxwell stress) have been measured in the plasma boundary region of HT-7 tokamak. Experimental results show that the radial gradient of electrostatic Reynolds stress (ERS) changes sign across the last closed flux surface, and the neoclassical flow damping and the damping due to charge exchange processes are balanced by the radial gradient of ERS, which sustains the equilibrium sheared flow structure in a steady state. The contribution of magnetic Reynolds stress was found unimportant in a low β plasma. Detailed analyses indicate that the propagation properties of turbulence in radial and poloidal directions and the profiles of potential fluctuation level are responsible for the radial structure of ERS. (author)

  18. Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Resende, P.R. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal)]. E-mail: resende@fe.up.pt; Escudier, M.P. [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom)]. E-mail: escudier@liv.ac.uk; Presti, F [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@dem.uminho.pt; Cruz, D.O.A. [Departamento de Engenharia Mecanica, Universidade Federal do Para-UFPa Campus Universitario do Guama, 66075-900 Belem, Para (Brazil)]. E-mail: doac@ufpa.br

    2006-04-15

    An anisotropic low Reynolds number k-{epsilon} turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow.

  19. Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers

    International Nuclear Information System (INIS)

    Resende, P.R.; Escudier, M.P.; Presti, F; Pinho, F.T.; Cruz, D.O.A.

    2006-01-01

    An anisotropic low Reynolds number k-ε turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow

  20. Fatigue crack closure behavior at high stress ratios

    Science.gov (United States)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  1. Role of Reynolds stress and toroidal momentum transport in the dynamics of internal transport barriers

    International Nuclear Information System (INIS)

    Kim, S. S.; Jhang, Hogun; Diamond, P. H.

    2012-01-01

    We study the interplay between intrinsic rotation and internal transport barrier (ITB) dynamics through the dynamic change of the parallel Reynolds stress. Global flux-driven gyrofluid simulations are used for this study. In particular, we investigate the role of parallel velocity gradient instability (PVGI) in the ITB formation and the back transition. It is found that the excitation of PVGI is followed by a change in the Reynolds stress which drives a momentum redistribution. This significantly influences E×B shear evolution and subsequent ITB dynamics. Nonlocal interactions among fluctuations are also observed during the PVGI excitation, resulting in turbulence suppression at the ITB.

  2. Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature

    Science.gov (United States)

    Olsen, Michael E.

    2016-01-01

    Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.

  3. Influence of fatigue crack wake length and state of stress on crack closure

    Science.gov (United States)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  4. Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing

    International Nuclear Information System (INIS)

    Crawford, C.H.; Karniadakis, G.E.

    1997-01-01

    In this work we investigate numerically turbulent flow of low electrical conductivity fluid subject to electro-magnetic (EMHD) forcing. The configuration is similar to the one considered in the experimental work of Henoch and Stace [Phys. Fluids 7, 1371 (1995)] but in a channel geometry. The lower wall of the channel is covered with alternating streamwise electrodes and magnets to create a Lorentz force in the positive streamwise direction. Two cases are considered in detail corresponding to interaction parameter values of 0.4 (case 1) and 0.1 (case 2). The effect of switching off and on the electrodes is also studied for the two cases. At the Reynolds number considered (Re τ ∼200), a drag increase was obtained for all cases, in agreement with the experiments of Henoch and Stace. A Reynolds stress analysis was performed based on a new decomposition of the gradients normal to the wall of the Reynolds stress -u'v'. It was found that the vortex stretching term w'w 2 ' and the spanwise variation of the stress component u'w' are responsible for the drag increase. More specifically, the term ∂(u'w')/∂x 3 is associated with secondary vortical motions in the near-wall and becomes large and positive for large shear stress in regions where fluid is moving toward the wall. In contrast, negative values are associated with regions of lower shear where fluid is being lifted away from the wall. Unlike the unperturbed flow, in the controlled flow high speed near-wall streamwise jets are present (case 1) even in the time-averaged fields. Other changes in turbulence structure are quantified using streak spacing, vortex lines, vorticity quadrant analysis, and plots of the rms value of the vorticity angle. copyright 1997 American Institute of Physics

  5. Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune

    Science.gov (United States)

    Chapman, Connie A.; Walker, Ian J.; Hesp, Patrick A.; Bauer, Bernard O.; Davidson-Arnott, Robin G. D.

    2012-05-01

    Recent research on quasi-instantaneous turbulent kinematic Reynolds stresses (RS, - u'w') and decomposed quadrant event activity (e.g., ejections and sweeps) over dunes in fluvial settings and in wind tunnels has shown that turbulent stresses at the toe of a dune often exceed time-averaged, streamwise shear stress (ρ u * 2) estimates. It is believed that semi-coherent turbulent structures are conveyed toward the bed along concave streamlines in this region and that impact of these structures cause fluctuations in local surface stresses that assist in grain entrainment. This has been hypothesized to explain how sand is supplied to the windward slope through a region of flow stagnation. Toward the crest, surface stress increases and becomes dominated by streamwise accelerations resulting from streamline compression and convexity that suppress vertical motions. High-frequency (32 Hz) measurements of turbulent wind flow from 3-D ultrasonic anemometers are analyzed for oblique onshore flow over a vegetated coastal foredune in Prince Edward Island, Canada. Reynolds stress and quadrant activity distributions varied with height (0.60 m and 1.66 m) and location over the dune. In general, quadrant 2 ejection (u' 0) and quadrant 4 sweep activity (u' > 0, w' 0, w' > 0) and quadrant 3 inward interaction (u' dune and may help to explain sand transport potential and dune maintenance. For example, areas with a high frequency of ejection and sweep activity may have higher rates of sediment entrainment and transport, whereas areas with lower ejection and sweep activity and an increase in outward and inward interactions, which contribute negatively to Reynolds stress generation, may experience a greater potential for deposition. Further research on associations between quadrant event activity and coincident sand transport is required to confirm this hypothesis and the resultant significance of the flow exuberance effect in aeolian dune morphodynamics.

  6. Statistical analysis of the turbulent Reynolds stress and its link to the shear flow generation in a cylindrical laboratory plasma device

    International Nuclear Information System (INIS)

    Yan, Z.; Yu, J. H.; Holland, C.; Xu, M.; Mueller, S. H.; Tynan, G. R.

    2008-01-01

    The statistical properties of the turbulent Reynolds stress arising from collisional drift turbulence in a magnetized plasma column are studied and a physical picture of turbulent driven shear flow generation is discussed. The Reynolds stress peaks near the maximal density gradient region, and is governed by the turbulence amplitude and cross-phase between the turbulent radial and azimuthal velocity fields. The amplitude probability distribution function (PDF) of the turbulent Reynolds stress is non-Gaussian and positively skewed at the density gradient maximum. The turbulent ion-saturation (Isat) current PDF shows that the region where the bursty Isat events are born coincides with the positively skewed non-Gaussian Reynolds stress PDF, which suggests that the bursts of particle transport appear to be associated with bursts of momentum transport as well. At the shear layer the density fluctuation radial correlation length has a strong minimum (∼4-6 mm∼0.5C s /Ω ci , where C s is the ion acoustic speed and Ω ci is the ion gyrofrequency), while the azimuthal turbulence correlation length is nearly constant across the shear layer. The results link the behavior of the Reynolds stress, its statistical properties, generation of bursty radially going azimuthal momentum transport events, and the formation of the large-scale shear layer.

  7. The interplay between Reynolds stress and zonal flows: direct numerical simulation as a bridge between theory and experiment

    International Nuclear Information System (INIS)

    Vergote, M; Schoor, M Van; Xu, Y; Jachmich, S; Weynants, R

    2006-01-01

    We describe the results of a measurement campaign on the CASTOR tokamak where the drive of flows and zonal flows by Reynolds stress was investigated by means of a dual probe head system allowing us to measure the properties of the electrostatic turbulence and the rotation velocities at the same location and at the same moment. We compare these experimental results with a turbulence model linked to a one dimensional fluid model describing the electrostatic turbulence and its influence on the background flow. The turbulence is simulated locally on the basis of the Hasegawa-Wakatani equations, completed with magnetic inhomogeneity terms. In the fluid model the toroidal geometry is correctly taken into account, while various sources and sinks like viscosity, interaction with neutrals, Reynolds stress and electric current induced by biasing are included. The good agreement of the predicted flow with the measured one demonstrates that in a pure cylindrical geometry the modelled strength of Reynolds stress acceleration of flow is overestimated

  8. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.

    Science.gov (United States)

    Torner, Benjamin; Konnigk, Lucas; Hallier, Sebastian; Kumar, Jitendra; Witte, Matthias; Wurm, Frank-Hendrik

    2018-06-01

    Numerical flow analysis (computational fluid dynamics) in combination with the prediction of blood damage is an important procedure to investigate the hemocompatibility of a blood pump, since blood trauma due to shear stresses remains a problem in these devices. Today, the numerical damage prediction is conducted using unsteady Reynolds-averaged Navier-Stokes simulations. Investigations with large eddy simulations are rarely being performed for blood pumps. Hence, the aim of the study is to examine the viscous shear stresses of a large eddy simulation in a blood pump and compare the results with an unsteady Reynolds-averaged Navier-Stokes simulation. The simulations were carried out at two operation points of a blood pump. The flow was simulated on a 100M element mesh for the large eddy simulation and a 20M element mesh for the unsteady Reynolds-averaged Navier-Stokes simulation. As a first step, the large eddy simulation was verified by analyzing internal dissipative losses within the pump. Then, the pump characteristics and mean and turbulent viscous shear stresses were compared between the two simulation methods. The verification showed that the large eddy simulation is able to reproduce the significant portion of dissipative losses, which is a global indication that the equivalent viscous shear stresses are adequately resolved. The comparison with the unsteady Reynolds-averaged Navier-Stokes simulation revealed that the hydraulic parameters were in agreement, but differences for the shear stresses were found. The results show the potential of the large eddy simulation as a high-quality comparative case to check the suitability of a chosen Reynolds-averaged Navier-Stokes setup and turbulence model. Furthermore, the results lead to suggest that large eddy simulations are superior to unsteady Reynolds-averaged Navier-Stokes simulations when instantaneous stresses are applied for the blood damage prediction.

  9. Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation.

    Science.gov (United States)

    Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.

    2018-04-01

    Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage

  10. Coupled ADCPs can yield complete Reynolds stress tensor profiles in geophysical surface flows

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2011-01-01

    We introduce a new technique to measure profiles of each term in the Reynolds stress tensor using coupled acoustic Doppler current profilers (ADCPs). The technique is based on the variance method which is extended to the case with eight acoustic beams. Methods to analyze turbulence from a single

  11. Numerical Determination of Crack Opening and Closure Stress Intensity Factors

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes

    2009-01-01

    The present work shows the numerical determination of fatigue crack opening and closure stress intensity factors of a C(T) specimen under variable amplitude loading using a finite element method. A half compact tension C(T) specimen, assuming plane stress constraint was used by finite element...

  12. Numerical analysis of turbulent flow and heat transfer in a square sectioned U-bend duct by elliptic-blending second moment closure

    International Nuclear Information System (INIS)

    Shin, Jong Keun; Choi, Young Don; An, Jeong Soo

    2007-01-01

    A second moment turbulence closure using the elliptic-blending equation is introduced to analyze the turbulence and heat transfer in a square sectioned U-bend duct flow. The turbulent heat flux model based on the elliptic concept satisfies the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also has the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. Also, the traditional GGDH heat flux model is compared with the present elliptic concept-based heat flux model. The turbulent heat flux models are closely linked to the elliptic blending second moment closure which is used for the prediction of Reynolds stresses. The predicted results show their reasonable agreement with experimental data for a square sectioned U-bend duct flow field adopted in the present study

  13. Reynold-Number Effects on Near-Wall Turbulence

    Science.gov (United States)

    Mansour, N. N.; Kim, J.; Moser, R. D.; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    The Reynolds stress budget in a full developed turbulent channel flow for three Reynolds numbers (Re = 180,395,590) are used to investigate the near wall scaling of various turbulence quantities. We find that as the Reynolds number increases, the extent of the region where the production of the kinetic energy is equal to the dissipation increases. At the highest Reynolds number the region of equilibrium extends from y+ - 120 to y+ = 240. As the Reynolds number increases, we find that wall scaling collapses the budgets for the streamwise fluctuating component, but the budgets for the other two components show Reynolds number dependency.

  14. Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature

    Science.gov (United States)

    Olsen, Michael E.

    2016-01-01

    Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.

  15. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    Science.gov (United States)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  16. Flow simulation in piping system dead legs using second moment, closure and k-epsilon model

    International Nuclear Information System (INIS)

    Deutsch, E.; Mechitoua, N.; Mattei, J.D.

    1996-01-01

    This paper deals with an industrial application of second moment closure turbulence model in in numerical simulation of 3D turbulent flows in piping system dead legs. Calculations performed with the 3D ESTET code are presented which contrast the performance of k-epsilon eddy viscosity model and second moment closure turbulence models. Coarse (100 000), medium (400 000) and fine (1 500 000) meshes were used. The second moment closure performs significantly better than eddy viscosity model and predicts with a good agreement the vortex penetration in dead legs provided to use sufficiently refined meshes. The results point out the necessity to be able to perform calculations using fine mesh before introducing refined physical models such as second moment closure turbulence model in a numerical code. This study illustrates the ability of second moment closure turbulence model to simulate 3D turbulent industrial flows. Reynolds stress model computation does not require special care, the calculation is carried on as simply as the k-ξ one. The CPU time needed is less that twice the CPU time needed using k-ξ model. (authors)

  17. Determination of wall shear stress from mean velocity and Reynolds shear stress profiles

    Science.gov (United States)

    Volino, Ralph J.; Schultz, Michael P.

    2018-03-01

    An analytical method is presented for determining the Reynolds shear stress profile in steady, two-dimensional wall-bounded flows using the mean streamwise velocity. The method is then utilized with experimental data to determine the local wall shear stress. The procedure is applicable to flows on smooth and rough surfaces with arbitrary pressure gradients. It is based on the streamwise component of the boundary layer momentum equation, which is transformed into inner coordinates. The method requires velocity profiles from at least two streamwise locations, but the formulation of the momentum equation reduces the dependence on streamwise gradients. The method is verified through application to laminar flow solutions and turbulent DNS results from both zero and nonzero pressure gradient boundary layers. With strong favorable pressure gradients, the method is shown to be accurate for finding the wall shear stress in cases where the Clauser fit technique loses accuracy. The method is then applied to experimental data from the literature from zero pressure gradient studies on smooth and rough walls, and favorable and adverse pressure gradient cases on smooth walls. Data from very near the wall are not required for determination of the wall shear stress. Wall friction velocities obtained using the present method agree with those determined in the original studies, typically to within 2%.

  18. Evaluation of the Momentum Closure Schemes in MPAS-Ocean

    Science.gov (United States)

    Zhao, Shimei; Liu, Yudi; Liu, Wei

    2018-04-01

    In order to compare and evaluate the performances of the Laplacian viscosity closure, the biharmonic viscosity closure, and the Leith closure momentum schemes in the MPAS-Ocean model, a variety of physical quantities, such as the relative reference potential energy (RPE) change, the RPE time change rate (RPETCR), the grid Reynolds number, the root mean square (RMS) of kinetic energy, and the spectra of kinetic energy and enstrophy, are calculated on the basis of results of a 3D baroclinic periodic channel. Results indicate that: 1) The RPETCR demonstrates a saturation phenomenon in baroclinic eddy tests. The critical grid Reynolds number corresponding to RPETCR saturation differs between the three closures: the largest value is in the biharmonic viscosity closure, followed by that in the Laplacian viscosity closure, and that in the Leith closure is the smallest. 2) All three closures can effectively suppress spurious dianeutral mixing by reducing the grid Reynolds number under sub-saturation conditions of the RPETCR, but they can also damage certain physical processes. Generally, the damage to the rotation process is greater than that to the advection process. 3) The dissipation in the biharmonic viscosity closure is strongly dependent on scales. Most dissipation concentrates on small scales, and the energy of small-scale eddies is often transferred to large-scale kinetic energy. The viscous dissipation in the Laplacian viscosity closure is the strongest on various scales, followed by that in the Leith closure. Note that part of the small-scale kinetic energy is also transferred to large-scale kinetic energy in the Leith closure. 4) The characteristic length scale L and the dimensionless parameter D in the Leith closure are inherently coupled. The RPETCR is inversely proportional to the product of D and L. When the product of D and L is constant, both the simulated RPETCR and the inhibition of spurious dianeutral mixing are the same in all tests using the Leith

  19. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, Robert A.; Edwards, Jack R.

    2010-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure

  20. Partial Cavity Flows at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  1. Reduced Stress Tensor and Dissipation and the Transport of Lamb Vector

    Science.gov (United States)

    Wu, Jie-Zhi; Zhou, Ye; Wu, Jian-Ming

    1996-01-01

    We develop a methodology to ensure that the stress tensor, regardless of its number of independent components, can be reduced to an exactly equivalent one which has the same number of independent components as the surface force. It is applicable to the momentum balance if the shear viscosity is constant. A direct application of this method to the energy balance also leads to a reduction of the dissipation rate of kinetic energy. Following this procedure, significant saving in analysis and computation may be achieved. For turbulent flows, this strategy immediately implies that a given Reynolds stress model can always be replaced by a reduced one before putting it into computation. Furthermore, we show how the modeling of Reynolds stress tensor can be reduced to that of the mean turbulent Lamb vector alone, which is much simpler. As a first step of this alternative modeling development, we derive the governing equations for the Lamb vector and its square. These equations form a basis of new second-order closure schemes and, we believe, should be favorably compared to that of traditional Reynolds stress transport equation.

  2. Local topology via the invariants of the velocity gradient tensor within vortex clusters and intense Reynolds stress structures in turbulent channel flow

    International Nuclear Information System (INIS)

    Buchner, Abel-John; Kitsios, Vassili; Atkinson, Callum; Soria, Julio; Lozano-Durán, Adrián

    2016-01-01

    Previous works have shown that momentum transfer in the wall–normal direction within turbulent wall–bounded flows occurs primarily within coherent structures defined by regions of intense Reynolds stress [1]. Such structures may be classified into wall–attached and wall–detached structures with the latter being typically weak, small–scale, and isotropically oriented, while the former are larger and carry most of the Reynolds stresses. The mean velocity fluctuation within each structure may also be used to separate structures by their dynamic properties. This study aims to extract information regarding the scales, kinematics and dynamics of these structures within the topological framework of the invariants of the velocity gradient tensor (VGT). The local topological characteristics of these intense Reynolds stress structures are compared to the topological characteristics of vortex clusters defined by the discriminant of the velocity gradient tensor. The alignment of vorticity with the principal strain directions within these structures is also determined, and the implications of these findings are discussed. (paper)

  3. Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows

    Science.gov (United States)

    Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William

    2015-01-01

    The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.

  4. Fully developed MHD turbulence near critical magnetic Reynolds number

    International Nuclear Information System (INIS)

    Leorat, J.; Pouquet, A.; Frisch, U.

    1981-01-01

    Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers Rsup(M) where magnetic fields can be self-excited by a dynamo mechanism. Such flows have kinetic Reynolds numbers Rsup(V) of the order of 10 7 and are therefore highly turbulent. The behaviour of MHD turbulence with high Rsup(V) and low magnetic Prandtl numbers is investigated, using the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity the study is restricted to homogeneous and isotropic turbulence, but includes helicity. A critical magnetic Reynolds number Rsub(c)sup(M) of the order of a few tens (non-helical case) is obtained above which magnetic energy is present. Rsub(c)sup(M) is practically independent of Rsup(V) (in the range 40 to 10 6 ) and can be considerably decreased by the presence of helicity. No attempt is made to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding Rsub(c)sup(M) such as decreased turbulent heat transport. (author)

  5. Assessment of Reynolds stresses tensor reconstruction methods for synthetic turbulent inflow conditions. Application to hybrid RANS/LES methods

    International Nuclear Information System (INIS)

    Laraufie, Romain; Deck, Sébastien

    2013-01-01

    Highlights: • Present various Reynolds stresses reconstruction methods from a RANS-SA flow field. • Quantify the accuracy of the reconstruction methods for a wide range of Reynolds. • Evaluate the capabilities of the overall process (Reconstruction + SEM). • Provide practical guidelines to realize a streamwise RANS/LES (or WMLES) transition. -- Abstract: Hybrid or zonal RANS/LES approaches are recognized as the most promising way to accurately simulate complex unsteady flows under current computational limitations. One still open issue concerns the transition from a RANS to a LES or WMLES resolution in the stream-wise direction, when near wall turbulence is involved. Turbulence content has then to be prescribed at the transition to prevent from turbulence decay leading to possible flow relaminarization. The present paper aims to propose an efficient way to generate this switch, within the flow, based on a synthetic turbulence inflow condition, named Synthetic Eddy Method (SEM). As the knowledge of the whole Reynolds stresses is often missing, the scope of this paper is focused on generating the quantities required at the SEM inlet from a RANS calculation, namely the first and second order statistics of the aerodynamic field. Three different methods based on two different approaches are presented and their capability to accurately generate the needed aerodynamic values is investigated. Then, the ability of the combination SEM + Reconstruction method to manufacture well-behaved turbulence is demonstrated through spatially developing flat plate turbulent boundary layers. In the mean time, important intrinsic features of the Synthetic Eddy method are pointed out. The necessity of introducing, within the SEM, accurate data, with regards to the outer part of the boundary layer, is illustrated. Finally, user’s guidelines are given depending on the Reynolds number based on the momentum thickness, since one method is suitable for low Reynolds number while the

  6. Reynolds stress turbulence model applied to two-phase pressurized thermal shocks in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril

    2016-04-01

    Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.

  7. Letter: The link between the Reynolds shear stress and the large structures of turbulent Couette-Poiseuille flow

    Science.gov (United States)

    Gandía-Barberá, Sergio; Hoyas, Sergio; Oberlack, Martin; Kraheberger, Stefanie

    2018-04-01

    The length and width of the long and wide structures appearing in turbulent Couette flows are studied by means of a new dataset of direct numerical simulation covering a stepped transition from pure Couette flow to pure Poiseuille one, at Reτ ≈ 130, based on the stationary wall. The existence of these structures is linked to the averaged Reynolds stress, u v ¯ : as soon as in any part of the channel u v ¯ changes its sign, the structures disappear. The length and width of the rolls are found to be, approximately, 50h and 2.5h, respectively. For this Reynolds number, simulations with a domain shorter than 100h cannot properly describe the behaviour of the longest structures of the flow.

  8. Implementation of second moment closure turbulence model for incompressible flows in the industrial finite element code N3S

    International Nuclear Information System (INIS)

    Pot, G.; Laurence, D.; Rharif, N.E.; Leal de Sousa, L.; Compe, C.

    1995-12-01

    This paper deals with the introduction of a second moment closure turbulence model (Reynolds Stress Model) in an industrial finite element code, N3S, developed at Electricite de France.The numerical implementation of the model in N3S will be detailed in 2D and 3D. Some details are given concerning finite element computations and solvers. Then, some results will be given, including a comparison between standard k-ε model, R.S.M. model and experimental data for some test case. (authors). 22 refs., 3 figs

  9. Calculation of lobe mixer flow with reynolds stress model. Oryoku hoteishiki model ni yoru lobe mixer ryu no suchi keisan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Makoto; Arakawa, Chuichi; Tagori, Tetsuo [Ishikawajima-Harima Heavy Industries, Co., Ltd., Tokyo (Japan) Univ. of Tokyo, Tokyo (Japan). Faculty of Engineering Univ. of Tsukuba, Tsukuba (Japan)

    1990-02-25

    It is considered that exhaust gas energy of turbofan engine is partly collected to realize the improvement of propulsion efficiency together with the reduction of noise appeared by the change in velocity distribution of exhaust gas flow. Then Lobe mixer was studied and its effectiveness was widely recognized, however the development of more realistic prediction method of exhaust nozzle system including Lobe mixer, is not completed yet. The stress equation model with low Reynolds Number which is easily used by the expansion of Launder Reece Rodi model in three dimension coordinate system was newly constructed. Applicability of the stress equation in more complicated flow field was greatly improved. While the above model was applied to Lobe mixer system, then the qualitative reproduction of mixing process accompanied with flow around Lobe and longitudinal eddy of core or bi-pass flow, was realized. There is room for improvement of pressure strain correlation term and behavior of Reynolds stress very close by wall surface in this model. 16 refs., 9 figs., 1 tab.

  10. Reynolds number invariance of the structure inclination angle in wall turbulence.

    Science.gov (United States)

    Marusic, Ivan; Heuer, Weston D C

    2007-09-14

    Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.

  11. Finite-Reynolds-number effects in turbulence using logarithmic expansions

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.; Bershadskii, A.

    2006-12-01

    Experimental or numerical data in turbulence are invariably obtained at finite Reynolds numbers whereas theories of turbulence correspond to infinitely large Reynolds numbers. A proper merger of the two approaches is possible only if corrections for finite Reynolds numbers can be quantified. This paper heuristically considers examples in two classes of finite-Reynolds-number effects. Expansions in terms of logarithms of appropriate variables are shown to yield results in agreement with experimental and numerical data in the following instances: the third-order structure function in isotropic turbulence, the mixed-order structure function for the passive scalar and the Reynolds shear stress around its maximum point. Results suggestive of expansions in terms of the inverse logarithm of the Reynolds number, also motivated by experimental data, concern the tendency for turbulent structures to cluster along a line of observation and (more speculatively) for the longitudinal velocity derivative to become singular at some finite Reynolds number. We suggest an elementary hydrodynamical process that may provide a physical basis for the expansions considered here, but note that the formal justification remains tantalizingly unclear. (author)

  12. Measurement of urethral closure function in women with stress urinary incontinence

    DEFF Research Database (Denmark)

    Klarskov, N; Scholfield, D; Soma, K

    2009-01-01

    , double-blind, placebo controlled, crossover study 17 women with stress urinary incontinence or mixed urinary incontinence received 4 mg esreboxetine or placebo for 7 to 9 days followed by a washout period before crossing over treatments. Urethral pressure reflectometry and urethral pressure profilometry......, and had a positive and clinically relevant effect on urethral closure function and symptoms of stress urinary incontinence....... esreboxetine patients had significantly fewer incontinence episodes and reported a treatment benefit (global impression of change) compared to placebo. CONCLUSIONS: The opening pressure measured with urethral pressure reflectometry was less variable compared to the parameters measured with urethral pressure...

  13. The Reynolds number dependence of the velocity field in the BNL Jet-in-Pool water experiments

    International Nuclear Information System (INIS)

    Szczepura, R.T.

    1981-02-01

    The water Jet-in-Pool experiment at Berkeley Nuclear Laboratories consists of an axisymmetric sudden expansion. A series of measurements was performed in this rig, using a single-channel Laser/Doppler Anemometer system, over a Reynolds number range of 1.4 x 10 4 - 6.1 x 10 4 to determine any dependence in the flow. The mean axial velocity data showed a slight variation, but the root-mean-square fluctuations of the axial velocity had a far more pronounced dependence. This was attributed to upstream conditions in the rig, specifically the nozzle used for injecting the central portion of the flow. The variations in the mean velocity data are sufficiently small for one set of data to act as a basis for calculations at any Reynolds number when a simple closure scheme such as a prescribed effective viscosity is used. However the variation in turbulence parameters will complicate the use of second-order closure schemes and this will be examined further. (author)

  14. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Co-Axial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, R. A.; Edwards, J. R.

    2009-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The baseline value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was noted when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid simulation results showed the same trends as the baseline Reynolds-averaged predictions. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions are suggested as a remedy to this dilemma. Comparisons between resolved second-order turbulence statistics and their modeled Reynolds-averaged counterparts were also performed.

  15. Reynolds analogy for the Rayleigh problem at various flow modes.

    Science.gov (United States)

    Abramov, A A; Butkovskii, A V

    2016-07-01

    The Reynolds analogy and the extended Reynolds analogy for the Rayleigh problem are considered. For a viscous incompressible fluid we derive the Reynolds analogy as a function of the Prandtl number and the Eckert number. We show that for any positive Eckert number, the Reynolds analogy as a function of the Prandtl number has a maximum. For a monatomic gas in the transitional flow regime, using the direct simulation Monte Carlo method, we investigate the extended Reynolds analogy, i.e., the relation between the shear stress and the energy flux transferred to the boundary surface, at different velocities and temperatures. We find that the extended Reynolds analogy for a rarefied monatomic gas flow with the temperature of the undisturbed gas equal to the surface temperature depends weakly on time and is close to 0.5. We show that at any fixed dimensionless time the extended Reynolds analogy depends on the plate velocity and temperature and undisturbed gas temperature mainly via the Eckert number. For Eckert numbers of the order of unity or less we generalize an extended Reynolds analogy. The generalized Reynolds analogy depends mainly only on dimensionless time for all considered Eckert numbers of the order of unity or less.

  16. Applications of Analytical Self-Similar Solutions of Reynolds-Averaged Models for Instability-Induced Turbulent Mixing

    Science.gov (United States)

    Hartland, Tucker; Schilling, Oleg

    2017-11-01

    Analytical self-similar solutions to several families of single- and two-scale, eddy viscosity and Reynolds stress turbulence models are presented for Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instability-induced turbulent mixing. The use of algebraic relationships between model coefficients and physical observables (e.g., experimental growth rates) following from the self-similar solutions to calibrate a member of a given family of turbulence models is shown. It is demonstrated numerically that the algebraic relations accurately predict the value and variation of physical outputs of a Reynolds-averaged simulation in flow regimes that are consistent with the simplifying assumptions used to derive the solutions. The use of experimental and numerical simulation data on Reynolds stress anisotropy ratios to calibrate a Reynolds stress model is briefly illustrated. The implications of the analytical solutions for future Reynolds-averaged modeling of hydrodynamic instability-induced mixing are briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Universal model of finite Reynolds number turbulent flow in channels and pipes

    NARCIS (Netherlands)

    L'vov, V.S.; Procaccia, I.; Rudenko, O.

    2008-01-01

    In this Letter, we suggest a simple and physically transparent analytical model of pressure driven turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model provides an accurate quantitative description of the profiles of the mean-velocity and Reynolds stresses (second order

  18. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R

    Science.gov (United States)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2005-08-01

    The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E × B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport.

  19. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R

    International Nuclear Information System (INIS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsaaker, H.; Cecconello, M.; Drake, J.R.

    2005-01-01

    The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E x B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport

  20. Crack closure, a literature study

    Science.gov (United States)

    Holmgren, M.

    1993-08-01

    In this report crack closure is treated. The state of the art is reviewed. Different empirical formulas for determining the crack closure are compared with each other, and their benefits are discussed. Experimental techniques for determining the crack closure stress are discussed, and some results from fatigue tests are also reported. Experimental data from the literature are reported.

  1. Anisotropy of the Reynolds stress tensor in the wakes of wind turbine arrays in Cartesian arrangements with counter-rotating rotors

    Science.gov (United States)

    Hamilton, Nicholas; Cal, Raúl Bayoán

    2015-01-01

    A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean

  2. Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation

    Science.gov (United States)

    Doronina, Olga; Christopher, Jason; Hamlington, Peter; Dahm, Werner

    2017-11-01

    Autonomic closure is a new technique for achieving fully adaptive and physically accurate closure of coarse-grained turbulent flow governing equations, such as those solved in large eddy simulations (LES). Although autonomic closure has been shown in recent a priori tests to more accurately represent unclosed terms than do dynamic versions of traditional LES models, the computational cost of the approach makes it challenging to implement for simulations of practical turbulent flows at realistically high Reynolds numbers. The optimization step used in the approach introduces large matrices that must be inverted and is highly memory intensive. In order to reduce memory requirements, here we propose to use approximate Bayesian computation (ABC) in place of the optimization step, thereby yielding a computationally-efficient implementation of autonomic closure that trades memory-intensive for processor-intensive computations. The latter challenge can be overcome as co-processors such as general purpose graphical processing units become increasingly available on current generation petascale and exascale supercomputers. In this work, we outline the formulation of ABC-enabled autonomic closure and present initial results demonstrating the accuracy and computational cost of the approach.

  3. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

    International Nuclear Information System (INIS)

    Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy

    2016-01-01

    There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.

  4. Meridional Motions and Reynolds Stress Determined by Using Kanzelhöhe Drawings and White Light Solar Images from 1964 to 2016

    Science.gov (United States)

    Ruždjak, Domagoj; Sudar, Davor; Brajša, Roman; Skokić, Ivica; Poljančić Beljan, Ivana; Jurdana-Šepić, Rajka; Hanslmeier, Arnold; Veronig, Astrid; Pötzi, Werner

    2018-04-01

    Sunspot position data obtained from Kanzelhöhe Observatory for Solar and Environmental Research (KSO) sunspot drawings and white light images in the period 1964 to 2016 were used to calculate the rotational and meridional velocities of the solar plasma. Velocities were calculated from daily shifts of sunspot groups and an iterative process of calculation of the differential rotation profiles was used to discard outliers. We found a differential rotation profile and meridional motions in agreement with previous studies using sunspots as tracers and conclude that the quality of the KSO data is appropriate for analysis of solar velocity patterns. By analyzing the correlation and covariance of meridional velocities and rotation rate residuals we found that the angular momentum is transported towards the solar equator. The magnitude and latitudinal dependence of the horizontal component of the Reynolds stress tensor calculated is sufficient to maintain the observed solar differential rotation profile. Therefore, our results confirm that the Reynolds stress is the dominant mechanism responsible for transport of angular momentum towards the solar equator.

  5. Reynolds-Averaged Turbulence Model Assessment for a Highly Back-Pressured Isolator Flowfield

    Science.gov (United States)

    Baurle, Robert A.; Middleton, Troy F.; Wilson, L. G.

    2012-01-01

    The use of computational fluid dynamics in scramjet engine component development is widespread in the existing literature. Unfortunately, the quantification of model-form uncertainties is rarely addressed with anything other than sensitivity studies, requiring that the computational results be intimately tied to and calibrated against existing test data. This practice must be replaced with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role in the system design, development, and flight certification process. Due to ground test facility limitations, this expanded role is believed to be a requirement by some in the test and evaluation community if scramjet engines are to be given serious consideration as a viable propulsion device. An effort has been initiated at the NASA Langley Research Center to validate several turbulence closure models used for Reynolds-averaged simulations of scramjet isolator flows. The turbulence models considered were the Menter BSL, Menter SST, Wilcox 1998, Wilcox 2006, and the Gatski-Speziale explicit algebraic Reynolds stress models. The simulations were carried out using the VULCAN computational fluid dynamics package developed at the NASA Langley Research Center. A procedure to quantify the numerical errors was developed to account for discretization errors in the validation process. This procedure utilized the grid convergence index defined by Roache as a bounding estimate for the numerical error. The validation data was collected from a mechanically back-pressured constant area (1 2 inch) isolator model with an isolator entrance Mach number of 2.5. As expected, the model-form uncertainty was substantial for the shock-dominated, massively separated flowfield within the isolator as evidenced by a 6 duct height variation in shock train length depending on the turbulence model employed. Generally speaking, the turbulence models that did not include an explicit stress limiter more closely

  6. Direct numerical simulation of natural convection in a vertical channel: a tool for second moment closure modeling

    International Nuclear Information System (INIS)

    Maupu, V.; Laurence, D.

    1996-01-01

    Natural turbulent convection in a differentially heated infinite vertical slot is computed with a mixed finite differences/Fourier code. At a Rayleigh number of 10 5 , in the case without mean stratification, periodic perturbations from the laminar solution develop and transition to a fully turbulent flow occurs. From then on, a database of one-point statistics is presented: mean velocity and temperature, Reynolds stress components, turbulent heat fluxes and variance of temperature, but also budgets of second moment equations. This database is then used for testing of a second moment closure based on the Launder-Reece-Rodi model on an elliptic relaxation for near wall effects on pressure redistribution. This level of modelling is required by the presence of counter gradient fluxes, which cannot be accounted for eddy viscosity and eddy diffusivity assumptions. Furthermore, an algebraic third order moment closure was found necessary because of counter gradient turbulent transport terms which appear to mainly originate from the mean velocity and temperature gradient terms usually neglected in conventional transport models, such as the standard Daly-Harlow or Hanjalic-Launder models. (authors)

  7. Reducing high Reynolds number hydroacoustic noise using superhydrophobic coating

    International Nuclear Information System (INIS)

    Elboth, Thomas; Reif, Bjørn Anders Pettersson; Andreassen, Øyvind; Martell, Michael B

    2011-01-01

    The objective of this study is to assess and quantify the effect of a superhydrophobic surface coating on turbulence-generated flow noise. The study utilizes results obtained from high Reynolds-number full-scale flow noise measurements taken on a commercial seismic streamer and results from low Reynolds-number direct numerical simulations. It is shown that it is possible to significantly reduce both the frictional drag and the levels of the turbulence generated flow noise even at very high Reynolds-numbers. For instance, frequencies below 10 Hz a reduction in the flow noise level of nearly 50% was measured. These results can be attributed to a reduced level of shear stress and change in the kinematic structure of the turbulence, both of which occur in the immediate vicinity of the superhydrophobic surface.

  8. A short summary on finite element modelling of fatigue crack closure

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol(United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)

    2011-12-15

    This paper presents a short summary pertaining to the finite element modelling of fatigue crack closure. Several key issues related to finite element modelling of fatigue crack closure are highlighted: element type, mesh refinement, stabilization of crack closure, crack-tip node release scheme, constitutive model, specimen geometry, stress-states (i.e., plane stress, plane strain), crack closure monitoring. Reviews are presented for both straight and deflected cracks.

  9. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    Science.gov (United States)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  10. Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder

    Science.gov (United States)

    Baurle, R. A.

    2016-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.

  11. On the measurement of the crack tip stress field as a means of determining Delta K(sub eff) under conditions of fatigue crack closure

    Science.gov (United States)

    Wallhead, Ian R.; Edwards, Lyndon; Poole, Peter

    1994-01-01

    The optical method of caustics has been successfully extended to enable stress intensity factors as low as 1MPa square root of m to be determined accurately for central fatigue cracks in 2024-T3 aluminium alloy test panels. The feasibility of using this technique to study crack closure, and to determine the effective stress intensity factor range, Delta K(sub eff), has been investigated. Comparisons have been made between the measured values of stress intensity factor, K(sub caus), and corresponding theoretical values, K(sub theo), for a range of fatigue cracks grown under different loading conditions. The values of K(sub caus) and K(sub theo) were in good agreement at maximum stress, where the cracks are fully open, while K(sub caus) exceeded K(sub theo) at minimum stress, due to crack closure. However, the levels of crack closure and values of Delta K(sub eff) obtained could not account for the variations of crack growth rate with loading conditions. It is concluded that the values of Delta K(sub eff), based on caustic measurements in a 1/square root of r stress field well outside the plastic zone, do not fully reflect local conditions which control crack tip behavior.

  12. Application of low Reynolds number k-{epsilon} turbulence models to the study of turbulent wall jets

    Energy Technology Data Exchange (ETDEWEB)

    Kechiche, Jamel; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5000, Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, 60, rue Joliot-Curie, Technopole de Chateau-Gombert, 13453 cedex 13, Marseille (France)

    2004-02-01

    In this work, we use closure models called ''low Reynolds number k-{epsilon} models'', which are self-adapting ones using different damping functions, in order to explore the computed behavior of a turbulent plane two-dimensional wall jets. In this study, the jet may be either isothermal or submitted to various wall boundary conditions (uniform temperature or a uniform heat flux) in forced convection regime. A finite difference method, using a staggered grid, is employed to solve the coupled governing equations with the inlet and the boundary conditions. The predictions of the various low Reynolds number k-{epsilon} models with standard or modified C{sub {mu}} adopted in this work were presented and compared with measurements and numerical results found in the literature. (authors)

  13. The structure of the solution obtained with Reynolds-stress-transport models at the free-stream edges of turbulent flows

    Science.gov (United States)

    Cazalbou, J.-B.; Chassaing, P.

    2002-02-01

    The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.

  14. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  15. WASTE PACKAGE OPERATIONS FY99 CLOSURE METHODS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    M. C. Knapp

    1999-09-23

    The waste package (WP) closure weld development task is part of a larger engineering development program to develop waste package designs. The purpose of the larger waste package engineering development program is to develop nuclear waste package fabrication and closure methods that the Nuclear Regulatory Commission will find acceptable and will license for disposal of spent nuclear fuel (SNF), non-fuel components, and vitrified high-level waste within a Monitored Geologic Repository (MGR). Within the WP closure development program are several major development tasks, which, in turn, are divided into subtasks. The major tasks include: WP fabrication development, WP closure weld development, nondestructive examination (NDE) development, and remote in-service inspection development. The purpose of this report is to present the objectives, technical information, and work scope relating to the WP closure weld development.and NDE tasks and subtasks and to report results of the closure weld and NDE development programs for fiscal year 1999 (FY-99). The objective of the FY-99 WP closure weld development task was to develop requirements for closure weld surface and volumetric NDE performance demonstrations, investigate alternative NDE inspection techniques, and develop specifications for welding, NDE, and handling system integration. In addition, objectives included fabricating several flat plate mock-ups that could be used for NDE development, stress relief peening, corrosion testing, and residual stress testing.

  16. WASTE PACKAGE OPERATIONS FY-99 CLOSURE METHODS REPORT

    International Nuclear Information System (INIS)

    M. C. Knapp

    1999-01-01

    The waste package (WP) closure weld development task is part of a larger engineering development program to develop waste package designs. The purpose of the larger waste package engineering development program is to develop nuclear waste package fabrication and closure methods that the Nuclear Regulatory Commission will find acceptable and will license for disposal of spent nuclear fuel (SNF), non-fuel components, and vitrified high-level waste within a Monitored Geologic Repository (MGR). Within the WP closure development program are several major development tasks, which, in turn, are divided into subtasks. The major tasks include: WP fabrication development, WP closure weld development, nondestructive examination (NDE) development, and remote in-service inspection development. The purpose of this report is to present the objectives, technical information, and work scope relating to the WP closure weld development.and NDE tasks and subtasks and to report results of the closure weld and NDE development programs for fiscal year 1999 (FY-99). The objective of the FY-99 WP closure weld development task was to develop requirements for closure weld surface and volumetric NDE performance demonstrations, investigate alternative NDE inspection techniques, and develop specifications for welding, NDE, and handling system integration. In addition, objectives included fabricating several flat plate mock-ups that could be used for NDE development, stress relief peening, corrosion testing, and residual stress testing

  17. A New View of the Dynamics of Reynolds Stress Generation in Turbulent Boundary Layers

    Science.gov (United States)

    Cantwell, Brian J.; Chacin, Juan M.

    1998-01-01

    The structure of a numerically simulated turbulent boundary layer over a flat plate at Re(theta) = 670 was studied using the invariants of the velocity gradient tensor (Q and R) and a related scalar quantity, the cubic discriminant (D = 27R(exp 2)/4 + Q(exp 3)). These invariants have previously been used to study the properties of the small-scale motions responsible for the dissipation of turbulent kinetic energy. In addition, these scalar quantities allow the local flow patterns to be unambiguously classified according to the terminology proposed by Chong et al. The use of the discriminant as a marker of coherent motions reveals complex, large-scale flow structures that are shown to be associated with the generation of Reynolds shear stress -u'v'(bar). These motions are characterized by high spatial gradients of the discriminant and are believed to be an important part of the mechanism that sustains turbulence in the near-wall region.

  18. Design and analysis of PCRV core cavity closure

    International Nuclear Information System (INIS)

    Lee, T.T.; Schwartz, A.A.; Koopman, D.C.A.

    1980-05-01

    Design requirements and considerations for a core cavity closure which led to the choice of a concrete closure with a toggle hold-down as the design for the Gas-Cooled Fast Breeder Reactor (GCFR) plant are discussed. A procedure for preliminary stress analysis of the closure by means of a three-dimensional finite element method is described. A limited parametric study using this procedure indicates the adequacy of the present closure design and the significance of radial compression developed as a result of inclined support reaction

  19. The urethral closure function in continent and stress urinary incontinent women assessed by urethral pressure reflectometry.

    Science.gov (United States)

    Saaby, Marie-Louise

    2014-02-01

    Stress urinary incontinence (SUI) occurs when the bladder pressure exceeds the urethral pressure in connection with physical effort or exertion or when sneezing or coughing and depends both on the strength of the urethral closure function and the abdominal pressure to which it is subjected. The urethral closure function in continent women and the dysfunction causing SUI are not known in details. The currently accepted view is based on the concept of a sphincteric unit and a support system. Our incomplete knowledge relates to the complexity of the closure apparatus and to inadequate assessment methods which so far have not provided robust urodynamic diagnostic tools, severity measures, or parameters to assess outcome after intervention. Urethral Pressure Reflectometry (UPR) is a novel method that measures the urethral pressure and cross-sectional area (by use of sound waves) simultaneously. The technique involves insertion of only a small, light and flexible polyurethane bag in the urethra and therefore avoids the common artifacts encountered with conventional methods. The UPR parameters can be obtained at a specific site of the urethra, e.g. the high pressure zone, and during various circumstances, i.e. resting and squeezing. During the study period, we advanced the UPR technique to enable faster measurement (within 7 seconds by the continuous technique) which allowed assessment during increased intra-abdominal pressure induced by physical straining. We investigated the urethral closure function in continent and SUI women during resting and straining by the "fast" UPR technique. Thereby new promising urethral parameters were provided that allowed characterization of the closure function based on the permanent closure forces (primarily generated by the sphincteric unit, measured by the Po-rest) and the adjunctive closure forces (primarily generated by the support system, measured by the abdominal to urethral pressure impact ratio (APIR)). The new parameters enabled

  20. Impact of Different Standard Type A7A Drum Closure-Ring Practices on Gasket Contraction and Bolt Closure Distance– 15621

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Blanton, Paul [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bobbitt, John H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-11

    The Department of Energy, the Savannah River National Laboratory, several manufacturers of specification drums, and the United States Department of Transportation (DOT) are collaborating in the development of a guidance document for DOE contractors and vendors who wish to qualify containers to DOT 7A Type A requirements. Currently, the effort is focused on DOT 7A Type A 208-liter (55-gallons) drums with a standard 12-gauge bolted closure ring. The U.S. requirements, contained in Title 49, Part 178.350 “Specification 7A; general packaging, Type A specifies a competent authority review of the packaging is not required for the transport of (Class 7) radioactive material containing less than Type A quantities of radioactive material. For Type AF drums, a 4 ft. regulatory free drop must be performed, such that the drum “suffers maximum damage.” Although the actual orientation is not defined by the specification, recent studies suggest that maximum damage would result from a shallow angle top impact, where kinetic energy is transferred to the lid, ultimately causing heavy damage to the lid, or even worse, causing the lid to come off. Since each vendor develops closure recommendations/procedures for the drums they manufacture, key parameters applied to drums during closing vary based on vendor. As part of the initial phase of the collaboration, the impact of the closure variants on the ability of the drum to suffer maximum damage is investigated. Specifically, closure testing is performed varying: 1) the amount of torque applied to the closure ring bolt; and, 2) stress relief protocol, including: a) weight of hammer; and, b) orientation that the hammer hits the closure ring. After closure, the amount of drum lid gasket contraction and the distance that the closure bolt moves through the closure ring is measured.

  1. Evaluation of J-groove weld residual stress and crack growth rate of PWSCC in reactor pressure vessel closure head

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Hyuk; Ryu, Tae Young; Park, Seung Hyun; Won, Min Gu; Kang, Seok Jun; Kim, Moon Ki; Choi, Jae Boong [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Kyoung Soo; Lee, Sung Ho [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)

    2015-03-15

    Over the last decade, primary water stress corrosion cracking (PWSCC) has been frequently found in pressurized water reactor (PWR) applications. Especially, PWSCC has occurred in long-term operated PWRs. As this phenomenon leads to serious accidents, we must be beforehand with the anticipated problems. A typical PWR consists of J-groove welded components such as reactor pressure vessel closure head and nozzles. Reactor pressure vessel closure head is made of SA508 and it is covered by cladding. Alloy 600 is used for nozzles. And J-groove weld is conducted with alloy 82/182. Different material properties of these metals lead to residual stress and PWSCC consequentially. In this study, J-groove weld residual stress was investigated by a three-dimensional finite element analysis with an actual asymmetric J-groove weld model and process of construction. Also crack growth rate of PWSCC was evaluated from cracks applied on the penetration nozzles. Based on these two values, one cannot only improve the structural integrity of PWR, but also explain PWSCC behavior such that high residual stress at the J-groove weld area causes crack initiation and propagation through the surface of nozzles. In addition, crack behavior was predicted at the various points around the nozzle.

  2. Evaluation of J-groove weld residual stress and crack growth rate of PWSCC in reactor pressure vessel closure head

    International Nuclear Information System (INIS)

    Oh, Seung Hyuk; Ryu, Tae Young; Park, Seung Hyun; Won, Min Gu; Kang, Seok Jun; Kim, Moon Ki; Choi, Jae Boong; Lee, Kyoung Soo; Lee, Sung Ho

    2015-01-01

    Over the last decade, primary water stress corrosion cracking (PWSCC) has been frequently found in pressurized water reactor (PWR) applications. Especially, PWSCC has occurred in long-term operated PWRs. As this phenomenon leads to serious accidents, we must be beforehand with the anticipated problems. A typical PWR consists of J-groove welded components such as reactor pressure vessel closure head and nozzles. Reactor pressure vessel closure head is made of SA508 and it is covered by cladding. Alloy 600 is used for nozzles. And J-groove weld is conducted with alloy 82/182. Different material properties of these metals lead to residual stress and PWSCC consequentially. In this study, J-groove weld residual stress was investigated by a three-dimensional finite element analysis with an actual asymmetric J-groove weld model and process of construction. Also crack growth rate of PWSCC was evaluated from cracks applied on the penetration nozzles. Based on these two values, one cannot only improve the structural integrity of PWR, but also explain PWSCC behavior such that high residual stress at the J-groove weld area causes crack initiation and propagation through the surface of nozzles. In addition, crack behavior was predicted at the various points around the nozzle.

  3. 76 FR 54801 - Reynolds Food Packaging LLC, a Subsidiary of Reynolds Group Holding Limited, Grove City, PA...

    Science.gov (United States)

    2011-09-02

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,183] Reynolds Food Packaging LLC, a Subsidiary of Reynolds Group Holding Limited, Grove City, PA; Notice of Revised Determination... (TAA) applicable to workers and former workers of Reynolds Food Packaging LLC, a subsidiary of Reynolds...

  4. Hybrid RANS/LES method for high Reynolds numbers, applied to atmospheric flow over complex terrain

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Johansen, Jeppe

    2007-01-01

      The use of Large-Eddy Simulation (LES) to predict wall-bounded flows has presently been limited to low Reynolds number flows. Since the number of computational grid points required to resolve the near-wall turbulent structures increase rapidly with Reynolds number, LES has been unattainable...... for flows at high Reynolds numbers. To reduce the computational cost of traditional LES a hybrid method is proposed in which the near-wall eddies are modelled in a Reynolds-averaged sense. Close to walls the flow is treated with the RANS-equations and this layer act as wall model for the outer flow handled...... by LES. The wellknown high Reynolds number two-equation k - ǫ turbulence model is used in the RANS layer and the model automatically switches to a two-equation k - ǫ subgrid-scale stress model in the LES region. The approach can be used for flow over rough walls. To demonstrate the ability...

  5. Environmental aspects of hard coal mines closure in Poland

    International Nuclear Information System (INIS)

    Chaber, M.; Krogulski, K.; Gawlik, L.

    1998-01-01

    The environmental problems that arise during the closure processes of hard coal mines in Poland are undertaken in the paper. The problems of changes in water balance in rock mass are described with a stress put on underground water management. Regulation concerning ground reclamation and utilisation and removal of existing heat and power plants which after the mines closure will continue to supply surrounding consumers are stressed and the possible solutions are shown. 13 refs

  6. Urethral Closure Pressure at Stress: A Predictive Measure for the Diagnosis and Severity of Urinary Incontinence in Women

    Directory of Open Access Journals (Sweden)

    Anne-Cécile Pizzoferrato

    2017-06-01

    Full Text Available Purpose Maintaining urinary continence at stress requires a competent urethral sphincter and good suburethral support. Sphincter competence is estimated by measuring the maximal urethral closure pressure at rest. We aimed to study the value of a new urodynamic measure, the urethral closure pressure at stress (s-UCP, in the diagnosis and severity of female stress urinary incontinence (SUI. Methods A total of 400 women without neurological disorders were included in this observational study. SUI was diagnosed using the International Continence Society definition, and severity was assessed using a validated French questionnaire, the Mesure du Handicap Urinaire. The perineal examination consisted of rating the strength of the levator ani muscle (0–5 and an assessment of bladder neck mobility using point Aa (cm. The urodynamic parameters were maximal urethral closure pressure at rest, s-UCP, Valsalva leak point pressure (cm H2O, and pressure transmission ratio (%. Results Of the women, 358 (89.5% were diagnosed with SUI. The risk of SUI significantly increased as s-UCP decreased (odds ratio [OR], 0.92; 95% confidence interval, 0.88–0.98. The discriminative value of the measure was good for the diagnosis of SUI (area under curve>0.80. s-UCP values less than or equal to 20 cm H2O had a sensitivity of 73.1% and a specificity of 93.0% for predicting SUI. The association between s-UCP and SUI severity was also significant. Conclusions s-UCP is the most discriminative measure that has been identified for the diagnosis of SUI. It is strongly inversely correlated with the severity of SUI. It appears to be a specific SUI biomarker reflecting both urethral sphincter competence and urethral support.

  7. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    Science.gov (United States)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit

  8. Crack closure and sequential effects in fatigue: A literature survey

    Science.gov (United States)

    Holmgren, M.

    A literature survey of the phenomenon of crack closure is reported here. The state of the art is reviewed and several empirical formulas for determining the crack closure are compared with each other. Their properties, advantages and disadvantages are briefly discussed. Experimental techniques for determining the crack closure stress are presented and experimental data from the literature are reported.

  9. A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies

    Science.gov (United States)

    Shivakumar, K. N.; Tan, P. W.; Newman, J. C., Jr.

    1988-01-01

    A three-dimensional virtual crack-closure technique is presented which calculates the strain energy release rates and the stress intensity factors using only nodal forces and displacements from a standard finite element analysis. The technique is an extension of the Rybicki-Kanninen (1977) method, and it assumes that any continuous function can be approximated by a finite number of straight line segments. Results obtained by the method for surface cracked plates with and without notches agree favorably with previous results.

  10. Influence of vapor phase turbulent stress to the onset of slugging in a horizontal pipe

    International Nuclear Information System (INIS)

    Park, Jee Won

    1995-01-01

    An influence of the vapor phase turbulent stress(i, e., the two-phase Reynolds stress)to the characteristics of two-phase system in a horizontal pipe has been theoretically investigated. The average two-fluid model has been constituted with closure relations for stratified flow in a horizontal pipe. A vapor phase turbulent stress model for the regular interface geometry has been included. It is found that the second order waves propagate in opposite direction with almost the same speed in the moving frame of reference of the liquid phase velocity. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been found to be a convenient parameter in quantifying the onset of slugging as a function of the global void fraction. The influence of the vapor phase turbulent stress was found to stabilize the flow stratification. 4 figs., 12 refs. (Author)

  11. DNS/LES Simulations of Separated Flows at High Reynolds Numbers

    Science.gov (United States)

    Balakumar, P.

    2015-01-01

    Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.

  12. Numerical simulation of 3D backward facing step flows at various Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Louda Petr

    2015-01-01

    Full Text Available The work deals with the numerical simulation of 3D turbulent flow over backward facing step in a narrow channel. The mathematical model is based on the RANS equations with an explicit algebraic Reynolds stress model (EARSM. The numerical method uses implicit finite volume upwind discretization. While the eddy viscosity models fail in predicting complex 3D flows, the EARSM model is shown to provide results which agree well with experimental PIV data. The reference experimental data provide the 3D flow field. The simulations are compared with experiment for 3 values of Reynolds number.

  13. Direct numerical simulation of particle-laden turbulent channel flows with two- and four-way coupling effects: budgets of Reynolds stress and streamwise enstrophy

    International Nuclear Information System (INIS)

    Dritselis, Chris D

    2016-01-01

    The budgets of the Reynolds stress and streamwise enstrophy are evaluated through direct numerical simulations for the turbulent particle-laden flow in a vertical channel with momentum exchange between the two phases. The influence of the dispersed particles on the budgets is examined through a comparison of the particle-free and the particle-laden cases at the same Reynolds number of Re b = 5600 based on the bulk fluid velocity and the distance between the channel walls. Results are obtained for particle ensembles with four response times in simulations with and without streamwise gravity and inter-particle collisions at average mass (volume) fractions of 0.2 (2.7 × 10 −5 ) and 0.5 (6.8 × 10 −5 ). The particle feedback force on the flow of the carrier phase is modeled by a point-force approximation (PSIC-method). It is shown that all the terms in the budgets of the Reynolds stress components are decreased in the presence of particles. The level of reduction depends on the particle response time and it is higher under the effects of gravity and inter-particle collisions. A considerable reduction in all the terms of the streamwise enstrophy budget is also observed. In particular, all production mechanisms, and mainly vortex stretching, are inhibited in the particulate flows and thus the production of streamwise vorticity is significantly damped. A further insight into the direct particle effects on the fluid turbulence is provided by analyzing in detail the fluid–fluid, fluid–particle and particle–particle correlations, and the spectra of the fluid–particle energy exchange rate. The present results indicate that the turbulence production, dissipation and pressure–strain term are generally large quantities, but their summation is relatively small and comparable to the fluid–particle direct energy exchange rate. Consequently, the particle contribution can potentially increase or decrease the fluctuating fluid velocities and eventually control the

  14. Structural analysis of closure bolts for shipping casks

    International Nuclear Information System (INIS)

    Mok, G.C.; Fischer, L.E.

    1993-04-01

    This paper identifies the active forces and moments in a closure bolt of a shipping cask. It examines the interactions of these forces/moments and suggest simplified methods for their analysis. The paper also evaluates the role that the forces and moments play in the structure integrity of the closure bolt and recommends stress limits and desirable practices to ensure its integrity

  15. Fatigue crack closure in submicron-thick freestanding copper films

    International Nuclear Information System (INIS)

    Kondo, Toshiyuki; Ishii, Takaki; Hirakata, Hiroyuki; Minoshima, Kohji

    2015-01-01

    The fatigue crack closure in approximately 500-nm-thick freestanding copper films were investigated by in situ field emission scanning electron microscope (FESEM) observations of the fatigue crack opening/closing behavior at three stress ratios of R=0.1, 0.5, and 0.8 in the low–K max (maximum stress intensity factor) region of K max <4.5 MPam 1/2 . The direct observation of fatigue cracks clarified that crack closure occurred at R=0.1 and 0.5, while the fatigue crack was always open at R=0.8. Changes in the gage distance across the fatigue crack during a fatigue cycle were measured from the FESEM images, and the crack opening stress intensity factor K op was evaluated on the basis of the stress intensity factor K vs. the gage distance relationship. The effective stress intensity factor range ΔK eff =K max −K op was then evaluated. The R-dependence of the da/dN vs. ΔK eff relationship was smaller than that of the da/dN vs. ΔK relationship. This suggests that ΔK eff is a dominating parameter rather than ΔK in the fatigue crack propagation in the films. This paper is the first report on the presence of the fatigue crack closure in submicron-thick freestanding metallic films

  16. Urethrovaginal fistula closure.

    Science.gov (United States)

    Clifton, Marisa M; Goldman, Howard B

    2017-01-01

    In the developed world, urethrovaginal fistulas are most the likely the result of iatrogenic injury. These fistulas are quite rare. Proper surgical repair requires careful dissection and tension-free closure. The objective of this video is to demonstrate the identification and surgical correction of an urethrovaginal fistula. The case presented is of a 59-year-old woman with a history of pelvic organ prolapse and symptomatic stress urinary incontinence who underwent vaginal hysterectomy, anterior colporrhaphy, posterior colporrhaphy, and synthetic sling placement. Postoperatively, she developed a mesh extrusion and underwent sling excision. After removal of her synthetic sling, she began to experience continuous urinary incontinence. Physical examination and cystourethroscopy demonstrated an urethrovaginal fistula at the midurethra. Options were discussed and the patient wished to undergo transvaginal fistula repair. The urethrovaginal fistula was intubated with a Foley catheter. The fistula tract was isolated and removed. The urethra was then closed with multiple tension-free layers. This video demonstrates several techniques for identifying and subsequently repairing an urethrovaginal fistula. Additionally, it demonstrates the importance of tension-free closure. Urethrovaginal fistulas are rare. They should be repaired with careful dissection and tension-free closure.

  17. Residual Stress Testing of Outer 3013 Containers

    International Nuclear Information System (INIS)

    Dunn, K.

    2004-01-01

    A Gas Tungsten Arc Welded (GTAW) outer 3013 container and a laser welded outer 3013 container have been tested for residual stresses according to the American Society for Testing Materials (ASTM) Standard G-36-94 [1]. This ASTM standard describes a procedure for conducting stress-corrosion cracking tests in boiling magnesium chloride (MgCl2) solution. Container sections in both the as-fabricated condition as well as the closure welded condition were evaluated. Significantly large residual stresses were observed in the bottom half of the as-fabricated container, a result of the base to can fabrication weld because through wall cracks were observed perpendicular to the weld. This observation indicates that regardless of the closure weld technique, sufficient residual stresses exist in the as-fabricated container to provide the stress necessary for stress corrosion cracking of the container, at the base fabrication weld. Additionally, sufficiently high residual stresses were observed in both the lid and the body of the GTAW as well as the laser closure welded containers. The stresses are oriented perpendicular to the closure weld in both the container lid and the container body. Although the boiling MgCl2 test is not a quantitative test, a comparison of the test results from the closure welds shows that there are noticeably more through wall cracks in the laser closure welded container than in the GTAW closure welded container

  18. A turbulent mixing Reynolds stress model fitted to match linear interaction analysis predictions

    International Nuclear Information System (INIS)

    Griffond, J; Soulard, O; Souffland, D

    2010-01-01

    To predict the evolution of turbulent mixing zones developing in shock tube experiments with different gases, a turbulence model must be able to reliably evaluate the production due to the shock-turbulence interaction. In the limit of homogeneous weak turbulence, 'linear interaction analysis' (LIA) can be applied. This theory relies on Kovasznay's decomposition and allows the computation of waves transmitted or produced at the shock front. With assumptions about the composition of the upstream turbulent mixture, one can connect the second-order moments downstream from the shock front to those upstream through a transfer matrix, depending on shock strength. The purpose of this work is to provide a turbulence model that matches LIA results for the shock-turbulent mixture interaction. Reynolds stress models (RSMs) with additional equations for the density-velocity correlation and the density variance are considered here. The turbulent states upstream and downstream from the shock front calculated with these models can also be related through a transfer matrix, provided that the numerical implementation is based on a pseudo-pressure formulation. Then, the RSM should be modified in such a way that its transfer matrix matches the LIA one. Using the pseudo-pressure to introduce ad hoc production terms, we are able to obtain a close agreement between LIA and RSM matrices for any shock strength and thus improve the capabilities of the RSM.

  19. A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation

    Science.gov (United States)

    Schiefelbein, Bryan Edward

    Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to

  20. Monitoring calculation of closure change of Extradosed Cable-stayed Bridge

    Science.gov (United States)

    Shi, Jing Xian; Ran, Zhi Hong

    2018-06-01

    During the construction of extradosed cable-stayed bridge in Yunnan province, China, the construction unit has made certain changes in the construction process of the closure section due to environmental restrictions: remove the hanging basket after the closure, the sling shall not be provided in closure section, the function of the sling is realized by the hanging basket on the 16th beam. In case of this change, the bridge has been constructed to section 15th. In order to ensure the smooth and orderly progress of each stage in the closure phase, this article is arranged according to the construction plan, appropriate adjustment of related procedures, checking the bridge safety at all stages of construction, the stress and force of the main girder are compared to ensure the safety of the construction after closure changes. Adjust the height of the beam of the 16th and 17th to adapt the new construction plan, and the bridge closure smoothly.

  1. Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers

    Science.gov (United States)

    Balakumar, P.

    2017-01-01

    Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Re(sub c)=50 times10(exp 3) and 1times 10(exp 6). The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Reynolds number case consists of a long separation bubble near the leading-edge region and an attached boundary layer on the aft part of the airfoil. The shear layer that formed in the separated region persisted up to the end of the airfoil. The roles of the turbulent diffusion, advection, and dissipation terms in the turbulent kinetic-energy balance equation change as the boundary layer evolves over the airfoil. In the higher Reynolds number case, the leading-edge separation bubble is very small in length and in height. A fully developed turbulent boundary layer is observed in a short distance downstream of the reattachment point. The boundary layer velocity near the wall gradually decreases along the airfoil. Eventually, the boundary layer separates near the trailing edge. The Reynolds stresses peak in the outer part of the boundary layer and the maximum amplitude also gradually increases along the chord.

  2. Analysis of the components of a pipeline closure as a unilateral confact problem

    International Nuclear Information System (INIS)

    Barbosa, H.J.C.; Feijoo, R.A.

    1987-03-01

    In many situations in the stress analysis of piping systems and pressure vessels the need to deal with (non-linear) unilateral contact problems arises. A typical case is the analysis of the components of pipe closure. In this work, numerical algorithms developed in previous publications are apllied in an example where the system composed by the closure neck, the blanking plug and the locking ring of a pipe closure is analysed. (Author) [pt

  3. Reynolds Averaged Navier-Stokes (RANS) equation solutions of wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Daniel Evandro; Horn, Diego Anderson; Petry, Adriane Prisco [Thermal and Energy Study Group, Mechanical Engeneering Department, Federal University of Rio Grande do Sul, Porto Alegre (Brazil)], E-mail: adrianep@mecanica.ufrgs.br

    2010-07-01

    This paper aims to evaluate the influence of three different turbulence models in the study of a wind turbine wake. Numerical Simulation is used as working tool to characterize the flow through the wind turbines, it is used the numeric simulation. The numerical analysis is based on the finite volume method and the Reynolds Averaged Navier-Stokes (RANS) equations. Three turbulence models are used to represent the total effects of turbulence in the flow: the two equations k-classical and the RNG k- models, based on the turbulent viscosity; and the Shear Stress Transport (SST) model, based on the transport of the Reynolds tensor. The results of the 'u' velocity profiles are compared to experimental data from Vermeer (2003) at distances equivalent to 2, 4, 6, 8, 10 and 16 diameters downstream from the turbine. Results shows that the SST model gives better results until 6 diameters, beyond this distance there is no significant differences between the compared models. (author)

  4. Boundary-layer turbulence as a kangaroo process

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is

  5. A Review of the Reynolds Intellectual Assessment Scales, Second Edition, and Reynolds Intellectual Screening Test, Second Edition

    Science.gov (United States)

    McNicholas, Patrick J.; Floyd, Randy G.

    2017-01-01

    The Reynolds Intellectual Assessment Scales, Second Edition (RIAS-2; Reynolds & Kamphaus, 2015) is an intelligence test for those aged 3 to 94 years. It contains eight subtests designed to assess general intelligence, verbal and nonverbal intelligence, memory, and processing speed. The two subtests targeting processing speed are new to the…

  6. Retrospective cost adaptive Reynolds-averaged Navier-Stokes k-ω model for data-driven unsteady turbulent simulations

    Science.gov (United States)

    Li, Zhiyong; Hoagg, Jesse B.; Martin, Alexandre; Bailey, Sean C. C.

    2018-03-01

    This paper presents a data-driven computational model for simulating unsteady turbulent flows, where sparse measurement data is available. The model uses the retrospective cost adaptation (RCA) algorithm to automatically adjust the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k- ω turbulence equations to improve agreement between the simulated flow and the measurements. The RCA-RANS k- ω model is verified for steady flow using a pipe-flow test case and for unsteady flow using a surface-mounted-cube test case. Measurements used for adaptation of the verification cases are obtained from baseline simulations with known closure coefficients. These verification test cases demonstrate that the RCA-RANS k- ω model can successfully adapt the closure coefficients to improve agreement between the simulated flow field and a set of sparse flow-field measurements. Furthermore, the RCA-RANS k- ω model improves agreement between the simulated flow and the baseline flow at locations at which measurements do not exist. The RCA-RANS k- ω model is also validated with experimental data from 2 test cases: steady pipe flow, and unsteady flow past a square cylinder. In both test cases, the adaptation improves agreement with experimental data in comparison to the results from a non-adaptive RANS k- ω model that uses the standard values of the k- ω closure coefficients. For the steady pipe flow, adaptation is driven by mean stream-wise velocity measurements at 24 locations along the pipe radius. The RCA-RANS k- ω model reduces the average velocity error at these locations by over 35%. For the unsteady flow over a square cylinder, adaptation is driven by time-varying surface pressure measurements at 2 locations on the square cylinder. The RCA-RANS k- ω model reduces the average surface-pressure error at these locations by 88.8%.

  7. Inertial effects on the stress generation of active fluids

    Science.gov (United States)

    Takatori, S. C.; Brady, J. F.

    2017-09-01

    Suspensions of self-propelled bodies generate a unique mechanical stress owing to their motility that impacts their large-scale collective behavior. For microswimmers suspended in a fluid with negligible particle inertia, we have shown that the virial swim stress is a useful quantity to understand the rheology and nonequilibrium behaviors of active soft matter systems. For larger self-propelled organisms such as fish, it is unclear how particle inertia impacts their stress generation and collective movement. Here we analyze the effects of finite particle inertia on the mechanical pressure (or stress) generated by a suspension of self-propelled bodies. We find that swimmers of all scales generate a unique swim stress and Reynolds stress that impact their collective motion. We discover that particle inertia plays a similar role as confinement in overdamped active Brownian systems, where the reduced run length of the swimmers decreases the swim stress and affects the phase behavior. Although the swim and Reynolds stresses vary individually with the magnitude of particle inertia, the sum of the two contributions is independent of particle inertia. This points to an important concept when computing stresses in computer simulations of nonequilibrium systems: The Reynolds and the virial stresses must both be calculated to obtain the overall stress generated by a system.

  8. Design and analysis of lid closure bolts for packages used to transport radioactive materials

    International Nuclear Information System (INIS)

    Raske, D.T.; Stojimirovic, A.

    1995-01-01

    The design criterion recommended by the U.S. Department of Energy for Category I radioactive packaging is found in Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. This criterion provides material specifications and allowable stress limits for bolts used to secure lids of containment vessels. This paper describes the design requirements for Category I containment vessel lid closure bolts, and provides an example of a bolting stress analysis. The lid-closure bolting stress analysis compares calculations based on handbook formulas with an analysis performed with a finite-element computer code. The results show that the simple handbook calculations can be sufficiently accurate to evaluate the bolt stresses that occur in rotationally rigid lid flanges designed for metal-to-metal contact

  9. Reynolds-averaged Navier-Stokes investigation of high-lift low-pressure turbine blade aerodynamics at low Reynolds number

    Science.gov (United States)

    Arko, Bryan M.

    Design trends for the low-pressure turbine (LPT) section of modern gas turbine engines include increasing the loading per airfoil, which promises a decreased airfoil count resulting in reduced manufacturing and operating costs. Accurate Reynolds-Averaged Navier-Stokes predictions of separated boundary layers and transition to turbulence are needed, as the lack of an economical and reliable computational model has contributed to this high-lift concept not reaching its full potential. Presented here for what is believed to be the first time applied to low-Re computations of high-lift linear cascade simulations is the Abe-Kondoh-Nagano (AKN) linear low-Re two-equation turbulence model which utilizes the Kolmogorov velocity scale for improved predictions of separated boundary layers. A second turbulence model investigated is the Kato-Launder modified version of the AKN, denoted MPAKN, which damps turbulent production in highly strained regions of flow. Fully Laminar solutions have also been calculated in an effort to elucidate the transitional quality of the turbulence model solutions. Time accurate simulations of three modern high-lift blades at a Reynolds number of 25,000 are compared to experimental data and higher-order computations in order to judge the accuracy of the results, where it is shown that the RANS simulations with highly refined grids can produce both quantitatively and qualitatively similar separation behavior as found in experiments. In particular, the MPAKN model is shown to predict the correct boundary layer behavior for all three blades, and evidence of transition is found through inspection of the components of the Reynolds Stress Tensor, spectral analysis, and the turbulence production parameter. Unfortunately, definitively stating that transition is occurring becomes an uncertain task, as similar evidence of the transition process is found in the Laminar predictions. This reveals that boundary layer reattachment may be a result of laminar

  10. Comparative study of the two-fluid momentum equations for multi-dimensional bubbly flows: Modification of Reynolds stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Park, Ik Kyu; Yoon, Han Young [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Byoung [School of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2017-01-15

    Two-fluid equations are widely used to obtain averaged behaviors of two-phase flows. This study addresses a problem that may arise when the two-fluid equations are used for multi-dimensional bubbly flows. If steady drag is the only accounted force for the interfacial momentum transfer, the disperse-phase velocity would be the same as the continuous-phase velocity when the flow is fully developed without gravity. However, existing momentum equations may show unphysical results in estimating the relative velocity of the disperse phase against the continuous-phase. First, we examine two types of existing momentum equations. One is the standard two-fluid momentum equation in which the disperse-phase is treated as a continuum. The other is the averaged momentum equation derived from a solid/ fluid particle motion. We show that the existing equations are not proper for multi-dimensional bubbly flows. To resolve the problem mentioned above, we modify the form of the Reynolds stress terms in the averaged momentum equation based on the solid/fluid particle motion. The proposed equation shows physically correct results for both multi-dimensional laminar and turbulent flows.

  11. A numerical study of scalar dispersion downstream of a wall-mounted cube using direct simulations and algebraic flux models

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, R., E-mail: riccardo.rossi12@unibo.i [Laboratorio di Termofluidodinamica Computazionale Seconda Facolta di Ingegneria di Forli, Universita di Bologna Via Fontanelle 40, 47100 Forli (Italy); Center for Turbulence Research Department of Mechanical Engineering Stanford University, CA 94305 (United States); Philips, D.A.; Iaccarino, G. [Center for Turbulence Research Department of Mechanical Engineering Stanford University, CA 94305 (United States)

    2010-10-15

    Research highlights: {yields} The computed DNS statistics indicate that a gradient-transport scheme can be applied to the vertical and spanwise scalar flux components. {yields} The streamwise scalar flux is characterized by a counter-gradient transport mechanism in the wake region close to the obstacle. {yields} The wake profiles of scalar fluctuations and the shape of probability density functions do not suggest a significant flapping movement of the scalar plume. {yields} The evaluation of scalar dispersion models must include a careful assessment of the computed mean velocity field and Reynolds stress tensor. {yields} Algebraic models provide an improved prediction of the mean concentration field as compared to the standard eddy-diffusivity model. -- Abstract: The dispersion of a passive scalar downstream of a wall-mounted cube is examined using direct numerical simulations and turbulence models applied to the Reynolds equations. The scalar is released from a circular source located on top of the obstacle, which is immersed in a developing boundary-layer flow. Direct simulations are performed to give insight into the mixing process and to provide a reference database for turbulence closures. Algebraic flux models are evaluated against the standard eddy-diffusivity representation. Coherent structures periodically released from the cube top are responsible for a counter-diffusion mechanism appearing in the streamwise scalar flux. Alternating vortex pairs form from the lateral edges of the cube, but the intensity profiles and probability density functions of scalar fluctuations suggest that they do not cause a significant flapping movement of the scalar plume. The gradient-transport scheme is consistent with the vertical and spanwise scalar flux components. From the comparative study with our direct simulations, we further stress that Reynolds stress predictions must be carefully evaluated along with scalar flux closures in order to establish the reliability of

  12. A numerical study of scalar dispersion downstream of a wall-mounted cube using direct simulations and algebraic flux models

    International Nuclear Information System (INIS)

    Rossi, R.; Philips, D.A.; Iaccarino, G.

    2010-01-01

    Research highlights: → The computed DNS statistics indicate that a gradient-transport scheme can be applied to the vertical and spanwise scalar flux components. → The streamwise scalar flux is characterized by a counter-gradient transport mechanism in the wake region close to the obstacle. → The wake profiles of scalar fluctuations and the shape of probability density functions do not suggest a significant flapping movement of the scalar plume. → The evaluation of scalar dispersion models must include a careful assessment of the computed mean velocity field and Reynolds stress tensor. → Algebraic models provide an improved prediction of the mean concentration field as compared to the standard eddy-diffusivity model. -- Abstract: The dispersion of a passive scalar downstream of a wall-mounted cube is examined using direct numerical simulations and turbulence models applied to the Reynolds equations. The scalar is released from a circular source located on top of the obstacle, which is immersed in a developing boundary-layer flow. Direct simulations are performed to give insight into the mixing process and to provide a reference database for turbulence closures. Algebraic flux models are evaluated against the standard eddy-diffusivity representation. Coherent structures periodically released from the cube top are responsible for a counter-diffusion mechanism appearing in the streamwise scalar flux. Alternating vortex pairs form from the lateral edges of the cube, but the intensity profiles and probability density functions of scalar fluctuations suggest that they do not cause a significant flapping movement of the scalar plume. The gradient-transport scheme is consistent with the vertical and spanwise scalar flux components. From the comparative study with our direct simulations, we further stress that Reynolds stress predictions must be carefully evaluated along with scalar flux closures in order to establish the reliability of Reynolds

  13. Flow boiling heat transfer at low liquid Reynolds number

    International Nuclear Information System (INIS)

    Weizhong Zhang; Takashi Hibiki; Kaichiro Mishima

    2005-01-01

    Full text of publication follows: In view of the significance of a heat transfer correlation of flow boiling at conditions of low liquid Reynolds number or liquid laminar flow, and very few existing correlations in principle suitable for such flow conditions, this study is aiming at developing a heat transfer correlation of flow boiling at low liquid Reynolds number conditions. The obtained results are as follows: 1. A new heat transfer correlation has been developed for saturated flow boiling at low liquid Reynolds number conditions based on superimposition of two boiling mechanisms, namely convective boiling and nucleate boiling. In the new correlation, two terms corresponding to the mechanisms of nucleate boiling and convective boiling are obtained from the pool boiling correlation by Forster and Zuber and the analytical annular flow model by Hewitt and Hall-Taylor, respectively. 2. An extensive database was collected for saturated flow boiling heat transfer at low liquid Reynolds number conditions, including data for different channels geometries (circular and rectangular), flow orientations (vertical and horizontal), and working fluids (water, R11, R12, R113). 3. An extensive comparison of the new correlation with the collected database shows that the new correlation works satisfactorily with the mean deviation of 16.6% for saturated flow boiling at low liquid Reynolds number conditions. 4. The detailed discussion reveals the similarity of the newly developed correlation for flow boiling at low liquid Reynolds number to the Chen correlation for flow boiling at high liquid Reynolds number. The Reynolds number factor F can be analytically deduced in this study. (authors)

  14. Thermo-fluid-dynamics of turbulent boundary layer over a moving continuous flat sheet in a parallel free stream

    Science.gov (United States)

    Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team

    2014-11-01

    The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.

  15. Low-Reynolds Number Effects in Ventilated Rooms

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.; Topp, Claus

    In the present study, we use Large Eddy Simulations (LES) which is a suitable method for simulating the flow in ventilated rooms at low Reynolds number.......In the present study, we use Large Eddy Simulations (LES) which is a suitable method for simulating the flow in ventilated rooms at low Reynolds number....

  16. 78 FR 56609 - Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY

    Science.gov (United States)

    2013-09-13

    ... Regulations; Reynolds Channel, Lawrence, NY AGENCY: Coast Guard, DHS. ACTION: Notice canceling temporary... Beach Bridge, mile 0.4, across Reynolds Channel, at Lawrence, New York. The owner of the bridge, Nassau... published a temporary deviation entitled ``Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY...

  17. Room Airflows with Low Reynolds Number Effects

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Davidson, Lars

    The behaviour of room airflows under fully turbulent conditions is well known both in terms of experiments and, numerical calculations by computational fluid dynamics (CFD). For room airflows where turbulence is not fully developed though, i.e. flows at low Reynolds numbers, the existing knowledge...... is limited. It has been the objective to investigate the behaviour of a plane isothermal wall jet in a full-scale ventilated room at low Reynolds numbers, i.e. when the flow is not fully turbulent. The results are significantly different from known theory for fully turbulent flows. It was found that the jet...... constants are a strong function of the Reynolds number up to a level of Reh≈500....

  18. Stochastic particle acceleration and statistical closures

    International Nuclear Information System (INIS)

    Dimits, A.M.; Krommes, J.A.

    1985-10-01

    In a recent paper, Maasjost and Elsasser (ME) concluded, from the results of numerical experiments and heuristic arguments, that the Bourret and the direct-interaction approximation (DIA) are ''of no use in connection with the stochastic acceleration problem'' because (1) their predictions were equivalent to that of the simpler Fokker-Planck (FP) theory, and (2) either all or none of the closures were in good agreement with the data. Here some analytically tractable cases are studied and used to test the accuracy of these closures. The cause of the discrepancy (2) is found to be the highly non-Gaussian nature of the force used by ME, a point not stressed by them. For the case where the force is a position-independent Ornstein-Uhlenbeck (i.e., Gaussian) process, an effective Kubo number K can be defined. For K << 1 an FP description is adequate, and conclusion (1) of ME follows; however, for K greater than or equal to 1 the DIA behaves much better qualitatively than the other two closures. For the non-Gaussian stochastic force used by ME, all common approximations fail, in agreement with (2)

  19. Closure requirements

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    Closure of a waste management unit can be either permanent or temporary. Permanent closure may be due to: economic factors which make it uneconomical to mine the remaining minerals; depletion of mineral resources; physical site constraints that preclude further mining and beneficiation; environmental, regulatory or other requirements that make it uneconomical to continue to develop the resources. Temporary closure can occur for a period of several months to several years, and may be caused by factors such as: periods of high rainfall or snowfall which prevent mining and waste disposal; economic circumstances which temporarily make it uneconomical to mine the target mineral; labor problems requiring a cessation of operations for a period of time; construction activities that are required to upgrade project components such as the process facilities and waste management units; and mine or process plant failures that require extensive repairs. Permanent closure of a mine waste management unit involves the provision of durable surface containment features to protect the waters of the State in the long-term. Temporary closure may involve activities that range from ongoing maintenance of the existing facilities to the installation of several permanent closure features in order to reduce ongoing maintenance. This paper deals with the permanent closure features

  20. Numerical investigation of the high Reynolds number 3D flow field generated by a self-propelling manta ray

    Science.gov (United States)

    Pederzani, Jean-Noel; Haj-Hariri, Hossein

    2012-11-01

    An embedded-boundary (or cut-cell) method for complex geometry with moving boundaries is used to solve the three dimensional Navier-Stokes equation around a self-propelling manta swimming at moderately high Reynolds numbers. The motion of the ray is prescribed using a kinematic model fitted to actual biological data. The dependence of thrust production mechanism on Strouhal and Reynolds numbers is investigated. The vortex core structures are accurately plotted and a correlation between wake structures and propulsive performance is established. This insight is critical in understanding the key flow features that a bio-inspired autonomous vehicle should reproduce in order to swim efficiently. The solution method is implemented, on a block-structured Cartesian grid using a cut-cell approach enabling the code to correctly evaluate the wall shear-stress, a key feature necessary at higher Reynolds. To enhance computational efficiency, a parallel adaptive mesh refinement technique is used. The present method is validated against published experimental results. Supported by ONR MURI.

  1. 78 FR 66265 - Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY

    Science.gov (United States)

    2013-11-05

    ... Regulations; Reynolds Channel, Lawrence, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation... from the regulations governing the operation of the Atlantic Beach Bridge, mile 0.4, across Reynolds.... SUPPLEMENTARY INFORMATION: The Atlantic Beach Bridge, across Reynolds Channel, mile 0.4, at Lawrence, New York...

  2. 78 FR 37456 - Drawbridge Operation Regulations; Reynolds Channel, Nassau, NY

    Science.gov (United States)

    2013-06-21

    ... Regulations; Reynolds Channel, Nassau, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from... regulation governing the operation of the Long Beach Bridge, mile 4.7, across Reynolds Channel at Nassau, New... July 1, 2013. Reynolds Creek has commercial and recreational vessel traffic. No objections were...

  3. 78 FR 56610 - Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY

    Science.gov (United States)

    2013-09-13

    ... Regulations; Reynolds Channel, Lawrence, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation... from the regulations governing the operation of the Atlantic Beach Bridge, mile 0.4, across Reynolds.... SUPPLEMENTARY INFORMATION: The Atlantic Beach Bridge, across Reynolds Channel, mile 0.4, at Lawrence, New York...

  4. Mathematical Relationship Between Particle Reynolds Number and Ripple Factor using Tapi River Data, India.

    Directory of Open Access Journals (Sweden)

    S. M. Yadav

    2011-02-01

    Full Text Available The computation of bed load allows for the fact that only part of the shear stress is used for transport of sediments and some of the shear stress is wasted in overcoming the resistance due to bed forms therefore the total shear stress developed in the open channel requires correction in the form of correction factor called ripple factor. Different methods have been followed for correcting the actual shear stress in order to compute the sediment load. Correction factors are based on particular characteristics grain size of particle. In the present paper the ripple factor has been obtained for non uniform bed material considering the various variables like discharge, hydraulic mean depth, flow velocity, bed slope, average diameter of particle etc. by collecting the field data of Tapi river for 15 years for a particular gauging station. The ripple factor is obtained using Meyer Peter and Muller formula, Einstein Formula, Kalinske’s formula, Du Boy’s formula, Shield’s formula, Bagnold’s formula, average of six formulae and multiple regression analysis. The variation of ripple factor with particle Reynolds Number is studied. The ripple factor obtained by different approaches are further analyzed using Origin software and carrying out multiple regression on the 15 years of data with more than 10 parameters, ripple factor by multiple regression has been obtained. These values are further analysed and giving statistical mean to the parameters a relationship of power form has been developed. The ripple factor increases with the increase in the value of Particle Reynolds number. The large deviation is observed in case of Kalinske’s approach when compare with other approaches

  5. High Reynolds Number Turbulence

    National Research Council Canada - National Science Library

    Smits, Alexander J

    2007-01-01

    The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...

  6. 77 FR 37316 - Drawbridge Operation Regulations; Reynolds Channel, Nassau, NY

    Science.gov (United States)

    2012-06-21

    ... Regulations; Reynolds Channel, Nassau, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from... regulations governing the operation of the Long Beach Bridge, mile 4.7, across Reynolds Channel, at Nassau...: The Long Beach Bridge, across Reynolds Channel, mile 4.7, at Nassau, New York, has a vertical...

  7. 78 FR 26508 - Drawbridge Operation Regulations; Reynolds Channel, Nassau, NY

    Science.gov (United States)

    2013-05-07

    ... Regulations; Reynolds Channel, Nassau, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from... regulation governing the operation of the Long Beach Bridge, mile 4.7, across Reynolds Channel at Nassau, New.... on July 12, 2013. Reynolds Creek has commercial and recreational vessel traffic. No objections were...

  8. 78 FR 34893 - Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY

    Science.gov (United States)

    2013-06-11

    ... Regulations; Reynolds Channel, Lawrence, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation... from the regulations governing the operation of the Atlantic Beach Bridge, mile 0.4, across Reynolds... Reynolds Channel, mile 0.4, at Lawrence, New York, has a vertical clearance in the closed position of 25...

  9. Determination of mean pressure from PIV in compressible flows using the Reynolds-averaging approach

    Science.gov (United States)

    van Gent, Paul L.; van Oudheusden, Bas W.; Schrijer, Ferry F. J.

    2018-03-01

    The feasibility of computing the flow pressure on the basis of PIV velocity data has been demonstrated abundantly for low-speed conditions. The added complications occurring for high-speed compressible flows have, however, so far proved to be largely inhibitive for the accurate experimental determination of instantaneous pressure. Obtaining mean pressure may remain a worthwhile and realistic goal to pursue. In a previous study, a Reynolds-averaging procedure was developed for this, under the moderate-Mach-number assumption that density fluctuations can be neglected. The present communication addresses the accuracy of this assumption, and the consistency of its implementation, by evaluating of the relevance of the different contributions resulting from the Reynolds-averaging. The methodology involves a theoretical order-of-magnitude analysis, complemented with a quantitative assessment based on a simulated and a real PIV experiment. The assessments show that it is sufficient to account for spatial variations in the mean velocity and the Reynolds-stresses and that temporal and spatial density variations (fluctuations and gradients) are of secondary importance and comparable order-of-magnitude. This result permits to simplify the calculation of mean pressure from PIV velocity data and to validate the approximation of neglecting temporal and spatial density variations without having access to reference pressure data.

  10. Perturbed Partial Cavity Drag Reduction at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    Ventilated partial cavities were investigated at Reynolds numbers to 80 million. These cavities could be suitable for friction drag reduction on ocean going vessels and thereby lead to environmental and economical benefits. The test model was a 3.05 m wide by 12.9 m long flat plate, with a 0.18 m backward-facing step and a cavity-terminating beach, which had an adjustable slope, tilt and height. The step and beach trapped a ventilated partial cavity over the longitudinal mid-section of the model. Large-scale flow perturbations, mimicking the effect of ambient ocean waves were investigated. For the conditions tested a cavity could be maintained under perturbed flow conditions when the gas flux supplied was greater than the minimum required to maintain a cavity under steady conditions, with larger perturbations requiring more excess gas flux to maintain the cavity. High-speed video was used to observe the unsteady three dimensional cavity closure, the overall cavity shape, and the cavity oscillations. Cavities with friction drag reduction exceeding 95% were attained at optimal conditions. A simplified energy cost-benefit analysis of partial cavity drag reduction was also performed. The results suggest that PCDR could potentially lead to energy savings.

  11. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    International Nuclear Information System (INIS)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2016-01-01

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  12. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    Science.gov (United States)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2016-03-01

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian-Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, "Numerical study of collisional particle dynamics in cluster-induced turbulence," J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  13. Horace Lamb and Osborne Reynolds: Remarkable mancunians ... and their interactions

    International Nuclear Information System (INIS)

    Launder, B E

    2014-01-01

    The paper provides glimpses into the professional lives of arguably, the two outstanding fluid mechanicists of their time who were simultaneously professors at Owens College, Manchester. Their interactions with each other were sometimes amicable but, equally, sometimes testy and their views on their common professional subject differed radically. Reynolds was appointed to the Chair of Engineering in 1868 at the age of 25 against strong competition while Horace Lamb, graduating a decade after Reynolds, was appointed as the inaugural Professor of Applied Mathematics at the University of Adelaide where he stayed for nine years before being appointed to a chair at Owens College in 1885. Among their various interactions the most significant arose from Reynolds' famous 'Reynolds averaging' paper. That was sent for review by Lamb who was critical of the paper but finally recommended that a revised version be published since Reynolds had essentially invented the subject. Reynolds, in his turn, criticised Lamb's patronizing reference to engineers' approach to fluid mechanics in a draft revision of his book Hydrodynamics. Nevertheless, on Reynolds' death in 1912, it was Lamb who attended his funeral on behalf of the University and the Royal Society and who later wrote a moving, much cited obituary of him.

  14. Test Review: Reynolds, C. R., & Kamphaus, R. W. (2003). "RIAS--Reynolds Intellectual Assessment Scales." Lutz, FL--Psychological Assessment Resources, Inc.

    Science.gov (United States)

    Dombrowski, Stefan C.; Mrazik, Martin

    2008-01-01

    In this article, the authors review the Reynolds Intellectual Assessment Scales (RIAS; Reynolds & Kamphaus, 2003), an individually administered test of intelligence for use with individuals between the ages of 3 and 94. The RIAS represents the newest intelligence test on the marketplace and incorporates the most current intelligence test theory…

  15. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface

    Science.gov (United States)

    Ling, Hangjian; Katz, Joseph; Fu, Matthew; Hultmark, Marcus

    2017-12-01

    This experimental study investigates the effects of ambient pressure and Reynolds number on the volume of a plastron in a superhydrophobic surface (SHS) due to compression and gas diffusion. The hierarchical SHS consists of nanotextured, ˜100 μm wide spanwise grooves. Microscopic observations measure the time evolution of interface height and contact angle. The water tunnel tests are performed both without flow as well as in transitional and turbulent boundary layers at several Reynolds numbers. Particle image velocimetry is used for estimating the wall shear stress and calculating the momentum thickness for the SHSs under Cassie-Baxter (CB) and Wenzel states as well as a smooth wall at the same conditions. Holographic microscopy is used for determining the wall shear stress directly for one of the CB cases. The mass diffusion rate is calculated from changes to the plastron volume when the liquid is under- or supersaturated. For stationary water, the mass diffusion is slow. With increasing pressure, the interface is initially pinned and then migrates into the groove with high advancing contact angle. Upon subsequent decrease in pressure, the interface migrates upward at a shallow angle and, after being pinned to the tip corner, becomes convex. With flow and exposure to undersaturated liquid, the diffusion-induced wetting also involves pinned and downward migration states, followed by shrinkage of the plastron until it decreases below the resolution limit. The corresponding changes to the velocity profile indicate a transition from slight drag reduction to significant drag increase. In supersaturated water starting at a Wenzel state, a bubble grows from one of the bottom corners until it reaches the other side of the groove. Subsequently, dewetting involves upward migration of the interface, pinning to the tip corners, and formation of a convex interface. The diffusion rate increases with the level of under- or supersaturation and with the Reynolds number. A power

  16. Momentum balance and stresses in a suspension of spherical particles in a plane Couette flow

    Science.gov (United States)

    Rahmani, Mona; Hammouti, Abdelkader; Wachs, Anthony

    2018-04-01

    Non-Brownian suspension of monodisperse spherical particles, with volume fractions ranging between ϕ = 0.05 and 0.38 and particle Reynolds numbers ranging between Rep = 0.002 and 20, in plane Couette shear flows is investigated using three-dimensional particle-resolved numerical simulations. We examine the effects of volume fraction and particle Reynolds number on the macroscopic and microscopic stresses in the fluid phase. The effective viscosity of the suspension is in a good agreement with the previous empirical and experimental studies. At Rep = 20, however, the effective viscosity increases significantly compared to the lower particle Reynolds number simulations in the Stokes flow regime. Examining the stresses over the depth of the Couette gap reveals that this increase in wall shear stresses at high particle Reynolds numbers is mainly due to the significantly higher particle phase stress contributions. Next, we examine the momentum balance in the fluid and particle phase for different regimes to assess the significance of particle/particle interaction and fluid and particle inertia. At the highest particle Reynolds number and volume fraction, the particle inertia plays a dominant role in the momentum balance and the fluid inertia is non-negligible, while the short-lived contact forces are negligible compared to these effects. For all other regimes, the fluid inertia is negligible, but the particle inertia and contact forces are important in the momentum balance. Reynolds stresses originated from velocity fluctuations do not contribute significantly to the suspension stresses in any of the regimes we have studied, while the reduction in the shear-induced particle rotation can be a reason for higher wall shear stress at Rep = 20. Finally, we study the kinematics of particles, including their velocity fluctuations, rotation, and diffusion over the depth of the Couette gap. The particle diffusion coefficients in the cross flow direction exhibit an abrupt

  17. Crossover from High to Low Reynolds Number Turbulence

    NARCIS (Netherlands)

    Lohse, Detlef

    1994-01-01

    The Taylor-Reynolds and Reynolds number (Re lambda and Re) dependence of the dimensionless energy dissipation rate c epsilon = epsilon L / u31,rms is derived for statistically stationary isotropic turbulence, employing the results of a variable range mean field theory. Here epsilon is the energy

  18. 2-D and 3-D CFD Investigation of NREL S826 Airfoil at Low Reynolds Numbers

    International Nuclear Information System (INIS)

    Cakmakcioglu, S C; Sert, I O; Tugluk, O; Sezer-Uzol, N

    2014-01-01

    In this study CFD investigation of flow over the NREL S826 airfoil is performed. NREL S826 airfoil was designed for HAWTs of 10-15 meter diameters. However, it is used in the NTNU wind turbine rotor model and low Reynolds number flow characteristics become important in the validations with the test cases of this rotor model. The airfoil CFD simulations are carried out in 2-D and 3-D computational domains. The k-rn SST turbulence model with Langtry-Menter (γ-Re θ ) transition prediction model for turbulence closure is used in the calculations. The Delayed DES is also performed in the stall region for comparisons. The results are compared with the available METUWIND experimental data, and are shown to be in fair agreement. It is observed that 3-D CFD analysis provides increased accuracy at increased computational cost

  19. The urethral closure function in continent and stress urinary incontinent women assessed by urethral pressure reflectometry

    DEFF Research Database (Denmark)

    Saaby, Marie-Louise

    2014-01-01

    , the parameters showed highly significant negative correlation with ICIQ-SF, pad test and the number of incontinence episodes per week and are therefore valid as urodynamic severity measures. UPR in SUI women before and after TVT demonstrated a more efficient urethral closure function after the operation. The Po......-rest was unchanged suggesting that the sphincteric unit was virtually unaltered and hence the permanent closure forces unchanged. However, the resting opening elastance increased by 18% indicating that at the resting state the TVT somewhat improves the closure function by providing increased resistance against...... the dilation of the urethra, which probably explains the decreased maximum urine flow rate found after TVT in this and previous studies. The APIR increased in all patients after TVT suggesting that the support system was re-established and thus the adjunctive closure forces improved, regardless of the type...

  20. Auditory skills of figure-ground and closure in air traffic controllers.

    Science.gov (United States)

    Villar, Anna Carolina Nascimento Waack Braga; Pereira, Liliane Desgualdo

    2017-12-04

    To investigate the auditory skills of closure and figure-ground and factors associated with health, communication, and attention in air traffic controllers, and compare these variables with those of other civil and military servants. Study participants were sixty adults with normal audiometric thresholds divided into two groups matched for age and gender: study group (SG), comprising 30 air traffic controllers and control group (CG), composed of 30 other military and civil servants. All participants were asked a number of questions regarding their health, communication, and attention, and underwent the Speech-in-Noise Test (SIN) to assess their closure skills and the Synthetic Sentence Identification Test - Ipsilateral Competitive Message (SSI-ICM) in monotic listening to evaluate their figure-ground abilities. Data were compared using nonparametric statistical tests and logistic regression analysis. More individuals in the SG reported fatigue and/or burnout and work-related stress and showed better performance than that of individuals in the CG for the figure-ground ability. Both groups performed similarly and satisfactorily in the other hearing tests. The odds ratio for participants belonging in the SG was 5.59 and 1.24 times regarding work-related stress and SSI-ICM (right ear), respectively. Results for the variables auditory closure, self-reported health, attention, and communication were similar in both groups. The SG presented significantly better performance in auditory figure-ground compared with that of the CG. Self-reported stress and right-ear SSI-ICM were significant predictors of individuals belonging to the SG.

  1. An algebraic stress/flux model for two-phase turbulent flow

    International Nuclear Information System (INIS)

    Kumar, R.

    1995-12-01

    An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature

  2. Application of a k-epsilon closure to a heated turbulent offset jet

    International Nuclear Information System (INIS)

    Raghunath, G.; Kumar, R.; Liburdy, J.A.

    1986-01-01

    The complex flow which occurs when a heated turbulent jet discharges above a cool, isothermal surface was investigated numerically. This flow is influenced by significant flow curvature, buoyancy, impingement, and recirculation. The main features of the flow have been characterized in the literature by the exit Reynolds number and offset ratio. It is the purpose of this study to assess the applicability of a modified k-epsilon closure model to this flow. Comparisons with limited data for the unheated case and flow predictions for the heated case are presented. The impingement distance is determined to within 2 percent of the experimental results. However, detailed velocity profiles are not well predicted near the wall. Curvature modification and the wall boundary condition for epsilon significantly affect the solution. 15 references

  3. A Second-Order Turbulence Model Based on a Reynolds Stress Approach for Two-Phase Flow—Part I: Adiabatic Cases

    Directory of Open Access Journals (Sweden)

    S. Mimouni

    2009-01-01

    Full Text Available In our work in 2008, we evaluated the aptitude of the code Neptune_CFD to reproduce the incidence of a structure topped by vanes on a boiling layer, within the framework of the Neptune project. The objective was to reproduce the main effects of the spacer grids. The turbulence of the liquid phase was modeled by a first-order K-ε model. We show in this paper that this model is unable to describe the turbulence of rotating flows, in accordance with the theory. The objective of this paper is to improve the turbulence modeling of the liquid phase by a second turbulence model based on a Rij-ε approach. Results obtained on typical single-phase cases highlight the improvement of the prediction for all computed values. We tested the turbulence model Rij-ε implemented in the code versus typical adiabatic two-phase flow experiments. We check that the simulations with the Reynolds stress transport model (RSTM give satisfactory results in a simple geometry as compared to a K-ε model: this point is crucial before calculating rod bundle geometries where the K-ε model may fail.

  4. Road Closures

    Data.gov (United States)

    Montgomery County of Maryland — This is an up to date map of current road closures in Montgomery County.This dataset is updated every few minutes from the Department of Transportation road closure...

  5. Vegetation-Induced Roughness in Low-Reynold's Number Flows

    Science.gov (United States)

    Piercy, C. D.; Wynn, T. M.

    2008-12-01

    Wetlands are important ecosystems, providing habitat for wildlife and fish and shellfish production, water storage, erosion control, and water quality improvement and preservation. Models to estimate hydraulic resistance due to vegetation in emergent wetlands are crucial to good wetland design and analysis. The goal of this project is to improve modeling of emergent wetlands by linking properties of the vegetation to flow. Existing resistance equations such as Hoffmann (2004), Kadlec (1990), Moghadam and Kouwen (1997), Nepf (1999), and Stone and Shen (2002) were evaluated. A large outdoor vegetated flume was constructed at the Price's Fork Research Center near Blacksburg, Virginia to measure flow and water surface slope through woolgrass (Scirpus cyperinus), a common native emergent wetland plant. Measurements of clump and stem density, diameter, and volume, blockage factor, and stiffness were made after each set of flume runs. Flow rates through the flume were low (3-4 L/s) resulting in very low stem-Reynold's numbers (15-102). Since experimental flow conditions were in the laminar to transitional range, most of the models considered did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. At low stem-Reynold's numbers (drag coefficient is inversely proportional to the Reynold's number and can vary greatly with flow conditions. Most of the models considered assumed a stem-Reynold's number in the 100-105 range in which the drag coefficient is relatively constant and as a result did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. The only model that accurately predicted stem layer velocity was the Kadlec (1990) model since it does not make assumptions about flow regime; instead, the parameters are adjusted according to the site conditions. Future work includes relating the parameters used to fit the Kadlec (1990) model to measured vegetation

  6. Model Experiments with Low Reynolds Number Effects in a Ventilated Room

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Filholm, Claus; Topp, Claus

    the isothermal low Reynolds number flow from a slot inlet in the end wall of the room. The experiments are made on the scale of 1 to 5. Measurements indicate a low Reynolds number effect in the wall jet flow. The virtual origin of the wall jet moves forward in front of the opening at a small Reynolds number......, an effect that is also known from measurements on free jets. The growth rate of the jet, or the length scale, increases and the velocity decay factor decreases at small Reynolds numbers....

  7. On Reynolds number dependence of micro-ramp-induced transition

    NARCIS (Netherlands)

    Ye, Q.; Schrijer, F.F.J.; Scarano, F.

    2018-01-01

    The variation of transitional flow features past a micro-ramp is investigated when the Reynolds number is decreased approaching the critical regime. Experiments are conducted in the incompressible flow spanning from supercritical to subcritical roughness-height-based Reynolds number ( , 730, 460

  8. Structure of high and low shear-stress events in a turbulent boundary layer

    Science.gov (United States)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  9. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  10. CFD simulation of estimating critical shear stress for cleaning flat ...

    Indian Academy of Sciences (India)

    Sumit Kawale

    2017-11-22

    Nov 22, 2017 ... Jet impingement; wall shear stress; cleaning of flat plate; turbulence model; critical shear stress; ... On comparing the theoretical predictions with wall shear ... distance and Reynolds number on peak value of local shear stress ...

  11. Effect of surface roughness and Reynolds number on compressor cascade performance

    International Nuclear Information System (INIS)

    Back, Seung Chul; Song, Seung Jin

    2009-01-01

    An experimental work has been conducted in a linear compressor cascade to find out the effect of surface roughness and Reynolds number. Surveys were conducted with different roughness size and Reynolds number. The k s /c value of each roughness is 0.0006, 0.0090, 0.00150, 0.00213, and 0.00425. The range of Reynolds number is 300,000∼600,000 and conducted with roughened blade, which roughness Ra is 2.89 microns. Flow pressure, velocity, and angle have been found out via 5 hole probe. Pressure loss and deviation increased with increasing roughness. In the low Reynolds number under 500,000, tested roughness does not affect to the performance of compressor cascade. However, roughness is very sensitive to pressure loss in high Reynolds number over 550,000.

  12. Compound stress response in stomatal closure: a mathematical model of ABA and ethylene interaction in guard cells

    Directory of Open Access Journals (Sweden)

    Beguerisse-Dıaz Mariano

    2012-11-01

    Full Text Available Abstract Background Stomata are tiny pores in plant leaves that regulate gas and water exchange between the plant and its environment. Abscisic acid and ethylene are two well-known elicitors of stomatal closure when acting independently. However, when stomata are presented with a combination of both signals, they fail to close. Results Toshed light on this unexplained behaviour, we have collected time course measurements of stomatal aperture and hydrogen peroxide production in Arabidopsis thaliana guard cells treated with abscisic acid, ethylene, and a combination of both. Our experiments show that stomatal closure is linked to sustained high levels of hydrogen peroxide in guard cells. When treated with a combined dose of abscisic acid and ethylene, guard cells exhibit increased antioxidant activity that reduces hydrogen peroxide levels and precludes closure. We construct a simplified model of stomatal closure derived from known biochemical pathways that captures the experimentally observed behaviour. Conclusions Our experiments and modelling results suggest a distinct role for two antioxidant mechanisms during stomatal closure: a slower, delayed response activated by a single stimulus (abscisic acid ‘or’ ethylene and another more rapid ‘and’ mechanism that is only activated when both stimuli are present. Our model indicates that the presence of this rapid ‘and’ mechanism in the antioxidant response is key to explain the lack of closure under a combined stimulus.

  13. Revolutionary Performance For Ultra Low Reynolds Number Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel technique for controlling transition from laminar to turbulent flow in very low Reynolds number conditions has been developed. Normally flows with Reynolds...

  14. A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows

    International Nuclear Information System (INIS)

    Singh, Satbir; You, Donghyun

    2013-01-01

    Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations

  15. Role of plasticity-induced crack closure in fatigue crack growth

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2013-07-01

    Full Text Available The premature contact of crack surfaces attributable to the near-tip plastic deformations under cyclic loading, which is commonly referred to as plasticity induced crack closure (PICC, has long been focused as supposedly controlling factor of fatigue crack growth (FCG. Nevertheless, when the plane-strain near-tip constraint is approached, PICC lacks of straightforward evidence, so that its significance in FCG, and even the very existence, remain debatable. To add insights into this matter, large-deformation elastoplastic simulations of plane-strain crack under constant amplitude load cycling at different load ranges and ratios, as well as with an overload, have been performed. Modeling visualizes the Laird-Smith conceptual mechanism of FCG by plastic blunting and re-sharpening. Simulation reproduces the experimental trends of FCG concerning the roles of stress intensity factor range and overload, but PICC has never been detected. Near-tip deformation patterns discard the filling-in a crack with material stretched out of the crack plane in the wake behind the tip as supposed PICC origin. Despite the absence of closure, load-deformation curves appear bent, which raises doubts about the trustworthiness of closure assessment from the compliance variation. This demonstrates ambiguities of PICC as a supposedly intrinsic factor of FCG and, by implication, favors the stresses and strains in front of the crack tip as genuine fatigue drivers.

  16. Theoretical and experimental studies for optimization of PCRV top closures

    International Nuclear Information System (INIS)

    Ottosen, N.S.; Andersen, S.I.

    1975-01-01

    The results from the remaining part of the parameter study and the preparations for the verification of an optimized design are presented. Three models have been made in the same scale and with the same depth to span ratio α as the low LM-3 model from the first investigation, i.e. α=0.35. The model LM-5 was provided with reinforcement in the tensile zone, the upper part of the closure. This reinforcement did not influence the stresses and strains in the load carrying concrete, and the dome failed at the same pressure as in the unreinforced model LM-3. However, the closure did not disintegrate, but failed due to large overall deformations causing seal leakage. In the model LM-6, the inverted dome, which is formed at higher loads as demonstrated in LM-3, was reinforced perpendicular to the supposed middle surface. This reinforcement proved to be effective, giving the dome a higher ultimate load capacity. The LM-6 test stopped due to a circumferential crack in the flange. Finally, the unreinforced LM-7 closure was tested to failure. Apart from minor changes in the flange, LM-7 was identical to LM-3 except for the excavated upper part of the concrete, which in LM-3 formed the heavily cracked tensile zone. The ultimate load and the failure mode observed for this closure were the same as for the LM-3. The experimental results are compared to finite element calculations, in which plasticity and cracking of the concrete are taken into account, and the influence of different material models for the concrete is investigated. A unique failure criterion, which includes failure of the concrete for both tensile and compressive stresses in the same mathematical expression, is proposed. Based on the results obtained from the parameter study, a new closure design is proposed, which is optimized with respect to the requirements at service conditions and ultimate load

  17. Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres

    Science.gov (United States)

    Zhou, Qiang; Fan, Liang-Shih

    2015-07-01

    Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.

  18. Borehole closure in salt

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1988-12-01

    Constitutive law parameters are determined from salt behavior characterization experiments. The results are applied to predict creep (time-dependent) closure of boreholes in salt specimens subjected to various loading configurations. Rheological models (linear and nonlinear viscoelastic and viscoplastic models), empirical models, and physical theory models have been formulated from the results of uniaxial creep tests, strain and stress rate controlled uniaxial tests, constant strain rate triaxial tests, cyclic loading tests, and seismic velocity measurements. Analytical solutions for a thick-walled cylinder subjected to internal and external pressures and for a circular hole in an infinite plate subjected to a biaxial or uniaxial stressfield have been derived from each of the linear viscoelastic models and from one of the empirical laws. The experimental results indicate that the salt samples behave as an elastic-viscoplastic material. The elastic behavior tends to be linear and time-independent. The plastic deformation is time-dependent. The stress increment to strain rate increment ratio gradually decreases as the stress level increases. The transient potential creep law seems to give the simplest satisfactory governing equation describing the viscoplastic behavior of salt during the transient phase. 204 refs., 27 figs., 29 tabs

  19. Experiments on a low aspect ratio wing at low Reynolds numbers

    Science.gov (United States)

    Morse, Daniel R.

    At the start of the 21st century much of the focus of aircraft design has been turned to unmanned aerial vehicles (UAVs) which generally operate at much lower speeds in higher risk areas than manned aircraft. One subset of UAVs are Micro Air Vehicles (MAVs) which usually are no larger than 20cm and rely on non-traditional shapes to generate lift at very low velocities. This purpose of this work is to describe, in detail with experimental methods, the flow field around a low aspect ratio wing operating at low Reynolds numbers and at high angles of attack. Quantitative measurements are obtained by Three Component Time Resolved Particle Image Velocimetry (3C TR PIV) which describe the mean and turbulent flow field. This research focuses on the leading edge separation zone and the vortex shedding process which occurs at the leading edge. Streamwise wing tip vortices which dominate the lift characteristics are described with flow visualization and 3C TR PIV measurements. Turbulent Kinetic Energy (TKE) is described at the leading edge over several angles of attack. Turbulent Reynolds stresses in all three directions are described over the wing span and several Reynolds numbers. Two primary cyclic processes are observed within the flow field; one low frequency oscillation in the separated region and one high frequency event associated with leading edge vortex formation and convection. Two length scales are proposed and are shown to match well with each other, one based on leading edge vortex shedding frequency and convective velocity and the other based on mean vortex separation distance. A new method of rendering velocity frequency content over large data sets is proposed and used to illustrate the different frequencies observed at the leading edge.

  20. Validity of the modified Reynolds equation for incompressible active lubrication

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Santos, Ilmar

    2016-01-01

    The modified Reynolds equation for active lubrication has been the cornerstone around which the theoretical investigations regarding actively lubricated bearings have evolved over the years. Introduced originally in 1994, it enables to calculate in a simplified manner the bearing pressure field...... as a function of servovalve controlled pressurized oil injection. This article deals with a preliminary critical review of the simplificatory assumptions that are introduced into the modified Reynolds equation in order to model the phenomena taking place in the interface between the injection nozzle...... and the bearing clearance. The analysis is performed by means of direct comparison of the results of the modified Reynolds equation model versus benchmark CFD calculations, applied to a geometry representative of the system analyzed. The results show that the modified Reynolds equation mathematical simplicity...

  1. RANS / LES coupling applied to high Reynolds number turbulent flows of the nuclear industry; Application du couplage RANS / LES aux ecoulements turbulents a haut nombre de Reynolds de l'industrie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Benarafa, Y

    2005-12-15

    The main issue to perform a computational study of high Reynolds numbered turbulent flows consists on predicting their unsteadiness without implying a tremendous computational cost. First, the main drawbacks of large-eddy simulation with standard wall model on a coarse mesh for a plane channel flow are highlighted. To correct these drawbacks two coupling RANS/LES methods have been proposed. The first one relies on a sophisticated wall model (TBLE) which consists on solving Thin Boundary Layer Equations with a RANS type turbulent closure in the near wall region. The second one consists on a RANS/LES methods have been proposed. The second one consists on a RANS/LES coupling method using a forcing term approach. These various approaches have been implemented in the TRIO-U code developed at CEA (French Atomic Center) at Grenoble, France. The studied flow configurations are the fully developed plane channel flow and a flow around a surface-mounted cubical obstacle. Both approaches provide encouraging results and allow a surface-mounted cubical obstacle. Both approaches provide encouraging results and allow unsteady simulations for a low computational cost. (author)

  2. Closure The Definitive Guide

    CERN Document Server

    Bolin, Michael

    2010-01-01

    If you're ready to use Closure to build rich web applications with JavaScript, this hands-on guide has precisely what you need to learn this suite of tools in depth. Closure makes it easy for experienced JavaScript developers to write and maintain large and complex codebases -- as Google has demonstrated by using Closure with Gmail, Google Docs, and Google Maps. Author and Closure contributor Michael Bolin has included numerous code examples and best practices, as well as valuable information not available publicly until now. You'll learn all about Closure's Library, Compiler, Templates, tes

  3. Hybrid Large Eddy Simulation / Reynolds Averaged Navier-Stokes Modeling in Directed Energy Applications

    Science.gov (United States)

    Zilberter, Ilya Alexandrovich

    In this work, a hybrid Large Eddy Simulation / Reynolds-Averaged Navier Stokes (LES/RANS) turbulence model is applied to simulate two flows relevant to directed energy applications. The flow solver blends the Menter Baseline turbulence closure near solid boundaries with a Lenormand-type subgrid model in the free-stream with a blending function that employs the ratio of estimated inner and outer turbulent length scales. A Mach 2.2 mixing nozzle/diffuser system representative of a gas laser is simulated under a range of exit pressures to assess the ability of the model to predict the dynamics of the shock train. The simulation captures the location of the shock train responsible for pressure recovery but under-predicts the rate of pressure increase. Predicted turbulence production at the wall is found to be highly sensitive to the behavior of the RANS turbulence model. A Mach 2.3, high-Reynolds number, three-dimensional cavity flow is also simulated in order to compute the wavefront aberrations of an optical beam passing thorough the cavity. The cavity geometry is modeled using an immersed boundary method, and an auxiliary flat plate simulation is performed to replicate the effects of the wind-tunnel boundary layer on the computed optical path difference. Pressure spectra extracted on the cavity walls agree with empirical predictions based on Rossiter's formula. Proper orthogonal modes of the wavefront aberrations in a beam originating from the cavity center agree well with experimental data despite uncertainty about in flow turbulence levels and boundary layer thicknesses over the wind tunnel window. Dynamic mode decomposition of a planar wavefront spanning the cavity reveals that wavefront distortions are driven by shear layer oscillations at the Rossiter frequencies; these disturbances create eddy shocklets that propagate into the free-stream, creating additional optical wavefront distortion.

  4. On the prediction of turbulent secondary flows

    Science.gov (United States)

    Speziale, C. G.; So, R. M. C.; Younis, B. A.

    1992-01-01

    The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.

  5. Residual Stresses In 3013 Containers

    International Nuclear Information System (INIS)

    Mickalonis, J.; Dunn, K.

    2009-01-01

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  6. Effect of Reynolds Number on Aerodynamics of Airfoil with Gurney Flap

    Directory of Open Access Journals (Sweden)

    Shubham Jain

    2015-01-01

    Full Text Available Steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of variation in Reynolds number on the aerodynamics of the airfoil without and with a Gurney flap of height of 3% chord are presented in this paper. RANS based one-equation Spalart-Allmaras model is used for the computations. Both lift and drag coefficients increase with Gurney flap compared to those without Gurney flap at all Reynolds numbers at all angles of attack. The zero lift angle of attack seems to become more negative as Reynolds number increases due to effective increase of the airfoil camber. However the stall angle of attack decreased by 2° for the airfoil with Gurney flap. Lift coefficient decreases rapidly and drag coefficient increases rapidly when Reynolds number is decreased below critical range. This occurs due to change in flow pattern near Gurney flap at low Reynolds numbers.

  7. Kate Watson on Reynold Humphries’ Hollywood’s Blacklists

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available Reynold Humphries. Hollywood’s Blacklists: A Political and Cultural History. Edinburgh: Edinburgh University Press, 2008. Reynold Humphries’ Hollywood’s Blacklists provides a comprehensive examination of the historical and political ramifications of the blacklisting process and of Communism in the motion picture industry. His section on ‘The Background’ initially sets up just this, making the debate and dispute accessible even to those not au fait with such knowledge. This section is informat...

  8. Reynolds number calculation and applications for curved wall jets

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2014-09-01

    Full Text Available The current paper refers to the preliminary estimation of the Reynolds number for curved wall jets. This, in turn, can be a useful tool for controlling the boundary layer mesh size near a generic curved wall which is wetted by a thin, attached jet. The method relies on analytical calculations that link the local curvature of the wall with the pressure gradient and further, the local Reynolds number. Knowing the local Reynolds number distribution, a CFD user can tailor their mesh size to more exact specifications (e.g. y+=1 for k-omega RANS models and lower the risk that the mesh is too coarse or finer than necessary.

  9. High-Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids

    Science.gov (United States)

    2016-05-05

    AFRL-AFOSR-VA-TR-2016-0192 High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids Marsha Berger NEW YORK UNIVERSITY Final...TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 30/04/2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) High- Reynolds 4. TITLE AND...SUBTITLE High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1

  10. Flow through collapsible tubes at low Reynolds numbers. Applicability of the waterfall model.

    Science.gov (United States)

    Lyon, C K; Scott, J B; Wang, C Y

    1980-07-01

    The applicability of the waterfall model was tested using the Starling resistor and different viscosities of fluids to vary the Reynolds number. The waterfall model proved adequate to describe flow in the Starling resistor model only at very low Reynolds numbers (Reynolds number less than 1). Blood flow characterized by such low Reynolds numbers occurs only in the microvasculature. Thus, it is inappropriate to apply the waterfall model indiscriminately to flow through large collapsible veins.

  11. Professional Closure Beyond State Authorization

    Directory of Open Access Journals (Sweden)

    Gitte Sommer Harrits

    2014-03-01

    Full Text Available For decades, the Weberian approach to the study of professions has been strong, emphasizing state authorization and market monopolies as constituting what is considered a profession. Originally, however, the Weberian conception of closure, or the ways in which a profession is constituted and made separate, was broader. This article suggests a revision of the closure concept, integrating insights from Pierre Bourdieu, and conceptualizing professional closure as the intersection of social, symbolic and legal closure. Based on this revision, this article demonstrates how to apply such a concept in empirical studies. This is done by exploring social, symbolic and legal closure across sixteen professional degree programs. The analyses show a tendency for some overlap between different forms of closure, with a somewhat divergent pattern for legal closure. Results support the argument that we need to study these processes as an intersection of different sources of closure, including capital, lifestyles and discourse

  12. Reynolds Metals Company, Massena, NY

    Science.gov (United States)

    The 1,600-acre former Reynolds Metals Facility is located on the St. Lawrence River, approximately eight miles east of the Village of Massena, New York. The facility, which was constructed in 1958 for the production of aluminum, closed in 2014. It is owned

  13. The evolution of crack-tip stresses during a fatigue overload event

    International Nuclear Information System (INIS)

    Steuwer, A.; Rahman, M.; Shterenlikht, A.; Fitzpatrick, M.E.; Edwards, L.; Withers, P.J.

    2010-01-01

    The mechanisms responsible for the transient retardation or acceleration of fatigue crack growth subsequent to overloading are a matter of intense debate. Plasticity-induced closure and residual stresses have often been invoked to explain these phenomena, but closure mechanisms are disputed, especially under conditions approximating to generalised plane strain. In this paper we exploit synchrotron radiation to report very high spatial resolution two-dimensional elastic strain and stress maps at maximum and minimum loading measured under plane strain during a normal fatigue cycle, as well as during and after a 100% overload event, in ultra-fine grained AA5091 aluminium alloy. These observations provide direct evidence of the material stress state in the vicinity of the crack-tip in thick samples. Significant compressive residual stresses were found both in front of and behind the crack-tip immediately following the overload event. The effective stress intensity at the crack-tip was determined directly from the local stress field measured deep within the bulk (plane strain) by comparison with linear elastic fracture mechanical theory. This agrees well with that nominally applied at maximum load and 100% overload. After overload, however, the stress fields were not well described by classical K fields due to closure-related residual stresses. Little evidence of overload closure was observed sometime after the overload event, in our case possibly because the overload plastic zone was very small.

  14. Tight closure and vanishing theorems

    International Nuclear Information System (INIS)

    Smith, K.E.

    2001-01-01

    Tight closure has become a thriving branch of commutative algebra since it was first introduced by Mel Hochster and Craig Huneke in 1986. Over the past few years, it has become increasingly clear that tight closure has deep connections with complex algebraic geometry as well, especially with those areas of algebraic geometry where vanishing theorems play a starring role. The purpose of these lectures is to introduce tight closure and to explain some of these connections with algebraic geometry. Tight closure is basically a technique for harnessing the power of the Frobenius map. The use of the Frobenius map to prove theorems about complex algebraic varieties is a familiar technique in algebraic geometry, so it should perhaps come as no surprise that tight closure is applicable to algebraic geometry. On the other hand, it seems that so far we are only seeing the tip of a large and very beautiful iceberg in terms of tight closure's interpretation and applications to algebraic geometry. Interestingly, although tight closure is a 'characteristic p' tool, many of the problems where tight closure has proved useful have also yielded to analytic (L2) techniques. Despite some striking parallels, there had been no specific result directly linking tight closure and L∼ techniques. Recently, however, the equivalence of an ideal central to the theory of tight closure was shown to be equivalent to a certain 'multiplier ideal' first defined using L2 methods. Presumably, deeper connections will continue to emerge. There are two main types of problems for which tight closure has been helpful: in identifying nice structure and in establishing uniform behavior. The original algebraic applications of tight closure include, for example, a quick proof of the Hochster-Roberts theorem on the Cohen-Macaulayness of rings of invariants, and also a refined version of the Brianqon-Skoda theorem on the uniform behaviour of integral closures of powers of ideals. More recent, geometric

  15. Effects of Reynolds and Womersley Numbers on the Hemodynamics of Intracranial Aneurysms

    Science.gov (United States)

    Asgharzadeh, Hafez

    2016-01-01

    The effects of Reynolds and Womersley numbers on the hemodynamics of two simplified intracranial aneurysms (IAs), that is, sidewall and bifurcation IAs, and a patient-specific IA are investigated using computational fluid dynamics. For this purpose, we carried out three numerical experiments for each IA with various Reynolds (Re = 145.45 to 378.79) and Womersley (Wo = 7.4 to 9.96) numbers. Although the dominant flow feature, which is the vortex ring formation, is similar for all test cases here, the propagation of the vortex ring is controlled by both Re and Wo in both simplified IAs (bifurcation and sidewall) and the patient-specific IA. The location of the vortex ring in all tested IAs is shown to be proportional to Re/Wo2 which is in agreement with empirical formulations for the location of a vortex ring in a tank. In sidewall IAs, the oscillatory shear index is shown to increase with Wo and 1/Re because the vortex reached the distal wall later in the cycle (higher resident time). However, this trend was not observed in the bifurcation IA because the stresses were dominated by particle trapping structures, which were absent at low Re = 151.51 in contrast to higher Re = 378.79. PMID:27847544

  16. 40 CFR 264.228 - Closure and post-closure care.

    Science.gov (United States)

    2010-07-01

    ... remaining wastes to a bearing capacity sufficient to support final cover; and (iii) Cover the surface....112 must include both a plan for complying with paragraph (a)(1) of this section and a contingent plan... practicably removed at closure; and (ii) The owner or operator must prepare a contingent post-closure plan...

  17. Reynolds Number Effect on Spatial Development of Viscous Flow Induced by Wave Propagation Over Bed Ripples

    Science.gov (United States)

    Dimas, Athanassios A.; Kolokythas, Gerasimos A.

    Numerical simulations of the free-surface flow, developing by the propagation of nonlinear water waves over a rippled bottom, are performed assuming that the corresponding flow is two-dimensional, incompressible and viscous. The simulations are based on the numerical solution of the Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. For the spatial discretization, a hybrid scheme is used where central finite-differences, in the horizontal direction, and a pseudo-spectral approximation method with Chebyshev polynomials, in the vertical direction, are applied. A fractional time-step scheme is used for the temporal discretization. Over the rippled bed, the wave boundary layer thickness increases significantly, in comparison to the one over flat bed, due to flow separation at the ripple crests, which generates alternating circulation regions. The amplitude of the wall shear stress over the ripples increases with increasing ripple height or decreasing Reynolds number, while the corresponding friction force is insensitive to the ripple height change. The amplitude of the form drag forces due to dynamic and hydrostatic pressures increase with increasing ripple height but is insensitive to the Reynolds number change, therefore, the percentage of friction in the total drag force decreases with increasing ripple height or increasing Reynolds number.

  18. Crack closure and growth behavior of short fatigue cracks under random loading (part I : details of crack closure behavior)

    International Nuclear Information System (INIS)

    Lee, Shin Young; Song, Ji Ho

    2000-01-01

    Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow-and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks

  19. The influence of Reynolds numbers on resistance properties of jet pumps

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, G. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); State Key laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry (China)

    2014-01-29

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  20. RCRA corrective action and closure

    International Nuclear Information System (INIS)

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators' interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE's permitted facilities and interim status facilities

  1. Quarter elliptical crack growth using three dimensional finite element method and crack closure technique

    Energy Technology Data Exchange (ETDEWEB)

    Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)

    2014-06-15

    Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.

  2. Post-operative analgesic requirement in non-closure and closure of peritoneum during open appendectomy

    International Nuclear Information System (INIS)

    Khan, A.W.; Maqsood, R.; Saleem, M.M.

    2017-01-01

    To compare the mean post-operative analgesic requirement in non-closure and closure of peritoneum during open appendectomy. Study Design: Randomized controlled trial. Place and Duration of Study: Department of General Surgery Combined Military Hospital Quetta, from 1st August 2014 to 30th April 2015. Material and Methods: A total of 60 patients were included in this study and were divided into two groups of 30 each. Patients in group A underwent open appendectomy with closure of peritoneum while patients in group B had non-closure of peritoneum during the same procedure. Post-operatively, pain severity was assessed on visual analogue scale (VAS) numeric pain distress scale. On presence of VAS numeric pain distress scale between 5 to 7, intramuscular (IM) diclofenac sodium was given and on score >7, intravascular (IV) tramadol was given. The final outcome was measured at day 0 and day 1. Results: Pain score and analgesic requirements were significantly less in non-closure group than closure group on day 0 and day 1, showing statistically significant difference between the two groups. Conclusion: Mean post-operative analgesic requirement is significantly less in non-closure group as compared to closure group during open appendectomy. (author)

  3. Primary closure after carotid endarterectomy is not inferior to other closure techniques.

    Science.gov (United States)

    Avgerinos, Efthymios D; Chaer, Rabih A; Naddaf, Abdallah; El-Shazly, Omar M; Marone, Luke; Makaroun, Michel S

    2016-09-01

    Primary closure after carotid endarterectomy (CEA) has been much maligned as an inferior technique with worse outcomes than in patch closure. Our purpose was to compare perioperative and long-term results of different CEA closure techniques in a large institutional experience. A consecutive cohort of CEAs between January 1, 2000, and December 31, 2010, was retrospectively analyzed. Closure technique was used to divide patients into three groups: primary longitudinal arteriotomy closure (PRC), patch closure (PAC), and eversion closure (EVC). End points were perioperative events, long-term strokes, and restenosis ≥70%. Multivariate regression models were used to assess the effect of baseline predictors. There were 1737 CEA cases (bilateral, 143; mean age, 71.4 ± 9.3 years; 56.2% men; 35.3% symptomatic) performed during the study period with a mean clinical follow-up of 49.8 ± 36.4 months (range, 0-155 months). More men had primary closure, but other demographic and baseline symptoms were similar between groups. Half the patients had PAC, with the rest evenly distributed between PRC and EVC. The rate of nerve injury was 2.7%, the rate of reintervention for hematoma was 1.5%, and the length of hospital stay was 2.4 ± 3.0 days, with no significant differences among groups. The combined stroke and death rate was 2.5% overall and 3.9% and 1.7% in the symptomatic and asymptomatic cohort, respectively. Stroke and death rates were similar between groups: PRC, 11 (2.7%); PAC, 19 (2.2%); EVC, 13 (2.9%). Multivariate analysis showed baseline symptomatic disease (odds ratio, 2.4; P = .007) and heart failure (odds ratio, 3.1; P = .003) as predictors of perioperative stroke and death, but not the type of closure. Cox regression analysis demonstrated, among other risk factors, no statin use (hazard ratio, 2.1; P = .008) as a predictor of ipsilateral stroke and severe (glomerular filtration rate <30 mL/min/1.73 m(2)) renal insufficiency (hazard ratio, 2.6; P

  4. The Influence of Realistic Reynolds Numbers on Slat Noise Simulations

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.

    2012-01-01

    The slat noise from the 30P/30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. Varying the Reynolds number from 1.71 to 12.0 million based on the stowed chord resulted in slight changes in the radiated noise. Tonal features in the spectra were robust and evident for all Reynolds numbers and even when a spanwise flow was imposed. The general trends observed in near-field fluctuations were also similar for all the different Reynolds numbers. Experiments on simplified, subscale high-lift systems have exhibited noticeable dependencies on the Reynolds number and tripping, although primarily for tonal features rather than the broadband portion of the spectra. Either the 30P/30N model behaves differently, or the computational model is unable to capture these effects. Hence, the results underscore the need for more detailed measurements of the slat cove flow.

  5. A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content.

    Science.gov (United States)

    Negi, Sanjana; Tak, Himanshu; Ganapathi, T R

    2018-03-01

    MusaSNAC1 function in H 2 O 2 mediated stomatal closure and promote drought tolerance by directly binding to CGT[A/G] motif in regulatory region of multiple stress-related genes. Drought is a abiotic stress-condition, causing reduced plant growth and diminished crop yield. Guard cells of the stomata control photosynthesis and transpiration by regulating CO 2 exchange and water loss, thus affecting growth and crop yield. Roles of NAC (NAM, ATAF1/2 and CUC2) protein in regulation of stress-conditions has been well documented however, their control over stomatal aperture is largely unknown. In this study we report a banana NAC protein, MusaSNAC1 which induced stomatal closure by elevating H 2 O 2 content in guard cells during drought stress. Overexpression of MusaSNAC1 in banana resulted in higher number of stomata closure causing reduced water loss and thus elevated drought-tolerance. During drought, expression of GUS (β-glucuronidase) under P MusaSNAC1 was remarkably elevated in guard cells of stomata which correlated with its function as a transcription factor regulating stomatal aperture closing. MusaSNAC1 is a transcriptional activator belonging to SNAC subgroup and its 5'-upstream region contain multiple Dof1 elements as well as stress-associated cis-elements. Moreover, MusaSNAC1 also regulate multiple stress-related genes by binding to core site of NAC-proteins CGT[A/G] in their 5'-upstream region. Results indicated an interesting mechanism of drought tolerance through stomatal closure by H 2 O 2 generation in guard cells, regulated by a NAC-protein in banana.

  6. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...

  7. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....

  8. Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers

    Science.gov (United States)

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0098 Flapping and Rotary Wing Lift at Low Reynolds Number Anya Jones MARYLAND UNIV COLLEGE PARK Final Report 02/26/2016...Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers (YIP) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0251 5c. PROGRAM...necessary if the abstract is to be limited. Standard Form 298 Back (Rev. 8/98) Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers

  9. Reynolds number dependency in equilibrium two-dimensional turbulence

    Science.gov (United States)

    Bracco, A.; McWilliams, J.

    2009-04-01

    We use the Navier-Stokes equations for barotropic turbulence as a zero-order approximation of chaotic space-time patterns and equilibrium distributions that mimic turbulence in geophysical flows. In this overly-simplified set-up for which smooth-solutions exist, we investigate if is possible to bound the uncertainty associated with the numerical domain discretization, i.e. with the limitation imposed by the Reynolds number range we can explore. To do so we analyze a series of stationary barotropic turbulence simulations spanning a large range of Reynolds numbers and run over a three year period for over 300,000 CPU hours. We find a persistent Reynolds number dependency in the energy power spectra and second order vorticity structure function, while distributions of dynamical quantities such as velocity, vorticity, dissipation rates and others are invariant in shape and have variances scaling with the viscosity coefficient according to simple power-laws. The relevance to this work to the possibility of conceptually reducing uncertainties in climate models will be discussed.

  10. A Cryogenic High-Reynolds Turbulence Experiment at CERN

    CERN Document Server

    Bézaguet, Alain-Arthur; Knoops, S; Lebrun, P; Pezzetti, M; Pirotte, O; Bret, J L; Chabaud, B; Garde, G; Guttin, C; Hébral, B; Pietropinto, S; Roche, P; Barbier-Neyret, J P; Baudet, C; Gagne, Y; Poulain, C; Castaing, B; Ladam, Y; Vittoz, F

    2002-01-01

    The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively ...

  11. Reynolds-number dependence of turbulence enhancement on collision growth

    Directory of Open Access Journals (Sweden)

    R. Onishi

    2016-10-01

    Full Text Available This study investigates the Reynolds-number dependence of turbulence enhancement on the collision growth of cloud droplets. The Onishi turbulent coagulation kernel proposed in Onishi et al. (2015 is updated by using the direct numerical simulation (DNS results for the Taylor-microscale-based Reynolds number (Reλ up to 1140. The DNS results for particles with a small Stokes number (St show a consistent Reynolds-number dependence of the so-called clustering effect with the locality theory proposed by Onishi et al. (2015. It is confirmed that the present Onishi kernel is more robust for a wider St range and has better agreement with the Reynolds-number dependence shown by the DNS results. The present Onishi kernel is then compared with the Ayala–Wang kernel (Ayala et al., 2008a; Wang et al., 2008. At low and moderate Reynolds numbers, both kernels show similar values except for r2 ∼ r1, for which the Ayala–Wang kernel shows much larger values due to its large turbulence enhancement on collision efficiency. A large difference is observed for the Reynolds-number dependences between the two kernels. The Ayala–Wang kernel increases for the autoconversion region (r1, r2 < 40 µm and for the accretion region (r1 < 40 and r2 > 40 µm; r1 > 40 and r2 < 40 µm as Reλ increases. In contrast, the Onishi kernel decreases for the autoconversion region and increases for the rain–rain self-collection region (r1, r2 > 40 µm. Stochastic collision–coalescence equation (SCE simulations are also conducted to investigate the turbulence enhancement on particle size evolutions. The SCE with the Ayala–Wang kernel (SCE-Ayala and that with the present Onishi kernel (SCE-Onishi are compared with results from the Lagrangian Cloud Simulator (LCS; Onishi et al., 2015, which tracks individual particle motions and size evolutions in homogeneous isotropic turbulence. The SCE-Ayala and SCE-Onishi kernels show consistent

  12. Optimization of the Closure-Weld Region of cylindrical Containers for Long-Term Corrosion Resistance

    International Nuclear Information System (INIS)

    Zekai Ceylan; Mohamed B. Trabia

    2001-01-01

    Welded cylindrical containers are susceptible to stress corrosion cracking (SCC) in the closure-weld area. An induction coil heating technique may be used to relieve the residual stresses in the closure-weld. This technique involves localized heating of the material by the surrounding coils. The material is then cooled to room temperature by quenching. A two-dimensional axisymmetric finite element model is developed to study the effects of induction coil heating and subsequent quenching. The finite element results are validated through an experimental test. The parameters of the design are tuned to maximize the compressive stress from the outer surface to a depth that is equal to the long-term general corrosion rate of Alloy 22 (Appendix A) multiplied by the desired container lifetime. The problem is subject to geometrical and stress constraints. Two different solution methods are implemented for this purpose. First, off-the-shelf optimization software is used to obtain an optimum solution. These results are not satisfactory because of the highly nonlinear nature of the problem. The paper proposes a novel alternative: the Successive Heuristic Quadratic Approximation (SHQA) technique. This algorithm combines successive quadratic approximation with an adaptive random search. Examples and discussion are included

  13. Parametric Study of Flow Control Over a Hump Model Using an Unsteady Reynolds- Averaged Navier-Stokes Code

    Science.gov (United States)

    Rumsey, Christopher L.; Greenblatt, David

    2007-01-01

    This is an expanded version of a limited-length paper that appeared at the 5th International Symposium on Turbulence and Shear Flow Phenomena by the same authors. A computational study was performed for steady and oscillatory flow control over a hump model with flow separation to assess how well the steady and unsteady Reynolds-averaged Navier-Stokes equations predict trends due to Reynolds number, control magnitude, and control frequency. As demonstrated in earlier studies, the hump model case is useful because it clearly demonstrates a failing in all known turbulence models: they under-predict the turbulent shear stress in the separated region and consequently reattachment occurs too far downstream. In spite of this known failing, three different turbulence models were employed to determine if trends can be captured even though absolute levels are not. Overall the three turbulence models showed very similar trends as experiment for steady suction, but only agreed qualitatively with some of the trends for oscillatory control.

  14. Direct measurements of mean Reynolds stress and ripple roughness in the presence of energetic forcing by surface waves

    Science.gov (United States)

    Scully, Malcolm; Trowbridge, John; Sherwood, Christopher R.; Jones, Katie R.; Traykovski, Peter A.

    2018-01-01

    Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave‐exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave‐current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two‐dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub‐orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub‐orbital ripples. Paradoxically, the dominant along‐shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave‐exposed environments with heterogeneous roughness.

  15. On the motion of non-spherical particles at high Reynolds number

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    This paper contains a critical review of available methodology for dealing with the motion of non-spherical particles at higher Reynolds numbers in the Eulerian- Lagrangian methodology for dispersed flow. First, an account of the various attempts to classify the various shapes and the efforts...... motion it is necessary to account for the non-coincidence between the center of pressure and center of gravity which is a direct consequence of the inertial pressure forces associated with particles at high Reynolds number flow. Extensions for non-spherical particles at higher Reynolds numbers are far...

  16. The distribution of wall shear stress downstream of a change in roughness

    International Nuclear Information System (INIS)

    Loureiro, J.B.R.; Sousa, F.B.C.C.; Zotin, J.L.Z.; Silva Freire, A.P.

    2010-01-01

    In the present work, six different experimental techniques are used to characterize the non-equilibrium flow downstream of a rough-to-smooth step change in surface roughness. Over the rough surface, wall shear stress results obtained through the form drag and the Reynolds stress methods are shown to be mutually consistent. Over the smooth surface, reference wall shear stress data is obtained through two optical methods: linear velocity profiles obtained through laser-Doppler anemometry and a sensor surface, the diverging fringe Doppler sensor. The work shows that the two most commonly used methods to determine the wall shear stress, the log-law gradient method and the Reynolds shear stress method, are completely inappropriate in the developing flow region. Preston tubes, on the other hand, are shown to perform well in the region of a non-equilibrium flow.

  17. Ring closure in actin polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Supurna, E-mail: supurna@rri.res.in [Raman Research Institute, Bangalore 560080 (India); Chattopadhyay, Sebanti [Doon University, Dehradun 248001 (India)

    2017-03-18

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers. - Highlights: • Ring closure of biopolymers. • Worm like chain model. • Predictions for experiments.

  18. Irrecoverable pressure loss coefficients for two out-of-plane piping elbows at high Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Coffield, R.D.; Hammond, R.B.; McKeown, P.T.

    1999-02-08

    Pressure drops of multiple piping elbows were experimentally determined for high Reynolds number flows. The testing described has been performed in order to reduce uncertainties in the currently used methods for predicting irrecoverable pressure losses and also to provide a qualification database for computational fluid dynamics (CFD) computer codes. The earlier high Reynolds number correlations had been based on extrapolations over several orders of magnitude in Reynolds number from where the original database existed. Recent single elbow test data shows about a factor of two lower elbow pressure loss coefficient (at 40x 106 Reynolds number) than those from current correlations. This single piping elbow data has been extended in this study to a multiple elbow configuration of two elbows that are 90o out-of-plane relative to each other. The effects of separation distance and Reynolds number have been correlated and presented in a form that can be used for design application. Contrary to earlier extrapolations from low Reynolds numbers (Re c 1.0x 106), a strong Reynolds number dependence was found to exist. The combination of the high Reynolds number single elbow data with the multiple elbow interaction effects measured in this study shows that earlier design correlations are conservative by significant margins at high Reynolds numbers. Qualification of CFD predictions with this new high Reynolds number database will help guide the need for additional high Reynolds number testing of other piping configurations. The study also included velocity measurements at several positions downstream of the first and second test elbows using an ultrasonic flowmeter. Reasonable agreement after the first test elbow was found relative to flow fields that are known to exist from low Reynolds number visual tests and also from CFD predictions. This data should help to qualify CFD predictions of the three-dimensional flow stream downstream of the second test elbow.

  19. Tubular closure device

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1982-01-01

    This invention relates to a closure mechanism for closing openings such as the bore of a conduit and for releasably securing members within the bore. More particularly, this invention relates to a closure mechanism for tubular irradiation surveillance specimen assembly holders used in nuclear reactors

  20. Unsteady behavior of a confined jet in a cavity at moderate Reynolds numbers

    International Nuclear Information System (INIS)

    Bouchet, G; Climent, E

    2012-01-01

    Self-sustained oscillations in the sinuous mode are observed when a jet impinges on a rigid surface. Confined jet instability is experimentally and numerically investigated here at moderate Reynolds numbers. When the Reynolds number is varied, the dynamic response of the jet is unusual in comparison with that of similar configurations (hole-tone, jet edge, etc). Modal transitions are clearly detected when the Reynolds number is varied. However, these transitions result in a reduction of the frequency, which means that the wavelength grows with Reynolds number. Moreover, the instability that sets in at low Reynolds number, as a subcritical Hopf bifurcation, disappears only 25% above the threshold. Then, the flow becomes steady again and symmetric. This atypical behavior is compared with our previous study on a submerged fountain (Bouchet et al 2002 Europhys. Lett. 59 826). (paper)

  1. Low Reynolds Number Vehicles

    Science.gov (United States)

    1985-02-01

    of the blade. The Darrieus VAWT has more complex aerodynamics. This type of wind turbine produces power as a result of the tangential thrust as...Horizontal Axis Propeller-Type b) Verticle Axis Darrieus -Type Figure 78. Wind Turbine Configurations 0 6 Q K [_ 2 -, C 4 UJ UJ...Sailplanes 23 5.2 Wind Turbines 23 6. CONCLUDING REMARKS 24 7. RECOMMENDATIONS FOR FUTURE RESEARCH 24 REFERENCES 25 FIGURES 32 yv/ LOW REYNOLDS NUMBER

  2. Rice Stomatal Closure Requires Guard Cell Plasma Membrane ATP-Binding Cassette Transporter RCN1/OsABCG5.

    Science.gov (United States)

    Matsuda, Shuichi; Takano, Sho; Sato, Moeko; Furukawa, Kaoru; Nagasawa, Hidetaka; Yoshikawa, Shoko; Kasuga, Jun; Tokuji, Yoshihiko; Yazaki, Kazufumi; Nakazono, Mikio; Takamure, Itsuro; Kato, Kiyoaki

    2016-03-07

    Water stress is one of the major environmental stresses that affect agricultural production worldwide. Water loss from plants occurs primarily through stomatal pores. Here, we report that an Oryza sativa half-size ATP-binding cassette (ABC) subfamily G protein, RCN1/OsABCG5, is involved in stomatal closure mediated by phytohormone abscisic acid (ABA) accumulation in guard cells. We found that the GFP-RCN1/OsABCG5-fusion protein was localized at the plasma membrane in guard cells. The percentage of guard cell pairs containing both ABA and GFP-RCN1/OsABCG5 increased after exogenous ABA treatment, whereas they were co-localized in guard cell pairs regardless of whether exogenous ABA was applied. ABA application resulted in a smaller increase in the percentage of guard cell pairs containing ABA in rcn1 mutant (A684P) and RCN1-RNAi than in wild-type plants. Furthermore, polyethylene glycol (drought stress)-inducible ABA accumulation in guard cells did not occur in rcn1 mutants. Stomata closure mediated by exogenous ABA application was strongly reduced in rcn1 mutants. Finally, rcn1 mutant plants had more rapid water loss from detached leaves than the wild-type plants. These results indicate that in response to drought stress, RCN1/OsABCG5 is involved in accumulation of ABA in guard cells, which is indispensable for stomatal closure. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. Effects of the Reynolds number on two-dimensional dielectrophoretic motions of a pair of particles under a uniform electric field

    International Nuclear Information System (INIS)

    Kang, Sang Mo; Mannoor, Madhusoodanan; Maniyeri, Ranjith Maniyeri

    2016-01-01

    This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re cr ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.

  4. Effects of the Reynolds number on two-dimensional dielectrophoretic motions of a pair of particles under a uniform electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang Mo; Mannoor, Madhusoodanan [Dong-A University, Busan (Korea, Republic of); Maniyeri, Ranjith Maniyeri [National Institute of Technology Karnataka, Mangalore (India)

    2016-07-15

    This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re{sub cr} ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.

  5. Vortex Shedding from Tapered Cylinders at high Reynolds Numbers

    DEFF Research Database (Denmark)

    Johansson, Jens; Andersen, Michael Styrk; Christensen, Silas Sverre

    2015-01-01

    percent for strakes of circular cross section. The present paper argues that this height can be reduced for structures where the critical wind velocity for vortex shedding is in the Supercritical Reynolds number regime. The present investigations are aimed for suppressing VIV on offshore wind turbine......^5 (Supercritical). Results indicate that circular strakes with a diameter corresponding to 3 percent of the structures mean diameter can be used to efficiently reduce VIV in the Supercritical Reynolds number regime....

  6. CIRSE Vascular Closure Device Registry

    NARCIS (Netherlands)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. The CIRSE registry of closure devices

  7. Experimental study on the Reynolds number dependence of turbulent mixing in a rod bundle

    International Nuclear Information System (INIS)

    Silin, Nicolas; Juanico, Luis

    2006-01-01

    An experimental study for Reynolds number dependence of the turbulent mixing between fuel-bundle subchannels, was performed. The measurements were done on a triangular array bundle with a 1.20 pitch to diameter relation and 10 mm rod diameter, in a low-pressure water loop, at Reynolds numbers between 1.4 x 10 3 and 1.3 x 10 5 . The high accuracy of the results was obtained by improving a thermal tracing technique recently developed. The Reynolds exponent on the mixing rate correlation was obtained with two-digit accuracy for Reynolds numbers greater than 3 x 10 3 . It was also found a marked increase in the mixing rate for lower Reynolds numbers. The weak theoretical base of the accepted Reynolds dependence was pointed out in light of the later findings, as well as its ambiguous supporting experimental data. The present results also provide indirect information about dominant large scale flow pulsations at different flow regimes

  8. Effects of droplet interactions on droplet transport at intermediate Reynolds numbers

    Science.gov (United States)

    Shuen, Jian-Shun

    1987-01-01

    Effects of droplet interactions on drag, evaporation, and combustion of a planar droplet array, oriented perpendicular to the approaching flow, are studied numerically. The three-dimensional Navier-Stokes equations, with variable thermophysical properties, are solved using finite-difference techniques. Parameters investigated include the droplet spacing, droplet Reynolds number, approaching stream oxygen concentration, and fuel type. Results are obtained for the Reynolds number range of 5 to 100, droplet spacings from 2 to 24 diameters, oxygen concentrations of 0.1 and 0.2, and methanol and n-butanol fuels. The calculations show that the gasification rates of interacting droplets decrease as the droplet spacings decrease. The reduction in gasification rates is significant only at small spacings and low Reynolds numbers. For the present array orientation, the effects of interactions on the gasification rates diminish rapidly for Reynolds numbers greater than 10 and spacings greater than 6 droplet diameters. The effects of adjacent droplets on drag are shown to be small.

  9. Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Fulton, Jesse A.; Edwards, Jack R.; Hassan, Hassan A.; Rockwell, Robert; Goyne, Christopher; McDaniel, James; Smith, Chad; Cutler, Andrew; Johansen, Craig; Danehy, Paul M.; hide

    2012-01-01

    Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused

  10. Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor

    OpenAIRE

    Zhang, K.; Ghobadian, A.; Nouri, J. M.

    2017-01-01

    A comparative study of two combustion models based on non-premixed assumption and partially premixed assumptions using the overall models of Zimont Turbulent Flame Speed Closure Method (ZTFSC) and Extended Coherent Flamelet Method (ECFM) are conducted through Reynolds stress turbulence modelling of Tay model gas turbine combustor for the first time. The Tay model combustor retains all essential features of a realistic gas turbine combustor. It is seen that the non-premixed combustion model fa...

  11. Turbulent oscillating channel flow subjected to a free-surface stress.

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; Armenio, V.

    2010-01-01

    The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number

  12. Three-dimensional study of flow past a square cylinder at low Reynolds numbers

    International Nuclear Information System (INIS)

    Saha, A.K.; Biswas, G.; Muralidhar, K.

    2003-01-01

    The spatial evolution of vortices and transition to three-dimensionality in the wake of a square cylinder have been numerically studied. A Reynolds number range between 150 and 500 has been considered. Starting from the two-dimensional Karman vortex street, the transition to three-dimensionality is found to take place at a Reynolds number between 150 and 175. The three-dimensional wake of the square cylinder has been characterized using indicators appropriate for the wake of a bluff body as described by the earlier workers. In these terms, the secondary vortices of Mode-A are seen to persist over the Reynolds number range of 175-240. At about a Reynolds number of 250, Mode-B secondary vortices are present, these having predominantly small-scale structures. The transitional flow around a square cylinder exhibits an intermittent low frequency modulation due to the formation of a large-scale irregularity in the near-wake, called vortex dislocation. The superposition of vortex dislocation and the Mode-A vortices leads to a new pattern, labelled as Mode-A with dislocations. The results for the square cylinder are in good accordance with the three-dimensional modes of transition that are well-known in the circular cylinder wake. In the case of a circular cylinder, the transition from periodic vortex shedding to Mode-A is characterized by a discontinuity in the Strouhal number-Reynolds number relationship at about a Reynolds of 190. The transition from Mode-A to Mode-B is characterized by a second discontinuity in the frequency law at a Reynolds number of ∼250. The numerical computations of the present study with a square cylinder show that the values of the Strouhal number and the time-averaged drag-coefficient are closely associated with each other over the range of Reynolds numbers of interest and reflect the spatial structure of the wake

  13. The neurological legacy of John Russell Reynolds (1828-1896).

    Science.gov (United States)

    Eadie, M J

    2007-04-01

    Sir John Russell Reynolds was an eminent and highly influential physician in the Victorian era who held the Presidencies of the Royal College of Physicians of London, and of the British Medical Association. He was the protégée of the great experimental physiologist, Marshall Hall, who discovered the reflex arc, and succeeded to Hall's clinical practice in London. Reynolds' thought and clinical activities linked the emerging British neurology of the first half of the 19th century with its blossoming, particularly in London, from 1860 onwards. In his writings Reynolds was the first English author to apply the approach to classification of neurological disorders that is still often used, though now in modified form. He was also the first to enunciate the notion of positive and negative symptoms arising from neurological disease and to suggest their pathogenesis, and was arguably the originator of the influential concept that an idiopathic disease, epilepsy, existed, one to be distinguished from 'epileptiform' seizures due to brain pathology.

  14. The Penguin: a Low Reynolds Number Powered Glider for Station Keeping Missions

    Science.gov (United States)

    Costello, J. K.; Greene, D. W.; Lee, T. T.; Matier, P. T.; Mccarthy, T. R.; Mcguire, R. J.; Schuette, M. J.

    1990-01-01

    The Penguin is a low Reynolds number (approx. 100,000) remotely piloted vehicle (RPV). It was designed to fly three laps indoors around two pylons in a figure-eight course while maximizing loiter time. The Penguin's low Reynolds number mission is an important one currently being studied for possible future flights in the atmospheres of other planets and for specialized military missions. Although the Penguin's mission seemed quite simple at first, the challenges of such low Reynolds number flight have proven to be quite unique. In addition to the constraint of low Reynolds number flight, the aircraft had to be robust in its control, highly durable, and it had to carry a small instrument package. The Penguin's flight plan, concept, performance, aerodynamic design, weight estimation, structural design, propulsion, stability and control, and cost estimate is detailed.

  15. Reynolds-Averaged Navier-Stokes Analysis of Zero Efflux Flow Control over a Hump Model

    Science.gov (United States)

    Rumsey, Christopher L.

    2006-01-01

    The unsteady flow over a hump model with zero efflux oscillatory flow control is modeled computationally using the unsteady Reynolds-averaged Navier-Stokes equations. Three different turbulence models produce similar results, and do a reasonably good job predicting the general character of the unsteady surface pressure coefficients during the forced cycle. However, the turbulent shear stresses are underpredicted in magnitude inside the separation bubble, and the computed results predict too large a (mean) separation bubble compared with experiment. These missed predictions are consistent with earlier steady-state results using no-flow-control and steady suction, from a 2004 CFD validation workshop for synthetic jets.

  16. Observations on early and delayed colostomy closure.

    Science.gov (United States)

    Tade, A O; Salami, B A; Ayoade, B A

    2011-06-01

    Traditional treatment of a variety of colorectal pathologies had included a diverting colostomy that was closed eight or more weeks later during a readmission. The aim of this retrospective study was to determine the outcomes of early colostomy closure and delayed colostomy closure in patients with temporary colostomies following traumatic and non-traumatic colorectal pathologies. In this study early colostomy closure was the closure of a colostomy within three weeks of its construction, while delayed colostomy closure referred to closure after 3 weeks. Complete records of the 37 adult patients who had temporary colostomy constructed and closed between Jan. 1997 December 2003 for various colorectal pathologies were studied. Fourteen patients had early colostomy closure while 23 had delayed closure. In the early colostomy closure group there were 10 men and 4 women. The mean age of the patients was 28yr with a range of 18-65yr. Colostomies were closed 9-18 days after initial colostomy construction. There was no mortality. Morbidity rate 28.6% (4 out of 14). There were two faecal fistulas (14.3%). Twenty-three patients had delayed colostomy closure 8 weeks to 18 months after initial colostomy construction. These were patients unfit for early surgery after initial colostomy construction because of carcinoma, significant weight loss, or sepsis. There was no mortality. Morbidity rate was 26.1%. There were 3 faecal fistulas (13.2%). Outcomes following early colostomy closure and delayed closure were comparable. Patients fit for surgery should have early closure whilst patients who may have compromised health should have delayed closure.

  17. Sternal exploration or closure

    Science.gov (United States)

    VAC - vacuum-assisted closure - sternal wound; Sternal dehiscence; Sternal infection ... in the wound to look for signs of infection Remove dead or infected ... use a VAC (vacuum-assisted closure) dressing. It is a negative ...

  18. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    Science.gov (United States)

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence-Chemistry Interaction in High- Reynolds -Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number 5a. CONTRACT NUMBER turbulent...for public release Final Report: Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number turbulent partially premixed

  19. Preliminary creep and pillar closure data for shales

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Russell, J.E.

    1987-10-01

    The results of fourteen laboratory creep tests on model pillars of four different shales are reported. Initial pillar stresses range from 6.9 MPa (1000 psi) to 69 MPa (10,000 psi) and temperatures range from ambient to 100 0 C. Laboratory response data are used to evaluate the parameters in the transient power-law pillar closure equation similar to that previously used for model pillars of rock salt. The response of the model pillars of shale shows many of the same characteristics as for rock salt. Deformation is enhanced by higher stresses and temperatures, although the shale pillars are not as sensitive to either stress or temperature as are pillars of rock salt. These test results must be considered very preliminary since they represent the initial, or scoping, phase of a comprehensive model pillar test program that will lead to the development and validation of creep laws for clay-rich rocks. 11 refs., 9 figs., 7 tabs

  20. Mass transfer in wetted-wall columns: correlations at high Reynolds numbers

    DEFF Research Database (Denmark)

    Nielsen, Christian H.E.; Kiil, Søren; Thomsen, Henrik W.

    1998-01-01

    (G)) were determined. In dimensionless form, the correlations are given by Sh(L) = 0.01613 Re-G(0.664) Re-L(0.426) Sc-L(0.5) Sh(G) = 0.00031 Re-G(1.05) Re-L(0.207) Sc-G(0.5) and are valid at gas-phase Reynolds numbers from 7500 to 18,300 and liquid-phase Reynolds numbers from 4000 to 12,000, conditions...... of industrial relevance. To our knowledge, no correlations for Sh(G) have been reported in the literature which are valid at such high Reynolds numbers. The wetted-wall column was equipped with six intermediate measuring positions for gas and two for liquid samples, giving rise to a high accuracy...... of the obtained correlations. Our data showed that Sh(L) and Sh(G) both depend on Re-G and Re-L due to changes in the interfacial area at the high Reynolds numbers employed. The presence of inert particles in the liquid-phase may influence the rate of mass transport, and experimental work was initiated to study...

  1. Full closure strategic analysis.

    Science.gov (United States)

    2014-07-01

    The full closure strategic analysis was conducted to create a decision process whereby full roadway : closures for construction and maintenance activities can be evaluated and approved or denied by CDOT : Traffic personnel. The study reviewed current...

  2. Scalp Wound Closure with K wires: An alternative easier method to scalp wound closure.

    Science.gov (United States)

    Ramesh, S; Ajik, S

    2012-12-01

    Scalp defects and lacerations present a reconstructive challenge to plastic surgeons. Many methods have been described from the use of skin grafting to rotation flaps. Here we present a method of closure of a contaminated scalp wound with the use of Kirschner wires. In our case, closure of scalp laceration was made possible with the use of 1.4 Kirschner wires and cable tie/ zip tie fasteners. The duration to closure of wound was 10 days. In reconstructing the scalp defect, this method was found to adhere to principles of scalp reconstruction. There were no post operative complications found from the procedure. On initial application on the edge of the wound, tension applied caused the K wires to cut through the wound edge. On replacement of K wires 1cm away from wound edge the procedure was not plagued by any further complication. In conclusion we find scalp closure with Kirschner wires are a simple and effective method for scalp wound closure.

  3. Revisit to Grad's Closure and Development of Physically Motivated Closure for Phenomenological High-Order Moment Model

    International Nuclear Information System (INIS)

    Myong, R. S.; Nagdewe, S. P.

    2011-01-01

    The Grad's closure for the high-order moment equation is revisited and, by extending his theory, a physically motivated closure is developed for the one-dimensional velocity shear gas flow. The closure is based on the physical argument of the relative importance of various terms appearing in the moment equation. Also, the closure is derived such that the resulting theory may be inclusive of the well established linear theory (Navier-Stokes-Fourier) as limiting case near local thermal equilibrium.

  4. Reynolds Adolescent Depression Scale - Second Edition: initial validation of the Korean version.

    Science.gov (United States)

    Hyun, Myung-Sun; Nam, Kyoung-A; Kang, Hee Sun; Reynolds, William M

    2009-03-01

    This paper is a report of a study conducted to test the validity and reliability of the Reynolds Adolescent Depression Scale - Second Edition in Korean culture. Depression is a significant mental health problem in adolescents. The Reynolds Adolescent Depression Scale - Second Edition has been shown to be a useful tool to assess depression in adolescents, with extensive research on this measure having been conducted in western cultures. Measures developed in western cultures need to be tested and validated before being used in Asian cultures. The participants were a convenience sample of 440 Korean adolescents with a mean age of 13.78 years (sd = 0.95) from grades 7 to 9 in three public middle schools in South Korea. A cross-sectional design was used. Back-translation was used to create the Korean version, with additional testing for cultural meaning and comprehension. The data were collected at the end of 2004. Internal consistency reliability for the Korean version of the Reynolds Adolescent Depression Scale - Second Edition was 0.89, with subscale reliability ranging from 0.66 to 0.81. Evidence for criterion-related, convergent and discriminant validity for the Korean version of the Reynolds Adolescent Depression Scale - Second Edition was found. Confirmatory factor analysis supported the 4-factor structure of Reynolds Adolescent Depression Scale - Second Edition. Our results support the validity and reliability for the Korean version of the Reynolds Adolescent Depression Scale - Second Edition as a measure of depression and suggest that it can be used to screen students and to evaluate the effectiveness of preventive interventions in school settings.

  5. Negative Magnus Effect on a Rotating Sphere at around the Critical Reynolds Number

    International Nuclear Information System (INIS)

    Muto, Masaya; Watanabe, Hiroaki; Tsubokura, Makoto; Oshima, Nobuyuki

    2011-01-01

    Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow is investigated using large-eddy simulation at three Reynolds numbers of 1.0× 10 4 , 2.0 × 10 5 , and 1.14 × 10 6 . The numerical methods adopted are first validated on a non-rotating sphere and the spatial resolution around the sphere is determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed at around the critical Reynolds number. In the rotating sphere, positive or negative Magnus effect is observed depending on the Reynolds number and the rotating speed imposed. At the Reynolds number in the subcritical or supercritical region, the direction of the lift force follows the Magnus effect to be independent of the rotational speed tested here. In contrast, negative lift is observed at the Reynolds number at the critical region when particular rotating speeds are imposed. The negative Magnus effect is discussed in the context of the suppression or promotion of boundary layer transition around the separation point.

  6. Onset of chaos in helical vortex breakdown at low Reynolds number

    Science.gov (United States)

    Pasche, S.; Avellan, F.; Gallaire, F.

    2018-06-01

    The nonlinear dynamics of a swirling wake flow stemming from a Graboswksi-Berger vortex [Grabowski and Berger, J. Fluid Mech. 75, 525 (1976), 10.1017/S0022112076000360] in a semi-infinite domain is addressed at low Reynolds numbers for a fixed swirl number S =1.095 , defined as the ratio between the characteristic tangential velocity and the centerline axial velocity. In this system, only pure hydrodynamic instabilities develop and interact through the quadratic nonlinearities of the Navier-Stokes equations. Such interactions lead to the onset of chaos at a Reynolds value of Re=220 . This chaotic state is reached by following a Ruelle-Takens-Newhouse scenario, which is initiated by a Hopf bifurcation (the spiral vortex breakdown) as the Reynolds number increases. At larger Reynolds value, a frequency synchronization regime appears followed by a chaotic state again. This scenario is corroborated by nonlinear time series analyses. Stability analysis around the time-average flow and temporal-azimuthal Fourier decomposition of the nonlinear flow distributions both identify successfully the developing vortices and provide deeper insight into the development of the flow patterns leading to this route to chaos. Three single-helical vortices are involved: the primary spiral associated with the spiral vortex breakdown, a downstream spiral, and a near-wake spiral. As the Reynolds number increases, the frequencies of these vortices become closer, increasing their interactions by nonlinearity to eventually generate a strong chaotic axisymmetric oscillation.

  7. Status of Closure Welding Technology of Canister for Transportation and Storage of High Level Radioactive Material and Waste

    International Nuclear Information System (INIS)

    Lee, H. J.; Bang, K. S.; Seo, K. S.; Seo, C. S.

    2010-10-01

    Closure seal welding is one of the key technologies in fabricating and handling the canister which is used for transportation and storage of high radioactive material and waste. Simple industrial fabrication processes are used before filling the radioactive waste into the canister. But, automatic and remote processes should be used after filling the radioactive material because the thickness of canister is not sufficient to shield the high radiation from filled material or waste. In order to simplify the welding process the closure structure of canister and the sealing method are investigated and developed properly. Two types of radioactive materials such as vitrified waste and compacted solid waste are produced in nuclear industry. Because the filling method of two types of waste is different, the shapes of closure and opening of canister and welding method is also different. The canister shape and sealing method should be standardized to standardize the handling facilities and inspection process such as leak test after closure welding. In order to improve the productivity of disposal and compatibility of the canister, the structure and shape of canister should be standardized considering the type of waste. Two kind of welding process such as arc welding and resistance welding are reported and used in the field. In the arc welding process GTAW and PAW are considered proper processes for closure welding. The closure seal welding process can be selected by considering material of canister, thickness of body, productivity, and applicable codes and rules. Because the storage time of nuclear waste in canister is very long, at least 20 years, the long-time corrosion at the weld should be estimated including mechanical integrity. Recently, the mitigation of residual stress around weld region, which causes stress corrosion cracking, is also interesting research issue

  8. A new system for crack closure of cementitious materials using shrinkable polymers

    International Nuclear Information System (INIS)

    Jefferson, Anthony; Joseph, Christopher; Lark, Robert; Isaacs, Ben; Dunn, Simon; Weager, Brendon

    2010-01-01

    This paper presents details of an original crack-closure system for cementitious materials using shrinkable polymer tendons. The system involves the incorporation of unbonded pre-oriented polymer tendons in cementitious beams. Crack closure is achieved by thermally activating the shrinkage mechanism of the restrained polymer tendons after the cement-based material has undergone initial curing. The feasibility of the system is demonstrated in a series of small scale experiments on pre-cracked prismatic mortar specimens. The results from these tests show that, upon activation, the polymer tendon completely closes the preformed macro-cracks and imparts a significant stress across the crack faces. The potential of the system to enhance the natural autogenous crack healing process and generally improve the durability of concrete structures is addressed.

  9. Does the flatness of the velocity derivative blow up at a finite Reynolds number?

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.; Bershadskii, A.

    2006-12-01

    A tentative suggestion is made that the flatness of the velocity derivative could reach an infinite value at finite (though very large) Reynolds number, with possible implications for the singularities of the Navier-Stokes equations. A direct test of this suggestion requires measurements at Reynolds numbers presently outside the experimental capacity, so an alternative suggestion that can be tested at accessible Reynolds numbers is also made. (author)

  10. Advanced lattice Boltzmann scheme for high-Reynolds-number magneto-hydrodynamic flows

    Science.gov (United States)

    De Rosis, Alessandro; Lévêque, Emmanuel; Chahine, Robert

    2018-06-01

    Is the lattice Boltzmann method suitable to investigate numerically high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision operator rapidly yields unstable simulations as the Reynolds number increases. In order to circumvent this limitation, it is here suggested to address the collision procedure in the space of central moments for the fluid dynamics. Therefore, an hybrid lattice Boltzmann scheme is introduced, which couples a central-moment scheme for the velocity with a BGK scheme for the space-and-time evolution of the magnetic field. This method outperforms the standard approach in terms of stability, allowing us to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number while maintaining accuracy and physical consistency.

  11. Nevada Test Site closure program

    International Nuclear Information System (INIS)

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use

  12. Evaluation of a novel trocar-site closure and comparison with a standard Carter-Thomason closure device.

    Science.gov (United States)

    del Junco, Michael; Okhunov, Zhamshid; Juncal, Samuel; Yoon, Renai; Landman, Jaime

    2014-07-01

    The aim of this study was to evaluate and compare a novel trocars-site closure device, the WECK EFx™ Endo Fascial Closure System (EFx) with the Carter-Thomason CloseSure System® (CT) for the closure of laparoscopic trocar site defects created by a 12-mm dilating trocar. We created standardized laparoscopic trocars-site abdominal wall defects in cadaver models using a standard 12-mm laparoscopic dilating trocar. Trocar defects were closed in a randomized fashion using one of the two closure systems. We recorded time and number of attempts needed for complete defect closure. In addition, we recorded the ability to maintain pneumoperitoneum, endoscopic visualization, safety, security, and facility based on the surgeon's subjective evaluations. We compared outcomes for the EFx and CT closure systems. We created 72 standardized laparoscopic trocars-site abdominal wall defects. The mean time needed for complete defect closure was 98.53 seconds (±28.9) for the EFx compared with 133.61 seconds (±54.61) for the CT (Psafety were 2.92 for EFx vs 2.19 for CT (Pvs 1.83 for EFx and CT, respectively (Pvs 2.33 for CT (P=0.022). No significant difference was observed between the EFx and the CT systems for endoscopic visualization (2.28 vs 2.50, P=0.080). In this in vitro cadaver trial, the EFx was superior in terms of time needed to complete defect closure, safety, and facility. CT was superior in terms of maintenance of pneumoperitoneum. Both systems were equal in the number of attempts needed to complete the defect closure and endoscopic visualization.

  13. Comparative study of abdominal cavity temporary closure techniques for damage control

    Directory of Open Access Journals (Sweden)

    MARCELO A. F. RIBEIRO JR

    Full Text Available ABSTRACT The damage control surgery, with emphasis on laparostomy, usually results in shrinkage of the aponeurosis and loss of the ability to close the abdominal wall, leading to the formation of ventral incisional hernias. Currently, various techniques offer greater chances of closing the abdominal cavity with less tension. Thus, this study aims to evaluate three temporary closure techniques of the abdominal cavity: the Vacuum-Assisted Closure Therapy - VAC, the Bogotá Bag and the Vacuum-pack. We conducted a systematic review of the literature, selecting 28 articles published in the last 20 years. The techniques of the bag Bogotá and Vacuum-pack had the advantage of easy access to the material in most centers and low cost, contrary to VAC, which, besides presenting high cost, is not available in most hospitals. On the other hand, the VAC technique was more effective in reducing stress at the edges of lesions, removing stagnant fluids and waste, in addition to acting at the cellular level by increasing proliferation and cell division rates, and showed the highest rates of primary closure of the abdominal cavity.

  14. Occupancy estimation and the closure assumption

    Science.gov (United States)

    Rota, Christopher T.; Fletcher, Robert J.; Dorazio, Robert M.; Betts, Matthew G.

    2009-01-01

    1. Recent advances in occupancy estimation that adjust for imperfect detection have provided substantial improvements over traditional approaches and are receiving considerable use in applied ecology. To estimate and adjust for detectability, occupancy modelling requires multiple surveys at a site and requires the assumption of 'closure' between surveys, i.e. no changes in occupancy between surveys. Violations of this assumption could bias parameter estimates; however, little work has assessed model sensitivity to violations of this assumption or how commonly such violations occur in nature. 2. We apply a modelling procedure that can test for closure to two avian point-count data sets in Montana and New Hampshire, USA, that exemplify time-scales at which closure is often assumed. These data sets illustrate different sampling designs that allow testing for closure but are currently rarely employed in field investigations. Using a simulation study, we then evaluate the sensitivity of parameter estimates to changes in site occupancy and evaluate a power analysis developed for sampling designs that is aimed at limiting the likelihood of closure. 3. Application of our approach to point-count data indicates that habitats may frequently be open to changes in site occupancy at time-scales typical of many occupancy investigations, with 71% and 100% of species investigated in Montana and New Hampshire respectively, showing violation of closure across time periods of 3 weeks and 8 days respectively. 4. Simulations suggest that models assuming closure are sensitive to changes in occupancy. Power analyses further suggest that the modelling procedure we apply can effectively test for closure. 5. Synthesis and applications. Our demonstration that sites may be open to changes in site occupancy over time-scales typical of many occupancy investigations, combined with the sensitivity of models to violations of the closure assumption, highlights the importance of properly addressing

  15. Eyelid closure at death

    Directory of Open Access Journals (Sweden)

    A D Macleod

    2009-01-01

    Full Text Available Aim: To observe the incidence of full or partial eyelid closure at death. Materials and Methods: The presence of ptosis was recorded in 100 consecutive hospice patient deaths. Results: Majority (63% of the patients died with their eyes fully closed, however, 37% had bilateral ptosis at death, with incomplete eye closure. In this study, central nervous system tumor involvement and/or acute hepatic encephalopathy appeared to be pre-mortem risk factors of bilateral ptosis at death. Conclusion: Organicity and not psychogenicity is, therefore, the likely etiology of failure of full eyelid closure at death.

  16. High Reynolds number flows using liquid and gaseous helium

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1991-01-01

    Consideration is given to liquid and gaseous helium as test fluids, high Reynolds number test requirements in low speed aerodynamics, the measurement of subsonic flow around an appended body of revolution at cryogenic conditions in the NTF, water tunnels, flow visualization, the six component magnetic suspension system for wind tunnel testing, and recent aerodynamic measurements with magnetic suspension systems. Attention is also given to application of a flow visualization technique to a superflow experiment, experimental investigations of He II flows at high Reynolds numbers, a study of homogeneous turbulence in superfluid helium, and thermal convection in liquid helium

  17. Closure and Sealing Design Calculation

    International Nuclear Information System (INIS)

    T. Lahnalampi; J. Case

    2005-01-01

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not

  18. Scope and closures

    CERN Document Server

    Simpson, Kyle

    2014-01-01

    No matter how much experience you have with JavaScript, odds are you don’t fully understand the language. This concise yet in-depth guide takes you inside scope and closures, two core concepts you need to know to become a more efficient and effective JavaScript programmer. You’ll learn how and why they work, and how an understanding of closures can be a powerful part of your development skillset.

  19. Pressure fluctuation prediction in pump mode using large eddy simulation and unsteady Reynolds-averaged Navier–Stokes in a pump–turbine

    Directory of Open Access Journals (Sweden)

    De-You Li

    2016-06-01

    Full Text Available For pump–turbines, most of the instabilities couple with high-level pressure fluctuations, which are harmful to pump–turbines, even the whole units. In order to understand the causes of pressure fluctuations and reduce their amplitudes, proper numerical methods should be chosen to obtain the accurate results. The method of large eddy simulation with wall-adapting local eddy-viscosity model was chosen to predict the pressure fluctuations in pump mode of a pump–turbine compared with the method of unsteady Reynolds-averaged Navier–Stokes with two-equation turbulence model shear stress transport k–ω. Partial load operating point (0.91QBEP under 15-mm guide vane opening was selected to make a comparison of performance and frequency characteristics between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes based on the experimental validation. Good agreement indicates that the method of large eddy simulation could be applied in the simulation of pump–turbines. Then, a detailed comparison of variation for peak-to-peak value in the whole passage was presented. Both the methods show that the highest level pressure fluctuations occur in the vaneless space. In addition, the propagation of amplitudes of blade pass frequency, 2 times of blade pass frequency, and 3 times of blade pass frequency in the circumferential and flow directions was investigated. Although the difference exists between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes, the trend of variation in different parts is almost the same. Based on the analysis, using the same mesh (8 million, large eddy simulation underestimates pressure characteristics and shows a better result compared with the experiments, while unsteady Reynolds-averaged Navier–Stokes overestimates them.

  20. Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number

    Directory of Open Access Journals (Sweden)

    Ma Dongli

    2015-08-01

    Full Text Available This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles (HAUAVs cruising at low speed. Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow. The water tunnel model tests further validate the accuracy and effectiveness of the numerical method. Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses (12%, 14%, 16%, 18%, as well as different locations of the maximum relative thickness (x/c = 22%, 26%, 30%, 34%, at a low Reynolds number of 5 × 105. Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble. On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance. The numerical method is feasible for the simulation of low Reynolds number flow. The study can help to provide a basis for the design of low Reynolds number airfoil.

  1. 75 FR 1596 - Grant of Authority for Subzone Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock...

    Science.gov (United States)

    2010-01-12

    ... Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock), Louisville, Kentucky Pursuant to its...-purpose subzone at the aluminum foil liner stock manufacturing and distribution facilities of Reynolds... manufacturing and distribution of aluminum foil liner stock and aluminum foil at the facilities of Reynolds...

  2. 100-D Ponds closure plan. Revision 1

    International Nuclear Information System (INIS)

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure

  3. Experimental Research on Boundary Shear Stress in Typical Meandering Channel

    Science.gov (United States)

    Chen, Kai-hua; Xia, Yun-feng; Zhang, Shi-zhao; Wen, Yun-cheng; Xu, Hua

    2018-06-01

    A novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio, or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.

  4. Closure for spent-fuel transport and storage containers

    International Nuclear Information System (INIS)

    Ahner, S.; Knackstedt, H.G.; Srostlik, P.

    1980-01-01

    The container has a transport closure and a shielding closure. This shielding closure consists of two pieces (double closure system), which can be fartened to one another like a bayonet fixing. A central motion of rotation is enough to open the closure. It can be done remote-controlled as well as manually. (DG) [de

  5. Echocardiographic predictors of coil vs device closure in patients undergoing percutaneous patent ductus arteriosus closure.

    Science.gov (United States)

    Roushdy, Alaa; Abd El Razek, Yasmeen; Mamdouh Tawfik, Ahmed

    2018-01-01

    To determine anatomic and hemodynamic echocardiographic predictors for patent ductus arteriosus (PDA) device vs coil closure. Seventy-six patients who were referred for elective transcatheter PDA closure were enrolled in the study. All patients underwent full echocardiogram including measurement of the PDA pulmonary end diameter, color flow width and extent, peak and end-diastolic Doppler gradients across the duct, diastolic flow reversal, left atrial dimensions and volume, left ventricular sphericity index, and volumes. The study group was subdivided into 2 subgroups based on the mode of PDA closure whether by coil (n = 42) or device (n = 34). Using univariate analysis there was a highly significant difference between the 2 groups as regard the pulmonary end diameter measured in both the suprasternal and parasternal short-axis views as well as the color flow width and color flow extent (P closure group had statistically significant higher end-systolic and end-diastolic volumes indexed, left atrial volume, and diastolic flow reversal. Receiver operating characteristic curve analysis showed a pulmonary end diameter cutoff point from the suprasternal view > 2.5 mm and from parasternal short-axis view > 2.61 mm to have the highest balanced sensitivity and specificity to predict the likelihood for device closure (AUC 0.971 and 0.979 respectively). The pulmonary end diameter measured from the suprasternal view was the most independent predictor of device closure. The selection between PDA coil or device closure can be done on the basis of multiple anatomic and hemodynamic echocardiographic variables. © 2017 Wiley Periodicals, Inc.

  6. Measurement Invariance of the Reynolds Depression Adolescent Scale across Gender and Age

    Science.gov (United States)

    Fonseca-Pedrero, Eduardo; Wells, Craig; Paino, Mercedes; Lemos-Giraldez, Serafin; Villazon-Garcia, Ursula; Sierra, Susana; Garcia-Portilla Gonzalez, Ma Paz; Bobes, Julio; Muniz, Jose

    2010-01-01

    The main objective of the present study was to examine measurement invariance of the Reynolds Depression Adolescent Scale (RADS) (Reynolds, 1987) across gender and age in a representative sample of nonclinical adolescents. The sample was composed of 1,659 participants, 801 males (48.3%), with a mean age of 15.9 years (SD = 1.2). Confirmatory…

  7. Direct numerical simulation of particle-laden turbulent channel flows with two- and four-way coupling effects: models of terms in the Reynolds stress budgets

    International Nuclear Information System (INIS)

    Dritselis, Chris D

    2017-01-01

    In the first part of this study (Dritselis 2016 Fluid Dyn. Res. 48 015507), the Reynolds stress budgets were evaluated through point-particle direct numerical simulations (pp-DNSs) for the particle-laden turbulent flow in a vertical channel with two- and four-way coupling effects. Here several turbulence models are assessed by direct comparison of the particle contribution terms to the budgets, the dissipation rate, the pressure-strain rate, and the transport rate with the model expressions using the pp-DNS data. It is found that the models of the particle sources to the equations of fluid turbulent kinetic energy and dissipation rate cannot represent correctly the physics of the complex interaction between turbulence and particles. A relatively poor performance of the pressure-strain term models is revealed in the particulate flows, while the algebraic models for the dissipation rate of the fluid turbulence kinetic energy and the transport rate terms can adequately reproduce the main trends due to the presence of particles. Further work is generally needed to improve the models in order to account properly for the momentum exchange between the two phases and the effects of particle inertia, gravity and inter-particle collisions. (paper)

  8. Direct numerical simulation of particle-laden turbulent channel flows with two- and four-way coupling effects: models of terms in the Reynolds stress budgets

    Energy Technology Data Exchange (ETDEWEB)

    Dritselis, Chris D, E-mail: dritseli@mie.uth.gr [Mechanical Engineering Department, University of Thessaly, Pedion Areos, 38334 Volos (Greece)

    2017-04-15

    In the first part of this study (Dritselis 2016 Fluid Dyn. Res. 48 015507), the Reynolds stress budgets were evaluated through point-particle direct numerical simulations (pp-DNSs) for the particle-laden turbulent flow in a vertical channel with two- and four-way coupling effects. Here several turbulence models are assessed by direct comparison of the particle contribution terms to the budgets, the dissipation rate, the pressure-strain rate, and the transport rate with the model expressions using the pp-DNS data. It is found that the models of the particle sources to the equations of fluid turbulent kinetic energy and dissipation rate cannot represent correctly the physics of the complex interaction between turbulence and particles. A relatively poor performance of the pressure-strain term models is revealed in the particulate flows, while the algebraic models for the dissipation rate of the fluid turbulence kinetic energy and the transport rate terms can adequately reproduce the main trends due to the presence of particles. Further work is generally needed to improve the models in order to account properly for the momentum exchange between the two phases and the effects of particle inertia, gravity and inter-particle collisions. (paper)

  9. Comparison of Outcomes between Early Fascial Closure and Delayed Abdominal Closure in Patients with Open Abdomen: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2014-01-01

    Full Text Available Up to the present, the optimal time to close an open abdomen remains controversial. This study was designed to evaluate whether early fascial abdominal closure had advantages over delayed approach for open abdomen populations. Medline, Embase, and Cochrane Library were searched until April 2013. Search terms included “open abdomen,” “abdominal compartment syndrome,” “laparostomy,” “celiotomy,” “abdominal closure,” “primary,” “delayed,” “permanent,” “fascial closure,” and “definitive closure.” Open abdomen was defined as “fail to close abdominal fascia after a laparotomy.” Mortality, complications, and length of stay were compared between early and delayed fascial closure. In total, 3125 patients were included for final analysis, and 1942 (62% patients successfully achieved early fascial closure. Vacuum assisted fascial closure had no impact on pooled fascial closure rate. Compared with delayed abdominal closure, early fascial closure significantly reduced mortality (12.3% versus 24.8%, RR, 0.53, P<0.0001 and complication incidence (RR, 0.68, P<0.0001. The mean interval from open abdomen to definitive closure ranged from 2.2 to 14.6 days in early fascial closure groups, but from 32.5 to 300 days in delayed closure groups. This study confirmed clinical advantages of early fascial closure over delayed approach in treatment of patients with open abdomen.

  10. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    International Nuclear Information System (INIS)

    Gelles, C. M.; Sheppard, F. R.

    2002-01-01

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program

  11. Boundary induced nonlinearities at small Reynolds numbers

    NARCIS (Netherlands)

    Sbragaglia, M.; Sugiyama, K.

    2007-01-01

    We investigate the importance of boundary slip at finite Reynolds numbers for mixed boundary conditions. Nonlinear effects are induced by the non-homogeneity of the boundary condition and change the symmetry properties of the flow with an overall mean flow reduction. To explain the observed drag

  12. 50 CFR 648.161 - Closures.

    Science.gov (United States)

    2010-10-01

    ... Bluefish Fishery § 648.161 Closures. (a) EEZ closure. NMFS shall close the EEZ to fishing for bluefish by... dealer permit holders that no commercial quota is available for landing bluefish in that state. ...

  13. Effect of mean stress (stress ratio) and aging on fatigue-crack growth in a metastable beta titanium alloy, Ti-10V-2Fe-3Al

    International Nuclear Information System (INIS)

    Jha, S.K.; Ravichandran, K.S.

    2000-01-01

    The effect of mean stress, or the stress ratio (R), on the fatigue-crack growth (FCG) behavior of α-aged and ω-aged microstructures of the beta titanium alloy Ti-10V-2Fe-3Al was investigated. While the mean stress had a negligible effect on the FCG behavior of the α-aged microstructure, a strong effect was observed in the ω-aged microstructure. In particular, the values of the threshold stress-intensity range (ΔK th ) exhibited a strong dependence on R in the ω-aged microstructure, while this dependence was weak in the α-aged microstructure. These effects seem to arise primarily from fracture-surface roughness-induced crack closure. The crack closure levels for the α-aged microstructure were found to be very low compared to those for the ω-aged microstructure. Transmission electron microscopy and scanning electron microscopy studies of microstructures and fracture surfaces were performed to gain insight into the deformation characteristics and crack propagation mechanisms, respectively, in these microstructures. The microstructure-induced differences in FCG behavior are rationalized in terms of the effect of aging on slip and crack closure

  14. Identifying a Superfluid Reynolds Number via Dynamical Similarity.

    Science.gov (United States)

    Reeves, M T; Billam, T P; Anderson, B P; Bradley, A S

    2015-04-17

    The Reynolds number provides a characterization of the transition to turbulent flow, with wide application in classical fluid dynamics. Identifying such a parameter in superfluid systems is challenging due to their fundamentally inviscid nature. Performing a systematic study of superfluid cylinder wakes in two dimensions, we observe dynamical similarity of the frequency of vortex shedding by a cylindrical obstacle. The universality of the turbulent wake dynamics is revealed by expressing shedding frequencies in terms of an appropriately defined superfluid Reynolds number, Re(s), that accounts for the breakdown of superfluid flow through quantum vortex shedding. For large obstacles, the dimensionless shedding frequency exhibits a universal form that is well-fitted by a classical empirical relation. In this regime the transition to turbulence occurs at Re(s)≈0.7, irrespective of obstacle width.

  15. Models for turbulent flows with variable density and combustion

    International Nuclear Information System (INIS)

    Jones, W.P.

    1980-01-01

    Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms

  16. Negative Magnus lift on a rotating sphere at around the critical Reynolds number

    Science.gov (United States)

    Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki

    2012-01-01

    Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow was investigated using large-eddy simulation at three Reynolds numbers of 1.0 × 104, 2.0 × 105, and 1.14 × 106. The numerical methods used were first validated on a non-rotating sphere, and the spatial resolution around the sphere was determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed in the vicinity of the critical Reynolds number. The rotating sphere exhibited a positive or negative Magnus effect depending on the Reynolds number and the imposed rotating speed. At Reynolds numbers in the subcritical or supercritical regimes, the direction of the Magnus lift force was independent of the rotational speed. In contrast, the lift force was negative in the critical regime when particular rotating speeds were imposed. This negative Magnus effect was investigated in the context of suppression or promotion of boundary layer transition around the separation point.

  17. Comparison of fasciotomy wound closures using traditional dressing changes and the vacuum-assisted closure device.

    Science.gov (United States)

    Zannis, John; Angobaldo, Jeff; Marks, Malcolm; DeFranzo, Anthony; David, Lisa; Molnar, Joseph; Argenta, Louis

    2009-04-01

    Fasciotomy wounds can be a major contributor to length of stay for patients as well as a difficult reconstructive challenge. Once the compartment pressure has been relieved and stabilized, the wound should be closed as quickly and early as possible to avoid later complications. Skin grafting can lead to morbidity and scarring at both the donor and fasciotomy site. Primary closure results in a more functional and esthetic outcome with less morbidity for the patient, but can often be difficult to achieve secondary to edema, skin retraction, and skin edge necrosis. Our objective was to examine fasciotomy wound outcomes, including time to definitive closure, comparing traditional wet-to-dry dressings, and the vacuum-assisted closure (VAC) device. This retrospective chart review included a consecutive series of patients over a 10-year period. This series included 458 patients who underwent 804 fasciotomies. Of these fasciotomy wounds, 438 received exclusively VAC. dressings, 270 received only normal saline wet-to-dry dressings, and 96 were treated with a combination of both. Of the sample, 408 patients were treated with exclusively VAC therapy or wet-to-dry dressings and 50 patients were treated with a combination of both. In comparing all wounds, there was a statistically significant higher rate of primary closure using the VAC versus traditional wet-to-dry dressings (P lower extremities and P extremities). The time to primary closure of wounds was shorter in the VAC. group in comparison with the non-VAC group. This study has shown that the use of the VAC for fasciotomy wound closure results in a higher rate of primary closure versus traditional wet-to-dry dressings. In addition, the time to primary closure of wounds or time to skin grafting is shorter when the VAC was employed. The VAC used in the described settings decreases hospitalization time, allows for earlier rehabilitation, and ultimately leads to increased patient satisfaction.

  18. Radioactive material package closures with the use of shape memory alloys

    International Nuclear Information System (INIS)

    Koski, J.A.; Bronowski, D.R.

    1997-11-01

    When heated from room temperature to 165 C, some shape memory metal alloys such as titanium-nickel alloys have the ability to return to a previously defined shape or size with dimensional changes up to 7%. In contrast, the thermal expansion of most metals over this temperature range is about 0.1 to 0.2%. The dimension change of shape memory alloys, which occurs during a martensite to austenite phase transition, can generate stresses as high as 700 MPa (100 kspi). These properties can be used to create a closure for radioactive materials packages that provides for easy robotic or manual operations and results in reproducible, tamper-proof seals. This paper describes some proposed closure methods with shape memory alloys for radioactive material packages. Properties of the shape memory alloys are first summarized, then some possible alternative sealing methods discussed, and, finally, results from an initial proof-of-concept experiment described

  19. Closure technique after carotid endarterectomy influences local hemodynamics.

    Science.gov (United States)

    Harrison, Gareth J; How, Thien V; Poole, Robert J; Brennan, John A; Naik, Jagjeeth B; Vallabhaneni, S Rao; Fisher, Robert K

    2014-08-01

    Meta-analysis supports patch angioplasty after carotid endarterectomy (CEA); however, studies indicate considerable variation in practice. The hemodynamic effect of a patch is unclear and this study attempted to elucidate this and guide patch width selection. Four groups were selected: healthy volunteers and patients undergoing CEA with primary closure, trimmed patch (5 mm), or 8-mm patch angioplasty. Computer-generated three-dimensional models of carotid bifurcations were produced from transverse ultrasound images recorded at 1-mm intervals. Rapid prototyping generated models for flow visualization studies. Computational fluid dynamic studies were performed for each model and validated by flow visualization. Mean wall shear stress (WSS) and oscillatory shear index (OSI) maps were created for each model using pulsatile inflow at 300 mL/min. WSS of OSI >0.3 were considered pathological, predisposing to accretion of intimal hyperplasia. The resultant WSS and OSI maps were compared. The four groups comprised 8 normal carotid arteries, 6 primary closures, 6 trimmed patches, and seven 8-mm patches. Flow visualization identified flow separation and recirculation at the bifurcation increased with a patch and was related to the patch width. Computational fluid dynamic identified that primary closure had the fewest areas of low WSS or elevated OSI but did have mild common carotid artery stenoses at the proximal arteriotomy that caused turbulence. Trimmed patches had more regions of abnormal WSS and OSI at the bifurcation, but 8-mm patches had the largest areas of deleteriously low WSS and high OSI. Qualitative comparison among the four groups confirmed that incorporation of a patch increased areas of low WSS and high OSI at the bifurcation and that this was related to patch width. Closure technique after CEA influences the hemodynamic profile. Patching does not appear to generate favorable flow dynamics. However, a trimmed 5-mm patch may offer hemodynamic benefits over an 8

  20. Modeling of Turbulent Swirling Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  1. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.

    Science.gov (United States)

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project.

  2. Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Tang, X. [Univ. of Central Lancashire. Engineering and Physical Sciences, Preston (United Kingdom); Liu, X. [Univ. of Cumbria. Sustainable Engineering, Workington (United Kingdom)

    2012-07-01

    The aerodynamic performance of a wind turbine depends very much on its blade geometric design, typically based on the blade element momentum (BEM) theory, which divides the blade into several blade elements. In current blade design practices based on Schmitz rotor design theory, the blade geometric parameters including chord and twist angle distributions are determined based on airfoil aerodynamic data at a specific Reynolds number. However, rotating wind turbine blade elements operate at different Reynolds numbers due to variable wind speed and different blade span locations. Therefore, the blade design through Schmitz rotor theory at a specific Reynolds number does not necessarily provide the best power performance under operational conditions. This paper aims to provide an optimal blade design strategy for horizontal-axis wind turbines operating at different Reynolds numbers. A fixed-pitch variable-speed (FPVS) wind turbine with S809 airfoil is chosen as a case study and a Matlab program which considers Reynolds number effects is developed to determine the optimized chord and twist angle distributions of the blade. The performance of the optimized blade is compared with that of the preliminary blade which is designed based on Schmitz rotor design theory at a specific Reynolds number. The results demonstrate that the proposed blade design optimization strategy can improve the power performance of the wind turbine. This approach can be further developed for any practice of horizontal axis wind turbine blade design. (Author)

  3. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade

    Science.gov (United States)

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (C Popt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger C Popt or AEP (C Popt//AEP) for the same ultimate load, or a smaller load for the same C Popt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum C popt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and C popt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815

  4. Hanford Patrol Academy Demolition Sites Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    From 1975 to 1991 the Hanford Patrol Academy Demolition Sites (HPADS) were used for demolition events. These demolition events were a form of thermal treatment for spent or abandoned chemical waste. Because the HPADS will no longer be used for this thermal activity, the sites will be closed. Closure will be conducted pursuant to the requirements of the Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and 40 CFR 270.1. Closure also will satisfy closure requirements of WAC 173-303-680 and for the thermal treatment closure requirements of 40 CFR 265.381. This closure plan presents a description of the HPADS, the history of the waste treated, and the approach that will be followed to close the HPADS. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. Only dangerous constituents derived from HPADS operations will be addressed in this closure plan in accordance with WAC 173-303-610(2)(b)(i). The HPADS are actually two distinct soil closure areas within the Hanford Patrol Academy training area

  5. Large Eddy Simulation of an SD7003 Airfoil: Effects of Reynolds number and Subgrid-scale modeling

    DEFF Research Database (Denmark)

    Sarlak Chivaee, Hamid

    2017-01-01

    This paper presents results of a series of numerical simulations in order to study aerodynamic characteristics of the low Reynolds number Selig-Donovan airfoil, SD7003. Large Eddy Simulation (LES) technique is used for all computations at chord-based Reynolds numbers 10,000, 24,000 and 60...... the Reynolds number, and the effect is visible even at a relatively low chord-Reynolds number of 60,000. Among the tested models, the dynamic Smagorinsky gives the poorest predictions of the flow, with overprediction of lift and a larger separation on airfoils suction side. Among various models, the implicit...

  6. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder

    Science.gov (United States)

    Jin, Xiaowei; Cheng, Peng; Chen, Wen-Li; Li, Hui

    2018-04-01

    A data-driven model is proposed for the prediction of the velocity field around a cylinder by fusion convolutional neural networks (CNNs) using measurements of the pressure field on the cylinder. The model is based on the close relationship between the Reynolds stresses in the wake, the wake formation length, and the base pressure. Numerical simulations of flow around a cylinder at various Reynolds numbers are carried out to establish a dataset capturing the effect of the Reynolds number on various flow properties. The time series of pressure fluctuations on the cylinder is converted into a grid-like spatial-temporal topology to be handled as the input of a CNN. A CNN architecture composed of a fusion of paths with and without a pooling layer is designed. This architecture can capture both accurate spatial-temporal information and the features that are invariant of small translations in the temporal dimension of pressure fluctuations on the cylinder. The CNN is trained using the computational fluid dynamics (CFD) dataset to establish the mapping relationship between the pressure fluctuations on the cylinder and the velocity field around the cylinder. Adam (adaptive moment estimation), an efficient method for processing large-scale and high-dimensional machine learning problems, is employed to implement the optimization algorithm. The trained model is then tested over various Reynolds numbers. The predictions of this model are found to agree well with the CFD results, and the data-driven model successfully learns the underlying flow regimes, i.e., the relationship between wake structure and pressure experienced on the surface of a cylinder is well established.

  7. ASD Closure in Structural Heart Disease.

    Science.gov (United States)

    Wiktor, Dominik M; Carroll, John D

    2018-04-17

    While the safety and efficacy of percutaneous ASD closure has been established, new data have recently emerged regarding the negative impact of residual iatrogenic ASD (iASD) following left heart structural interventions. Additionally, new devices with potential advantages have recently been studied. We will review here the potential indications for closure of iASD along with new generation closure devices and potential late complications requiring long-term follow-up. With the expansion of left-heart structural interventions and large-bore transseptal access, there has been growing experience gained with management of residual iASD. Some recently published reports have implicated residual iASD after these procedures as a potential source of diminished clinical outcomes and mortality. Additionally, recent trials investigating new generation closure devices as well as expanding knowledge regarding late complications of percutaneous ASD closure have been published. While percutaneous ASD closure is no longer a novel approach to managing septal defects, there are several contemporary issues related to residual iASD following large-bore transseptal access and new generation devices which serve as an impetus for this review. Ongoing attention to potential late complications and decreasing their incidence with ongoing study is clearly needed.

  8. 32 CFR 989.25 - Base closure and realignment.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Base closure and realignment. 989.25 Section 989... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.25 Base closure and realignment. Base closure or realignment may entail special requirements for environmental analysis. The permanent base closure...

  9. Reynolds number effects on the non-nulling calibration of a cone-type five-hole probe for turbomachinery applications

    International Nuclear Information System (INIS)

    Lee, Sang Woo; Jun, Sang Bae

    2005-01-01

    The effects of Reynolds number on the non-nulling calibration of a typical cone-type five-hole probe have been investigated for the representative Reynolds numbers in turbomachinery. The pitch and yaw angles are changed from -35 degrees to 35 degrees with an angle interval of 5 degrees at six probe Reynolds numbers in range between 6.60x10 3 and 3.17x10 4 . The result shows that not only each calibration coefficient itself but also its Reynolds number dependency is affected significantly by the pitch and yaw angles. The Reynolds-number effects on the pitch-and yaw-angle coefficients are noticeable when the absolute values of the pitch and yaw angles are smaller than 20 degrees. The static-pressure coefficient is sensitive to the Reynolds number nearly all over the pitch-and yaw-angle range. The Reynolds-number effect on the total-pressure coefficient is found remarkable when the absolute values of the pitch and yaw angles are larger than 20 degrees. Through a typical non-nulling reduction procedure, actual reduced values of the pitch and yaw angles, static and total pressures, and velocity magnitude at each Reynolds number are obtained by employing the calibration coefficients at the highest Reynolds number (Re=3.17x10 4 ) as input reference calibration data. As a result, it is found that each reduced value has its own unique trend depending on the pitch and yaw angles. Its general tendency is related closely to the variation of the corresponding calibration coefficient with the Reynolds number. Among the reduced values, the reduced total pressure suffers the most considerable deviation from the measured one and its dependency upon the pitch and yaw angles is most noticeable. In this study, the root-mean-square data as well as the upper and lower bounds of the reduced values are reported as a function of the Reynolds number. These data would be very useful in the estimation of the Reynolds-number effects on the non-nulling calibration

  10. NUMERICAL INVESTIGATION OF TWO ELEMENT CAMBER MORPHING AIRFOIL IN LOW REYNOLDS NUMBER FLOWS

    Directory of Open Access Journals (Sweden)

    RAJESH SENTHIL KUMAR T.

    2017-07-01

    Full Text Available Aerodynamic performance of a two-element camber morphing airfoil was investigated at low Reynolds number using the transient SST model in ANSYS FLUENT 14.0 and eN method in XFLR5. The two-element camber morphing concept was employed to morph the baseline airfoil into another airfoil by altering the orientation of mean-line at 35% of the chord to achieve better aerodynamic efficiency. NACA 0012 was selected as baseline airfoil. NACA 23012 was chosen as the test case as it has the camber-line similar to that of the morphed airfoil and as it has the same thickness as that of the baseline airfoil. The simulations were carried out at chord based Reynolds numbers of 2.5×105 and 3.9×105. The aerodynamic force coefficients, aerodynamic efficiency and the location of the transition point of laminar separation bubble over these airfoils were studied for various angles of attack. It was found that the aerodynamic efficiency of the morphed airfoil was 12% higher than that of the target airfoil at 4° angle of attack for Reynolds number of 3.9×105 and 54% rise in aerodynamic performance was noted as Reynolds number was varied from 2.5×105 to 3.9×105. The morphed airfoil exhibited the nature of low Reynolds number airfoil.

  11. Reynolds number effects on mixing due to topological chaos.

    Science.gov (United States)

    Smith, Spencer A; Warrier, Sangeeta

    2016-03-01

    Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for three different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.

  12. Numerical study about the effect of the low Reynolds number on the performance in an axial compressor

    International Nuclear Information System (INIS)

    Choi, Min Suk; Baek, Je Hyun; Chung, Hee Taeg; Oh, Seong Hwan; Ko, Han Young

    2008-01-01

    A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density because it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise was diminished by the separation on the suction surface with full span and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 85% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as the profile loss, the tip leakage loss and the endwall loss using Denton's loss model, and the effects of the low Reynolds number on the performance were analyzed in detail

  13. Numerical study about the effect of the low Reynolds number on the performance in an axial compressor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Suk; Baek, Je Hyun [Pohang University of Science and Technology, Pohang (Korea, Republic of); Chung, Hee Taeg [Gyeongsang National University, Jinju (Korea, Republic of); Oh, Seong Hwan; Ko, Han Young [Agency for Defense Development, Daejeon (Korea, Republic of)

    2008-02-15

    A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density because it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise was diminished by the separation on the suction surface with full span and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 85% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as the profile loss, the tip leakage loss and the endwall loss using Denton's loss model, and the effects of the low Reynolds number on the performance were analyzed in detail.

  14. Patent ductus arteriosus closure using an Amplatzer™ ventricular septal defect closure device

    Science.gov (United States)

    Fernando, Rajeev; Koranne, Ketan; Loyalka, Pranav; Kar, Biswajit; Gregoric, Igor

    2013-01-01

    The ductus arteriosus originates from the persistence of the distal portion of the left sixth aortic arch. It connects the descending aorta (immediately distal to the left subclavian artery) to the roof of the main pulmonary artery, near the origin of the left pulmonary artery. Persistence of the duct beyond 48 h after birth is abnormal and results in patent ductus arteriosus (PDA). PDA is rare in adults because it is usually discovered and treated in childhood. Mechanical closure remains the definitive therapy because the patency of ductus arteriosus may lead to multiple complications, depending on the size and flow through the ductus. PDA closure is indicated in patients with symptoms and evidence of left heart enlargement, and in patients with elevated pulmonary pressures when reversal is possible. Transcatheter closure is the preferred technique in adults because it avoids sternotomy, reduces the length of hospital stay and is associated with fewer complications compared with surgery. First demonstrated in 1967, both the technique and the occluder devices used have since evolved. However, designing an ideal PDA occluder has been a challenge due to the variability in size, shape and orientation of PDAs. The present article describes a case involving a 35-year-old woman who presented to the Center for Advanced Heart Failure (Houston, USA) with congestive heart failure due to a large PDA, which was successfully occluded using an Amplatzer (St Jude Medical, USA) muscular ventricular septal defect closure device. The wider waist and dual-retention discs of these ventricular septal defect closure devices may be important factors to consider in the future development of devices for the occlusion of large PDAs. PMID:24294051

  15. Separation and reattachment in flows over asymmetric cavities at small Reynolds numbers

    International Nuclear Information System (INIS)

    Tavoularis, S.; Goldman, A.; Floryan, J.M.

    1985-01-01

    Recent experimental and analytical studies of flows at extremely small Reynolds numbers have revealed rather complicated flow patterns, often beyond intuitive explanation. Such flows are common in biological systems as well as in industrial applications involving small particle suspensions. The present study was motivated by Nachtigall's observation that scales on certain butterfly and moth upper wing surfaces appear aerodynamically advantageous, since their removal results in decrease of the lift without an appreciable change of the drag. Since low Reynolds number flows are nearly reversible, it seems that geometrical asymmetry and not random roughness is responsible for this effect. Stokes flows (i.e. at 'zero' Reynolds number) are known to separate behind steps and obstacles, contrary to the expectation that the fluid motion would follow the boundary shape, if its inertia became negligible. (author)

  16. Phacoemulsification with intraocular lens implantation in primary angle-closure suspect, primary angle-closure and primary angle-closure glaucoma with cataract

    Directory of Open Access Journals (Sweden)

    Kun Zeng

    2013-08-01

    Full Text Available AIM: To evaluate the features and clinical outcomes of cataract extraction by phacoemulsification with intraocular lens implantation in primary angle-closure suspect(PACS, primary angle-closure(PACand primary angle-closure glaucoma(PACGwith cataract.METHODS:Phacoemulsification with intraocular lens implantation was performed on 86 cases(86 eyesdiagnosed as PACS, PAC and PACG co-existing cataract from January to December 2012. All cases were followed up for 3 months to 1 year. Pre-operative and post-operative visual acuity, intraocular pressure(IOP, gonioscopy, ultrasound biomicroscopy(UBM, visual field and usage of anti-glaucomaous eye drops were recorded.RESULTS:Zonular dialysis existed in 19 eyes(22%. The post-operative visual acuity improved in 84 eyes(98%. The post-operative visual acuity was CONCLUSION: PACS, PAC and PACG co-existing zonular dialysis is common. Phacoemulsification with IOL implantation can reduce IOP, deepen anterior chamber and open angle.

  17. 40 CFR 264.178 - Closure.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of Containers § 264.178 Closure. At closure, all hazardous waste and hazardous waste residues must be removed...

  18. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number.

    Science.gov (United States)

    Klewicki, J C; Chini, G P; Gibson, J F

    2017-03-13

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  19. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number

    Science.gov (United States)

    Klewicki, J. C.; Chini, G. P.; Gibson, J. F.

    2017-01-01

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier–Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167585

  20. Critical parameters and measurement methods for post closure monitoring: A review of the state of the art and recommendations for further studies

    International Nuclear Information System (INIS)

    Morrison, H.F.; Majer, E.L.; Tsang, C.F.

    1987-05-01

    Both NRC and EPA regulations require programs of post closure monitoring to detect substantial and detrimental deviations from expected performance. The unexpected in this case would involve anomalous stress changes that might rupture the canisters or changes in the hydrologic regime that might accelerate corrosion. In the event of leakage brought about by any means transport of radionuclides to the accessible environment could occur through unexpected changes in the hydrologic flow regime caused either by the long term effects of the thermal loading by the waste or by changes in regional stress or hydrology. Studies of performance confirmation have identified six parameters or conditions that should be monitored that are associated with the thermal, mechanical and hydrologic phenomena introduced by the waste heat: temperature, stress, displacement, pore pressure, groundwater velocity and permeability. Since it is the thermal load that continues to increase after decommissioning, and which continues to alter the stress field and the hydrological regime, these same six parameters remain the critical ones in post closure monitoring. At two of the repository sites fractures have been clearly shown to be critical in modelling and performance confirmation; at the tuff site fluid saturation is also a critical parameter and for all the sites estimates of the groundwater velocity through the site are very important. Changes in fracture properties, saturation and fluid flow are thus of continuing importance in post closure monitoring. 14 refs., 19 figs

  1. Closure report for N Reactor

    International Nuclear Information System (INIS)

    1994-01-01

    This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule

  2. Closure report for N Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule.

  3. Introduction: Scaling and structure in high Reynolds number wall-bounded flows

    International Nuclear Information System (INIS)

    McKeon, B.J.; Sreenivasan, K.R.

    2007-05-01

    The papers discussed in this report are dealing with the following aspects: Fundamental scaling relations for canonical flows and asymptotic approach to infinite Reynolds numbers; large and very large scales in near-wall turbulences; the influence of roughness and finite Reynolds number effects; comparison between internal and external flows and the universality of the near-wall region; qualitative and quantitative models of the turbulent boundary layer; the neutrally stable atmospheric surface layer as a model for a canonical zero-pressure-gradient boundary layer (author)

  4. Femoral Artery Stenosis Following Percutaneous Closure Using a Starclose Closure Device

    International Nuclear Information System (INIS)

    Bent, Clare Louise; Kyriakides, Constantinos; Matson, Matthew

    2008-01-01

    Starclose (Abbott Vascular Devices, Redwood City, CA) is a new arterial closure device that seals a femoral puncture site with an extravascular star-shaped nitinol clip. The clip projects small tines into the arterial wall which fold inward, causing the arterial wall to pucker, producing a purse-string-like seal closing the puncture site. The case history is that of a 76-year-old female patient who underwent day-case percutaneous diagnostic coronary angiography. A Starclose femoral artery closure device was used to achieve hemostasis with subsequent femoral artery stenosis.

  5. Urethral pressure reflectometry during intra-abdominal pressure increase-an improved technique to characterize the urethral closure function in continent and stress urinary incontinent women.

    Science.gov (United States)

    Saaby, Marie-Louise; Klarskov, Niels; Lose, Gunnar

    2013-11-01

    to assess the urethral closure function by urethral pressure reflectometry (UPR) during intra-abdominal pressure-increase in SUI and continent women. Twenty-five urodynamically proven SUI women and eight continent volunteer women were assessed by ICIQ-SF, pad-weighing test, incontinence diary, and UPR. UPR was conducted during resting and increased intra-abdominal pressure (P(Abd)) by straining. Related values of P(Abd) and urethral opening pressure (P(o)) were plotted into an abdomino-urethral pressuregram. Linear regression of the values was conducted, and the slope of the line ("APIR") and the intercept with the y-axis found. By the equation of the line, Po was calculated for various values of P(Abd), for example, 50 cm H2O (P(o-Abd 50)). The resting P(o) (P(o-rest)) and APIR, respectively, significantly differed in SUI and continent women but could not separate the two groups. The urethral closure equation (UCE) based on P(o-rest) and APIR provided a more detailed characterization of a woman's closure function based on the permanent closure forces (primarily generated by the urethral sphincteric unit) and the adjunctive closure forces (primarily generated by the support system). P(o-Abd 50) and UCE, respectively, which express the combined permanent and adjunctive closure forces and estimate the efficiency of the closure function, separated SUI and continent women and were highly significantly negatively correlated with ICIQ-SF, pad test, and the number of incontinence episodes. New parameters for characterization of the urethral closure function and possible dysfunctions and its efficiency were provided. P(o-Abd 50) and UCE may be used as diagnostic tests and severity measures. © 2013 Wiley Periodicals, Inc.

  6. 9 CFR 318.301 - Containers and closures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Containers and closures. 318.301... Canning and Canned Products § 318.301 Containers and closures. (a) Examination and cleaning of empty containers. (1) Empty containers, closures, and flexible pouch roll stock shall be evaluated by the...

  7. 75 FR 29322 - Base Closure and Realignment

    Science.gov (United States)

    2010-05-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary Base Closure and Realignment AGENCY: Office of...)(ii) of the Defense Base Closure and Realignment Act of 1990. It provides a partial list of military installations closing or realigning pursuant to the 2005 Base Closure and Realignment (BRAC) Report. It also...

  8. EFFECT OF STRAIN HARDENING ON FATIGUE CRACK CLOSURE IN ALUMINUM ALLOY UNDER CONSTANT AMPLITUDE WITH SINGLE OVERLOAD

    Directory of Open Access Journals (Sweden)

    Nirpesh Vikram

    2015-12-01

    Full Text Available In this study effect of strain hardening on crack closure has been examined with the help of experiments and finite element method on the side edge notched specimen of five different Aluminum alloy (3003 Al, 5052 Al, 6061 T6, 6063 T6, 6351 in mode I under constant amplitude fatigue loading with single overload using Abaqus® 6.10 which is very well accepted FEM application in research. Extended Finite Element Method Module has been used to determine effective stress intensity factor at the crack tip while propagation takes place. FEM results have given good agreement with experimental results. Regression analysis has also been done with SPSS® 16 and dependency of strain hardening coefficient on crack closure has analyzed. A generalized empirical formula has been developed based on strain hardening to calculate effective stress intensity range ratio and a modified Paris law has also been formulated for these aluminum alloy.

  9. Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows

    KAUST Repository

    Scribano, Gianfranco

    2016-12-29

    The counterflow configuration is a canonical stagnation flow, featuring two opposed impinging round jets and a mixing layer across the stagnation plane. Although counterflows are used extensively in the study of reactive mixtures and other applications where mixing of two streams is required, quantitative data on the scaling properties of the flow field are lacking. The aim of this work is to characterize the velocity and mixing fields in isothermal counterflows over a wide range of conditions. The study features both experimental data from particle image velocimetry and results from detailed axisymmetric simulations. The scaling laws for the nondimensional velocity and mixture fraction are obtained as a function of an appropriate Reynolds number and the ratio of the separation distance of the nozzles to their diameter. In the range of flow configurations investigated, the nondimensional fields are found to depend primarily on the separation ratio and, to a lesser extent, the Reynolds number. The marked dependence of the velocity field with respect to the separation ratio is linked to a high pressure region at the stagnation point. On the other hand, Reynolds number effects highlight the role played by the wall boundary layer on the interior of the nozzles, which becomes less important as the separation ratio decreases. The normalized strain rate and scalar dissipation rate at the stagnation plane are found to attain limiting values only for high values of the Reynolds number. These asymptotic values depend markedly on the separation ratio and differ significantly from the values produced by analytical models. The scaling of the mixing field does not show a limiting behavior as the separation ratio decreases to the smallest practical value considered.

  10. Numerical study of circular synthetic jets at low Reynolds numbers

    International Nuclear Information System (INIS)

    Xia, Qingfeng; Lei, Shenghui; Ma, Jieyan; Zhong, Shan

    2014-01-01

    Highlights: • Parameter maps depicting different flow regimes of synthetic jets are produced. • Boundaries separating these regimes are defined using quantitative criteria. • The Reynolds number is most appropriate for classifying different flow regimes. • A use of high suction cycle factors enhances the effectiveness of synthetic jets. - Abstract: In this paper, the flow patterns of circular synthetic jets issuing into a quiescent flow at low Reynolds numbers are studied numerically. The results confirm the presence of the three jet flow regimes, i.e. no jet formation, jet flow without rollup and jet flow with rollup reported in the literature. The boundaries of the different jet flow regimes are determined by tracking the structures produced by the synthetic jets in the near field of the jet orifice over several actuation cycles and examining the cycle-averaged streamwise velocity profiles along the jet central axis. When the Stokes number is above a certain threshold value appropriate for the corresponding flow regime, a good correlation between the flow patterns and the jet Reynolds number defined using the jet orifice diameter, Re Do , is also found. Furthermore, the flow structures of synthetic jets with different suction duty cycle factors are compared. The use of a high suction duty cycle factor strengthens the synthetic jet resulting in a greater penetration depth into the surrounding fluid. Overall, the finding from this study enables the flow regimes, in which a synthetic jet actuator with a circular orifice operates, to be determined. It also provides a way of designing more effective synthetic jet actuators for enhancing mass and momentum transfer at very low Reynolds numbers

  11. Propulsion at low Reynolds number

    International Nuclear Information System (INIS)

    Najafi, Ali; Golestanian, Ramin

    2005-01-01

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium

  12. Propulsion at low Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Ali [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Faculty of Science, Zanjan University, Zanjan 313 (Iran, Islamic Republic of); Golestanian, Ramin [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of)

    2005-04-13

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.

  13. The influence of the Reynolds number on the passive scalar field in a turbulent channel flow

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2006-01-01

    Many different turbulent heat transfer calculations based on a very accurate pseudo-spectral code have been performed in the last 5 years. The main effort was to investigate temperature fields at different Prandtl numbers, ranging from Pr=0.7 to Pr=200. For the treatment of the turbulent heat transfer at low Reynolds and high Prandtl numbers, a Direct Numerical Simulation (DNS) was used for structures of the turbulent motions. DNS describes all the length and time scales for velocity and temperature fields. When Prandtl number is higher than 1, the smallest temperature scales are approximately inversely proportional to the square root of Prandtl number. For the smallest temperature scales, not resolved in the high Prandtl number simulation, a spectral turbulent diffusivity model was used in the pseudo-spectral computer code for DNS. A comparison of our temperature profiles obtained at friction Reynolds number Reτ=150 and Pr=100 and Pr=200 to the mean profiles of Calmet and Magnaudet, Wang and Lu and Kader's correlation that was built as a best fit of various experimental data at higher Reynolds numbers, revealed the discrepancies up to 10%. The most important reason for the differences was in different Reynolds numbers, which were much lower in our simulations than in the above mentioned LES simulations and experiments. The similar phenomenon as in our case can be found when DNS of Kawamura and Kader's results at Reτ=180 and Pr=0.71 were compared. On the other hand, the comparisons to the Kader's correlation at higher Reynolds numbers (i.e. DNS of Kawamura at Reτ=640 and DNS of Tiselj at Reτ=424) show that the differences are within statistical uncertainties. It follows that the heat transfer depends much more on Reynolds number in the range of low Reynolds numbers than in the range of high Reynolds numbers. (author)

  14. Closure Welding of Plutonium Bearing Storage Containers

    International Nuclear Information System (INIS)

    Cannell, G.R.

    2002-01-01

    A key element in the Department of Energy (DOE) strategy for the stabilization, packaging and storage of plutonium-bearing materials involves closure welding of DOE-STD-3013 Outer Containers (3013 container). The 3013 container provides the primary barrier and pressure boundary preventing release of plutonium-bearing materials to the environment. The final closure (closure weld) of the 3013 container must be leaktight, structurally sound and meet DOE STD 3013 specified criteria. This paper focuses on the development, qualification and demonstration of the welding process for the closure welding of Hanford PFP 3013 outer containers

  15. Analysis of compressible light dynamic stall flow at transitional Reynolds numbers

    DEFF Research Database (Denmark)

    Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.

    1996-01-01

    Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...

  16. Use of Resolving Equation to Define the Lower Critical Reynolds Number

    Directory of Open Access Journals (Sweden)

    Alexander A. Solovyev

    2014-09-01

    Full Text Available Although the issue of streams with non-crossing trajectories of particle motions ranging from chaotic, random with irregular current lines, has been given a lot of attention, it still remains unresolved. The study features a relevant issue for hydromechanics, which is precise values determination of the Lower Critical Reynolds Number. It is suggested to put forward an updated approach to the use of energetic analysis for analytical calculation of the Reynolds Resolving Equation. The assessment of transition to mean motion from pulsation to the direction of laminar flows was fulfilled.

  17. Magnus effects at high angles of attack and critical Reynolds numbers

    Science.gov (United States)

    Seginer, A.; Ringel, M.

    1983-01-01

    The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.

  18. Aerodynamics of wings at low Reynolds numbers: Boundary layer separation and reattachment

    Science.gov (United States)

    McArthur, John

    Due to advances in electronics technology, it is now possible to build small scale flying and swimming vehicles. These vehicles will have size and velocity scales similar to small birds and fish, and their characteristic Reynolds number will be between 104 and 105. Currently, these flying and swimming vehicles do not perform well, and very little research has been done to characterize them, or to explain why they perform so poorly. This dissertation documents three basic investigations into the performance of small scale lifting surfaces, with Reynolds numbers near 104. Part I. Low Reynolds number aerodynamics. Three airfoil shapes were studied at Reynolds numbers of 1 and 2x104: a flat plate airfoil, a circular arc cambered airfoil, and the Eppler 387 airfoil. Lift and drag force measurements were made on both 2D and 3D conditions, with the 3D wings having an aspect ratio of 6, and the 2D condition being approximated by placing end plates at the wing tips. Comparisons to the limited number of previous measurements show adequate agreement. Previous studies have been inconclusive on whether lifting line theory can be applied to this range of Re, but this study shows that lifting line theory can be applied when there are no sudden changes in the slope of the force curves. This is highly dependent on the airfoil shape of the wing, and explains why previous studies have been inconclusive. Part II. The laminar separation bubble. The Eppler 387 airfoil was studied at two higher Reynolds numbers: 3 and 6x10 4. Previous studies at a Reynolds number of 6x104 had shown this airfoil experiences a drag increase at moderate lift, and a subsequent drag decrease at high lift. Previous studies suggested that the drag increase is caused by a laminar separation bubble, but the experiments used to show this were conducted at higher Reynolds numbers and extrapolated down. Force measurements were combined with flow field measurements at Reynolds numbers 3 and 6x104 to determine whether

  19. Fuel channel closure and adapter

    International Nuclear Information System (INIS)

    Cashen, W.S.

    1985-01-01

    This invention provides a mechanical closure/actuating ram combination particularly suited for use in sealing the ends of the pressure tubes when a CANDU-type reactor is refueled. It provides a cluster that may be inserted into a fuel channel end fitting to provide at least partial closing off of a pressure tube while permitting the disengagement of the fueling machine and its withdrawal from the closure for other purposes. The invention also provides a ram/closure combination wherein the application of loading force to a deformable sealing disk is regulated by a massive load bar component forming part of the fueling machine and being therefore accessible for maintenance or replacement

  20. Restaurant closures

    CERN Document Server

    Novae Restauration

    2012-01-01

    Christmas Restaurant closures Please note that the Restaurant 1 and Restaurant 3 will be closed from Friday, 21 December at 5 p.m. to Sunday, 6 January, inclusive. They will reopen on Monday, 7 January 2013.   Restaurant 2 closure for renovation To meet greater demand and to modernize its infrastructure, Restaurant 2 will be closed from Monday, 17 December. On Monday, 14 January 2013, Sophie Vuetaz’s team will welcome you to a renovated self-service area on the 1st floor. The selections on the ground floor will also be expanded to include pasta and pizza, as well as snacks to eat in or take away. To ensure a continuity of service, we suggest you take your break at Restaurant 1 or Restaurant 3 (Prévessin).

  1. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.

    Science.gov (United States)

    Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin

    2015-12-01

    To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at

  2. Randomized clinical trial of intestinal ostomy takedown comparing pursestring wound closure vs conventional closure to eliminate the risk of wound infection.

    Science.gov (United States)

    Camacho-Mauries, Daniel; Rodriguez-Díaz, José Luis; Salgado-Nesme, Noel; González, Quintín H; Vergara-Fernández, Omar

    2013-02-01

    The use of temporary stomas has been demonstrated to reduce septic complications, especially in high-risk anastomosis; therefore, it is necessary to reduce the number of complications secondary to ostomy takedowns, namely wound infection, anastomotic leaks, and intestinal obstruction. To compare the rates of superficial wound infection and patient satisfaction after pursestring closure of ostomy wound vs conventional linear closure. Patients undergoing colostomy or ileostomy closure between January 2010 and February 2011 were randomly assigned to linear closure (n = 30) or pursestring closure (n = 31) of their ostomy wound. Wound infection within 30 days of surgery was defined as the presence of purulent discharge, pain, erythema, warmth, or positive culture for bacteria. Patient satisfaction, healing time, difficulty managing the wound, and limitation of activities were analyzed with the Likert questionnaire. The infection rate for the control group was 36.6% (n = 11) vs 0% in the pursestring closure group (p ostomy wound closure (shorter healing time and improved patient satisfaction).

  3. Patent ductus arteriosus closure using an Amplatzer(™) ventricular septal defect closure device.

    Science.gov (United States)

    Fernando, Rajeev; Koranne, Ketan; Loyalka, Pranav; Kar, Biswajit; Gregoric, Igor

    2013-01-01

    The ductus arteriosus originates from the persistence of the distal portion of the left sixth aortic arch. It connects the descending aorta (immediately distal to the left subclavian artery) to the roof of the main pulmonary artery, near the origin of the left pulmonary artery. Persistence of the duct beyond 48 h after birth is abnormal and results in patent ductus arteriosus (PDA). PDA is rare in adults because it is usually discovered and treated in childhood. Mechanical closure remains the definitive therapy because the patency of ductus arteriosus may lead to multiple complications, depending on the size and flow through the ductus. PDA closure is indicated in patients with symptoms and evidence of left heart enlargement, and in patients with elevated pulmonary pressures when reversal is possible. Transcatheter closure is the preferred technique in adults because it avoids sternotomy, reduces the length of hospital stay and is associated with fewer complications compared with surgery. First demonstrated in 1967, both the technique and the occluder devices used have since evolved. However, designing an ideal PDA occluder has been a challenge due to the variability in size, shape and orientation of PDAs. The present article describes a case involving a 35-year-old woman who presented to the Center for Advanced Heart Failure (Houston, USA) with congestive heart failure due to a large PDA, which was successfully occluded using an Amplatzer (St Jude Medical, USA) muscular ventricular septal defect closure device. The wider waist and dual-retention discs of these ventricular septal defect closure devices may be important factors to consider in the future development of devices for the occlusion of large PDAs.

  4. Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer

    Science.gov (United States)

    Lakshminarayana, B.; Luo, J.

    1996-01-01

    The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the

  5. Temporary Closure of the Open Abdomen: A Systematic Review on Delayed Primary Fascial Closure in Patients with an Open Abdomen

    NARCIS (Netherlands)

    Boele van Hensbroek, Pieter; Wind, Jan; Dijkgraaf, Marcel G. W.; Busch, Olivier R. C.; Goslings, J. Carel

    2009-01-01

    Background This study was designed to systematically review the literature to assess which temporary abdominal closure (TAC) technique is associated with the highest delayed primary fascial closure (FC) rate. In some cases of abdominal trauma or infection, edema or packing precludes fascial closure

  6. Special closures for steel drum shipping containers

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Otts, J.V.

    1976-01-01

    The objective of this program was to develop special lid closures for typical, steel drum, radioactive material shipping containers. Previous experience and testing had shown that the existing container was adequate to withstand the required environmental tests for certification, but that the lid and closure were just marginally effective. Specifically, the lid closure failed to consistently maintain a tight seal between the container and the lid after drop tests, thus causing the package contents to be vulnerable in the subsequent fire test. Recognizing the deficiency, the United States Energy Research and Development Administration requested the development of new closure(s) which would: (1) be as strong and resistant to a drop as the bottom of the container; (2) have minimal economic impact on the overall container cost; (3) maximize the use of existing container designs; (4) consider crush loads; and (5) result in less dependence on personnel and loading procedures. Several techniques were evaluated and found to be more effective than the standard closure mechanism. Of these, three new closure techniques were designed, fabricated, and proven to be structurally adequate to provide containment when a 454-kg drum was drop tested from 9.14-m onto an unyielding surface. The three designs were: (1) a 152-mm long lid extension or skirt welded to the standard drum lid, (2) a separate inner lid, with 152-mm long skirt and (3) C-clamps used at the container-lid interface. Based upon structural integrity, economic impact, and minimal design change, the lid extension is the recommended special closure

  7. High-Reynolds Number Circulation Control Testing in the National Transonic Facility

    Science.gov (United States)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.

    2012-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.

  8. Biomechanics Strategies for Space Closure in Deep Overbite

    Directory of Open Access Journals (Sweden)

    Harryanto Wijaya

    2013-07-01

    Full Text Available Space closure is an interesting aspect of orthodontic treatment related to principles of biomechanics. It should be tailored individually based on patient’s diagnosis and treatment plan. Understanding the space closure biomechanics basis leads to achieve the desired treatment objective. Overbite deepening and losing posterior anchorage are the two most common unwanted side effects in space closure. Conventionally, correction of overbite must be done before space closure resulted in longer treatment. Application of proper space closure biomechanics strategies is necessary to achieve the desired treatment outcome. This cases report aimed to show the space closure biomechanics strategies that effectively control the overbite as well as posterior anchorage in deep overbite patients without increasing treatment time. Two patients who presented with class II division 1 malocclusion were treated with fixed orthodontic appliance. The primary strategies included extraction space closure on segmented arch that employed two-step space closure, namely single canine retraction simultaneously with incisors intrusion followed by enmasse retraction of four incisors by using differential moment concept. These strategies successfully closed the space, corrected deep overbite and controlled posterior anchorage simultaneously so that the treatment time was shortened. Biomechanics strategies that utilized were effective to achieve the desired treatment outcome.

  9. Magnetisable container closure and means for its removal

    International Nuclear Information System (INIS)

    Barrett, W.I.

    1984-01-01

    A container has a closed lower end and an open upper end, is made of a non-magnetic material such as aluminium, and has a peripheral groove spaced from the open end. A disc-like closure is of magnetic material such as ferritic steel, has a pair of spring jaws joined to the disc by a joining member such that when the disc of the closure is in position closing the open end of the container, the jaws engage in groove and hold the closure in position. To remove the closure, it is engaged by magnetic means mounted for example on a wall and having a step such that when the container is moved laterally away the closure is retained by the magnetic means aided by the step and thereby the closure becomes removed from the container. (author)

  10. Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data.

    Science.gov (United States)

    Li, Chi-Pei; Lo, Chi-Wen; Lu, Po-Chien

    2010-03-01

    Among the clinical complications of mechanical heart valves (MHVs), hemolysis was previously thought to result from Reynolds stresses in turbulent flows. A more recent hypothesis suggests viscous dissipative stresses at spatial scales similar in size to red blood cells may be related to hemolysis in MHVs, but the resolution of current instrumentation is insufficient to measure the smallest eddy sizes. We studied the St. Jude Medical (SJM) 27 mm valve in the aortic position of a pulsatile circulatory mock loop under physiologic conditions with particle image velocimetry (PIV). Assuming a dynamic equilibrium assumption between the resolved and sub-grid-scale (SGS) energy flux, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields and the SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then the viscous dissipative stresses were estimated. Our results showed Reynolds stresses up to 80 N/m2 throughout the cardiac cycle, and viscous dissipative stresses below 12 N/m2. The viscous dissipative stresses remain far below the threshold of red blood cell hemolysis, but could potentially damage platelets, implying the need for further study in the phenomenon of MHV hemolytic complications.

  11. Closure of shallow underground injection wells

    International Nuclear Information System (INIS)

    Veil, J.A.; Grunewald, B.

    1993-01-01

    Shallow injection wells have long been used for disposing liquid wastes. Some of these wells have received hazardous or radioactive wastes. According to US Environmental Protection Agency (EPA) regulations, Class IV wells are those injection wells through which hazardous or radioactive wastes are injected into or above an underground source of drinking water (USDW). These wells must be closed. Generally Class V wells are injection wells through which fluids that do not contain hazardous or radioactive wastes are injected into or above a USDW. Class V wells that are responsible for violations of drinking water regulations or that pose a threat to human health must also be closed. Although EPA regulations require closure of certain types of shallow injection wells, they do not provide specific details on the closure process. This paper describes the regulatory background, DOE requirements, and the steps in a shallow injection well closure process: Identification of wells needing closure; monitoring and disposal of accumulated substances; filling and sealing of wells; and remediation. In addition, the paper describes a major national EPA shallow injection well enforcement initiative, including closure plan guidance for wells used to dispose of wastes from service station operations

  12. Reliability assessment of underground shaft closure

    International Nuclear Information System (INIS)

    Fossum, A.F.; Munson, D.E.

    1994-01-01

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties

  13. Hydrodynamics of Low Reynolds Respiratory-type Flows

    Science.gov (United States)

    Connor, Erin; True, Aaron; Crimaldi, John

    2017-11-01

    Both aquatic and terrestrial animals inhale surrounding fluid for metabolic and sensory purposes. As organisms inhale and exhale, complex fluid interactions occur both internal and external to the physiological orifice. Using both numerical and experimental approaches, we model an idealized respiratory flow consisting of cyclic inhalation and exhalation through a single cylindrical tube. We investigate the effect of varying Reynolds number (Re) as well as the ratio of the inhalation time to the exhalation time (I:E ratio) for a fixed inhalation volume. The numerical model is used for laminar cases at lower Re, whereas the experimental model permits the study to be extended into higher Reynolds numbers that include transitions to turbulence. We map the spatial distribution of both inhaled and exhaled fluid volumes. By comparing these two maps, we can compute the volume of exhaled fluid that is reingested during the subsequent inhalation. The models of interacting inhalation and exhalation exhibit a rich range of flow behaviors across Re number and I:E ratio. This study builds a foundation for more complex studies of animal respiration that will include more realistic morphologies.

  14. Effect of Reynolds number and inflow parameters on mean and turbulent flow over complex topography

    DEFF Research Database (Denmark)

    Kilpatrick, Ryan; Hangan, Horia; Siddiqui, Kamran

    2016-01-01

    inflow conditions were tested in order to isolate the impact of key parameters such as Reynolds number, inflow shear profile, and effective roughness, on flow behaviour over the escarpment. The results show that the mean flow behaviour was generally not affected by the Reynolds number; however, a slight...... (TKE) over the escarpment was found be a strong function of inflow roughness and a weak function of the Reynolds number. The local change in the inflow wind shear was found to have the most significant influence on the TKE magnitude, which more closely approximated the full-scale TKE data, a result...

  15. Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2013-01-01

    was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet...... to about 100% were observed. Furthermore, the variation in stagnation point heat transfer was examined for jet Reynolds numbers in the range from 1.10 × 105 to 6.64 × 105. Based on the investigations, a correlation is suggested between the stagnation point Nusselt number, the jet Reynolds number......, and the turbulence intensity at the jet inlet for impinging jet flows at high jet Reynolds numbers. Copyright © 2013 Taylor and Francis Group, LLC....

  16. Comparison of cost-effectiveness and postoperative outcome of device closure and open surgery closure techniques for treatment of patent ductus arteriosus

    Directory of Open Access Journals (Sweden)

    Alireza Ahmadi

    2014-01-01

    Full Text Available BACKGROUND: Various devices have been recently employed for percutaneous closure of the patent ductus arteriosus (PDA. Although the high effectiveness of device closure techniques has been clearly determined, a few studies have focused on the cost-effectiveness and also postoperative complications of these procedures in comparison with open surgery. The present study aimed to evaluate the clinical outcome and cost-effectiveness of PDA occlusion by Amplatzer and coil device in comparisong with open surgery. METHODS: In this cross-sectional study, a randomized sample of 201 patients aged 1 month to 16 years (105 patients with device closure and 96 patients with surgical closure was selected. The ratio of total pulmonary blood flow to total systemic blood flow, the Qp/Qs ratio, was measured using a pulmonary artery catheter. The cost analysis included direct medical care costs associated with device implantation and open surgery, as well as professional fees. All costs were calculated in Iranian Rials and then converted to US dollars. RESULTS: There was no statistical difference in mean Qp/Qs ratio before the procedure between the device closure group and the open surgery group (2.1 ± 0.7 versus 1.7 ± 0.6, P = 0.090. The mean measured costs were overall higher in the device closure group than in open closure group (948.87 ± 548.76 US$ versus 743.70 ± 696.91 US$, P < 0.001. This difference remained significant after adjustment for age and gender (Standardized Beta = 0.160, P = 0.031. PDA closure with the Amplatzer ductal occluder (1053.05 ± 525.73 US$ or with Nit-Occlud coils (PFM (912.73 ± 565.94 US$, P < 0.001 was more expensive than that via open surgery. However, the Cook detachable spring coils device closure (605.65 ± 194.62 US$, P = 0.650 had a non-significant cost difference with open surgery. No event was observed in the device closure group regarding in-hospital mortality or morbidity; however, in another group, 2 in-hospital deaths

  17. Numerical approximation of the Boltzmann equation : moment closure

    NARCIS (Netherlands)

    Abdel Malik, M.R.A.; Brummelen, van E.H.

    2012-01-01

    This work applies the moment method onto a generic form of kinetic equations to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system

  18. T-tube vs Primary Common Bile Duct Closure

    Directory of Open Access Journals (Sweden)

    M R Joshi

    2010-09-01

    Full Text Available INTRODUCTION: Closure of the common bile duct over T-tube after exploration is a widely practiced traditional method. However, its use may give rise to many complications. We do primary closure of common bile duct after exploration. Aim of the study is to see the efficacy and safety of the primary closure. METHODS: Study was carried out to compare the results of both the techniques from 2006 to 2009 in the cases proven to have common bile duct stone with or without the features of obstructive jaundice. Post operative hospital stay and morbidities related to both the groups were recorded and analyzed. RESULTS: There were total 71 cases included in the study. Thirty one in T-tube group and 40 in primary closure group. T-tube was removed in most of the cases after three weeks where as average time of drain removal in primary closure group is 5.79 +/-1.79 days. Incidence of retained stone was equal in each group. Major complication in T-tube group is biliary peritonitis in four patients at the time of T-tube removal whereas none of the patient from primary closure group suffered from such major complication. CONCLUSIONS: Primary closure after the common bile duct exploration is safe and it helps to avoid the morbidities related to T-tube. Keywords: Choledocholithiasis, Primary closure, retained stone, T-tube, Ureterorenoscope.

  19. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C. [Air Force Research Laboratory, Computational Sciences Branch, Air Vehicles Directorate, Wright-Patterson AFB, OH (United States)

    2009-05-15

    The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re{sub c} = 10 {sup 4}), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re{sub c}=10 {sup 4

  20. Assessing At-Risk Youth Using the Reynolds Adolescent Adjustment Screening Inventory with a Latino Population

    Science.gov (United States)

    Balkin, Richard S.; Cavazos, Javier, Jr.; Hernandez, Arthur E.; Garcia, Roberto; Dominguez, Denise L.; Valarezo, Alexandra

    2013-01-01

    Factor analyses were conducted on scores from the Reynolds Adolescent Adjustment Screening Inventory (RAASI; Reynolds, 2001) representing at-risk Latino youth. The 4-factor model of the RAASI did not exhibit a good fit. However, evidence of generalizability for Latino youth was noted. (Contains 3 tables.)

  1. Techniques for Abdominal Wall Closure after Damage Control Laparotomy: From Temporary Abdominal Closure to Early/Delayed Fascial Closure—A Review

    Directory of Open Access Journals (Sweden)

    Qian Huang

    2016-01-01

    Full Text Available Open abdomen (OA has been an effective treatment for abdominal catastrophes in traumatic and general surgery. However, management of patients with OA remains a formidable task for surgeons. The central goal of OA is closure of fascial defect as early as is clinically feasible without precipitating abdominal compartment syndrome. Historically, techniques such as packing, mesh, and vacuum-assisted closure have been developed to assist temporary abdominal closure, and techniques such as components separation, mesh-mediated traction, bridging fascial defect with permanent synthetic mesh, or biologic mesh have also been attempted to achieve early primary fascial closure, either alone or in combined use. The objective of this review is to present the challenges of these techniques for OA with a goal of early primary fascial closure, when the patient’s physiological condition allows.

  2. Uncertainty Quantification of Multi-Phase Closures

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-27

    In the ensemble-averaged dispersed phase formulation used for CFD of multiphase ows in nuclear reactor thermohydraulics, closures of interphase transfer of mass, momentum, and energy constitute, by far, the biggest source of error and uncertainty. Reliable estimators of this source of error and uncertainty are currently non-existent. Here, we report on how modern Validation and Uncertainty Quanti cation (VUQ) techniques can be leveraged to not only quantify such errors and uncertainties, but also to uncover (unintended) interactions between closures of di erent phenomena. As such this approach serves as a valuable aide in the research and development of multiphase closures. The joint modeling of lift, drag, wall lubrication, and turbulent dispersion|forces that lead to tranfer of momentum between the liquid and gas phases|is examined in the frame- work of validation of the adiabatic but turbulent experiments of Liu and Banko , 1993. An extensive calibration study is undertaken with a popular combination of closure relations and the popular k-ϵ turbulence model in a Bayesian framework. When a wide range of super cial liquid and gas velocities and void fractions is considered, it is found that this set of closures can be validated against the experimental data only by allowing large variations in the coe cients associated with the closures. We argue that such an extent of variation is a measure of uncertainty induced by the chosen set of closures. We also nd that while mean uid velocity and void fraction pro les are properly t, uctuating uid velocity may or may not be properly t. This aspect needs to be investigated further. The popular set of closures considered contains ad-hoc components and are undesirable from a predictive modeling point of view. Consequently, we next consider improvements that are being developed by the MIT group under CASL and which remove the ad-hoc elements. We use non-intrusive methodologies for sensitivity analysis and calibration (using

  3. Factors affecting closure of a temporary stoma.

    Science.gov (United States)

    Taylor, Claire; Varma, Sarah

    2012-01-01

    The purpose of the study was to examine time to reversal of a temporary ostomy, reasons for delayed closure, and patient satisfaction with the scheduling of their closure and related hospital care. Cross-sectional, descriptive study. The target population comprised patients who underwent creation of a temporary ostomy and reversal surgery within one National Health System Hospital Trust in the United Kingdom. The population served by this Trust are ethnically and socioeconomically diverse, predominantly living in urban areas around Greater London. Sixty-one persons who met inclusion criteria were identified. A two-step analytical process was undertaken. First, a literature review examining incidence and causes of delayed stoma closure was undertaken. Second, a postal survey of all patients who had had their stoma closed in 2009 was conducted. Respondents were allowed 2 weeks to complete and return the questionnaire. The survey instrument was developed locally and subjected to content validation using ostomy patients, surgical and nursing colleagues. It consisted of 9 questions querying time from original surgery to closure, reasons for delaying closure surgery beyond 12 weeks, and satisfaction with care. Twenty-seven patients returned their questionnaires, indicating they consented to participate; a response rate of 44%. Half of the respondents (n = 14 [52%]) underwent closure surgery within 6 months of stoma formation; the remaining 48% waited more than 6 months (median: 6.5 months, range: 1.5-26 months). Thirteen patients (48%) reported a delay in receiving their stoma closure; the main reason cited was the need for a course of adjuvant postoperative chemotherapy. Three quarters of respondents (22 [74%]) were satisfied with the overall care they received. Findings from this study suggest that stoma closure may be associated with fewest complications if performed before 12 weeks.

  4. Numerical simulation of a precessing vortex breakdown

    International Nuclear Information System (INIS)

    Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.

    2006-01-01

    The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow

  5. Qualification of a Method to Calculate the Irrecoverable Pressure Loss in High Reynolds Number Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, K. C.; Coffield, R. D.

    2002-09-01

    High Reynolds number test data has recently been reported for both single and multiple piping elbow design configurations at earlier ASME Fluid Engineering Division conferences. The data of these studies ranged up to a Reynolds number of 42 x 10[sup]6 which is significantly greater than that used to establish design correlations before the data was available. Many of the accepted design correlations, based on the lower Reynolds number data, date back as much as fifty years. The new data shows that these earlier correlations are extremely conservative for high Reynolds number applications. Based on the recent high Reynolds number information a new recommended method has been developed for calculating irrecoverable pressure loses in piping systems for design considerations such as establishing pump sizing requirements. This paper describes the recommended design approach and additional testing that has been performed as part of the qualification of the method. This qualification testing determined the irrecoverable pressure loss of a piping configuration that would typify a limiting piping section in a complicated piping network, i.e., multiple, tightly coupled, out-of-plane elbows in series under high Reynolds number flow conditions. The overall pressure loss measurements were then compared to predictions, which used the new methodology to assure that conservative estimates for the pressure loss (of the type used for pump sizing) were obtained. The recommended design methodology, the qualification testing and the comparison between the predictions and the test data are presented. A major conclusion of this study is that the recommended method for calculating irrecoverable pressure loss in piping systems is conservative yet significantly lower than predicted by early design correlations that were based on the extrapolation of low Reynolds number test data.

  6. Medieval Day at Reynolds: An Interdisciplinary Learning Event

    Science.gov (United States)

    Morrison, Nancy S.

    2012-01-01

    Medieval Day at Reynolds turned a typical Friday class day into an interdisciplinary learning event, which joined faculty and students into a community of learners. From classrooms issued tales of Viking and Mongol conquests, religious crusaders, deadly plague, and majestic cathedrals and art, all told by costumed faculty members with expertise in…

  7. CIRSE Vascular Closure Device Registry

    International Nuclear Information System (INIS)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Purpose: Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods: The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results: Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0–14.5] for antegrade access and 1.8% (95% CI 1.1–2.9) for retrograde access (P = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only 5.9 cm, and two vessel occlusions. Conclusion: The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters.

  8. 40 CFR 267.143 - Financial assurance for closure.

    Science.gov (United States)

    2010-07-01

    ...), utilizing the certificate of insurance for closure specified at 40 CFR 264.151(e). (f) Corporate financial... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Financial assurance for closure. 267... PERMIT Financial Requirements § 267.143 Financial assurance for closure. The owner or operator must...

  9. Tubular closure mechanism

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1982-01-01

    This invention relates to a closure mechanism for tubular irradiation surveillance specimen assembly holder used in nuclear reactors. The closure mechanism is composed of a latching member which includes a generally circular chamber with a plurality of elongated latches depending therefrom. The latching member circumscribes part of an actuator member which is disposed within the latching member so as to be axially movable. The axial movement of the actuator actuates positioning of the latches between positions in which the latches are locked and secured within the actuator member. Means, capable of being remotely manipulated, are provided to move the actuator in order to position the latches and load the articles within the tube

  10. A comparative study of near-wall turbulence in high and low Reynolds number boundary layers

    International Nuclear Information System (INIS)

    Metzger, M.M.; Klewicki, J.C.

    2001-01-01

    The present study explores the effects of Reynolds number, over three orders of magnitude, in the viscous wall region of a turbulent boundary layer. Complementary experiments were conducted both in the boundary layer wind tunnel at the University of Utah and in the atmospheric surface layer which flows over the salt flats of the Great Salt Lake Desert in western Utah. The Reynolds numbers, based on momentum deficit thickness, of the two flows were R θ =2x10 3 and R θ ≅5x10 6 , respectively. High-resolution velocity measurements were obtained from a five-element vertical rake of hot-wires spanning the buffer region. In both the low and high R θ flows, the length of the hot-wires measured less than 6 viscous units. To facilitate reliable comparisons, both the laboratory and field experiments employed the same instrumentation and procedures. Data indicate that, even in the immediate vicinity of the surface, strong influences from low-frequency motions at high R θ produce noticeable Reynolds number differences in the streamwise velocity and velocity gradient statistics. In particular, the peak value in the root mean square streamwise velocity profile, when normalized by viscous scales, was found to exhibit a logarithmic dependence on Reynolds number. The mean streamwise velocity profile, on the other hand, appears to be essentially independent of Reynolds number. Spectra and spatial correlation data suggest that low-frequency motions at high Reynolds number engender intensified local convection velocities which affect the structure of both the velocity and velocity gradient fields. Implications for turbulent production mechanisms and coherent motions in the buffer layer are discussed

  11. 40 CFR 265.280 - Closure and post-closure.

    Science.gov (United States)

    2010-07-01

    ... contaminants caused by wind erosion; and (4) Compliance with § 265.276 concerning the growth of food-chain... and post-closure care objectives of paragraph (a) of this section: (1) Type and amount of hazardous..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and...

  12. A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap.

    Science.gov (United States)

    Escalante-Pérez, María; Krol, Elzbieta; Stange, Annette; Geiger, Dietmar; Al-Rasheid, Khaled A S; Hause, Bettina; Neher, Erwin; Hedrich, Rainer

    2011-09-13

    Venus flytrap's leaves can catch an insect in a fraction of a second. Since the time of Charles Darwin, scientists have struggled to understand the sensory biology and biomechanics of this plant, Dionaea muscipula. Here we show that insect-capture of Dionaea traps is modulated by the phytohormone abscisic acid (ABA) and jasmonates. Water-stressed Dionaea, as well as those exposed to the drought-stress hormone ABA, are less sensitive to mechanical stimulation. In contrast, application of 12-oxo-phytodienoic acid (OPDA), a precursor of the phytohormone jasmonic acid (JA), the methyl ester of JA (Me-JA), and coronatine (COR), the molecular mimic of the isoleucine conjugate of JA (JA-Ile), triggers secretion of digestive enzymes without any preceding mechanical stimulus. Such secretion is accompanied by slow trap closure. Under physiological conditions, insect-capture is associated with Ca(2+) signaling and a rise in OPDA, Apparently, jasmonates bypass hapto-electric processes associated with trap closure. However, ABA does not affect OPDA-dependent gland activity. Therefore, signals for trap movement and secretion seem to involve separate pathways. Jasmonates are systemically active because application to a single trap induces secretion and slow closure not only in the given trap but also in all others. Furthermore, formerly touch-insensitive trap sectors are converted into mechanosensitive ones. These findings demonstrate that prey-catching Dionaea combines plant-specific signaling pathways, involving OPDA and ABA with a rapidly acting trigger, which uses ion channels, action potentials, and Ca(2+) signals.

  13. On two distinct Reynolds number regimes of a turbulent square jet

    Directory of Open Access Journals (Sweden)

    Minyi Xu

    2015-05-01

    Full Text Available The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit Reynolds numbers of 8×103≤Re≤5×104. It is found that both large-scale properties (e.g., rates of mean velocity decay and spread and small-scale properties (e.g., the dimensionless dissipation rate constant A=εL/〈u2〉3/2 are dependent on Re for Re≤3×104 or Reλ≤190, but virtually become Re-independent with increasing Re or Reλ. In addition, for Reλ>190, the value of A=εL/〈u2〉3/2 in the present square jet converges to 0.5, which is consistent with the observation in direct numerical simulations of box turbulence, but lower than that in circular jet, plate wake flows, and grid turbulence. The discrepancies in critical Reynolds number and A=εL/〈u2〉3/2 among different turbulent flows most likely result from the flow type and initial conditions.

  14. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids

    Science.gov (United States)

    Wang, Shiyan; Ardekani, Arezoo M.

    2015-01-01

    We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called “squirmer”. The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001–0.04) when the swimming Reynolds number is in the range of O(0.1–100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence. PMID:26628288

  15. Airport Movement Area Closure Planner, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR research develops an automation tool improving temporary and permanent runway closure management. The Movement Area Closure Planner (MACP) provides airport...

  16. Aerodynamic forces and galloping instability for a skewed elliptical cylinder in a flow at the critical Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenyong [Wind Engineering Research Center, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043 (China); Liu, Qingkuan; Liu, Xiaobing [The Key Laboratory for Health Monitoring and Control of Large Structures, Hebei province, 050043 (China); Du, Xiaoqing, E-mail: ma@stdu.edu.cn, E-mail: dxq@shu.edu.cn [Department of Civil Engineering, Shanghai University, Shanghai, 200072 (China)

    2017-08-15

    The mechanism of large-amplitude aeroelastic vibrations of cylindrical bodies in the critical Reynolds number range are still unclear. This study concerns the aerodynamic forces acting on elliptical cylinders and the induced galloping instability resulting from skew flows (i.e., the direction of the flow is angled 0°–45° with respect to the central axis of the cylinder) for Reynolds numbers in the range of 37–235 k. The effects of the critical Reynolds number and the skew angle on the aerodynamic forces and the galloping instability are investigated with pressure wind tunnel tests. In all of the cases investigated in the present study, a sharp decrease in the lift coefficient with increasing angle of attack and a reduction in the drag coefficient at the critical Reynolds number could be responsible for the galloping instability. Variations in the torque coefficient leads to a torsional aerodynamic instability at the critical Reynolds number. Furthermore, the skew flow cause a critical flow state at lower Reynolds numbers. One possible reason for this behavior is that the longer effective cross section allows the flow to reattach. (paper)

  17. Left ventricular remodeling and change of systolic function after closure of patent ductus arteriosus in adults: device and surgical closure.

    Science.gov (United States)

    Jeong, Young-Hoon; Yun, Tae-Jin; Song, Jong-Min; Park, Jung-Jun; Seo, Dong-Man; Koh, Jae-Kon; Lee, Se-Whan; Kim, Mi-Jeong; Kang, Duk-Hyun; Song, Jae-Kwan

    2007-09-01

    Left ventricular (LV) remodeling and predictors of LV systolic function late after closure of patent ductus arteriosus (PDA) in adults remain to be clearly demonstrated. In 45 patients with PDA, including 28 patients who received successful occlusion using the Amplatzer device (AD group) (AGA, Golden Valley, MN) and 17 patients who received surgical closure (OP group), echocardiography studies were performed before closure and 1 day (AD group) or within 7 days (OP group) after closure, and then were repeated at > or = 6 months (17 +/- 13 months). In both groups, LV ejection fraction (EF) and end-diastolic volume index were significantly decreased immediately after closure, whereas end-systolic volume index did not change. During the long-term follow-up period, end-systolic as well as end-diastolic volume indices decreased significantly in both groups and LV EF recovered compared to the immediate postclosure state. However, LV EF remained low compared to the preclosure state. Five patients (11.1%) including 3 patients in the AD group and 2 patients in the OP group showed persistent late LV systolic dysfunction (EF or = 62% had a sensitivity of 72% and a specificity of 83% for predicting late normal LV EF after closure. Left ventricular EF remains low late after PDA closure compared with preclosure state in adults. Preclosure LV EF is the best index to predict late postclosure LV EF.

  18. Residual stress measurement in 304 stainless steel weld overlay pipes

    International Nuclear Information System (INIS)

    Yen, H.J.; Lin, M.C.C.; Chen, L.J.

    1996-01-01

    Welding overlay repair (WOR) is commonly employed to rebuild piping systems suffering from intergranular stress corrosion cracking (IGSCC). To understand the effects of this repair, it is necessary to investigate the distribution of residual stresses in the welding pipe. The overlay welding technique must induce compressive residual stress at the inner surface of the welded pipe to prevent IGSCC. To understand the bulk residual stress distribution, the stress profile as a function of location within wall is examined. In this study the full destructive residual stress measurement technique -- a cutting and sectioning method -- is used to determine the residual stress distribution. The sample is type 304 stainless steel weld overlay pipe with an outside diameter of 267 mm. A pipe segment is cut from the circular pipe; then a thin layer is removed axially from the inner to the outer surfaces until further sectioning is impractical. The total residual stress is calculated by adding the stress relieved by cutting the section away to the stress relieved by axially sectioning. The axial and hoop residual stresses are compressive at the inner surface of the weld overlay pipe. Compressive stress exists not only at the surface but is also distributed over most of the pipe's cross section. On the one hand, the maximum compressive hoop residual stress appears at the pipe's inner surface. The thermal-mechanical induced crack closure from significant compressive residual stress is discussed. This crack closure can thus prevent IGSCC very effectively

  19. Single-site neural tube closure in human embryos revisited.

    Science.gov (United States)

    de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan

    2017-10-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Moment Closure for the Stochastic Logistic Model

    National Research Council Canada - National Science Library

    Singh, Abhyudai; Hespanha, Joao P

    2006-01-01

    ..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...

  1. Comparison of cost-effectiveness and postoperative outcome of device closure and open surgery closure techniques for treatment of patent ductus arteriosus.

    Science.gov (United States)

    Ahmadi, Alireza; Sabri, Mohammadreza; Bigdelian, Hamid; Dehghan, Bahar; Gharipour, Mojgan

    2014-01-01

    Various devices have been recently employed for percutaneous closure of the patent ductus arteriosus (PDA). Although the high effectiveness of device closure techniques has been clearly determined, a few studies have focused on the cost-effectiveness and also postoperative complications of these procedures in comparison with open surgery. The present study aimed to evaluate the clinical outcome and cost-effectiveness of PDA occlusion by Amplatzer and coil device in comparisong with open surgery. In this cross-sectional study, a randomized sample of 201 patients aged 1 month to 16 years (105 patients with device closure and 96 patients with surgical closure) was selected. The ratio of total pulmonary blood flow to total systemic blood flow, the Qp/Qs ratio, was measured using a pulmonary artery catheter. The cost analysis included direct medical care costs associated with device implantation and open surgery, as well as professional fees. All costs were calculated in Iranian Rials and then converted to US dollars. There was no statistical difference in mean Qp/Qs ratio before the procedure between the device closure group and the open surgery group (2.1 ± 0.7 versus 1.7 ± 0.6, P = 0.090). The mean measured costs were overall higher in the device closure group than in open closure group (948.87 ± 548.76 US$ versus 743.70 ± 696.91 US$, P gender (Standardized Beta = 0.160, P = 0.031). PDA closure with the Amplatzer ductal occluder (1053.05 ± 525.73 US$) or with Nit-Occlud coils (PFM) (912.73 ± 565.94 US$, P < 0.001) was more expensive than that via open surgery. However, the Cook detachable spring coils device closure (605.65 ± 194.62 US$, P = 0.650) had a non-significant cost difference with open surgery. No event was observed in the device closure group regarding in-hospital mortality or morbidity; however, in another group, 2 in-hospital deaths occurred, two patients experienced pneumonia and seizure, and one suffered electrolyte abnormalities including

  2. Mass extraction container closure integrity physical testing method development for parenteral container closure systems.

    Science.gov (United States)

    Yoon, Seung-Yil; Sagi, Hemi; Goldhammer, Craig; Li, Lei

    2012-01-01

    Container closure integrity (CCI) is a critical factor to ensure that product sterility is maintained over its entire shelf life. Assuring the CCI during container closure (C/C) system qualification, routine manufacturing and stability is important. FDA guidance also encourages industry to develop a CCI physical testing method in lieu of sterility testing in a stability program. A mass extraction system has been developed to check CCI for a variety of container closure systems such as vials, syringes, and cartridges. Various types of defects (e.g., glass micropipette, laser drill, wire) were created and used to demonstrate a detection limit. Leakage, detected as mass flow in this study, changes as a function of defect length and diameter. Therefore, the morphology of defects has been examined in detail with fluid theories. This study demonstrated that a mass extraction system was able to distinguish between intact samples and samples with 2 μm defects reliably when the defect was exposed to air, water, placebo, or drug product (3 mg/mL concentration) solution. Also, it has been verified that the method was robust, and capable of determining the acceptance limit using 3σ for syringes and 6σ for vials. Sterile products must maintain their sterility over their entire shelf life. Container closure systems such as those found in syringes and vials provide a seal between rubber and glass containers. This seal must be ensured to maintain product sterility. A mass extraction system has been developed to check container closure integrity for a variety of container closure systems such as vials, syringes, and cartridges. In order to demonstrate the method's capability, various types of defects (e.g., glass micropipette, laser drill, wire) were created in syringes and vials and were tested. This study demonstrated that a mass extraction system was able to distinguish between intact samples and samples with 2 μm defects reliably when the defect was exposed to air, water

  3. 105-DR Large Sodium Fire Facility closure activities evaluation report

    International Nuclear Information System (INIS)

    Adler, J.G.

    1996-01-01

    This report evaluates the closure activities at the 105-DR Large Sodium Fire Facility. The closure activities discussed include: the closure activities for the structures, equipment, soil, and gravel scrubber; decontamination methods; materials made available for recycling or reuse; and waste management. The evaluation compares these activities to the regulatory requirements and closure plan requirements. The report concludes that the areas identified in the closure plan can be clean closed

  4. Storage shaft definitive closure plug and method

    International Nuclear Information System (INIS)

    Dardaine, M.

    1992-01-01

    A definitive closure plug system for radioactive waste storage at any deepness, is presented. The inherent weight of the closure materials is used to set in the plug: these materials display an inclined sliding surface in such a way that when the closure material rests on a stable surface of the shaft storage materials, the relative sliding of the different materials tends to spread them towards the shaft internal wall so as to completely occlude the shaft

  5. Parametric study of separation and transition characteristics over an airfoil at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, Michael S.H.; Yarusevych, Serhiy [University of Waterloo, Waterloo, ON (Canada)

    2012-06-15

    Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0 to 21 . The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the

  6. Bed slope effects on turbulent wave boundary layers: 1. Model validation and quantification of rough-turbulent results

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    measurements for steady streaming induced by a skewed free stream velocity signal is also provided. We then simulate a series of experiments involving oscillatory flow in a convergent-divergent smooth tunnel, and a good match with respect to bed shear stresses and streaming velocities is achieved......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega turbulence closure, is used to study converging-diverging effects from a sloping bed on turbulent (oscillatory) wave boundary layers. Bed shear stresses from the numerical model....... The streaming is conceptually explained using analogies from steady converging and diffuser flows. A parametric study is undertaken to assess both the peak and time-averaged bed shear stresses in converging and diverging half periods under rough-turbulent conditions. The results are presented as friction factor...

  7. Urethral pressure reflectometry during intra-abdominal pressure increase—an improved technique to characterize the urethral closure function in continent and stress urinary incontinent women

    DEFF Research Database (Denmark)

    Saaby, Marie-Louise; Klarskov, Niels; Lose, Gunnar

    2013-01-01

    to assess the urethral closure function by urethral pressure reflectometry (UPR) during intra-abdominal pressure-increase in SUI and continent women.......to assess the urethral closure function by urethral pressure reflectometry (UPR) during intra-abdominal pressure-increase in SUI and continent women....

  8. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis[OPEN

    Science.gov (United States)

    Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo

    2017-01-01

    Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508

  9. Laser peripheral iridoplasty for angle-closure.

    Science.gov (United States)

    Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto

    2012-02-15

    Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations.   To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations

  10. Effects of Dimple Depth and Reynolds Number on the Flow and Heat Transfer in a Dimpled Channel

    International Nuclear Information System (INIS)

    Ahn, Joon; Lee, Young Ok; Lee, Joon Sik

    2007-01-01

    A Large Eddy Simulation (LES) has been conducted for the flow and heat transfer in a dimpled channel. Two dimple depths of 0.2 and 0.3 times of the dimple print diameter (= D) have been compared at the bulk Reynolds number of 20,000. Three Reynolds numbers of 5,000, 10,000 and 20,000 have been studied, while the dimple depth is kept as 0.2 D. With the deeper dimple, the flow reattachment occurs father downstream inside the dimple, so that the heat transfer is not as effectively enhanced as the case with shallow ones. At the low Reynolds number of 5,000, the Nusselt number ratio is as high as those for the higher Reynolds number, although the value of heat transfer coefficient decreases because of the weak shear layer vortices

  11. Tonic immobility differentiates stress responses in PTSD.

    Science.gov (United States)

    Fragkaki, Iro; Stins, John; Roelofs, Karin; Jongedijk, Ruud A; Hagenaars, Muriel A

    2016-11-01

    Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a stabilometric platform. This study made a first step in exploring this as well as differences in body sway responses between PTSD patients and healthy controls. We hypothesized that PTSD would be related to increased body sway under stress, whereas TI would be related to decreased body sway under stress. Eye closure was selected as a PTSD-relevant stress induction procedure. Body sway and heart rate (HR) were measured in 12 PTSD patients and 12 healthy controls in four conditions: (1) maintaining a stable stance with eyes open, (2) with eyes closed, (3) during a mental arithmetic task with eyes open, and (4) with eyes closed. As predicted, PTSD patients showed increased body sway from eyes open to eyes closed compared to controls and this effect was eliminated by executing the arithmetic task. Most importantly, retrospective self-reported TI was associated with lower body sway increases in PTSD and higher body sway decreases in controls from eyes-open to eyes-closed conditions. These preliminary findings suggest that eye closure has a different effect on PTSD patients than controls and that high self-reported TI might indicate a distinct stress response pattern, i.e., a proneness for immobility. It may be relevant to take such individual differences in stress-response into account in PTSD treatment.

  12. The potential migration effect of rural hospital closures

    DEFF Research Database (Denmark)

    Sørensen, Jens Fyhn Lykke

    2008-01-01

    to out-migration, although the hypothetical way of questioning leaves uncertainty about the actual scale of out-migration. Child families appear to be the most likely out-migrants. Elderly people may be hardest hit by a hospital closure, being most reliant on health care and least inclined to move away.......Rural hospital closures are high on the current health care agenda in Denmark. One raised concern is that rural hospital closures may further decrease population numbers in rural areas, as closures may induce some residents to move away from affected areas, i.e. closer to health care services...

  13. 304 Concretion facility closure plan

    International Nuclear Information System (INIS)

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  14. CIRSE Vascular Closure Device Registry

    Science.gov (United States)

    Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2010-01-01

    Purpose Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0–14.5] for antegrade access and 1.8% (95% CI 1.1–2.9) for retrograde access (P = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only 5.9 cm, and two vessel occlusions. Conclusion The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters. PMID:20981425

  15. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence.

    Science.gov (United States)

    Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram

    2017-03-13

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  16. 200 West Ash Pit Demolition Site closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Facility is owned by the US Government and operated by the US Department of Energy, Richland Field Office. Dangerous waste and mixed waste (containing both radioactive and dangerous components) are managed and produced on the Hanford Facility. Westinghouse Hanford Company is a major contractor to the US Department of Energy, Richland Field Office and serves as cooperator of the 200 West Ash Pit Demolition Site, the unit addressed in this closure plan. The 200 West Ash Pit Demolition Site Closure Plan consists of a Part A Permit Application (Revision 3) and a closure plan. An explanation of the Part A Permit Application revision is provided at the beginning of the Part A section. The closure plan consists of nine chapters and three appendices. This 200 West Ash Pit Demolition Site Closure Plan submittal contains information current as of October 15, 1992

  17. Assessment of consistent two-equation closure for forest flows

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Cavar, Dalibor; Bechmann, Andreas

    of grid turbulence and wall-bounded flow, the closure suggested is also valid for homogeneous shear flows commonly observed inside tall vegetative canopies. The present work assess the plant drag closure by comparing results of two different CFD models against observations derived over the forested area...... and can be applied for any twoequation closure. Results derived by different CFD models with k-epsilon and k-omega closure are similar and in good comparison with observations. Overall, numerical results show that the closure performs well, opening new possibilities for application to tasks related...... to the atmospheric boundary layer—where it is important to adequately account for the influences of vegetation....

  18. ANÁLISIS NUMÉRICO DEL COMPORTAMIENTO DEL AIRE EN UN SISTEMA DE DISTRIBUCIÓN DE AIRE ACONDICIONADO EMPLEANDO LOS MODELOS DE TURBULENCIA k-e, RNG k-e Y EL MODELO DE LAS TENSIONES DE REYNOLDS NUMERICAL ANALYSIS OF AIR BEHAVIOR IN AN AIR CONDITIONING DISTRIBUTION SYSTEM USING k-ε TURBULENCE, RNG k-ε AND REYNOLDS TENSIONS METHODS

    Directory of Open Access Journals (Sweden)

    Luz Rodríguez Collado

    2008-09-01

    Full Text Available En la presente investigación se empleó el método de los volúmenes finitos para simular numéricamente el comportamiento termofluidodinámico del aire en un sistema de distribución de aire acondicionado. Se describió el modelo matemático que rige el comportamiento del flujo de aire en el conducto de distribución y el sistema de ecuaciones obtenido fue cerrado mediante la aplicación un modelo de turbulencia o cierre: para ello se emplearon de forma individual el modelo k-ε, el modelo RNG k-ε y el modelo de las tensiones de Reynolds. Fueron simulados tres casos de estudio y los resultados obtenidos de esas simulaciones indican que el modelo k-ε presenta un mejor comportamiento numérico en el problema simulado, generando menores residuos en las variables de flujo y un menor costo computacional.In the present investigation the finite volumes method was used to numerically simulate the thermofluiddynamic behavior of air in an air conditioning distribution system. The mathematical model that governs the behavior of airflow in the distribution duct was described by means of applying a turbulence or closure model: for this purpose k-ε, RNG k-ε and Reynolds Tensions models were used individually. Three cases were simulated and the results obtained from these simulations indicate that the k-ε model shows a better numerical behavior in the simulated problem, generating smaller residues in the flow variables and a reduced computing cost.

  19. A successful environmental remediation program closure and post-closure activities (CAPCA) Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bowers, M.H.

    1991-01-01

    The Resource Conservation and Recovery Act (RCRA) closure of eleven waste management units at the Department of Energy's (DOE's) Oak Ridge Y-12 Plant is nearing completion. The Oak Ridge Y-12 Plant is managed by Martin Marietta Energy Systems, Inc. for the US Department of Energy under Contract DE-AC05-84OR21400. The Closure and Post Closure Program (CAPCA) has been accomplished on an accelerated schedule through the efforts of a dedicated team from several organizations. This paper relates experience gained from the program that can be of benefit on other DOE environmental remediation projects. Technical design and construction aspects, as well as project management considerations, are discussed

  20. Reynolds number dependence of drag reduction by rodlike polymers

    NARCIS (Netherlands)

    Amarouchene, Y.; Bonn, D.; Kellay, H.; Lo, T.-S.; L'vov, V.S.; Procaccia, I.

    2008-01-01

    We present experimental and theoretical results addressing the Reynolds number (Re) dependence of drag reduction by sufficiently large concentrations of rodlike polymers in turbulent wall-bounded flows. It is shown that when Re is small the drag is enhanced. On the other hand, when Re increases, the

  1. Evaluation of Container Closure System Integrity for Frozen Storage Drug Products.

    Science.gov (United States)

    Nieto, Alejandra; Roehl, Holger; Brown, Helen; Nikoloff, Jonas; Adler, Michael; Mahler, Hanns-Christian

    2016-01-01

    Sometimes, drug product for parenteral administration is stored in a frozen state (e.g., -20 °C or -80 °C), particularly during early stages of development of some biotech molecules in order to provide sufficient stability. Shipment of frozen product could potentially be performed in the frozen state, yet possibly at different temperatures, for example, using dry ice (-80 °C). Container closure systems of drug products usually consist of a glass vial, rubber stopper, and an aluminum crimped cap. In the frozen state, the glass transition temperature (Tg) of commonly used rubber stoppers is between -55 and -65 °C. Below their Tg, rubber stoppers are known to lose their elastic properties and become brittle, and thus potentially fail to maintain container closure integrity in the frozen state. Leaks during frozen temperature storage and transportation are likely to be transient, yet, can possibly risk container closure integrity and lead to microbial contamination. After thawing, the rubber stopper is supposed to re-seal the container closure system. Given the transient nature of the possible impact on container closure integrity in the frozen state, typical container closure integrity testing methods (used at room temperature conditions) are unable to evaluate and thus confirm container closure integrity in the frozen state. Here we present the development of a novel method (thermal physical container closure integrity) for direct assessment of container closure integrity by a physical method (physical container closure integrity) at frozen conditions, using a modified He leakage test. In this study, different container closure systems were evaluated with regard to physical container closure integrity in the frozen state to assess the suitability of vial/stopper combinations and were compared to a gas headspace method. In summary, the thermal physical container closure integrity He leakage method was more sensitive in detecting physical container closure

  2. A Novel Wake Oscillator Model for Vortex-Induced Vibrations Prediction of A Cylinder Considering the Influence of Reynolds Number

    Science.gov (United States)

    Gao, Xi-feng; Xie, Wu-de; Xu, Wan-hai; Bai, Yu-chuan; Zhu, Hai-tao

    2018-04-01

    It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations (VIV) of cylinders. In this paper, a novel in-line (IL) and cross-flow (CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.

  3. Considerations for closure of low-level radioactive waste engineered disposal facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Proper stabilization and closure of low-level radioactive waste disposal facilities require detailed planning during the early stages of facility development. This report provides considerations for host States, compact regions, and unaffiliated States on stabilization and closure of engineered low-level radioactive waste and mixed waste disposal facilities. A time line for planning closure activities, which identifies closure considerations to be addressed during various stages of a facility's development, is presented. Current Federal regulatory requirements and guidance for closure and post-closure are outlined. Significant differences between host State and Federal closure requirements are identified. Design features used as stabilization measures that support closure, such as waste forms and containers, backfill materials, engineered barrier systems, and site drainage systems, are described. These design features are identified and evaluated in terms of how they promote long-term site stability by minimizing water infiltration, controlling subsidence and surface erosion, and deterring intrusion. Design and construction features critical to successful closure are presented for covers and site drainage. General considerations for stabilization and closure operations are introduced. The role of performance and environmental monitoring during closure is described

  4. Tank closure reducing grout

    International Nuclear Information System (INIS)

    Caldwell, T.B.

    1997-01-01

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr 90 , the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel

  5. Structural criteria for extreme dynamic internal pressure loadings of vessels and closure heads

    International Nuclear Information System (INIS)

    Bitner, J.L.

    1985-01-01

    The criteria protect against tensile plastic instability and local ductile rupture failure modes. To minimize the number of critical areas that may need more rigorous analytical methods, a screening criterion for limiting the membrane, bending and local stresses is defined. The stresses for this criterion are calculated from either simple and economical elastic dynamic or equivalent static methods. For the critical areas that remain, a strain-based criterion for strains derived from dynamic, inelastic methods is given. To assure that the criteria are properly applied, guidelines are outlined for controlling methods for deriving stresses and strains, for selecting appropriate material properties and for addressing specific dominating parameters that affect the validity of the analysis. The application of the criteria to a complex liquid metal fast breeder reactor vessel and closure head and the subsequent experimental verification of the results by several scale model experiments are summarized. (orig./HP)

  6. Further experiments for mean velocity profile of pipe flow at high Reynolds number

    Science.gov (United States)

    Furuichi, N.; Terao, Y.; Wada, Y.; Tsuji, Y.

    2018-05-01

    This paper reports further experimental results obtained in high Reynolds number actual flow facility in Japan. The experiments were performed in a pipe flow with water, and the friction Reynolds number was varied up to Reτ = 5.3 × 104. This high Reynolds number was achieved by using water as the working fluid and adopting a large-diameter pipe (387 mm) while controlling the flow rate and temperature with high accuracy and precision. The streamwise velocity was measured by laser Doppler velocimetry close to the wall, and the mean velocity profile, called log-law profile U+ = (1/κ) ln(y+) + B, is especially focused. After careful verification of the mean velocity profiles in terms of the flow rate accuracy and an evaluation of the consistency of the present results with those from previously measurements in a smaller pipe (100 mm), it was found that the value of κ asymptotically approaches a constant value of κ = 0.384.

  7. Ambiguity and uncertainty tolerance, need for cognition, and their association with stress. A study among Italian practicing physicians.

    Science.gov (United States)

    Iannello, Paola; Mottini, Anna; Tirelli, Simone; Riva, Silvia; Antonietti, Alessandro

    2017-01-01

    Medical practice is inherently ambiguous and uncertain. The physicians' ability to tolerate ambiguity and uncertainty has been proved to have a great impact on clinical practice. The primary aim of the present study was to test the hypothesis that higher degree of physicians' ambiguity and uncertainty intolerance and higher need for cognitive closure will predict higher work stress. Two hundred and twelve physicians (mean age = 42.94 years; SD = 10.72) from different medical specialties with different levels of expertise were administered a set of questionnaires measuring perceived levels of work-related stress, individual ability to tolerate ambiguity, stress deriving from uncertainty, and personal need for cognitive closure. A linear regression analysis was performed to examine which variables predict the perceived level of stress. The regression model was statistically significant [R 2  = .32; F(10,206) = 8.78, p ≤ .001], thus showing that, after controlling for gender and medical specialty, ambiguity and uncertainty tolerance, decisiveness (a dimension included in need for closure), and the years of practice were significant predictors of perceived work-related stress. Findings from the present study have some implications for medical education. Given the great impact that the individual ability to tolerate ambiguity and uncertainty has on the physicians' level of perceived work-related stress, it would be worth paying particular attention to such a skill in medical education settings. It would be crucial to introduce or to empower educational tools and strategies that could increase medical students' ability to tolerate ambiguity and uncertainty. JSQ: Job stress questionnaire; NFCS: Need for cognitive closure scale; PRU: Physicians' reactions to uncertainty; TFA: Tolerance for ambiguity.

  8. On the POD based reduced order modeling of high Reynolds flows

    Science.gov (United States)

    Behzad, Fariduddin; Helenbrook, Brian; Ahmadi, Goodarz

    2012-11-01

    Reduced-order modeling (ROM) of a high Reynolds fluid flow using the proper orthogonal decomposition (POD) was studied. Particular attention was given to incompressible, unsteady flow over a two-dimensional NACA0015 airfoil. The Reynolds number is 105 and the angle of attacked of the airfoil is 12°. For DNS solution, hp-finite element method is employed to drive flow samples from which the POD modes are extracted. Particular attention is paid on two issues. First, the stability of POD-ROM resimulation of the turbulent flow is studied. High Reynolds flow contains a lot of fluctuating modes. So, to reach a certain amount of error, more POD modes are needed and the effect of truncation of POD modes is more important. Second, the role of convergence rate on the results of POD. Due to complexity of the flow, convergence of the governing equations is more difficult and the influences of weak convergence appear in the results of POD-ROM. For each issue, the capability of the POD-ROM is assessed in terms of predictions quality of times upon which the POD model was derived. The results are compared with DNS solution and the accuracy and efficiency of different cases are evaluated.

  9. A kinematic view of loop closure.

    Science.gov (United States)

    Coutsias, Evangelos A; Seok, Chaok; Jacobson, Matthew P; Dill, Ken A

    2004-03-01

    We consider the problem of loop closure, i.e., of finding the ensemble of possible backbone structures of a chain segment of a protein molecule that is geometrically consistent with preceding and following parts of the chain whose structures are given. We reduce this problem of determining the loop conformations of six torsions to finding the real roots of a 16th degree polynomial in one variable, based on the robotics literature on the kinematics of the equivalent rotator linkage in the most general case of oblique rotators. We provide a simple intuitive view and derivation of the polynomial for the case in which each of the three pair of torsional axes has a common point. Our method generalizes previous work on analytical loop closure in that the torsion angles need not be consecutive, and any rigid intervening segments are allowed between the free torsions. Our approach also allows for a small degree of flexibility in the bond angles and the peptide torsion angles; this substantially enlarges the space of solvable configurations as is demonstrated by an application of the method to the modeling of cyclic pentapeptides. We give further applications to two important problems. First, we show that this analytical loop closure algorithm can be efficiently combined with an existing loop-construction algorithm to sample loops longer than three residues. Second, we show that Monte Carlo minimization is made severalfold more efficient by employing the local moves generated by the loop closure algorithm, when applied to the global minimization of an eight-residue loop. Our loop closure algorithm is freely available at http://dillgroup. ucsf.edu/loop_closure/. Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 510-528, 2004

  10. Socket sclerosis--an obstacle for orthodontic space closure?

    Science.gov (United States)

    Baumgaertel, Sebastian

    2009-07-01

    Socket sclerosis is a rare reaction to tooth extraction resulting in high-density bone in the center of the alveolar process, where, under normal circumstances, cancellous bone is to be expected. In an adult orthodontic patient, routine extractions of the mandibular first permanent bicuspids were performed, resulting in socket sclerosis and unsuccessful orthodontic space closure. Orthodontic mini-implants were inserted to augment anchorage and aid in space closure. In the presence of socket sclerosis, conventional orthodontic mechanics failed to close the extraction spaces. However, with absolute anchorage in place, space closure occurred at a nearly normal rate. After treatment, no signs of socket sclerosis were discernible on the periapical radiographs. Socket sclerosis can be an obstacle for orthodontic space closure if traditional mechanics are employed. However, mini-implant-reinforced anchorage can lead to successful space closure, resulting in complete resolution of the sclerotic sites.

  11. Craig Reynolds: Recognized for Excellence in Medicine | Poster

    Science.gov (United States)

    The Distinguished Alumni Award is one of the most prestigious awards at the University of Iowa Roy J. and Lucille A. Carver College of Medicine. This award recognizes influential alumni who have achieved excellence in the art and science of medicine. One of this year’s recipients is Craig Reynolds, Ph.D., associate director, NCI. When asked how he felt about receiving this

  12. Primary closure of equine laryngotomy incisions

    DEFF Research Database (Denmark)

    Lindegaard, C.; Karlsson, L.; Ekstrøm, Claus Thorn

    2016-01-01

    incision between January 1995 and June 2012 were reviewed. Horses with a laryngotomy incision closed in three layers for primary healing were included. Descriptive data on healing characteristics and complications of laryngotomy wounds were collected from the medical records and via follow......The objective was to report healing characteristics and complications after primary closure of equine laryngotomies and analyse factors potentially associated with complications. This retrospective case series of the medical records of horses (n = 180) undergoing laryngoplasty and laryngotomy...... after primary closure of equine laryngotomy incisions are infrequent and considered of minimal severity and can be performed safely when paying careful attention to the closure of the cricothyroid membrane....

  13. Detailed design report for an operational phase panel-closure system

    International Nuclear Information System (INIS)

    1996-01-01

    Under contract to Westinghouse Electric Corporation (Westinghouse), Waste Isolation Division (WID), IT Corporation has prepared a detailed design of a panel-closure system for the Waste Isolation Pilot Plant (WIPP). Preparation of this detailed design of an operational-phase closure system is required to support a Resource Conservation and Recovery Act (RCRA) Part B permit application and a non-migration variance petition. This report describes the detailed design for a panel-closure system specific to the WIPP site. The recommended panel-closure system will adequately isolate the waste-emplacement panels for at least 35 years. This report provides detailed design and material engineering specifications for the construction, emplacement, and interface-grouting associated with a panel-closure system at the WIPP repository, which would ensure that an effective panel-closure system is in place for at least 35 years. The panel-closure system provides assurance that the limit for the migration of volatile organic compounds (VOC) will be met at the point of compliance, the WIPP site boundary. This assurance is obtained through the inherent flexibility of the panel-closure system

  14. Percutaneous Transcatheter PDA Device Closure in Infancy

    International Nuclear Information System (INIS)

    Ullah, M.; Sultan, M.; Akhtar, K.; Sadiq, N.; Akbar, H.

    2014-01-01

    Objective: To evaluate the results and complications associated with transcatheter closure of patent ductus arteriosus (PDA) in infants. Study Design: Quasi-experimental study. Place and Duration of Study: Paediatric Cardiology Department of Armed Forces Institute of Cardiology / National Institute of Heart Diseases (AFIC/NIHD), Rawalpindi, from December 2010 to June 2012. Methodology: Infants undergoing transcatheter device closure of PDA were included. All patients were evaluated by experienced Paediatric Cardiologists with 2-D echocardiography and Doppler before the procedure. Success of closure and complications were recorded. Results: The age of patients varied from 05 - 12 months and 31 (56.4%) were females. Out of the 55 infants, 3 (5.4%) were not offered device closure after aortogram (two large tubular type ducts and one tiny duct, considered unsuitable for device closure); while in 50 (96.1%) patients out of remaining 52, the duct was successfully closed with transcatheter PDA device or coil. In one infant, device deployment resulted in acquired coarctation, necessitating device retrieval by Snare followed by surgical duct interruption and another patient had non-fatal cardiac arrest during device deployment leading to abandonment of procedure and subsequent successful surgical interruption. Local vascular complications occurred in 12 (21.8%) of cases and all were satisfactorily treated. Conclusion: Transcatheter device closure of PDA in infants was an effective procedure in the majority of cases; however, here were considerable number of local access site vascular complications. (author)

  15. Fatigue Crack Propagation Simulation in Plane Stress Constraint

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes; Spinelli, Dirceu

    2010-01-01

    Nowadays, structural and materials engineers develop structures and materials properties using finite element method. This work presents a numerical determination of fatigue crack opening and closure stress intensity factors of a C(T) specimen. Two different standard variable spectrum loadings...... are utilized, Mini-Falstaff and Wisper. The effects in two-dimensional (2D) small scale yielding models of fatigue crack growth were studied considering plane stress constraint....

  16. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  17. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  18. ASSESSMENT OF LENS THICKNESS IN ANGLE CLOSURE DISEASE

    Directory of Open Access Journals (Sweden)

    Nishat Sultana Khayoom

    2016-08-01

    Full Text Available BACKGROUND Anterior chamber depth and lens thickness have been considered as important biometric determinants in primary angle-closure glaucoma. Patients with primary narrow angle may be classified as a primary angle closure suspect (PACS, or as having primary angle closure (PAC or primary angle closure glaucoma (PACG. 23.9% of patients with primary angle closure disease are in India, which highlights the importance of understanding the disease, its natural history, and its underlying pathophysiology, so that we may try to establish effective methods of treatment and preventative measures to delay, or even arrest, disease progression, thereby reducing visual morbidity. AIM To determine the lens thickness using A-scan biometry and its significance in various stages of angle closure disease. MATERIALS AND METHODS Patients attending outpatient department at Minto Ophthalmic Hospital between October 2013 to May 2015 were screened for angle closure disease and subsequently evaluated at glaucoma department. In our study, lens thickness showed a direct correlation with shallowing of the anterior chamber by determining the LT/ ACD ratio. A decrease in anterior chamber depth is proportional to the narrowing of the angle which contributes to the progression of the angle closure disease from just apposition to occlusion enhancing the risk for optic nerve damage and visual field loss. Hence, if the lens thickness values are assessed earlier in the disease process, appropriate intervention can be planned. CONCLUSION Determination of lens changes along with anterior chamber depth and axial length morphometrically can aid in early detection of angle closure. The role of lens extraction for PACG is a subject of increased interest. Lens extraction promotes the benefits of anatomical opening of the angle, IOP reduction and improved vision. This potential intervention may be one among the armamentarium of approaches for PACG. Among the current treatment modalities

  19. Transcatheter closure of patent ductus arteriosus: past, present and future.

    Science.gov (United States)

    Baruteau, Alban-Elouen; Hascoët, Sébastien; Baruteau, Julien; Boudjemline, Younes; Lambert, Virginie; Angel, Claude-Yves; Belli, Emre; Petit, Jérôme; Pass, Robert

    2014-02-01

    This review aims to describe the past history, present techniques and future directions in transcatheter treatment of patent ductus arteriosus (PDA). Transcatheter PDA closure is the standard of care in most cases and PDA closure is indicated in any patient with signs of left ventricular volume overload due to a ductus. In cases of left-to-right PDA with severe pulmonary arterial hypertension, closure may be performed under specific conditions. The management of clinically silent or very tiny PDAs remains highly controversial. Techniques have evolved and the transcatheter approach to PDA closure is now feasible and safe with current devices. Coils and the Amplatzer Duct Occluder are used most frequently for PDA closure worldwide, with a high occlusion rate and few complications. Transcatheter PDA closure in preterm or low-bodyweight infants remains a highly challenging procedure and further device and catheter design development is indicated before transcatheter closure is the treatment of choice in this delicate patient population. The evolution of transcatheter PDA closure from just 40 years ago with 18F sheaths to device delivery via a 3F sheath is remarkable and it is anticipated that further improvements will result in better safety and efficacy of transcatheter PDA closure techniques. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Patent foramen ovale closure using a bioabsorbable closure device: safety and efficacy at 6-month follow-up.

    Science.gov (United States)

    Van den Branden, Ben J; Post, Martijn C; Plokker, Herbert W; ten Berg, Jurriën M; Suttorp, Maarten J

    2010-09-01

    The aim of this study was to assess the mid-term safety and efficacy of percutaneous patent foramen ovale (PFO) closure using a bioabsorbable device (BioSTAR, NMT Medical, Boston, Massachusetts). Closure of PFO in patients with cryptogenic stroke has proven to be safe and effective using different types of permanent devices. All consecutive patients who underwent percutaneous PFO closure with the bioabsorbable closure device between November 2007 and January 2009 were included. Residual shunt was assessed using contrast transthoracic echocardiography. Sixty-two patients (55% women, mean age 47.7 ± 11.8 years) underwent PFO closure. The in-hospital complications were a surgical device retrieval in 2 patients (3.2%), device reposition in 1 (1.6%), and a minimal groin hematoma in 6 patients (9.7%). The short-term complications at 1-month follow-up (n = 60) were a transient ischemic attack in the presence of a residual shunt in 1 patient and new supraventricular tachycardia in 7 patients (11.3%). At 6-month follow-up (n = 60), 1 patient without residual shunt developed a transient ischemic attack and 1 developed atrial fibrillation. A mild or moderate residual shunt was noted in 51.7%, 33.9%, and 23.7% after 1-day, 1-month, and 6-month follow-up, respectively. A large shunt was present in 8.3%, 3.4%, and 0% after 1-day, 1-month, and 6-month follow-up. Closure of PFO using the bioabsorbable device is associated with a low complication rate and a low recurrence rate of embolic events. However, a relatively high percentage of mild or moderate residual shunting is still present at 6-month follow-up. Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Analysis of Nanoparticle Additive Couple Stress Fluids in Three-layered Journal Bearing

    International Nuclear Information System (INIS)

    Rao, T V V L N; Sufian, S; Mohamed, N M

    2013-01-01

    The present theoretical study investigates the load capacity and friction coefficient in a three-layered journal bearing lubricated with nanoparticle additive couple stress fluids. The couple stresses effects are analyzed based on Stokes micro-continuum theory. The nondimensional pressure and shear stress expressions are derived using modified Reynolds equation. The nondimensional load capacity increases and the coefficient of friction decreases using nanoparticle additive lubricants with couple stress effects. The three-layered journal bearing performance characteristics are improved with increase in both (i) surface adsorbent fluid film layer thickness and (ii) dynamic viscosity ratio of surface to core layer.

  2. Plant responsiveness to root-root communication of stress cues.

    Science.gov (United States)

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-07-01

    Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.

  3. Computational fluid dynamic analysis of a closure head penetration in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D.R.; Schwirian, R.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-09-01

    ALLOY 600 has been used typically for penetrations through the closure head in pressurized water reactors because of its thermal compatibility with carbon steel, superior resistance to chloride attack and higher strength than the austenitic stainless steels. Recent plant operating experience with this alloy has indicated that this material may be susceptible to degradation. One of the major parameters relating to degradation of the head penetrations are the operational temperatures and stress levels in the penetration.

  4. Effect of Magnetohydrodynamic Couple Stresses on Dynamic Characteristics of Exponential Slider Bearing

    Directory of Open Access Journals (Sweden)

    N.B. Naduvinamani

    2017-05-01

    Full Text Available The effect of couple stresses on static and dynamic characteristics of exponential slider bearing in the presence of magnetic field considering squeeze action is theoretically analyzed in this paper. The modified magnetohydrodynamic couple stress Reynolds type equation is derived on the basis of Stokes couple stress model and closed form expressions are obtained for static and dynamic character coefficients. Comparing with bearing lubricated with non-conducting Newtonian lubricants, the magnetohydrodynamic couple stress lubrication provides the higher steady load carrying capacity, dynamic stiffness and damping coefficient. The exponential bearing shows higher efficiency for small film thickness at higher value of couple stress parameter and Hartmann number.

  5. Troughs on Martian Ice Sheets: Analysis of Their Closure and Mass Balance

    Science.gov (United States)

    Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, J.

    2000-01-01

    At the Copenhagen workshop on Martian polar processes, Ralf Greve commented that the flow regime surrounding scarps and troughs of the Martian polar ice sheets cannot be modeled using traditional "plan view" ice-sheet models. Such models are inadequate because they typically use reduced equations that embody certain simplifications applicable only to terrestrial ice sheets where the upper ice sheet surface is smooth. In response to this suggestion, we have constructed a 2-dimensional, time dependent "side view" (two spatial dimensions: one horizontal, one vertical) model of scarp closure that is designed to overcome the difficulties described by Greve. The purpose of the model is to evaluate the scales of stress variation and styles of flow closure so as to estimate errors that may be encountered by "plan view" models. We show that there may be avenues whereby the complications associated with scarp closure can be overcome in "plan view" models through appropriate parameterizations of 3-dimensional effects. Following this, we apply the flow model to simulate the evolution of a typical scarp on the North Polar Cap of Mars. Our simulations investigate: (a) the role of "radiation trapping" (see our companion abstract) in creating and maintaining "spiral-like" scarps on the ice sheet, (b) the consequences of different flowlaws and ice compositions on scarp evolution and, in particular, scarp age, and (c) the role of dust and debris in scarp evolution.

  6. Non-linear analysis of a closure manway using spiral wound gasket with metal-metal contact and a new geometry approach

    International Nuclear Information System (INIS)

    Jesus Miranda, C.A. de.

    1992-01-01

    The results of a PWR pressurizer closure manway analysis are presented. The manway geometry is slightly different from the conventional solution with the goal to reduce the bending stresses in the bolts when the system is pressurized. So the salt stresses value will also be reduced. The viability of the proposed solution will be confirmed by: verification of the stresses in the bolts connecting the blind flange to the nozzle by ASME III, subsection NB and level of the tightness reached in the spiral wound (type SG) gasket based in the criteria defined in the references. (author)

  7. Turbulence closure for mixing length theories

    Science.gov (United States)

    Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.

    2018-05-01

    We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.

  8. Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3

    International Nuclear Information System (INIS)

    Große, S; Schröder, W

    2008-01-01

    A new sensor to measure the mean turbulent wall-shear stress in turbulent flows is described. The wall-shear stress sensor MPS 3 has been tested in a well-defined fully developed turbulent pipe flow at Reynolds numbers Re b based on the bulk velocity U b and the pipe diameter D in the range of Re b = 10 000–20 000. The results demonstrate a convincing agreement of the mean wall-shear stress obtained with the new sensor technique with analytical and experimental results from the literature. The sensor device consists of a flexible micro-pillar that extends from the wall into the viscous sublayer. Bending due to the exerting fluid forces, the pillar-tip deflection serves as a measure for the local wall-shear stress. The sensor concept, calibration techniques, the achievable accuracy and error estimates, the fields of application and the sensor limits will be discussed. Furthermore, a first estimate of the pillar dynamic response will be derived showing the potential of the sensor to also measure the turbulent fluctuating wall-shear stress

  9. Emergent properties during dorsal closure in Drosophila morphogenesis

    International Nuclear Information System (INIS)

    Peralta, X G; Toyama, Y; Edwards, G S; Kiehart, D P

    2008-01-01

    Dorsal closure is an essential stage of Drosophila development that is a model system for research in morphogenesis and biological physics. Dorsal closure involves an orchestrated interplay between gene expression and cell activities that produce shape changes, exert forces and mediate tissue dynamics. We investigate the dynamics of dorsal closure based on confocal microscopic measurements of cell shortening in living embryos. During the mid-stages of dorsal closure we find that there are fluctuations in the width of the leading edge cells but the time-averaged analysis of measurements indicate that there is essentially no net shortening of cells in the bulk of the leading edge, that contraction predominantly occurs at the canthi as part of the process for zipping together the two leading edges of epidermis and that the rate constant for zipping correlates with the rate of movement of the leading edges. We characterize emergent properties that regulate dorsal closure, i.e., a velocity governor and the coordination and synchronization of tissue dynamics

  10. Boundary-Layer Control: In Memory of Bill Reynolds

    Science.gov (United States)

    Kim, John

    2004-11-01

    Professor Bill Reynolds (1933-2004) inspired many students and colleagues with his never-ending curiosity and thought-provoking ideas. Bill's relentless energy, together with his hallmark can-do character and do-it-yourself attitude, led to many seminal contributions to mechanical engineering in general, and fluid mechanics in particular. He has left a lasting impact on many of us, especially for those who had the privilege of working closely with him. Some of my current work on boundary-layer control, the use of neural networks in particular, were inspired by many discussions with Bill. He was among the first to see the potential of control-theoretic approaches for flow control, which has become the main thrust of my current research. Without his continued encouragement, I would not have been deeply involved in this line of research; and perhaps, we would not have seen the current flurry of research activities in applying modern control theories to flow control. In memory of Bill Reynolds, who himself has contributed much to flow control, an analysis of boundary-layer control from a linear system perspective will be presented.

  11. RANS modeling of scalar dispersion from localized sources within a simplified urban-area model

    Science.gov (United States)

    Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca

    2011-11-01

    The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.

  12. Turbulent flow computation in a circular U-Bend

    Science.gov (United States)

    Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir

    2014-03-01

    Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  13. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    Science.gov (United States)

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  14. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 2: Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1979-01-01

    An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.

  15. Economic evaluation of closure cap barrier materials study

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M.G.; Bhutani, J.S.; Mead, S.M.

    1993-09-01

    Volume II of the Economic Evaluation of the Closure Cap Barrier Materials, Revision I contains detailed cost estimates for closure cap barrier materials. The cost estimates incorporate the life cycle costs for a generic hazardous waste seepage basin closure cap under the RCRA Post Closure Period of thirty years. The economic evaluation assessed six barrier material categories. Each of these categories consists of several composite cover system configurations, which were used to develop individual cost estimates. The information contained in this report is not intended to be used as a cost estimating manual. This information provides the decision makers with the ability to screen barrier materials, cover system configurations, and identify cost-effective materials for further consideration.

  16. Economic evaluation of closure cap barrier materials study

    International Nuclear Information System (INIS)

    Serrato, M.G.; Bhutani, J.S.; Mead, S.M.

    1993-09-01

    Volume II of the Economic Evaluation of the Closure Cap Barrier Materials, Revision I contains detailed cost estimates for closure cap barrier materials. The cost estimates incorporate the life cycle costs for a generic hazardous waste seepage basin closure cap under the RCRA Post Closure Period of thirty years. The economic evaluation assessed six barrier material categories. Each of these categories consists of several composite cover system configurations, which were used to develop individual cost estimates. The information contained in this report is not intended to be used as a cost estimating manual. This information provides the decision makers with the ability to screen barrier materials, cover system configurations, and identify cost-effective materials for further consideration

  17. Key financial ratios can foretell hospital closures.

    Science.gov (United States)

    Lynn, M L; Wertheim, P

    1993-11-01

    An analysis of various financial ratios sampled from open and closed hospitals shows that certain leverage, liquidity, capital efficiency, and resource availability ratios can predict hospital closure up to two years in advance of the closure with an accuracy of nearly 75 percent.

  18. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-01-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods

  19. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  20. Hospital closure: Phoenix, Hydra or Titanic?

    Science.gov (United States)

    Dunne, T; Davis, S

    1996-01-01

    Very little has been published about the effects of hospital closure in terms of the service, financial or management issues of the process. Attempts through a case-study format to redress the balance and as such represents the reflections of practitioners who have recently undergone the experience of hospital closure and the often neglected issues arising both during and after the process.

  1. Steady state characteristics of an adjustable hybrid gas bearing – Computational fluid dynamics, modified Reynolds equation and experimental validation

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2015-01-01

    To include the effect of external pressurization in hybrid gas bearings an extra term is added to Reynolds Equation to accommodate the gas jet. Two cases are considered: cylindrical and annular flow profiles. Validation of theoretical results obtained using the modified version of Reynolds equation....... By introducing such coefficients into the modified Reynolds equation, good agreement with experiments is achieved in terms of journal equilibrium position and resulting aerodynamic forces....

  2. Simulating school closure policies for cost effective pandemic decision making

    Directory of Open Access Journals (Sweden)

    Araz Ozgur M

    2012-06-01

    Full Text Available Abstract Background Around the globe, school closures were used sporadically to mitigate the 2009 H1N1 influenza pandemic. However, such closures can detrimentally impact economic and social life. Methods Here, we couple a decision analytic approach with a mathematical model of influenza transmission to estimate the impact of school closures in terms of epidemiological and cost effectiveness. Our method assumes that the transmissibility and the severity of the disease are uncertain, and evaluates several closure and reopening strategies that cover a range of thresholds in school-aged prevalence (SAP and closure durations. Results Assuming a willingness to pay per quality adjusted life-year (QALY threshold equal to the US per capita GDP ($46,000, we found that the cost effectiveness of these strategies is highly dependent on the severity and on a willingness to pay per QALY. For severe pandemics, the preferred strategy couples the earliest closure trigger (0.5% SAP with the longest duration closure (24 weeks considered. For milder pandemics, the preferred strategies also involve the earliest closure trigger, but are shorter duration (12 weeks for low transmission rates and variable length for high transmission rates. Conclusions These findings highlight the importance of obtaining early estimates of pandemic severity and provide guidance to public health decision-makers for effectively tailoring school closures strategies in response to a newly emergent influenza pandemic.

  3. Potential socio-economic consequences of mine closure

    Directory of Open Access Journals (Sweden)

    Marietjie Ackermann

    2018-01-01

    Full Text Available Background: Mine closures generally reveal negligence on the part of mining houses, not only in terms of the environment, but also the surrounding mining communities. Aim: This article reflects on the findings of research into the socio-economic consequences of mine closure. The research specifically explored how mineworkers’ dependency on their employment at a mine affects their ability to sustain their livelihood. Setting: The research was conducted at the Orkney Mine and the Grootvlei Mine (Springs. Methods: The research was conducted within a naturalistic domain, guided by a relativist orientation, a constructivist ontology and an interpretivist epistemology. Data were collected by means of document analysis, semi-structured interviews, focus group discussion and unstructured observation. Results: From the research findings, it is evident that mine closures, in general, have a devastating effect on the surrounding mining communities as well as on the employees. Mine closures in the case studies gradually depleted the mining communities’ livelihood assets and resulted in the collapse of their coping strategies and livelihood outcomes. It generally affected the communities’ nutrition, health, education, food security, water, shelter, levels of community participation and personal safety. Conclusion: If not managed efficiently and effectively, mine closures may pose significant challenges to the mining industry, government, the environment, national and local economic prosperity and communities in the peripheral areas of mines. This truly amplifies that mine closure, whether temporary or permanent, is an issue that needs to be addressed with responsibility towards all stakeholders, including the mining community and the labour force.

  4. Top closure for control rod drive for nuclear reactor

    International Nuclear Information System (INIS)

    Raas, J.H.; Schwartz, J.I.

    1978-01-01

    A removable top closure and venting assembly for the tubular housing of a control rod drive includes a mounting ring threadably inserted in the upper end of the housing, a fluid-sealing closure member beneath the mounting ring and which is mounted in and coupled to the mounting ring by means of a ball and socket joint, a gas vent defined by interconnecting passages extending through the closure and through the ball and socket joint, and a vent valve accessible from the top of the closure assembly. 3 claims, 2 figures

  5. Transcatheter closure of ventricular septal defect with Occlutech Duct Occluder.

    Science.gov (United States)

    Atik-Ugan, Sezen; Saltik, Irfan Levent

    2018-04-01

    Patent ductus arteriosus occluders are used for transcatheter closure of ventricular septal defects, as well as for closure of patent ductus arteriosus. The Occlutech Duct Occluder is a newly introduced device for transcatheter closure of patent ductus arteriosus. Here, we present a case in which the Occlutech Duct Occluder was successfully used on a patient for the closure of a perimembraneous ventricular septal defect.

  6. A Full Hydro- and Morphodynamic Description of Breaker Bar Development

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl

    The present thesis considers a coupled modelling approach for hydro- and morphodynamics in the surf zone, which is based on a solution to the Reynolds Averaged Navier-Stokes (RANS) equations with a Volume of Fluid (VOF) closure for the surf tracking. The basis for the numerical approach is the su......The present thesis considers a coupled modelling approach for hydro- and morphodynamics in the surf zone, which is based on a solution to the Reynolds Averaged Navier-Stokes (RANS) equations with a Volume of Fluid (VOF) closure for the surf tracking. The basis for the numerical approach...

  7. Seven-year follow-up of percutaneous closure of patent foramen ovale.

    Science.gov (United States)

    Mirzada, Naqibullah; Ladenvall, Per; Hansson, Per-Olof; Johansson, Magnus Carl; Furenäs, Eva; Eriksson, Peter; Dellborg, Mikael

    2013-12-01

    Observational studies favor percutaneous closure of patent foramen ovale (PFO) over medical treatment to reduce recurrent stroke while randomized trials fail to demonstrate significant superiority of percutaneous PFO closure. Few long-term studies are available post PFO closure. This study reports long-term clinical outcomes after percutaneous PFO closure. Between 1997 and 2006, 86 consecutive eligible patients with cerebrovascular events, presumably related to PFO, underwent percutaneous PFO closure. All 86 patients were invited to a long-term follow-up, which was carried out during 2011 and 2012. Percutaneous PFO closure was successfully performed in 85 of 86 patients. The follow-up rate was 100%. No cardiovascular or cerebrovascular deaths occurred. Two patients (both women) died from lung cancer during follow-up. Follow-up visits were conducted for 64 patients and the remaining 20 patients were followed up by phone. The mean follow-up time was 7.3 years (5 to 12.4 years). Mean age at PFO closure was 49 years. One patient had a minor stroke one month after PFO closure and a transient ischemic attack (TIA) two years afterwards. One other patient suffered from a TIA six years after closure. No long-term device-related complications were observed. Percutaneous PFO closure was associated with very low risk of recurrent stroke and is suitable in most patients. We observed no mortality and no long-term device-related complications related to PFO closure, indicating that percutaneous PFO closure is a safe and efficient treatment even in the long term.

  8. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  9. Single-shell tank closure work plan. Revision A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

  10. Single-shell tank closure work plan. Revision A

    International Nuclear Information System (INIS)

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs

  11. Social and macro economic impact of closure

    International Nuclear Information System (INIS)

    Medeliene, D.

    1999-01-01

    The social consequences of closure of Ignalina NPP will largely depend on the actions the Government takes. If it puts in place the conditions which enable the International Financial Institutions to assist Lithuania, both in providing loans and grants for decommissioning and (in the case of the EU) providing Structural Adjustment Funds for the regional economic development of the Visaginas area, then solutions to the problems of closure can be found. But if the Government delays putting into place the necessary conditions, then Lithuania will be left to solve the problems of - inter alia necessary - closure of Ignalina NPP on its own. (author)

  12. Rumor has it...: relay communication of stress cues in plants.

    Science.gov (United States)

    Falik, Omer; Mordoch, Yonat; Quansah, Lydia; Fait, Aaron; Novoplansky, Ariel

    2011-01-01

    Recent evidence demonstrates that plants are able not only to perceive and adaptively respond to external information but also to anticipate forthcoming hazards and stresses. Here, we tested the hypothesis that unstressed plants are able to respond to stress cues emitted from their abiotically-stressed neighbors and in turn induce stress responses in additional unstressed plants located further away from the stressed plants. Pisum sativum plants were subjected to drought while neighboring rows of five unstressed plants on both sides, with which they could exchange different cue combinations. On one side, the stressed plant and its unstressed neighbors did not share their rooting volumes (UNSHARED) and thus were limited to shoot communication. On its other side, the stressed plant shared one of its rooting volumes with its nearest unstressed neighbor and all plants shared their rooting volumes with their immediate neighbors (SHARED), allowing both root and shoot communication. Fifteen minutes following drought induction, significant stomatal closure was observed in both the stressed plants and their nearest unstressed SHARED neighbors, and within one hour, all SHARED neighbors closed their stomata. Stomatal closure was not observed in the UNSHARED neighbors. The results demonstrate that unstressed plants are able to perceive and respond to stress cues emitted by the roots of their drought-stressed neighbors and, via 'relay cuing', elicit stress responses in further unstressed plants. Further work is underway to study the underlying mechanisms of this new mode of plant communication and its possible adaptive implications for the anticipation of forthcoming abiotic stresses by plants.

  13. Angle closure glaucoma in congenital ectropion uvea

    Directory of Open Access Journals (Sweden)

    Grace M. Wang

    2018-06-01

    Full Text Available Purpose: Congenital ectropion uvea is a rare anomaly, which is associated with open, but dysplastic iridocorneal angles that cause childhood glaucoma. Herein, we present 3 cases of angle-closure glaucoma in children with congenital ectropion uvea. Observations: Three children were initially diagnosed with unilateral glaucoma secondary to congenital ectropion uvea at 7, 8 and 13 years of age. The three cases showed 360° of ectropion uvea and iris stromal atrophy in the affected eye. In one case, we have photographic documentation of progression to complete angle closure, which necessitated placement of a glaucoma drainage device 3 years after combined trabeculotomy and trabeculectomy. The 2 other cases, which presented as complete angle closure, also underwent glaucoma drainage device implantation. All three cases had early glaucoma drainage device encapsulation (within 4 months and required additional surgery (cycloablation or trabeculectomy. Conclusions and importance: Congenital ectropion uvea can be associated with angle-closure glaucoma, and placement of glaucoma drainage devices in all 3 of our cases showed early failure due to plate encapsulation. Glaucoma in congenital ectropion uvea requires attention to angle configuration and often requires multiple surgeries to obtain intraocular pressure control. Keywords: Congenital ectropion uvea, Juvenile glaucoma, Angle-closure glaucoma, Glaucoma drainage device

  14. Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow

    Science.gov (United States)

    Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi

    2016-11-01

    The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.

  15. Critical wall shear stress for the EHEDG test method

    DEFF Research Database (Denmark)

    Jensen, Bo Boye Busk; Friis, Alan

    2004-01-01

    In order to simulate the results of practical cleaning tests on closed processing equipment, based on wall shear stress predicted by computational fluid dynamics, a critical wall shear stress is required for that particular cleaning method. This work presents investigations that provide a critical...... wall shear stress of 3 Pa for the standardised EHEDG cleaning test method. The cleaning tests were performed on a test disc placed in a radial flowcell assay. Turbulent flow conditions were generated and the corresponding wall shear stresses were predicted from CFD simulations. Combining wall shear...... stress predictions from a simulation using the low Re k-epsilon and one using the two-layer model of Norris and Reynolds were found to produce reliable predictions compared to empirical solutions for the ideal flow case. The comparison of wall shear stress curves predicted for the real RFC...

  16. Strategic Planning for Hot Cell Closure

    International Nuclear Information System (INIS)

    LANGSTAFF, D.C.

    2001-01-01

    The United States Department of Energy (DOE) and its contractor were remediating a large hot cell complex to mitigate the radiological hazard. A Resource Conservation and Recovery Act (RCRA) closure unit was determined to be located within the complex. The regulator established a challenge to develop an acceptable closure plan on a short schedule (four months). The scope of the plan was to remove all excess equipment and mixed waste from the closure unit, establish the requirements of the legally binding Closure Plan and develop an acceptable schedule. The complex has several highly radioactive tanks, tank vaults, piping, and large hot cells containing complex chemical processing equipment. Driven by a strong need to develop an effective strategy to meet cleanup commitments, three principles were followed to develop an acceptable plan: (1) Use a team approach, (2) Establish a buffer zone to support closure, and (3) Use good practice when planning the work sequence. The team was composed of DOE, contractor, and Washington State Department of Ecology (Regulator) staff. The team approach utilized member expertise and fostered member involvement and communication. The buffer zone established an area between the unregulated parts of the building and the areas that were allegedly not in compliance with environmental standards. Introduction of the buffer zone provided simplicity, clarity, and flexibility into the process. Using good practice means using the DOE Integrated Safety Management Core Functions for planning and implementing work safely. Paying adequate attention to detail when the situation required contributed to the process credibility and a successful plan

  17. The Variation of Slat Noise with Mach and Reynolds Numbers

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.

    2011-01-01

    The slat noise from the 30P30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. By varying the Mach number from 0.13 to 0.25, the noise was found to vary roughly with the 5th power of the speed. Slight changes in the behavior with directivity angle could easily account for the different speed dependencies reported in the literature. Varying the Reynolds number from 1.4 to 2.4 million resulted in almost no differences, and primarily served to demonstrate the repeatability of the results. However, changing the underlying hybrid Reynolds-averaged-Navier-Stokes/Large-Eddy-Simulation turbulence model significantly altered the mean flow because of changes in the flap separation. However, the general trends observed in both the acoustics and near-field fluctuations were similar for both models.

  18. Subcostal closure technique for prevention of postthoracotomy pain syndrome.

    Science.gov (United States)

    Hong, Kipyo; Bae, Mikyung; Han, Sora

    2016-09-01

    The purpose of this study was to evaluate the efficacy of our subcostal closure technique in prevention of postthoracotomy pain syndrome. From July 2012 to March 2015, 29 patients in whom a lobectomy was indicated underwent a thoracotomy. The thoracotomy wounds were closed using a subcostal closure technique (subcostal closure group) and outcomes were compared with 31 patients who underwent video-assisted thoracoscopic surgery (thoracoscopy group). The duration of oral opioid consumption was evaluated from medical records, and postoperative pain was evaluated by telephone interview conducted by a trained nurse practitioner who was unaware of the patient's group. Pain scores were higher in the thoracoscopy group compared to the subcostal closure group, reaching statistical significance (Numeric Rating Scale 0.55 ± 0.948 in the subcostal closure group vs. 1.84 ± 1.614 in the thoracoscopy group; p Pain Scale 0.24 ± 0.435 in the subcostal closure group vs. 0.81 ± 0.703 in the thoracoscopy group; p pain syndrome. © The Author(s) 2016.

  19. Numerical investigation of the vortex-induced vibration of an elastically mounted circular cylinder at high Reynolds number (Re = 104 and low mass ratio using the RANS code.

    Directory of Open Access Journals (Sweden)

    Niaz Bahadur Khan

    Full Text Available This study numerically investigates the vortex-induced vibration (VIV of an elastically mounted rigid cylinder by using Reynolds-averaged Navier-Stokes (RANS equations with computational fluid dynamic (CFD tools. CFD analysis is performed for a fixed-cylinder case with Reynolds number (Re = 104 and for a cylinder that is free to oscillate in the transverse direction and possesses a low mass-damping ratio and Re = 104. Previously, similar studies have been performed with 3-dimensional and comparatively expensive turbulent models. In the current study, the capability and accuracy of the RANS model are validated, and the results of this model are compared with those of detached eddy simulation, direct numerical simulation, and large eddy simulation models. All three response branches and the maximum amplitude are well captured. The 2-dimensional case with the RANS shear-stress transport k-w model, which involves minimal computational cost, is reliable and appropriate for analyzing the characteristics of VIV.

  20. Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment

    Science.gov (United States)

    Allan, Brian G.; Jones, Greg; Lin, John C.

    2011-01-01

    Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.

  1. Comparing over-the-scope clip versus endoloop and clips (KING closure) for access site closure: a randomized experimental study

    Czech Academy of Sciences Publication Activity Database

    Martínek, J.; Ryska, O.; Tučková, I.; Filípková, T.; Doležel, R.; Juhás, Štefan; Motlík, Jan; Zavoral, M.; Ryska, M.

    2013-01-01

    Roč. 27, č. 4 (2013), s. 1203-1210 ISSN 0930-2794 R&D Projects: GA MZd NS9994 Institutional research plan: CEZ:AV0Z50450515 Keywords : NOTES * gastrotomy closure * rectotomy closure Subject RIV: FJ - Surgery incl. Transplants Impact factor: 3.313, year: 2013

  2. Hexone Storage and Treatment Facility closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The HSTF is a storage and treatment unit subject to the requirements for the storage and treatment of dangerous waste. Closure is being conducted under interim status and will be completed pursuant to the requirements of Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and WAC 173-303-640. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. The known hazardous/dangerous waste remaining at the site before commencing other closure activities consists of the still vessels, a tarry sludge in the storage tanks, and residual contamination in equipment, piping, filters, etc. The treatment and removal of waste at the HSTF are closure activities as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and WAC 173-303

  3. Cyanoacrylate for Intraoral Wound Closure: A Possibility?

    Directory of Open Access Journals (Sweden)

    Parimala Sagar

    2015-01-01

    Full Text Available Wound closure is a part of any surgical procedure and the objective of laceration repair or incision closure is to approximate the edges of a wound so that natural healing process may occur. Over the years new biomaterials have been discovered as an alternate to conventional suture materials. Cyanoacrylate bioadhesives are one among them. They carry the advantages of rapid application, patient comfort, resistance to infection, hemostatic properties, and no suture removal anxiety. Hence this study was undertaken to study the effect of long chain cyanoacrylate as an adhesive for intraoral wound closure and also to explore its hemostatic and antibacterial effects. Isoamyl-2-cyanoacrylate (AMCRYLATE was used as the adhesive in the study. In conclusion isoamyl cyanoacrylate can be used for intraoral wound closure, as an alternative to sutures for gluing the mucoperiosteum to bone, for example, after impaction removal, periapical surgeries, and cleft repair. Its hemostatic and antibacterial activity has to be further evaluated.

  4. A parametric study of quasi-2D LES on Low-Reynolds-number transitional flows past an airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, W.; Xu, H.; Khalid, M. [National Research Council (NRC), Inst. for Aerospace Research (IAR), Ottawa, Ontario (Canada)]. E-mail: Weixing.Yuan@nrc-cnrc.gc.ca

    2004-07-01

    Low-Reynolds-number aerodynamic performance of small sized air vehicles is an area of increasing interest. In this study, we investigate low-Reynolds-number flows past an SD7003 airfoil to understand substantial viscous features of laminar separation and transitional flow followed by the intractable behavior of reattachment. In order to satisfy the three-dimensional (3D) requirement of the code, a simple '3D wing' is constructed from a two-dimensional (2D) airfoil and only four grid points are used in the spanwise direction. A parametric study of quasi-2D LES on the low-Reynolds-number airfoil flows at Re=60000 is performed. Effects of grid resolution and sub-grid scale (SGS) models are investigated. Although three-dimensional effects cannot be accurately captured, the quasi-2D LES calculations do reveal some important flow characteristics such as leading edge laminar separation and vortex shedding from the primary laminar separation bubble on the low-Reynolds-number airfoil. (author)

  5. Project Management Approach to Transition of the Miamisburg Closure Project From Environmental Cleanup to Post-Closure Operations

    International Nuclear Information System (INIS)

    Carpenter, C.P.; Marks, M.L.; Smiley, S.L.; Gallaher, D.M.; Williams, K.D.

    2006-01-01

    The U.S. Department of Energy (DOE) used a project management approach to transition the Miamisburg Closure Project from cleanup by the Office of Environmental Management (EM) to post-closure operations by the Office of Legacy Management (LM). Two primary DOE orders were used to guide the site transition: DOE Order 430.1B, Real Property Asset Management, for assessment and disposition of real property assets and DOE Order 413.3, Program and Project Management for Acquisition of Capital Assets, for project closeout of environmental cleanup activities and project transition of post-closure activities. To effectively manage these multiple policy requirements, DOE chose to manage the Miamisburg Closure Project as a project under a cross-member transitional team using representatives from four principal organizations: DOE-LM, the LM contractor S.M. Stoller Corporation, DOE-EM, and the EM contractor CH2M Hill Mound Inc. The mission of LM is to manage the Department's post-transition responsibilities and long-term care of legacy liabilities and to ensure the future protection of human health and the environment for cleanup sites after the EM has completed its cleanup activities. (authors)

  6. Design, production and initial state of the closure

    International Nuclear Information System (INIS)

    2010-12-01

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The production reports are included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the closure and plugs in underground openings other than deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides some input to the operational safety report, SR-Operation, on how the closure and plugs shall be handled and installed. The report presents the design premises and reference designs of the closure and plugs and verifies their conformity to the design premises. It also briefly deals with the production of the closure and plugs. Finally, the initial state of the closure and plugs and their conformity to the reference designs and design premises are presented

  7. Design, production and initial state of the closure

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The production reports are included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the closure and plugs in underground openings other than deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides some input to the operational safety report, SR-Operation, on how the closure and plugs shall be handled and installed. The report presents the design premises and reference designs of the closure and plugs and verifies their conformity to the design premises. It also briefly deals with the production of the closure and plugs. Finally, the initial state of the closure and plugs and their conformity to the reference designs and design premises are presented

  8. Transcatheter Closure of Patent Foramen Ovale: Devices and Technique.

    Science.gov (United States)

    Price, Matthew J

    2017-10-01

    Transcatheter closure of a patent foramen ovale (PFO) reduces the risk of recurrent cryptogenic stroke compared with medical therapy. PFO closure is a prophylactic procedure, and will not provide the patient with symptomatic improvement, except in cases of hypoxemia due to right-to-left shunt or possibly migraine headaches. Therefore, appropriate patient selection is critical, and procedural safety is paramount. Herein, we review key characteristics of the devices currently available for transcatheter PFO closure within the United States, and highlight key technical aspects of the PFO closure procedure that will maximize procedural success. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Digital signal processing of data from borehole creep closure

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Patrick, W.C.; Duplancic, N.

    1987-01-01

    Digital signal processing, a technique commonly used in the fields of electrical engineering and communication technology, has been successfully used to analyze creep closure data obtained from a 0.91 m diameter by 5.13 deep borehole in bedded salt. By filtering the ''noise'' component of the closure data from a test borehole, important data trends were made more evident and average creep closure rates were able to be calculated. This process provided accurate estimates of closure rates that are used in the design of lined boreholes in which heat-generating transuranic nuclear wastes are emplaced at the Waste Isolation Pilot Plant

  10. 40 CFR 264.119 - Post-closure notices.

    Science.gov (United States)

    2010-07-01

    ...) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... closure of each hazardous waste disposal unit, the owner or operator must submit to the local zoning... disposal unit of the facility. For hazardous wastes disposed of before January 12, 1981, the owner or...

  11. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1985-07-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the ;apoplastic' ABA, increased before ;bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise.Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period.

  12. Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows

    KAUST Repository

    Scribano, Gianfranco; Bisetti, Fabrizio

    2016-01-01

    dependence of the velocity field with respect to the separation ratio is linked to a high pressure region at the stagnation point. On the other hand, Reynolds number effects highlight the role played by the wall boundary layer on the interior of the nozzles

  13. A closure test for time-specific capture-recapture data

    Science.gov (United States)

    Stanley, T.R.; Burnham, K.P.

    1999-01-01

    The assumption of demographic closure in the analysis of capture-recapture data under closed-population models is of fundamental importance. Yet, little progress has been made in the development of omnibus tests of the closure assumption. We present a closure test for time-specific data that, in principle, tests the null hypothesis of closed-population model M(t) against the open-population Jolly-Seber model as a specific alternative. This test is chi-square, and can be decomposed into informative components that can be interpreted to determine the nature of closure violations. The test is most sensitive to permanent emigration and least sensitive to temporary emigration, and is of intermediate sensitivity to permanent or temporary immigration. This test is a versatile tool for testing the assumption of demographic closure in the analysis of capture-recapture data.

  14. Reliability in maintenance and design of elastomer sealed closures

    International Nuclear Information System (INIS)

    Lake, W.H.

    1978-01-01

    The methods of reliability are considered for maintenance and design of elastomer sealed containment closures. Component reliability is used to establish a replacement schedule for system maintenance. Reliability data on elastomer seals is used to evaluate the common practice of annual replacement, and to calculate component reliability values for several typical shipment time periods. System reliability methods are used to examine the relative merits of typical closure designs. These include single component and redundant seal closure, with and without closure verification testing. The paper presents a general method of quantifying the merits of closure designs through the use of reliability analysis, which is a probabilistic technique. The reference list offers a general source of information in the field of reliability, and should offer the opportunity to extend the procedures discussed in this paper to other design safety applications

  15. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan

    2013-01-01

    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  16. Unsteady effects in flows past stationary airfoils with Gurney flaps due to unsteady flow separations at low Reynolds numbers

    OpenAIRE

    Dan MATEESCU

    2015-01-01

    This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV) flying at low speed and very low Reynolds numb...

  17. Stress and Fatigue Life Modeling of Cannon Breech Closures Including Effects of Material Strength and Residual Stress

    National Research Council Canada - National Science Library

    Underwood, John

    2000-01-01

    ...; overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid...

  18. RELAP-7 Closure Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, R. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, R. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andrs, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansel, J. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sharpe, J. P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johns, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s and TRACE’s capabilities and extends their analysis capabilities for all reactor system simulation scenarios. The RELAP-7 code utilizes the well-posed 7-equation two-phase flow model for compressible two-phase flow. Closure models used in the TRACE code has been reviewed and selected to reflect the progress made during the past decades and provide a basis for the colure correlations implemented in the RELAP-7 code. This document provides a summary on the closure correlations that are currently implemented in the RELAP-7 code. The closure correlations include sub-grid models that describe interactions between the fluids and the flow channel, and interactions between the two phases.

  19. The effectiveness of eye-closure in repeated interviews

    OpenAIRE

    Vredeveldt, A.; Baddeley, A.D.; Hitch, G.J.

    2014-01-01

    Purpose Closing the eyes during recall can help witnesses remember more about a witnessed event. This study examined the effectiveness of eye-closure in a repeated recall paradigm with immediate free recall followed 1 week later by both free and cued recall. We examined whether eye-closure was more or less effective during the second free-recall attempt compared with the first, whether eye-closure during the first recall attempt had an impact on subsequent free- and cued-recall performance, a...

  20. Closure of the squared Zakharov--Shabat eigenstates

    International Nuclear Information System (INIS)

    Kaup, D.J.

    1976-01-01

    By solution of the inverse scattering problem for a third-order (degenerate) eigenvalue problem, the closure of the squared eigenfunctions of the Zakharov--Shabat equations is found. The question of the completeness of squared eigenstates occurs in many aspects of ''inverse scattering transforms'' (solving nonlinear evolution equations exactly by inverse scattering techniques), as well as in various aspects of the inverse scattering problem. The method used here is quite suggestive as to how one might find the closure of the squared eigenfunctions of other eigenvalue equations, and the strong analogy between these results and the problem of finding the closure of the eigenvectors of a nonself-adjoint matrix is pointed out

  1. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  2. A comparison of three approaches to compute the effective Reynolds number of the implicit large-eddy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thornber, Ben [The Univ. of Sydney, Sydney, NSW (Australia)

    2016-04-12

    Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology and wind tunnel experiments.

  3. The Office of Site Closure: Progress in the Face of Challenges

    International Nuclear Information System (INIS)

    Fiore, J. J.; Murphie, W. E.; Meador, S. W.

    2002-01-01

    The Office of Site Closure (OSC) was formed in November 1999 when the Department of Energy's (DOE's) Office of Environmental Management (EM) reorganized to focus specifically on site cleanup and closure. OSC's objective is to achieve safe and cost-effective cleanups and closures that are protective of our workers, the public, and the environment, now and in the future. Since its inception, OSC has focused on implementing a culture of safe closure, with emphasis in three primary areas: complete our responsibility for the Closure Sites Rocky Flats, Mound, Fernald, Ashtabula, and Weldon Spring; complete our responsibility for cleanup at sites where the DOE mission has been completed (examples include Battelle King Avenue and Battelle West Jefferson in Columbus, and General Atomics) or where other Departmental organizations have an ongoing mission (examples include the Brookhaven, Livermore, or Los Alamos National Laboratories, and the Nevada Test Site); and create a framework a nd develop specific business closure tools that will help sites close, such as guidance for and decisions on post-contract benefit liabilities, records retention, and Federal employee incentives for site closure. This paper discusses OSC's 2001 progress in achieving site cleanups, moving towards site closure, and developing specific business closure tools to support site closure. It describes the tools used to achieve progress towards cleanup and closure, such as the application of new technologies, changes in contracting approaches, and the development of agreements between sites and with host states. The paper also identifies upcoming challenges and explores options for how Headquarters and the sites can work together to address these challenges. Finally, it articulates OSC's new focus on oversight of Field Offices to ensure they have the systems in place to oversee contractor activities resulting in site cleanups and closures

  4. Development of a low Reynolds number turbulence stress and heat flux equation model. A new type wall boundary condition for dissipation rate of turbulent kinetic energy aided by DNS data base

    International Nuclear Information System (INIS)

    Nishimura, M.

    1998-04-01

    To predict thermal-hydraulic phenomena in actual plant under various conditions accurately, adequate simulation of laminar-turbulent flow transition is of importance. A low Reynolds number turbulence model is commonly used for a numerical simulation of the laminar-turbulent transition. The existing low Reynolds number turbulence models generally demands very thin mesh width between a wall and a first computational node from the wall, to keep accuracy and stability of numerical analyses. There is a criterion for the distance between the wall and the first computational node in which non-dimensional distance y + must be less than 0.5. Due to this criterion the suitable distance depends on Reynolds number. A liquid metal sodium is used for a coolant in first reactors therefore, Reynolds number is usually one or two order higher than that of the usual plants in which air and water are used for the work fluid. This makes the load of thermal-hydraulic numerical simulation of the liquid sodium relatively heavier. From above context, a new method is proposed for providing wall boundary condition of turbulent kinetic energy dissipation rate ε. The present method enables the wall-first node distance 10 times larger compared to the existing models. A function of the ε wall boundary condition has been constructed aided by a direct numerical simulation (DNS) data base. The method was validated through calculations of a turbulent Couette flow and a fully developed pipe flow and its laminar-turbulent transition. Thus the present method and modeling are capable of predicting the laminar-turbulent transition with less mesh numbers i.e. lighter computational loads. (J.P.N.)

  5. Simulation of Reynolds number influence on heat exchange in turbulent flow of medium slurry

    Science.gov (United States)

    Bartosik, A.

    2016-10-01

    The paper deals with the numerical simulation of mass and heat exchange in turbulent flow of solid-liquid mixture in the range of averaged solid particle diameter from 0.10mm to 0.80mm, named further as the medium slurry. Physical model assumes that dispersed phase is fully suspended and a turbulent flow is hydro-dynamically, and thermally developed in a straight horizontal pipeline. Taking into account the aforementioned assumptions the slurry is treated as a single-phase flow with increased density, while viscosity is equals to a carrier liquid viscosity. The mathematical model constitutes time averaged momentum equation in which the turbulent stress tensor was designated using a two-equation turbulence model, which makes use of the Boussinesq eddy-viscosity hypothesis. Turbulence damping function in the turbulence model was especially designed for the medium slurry. In addition, an energy equation has been used in which a convective term was determined from the energy balance acting on a unit pipe length, assuming linear changes of temperature in main flow direction. Finally, the mathematical model of non-isothermal medium slurry flow comprises four partial differential equations, namely momentum and energy equations, equations of kinetic energy of turbulence and its dissipation rate. Four partial differential equations were solved by a finite difference scheme using own computer code. The objective of the paper is to examine the influence of Reynolds number on temperature profiles and Nusselt number in turbulent flow of medium slurry in the range of solids concentration from 0% to 30% by volume. The effect of influential factors on heat transfer between the pipe and slurry is analysed. The paper demonstrates substantial impact of Reynolds number and solids volume fraction on the Nusselt number. The results of numerical simulation are reviewed.

  6. Stomal Closure: Strategies to Prevent Incisional Hernia

    Science.gov (United States)

    Harries, Rhiannon L.; Torkington, Jared

    2018-01-01

    Incisional hernias following ostomy reversal occur frequently. Incisional hernias at the site of a previous stoma closure can cause significant morbidity, impaired quality of life, lead to life-threatening hernia incarceration or strangulation and result in a significant financial burden on health care systems Despite this, the evidence base on the subject is limited. Many recognised risk factors for the development of incisional hernia following ostomy reversal are related to patient factors such as age, malignancy, diabetes, COPD, hypertension and obesity, and are not easily correctable. There is a limited amount of evidence to suggest that prophylactic mesh reinforcement may be of benefit to reduce the post stoma closure incisional hernia rate but a further large scale randomised controlled trial is due to report in the near future. There appears to be weak evidence to suggest that surgeons should favour circular, or “purse-string” closure of the skin following stoma closure in order to reduce the risk of SSI, which in turn may reduce incisional hernia formation. There remains the need for further evidence in relation to suture technique, skin closure techniques, mechanical bowel preparation and oral antibiotic prescription focusing on incisional hernia development as an outcome measure. Within this review, we discuss in detail the evidence base for the risk factors for the development of, and the strategies to prevent ostomy reversal site incisional hernias. PMID:29670882

  7. Stomal Closure: Strategies to Prevent Incisional Hernia

    Directory of Open Access Journals (Sweden)

    Rhiannon L. Harries

    2018-04-01

    Full Text Available Incisional hernias following ostomy reversal occur frequently. Incisional hernias at the site of a previous stoma closure can cause significant morbidity, impaired quality of life, lead to life-threatening hernia incarceration or strangulation and result in a significant financial burden on health care systems Despite this, the evidence base on the subject is limited. Many recognised risk factors for the development of incisional hernia following ostomy reversal are related to patient factors such as age, malignancy, diabetes, COPD, hypertension and obesity, and are not easily correctable. There is a limited amount of evidence to suggest that prophylactic mesh reinforcement may be of benefit to reduce the post stoma closure incisional hernia rate but a further large scale randomised controlled trial is due to report in the near future. There appears to be weak evidence to suggest that surgeons should favour circular, or “purse-string” closure of the skin following stoma closure in order to reduce the risk of SSI, which in turn may reduce incisional hernia formation. There remains the need for further evidence in relation to suture technique, skin closure techniques, mechanical bowel preparation and oral antibiotic prescription focusing on incisional hernia development as an outcome measure. Within this review, we discuss in detail the evidence base for the risk factors for the development of, and the strategies to prevent ostomy reversal site incisional hernias.

  8. Reynolds number scaling of straining motions in turbulence

    Science.gov (United States)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  9. Hazardous Waste Cleanup: Reynolds Metals Company in Massena, New York

    Science.gov (United States)

    The Reynolds Metals Company is located at 194 County Route 45 in Massena, New York. The facility has been an active aluminum production plant since 1958. The 1,600-acre facility is bordered on the north by the St. Lawrence River and on the south by the

  10. Case Report: Rapid staged abdominal closure using Gore-Tex® mesh as a bridge to primary omphalocele sac closure

    Directory of Open Access Journals (Sweden)

    William C. Kethman

    2016-06-01

    Full Text Available Omphaloceles present an ongoing challenge due to significant variations in presentation and associated co-morbidities. Diverse management strategies have been described to tackle many of the fundamental challenges of closure and reconstruction of the abdominal wall – this fact demonstrates a need for increasingly individualized management options for this complex disease. We describe a novel method of rapid staged abdominal wall closure using Gore-Tex® mesh as a bridge to primary omphalocele closure in an infant with partial Pentalogy of Cantrell and giant ruptured omphalocele. This strategy can be used in management of some of the most complex abdominal wall defects.

  11. Effects of Reynold's number on flight performance of turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Masao; Yajima, Satoshi [Defense Agency Tokyo (Japan); Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1988-12-10

    Concerning the performance of the F3-30 turbofan engine which is carried on the intermediate trainer XT-4 of the Air Self Defense Force, tests simulating its flight conditions were conducted at the Altitude Test Facility (ATF) of the Arnold Engineering Development Center (AEDC), U.S. Air Force in order to adjust the effect of Reynold's number corresponding to the flight condition. This report summarizes the results of the above tests. As the results of the tests, it was revealed that in order to calculate with precision the flight performance of the F3-30 turbofan engine, it was required to adjust Reynold's number against the following figures, namely the fan air flow, compressor air flow, compressor adiabatic efficiency, low pressure turbine gas flow and low pressure turbine adiabatic efficiency. The engine performance calculated by using the above adjustments agreed well with the measured values of the ATF tests. 7 refs., 17 figs., 1 tab.

  12. Turbulent flows at very large Reynolds numbers: new lessons learned

    International Nuclear Information System (INIS)

    Barenblatt, G I; Prostokishin, V M; Chorin, A J

    2014-01-01

    The universal (Reynolds-number-independent) von Kármán–Prandtl logarithmic law for the velocity distribution in the basic intermediate region of a turbulent shear flow is generally considered to be one of the fundamental laws of engineering science and is taught universally in fluid mechanics and hydraulics courses. We show here that this law is based on an assumption that cannot be considered to be correct and which does not correspond to experiment. Nor is Landau's derivation of this law quite correct. In this paper, an alternative scaling law explicitly incorporating the influence of the Reynolds number is discussed, as is the corresponding drag law. The study uses the concept of intermediate asymptotics and that of incomplete similarity in the similarity parameter. Yakov Borisovich Zeldovich played an outstanding role in the development of these ideas. This work is a tribute to his glowing memory. (100th anniversary of the birth of ya b zeldovich)

  13. Bidirectional Barbed Sutures for Wound Closure: Evolution and Applications

    Science.gov (United States)

    Paul, Malcolm D.

    2009-01-01

    Traditionally, wound closure sutures have in common the need to tie knots with the inherent risk of extrusion, palpability, microinfarcts, breakage, and slippage. Bidirectional barbed sutures have barbs arrayed in a helical fashion in opposing directions on either side of an unbarbed midsegment. This suture is inserted at the midpoint of a wound and pulled through till resistance is encountered from the opposing barbs; each half of the suture is then advanced to the lateral ends of the wound. This design provides a method of evenly distributing tension along the incision line, a faster suture placement and closure time with no need to tie knots, and the possibility of improved cosmesis. Bidirectional barbed sutures, which are available in both absorbable and nonabsorbable forms, can be used for simple closures, multilayered closures, and closure of high-tension wounds in a variety of surgical settings. PMID:24527114

  14. Primary angle closure glaucoma in a myopic kinship.

    Science.gov (United States)

    Hagan, J C; Lederer, C M

    1985-03-01

    Three related myopic individuals with primary angle closure glaucoma are reported. They had true myopia and not pseudomyopia secondary to increased lenticular index of refraction. We believe one of these individuals (-8.62 spherical equivalent) to have the most myopic case of primary angle closure glaucoma reported in the literature. Although myopia is associated with anatomical factors that offer considerable protection from primary angle closure glaucoma, its presence does not eliminate the possibility of this disease. Laser iridectomy was effective in the treatment of these patients.

  15. Closure of a mixed waste landfill: Lessons learned

    International Nuclear Information System (INIS)

    Phifer, M.A.

    1990-01-01

    Much experience has been gained during the closure of the Mixed Waste Management Facility (MWMF) at the Savannah River Site (SRS) and many lessons were learned. This knowledge was applied to other closures at SRS yielding decreased costs, schedule enhancement, and increased overall project efficiency. The next major area of experience to be gained at SRS in the field of waste site closures will be in the upkeep, maintenance, and monitoring of clay caps. Further test programs will be required to address these requirements

  16. Influence of Closure & Non-Closure of the Visceral and Parietal Peritoneum on Post Cesarean Morbidity

    Directory of Open Access Journals (Sweden)

    Tabasi Z.

    2010-01-01

    Full Text Available AbstractBackground and Objectives: One of the most important issues in promoting mother and child health is reducing the morbidity rate after cesarean section. The aim of this study was to investigate the influence of closure and non-closure of the visceral and parietal peritoneum on post cesarean morbidity in women attending Shabihkhani Maternity Hospital in Kashan, Iran.Methods: This study was conducted with a single blind randomized clinical trial method on 100 parturient women that underwent emergency or elective cesarean section. Patients with previous cesarean section and or abdominal surgery, diseases such as hypertension, diabetes mellitus and premature rupture of membrane and pre operative bleeding, were excluded from this study. Then, the participants were randomly divided into two groups: in one group both peritoneal layers were closed while in the other group, they were not closed. Post operative morbidity including fever, bleeding, post operative pain, analgesic consumption and time of operation were assessed. Data were analyzed with t-tests, and χ2 and a P<0.05 were considered significant.Results: In this study, there were no significant differences between the two groups with respect to age, gestational age, the reason for caesarean section and gravidity, nor were there any differences with respect to the incidence of fever or bleeding and was similar between the two groups, but there was a significant difference between the two groups regarding to feeling of severe pain (P=0.0003, analgesic consumption (P=0.0003 and time of operation (P=0.004. In the non-closure group, dose of analgesic drugs, pain severity and time of operation were less than those of the other group.Conclusion: The Findings showed that non-closure of peritoneal layers as a shorter and simpler procedure has no influence on increasing post cesarean morbidity. Therefore, due to maternal health promotion and early neonatal breastfeeding, non closure of peritoneal

  17. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    Science.gov (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  18. Hamiltonian closures in fluid models for plasmas

    Science.gov (United States)

    Tassi, Emanuele

    2017-11-01

    This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and

  19. Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer

    Science.gov (United States)

    Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram

    2015-11-01

    Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.

  20. Long-term integrity of waste package final closure for HLW geological disposal, (2). Applicability of TIG welding method to overpack final closure

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Sawa, Shuusuke; Aritomi, Masanori

    2005-01-01

    Overpack, a high-level radioactive waste package for geological disposal, seals vitrified waste and in line with Japan's waste management program is required to isolate it from contact with groundwater for 1,000 years. In this study, TIG (Tungsten Inert Gas) welding method, a typical arc welding method and widely used in various industries, was examined for its applicability to seal a carbon steel overpack lid with a thickness of 190 mm. Welding conditions and welding parameters were examined for multi-layer welding in a narrow gap for four different groove depths. Weld joint tests were conducted and weld flaws, macro- and microstructure, and mechanical properties were assessed within tentatively applied criteria for weld joints. Measurement and numerical calculation for residual stress were also conducted and the tendency of residual stress distribution was discussed. These test results were compared with the basic requirements of the welding method for overpack which were pointed out in our first report. It is assessed that the TIG welding method has the potential to provide the necessary requirements to complete the final closure of overpack with a maximum thickness of 190 mm. (author)

  1. On the application of reynolds theory to thermo-piezo-viscous lubrication in oil hydraulics

    DEFF Research Database (Denmark)

    Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.

    2015-01-01

    The efficiency of fluid power motors and pumps is a subject to research, which has generated numerous publications during the last three decades. The main incentives for this research are optimization of reliability and efficiency through the study of loss and wear mechanisms, which are very....... In this paper the derivation of Reynolds equation from the continuum assumption is reviewed and it is shown that the validity of Reynolds theory based pressure field solutions in oil hydraulic thermo-piezo-viscous lubrication models are subject to maximum bounds on the pressure and temperature field gradients...

  2. MNC Subsidiary Closures

    DEFF Research Database (Denmark)

    Sofka, Wolfgang; Torres Preto, Miguel; de Faria, Pedro

    2014-01-01

    We investigate the consequences of MNC subsidiary closures for employees who lose their jobs. In particular, we examine the extent to which the human capital that these employees acquired while employed by the MNC influences the wages they receive in their new jobs. We propose an employee...

  3. Length and time scales of the near-surface axial velocity in a high Reynolds number turbulent boundary layer

    International Nuclear Information System (INIS)

    Metzger, M.

    2006-01-01

    Reynolds number effects on relevant length and time scales in the near-wall region of a canonical turbulent boundary layer are investigated. Well resolved measurements in the atmospheric surface layer are compared with existing laboratory data to give a composite Reynolds number range spanning over three orders of magnitude. In the field experiments, a vertical rake of twenty single element hot-wires was used to measure the axial velocity, u, characteristics in the lower log layer region of the atmospheric surface layer that flows over Utah's western desert. Only data acquired under conditions of near-neutral thermal stability are analyzed. The shape of the power spectra of u as a function of distance from the wall, y, and Reynolds number is investigated, with emphasis on the appropriate scaling parameters valid across different wavenumber, k, bands. In particular, distance from the wall is found to scale the region of the u spectra around ky = 1. The presence of a k -1 slope in the spectra is also found to correlate with the Reynolds number dependence in the peak of the root mean square u profile. In addition, Reynolds number trends in the profiles of the Taylor microscales, which represent intermediate length and time scales in the boundary layer, are shown to deviate from classical scaling

  4. Drag of evaporating or condensing droplets in low Reynolds number flow

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1984-01-01

    The steady-state drag of evaporating or condensing droplets in low Reynolds number flow is computed. Droplet drag in air is obtained for five representative liquids (water, methanol, benzene, heptane, octane) for a range of ambient temperatures, pressures, and vapor concentrations. The drag is in general increased for a condensing droplet, and decreased for an evaporating droplet. The changes in drag can be quite large and depend in detail on the degree of evaporation or condensation, and on the individual liquid and vapor properties. The present results are used to test the existing experimentally derived correlations of Eisenklam and Yuen and Chen in the low Reynolds number regime. The Yuen and Chen correlation is found to be quite successful, but only in the case of condensation or mild evaporation. An improved correlation is suggested for evaporating droplets

  5. Heat transfer in an axisymmetric stagnation flow at high Reynolds numbers on a cylinder using perturbation techniques

    International Nuclear Information System (INIS)

    Rahimi, A. B.

    2003-01-01

    Although there are many papers on the subject of heat transfer in an axisymmetric stagnation flow on a cylinder, the available knowledge is mainly for low Reynolds numbers and not much information exists for the same problem at large Reynolds numbers. In this work, the problem of heat transfer in an axisymmetric stagnation flow on a cylinder is solved at large Reynolds numbers using perturbation techniques. Starting from Navier-Stokes equations within a boundary layer approximation and using similarity transformations, the governing equations are obtained in the form of differential equations. The inverse of the Reynolds number is introduced as the perturbation parameter. This parameter appears in front of the highest-order terms and, as it tends to zero, reduces the order of the governing equations and produces singularities. In this paper, the flow field is divided into two regions; rapid changes in the region near wall and slow changes away from the wall. Thus, the flow is found to have dual-layer characteristics. Using inner and outer expansion produces uniform values of the relevant quantities

  6. Improvement of tricuspid regurgitation after transcatheter ASD closure in older patients.

    Science.gov (United States)

    Chen, L; Shen, J; Shan, X; Wang, F; Kan, T; Tang, X; Zhao, X; Qin, Y

    2017-07-19

    Adult patients with undiagnosed atrial septal defect (ASD) may have right heart cavity enlargement and functional tricuspid valve insufficiency. Moderate or more severe tricuspid regurgitation has been associated with a worse prognosis, and more serious complications are typically seen in older patients. This study aimed to evaluate the improvement in functional tricuspid regurgitation and heart geometry after transcatheter ASD closure in older patients. The data of 111 patients over 60 years of age with moderate or severe tricuspid regurgitation before ASD closure were analyzed. At the 1‑month and 6‑month follow-up after closure, both tricuspid regurgitation jet area and right atrial volume decreased significantly. Right ventricular volume decreased 1 month after closure, showing a further decrease at the end of the 6‑month follow-up. However, 24 patients (21.6%) still had persistent severe tricuspid regurgitation after the procedure. Multivariate analysis revealed that patient age at ASD closure and pulmonary artery systolic pressure determined by echocardiography before closure were predictors of persistent tricuspid regurgitation after closure. Transcatheter ASD closure in older patients could significantly decrease tricuspid regurgitation and improve right heart geometry.

  7. 2727-S Nonradioactive Dangerous Waste Storage Facility clean closure evaluation report

    International Nuclear Information System (INIS)

    Luke, S.N.

    1994-01-01

    This report presents the analytical results of 2727-S NRDWS facility closure verification soil sampling and compares these results to clean closure criteria. The results of this comparison will determine if clean closure of the unit is regulatorily achievable. This report also serves to notify regulators that concentrations of some analytes at the site exceed sitewide background threshold levels (DOE-RL 1993b) and/or the limits of quantitation (LOQ). This report also presents a Model Toxics Control Act Cleanup (MTCA) (WAC 173-340) regulation health-based closure standard under which the unit can clean close in lieu of closure to background levels or LOQ in accordance with WAC 173-303-610. The health-based clean closure standard will be closure to MTCA Method B residential cleanup levels. This report reconciles all analyte concentrations reported above background or LOQ to this health-based cleanup standard. Regulator acceptance of the findings presented in this report will qualify the TSD unit for clean closure in accordance with WAC 173-303-610 without further TSD unit soil sampling, or soil removal and/or decontamination. Nondetected analytes require no further evaluation

  8. Surgical treatment of complications associated with the Angio-Seal vascular closure device.

    Science.gov (United States)

    Cikirikcioglu, Mustafa; Cherian, Sanjay; Keil, Vera; Manzano, Norman; Gemayel, Gino; Theologou, Thomas; Kalangos, Afksendiyos

    2011-05-01

    Vascular closure devices are used to provide quick hemostasis and early ambulation after percutaneous interventions. The Angio-Seal (AS) vascular closure device forms a mechanical seal by closing the puncture site located between a bioabsorbable anchor within the lumen and a collagen sponge on the adventitia. Although morbidities associated with AS are reportedly infrequent, even the slightest inaccuracy in device implantation may result in displacement of these device components, leading to sudden and severe complications. We report the surgical treatment of complications associated with the use of AS in four patients, including acute limb ischemia, pseudoaneurysm formation, significant hemorrhage, and hypovolemic shock. A common factor in all these cases was that the components of the AS device were displaced from their original site of implantation, stressing the importance of proper device placement. All patients underwent successful surgical vascular repair. Our report highlights the need for exercising extreme care during device implantation, and also the requirement for vigilant inspection for any associated vascular complications commencing immediately after device implantation. It is vital that these device components are actively looked for and removed during surgical exploration so as to prevent future complications. Copyright © 2011. Published by Elsevier Inc.

  9. Mesh Generation and Adaption for High Reynolds Number RANS Computations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models....

  10. Mesh Generation and Adaption for High Reynolds Number RANS Computations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models....

  11. Waste Dump Closure and Cost Estimates at AngloGold Ashanti ...

    African Journals Online (AJOL)

    Michael

    2017-12-02

    Dec 2, 2017 ... 2University of Mines and Technology, P.O. Box 237, Tarkwa, Ghana ... The mine has closure plans for the waste dumps and the closure activity ... incur additional cost, it was advised that the mine should execute the closure and reclamation plan without delay. .... Progressively rehabilitate the project area.

  12. Staged closure of a giant omphalocele with amnion preservation, modified technique

    Directory of Open Access Journals (Sweden)

    Akram H. Aljahdali

    2017-04-01

    Full Text Available Closure of a giant omphalocele can be challenging. Preservation of the amnion in staged closure is not commonly practiced. Here, we describe 2 cases of giant omphalocele treated with a modified amnion preservation, staged closure technique. This paper demonstrates the feasibility and safety of this technique, and the versatility of amnion to adapt to an escharization strategy if closure is not achievable.

  13. Statistical properties of wall shear stress fluctuations in turbulent channel flows

    International Nuclear Information System (INIS)

    Keirsbulck, L.; Labraga, L.; Gad-el-Hak, M.

    2012-01-01

    Highlights: ► Accurate measurements of instantaneous wall shear stress are conducted. ► LDA is used to measure near-wall streamwise velocity. ► Electrochemical probe is used to measure wall shear stress. ► Frequency response and non-uniform correction methods were used to provide an accurate, well-resolved wall-statistics database. ► Reynolds number dependency of the statistical wall quantities is investigated. - Abstract: Instantaneous velocity and wall shear stress measurements are conducted in a turbulent channel flow in the Kármán number range of Re τ = 74–400. A one-dimensional LDA system is used to measure the streamwise velocity fluctuations, and an electrochemical technique is utilized to measure the instantaneous wall shear stress. For the latter, frequency response and nonuniform correction methods are used to provide an accurate, well-resolved wall statistics database. The Reynolds number dependency of the statistical wall quantities is carefully investigated. The corrected relative wall shear stress fluctuations fit well with the best DNS data available and meet the need for clarification of the small discrepancy observed in the literature between the experimental and numerical results of such quantities. Higher-order statistics of the wall shear stress, spectra, and the turbulence kinetic energy budget at the wall are also investigated. The present paper shows that the electrochemical technique is a powerful experimental method for hydrodynamic studies involving highly unsteady flows. The study brings with it important consequences, especially in the context of the current debate regarding the appropriate scaling as well as the validation of new predictive models of near-wall turbulence.

  14. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    Science.gov (United States)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  15. DESIGN OF A WELDING AND INSPECTION SYSTEM FOR WASTE STORAGE CLOSURE

    International Nuclear Information System (INIS)

    H.B. Smartt; A.D. Watkins; D.P. Pace; R.J. Bitsoi; E.D. Larsen T.R. McJunkin; C.R. Tolle

    2005-01-01

    This work reported here was done to provide a conceptual design for a robotic welding and inspection system for the Yucca Mountain Repository waste package closure system. The welding and inspection system is intended to make the various closure welds that seal and/or structurally join the lids to the waste package vessels. The welding and inspection system will also perform surface and volumetric inspections of the various closure welds and has the means to repair closure welds, if required. The system is designed to perform these various activities remotely, without the necessity of having personnel in the closure cell

  16. Friction or Closure

    DEFF Research Database (Denmark)

    Lundahl, Mikela

    2014-01-01

    Heritage is a discourse that aims at closure. It fixates the narrative of the past through the celebration of specific material (or sometimes immaterial non-) ob-jects. It organizes temporality and construct events and freezes time. How does this unfold in the case of the UNESCO World Heritage si...

  17. Prospective Randomized Study of the Effect of Music on the Efficiency of Surgical Closures.

    Science.gov (United States)

    Lies, Shelby R; Zhang, Andrew Y

    2015-09-01

    Music is commonly played in operating theaters. Some surgeons believe music reduces stress and operative time, while others think music is a distraction and should be avoided. There is limited published evidence evaluating the effects of music on surgical performance. The goal of this study is to evaluate the effect of music on simple wound closure. Plastic surgery residents were asked to perform layered closures on pigs' feet with and without their preferred music playing. Simple randomization was used to assign residents to the music playing first or music playing second group. The time to complete the repair was measured and repairs were graded by blinded faculty. Results were analyzed to determine significant differences in time to complete the task and quality of repair. Participants were retested in a second session with music played in the opposite order to evaluate consistency. Listening to preferred music decreased repair time by 8% for all plastic surgery residents (p = 0.009). Subgroup analysis demonstrated even more significant improvement in speed for senior residents (PGY 4-6), resulting in a 10% decrease in repair time (p = 0.006). The quality of repair was also better in the music group, at 3.3 versus 3.1 (p = 0.047). Retesting revealed results remained significant whether music was played first or second. Playing preferred music made plastic surgery residents faster in completing wound closure with a 10% improvement in senior residents. Music also improved quality of repair as judged by blinded faculty. Our study showed that music improves efficiency of wound closure, which may translate to healthcare cost savings. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  18. Multipass mining sequence room closures: In situ data report

    International Nuclear Information System (INIS)

    Munson, D.E.; Jones, R.L.; Northrop-Salazar, C.L.; Woerner, S.J.

    1992-12-01

    During the construction of the Thermal/Structural In Situ Test Rooms at the Waste Isolation Pilot Plant (WIPP) facility, measurements of the salt displacements were obtained at very early times, essentially concurrent with the mining activity. This was accomplished by emplacing manually read closure gage stations directly at the mining face, actually between the face and the mining machine, immediately upon mining of the intended gage location. Typically, these mining sequence closure measurements were taken within one hour of mining of the location and within one meter of the mining face. Readings were taken at these gage stations as the multipass mining continued, with the gage station reestablished as each successive mining pass destroyed the earlier gage points. Data reduction yields the displacement history during the mining operation. These early mining sequence closure data, when combined with the later data of the permanently emplaced closure gages, gives the total time-dependent closure displacements of the test rooms. This complete closure history is an essential part of assuring that the in situ test databases will provide an adequate basis for validation of the predictive technology of salt creep behavior, as required by the WIPP technology development program for disposal of radioactive waste in bedded salt

  19. Closure Plan for Active Low Level Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    2000-11-16

    This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during

  20. Vortex-induced vibrations of circular cylinder in cross flow at supercritical Reynolds numbers; Chorinkai Reynolds su ryoiki ni okeru enchu no uzu reiki shindo

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Nakao, T.; Takahashi, M.; Hayashi, M.; Goto, N. [Hitachi, Ltd., Tokyo (Japan)

    1999-07-25

    Vortex-induced vibrations were measured for a circular cylinder subjected to a water cross flow at supercritical Reynolds numbers for a wide range of reduced velocities. Turbulence intensities were changed from 1% to 13% in order to investigate the effect of the Strouhal number on the region of synchronization by symmetrical and Karman vortex shedding. The reduced damping of the test cylinder was about 0.1 in water. The surface roughness of the cylinder was a mirror-polished surface. Strouhal number decreased from about 0.48 to 0.29 with increasing turbulence intensity. Synchronized vibrations were observed even at supercritical Reynolds numbers where fluctuating fluid force was small. Reduced velocities at which drag and lift direction lock-in by Karman vortex shedding were initiated decreased with increasing Strouhal number. When Strouhal number was about 0.29, the self-excited vibration in drag direction by symmetrical vortex shedding began at which the frequency ratio of Karman vortex shedding frequency to the natural frequency of cylinder was 0.32. (author)