Reynolds number effects on scale energy balance in wall turbulence
Saikrishnan, Neelakantan; De Angelis, Elisabetta; Longmire, Ellen K.; Marusic, Ivan; Casciola, Carlo M.; Piva, Renzo
2012-01-01
The scale energy budget utilizes a modified version of the classical Kolmogorov equation of wall turbulence to develop an evolution equation for the second order structure function [R. J. Hill, "Exact second-order structure-function relationships," J. Fluid Mech. 468, 317 (2002)]. This methodology allows for the simultaneous characterization of the energy cascade and spatial fluxes in turbulent shear flows across the entire physical domain as well as the range of scales. The present study utilizes this methodology to characterize the effects of Reynolds number on the balance of energy fluxes in turbulent channel flows. Direct numerical simulation data in the range Reτ = 300-934 are compared to previously published results at Reτ = 180 [N. Marati, C. M. Casciola, and R. Piva, "Energy cascade and spatial fluxes in wall turbulence," J. Fluid Mech. 521, 191 (2004)]. The present results show no Reynolds number effects in the terms of the scale energy budget in either the viscous sublayer or buffer regions of the channel. In the logarithmic layer, the transfer of energy across scales clearly varies with Reynolds number, while the production of turbulent kinetic energy is not dependent on Reynolds number. An envelope of inverse energy cascade is quantified in the buffer region within which energy is transferred from small to larger scales. This envelope is observed in the range 6 < y+ < 37, where all scales except the smallest scales display characteristics of an inverse energy cascade. The cross-over scale lc+, which indicates the transition between production dominated and scale transfer dominated regimes, increases with Reynolds number, implying a larger range of transfer dominated scales, before the dominant mechanism switches to production. At higher Reynolds numbers, two distinct regimes of lc+ as a function of wall-normal location are observed, which was not captured at Reτ = 180. The variations of lc+ match the trends of the shear scale, which is a
Horizontal Axis Wind Turbine Experiments at Full-Scale Reynolds Numbers
Miller, Mark; Kiefer, Janik; Nealon, Tara; Westergaard, Carsten; Hultmark, Marcus
2017-11-01
Achieving high Reynolds numbers on a wind turbine model remains a major challenge for experimentalists. Since Reynolds number effects need to be captured accurately, matching this parameter is of great importance. The challenge stems from the large scale ratio between model and full-size, typically on the order of 1:100. Traditional wind tunnels are limited due to finite tunnel size, with velocity as the only free-parameter available for increasing the Reynolds number. Unfortunately, increasing the velocity 100 times is untenable because it violates Mach number matching with the full-scale and results in unfeasible rotation rates. Present work in Princeton University's high pressure wind tunnel makes it possible to evaluate the Reynolds number sensitivity with regard to wind turbine aerodynamics. This facility, which uses compressed air as the working fluid, allows for adjustment of the Reynolds number, via the fluid density, independent of the Tip Speed Ratio (TSR) and Mach number. Power and thrust coefficients will be shown as a function of Reynolds number and TSR for a model wind turbine. The Reynolds number range investigated exceeds 10 ×106 based on diameter and free-stream conditions or 3 ×106 based on the tip chord, matching those of the full-scale. National Science Foundation and Andlinger Center for Energy and the Environment.
Reynolds number effects on scale energy analysis of turbulent boundary layers
Saikrishnan, Neelakantan; Longmire, Ellen; Marusic, Ivan
2009-11-01
Scale energy analysis combines two approaches of studying wall- bounded turbulent flows - analysis in physical space and analysis in scale space. Previously, scale energy analysis has been performed on DNS channel flow data for a range of friction Reynolds numbers Reτ= 180-934 and dual plane PIV boundary layer data at Reτ= 1100. The dual plane technique allows determination of the full velocity gradient tensor in the measurement plane. Dual Plane PIV data were acquired in streamwise-spanwise planes in the logarithmic region of a water channel boundary layer at two higher Reynolds numbers - Reτ= 2400 and 3000. The results of this study will be described and compared with the lower Re data. It is observed that in general, the production and scale transfer terms of the turbulent kinetic energy increase with increasing Reynolds number. The cross-over scale, which divides the range of scales into a transfer-dominated region and a production- dominated region, increases with increasing Reynolds numbers, resulting in a larger range of transfer-dominated scales at higher Reynolds numbers.
1985-02-01
of the blade . The Darrieus VAWT has more complex aerodynamics. This type of wind turbine produces power as a result of the tangential thrust as... Wind turbine blades also require high aerodynamic efficiency and all-weather capabilities. The need for efficient low Reynolds number airfoils which...application. The design of this type of propeller is similar to the design of low solidity wind turbine blades and will be discussed in the next
Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram
2017-03-13
A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan
2015-11-01
Interactions between small- and large-scale motions are inherent in the near-wall dynamics of wall-bounded flows. We here examine the scale-interaction embedded within the streamwise velocity component. Data were acquired using hot-wire anemometry in ZPG turbulent boundary layers, for Reynolds numbers ranging from Reτ ≡ δUτ / ν ~ 2800 to 22800. After first decomposing velocity signals into contributions from small- and large-scales, we then represent the time-varying small-scale energy with time series of its instantaneous amplitude and instantaneous frequency, via a wavelet-based method. Features of the scale-interaction are inferred from isocorrelation maps, formed by correlating the large-scale velocity with its concurrent small-scale amplitude and frequency. Below the onset of the log-region, the physics constitutes aspects of amplitude modulation and frequency modulation. Time shifts, associated with the correlation extrema--representing the lead/lag of the small-scale signatures relative to the large-scales--are shown to be governed by inner-scaling. Wall-normal trends of time shifts are explained by considering the arrangement of scales in the log- and intermittent-regions, and how they relate to stochastic top-down and bottom-up processes.
Edlund, E M
2014-01-01
We present measurements of quasi-Keplerian flows in a Taylor-Couette device that identify the boundary conditions required to generate near-ideal flows that exhibit self-similarity under scaling of the Reynolds number. These experiments are contrasted with alternate boundary configurations that result in flows that progressively deviate from ideal Couette rotation as the Reynolds number is increased. These behaviors are quantitatively explained in terms of the tendency to generate global Ekman circulation and the balance of angular momentum fluxes through the axial and radial boundary layers.
Large Eddy Simulation of an SD7003 Airfoil: Effects of Reynolds number and Subgrid-scale modeling
Sarlak, Hamid
2017-05-01
This paper presents results of a series of numerical simulations in order to study aerodynamic characteristics of the low Reynolds number Selig-Donovan airfoil, SD7003. Large Eddy Simulation (LES) technique is used for all computations at chord-based Reynolds numbers 10,000, 24,000 and 60,000 and simulations have been performed to primarily investigate the role of sub-grid scale (SGS) modeling on the dynamics of flow generated over the airfoil, which has not been dealt with in great detail in the past. It is seen that simulations are increasingly getting influenced by SGS modeling with increasing the Reynolds number, and the effect is visible even at a relatively low chord-Reynolds number of 60,000. Among the tested models, the dynamic Smagorinsky gives the poorest predictions of the flow, with overprediction of lift and a larger separation on airfoils suction side. Among various models, the implicit LES offers closest pressure distribution predictions compared with literature.
Turbulent pipe flow at extreme Reynolds numbers.
Hultmark, M; Vallikivi, M; Bailey, S C C; Smits, A J
2012-03-02
Both the inherent intractability and complex beauty of turbulence reside in its large range of physical and temporal scales. This range of scales is captured by the Reynolds number, which in nature and in many engineering applications can be as large as 10(5)-10(6). Here, we report turbulence measurements over an unprecedented range of Reynolds numbers using a unique combination of a high-pressure air facility and a new nanoscale anemometry probe. The results reveal previously unknown universal scaling behavior for the turbulent velocity fluctuations, which is remarkably similar to the well-known scaling behavior of the mean velocity distribution.
Structure of Wall-Eddies at Very Large Reynolds Number--A Large-Scale PIV Study
Hommema, S. E.; Adrian, R. J.
2000-11-01
The results of an experiment performed in the first 5 m of the neutral atmospheric boundary layer are presented. Large-scale PIV measurements (up to 2 m × 2 m field-of-view) were obtained in the streamwise / wall-normal plane of a very-large Reynolds number (Re_θ > 10^6, based on momentum thickness and freestream velocity), flat-plate, zero-pressure-gradient boundary layer. Measurements were obtained at the SLTEST facility in the U.S. Army's Dugway Proving Grounds. Coherent packets of ramp-like structures with downstream inclination are observed and show a remarkable resemblance to those observed in typical laboratory-scale experiments at far lower Reynolds number. The results are interpreted in terms of a vortex packet paradigm(Adrian, R.J., C.D. Meinhart, and C.D. Tomkins, Vortex organization in the outer region of the turbulent boundary layer, to appear in J. Fluid Mech., 2000.) and begin to extend the model to high Reynolds numbers of technological importance. Additional results obtained during periods of non-neutral atmospheric stability are contrasted with those of the canonical neutral boundary layer. Sample smoke visualization images (3 m × 15 m field-of-view) are available online from the author.
Large Eddy Simulation of an SD7003 Airfoil: Effects of Reynolds number and Subgrid-scale modeling
DEFF Research Database (Denmark)
Sarlak Chivaee, Hamid
2017-01-01
This paper presents results of a series of numerical simulations in order to study aerodynamic characteristics of the low Reynolds number Selig-Donovan airfoil, SD7003. Large Eddy Simulation (LES) technique is used for all computations at chord-based Reynolds numbers 10,000, 24,000 and 60...
Schober, Jennifer; Schleicher, Dominik; Federrath, Christoph; Klessen, Ralf; Banerjee, Robi
2012-02-01
The small-scale dynamo is a process by which turbulent kinetic energy is converted into magnetic energy, and thus it is expected to depend crucially on the nature of the turbulence. In this paper, we present a model for the small-scale dynamo that takes into account the slope of the turbulent velocity spectrum v(ℓ)proportional ℓ([symbol see text])V}, where ℓ and v(ℓ) are the size of a turbulent fluctuation and the typical velocity on that scale. The time evolution of the fluctuation component of the magnetic field, i.e., the small-scale field, is described by the Kazantsev equation. We solve this linear differential equation for its eigenvalues with the quantum-mechanical WKB approximation. The validity of this method is estimated as a function of the magnetic Prandtl number Pm. We calculate the minimal magnetic Reynolds number for dynamo action, Rm_{crit}, using our model of the turbulent velocity correlation function. For Kolmogorov turbulence ([symbol see text] = 1/3), we find that the critical magnetic Reynolds number is Rm(crit) (K) ≈ 110 and for Burgers turbulence ([symbol see text] = 1/2) Rm(crit)(B) ≈ 2700. Furthermore, we derive that the growth rate of the small-scale magnetic field for a general type of turbulence is Γ proportional Re((1-[symbol see text])/(1+[symbol see text])) in the limit of infinite magnetic Prandtl number. For decreasing magnetic Prandtl number (down to Pm >/~ 10), the growth rate of the small-scale dynamo decreases. The details of this drop depend on the WKB approximation, which becomes invalid for a magnetic Prandtl number of about unity.
Room Airflows with Low Reynolds Number Effects
DEFF Research Database (Denmark)
Topp, Claus; Nielsen, Peter V.; Davidson, Lars
is limited. It has been the objective to investigate the behaviour of a plane isothermal wall jet in a full-scale ventilated room at low Reynolds numbers, i.e. when the flow is not fully turbulent. The results are significantly different from known theory for fully turbulent flows. It was found that the jet......The behaviour of room airflows under fully turbulent conditions is well known both in terms of experiments and, numerical calculations by computational fluid dynamics (CFD). For room airflows where turbulence is not fully developed though, i.e. flows at low Reynolds numbers, the existing knowledge...... constants are a strong function of the Reynolds number up to a level of Reh≈500....
Energy Technology Data Exchange (ETDEWEB)
Monty, J.P.; Lien, K.; Chong, M.S. [University of Melbourne, Department of Mechanical Engineering, Parkville, VIC (Australia); Allen, J.J. [New Mexico State University, Department of Mechanical Engineering, Las Cruces, NM (United States)
2011-12-15
A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of 'superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements. (orig.)
Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.
2017-06-01
Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.
Broeren, Andy P.; Woodard, Brian S.; Diebold, Jeffrey M.; Moens, Frederic
2017-01-01
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9 percent-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 by 10 ft Beech wind tunnel from Reynolds numbers of 0.8×10(exp 6) to 2.4×10(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, threedimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future
Experimental studies of Reynolds number dependence of turbulent mixing & transport
Energy Technology Data Exchange (ETDEWEB)
Warhaft, Z. [Cornell Univ., Ithaca, NY (United States)
1996-12-31
An overview of recent experiments, in which the author generated high Reynolds number homogeneous grid turbulence, is provided. The author shows that in a small wind tunnel, Reynolds numbers that are sufficiently high (R{sub {lambda}} {approximately} 800, R{sub {ell}} {approximately} 36, 000) such that many of the aspects of turbulence that hitherto have only been observed in large scale anisotropic shear flows, are obtained. In particular the author studied the evolution of the spectrum with Reynolds number, the Kolmogorov constant and the internal intermittency, showing the way they tend to their high Reynolds number asymptotes. Thus the author links previous low Reynolds number laboratory experiments with large scale environmental measurements.
Boundary induced nonlinearities at small Reynolds numbers
Sbragaglia, M.; Sugiyama, K.
2007-01-01
We investigate the importance of boundary slip at finite Reynolds numbers for mixed boundary conditions. Nonlinear effects are induced by the non-homogeneity of the boundary condition and change the symmetry properties of the flow with an overall mean flow reduction. To explain the observed drag
Optimal Swimming at low Reynolds numbers
Avron, J. E.; Gat, O.; Kenneth, O.
2004-01-01
Efficient swimming at low Reynolds numbers is a major concern of microbots. To compare the efficiencies of different swimmers we introduce the notion of ``swimming drag coefficient'' which allows for the ranking of swimmers. We find the optimal swimmer within a certain class of two dimensional swimmers using conformal mappings techniques.
Probability density distribution of velocity differences at high Reynolds numbers
Praskovsky, Alexander A.
1993-01-01
Recent understanding of fine-scale turbulence structure in high Reynolds number flows is mostly based on Kolmogorov's original and revised models. The main finding of these models is that intrinsic characteristics of fine-scale fluctuations are universal ones at high Reynolds numbers, i.e., the functional behavior of any small-scale parameter is the same in all flows if the Reynolds number is high enough. The only large-scale quantity that directly affects small-scale fluctuations is the energy flux through a cascade. In dynamical equilibrium between large- and small-scale motions, this flux is equal to the mean rate of energy dissipation epsilon. The pdd of velocity difference is a very important characteristic for both the basic understanding of fully developed turbulence and engineering problems. Hence, it is important to test the findings: (1) the functional behavior of the tails of the probability density distribution (pdd) represented by P(delta(u)) is proportional to exp(-b(r) absolute value of delta(u)/sigma(sub delta(u))) and (2) the logarithmic decrement b(r) scales as b(r) is proportional to r(sup 0.15) when separation r lies in the inertial subrange in high Reynolds number laboratory shear flows.
Characterizing overwater roughness Reynolds number during hurricanes
Hsu, S. A.; Shen, Hui; He, Yijun
2017-11-01
The Reynolds number, which is the dimensionless ratio of the inertial force to the viscous force, is of great importance in the theory of hydrodynamic stability and the origin of turbulence. To investigate aerodynamically rough flow over a wind sea, pertinent measurements of wind and wave parameters from three data buoys during Hurricanes Kate, Lili, Ivan, Katrina, Rita, and Wilma are analyzed. It is demonstrated that wind seas prevail when the wind speed at 10 m and the wave steepness exceed 9 m s-1 and 0.020, respectively. It is found that using a power law the roughness Reynolds number is statistically significantly related to the significant wave height instead of the wind speed as used in the literature. The reason for this characterization is to avoid any self-correlation between Reynolds number and the wind speed. It is found that although most values of R_{*} were below 500, they could reach to approximately 1000 near the radius of maximum wind. It is shown that, when the significant wave height exceeds approximately 2 m in a wind sea, the air flow over that wind sea is already under the fully rough condition. Further analysis of simultaneous measurements of wind and wave parameters using the logarithmic law indicates that the estimated overwater friction velocity is consistent with other methods including the direct (eddy-covariance flux) measurements, the atmospheric vorticity approach, and the sea-surface current measurements during four slow moving super typhoons with wind speed up to 70 m s-1.
Flapping hydrofoil performance at low Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Pedro, G.; Suleman, A.; Djilali, N. [Univ. of Victoria, Dept. of Mechanical Engineering, Victoria, British Columbia (Canada)]. E-mail: gpedro@uvic.ca; suleman@uvic.ca; ndjilali@uvic.ca
2003-07-01
This paper relates the study of unsteady flow past oscillating hydrofoils at low Reynolds numbers using a computational fluid dynamics research code based on structured grids. The solver utilizes an explicit, time-stepping algorithm with an Arbitrary Lagrangian-Eulerian formulation to account for mesh movement. The viscous flow past a NACA0012 hydrofoil at various pitching and heaving frequencies and other design parameters is simulated. The effect of these parameters on thrust, power and efficiency is studied along with flow field visualisations to account for these variations. (author)
Revolutionary Performance For Ultra Low Reynolds Number Vehicles Project
National Aeronautics and Space Administration — A novel technique for controlling transition from laminar to turbulent flow in very low Reynolds number conditions has been developed. Normally flows with Reynolds...
Reynolds number effect on VIV: from subcritical to supercritical flow
Energy Technology Data Exchange (ETDEWEB)
Triantafyllou, M.S.; Hover, F.S.; Techet, A.H. [Massachusetts Inst. of Tech., Dept. of Ocean Engineering, Cambridge, MA (United States)
2004-07-01
Vortex Induced Vibrations in flexibly supported rigid cylinders and long, flexible slender structures, such as cables and risers, are caused by the formation of large-scale vortices, whose dynamics are controlled to a large extend by inviscid mechanisms. Reynolds number remains a very important parameter, however, because it influences the formation and shedding mechanisms of the vortical patterns. For low Reynolds numbers, below a few thousand, a nearly complete understanding has been obtained in recent years, at least for flexibly mounted rigid cylinders. This is not the case, though, for VIV above Re=10,000 and - especially - above the critical Reynolds number of about Re=250,000 for smooth cylinders. The talk provides observed WV trends of flexibly mounted cylinders, obtained in recent experiments as function of the Reynolds number, from Re about 1,000 up to 1,000,000. In particular, similarities and differences between subcritical and supercritical force and motion data will be discussed, and conclusions on the governing principal mechanisms will be drawn, including transitions in the arrangement of vortical patterns and effects of correlation length. (authors)
Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows
Scribano, Gianfranco
2016-12-29
The counterflow configuration is a canonical stagnation flow, featuring two opposed impinging round jets and a mixing layer across the stagnation plane. Although counterflows are used extensively in the study of reactive mixtures and other applications where mixing of two streams is required, quantitative data on the scaling properties of the flow field are lacking. The aim of this work is to characterize the velocity and mixing fields in isothermal counterflows over a wide range of conditions. The study features both experimental data from particle image velocimetry and results from detailed axisymmetric simulations. The scaling laws for the nondimensional velocity and mixture fraction are obtained as a function of an appropriate Reynolds number and the ratio of the separation distance of the nozzles to their diameter. In the range of flow configurations investigated, the nondimensional fields are found to depend primarily on the separation ratio and, to a lesser extent, the Reynolds number. The marked dependence of the velocity field with respect to the separation ratio is linked to a high pressure region at the stagnation point. On the other hand, Reynolds number effects highlight the role played by the wall boundary layer on the interior of the nozzles, which becomes less important as the separation ratio decreases. The normalized strain rate and scalar dissipation rate at the stagnation plane are found to attain limiting values only for high values of the Reynolds number. These asymptotic values depend markedly on the separation ratio and differ significantly from the values produced by analytical models. The scaling of the mixing field does not show a limiting behavior as the separation ratio decreases to the smallest practical value considered.
Holography of the QGP Reynolds number
Directory of Open Access Journals (Sweden)
Brett McInnes
2017-08-01
Full Text Available The viscosity of the Quark–Gluon Plasma (QGP is usually described holographically by the entropy-normalized dynamic viscosity η/s. However, other measures of viscosity, such as the kinematic viscosity ν and the Reynolds number Re, are often useful, and they too should be investigated from a holographic point of view. We show that a simple model of this kind puts an upper bound on Re for nearly central collisions at a given temperature; this upper bound is in very good agreement with the observational lower bound (from the RHIC facility. Furthermore, in a holographic approach using only Einstein gravity, η/s does not respond to variations of other physical parameters, while ν and Re can do so. In particular, it is known that the magnetic fields arising in peripheral heavy-ion collisions vary strongly with the impact parameter b, and we find that the holographic model predicts that ν and Re can also be expected to vary substantially with the magnetic field and therefore with b.
Holography of the QGP Reynolds number
McInnes, Brett
2017-08-01
The viscosity of the Quark-Gluon Plasma (QGP) is usually described holographically by the entropy-normalized dynamic viscosity η / s. However, other measures of viscosity, such as the kinematic viscosity ν and the Reynolds number Re, are often useful, and they too should be investigated from a holographic point of view. We show that a simple model of this kind puts an upper bound on Re for nearly central collisions at a given temperature; this upper bound is in very good agreement with the observational lower bound (from the RHIC facility). Furthermore, in a holographic approach using only Einstein gravity, η / s does not respond to variations of other physical parameters, while ν and Re can do so. In particular, it is known that the magnetic fields arising in peripheral heavy-ion collisions vary strongly with the impact parameter b, and we find that the holographic model predicts that ν and Re can also be expected to vary substantially with the magnetic field and therefore with b.
C114 Low Reynolds Number Airfoil Design Optimization
大山, 聖; 藤井, 孝藏; Akira, Oyama; Kozo, Fujii; JAXA ISAS; Division for Space Transportation Eng., JAXA ISAS
2004-01-01
Low Reynolds number airfoil design optimization is demonstrated. A two-dimensional Navier-Stokes solver is used for aerodynamic performance estimation of the airfoil design candidates because the viscosity effect is not negligible at low Reynolds number flight condition. An evolutionary computation is used for robust airfoil design optimization. The result demonstrated that the optimized airfoil is a very thin airfoil with significant camber. The result also showed that the low Reynolds numbe...
Shear-driven dynamo waves at high magnetic Reynolds number.
Tobias, S M; Cattaneo, F
2013-05-23
Astrophysical magnetic fields often display remarkable organization, despite being generated by dynamo action driven by turbulent flows at high conductivity. An example is the eleven-year solar cycle, which shows spatial coherence over the entire solar surface. The difficulty in understanding the emergence of this large-scale organization is that whereas at low conductivity (measured by the magnetic Reynolds number, Rm) dynamo fields are well organized, at high Rm their structure is dominated by rapidly varying small-scale fluctuations. This arises because the smallest scales have the highest rate of strain, and can amplify magnetic field most efficiently. Therefore most of the effort to find flows whose large-scale dynamo properties persist at high Rm has been frustrated. Here we report high-resolution simulations of a dynamo that can generate organized fields at high Rm; indeed, the generation mechanism, which involves the interaction between helical flows and shear, only becomes effective at large Rm. The shear does not enhance generation at large scales, as is commonly thought; instead it reduces generation at small scales. The solution consists of propagating dynamo waves, whose existence was postulated more than 60 years ago and which have since been used to model the solar cycle.
Minimum state for high Reynolds and Peclet number turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Zhou Ye, E-mail: yezhou@llnl.go [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551 (United States); Buckingham, A.C. [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551 (United States); Bataille, F. [PROMES-CNRS, Tecnosud, 66100 Perpignan (France); Mathelin, L. [LIMSI-CNRS, BP 133, 91403 Orsay (France)
2009-07-20
Direct numerical simulations (DNS) or experiments for the very high Reynolds (Re) and Peclet (Pe) number flows commonly exceed the resolution possible even when use is made of the most advanced computer capability or most sophisticated diagnostics and physical capabilities of advanced laboratory facilities. In practice use is made of statistical flow data bases developed at the highest Re and Pe levels achievable within the currently available facility limitations. In addition, there is presently no metric to indicate whether and how much of the fully resolved physics of the flow of interest has been captured within the facilities available. In this Letter the authors develop the necessary metric criteria for homogeneous, isotropic and shear layer flows. It is based on establishing a smaller subset of the total range of dynamic scale interactions that will still faithfully reproduce all of the essential, significant, influences of the larger range of scale interactions. The work identifies a minimum significant Re and Pe level that must be obtained by DNS or experiment in order to capture all of the significant dynamic influences in data which is then scaleable to flows of interest. Hereafter this is called the minimum state. Determination of the minimum state is based on finding a minimum scale separation for the energy-containing scales of the flow and scalar fields sufficient to prevent contamination by interaction with the (non-universal) velocity dissipation and scalar diffusivity inertial range scale limits.
The Aerodynamics of Deforming Wings at Low Reynolds Number
Medina, Albert
responsive to flexibility satisfying an inverse proportionality to stiffness. In hover, an effective pitch angle can be defined in a flexible wing that accounts for deflection which shifts results toward trend lines of rigid wings. Three-dimensional simulations examining the effects of two distinct deformation modes undergoing prescribed deformation associated with root and tip deflection demonstrated a greater aerodynamic response to tip deflection in hover. Efficiency gains in flexion wings over rigid wing counterpart were shown to be dependent on Reynolds number with efficiency in both modes increasing with increased Reynolds number. Additionally, while the leading-edge vortex axis proved insensitive to deformation, the shape and orientation of the LEV core is modified. Experiments on three-dimensional dynamically-scaled fruit fly wings with passive deformation operating in the bursting limit Reynolds number regime revealed enhanced leading-edge vortex bursting with tip deflection promoting greater LEV core flow deceleration in stroke. Experimental studies on rotary wings highlights a universal formation time of the leading-edge vortex independent of Reynolds number, acceleration profile and aspect ratio. Efforts to replicate LEV bursting phenomena of higher aspect ratio wings in a unity aspect ratio wing such that LEV growth is no limited by span but by the LEV traversing the chord revealed a flow regime of oscillatory lift generation reminiscent of behavior exhibited in translating wings that also maintains magnitude peak to peak.
Understanding of Low Reynolds Number Aerodynamics and Micro Rotary-Wing Air Vehicles
Winslow, Justin Michael
The goal of the present research is to understand aerodynamics at low Reynolds numbers and synthesize rules towards the development of hovering micro rotary-wing air vehicles (MRAVs). This entailed the rigorous study of airfoil characteristics at low Reynolds numbers through available experimental results as well as the use of an unsteady Reynolds-Averaged Navier-Stokes solver. A systematic, experimental, variation of parameters approach with physical rotors was carried out to design and develop a micro air vehicle-scale rotor which maximizes the hover Figure of Merit. The insights gained in low Reynolds number aerodynamics have been utilized in the systematic design of a high endurance micro-quadrotor. Based on available characteristics, the physical relations governing electric propulsion system and structural weights have been derived towards a sizing methodology for small-scale rotary-wing vehicles.
Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number
Energy Technology Data Exchange (ETDEWEB)
Blaylock, Myra L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Thermal/ Fluid Sciences & Engineering Dept.; Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.; Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.
2015-04-01
New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.
Stokesian swimming of a sphere at low Reynolds number
Felderhof, B U
2016-01-01
Explicit expressions are derived for the matrices determining the mean translational and rotational swimming velocities and the mean rate of dissipation for Stokesian swimming at low Reynolds number of a distorting sphere in a viscous incompressible fluid. As an application an efficient helical propeller-type stroke is found and its properties are calculated.
High Reynolds number liquid layer flow with flexible walls
Indian Academy of Sciences (India)
Permanent link: http://www.ias.ac.in/article/fulltext/sadh/040/03/0961-0972. Keywords. Stability; triple-deck; separation; boundary-layer; compliant wall. Abstract. The stability of liquid layer flow over an inclined flexible wall is studied using asymptotic methods based on the assumption that the Reynolds number is large.
Bifurcation to forward flapping flight at intermediate Reynolds number.
Vandenberghe, Nicolas; Zhang, Jun; Childress, Stephen
2003-11-01
The locomotion of most fish and birds is realized by flapping wings or fins transverse to the direction of travel. According to early theoretical studies, a flapping wing translating at finite speed in an inviscid fluid experiences a propulsive force. In steady forward flight this thrust is balanced by drag. Such "lift-based mechanisms" of thrust production are characteristic of the Eulerian realm, where discrete vortical structures are shed. But, when the Reynolds number is small, viscous forces dominate and reciprocal flapping motions are ineffective. A flapping wing experiences a net drag and cannot be used to propel an organism. We have devised an experiment to bridge the two regimes, and to examine the transition to forward flight at intermediate Reynolds numbers. We study the dynamics of an horizontal wing that is flapped up and down and is free to move either forwards or backwards. This very simple kinematics emphasizes the demarcation between low and high Reynolds number because it is effective in the Eulerian realm but has no effect in the Stokesian realm. We show that flapping flight occurs abruptly as a symmetry breaking bifurcation at a critical flapping frequency. Beyond the bifurcation the forward speed increases linearly with the flapping frequency. The experiment establishes a clear demarcation between the different strategies of locomotion at large and small Reynolds number.
Reynolds number effects on the performance and near-wake of a cross-flow turbine
Bachant, Peter; Wosnik, Martin
2013-11-01
To design wind or marine hydrokinetic (MHK) turbine farms with high efficiency, interactions between turbine wakes must be accurately predicted. However, to date numerical models predicting detailed wake properties of cross-flow (or vertical-axis) turbines have been validated with experimental data taken at Reynolds numbers significantly lower than those of full scale devices, casting doubt on the models' accuracy. To address this uncertainty, we investigated the effects of Reynolds number on the performance and near-wake characteristics of a 3-bladed cross-flow turbine, both experimentally and numerically. Mechanical power output and overall streamwise drag were measured in a towing tank at turbine diameter Reynolds numbers ReD = 0 . 5 ×105 - 2 . 0 ×106 . A detailed map of the near-wake one turbine diameter downstream was acquired via acoustic Doppler velocimetry for each Reynolds number case, from which differences in the mean velocity, turbulence intensity, and Reynolds stresses are highlighted. Finally, Reynolds-averaged Navier-Stokes (RANS) numerical simulations were performed, the results from which are compared with the experimental data. Work supported by NSF-CBET grant 1150797.
Lagrangian coherent structures in low Reynolds number swimming
Energy Technology Data Exchange (ETDEWEB)
Wilson, Megan M; Eldredge, Jeff D [Mechanical and Aerospace Engineering Department, University of California Los Angeles, Los Angeles, CA 90095 (United States); Peng Jifeng; Dabiri, John O [Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125 (United States)
2009-05-20
This work explores the utility of the finite-time Lyapunov exponent (FTLE) field for revealing flow structures in low Reynolds number biological locomotion. Previous studies of high Reynolds number unsteady flows have demonstrated that ridges of the FTLE field coincide with transport barriers within the flow, which are not shown by a more classical quantity such as vorticity. In low Reynolds number locomotion (O(1)-O(100)), in which viscous diffusion rapidly smears the vorticity in the wake, the FTLE field has the potential to add new insight to locomotion mechanics. The target of study is an articulated two-dimensional model for jellyfish-like locomotion, with swimming Reynolds number of order 1. The self-propulsion of the model is numerically simulated with a viscous vortex particle method, using kinematics adapted from previous experimental measurements on a live medusan swimmer. The roles of the ridges of the computed forward- and backward-time FTLE fields are clarified by tracking clusters of particles both backward and forward in time. It is shown that a series of ridges in front of the jellyfish in the forward-time FTLE field transport slender fingers of fluid toward the lip of the bell orifice, which are pulled once per contraction cycle into the wake of the jellyfish, where the fluid remains partitioned. A strong ridge in the backward-time FTLE field reveals a persistent barrier between fluid inside and outside the subumbrellar cavity. The system is also analyzed in a body-fixed frame subject to a steady free stream, and the FTLE field is used to highlight differences in these frames of reference.
Lagrangian coherent structures in low Reynolds number swimming
Wilson, Megan M.; Peng, Jifeng; Dabiri, John O.; Eldredge, Jeff D.
2009-05-01
This work explores the utility of the finite-time Lyapunov exponent (FTLE) field for revealing flow structures in low Reynolds number biological locomotion. Previous studies of high Reynolds number unsteady flows have demonstrated that ridges of the FTLE field coincide with transport barriers within the flow, which are not shown by a more classical quantity such as vorticity. In low Reynolds number locomotion (O(1)-O(100)), in which viscous diffusion rapidly smears the vorticity in the wake, the FTLE field has the potential to add new insight to locomotion mechanics. The target of study is an articulated two-dimensional model for jellyfish-like locomotion, with swimming Reynolds number of order 1. The self-propulsion of the model is numerically simulated with a viscous vortex particle method, using kinematics adapted from previous experimental measurements on a live medusan swimmer. The roles of the ridges of the computed forward- and backward-time FTLE fields are clarified by tracking clusters of particles both backward and forward in time. It is shown that a series of ridges in front of the jellyfish in the forward-time FTLE field transport slender fingers of fluid toward the lip of the bell orifice, which are pulled once per contraction cycle into the wake of the jellyfish, where the fluid remains partitioned. A strong ridge in the backward-time FTLE field reveals a persistent barrier between fluid inside and outside the subumbrellar cavity. The system is also analyzed in a body-fixed frame subject to a steady free stream, and the FTLE field is used to highlight differences in these frames of reference.
Lagrangian coherent structures in low Reynolds number swimming.
Wilson, Megan M; Peng, Jifeng; Dabiri, John O; Eldredge, Jeff D
2009-05-20
This work explores the utility of the finite-time Lyapunov exponent (FTLE) field for revealing flow structures in low Reynolds number biological locomotion. Previous studies of high Reynolds number unsteady flows have demonstrated that ridges of the FTLE field coincide with transport barriers within the flow, which are not shown by a more classical quantity such as vorticity. In low Reynolds number locomotion (O(1)-O(100)), in which viscous diffusion rapidly smears the vorticity in the wake, the FTLE field has the potential to add new insight to locomotion mechanics. The target of study is an articulated two-dimensional model for jellyfish-like locomotion, with swimming Reynolds number of order 1. The self-propulsion of the model is numerically simulated with a viscous vortex particle method, using kinematics adapted from previous experimental measurements on a live medusan swimmer. The roles of the ridges of the computed forward- and backward-time FTLE fields are clarified by tracking clusters of particles both backward and forward in time. It is shown that a series of ridges in front of the jellyfish in the forward-time FTLE field transport slender fingers of fluid toward the lip of the bell orifice, which are pulled once per contraction cycle into the wake of the jellyfish, where the fluid remains partitioned. A strong ridge in the backward-time FTLE field reveals a persistent barrier between fluid inside and outside the subumbrellar cavity. The system is also analyzed in a body-fixed frame subject to a steady free stream, and the FTLE field is used to highlight differences in these frames of reference.
Dynamics of bubble rising at small Reynolds numbers
Directory of Open Access Journals (Sweden)
Arkhipov Vladimir
2015-01-01
Full Text Available Results of experimental study of a single spherical bubble rising in the non-stationary regime in a viscous liquid (with and without surfactant at small Reynolds numbers Re<1 have been presented. Improved empirical correlations for drag coefficient of the bubble rising with and without surfactant in the stationary regime have been obtained. Influence of nonstationary effects on the dynamics of bubble rising has been analyzed.
Reynolds and froude number effect on the flow past an interface-piercing circular cylinder
Directory of Open Access Journals (Sweden)
Bonguk Koo
2014-09-01
Full Text Available The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research.
Reynolds and froude number effect on the flow past an interface-piercing circular cylinder
Directory of Open Access Journals (Sweden)
Koo Bonguk
2014-09-01
Full Text Available The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research
Klewicki, J. C.; Chini, G. P.; Gibson, J. F.
2017-03-01
Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.
Multigrid solution of the convection-diffusion equation with high-Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jun [George Washington Univ., Washington, DC (United States)
1996-12-31
A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.
Optimal translational swimming of a sphere at low Reynolds number
Felderhof, B U
2015-01-01
Swimming velocity and rate of dissipation of a sphere with surface distortions are discussed on the basis of the Stokes equations of low Reynolds number hydrodynamics. At first the surface distortions are assumed to cause an irrotational axisymmetric flow pattern. The efficiency of swimming is optimized within this class of flows. Subsequently more general axisymmetric polar flows with vorticity are considered. This leads to a considerably higher maximum efficiency. An additional measure of swimming performance is proposed based on the energy consumption for given amplitude of stroke.
Resonance of flexible flapping wings at low Reynolds number.
Masoud, Hassan; Alexeev, Alexander
2010-05-01
Using three-dimensional computer simulations, we examine hovering aerodynamics of flexible planar wings oscillating at resonance. We model flexible wings as tilted elastic plates whose sinusoidal plunging motion is imposed at the plate root. Our simulations reveal that large-amplitude resonance oscillations of elastic wings drastically enhance aerodynamic lift and efficiency of low-Reynolds-number plunging. Driven by a simple sinusoidal stroke, flexible wings at resonance generate a hovering force comparable to that of small insects that employ a very efficient but much more complicated stroke kinematics. Our results indicate the feasibility of using flexible wings driven by a simple harmonic stroke for designing efficient microscale flying machines.
Vortex Shedding from Tapered Cylinders at high Reynolds Numbers
DEFF Research Database (Denmark)
Johansson, Jens; Andersen, Michael Styrk; Christensen, Silas Sverre
2015-01-01
: Helical strakes are known to reduce or suppress vortex-induced vibrations (VIV) of circular structures. The design of the strakes is generally recommended to be a triple-start helical strake system, with a strake height corresponding to approximately 10 percent of the structures diameter and 15...... percent for strakes of circular cross section. The present paper argues that this height can be reduced for structures where the critical wind velocity for vortex shedding is in the Supercritical Reynolds number regime. The present investigations are aimed for suppressing VIV on offshore wind turbine...
Droplet Depinning on Inclined Surfaces at High Reynolds Numbers
White, Edward; Singh, Natasha; Lee, Sungyon
2017-11-01
Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α behavior. Supported by the National Science Foundation through Grant CBET-1605947.
Unsteady aerodynamic models for agile flight at low Reynolds numbers
Brunton, Steven L.
This work develops low-order models for the unsteady aerodynamic forces on a wing in response to agile maneuvers at low Reynolds number. Model performance is assessed on the basis of accuracy across a range of parameters and frequencies as well as of computational efficiency and compatibility with existing control techniques and flight dynamic models. The result is a flexible modeling procedure that yields accurate, low-dimensional, state-space models. The modeling procedures are developed and tested on direct numerical simulations of a two-dimensional flat plate airfoil in motion at low Reynolds number, Re=100, and in a wind tunnel experiment at the Illinois Institute of Technology involving a NACA 0006 airfoil pitching and plunging at Reynolds number Re=65,000. In both instances, low-order models are obtained that accurately capture the unsteady aerodynamic forces at all frequencies. These cases demonstrate the utility of the modeling procedure developed in this thesis for obtaining accurate models for different geometries and Reynolds numbers. Linear reduced-order models are constructed from either the indicial response (step response) or realistic input/output maneuvers using a flexible modeling procedure. The method is based on identifying stability derivatives and modeling the remaining dynamics with the eigensystem realization algorithm. A hierarchy of models is developed, based on linearizing the flow at various operating conditions. These models are shown to be accurate and efficient for plunging, pitching about various points, and combined pitch and plunge maneuvers, at various angle of attack and Reynolds number. Models are compared against the classical unsteady aerodynamic models of Wagner and Theodorsen over a large range of Strouhal number and reduced frequency for a baseline comparison. Additionally, state-space representations are developed for Wagner's and Theodorsen's models, making them compatible with modern control-system analysis. A number of
Low Reynolds Number Wing Transients in Rotation and Translation
Jones, Anya; Schlueter, Kristy
2012-11-01
The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.
Numerical study of rowing hydrofoil performance at low Reynolds numbers
Chung, M.-H.
2008-04-01
In this paper, the hydrodynamic performance of a 2-D flat-plate hydrofoil in rowing motion is numerically studied by a Cartesian grid method with the cut-cell approach. Adaptive mesh refinement is used to save on the number of mesh cells without harming spatial resolution in critical regions. The rowing kinematics of the hydrofoil is the same for all simulations in this work. The design parameters studied are the reduced frequency of the rowing motion, the heave amplitude, and the time lags of the feathered-to-broadside rotation and the broadside-to-feathered rotation. Results show that larger thrust and efficiency can be attained if the feathered-to-broadside rotation is started right after the beginning of the power stroke and the broadside-to-feathered rotation is finished right before the end of the power stroke. Finally, both the thrust and the efficiency increase with Reynolds number.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ye [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thornber, Ben [The Univ. of Sydney, Sydney, NSW (Australia)
2016-04-12
Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology and wind tunnel experiments.
Stokesian swimming of a prolate spheroid at low Reynolds number
Felderhof, B U
2016-01-01
The swimming of a spheroid immersed in a viscous fluid and performing surface deformations periodically in time is studied on the basis of Stokes equations of low Reynolds number hydrodynamics. The average over a period of time of the swimming velocity and the rate of dissipation are given by integral expressions of second order in the amplitude of surface deformations. The first order flow velocity and pressure, as functions of spheroidal coordinates, are expressed as sums of basic solutions of Stokes equations. Sets of superposition coefficients of these solutions which optimize the mean swimming speed for given power are derived from an eigenvalue problem. The maximum eigenvalue is a measure of the efficiency of the optimal stroke within the chosen class of motions. The maximum eigenvalue for sets of low order is found to be a strongly increasing function of the aspect ratio of the spheroid.
Effects of viscoelasticity in the high Reynolds number cylinder wake
Richter, David
2012-01-16
At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.
Flow instabilities behind rotating bluff bodies for moderate Reynolds number
Goujon-Durand, Sophie; Gibi?Ski, Kornel; Skarysz, Maciej; Wesfreid, Jose Eduardo
2015-11-01
We present experiments to study the flow behind 3D bodies (spheres, disks and propellers) rotating about an axis aligned with the streamwise direction. The experiments has been performed in a water channel using LIF visualizations and PIV measurements. We study the flow evolution and the different flow regimes as a function of two control parameters: the Reynolds number Re and the dimensionless rotation or swirl rate Ω which is the ratio of the maximum azimuthal velocity of the body to the free stream velocity. In the present investigation, we covers the range of Re smaller than 400 and Ω from 0 to 4 in some cases. Different wakes regimes such as an axisymmetric base flow (or n-symmetric in the case of propellers), low frequency helicoidal states and higher frequency state are observed. The transitions between states are studied measuring the amplitude of the azimuthal modes components of the streamwise vorticity obtained by Fourier decomposition.
Numerical simulation of high Reynolds number bubble motion
Energy Technology Data Exchange (ETDEWEB)
McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)
1995-12-31
This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.
Manipulating low-Reynolds-number flow by a watermill
Zhu, Lailai; Stone, Howard
2017-11-01
Cilia and filaments have evolved in nature to achieve swimming, mixing and pumping at low Reynolds number. Their unique capacity has inspired a variety of biomimetic strategies employing artificial slender structures to manipulate flows in microfluidic devices. Most of them have to rely on an external field, such as magnetic or electric fields to actuate the slender structures actively. In this talk, we will present a new approach of utilizing the underlying flow alone to drive these structures passively. We investigate theoretically and numerically a watermill composing several rigid slender rods in simple flows. Slender body theory with and without considering hydrodynamic interactions is adopted. The theoretical predictions agree qualitatively with the numerical results and quantitatively in certain configurations. A VR International Postdoc Grant from Swedish Research Council ``2015-06334'' (L.Z.) is gratefully acknowledged.
Local vibrations and lift performance of low Reynolds number airfoil
Directory of Open Access Journals (Sweden)
TariqAmin Khan
2017-06-01
Full Text Available The 2D incompressible Navier-Stokes equations are solved based on the finite volume method and dynamic mesh technique is used to carry out partial fluid structure interaction. The local flexible structure (hereinafter termed as flexible structure vibrates in a single mode located on the upper surface of the airfoil. The Influence of vibration frequency and amplitude are examined and the corresponding fluid flow characteristics are investigated which add complexity to the inherent problem in unsteady flow. The study is conducted for flow over NACA0012 airfoil at 600≤Re≤3000 at a low angle of attack. Vibration of flexible structure induces a secondary vortex which modifies the pressure distribution and lift performance of the airfoil. At some moderate vibration amplitude, frequency synchronization or lock-in phenomenon occurs when the vibration frequency is close to the characteristic frequency of rigid airfoil. Evolution and shedding of vortices corresponding to the deformation of flexible structure depends on the Reynolds number. In the case of Re≤1000, the deformation of flexible structure is considered in-phase with the vortex shedding i.e., increasing maximum lift is linked with the positive deformation of flexible structure. At Re=1500 a phase shift of about 1/π exists while they are out-of-phase at Re>1500. Moreover, the oscillation amplitude of lift coefficient increases with increasing vibration amplitude for Re≤1500 while it decreases with increasing vibration amplitude for Re>1500. As a result of frequency lock-in, the average lift coefficient is increased with increasing vibration amplitude for all investigated Reynolds numbers (Re. The maximum increase in the average lift coefficient is 19.72% within the range of investigated parameters.
Numerical Upscaling of Transport Through Obstructed Regions Over a Broad Range of Reynolds Numbers
Sund, N. L.; Bolster, D.; Mattis, S. A.
2014-12-01
While historically flow and transport in porous media has focused on low Reynolds number and Peclet number regimes there are a variety of examples relevant to environmental fluid dynamics where higher Reynolds number flows are important. A common example might include flow and transport through wetlands where plants act as the solid phase of an effective porous medium. In particular, heterogeneity in the flow field due to presence of the solid phases gives rise to complex transport and mixing behaviors that cannot be upscaled at pre-asymptotic times using conventional approaches. We numerically simulate pore-scale flow and transport through obstructed domains over a range of Reynolds numbers from 15 to 280 and then upscale transport. We upscale using a correlated continuous time random walk (correlated CTRW) model, originally introduced in [1]. We then assess the correlated CTRW's ability to predict observables for both asymptotic and pre-asymptotic time scales and compare our results to those of a classical CTRW to determine when velocity correlations must be accounted for. REFERENCES[1] T.L. Borgne, M. Dentz, J. Carrera: Lagrangian statistical model for transport in highly heterogeneous velocity fields, Physical Review Letters 101 (2008) 090601.
McNicholas, Patrick J.; Floyd, Randy G.
2017-01-01
The Reynolds Intellectual Assessment Scales, Second Edition (RIAS-2; Reynolds & Kamphaus, 2015) is an intelligence test for those aged 3 to 94 years. It contains eight subtests designed to assess general intelligence, verbal and nonverbal intelligence, memory, and processing speed. The two subtests targeting processing speed are new to the…
Flow analysis of the low Reynolds number swimmer C. elegans
Montenegro-Johnson, Thomas D.; Gagnon, David A.; Arratia, Paulo E.; Lauga, Eric
2016-09-01
Swimming cells and microorganisms are a critical component of many biological processes. In order to better interpret experimental studies of low Reynolds number swimming, we combine experimental and numerical methods to perform an analysis of the flow field around the swimming nematode Caenorhabditis elegans. We first use image processing and particle tracking velocimetry to extract the body shape, kinematics, and flow fields around the nematode. We then construct a three-dimensional model using the experimental swimming kinematics and employ a boundary element method to simulate flow fields, obtaining very good quantitative agreement with experiment. We use this numerical model to show that calculation of flow shear rates using purely planar data results in significant underestimates of the true three-dimensional value. Applying symmetry arguments, validated against numerics, we demonstrate that the out-of-plane contribution can be accounted for via incompressibility and therefore simply calculated from particle tracking velocimetry. Our results show how fundamental fluid mechanics considerations may be used to improve the accuracy of measurements in biofluiddynamics.
A coin vibrational motor swimming at low Reynolds number
Quillen, Alice C; Kelley, Douglas H; Friedmann, Tamar; Oakes, Patrick W
2016-01-01
Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its vibrations induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the vibration it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming veloc...
Free and confined jets at low Reynolds numbers
Koller-Milojevie, Dušica; Schneider, Wilhelm
1993-12-01
Free jets, and jets with tubular confinements, are investigated in the jet Reynolds number regime 80 ⩽ Re j ⩽ 1000 being of interest for micro-jet pumps, among other applications. For issuing the jets, conventional (single-hole) nozzles as well as dual-hole nozzles of a particular design are used. Both flow visualization and LDA measurement indicate that, in agreement with previous findings, the jets issuing from conventional nozzles remain laminar up to large distances from the orifice. Thus there is but little entrainment of ambient fluid, and the performance of conventional nozzles in micro-jet pumps is rather poor. The dual-hole nozzles, on the other hand, are found to enforce transition to turbulent flow near the orifices. As a result, the entrainment rate is considerably increased, and the performance of jet pumps is improved when the dual-hole nozzles are applied. The experimental data are found to be in fair agreement with predictions based on mass and momentum balances.
Unsteady flow over flexible wings at different low Reynolds numbers
Directory of Open Access Journals (Sweden)
Genç Mustafa Serdar
2016-01-01
Full Text Available In this study, unsteady flow around flexible membrane wing which had aspect ratio of 1 (AR=1 was investigated experimentally at various Reynolds numbers (Re = 25000 and Re = 50000. Smoke-wire technique for flow visualization over the flexible membrane wing was utilized in the experiments. Digital Image Correlation system (DIC was used for measuring deformation of AR = 1 flexible membrane wing. Instantaneous deformation measurements of membrane wing were combined with the flow field measurements. In low aspect ratio flexible membrane wings, unsteadiness includes tip vortices and vortex shedding, and the combination of tip vortices. In these types of wings, complex unsteady deformations occurred due to vortex shedding. The results showed that the increasing angle of attack results in increase of membrane deformation. Moreover, it was concluded that analysis of the instantaneous deformation revealed chordwise and spanwise, modes which were due to the shedding of leading-edge vortices as well as tip vortices. Consequently, vibrational mode decreased and maximum standard deviation location approached to the trailing edge by reason of increasing angle of attack.
Turbulence Intermittency Characteristics in the Reynolds Number Range 100 <= R_λ <= 1,000
Gylfason, Armann; Ayyalasomayajula, Sathyanarayanana; Warhaft, Zellman
2002-11-01
Work by Tabeling and collaborators^1 show a transitional behavior in the flatness factor of the velocity derivative, K_partial u/ partial x, as a function of Taylor Reynolds number, R_λ ≡ u λ / ν. Their results show a peak in K_partial u/partial x at R_λ ˜ 700 followed by a decrease (to R_λ ˜ 1000) before returning to a gentle increase. Here we investigate K_partial u / partial x in decaying, active grid, turbulence. Our preliminary results show that K_partial u / partial x increases until R_λ ˜ 700 and then remains approximately flat to R_λ ˜ 1,200 (the extent of our measurements). Thus there is some similarity with the Tabeling et al. work, although our data does not exhibit the pronounced peak and trough that they observe. Reasons for the differences are investigated, including differences in flow geometry and the possibility that the Taylor scale Reynolds number does not map linearly from one flow to another. Other recent proposals^2 of Reynolds numbers based purely on the small scales are investigated. Transverse velocity statistics and velocity difference measurements are also presented. The work is supported by the National Science Foundation. [1] P. Tabeling et al. PRE, 53, 1613 (1996); Tabeling and Willaime, PRE, 65, 066301--1 (2002). [2] R.H. Hill. J. Fluid Mech., 463, 403 (2002).
Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number
Smith, W. R.; Wang, Q. X.
2017-08-01
The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.
Irrecoverable pressure loss coefficients for two out-of-plane piping elbows at high Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Coffield, R.D.; Hammond, R.B.; McKeown, P.T.
1999-02-08
Pressure drops of multiple piping elbows were experimentally determined for high Reynolds number flows. The testing described has been performed in order to reduce uncertainties in the currently used methods for predicting irrecoverable pressure losses and also to provide a qualification database for computational fluid dynamics (CFD) computer codes. The earlier high Reynolds number correlations had been based on extrapolations over several orders of magnitude in Reynolds number from where the original database existed. Recent single elbow test data shows about a factor of two lower elbow pressure loss coefficient (at 40x 106 Reynolds number) than those from current correlations. This single piping elbow data has been extended in this study to a multiple elbow configuration of two elbows that are 90o out-of-plane relative to each other. The effects of separation distance and Reynolds number have been correlated and presented in a form that can be used for design application. Contrary to earlier extrapolations from low Reynolds numbers (Re c 1.0x 106), a strong Reynolds number dependence was found to exist. The combination of the high Reynolds number single elbow data with the multiple elbow interaction effects measured in this study shows that earlier design correlations are conservative by significant margins at high Reynolds numbers. Qualification of CFD predictions with this new high Reynolds number database will help guide the need for additional high Reynolds number testing of other piping configurations. The study also included velocity measurements at several positions downstream of the first and second test elbows using an ultrasonic flowmeter. Reasonable agreement after the first test elbow was found relative to flow fields that are known to exist from low Reynolds number visual tests and also from CFD predictions. This data should help to qualify CFD predictions of the three-dimensional flow stream downstream of the second test elbow.
Pulsatility role in cylinder flow dynamics at low Reynolds number
Qamar, Adnan
2012-01-01
We present dynamics of pulsatile flow past a stationary cylinder characterized by three non-dimensional parameters: the Reynolds number (Re), non-dimensional amplitude (A) of the pulsatile flow velocity, and Keulegan-Carpenter number (KC = Uo/Dωc). This work is motivated by the development of total artificial lungs (TAL) device, which is envisioned to provide ambulatory support to patients. Results are presented for 0.2 ≤ A ≤ 0.6 and 0.57 ≤ KC ≤ 2 at Re = 5 and 10, which correspond to the operating range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last fraction of the pulsatile cycle. The vortex size is independent of KC, but with an exponential dependency on A. In regime I, the separation point remains attached to the cylinder surface. In regime II, the separation point migrates upstream of the cylinder. Two distinct vortex collapse mechanisms are observed. For A < 0.4 and all KC and Re values, collapse occurs on the cylinder surface, whereas for A > 0.4 the separation vortex detaches from the cylinder surface and collapses at a certain distance downstream of the cylinder. The average drag coefficient is found to be independent of A and KC, and depends only on Re. However, for A > 0.4, for a fraction of the pulsatile cycle, the instantaneous drag coefficient is negative indicating a thrust production. © 2012 American Institute of Physics.
Hybrid RANS/LES method for high Reynolds numbers, applied to atmospheric flow over complex terrain
DEFF Research Database (Denmark)
Bechmann, Andreas; Sørensen, Niels N.; Johansen, Jeppe
2007-01-01
The use of Large-Eddy Simulation (LES) to predict wall-bounded flows has presently been limited to low Reynolds number flows. Since the number of computational grid points required to resolve the near-wall turbulent structures increase rapidly with Reynolds number, LES has been unattainable for...
Scour around a single Marine Hydrokinetic turbine of varying tip speed ratio and Reynolds number
Volpe, M. A.; Beninati, M. L.; Krane, M.; Fontaine, A.
2012-12-01
Experiments are presented to explore how the sediment scour around a single Marine Hydrokinetic (MHK) turbine varies with both tip speed ratio (TSR) and flow Reynolds number. The sediment size (d50 = 790 microns) and the turbine blade diameter (0.1016 m) were held constant for all tests. Three tip speed ratios (TSR = 5, 6, and 7) and three Reynolds numbers, based on turbine blade diameter, (ReD = 31500, 35800, and 40000) were used. The MHK device is a two-bladed horizontal axis turbine and the rotating shaft is loaded using a metal brush motor. The experiments were performed in the small-scale testing platform in the hydraulic flume facility (9.8 m long, 1.2 m wide and 0.4 m deep) at Bucknell University. For each test case, bed form topology was measured after a three-hour time interval using a traversing two-dimensional bed profiler. During the experiment, scour depth measurements at the front face of the cylindrical support structure were taken to estimate a scour rate. Measurements of the bed form were taken in 1/8 diameter increments across the width of the test section. Results show that the scour hole dimensions (depth, width, length) and deposition behind the turbine increase with both TSR and Reynolds number.
Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres
Zhou, Qiang; Fan, Liang-Shih
2015-07-01
Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.
Graham, John B., Jr.
1958-01-01
Heat-transfer and pressure measurements were obtained from a flight test of a 1/18-scale model of the Titan intercontinental ballistic missile up to a Mach number of 3.86 and Reynolds number per foot of 23.5 x 10(exp 6) and are compared with the data of two previously tested 1/18-scale models. Boundary-layer transition was observed on the nose of the model. Van Driest's theory predicted heat-transfer coefficients reasonably well for the fully laminar flow but predictions made by Van Driest's theory for turbulent flow were considerably higher than the measurements when the skin was being heated. Comparison with the flight test of two similar models shows fair repeatability of the measurements for fully laminar or turbulent flow.
Effects of non-uniform interfacial tension in small Reynolds number ...
Indian Academy of Sciences (India)
Taylor and Acrivos [1] considered the problem of small Reynolds number flow past a spherical liquid drop with uniform interfacial tension between the liquid drop and the sur- rounding fluid. The problem is a singular perturbation problem and Taylor and Acrivos calculated the solution to first order in the Reynolds number.
Effect of Reynolds Number on Aerodynamics of Airfoil with Gurney Flap
Directory of Open Access Journals (Sweden)
Shubham Jain
2015-01-01
Full Text Available Steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of variation in Reynolds number on the aerodynamics of the airfoil without and with a Gurney flap of height of 3% chord are presented in this paper. RANS based one-equation Spalart-Allmaras model is used for the computations. Both lift and drag coefficients increase with Gurney flap compared to those without Gurney flap at all Reynolds numbers at all angles of attack. The zero lift angle of attack seems to become more negative as Reynolds number increases due to effective increase of the airfoil camber. However the stall angle of attack decreased by 2° for the airfoil with Gurney flap. Lift coefficient decreases rapidly and drag coefficient increases rapidly when Reynolds number is decreased below critical range. This occurs due to change in flow pattern near Gurney flap at low Reynolds numbers.
Unsteady behavior of a confined jet in a cavity at moderate Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Bouchet, G [Laboratoire IUSTI, UMR 7343 CNRS, Aix Marseille Universite, 5 rue Enrico Fermi, 13453 Marseille Cedex 13 (France); Climent, E, E-mail: Gilles.Bouchet@univ-amu.fr, E-mail: Gilles.Bouchet@univ-provence.fr, E-mail: climent@imft.fr [Institut de Mecanique des Fluides de Toulouse, UMR 5502 Universite de Toulouse-CNRS-INPT-UPS, 1 allee du Professeur Camille Soula, 31400 Toulouse (France)
2012-04-01
Self-sustained oscillations in the sinuous mode are observed when a jet impinges on a rigid surface. Confined jet instability is experimentally and numerically investigated here at moderate Reynolds numbers. When the Reynolds number is varied, the dynamic response of the jet is unusual in comparison with that of similar configurations (hole-tone, jet edge, etc). Modal transitions are clearly detected when the Reynolds number is varied. However, these transitions result in a reduction of the frequency, which means that the wavelength grows with Reynolds number. Moreover, the instability that sets in at low Reynolds number, as a subcritical Hopf bifurcation, disappears only 25% above the threshold. Then, the flow becomes steady again and symmetric. This atypical behavior is compared with our previous study on a submerged fountain (Bouchet et al 2002 Europhys. Lett. 59 826). (paper)
Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE
Örlü, R.; Fiorini, T.; Segalini, A.; Bellani, G.; Talamelli, A.; Alfredsson, P. H.
2017-03-01
This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×104 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A2≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A2,w≈A2/2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.
The effect of Prandtl number on mixing in low Reynolds number Kelvin-Helmholtz billows
Rahmani, Mona; Seymour, Brian
2014-01-01
The effect of Prandtl number on the evolution of Kelvin-Helmholtz (KH) billows and the amount of mixing they generate is studied through direct numerical simulation (DNS). The results indicate that the time evolution of the rate of mixing through different stages of the life-cycle of KH flow is significantly influenced by the Prandtl number. As the Prandtl number increases, the final amount of mixing increases for Reynolds that are too low to support active three-dimensional motions. This trend is the opposite in sufficiently high Reynolds number KH flows that can overcome viscous effects, and develop significant three-dimensional instabilities. While the mixing generated in the two-dimensional flows, uniform in the span-wise direction, is not significantly dependent on the Prandtl number, the turbulent mixing induced by three-dimensional motions is a function of the Prandtl number. The turbulent mixing efficiency near the end of the turbulence decay phase approaches 0.2, the commonly observed value in the oc...
Estimating the effective Reynolds number in implicit large-eddy simulation.
Zhou, Ye; Grinstein, Fernando F; Wachtor, Adam J; Haines, Brian M
2014-01-01
In implicit large-eddy simulation (ILES), energy-containing large scales are resolved, and physics capturing numerics are used to spatially filter out unresolved scales and to implicitly model subgrid scale effects. From an applied perspective, it is highly desirable to estimate a characteristic Reynolds number (Re)-and therefore a relevant effective viscosity-so that the impact of resolution on predicted flow quantities and their macroscopic convergence can usefully be characterized. We argue in favor of obtaining robust Re estimates away from the smallest scales of the simulated flow-where numerically controlled dissipation takes place and propose a theoretical basis and framework to determine such measures. ILES examples include forced turbulence as a steady flow case, the Taylor-Green vortex to address transition and decaying turbulence, and simulations of a laser-driven reshock experiment illustrating a fairly complex turbulence problem of current practical interest.
High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C. [Air Force Research Laboratory, Computational Sciences Branch, Air Vehicles Directorate, Wright-Patterson AFB, OH (United States)
2009-05-15
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re{sub c} = 10 {sup 4}), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re{sub c}=10 {sup 4
Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.
Örlü, R; Fiorini, T; Segalini, A; Bellani, G; Talamelli, A; Alfredsson, P H
2017-03-13
This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×10(4) are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A2≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A2,w≈A2/2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
2016-06-23
with implications in flame diagnostics. Applied Physics B., 104:689–698, 2011. 22 DISTRIBUTION A: Distribution approved for public release Participating...AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence- Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence- chemistry interaction in high-Reynolds-number 5a. CONTRACT NUMBER turbulent
Duvvuri, Subrahmanyam; McKeon, Beverley
2017-03-13
Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
The Penguin: a Low Reynolds Number Powered Glider for Station Keeping Missions
Costello, J. K.; Greene, D. W.; Lee, T. T.; Matier, P. T.; Mccarthy, T. R.; Mcguire, R. J.; Schuette, M. J.
1990-01-01
The Penguin is a low Reynolds number (approx. 100,000) remotely piloted vehicle (RPV). It was designed to fly three laps indoors around two pylons in a figure-eight course while maximizing loiter time. The Penguin's low Reynolds number mission is an important one currently being studied for possible future flights in the atmospheres of other planets and for specialized military missions. Although the Penguin's mission seemed quite simple at first, the challenges of such low Reynolds number flight have proven to be quite unique. In addition to the constraint of low Reynolds number flight, the aircraft had to be robust in its control, highly durable, and it had to carry a small instrument package. The Penguin's flight plan, concept, performance, aerodynamic design, weight estimation, structural design, propulsion, stability and control, and cost estimate is detailed.
Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context
2014-09-01
ABSTRACT Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context Report Title Mix is a critical input to hydro... inertial confinement fusion (ICF) targets. Mix contributes to numerical solution uncertainty through its dependence on turbulent transport coefficients...lanl.gov Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context Mix is a critical input to hydro simulations used in
Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers
Seifert, Avi; Pack, LaTunia G.
2000-01-01
This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick GlauertGoldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.
Friedrich, J; Schäfer, T; Grauer, R
2016-01-01
We investigate the scaling behavior of longitudinal and transverse structure functions in homogeneous and isotropic magneto-hydrodynamic (MHD) turbulence by means of an exact hierarchy of structure function equations as well as by direct numerical simulations of two- and three-dimensional MHD turbulence. In particular, rescaling relations between longitudinal and transverse structure functions are derived and utilized in order to compare different scaling behavior in the inertial range. It is found that there are no substantial differences between longitudinal and transverse structure functions in MHD turbulence. This finding stands in contrast to the case of hydrodynamic turbulence which shows persistent differences even at high Reynolds numbers. We propose a physical picture that is based on an effective reduction of pressure contributions due to local regions of same magnitude and alignment of velocity and magnetic field fluctuations. Finally, our findings underline the importance of the pressure term for ...
Dissipative Effects on Inertial-Range Statistics at High Reynolds Numbers
Sinhuber, Michael; Bewley, Gregory P.; Bodenschatz, Eberhard
2017-09-01
Using the unique capabilities of the Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization, Göttingen, we report experimental measurements in classical grid turbulence that uncover oscillations of the velocity structure functions in the inertial range. This was made possible by measuring extremely long time series of up to 1 010 samples of the turbulent fluctuating velocity, which corresponds to O (107) integral length scales. The measurements were conducted in a well-controlled environment at a wide range of high Reynolds numbers from Rλ=110 up to Rλ=1600 , using both traditional hot-wire probes as well as the nanoscale thermal anemometry probe developed at Princeton University. An implication of the observed oscillations is that dissipation influences the inertial-range statistics of turbulent flows at scales significantly larger than predicted by current models and theories.
Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade
Ge, Mingwei; Fang, Le; Tian, De
2015-01-01
At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815
Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.
Ge, Mingwei; Fang, Le; Tian, De
2015-01-01
At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project.
Spectral approach to finite Reynolds number effects on Kolmogorov's 4/5 law in isotropic turbulence
Tchoufag, J.; Sagaut, P.; Cambon, C.
2012-01-01
The Kolmogorov's 4/5 law is often considered as the sole exact relationship of inertial range statistics. Its asymptotic character, however, has been evidenced, investigating the finite Reynolds number (FRN) effect for the third-order structure function S3(r) (e.g., for longitudinal velocity increments with r separation length) using variants of the Kármán-Howarth equation in physical space. Similar semi-empirical fits were proposed for the maximum of the normalized structure function, C3 = -maxrS3(r)/(ɛr), expressing C3 - 4/5 as a power law of the Taylor-based Reynolds number. One of the most complete studies in this domain is by Antonia and Burratini [J. Fluid Mech. 550, 175 (2006)]. Considering that these studies are based on a model for the unsteady second-order structure function S2(r,t), with no explicit model for the third-order structure function itself, we propose to revisit the FRN effect by a spectral approach, in the line of Qian [Phys. Rev. E 55, 337 (1997), Phys. Rev. E 60, 3409 (1999)]. The spectral transfer term T(k,t), from which S3(r,t) is derived by an exact quadrature, is directly calculated by solving the Lin equation for the energy spectrum E(k,t), closed by a standard triadic (or three-point) theory, here Eddy Damped Quasi Normal Markovian. We show that the best spectral approach to the FRN effect is found by separately investigating the negative (largest scales) and positive (smaller scales) bumps of the transfer term, and not only by looking at the maximum of the spectral flux or maxk ∫k∞T(p ,t)dp→ɛ. In the forced case, previous results are well reproduced, with Reynolds numbers as high as Reλ = 5 000 to nearly recover the 4/5 value. In the free decay case, the general trend is recovered as well, with an even higher value of Reλ = 50 000, but the EDQNM plots are systematically below those in Antonia and Burattini [J. Fluid Mech. 550, 175 (2006)]. This is explained by the sensitivity to initial data for E(k) in solving the Lin
Energy Technology Data Exchange (ETDEWEB)
Sigg, K. C.; Coffield, R. D.
2002-09-01
High Reynolds number test data has recently been reported for both single and multiple piping elbow design configurations at earlier ASME Fluid Engineering Division conferences. The data of these studies ranged up to a Reynolds number of 42 x 10[sup]6 which is significantly greater than that used to establish design correlations before the data was available. Many of the accepted design correlations, based on the lower Reynolds number data, date back as much as fifty years. The new data shows that these earlier correlations are extremely conservative for high Reynolds number applications. Based on the recent high Reynolds number information a new recommended method has been developed for calculating irrecoverable pressure loses in piping systems for design considerations such as establishing pump sizing requirements. This paper describes the recommended design approach and additional testing that has been performed as part of the qualification of the method. This qualification testing determined the irrecoverable pressure loss of a piping configuration that would typify a limiting piping section in a complicated piping network, i.e., multiple, tightly coupled, out-of-plane elbows in series under high Reynolds number flow conditions. The overall pressure loss measurements were then compared to predictions, which used the new methodology to assure that conservative estimates for the pressure loss (of the type used for pump sizing) were obtained. The recommended design methodology, the qualification testing and the comparison between the predictions and the test data are presented. A major conclusion of this study is that the recommended method for calculating irrecoverable pressure loss in piping systems is conservative yet significantly lower than predicted by early design correlations that were based on the extrapolation of low Reynolds number test data.
Mass transfer in wetted-wall columns: correlations at high Reynolds numbers
DEFF Research Database (Denmark)
Nielsen, Christian H.E.; Kiil, Søren; Thomsen, Henrik W.
1998-01-01
The rate of gas-and liquid-phase mass transport in a pilot-scale wetted-wall column with an inner diameter of 3.26 cm and a length of 5 m was investigated. Empirical correlations for the physical liquid-phase mass transfer coefficient (k(L)(O)) and the gas-phase mass transfer coefficient (k...... of the obtained correlations. Our data showed that Sh(L) and Sh(G) both depend on Re-G and Re-L due to changes in the interfacial area at the high Reynolds numbers employed. The presence of inert particles in the liquid-phase may influence the rate of mass transport, and experimental work was initiated to study...
PIV and LIF study of slot continuous jet at low Reynolds number
Directory of Open Access Journals (Sweden)
Broučková Zuzana
2016-01-01
Full Text Available This study deals with a continuous jet issuing from a small narrow slot with a width of 0.36 mm. The experimental arrangement is based on the piezoelectric synthetic jet actuator studied previously for easy comparisons. The working fluid is water at room temperature. The experiments were performed using methods of particle image velocimetry (PIV and flow visualization (laser induced fluorescence, LIF. The time-mean volume flux through the exit nozzle was quantified using precise scales. The mean velocity and the Reynolds number were evaluated as Um = 0.12 m/s and Re = 90, respectively. The results of LIF and PIV techniques revealed the three-dimensional character of the flow field, namely the saddle-shape velocity profiles. This behavior is typical for steady jets from a rectangular nozzle. The obtained results were compared with previous measurements of the synthetic jet issuing from the same cavity and the slot nozzle.
Heat transfer at a stagnation point of impinging round air jet at low Reynolds numbers
Directory of Open Access Journals (Sweden)
Lemanov Vadim
2017-01-01
Full Text Available This work presents experimental investigation of average and pulsation thermal characteristics at the stagnation point of a round impinging air jet at low Reynolds numbers. In the experiments, the average and pulsation values of heat flux, heat transfer coefficient and Nusselt number were measured. At low Reynolds numbers (Re<4000, in contrast to the known monotonous increase in heat transfer, a non-monotonic change in heat transfer is shown. With an outflow from the tube, a significant increase in Nusselt number is observed in comparison with the case, when the jet flows from a nozzle, and this increase can be 300-500%.
Unsteady Low Reynolds Number Aerodynamics for Micro Air Vehicles (MAVs)
2010-05-01
Figure 67. PIV, third data series, phases phi = 0, 90, 120, 150, 180, 210 and 270. 79 Figure 68. PIV-derived planar turbulent kinetic energy ...nd heat t ransfer . I n c ontrast, v ery s low pr oblems – low speeds and small scales – are incompressible and non-thermodynamic, but rife with...momentum t ransfer . This is t rue fo r rotorcraft, f lapping c raft, o r rockets, o r f ixed-wing a ircraft. F lapping f light i s n ot incomparably
NUMERICAL INVESTIGATION OF TWO ELEMENT CAMBER MORPHING AIRFOIL IN LOW REYNOLDS NUMBER FLOWS
Directory of Open Access Journals (Sweden)
RAJESH SENTHIL KUMAR T.
2017-07-01
Full Text Available Aerodynamic performance of a two-element camber morphing airfoil was investigated at low Reynolds number using the transient SST model in ANSYS FLUENT 14.0 and eN method in XFLR5. The two-element camber morphing concept was employed to morph the baseline airfoil into another airfoil by altering the orientation of mean-line at 35% of the chord to achieve better aerodynamic efficiency. NACA 0012 was selected as baseline airfoil. NACA 23012 was chosen as the test case as it has the camber-line similar to that of the morphed airfoil and as it has the same thickness as that of the baseline airfoil. The simulations were carried out at chord based Reynolds numbers of 2.5×105 and 3.9×105. The aerodynamic force coefficients, aerodynamic efficiency and the location of the transition point of laminar separation bubble over these airfoils were studied for various angles of attack. It was found that the aerodynamic efficiency of the morphed airfoil was 12% higher than that of the target airfoil at 4° angle of attack for Reynolds number of 3.9×105 and 54% rise in aerodynamic performance was noted as Reynolds number was varied from 2.5×105 to 3.9×105. The morphed airfoil exhibited the nature of low Reynolds number airfoil.
Normalizations of High Taylor Reynolds Number Power Spectra
Puga, Alejandro; Koster, Timothy; Larue, John C.
2014-11-01
The velocity power spectrum provides insight in how the turbulent kinetic energy is transferred from larger to smaller scales. Wind tunnel experiments are conducted where high intensity turbulence is generated by means of an active turbulence grid modeled after Makita's 1991 design (Makita, 1991) as implemented by Mydlarski and Warhaft (M&W, 1998). The goal of this study is to document the evolution of the scaling region and assess the relative collapse of several proposed normalizations over a range of Rλ from 185 to 997. As predicted by Kolmogorov (1963), an asymptotic approach of the slope (n) of the inertial subrange to - 5 / 3 with increasing Rλ is observed. There are three velocity power spectrum normalizations as presented by Kolmogorov (1963), Von Karman and Howarth (1938) and George (1992). Results show that the Von Karman and Howarth normalization does not collapse the velocity power spectrum as well as the Kolmogorov and George normalizations. The Kolmogorov normalization does a good job of collapsing the velocity power spectrum in the normalized high wavenumber range of 0 . 0002 job in the normalized mid-wavenumber range of 15 University of California, Irvine Research Fund.
The large Reynolds number - Asymptotic theory of turbulent boundary layers.
Mellor, G. L.
1972-01-01
A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.
Reynolds Number, Compressibility, and Leading-Edge Bluntness Effects on Delta-Wing Aerodynamics
Luckring, James M.
2004-01-01
An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.
Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers
Balakumar, P.
2017-01-01
Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Re(sub c)=50 times10(exp 3) and 1times 10(exp 6). The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Reynolds number case consists of a long separation bubble near the leading-edge region and an attached boundary layer on the aft part of the airfoil. The shear layer that formed in the separated region persisted up to the end of the airfoil. The roles of the turbulent diffusion, advection, and dissipation terms in the turbulent kinetic-energy balance equation change as the boundary layer evolves over the airfoil. In the higher Reynolds number case, the leading-edge separation bubble is very small in length and in height. A fully developed turbulent boundary layer is observed in a short distance downstream of the reattachment point. The boundary layer velocity near the wall gradually decreases along the airfoil. Eventually, the boundary layer separates near the trailing edge. The Reynolds stresses peak in the outer part of the boundary layer and the maximum amplitude also gradually increases along the chord.
Do magnetic fields enhance turbulence at low magnetic Reynolds number?
Pothérat, Alban; Klein, Rico
2017-06-01
Imposing a magnetic field on a turbulent flow of electrically conducting fluid incurs the Joule effect. A current paradigm is that the corresponding dissipation increases with the intensity of the magnetic field and as a result turbulent fluctuations are all the more damped as the magnetic field is strong. While this idea finds apparent support in the phenomenology of decaying turbulence, measurements of turbulence in duct flows and other, more complex configurations have produced seemingly contradicting results. The root of the controversy is that magnetic fields promote sufficient scale-dependent anisotropy to profoundly reorganize the structure of turbulence, so their net effect cannot be understood in terms of the additional dissipation only. Here we show that when turbulence is forced in a magnetic field that acts on turbulence itself rather than on the mechanisms that generate it, the field promotes large, nearly two-dimensional structures capturing sufficient energy to offset the loss due to Joule dissipation, with the net effect of increasing the intensity of turbulent fluctuations. This change of paradigm potentially carries important consequences for systems as diverse as the liquid cores of planets, accretion disks, and a wide range of metallurgical and nuclear engineering applications.
Wave-Related Reynolds Number Parameterizations of CO2 and DMS Transfer Velocities
Brumer, Sophia E.; Zappa, Christopher J.; Blomquist, Byron W.; Fairall, Christopher W.; Cifuentes-Lorenzen, Alejandro; Edson, James B.; Brooks, Ian M.; Huebert, Barry J.
2017-10-01
Predicting future climate hinges on our understanding of and ability to quantify air-sea gas transfer. The latter relies on parameterizations of the gas transfer velocity k, which represents physical mass transfer mechanisms and is usually parameterized as a nonlinear function of wind forcing. In an attempt to reduce uncertainties in k, this study explores empirical parameterizations that incorporate both wind speed and sea state dependence via wave-wind and breaking Reynolds numbers, RH and RB. Analysis of concurrent eddy covariance gas transfer and measured wavefield statistics supplemented by wave model hindcasts shows for the first time that wave-related Reynolds numbers collapse four open ocean data sets that have a wind speed dependence of CO2 transfer velocity ranging from lower than quadratic to cubic. Wave-related Reynolds number and wind speed show comparable performance for parametrizing dimethyl sulfide (DMS) which, because of its higher solubility, is less affected by bubble-mediated exchange associated with wave breaking.
Time-dependent measurements over membrane plates at low Reynolds number
Hubner, James; Scott, Kyle; Timpe, Amory; Ukeiley, Lawrence
2010-11-01
A segment of low Reynolds number aerodynamic research employs biomimetics for optimization of airfoil shapes to micro air vehicle (MAV) flight. Many of these efforts focus on thin, flexible membrane airfoils inspired by small birds, bats and insects. This design approach, mimicking low Reynolds number flyers (Re wing, leading to both advantageous and disadvantageous effects. Identifying and quantifying the nature of the fluid-structure coupling and how this coupling can passively control the flow is the goal of a recently initiated research project by the authors. This talk will present the objectives of the project and initial findings of synchronized flow (hot-wire anemometry) and surface deflection (laser vibrometry) measurements over rigid plates and flexible membranes at incidence to the free stream flow. A range of flow Reynolds numbers are examined, from 10,000 to 50,000, in which vibration initiates and grow with increasing velocity.
Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow
Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi
2016-11-01
The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.
Chan, David T.; Brauckmann, Gregory J.
2011-01-01
A 6%-scale unpowered model of the Orion Launch Abort Vehicle (LAV) ALAS-11-rev3c configuration was tested in the NASA Langley National Transonic Facility to obtain static aerodynamic data at flight Reynolds numbers. Subsonic and transonic data were obtained for Mach numbers between 0.3 and 0.95 for angles of attack from -4 to +22 degrees and angles of sideslip from -10 to +10 degrees. Data were also obtained at various intermediate Reynolds numbers between 2.5 million and 45 million depending on Mach number in order to examine the effects of Reynolds number on the vehicle. Force and moment data were obtained using a 6-component strain gauge balance that operated both at warm temperatures (+120 . F) and cryogenic temperatures (-250 . F). Surface pressure data were obtained with electronically scanned pressure units housed in heated enclosures designed to survive cryogenic temperatures. Data obtained during the 3-week test entry were used to support development of the LAV aerodynamic database and to support computational fluid dynamics code validation. Furthermore, one of the outcomes of the test was the reduction of database uncertainty on axial force coefficient for the static unpowered LAV. This was accomplished as a result of good data repeatability throughout the test and because of decreased uncertainty on scaling wind tunnel data to flight.
COHERENT NONHELICAL SHEAR DYNAMOS DRIVEN BY MAGNETIC FLUCTUATIONS AT LOW REYNOLDS NUMBERS
Energy Technology Data Exchange (ETDEWEB)
Squire, J.; Bhattacharjee, A., E-mail: jsquire@caltech.edu [Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)
2015-11-01
Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire and Bhattacharjee—pertain to the “magnetic shear-current effect” as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis by enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. These illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism.
Aerodynamics of S809 Airfoil at Low and Transitional Reynolds Numbers
Carreras, Jaime J.; Laal-Dehghani, Nader; Gorumlu, Serdar; Mehdi, Faraz; Castillo, Luciano; Aksak, Burak; Sheng, Jian
2013-11-01
The S809 is a thick airfoil extensively used in wind turbine design applications and model studies in wind tunnel. With increased interests in reducing energy production cost and understanding turbulence and turbine interactions, scaled down models (Re ~103) are often used as an alternative to full scale field experimentation (Re >106). This Reynolds number discrepancy raises the issue of scaling for the airfoil performance from laboratory studies to field scale applications. To the best of our knowledge, there are no studies existing in literature to characterize the lift- and drag-coefficients of S809 airfoil at Re less than 3 ×105 . This study is to fill the deficit in the current state of knowledge by performing high resolution force measurements. The lift and drag measurements are carried out in Texas Tech Wind Tunnel Facility using an in-house developed dual-cell force balance. The configuration eliminates the large torque and torsion often accompanied by conventional mounts. This unique design allows us to reach a measurement accuracy of 0.02N (0.1%). Comparative studies are performed on a two-dimensional airfoil with a smooth- as well as a well-engineered surface covered by micro-pillar array to simulate the surface conditions of a real life airfoil.
Reconciling the Reynolds number dependence of scalar roughness length and laminar resistance
Li, Dan; Rigden, Angela; Salvucci, Guido; Liu, Heping
2017-04-01
The scalar roughness length and laminar resistance are necessary for computing scalar fluxes in numerical simulations and experimental studies. Their dependence on flow properties such as the Reynolds number remains controversial. In particular, two important power laws ("1/4" and "1/2"), both having strong theoretical foundations, have been widely used in various parameterizations and models. Building on a previously proposed phenomenological model for interactions between the viscous sublayer and the turbulent flow, it is shown here that the two scaling laws can be reconciled. The 1/4 power law corresponds to the situation where the vertical diffusion is balanced by the temporal change or advection due to a constant velocity in the viscous sublayer, while the 1/2 scaling corresponds to the situation where the vertical diffusion is balanced by the advection due to a linear velocity profile in the viscous sublayer. In addition, the recently proposed "1" power law scaling is also recovered, which corresponds to the situation where molecular diffusion dominates the scalar budget in the viscous sublayer. The formulation proposed here provides a unified framework for understanding the onset of these different scaling laws and offers a new perspective on how to evaluate them experimentally.
A NUMERICAL INVESTIGATION OF BUBBLES RISING AT INTERMEDIATE REYNOLDS AND LARGE WEBER NUMBERS
HOFFMANN, AC; VANDENBOGAARD, HA
The steady state rise of bubbles at intermediate Reynolds numbers and large Weber numbers has been investigated using finite element simulations. The velocity and stress fields are discussed. Near-constant normal stress profiles over a region around the bubble apex could be generated by optimizing
The effects of nozzle geometry on waterjet breakup at high Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Vahedi Tafreshi, H.; Pourdeyhimi, B. [Nonwovens Cooperative Research Center, North Carolina State University, NC 27695-8301, Raleigh (United States)
2003-10-01
Waterjet breakup is traditionally considered to follow the Ohnesorge classification. In this classification, high Reynolds number waterjets are considered to atomize quickly after discharge. By generating a constricted waterjet where the water flow stays detached all the way through the nozzle, we have observed the first wind-induced breakup mode at high Reynolds numbers. Such a peculiar behavior, however, was not observed in non-constricted waterjets. Our results indicate that, constricted jets do not follow the Ohnesorge classification, in contrast to the non-constricted waterjets. We discuss the impact of nozzle geometry on the characteristics of waterjets and support our discussion by numerical simulations. (orig.)
Investigation of CAST-10-2/DOA 2 airfoil in NAE high Reynolds number two-dimensional test facility
Chan, Y. Y.
1989-01-01
A common airfoil model with the CAST 10-2/DOA-2 profile and 228 mm (9 inches) chord length was tested. The tests performed in NAE covered the Mach numbers from 0.3 to 0.8 and Reynolds numbers from 10 to 30 million. The model was tested with transition free and with transition fixed at 5 percent chord for both the upper and the lower surfaces. The data obtained were analyzed for the effects of Reynolds number, transition fixing and Mach number. The role of the boundary layer on the displacement effect, the interaction with the shock wave and the trailing edge separation are examined. The results are summarized as follows: (1) the airfoil performance depends strongly on Reynolds number and transition fixing; (2) with transition fixed, the aerodynamic quantities such as lift, pitching moment and drag show a monotonic variation with Reynolds number; (3) with transition free, the aerodynamic quantities vary less regularly with Reynolds number and a slight parametric dependency is shown. The weak dependency is due to the compensatory effect of the forward shift of the transition position and the thinning of the turbulent boundary layer as Reynolds number increases; (4) the shock Mach number and the shock position are weakly dependent on Reynolds number; and (5) the long extent of the laminar boundary layer at transonic speeds reduces the drag appreciably at low Reynolds numbers. The drag bucket around the design Mach number can be observed below Reynolds number 15 million.
Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers
Goto, Susumu; Saito, Yuta; Kawahara, Genta
2017-06-01
To draw a precise picture of the hierarchy of coherent vortices in spatially periodic turbulence at high Reynolds numbers and to understand its generation mechanism, we conduct direct numerical simulations of turbulence in a periodic cube. By objectively identifying the axes of vortex tubes at various length scales in the inertial range, we quantitatively show that the sustained turbulence consists of a hierarchy of antiparallel pairs of vortex tubes. These vortex tubes are created by being stretched in strain fields around 2-8 times larger vortices, whereas they are weakened by strain around half-scale vortices. Temporal tracking of identified vortex tubes shows that they tend to form antiparallel pairs from the moment they are created. We examine three different external forces to show that the hierarchical structure of antiparallel vortex pairs is robust and its statistical features in inertial length scales are independent of the force. The turbulence that is sustained by steady forces is quasiperiodic in time and its significant temporal fluctuations are caused by successive creation of strong vortex tubes within the hierarchy.
Laboratory Study of Homogeneous and Isotropic Turbulence at High Reynolds Number
Pecenak, Zachary; Dou, Zhongwang; Yang, Fan; Cao, Lujie; Liang, Zach; Meng, Hui
2013-11-01
To study particle dynamics modified by isotropic turbulence at high Reynolds numbers and provide experimental data for DNS validation, we have developed a soccer-ball-shaped truncated icosahedron turbulence chamber with 20 adjoining hexagon surfaces, 12 pentagon surfaces and twenty symettrically displaced fans, which form an enclosed chamber of 1m diameter. We use Particle Image Velocimetry (PIV) technique to characterize the base turbulent flow, using different PIV set ups to capture various characteristic scales of turbulence. Results show that the stationary isotropic turbulence field is a spherical domain with diameter of 40 mm with quasi-zero mean velocities. The maximum rms velocity is ~1.5 m/s, corresponding to a Taylor microscale Re of 450. We extract from the PIV velocity field the whole set of turbulent flow parameters including: turbulent kinetic energy, turbulent intensity, kinetic energy dissipation rate, large eddy length and time scales, the Kolmogorov length, time and velocity scales, Taylor microscale and Re, which are critical to the study of inter-particle statistics modified by turbulence. This research is funded by an NSF grant CBET-0967407.
Measurement Invariance of the Reynolds Depression Adolescent Scale across Gender and Age
Fonseca-Pedrero, Eduardo; Wells, Craig; Paino, Mercedes; Lemos-Giraldez, Serafin; Villazon-Garcia, Ursula; Sierra, Susana; Garcia-Portilla Gonzalez, Ma Paz; Bobes, Julio; Muniz, Jose
2010-01-01
The main objective of the present study was to examine measurement invariance of the Reynolds Depression Adolescent Scale (RADS) (Reynolds, 1987) across gender and age in a representative sample of nonclinical adolescents. The sample was composed of 1,659 participants, 801 males (48.3%), with a mean age of 15.9 years (SD = 1.2). Confirmatory…
Apsilidis, Nikolaos; Raben, Sam; Diplas, Panayiotis; Dancey, Clinton; Vlachos, Pavlos; Khosronejad, Ali; Sotiropoulos, Fotis
2009-11-01
Turbulent flows past wall-mounted obstacles are dominated by dynamically rich, slowly evolving coherent structures producing most of the turbulence in the junction region. Numerical simulations [Paik et al., Phys. of Fluids 2007] elucidated the large-scale instabilities but important questions still remain unexplored. One such question is with regard to the effect of the Reynolds number on the dynamics of the turbulent horseshoe vortex (THV). We carry out high-resolution laboratory experiments for the flow past a wall mounted cylinder in a laboratory water tunnel for ReD= 26000, 48000 and 117000. We employ the Time-Resolved Particle Image Velocimetry technique to resolve the dynamics of the flow at the symmetry plane of the cylinder and analyze the instantaneous velocity fields using the Proper Orthogonal Decomposition technique. The experimental study is integrated with coherent-structure-resolving numerical simulations providing the first comprehensive investigation of Reynolds number effects on the dynamics of the THV.
Numerical simulation of 3D backward facing step flows at various Reynolds numbers
Directory of Open Access Journals (Sweden)
Louda Petr
2015-01-01
Full Text Available The work deals with the numerical simulation of 3D turbulent flow over backward facing step in a narrow channel. The mathematical model is based on the RANS equations with an explicit algebraic Reynolds stress model (EARSM. The numerical method uses implicit finite volume upwind discretization. While the eddy viscosity models fail in predicting complex 3D flows, the EARSM model is shown to provide results which agree well with experimental PIV data. The reference experimental data provide the 3D flow field. The simulations are compared with experiment for 3 values of Reynolds number.
High-Lift Low Reynolds Number Aerofoils With Specified Pressure Drop for Ducted Wind Turbine
Tang, J.; van Bussel, G.J.W.
2017-01-01
A new high-lift aerofoil modification for the duct has been developed and will be experimentally tested in a small wind tunnel. Aerofoils for such wind tunnel ducts typically operate in the low Reynolds number range from 2 × 105 to 6 × 105. The effect of a duct and of rotor on power and pressure
Gravitational sedimentation of cloud of solid spherical particles at small Reynolds numbers
Directory of Open Access Journals (Sweden)
Arkhipov Vladimir
2015-01-01
Full Text Available The experimental results of study of gravitational sedimentation of highly-concentrated systems of solid spherical particles at small Reynolds numbers Re<1 are presented. Empirical equation for drag coefficient of the particle assembly has been obtained. The influence of initial particle concentration in the cloud on its dynamics and velocity has been analysed.
Numerical study on the flow characteristics of micro air vehicle wings at low Reynolds numbers
Xiao, Tianhang; Li, Zhengzhou; Deng, S.; Ang, Haisong; Zhou, Xinchun
2016-01-01
The aerodynamic characteristics around a micro air vehicle wing with an inverse-Zimmerman configuration are numerically investigated by an in-house programmed solver particularly dedicated for aircrafts operating in low Reynolds number regime. The complex three-dimensional aerodynamic performance
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
Flanagan, Michael J.
1992-01-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
High Reynolds Number Micro-Bubble and Polymer Drag Reduction Experiments
2008-01-01
test model. Appendix A: Smooth-Flat-Plate Turbulent Boundary Layer Measurements at High Reynolds Number Ghanem F. Oweis’, Eric S. Winkel’, James M...a 15’-full-angle triangular wedge of 0.6- m length that was terminated at 25 mm thickness with 400 bevel angle. This asymmetric trailing edge design
Flow Control Methods and Their Applicability in Low-Reynolds-Number Centrifugal Compressors—A Review
Directory of Open Access Journals (Sweden)
Jonna Tiainen
2017-12-01
Full Text Available The decrease in the performance of centrifugal compressors operating at low Reynolds numbers (e.g., unmanned aerial vehicles at high altitudes or small turbomachines can reach 10% due to increased friction. The purposes of this review are to represent the state-of-the-art of the active and passive flow control methods used to improve performance and/or widen the operating range in numerous engineering applications, and to investigate their applicability in low-Reynolds-number centrifugal compressors. The applicable method should increase performance by reducing drag, increasing blade loading, or reducing tip leakage. Based on the aerodynamic and structural demands, passive methods like riblets, squealers, winglets and grooves could be beneficial; however, the drawbacks of these approaches are that their performance depends on the operating conditions and the effect might be negative at higher Reynolds numbers. The flow control method, which would reduce the boundary layer thickness and reduce wake, could have a beneficial impact on the performance of a low-Reynolds-number compressor in the entire operating range, but none of the methods represented in this review fully fulfil this objective.
A numerical study on effect of corner radius and Reynolds number ...
Indian Academy of Sciences (India)
The effects of the parameters such as Reynolds number and corner radius on the drag and laminar boundary layer have been studied for the first time. The results are shown in the form of drag coefficient, boundary layer and pressure coefficient on the cylinder surface. It is found that the boundary layer thickness and the ...
A comparison of time integration methods in an unsteady low-Reynolds-number flow
Majander, Petri; Siikonen, Timo
2002-06-01
This paper describes three different time integration methods for unsteady incompressible Navier-Stokes equations. Explicit Euler and fractional-step Adams-Bashford methods are compared with an implicit three-level method based on a steady-state SIMPLE method. The implicit solver employs a dual time stepping and an iteration within the time step. The spatial discretization is based on a co-located finite-volume technique. The influence of the convergence limits and the time-step size on the accuracy of the predictions are studied. The efficiency of the different solvers is compared in a vortex-shedding flow over a cylinder in the Reynolds number range of 100-1600. A high-Reynolds-number flow over a biconvex airfoil profile is also computed. The computations are performed in two dimensions. At the low-Reynolds-number range the explicit methods appear to be faster by a factor from 5 to 10. In the high-Reynolds-number case, the explicit Adams-Bashford method and the implicit method appear to be approximately equally fast while yielding similar results. Copyright
Aerodynamic Analysis of Open Trailing Edge Airfoils at Low Reynolds Number
Sant Palma, Rodolfo; Ayuso Moreno, Luis Manuel; Meseguer Ruiz, José
2011-01-01
A study has been made on the influence of the open trailing edge in airfoils used in different devices relating their aerodynamic performances. Wind tunnel tests have been made at different Reynolds numbers and angles of attack in order to show this effect. Besides, a quantitative study of the aerodynamic properties has been made based on the different trailing edge thickness
Wissocq, Gauthier; Gourdain, Nicolas; Malaspinas, Orestis; Eyssartier, Alexandre
2017-02-01
This paper reports the investigations done to adapt the Characteristic Boundary Conditions (CBC) to the Lattice-Boltzmann formalism for high Reynolds number applications. Three CBC formalisms are implemented and tested in an open source LBM code: the baseline local one-dimension inviscid (BL-LODI) approach, its extension including the effects of the transverse terms (CBC-2D) and a local streamline approach in which the problem is reformulated in the incident wave framework (LS-LODI). Then all implementations of the CBC methods are tested for a variety of test cases, ranging from canonical problems (such as 2D plane and spherical waves and 2D vortices) to a 2D NACA profile at high Reynolds number (Re =105), representative of aeronautic applications. The LS-LODI approach provides the best results for pure acoustics waves (plane and spherical waves). However, it is not well suited to the outflow of a convected vortex for which the CBC-2D associated with a relaxation on density and transverse waves provides the best results. As regards numerical stability, a regularized adaptation is necessary to simulate high Reynolds number flows. The so-called regularized FD (Finite Difference) adaptation, a modified regularized approach where the off-equilibrium part of the stress tensor is computed thanks to a finite difference scheme, is the only tested adaptation that can handle the high Reynolds computation.
Reynolds and swirl number effects on turbulent pipe flow in a 90 degree pipe bend
Kalpakli, Athanasia; Oerlue, Ramis; Alfredsson, P. Henrik
2011-11-01
Flows in pipe bends have been studied extensively over the last decades due to their occurrence both in the human respiratory and blood systems as well as in many technical applications. The centrifugal effect of the bend may give rise to Dean vortices and the behaviour of these has been of particular interest. While their motion has nicely been illustrated in laminar flows, the picture of their motion in turbulent flows remains rather blurred. Within the framework of the present work, fully developed turbulent pipe flow from a 100 diameter (D) long pipe is fed to a 90° bend and the flow field at 0 . 5 D downstream the bend has been studied by means of Time-Resolved Stereoscopic Particle Image Velocimetry, covering a Reynolds number range from 7000 to 34000 based on bulk velocity (Ub) and D. Additionally, a well defined swirl profile could be introduced by rotating the 100 D long straight pipe along its axis, yielding a variation in swirl number (S), defined as the ratio between the azimuthal velocity of the pipe wall and Ub, from 0 (the non-rotating case) to 1.2. The three-dimensional time-averaged and instantaneous flow field illustrating the symmetrical Dean vortices for S = 0 and the influence by the swirling motion for S ≠ 0 , the so-called ``swirl-switching phenomenon,'' as well as the large-scale structures will be presented and discussed.
Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators
Energy Technology Data Exchange (ETDEWEB)
Kearney-Fischer, M.; Kim, J.-H.; Samimy, M. [Department of Mechanical Engineering, Gas Dynamics and Turbulence Laboratory, Ohio State University (GDTL/OSU), 2300 West Case Road, Columbus, Ohio 43235-7531 (United States)
2009-09-15
The results of particle image velocimetry (PIV) measurements in a high subsonic, heated, jet forced using localized arc filament plasma actuators (LAFPAs) show that LAFPAs can consistently produce significant mixing enhancement over a wide range of temperatures. These actuators have been used successfully in high Reynolds number, high-speed unheated jets. The facility consists of an axisymmetric jet with different nozzle blocks of exit diameter of 2.54 cm and variable jet temperature in an anechoic chamber. The focus of this paper is on a high subsonic (M{sub j}=0.9) jet. Twelve experiments with various forcing azimuthal modes (m=0, 1, and {+-}1) and temperatures (T{sub o}/T{sub a}=1.0, 1.4, and 2.0) at a fixed forcing Strouhal number (St{sub DF}=0.3) have been conducted and PIV results compared with the baseline results to characterize the effectiveness of LAFPAs for mixing enhancement. Centerline velocity and turbulent kinetic energy as well as jet width are used for determining the LAFPAs' effectiveness. The characteristics of large-scale structures are analyzed through the use of Galilean streamlines and swirling strength. Across the range of temperatures collected, the effectiveness of LAFPAs improves as temperature increases. Possible reasons for the increase in effectiveness are discussed.
Dombrowski, Stefan C.; Mrazik, Martin
2008-01-01
In this article, the authors review the Reynolds Intellectual Assessment Scales (RIAS; Reynolds & Kamphaus, 2003), an individually administered test of intelligence for use with individuals between the ages of 3 and 94. The RIAS represents the newest intelligence test on the marketplace and incorporates the most current intelligence test theory…
Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor
Directory of Open Access Journals (Sweden)
Matsunuma Takayuki
2005-01-01
Full Text Available The unsteady flow field downstream of axial-flow turbine rotors at low Reynolds numbers was investigated experimentally using hot-wire probes. Reynolds number, based on rotor exit velocity and rotor chord length Re out,RT , was varied from 3.2× 10 4 to 12.8× 10 4 at intervals of 1.0× 10 4 by changing the flow velocity of the wind tunnel. The time-averaged and time-dependent distributions of velocity and turbulence intensity were analyzed to determine the effect of Reynolds number. The reduction of Reynolds number had a marked influence on the turbine flow field. The regions of high turbulence intensity due to the wake and the secondary vortices were increased dramatically with the decreasing Reynolds number. The periodic fluctuation of the flow due to rotor-stator interaction also increased with the decreasing Reynolds number. The energy-dissipation thickness of the rotor midspan wake at the low Reynolds number Re out,RT =3.2× 10 4 was 1.5 times larger than that at the high Reynolds number Re out,RT =12.8× 10 4 . The curve of the −0.2 power of the Reynolds number agreed with the measured energy-dissipation thickness at higher Reynolds numbers. However, the curve of the −0.4 power law fitted more closely than the curve of the −0.2 power law at lower Reynolds numbers below 6.4× 10 4 .
DNS of turbulence around a wing section at moderate Reynolds number
Schlatter, Philipp; Hosseini, Seyed M.; Vinuesa, Ricardo; Hanifi, Ardeshir; Henningson, Dan S.
2015-11-01
We present the results of a large-scale simulation of the turbulent flow around a NACA-4412 wing section. The achieved Reynolds number is Rec = 400000 based on the chord length (Reθ = 3000 based on momentum thickness), at angle of attack of 5 degrees. The fully resolved direct numerical simulation is performed using the spectral-element code Nek5000 with 3.2 billion grid points. After discussing details of the setup, e.g. boundary conditions and flow tripping at the leading edge, the focus is on the turbulent boundary layers under favorable and adverse pressure gradient developing along the wing surfaces. A first question to address is the definition of boundary-layer thickness in curved geometries. The adverse pressure gradients (APG) remain fairly constant β < 4 for the most part of the wing's upper side, only towards the trailing edge, incipient separation and much higher β are observed. The mean profiles show typical characteristics of APG boundary layers, to which we will compare in detail. A distinct outer peak in the fluctuations can be seen. These observations will be complemented with spectral views of the growing outer-layer influence. Furthermore, visualizations of the vortical structures will be shown, both on the wing, but also in the wake region.
DEFF Research Database (Denmark)
Skovgaard, M.; Nielsen, Peter V.
In this paper it is investigated if it is possible to simulate and capture some of the low Reynolds number effects numerically using time averaged momentum equations and a low Reynolds number k-f model. The test case is the larninar to turbulent transitional flow over a backward facing step...
Reynolds number influence on the formation of vortical structures on a pitching flat plate.
Widmann, Alexander; Tropea, Cameron
2017-02-06
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex-wall interaction.
Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM.
Directory of Open Access Journals (Sweden)
Mohammad Mehdi Rashidi
Full Text Available In the current article, a combination of the differential transform method (DTM and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N1, dimensionless axial magnetic force strength parameter (N2, dimensionless tangential magnetic force strength parameter (N3, and magnetic Reynolds number (Rem are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics.
Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM.
Rashidi, Mohammad Mehdi; Freidoonimehr, Navid; Momoniat, Ebrahim; Rostami, Behnam
2015-01-01
In the current article, a combination of the differential transform method (DTM) and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N1), dimensionless axial magnetic force strength parameter (N2), dimensionless tangential magnetic force strength parameter (N3), and magnetic Reynolds number (Rem) are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics.
Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers
2016-02-26
lift- generating mechanisms and relate flow structures to the unsteady forces generated by the wing, synchronized flow visualization, force measurements... generated at the leading edge to drain from the LEV into the tip vortex. At higher Reynolds numbers (Re = 8,000), periodically shedding vortices have been...controlled model motion. The motor assembly, shown in Figure 3(a), is mounted on the towing carriage and contains two brushless linear motors, and a
Computational Investigation of Unsteady Low-Reynolds Number Aerodynamics for Micro Air Vehicles
2007-03-01
amplitude and frequency, and Strouhal number are studied. For a symmetric plunging airfoil NACA0012 at zero geometric angle of attack and chord Reynolds...transition method.1 321 Particle tracking and Streakline integration Lai and Platzer visualized the wake structure of airfoil NACA0012 exerting plunging...interpolation. Results and Discussion 6 For demonstration purpose, we use the NACA0012 airfoil throughout this work. The readers should be aware that in real
Chua, John Christian; Lopez, Neil Stephen; Augusto, Gerardo
2017-11-01
Low Reynolds number aerodynamics has become a promising topic of interest in various commercial utilizations such as wind turbines. Airfoils employed for this type of application usually experience performance degradation due to separation bubble formation. This study intends to investigate the behavior and effect of such phenomena and analyze the interrelationship among the contributive factors affecting its existence using JMP, a statistical analysis tool, with numerical data generated from Xfoil, a collective program applicable for low-speed airfoils. Numerical results were validated against published experimental data and exhibited favorable agreement more specifically within the upper limits of the given Reynolds number range. Surface pressure and skin friction drag coefficient plots show that the bubble length tends to decrease as angle of attack, Reynolds number and turbulence intensity are increased. The abridgement of the bubble extent due to enhancement of flow instabilities is associated with increase lift-to-drag ratio which is more pronounced in the attached flow regions. The statistical technique yielded predictive models for multiple outcome variables and it was learned that the main effects had more significant influence on the aerodynamic properties of airfoils and chordwise extent of separation bubble.
Control of wing-tip vortex using winglets at low Reynolds number
Cho, Seunghyun; Choi, Haecheon
2014-11-01
Winglets are considered as one of the effective devices for reducing induced drag, and thus many studies have been conducted, but mainly at high Reynolds numbers (Re ~106 ~107) for commercial airplanes. However, small-size unmanned air vehicles (UAV), operating at low Reynolds numbers (Re aerodynamic performance of an UAV by varying the cant angle. The WASP UAV model is used and the Reynolds numbers considered are 110,000 ~ 140,000 based on the free stream velocity and mean chord length of the WASP wing. The lift and drag forces on UAV are measured, and PIV measurements are conducted at several cross-flow planes for a few different angles of attack (α) . At high angles of attack (7° ~13°) , the winglets with the cant angle of 70° increase the aerodynamic performance, whereas at low angles of attack (2° ~6°) , the wing-tip extension (cant angle of 0°) shows better performances. The velocity fields measured from PIV indicate that, with the winglet, the wing-tip vortex moves away from the wing surface at α =12° , and the downwash motion in the wake behind the trailing edge is decreased, reducing the magnitude of the induced drag. A concept of changing the cant angle during flight is also suggested at this talk. Supported by 2011-0028032.
Reynolds number effects on the single-mode Richtmyer-Meshkov instability
Walchli, B.; Thornber, B.
2017-01-01
The Reynolds number effects on the nonlinear growth rates of the Richtmyer-Meshkov instability are investigated using two-dimensional numerical simulations. A decrease in Reynolds number gives an increased time to reach nonlinear saturation, with Reynolds number effects only significant in the range ReSohn's model [S.-I. Sohn, Phys. Rev. E 80, 055302 (2009), 10.1103/PhysRevE.80.055302]. Predicted amplitudes show reasonable agreement with the existing theory of Carles and Popinet [P. Carles and S. Popinet, Phys. Fluids Lett. 13, 1833 (2001), 10.1063/1.1377863; Eur. J. Mech. B 21, 511 (2002), 10.1016/S0997-7546(02)01199-8] and Mikaelian [K. O. Mikaelian, Phys. Rev. E 47, 375 (1993), 10.1103/PhysRevE.47.375; K. O. Mikaelian, Phys. Rev. E 87, 031003 (2013), 10.1103/PhysRevE.87.031003], with the former being the closest match to the current computations.
Ling, Hangjian; Katz, Joseph; Fu, Matthew; Hultmark, Marcus
2017-12-01
law relation, S hΘ 0=0.47 ReΘ0 0.77 , is obtained for the turbulent flow regime using the smooth wall momentum thickness for calculating the Sherwood (S hΘ 0 ) and Reynolds (R eΘ 0 ) numbers. This relation agrees with published diffusion rates for smooth wall turbulent boundary layers. However, the mass diffusion rate is lower than this prediction in the transitional boundary layer. When S hΘ 0 is plotted against the friction Reynolds number (R eτ 0 ) instead, both the transitional and turbulent boundary layer results collapse onto a single power law, S hΘ 0=0.34 Reτ0 0.913 . This trend suggests that turbulent diffusion and wall friction are correlated. The relation between Sherwood number and momentum thickness Reynolds number persists if length scales of the Wenzel state are used instead of those of the smooth wall. However, trends with the friction Reynolds number change slightly.
Mortazavi, Milad; Mani, Ali
2015-11-01
Air entrainment in breaking waves is a ubiquitous and complex phenomenon. It is the main source of air transfer from atmosphere to the oceans. Furthermore, air entrainment due to ship-induced waves contributes to bubbly flows in ship wakes and also affect their performance. In this study, we consider a turbulent hydraulic jump as a canonical setting to investigate air entrainment due to turbulence-wave interactions. The flow has an inlet Froude number of 2.0, while three different Weber numbers (We = 1820, 729, 292), and two different Reynolds numbers (Re = 11000, 5500) based on the inlet height and inlet velocity are investigated. Air entrainment is shown to be very sensitive to the We number, while Re number has a minor effect. Wave breaking and interface collisions are significantly reduced in the low Weber number cases. As a result, micro-bubble generation is significantly reduced with decreasing Weber number. Vortex shedding events are observed to emerge at the toe of the jump in all of the cases. For high Weber number regimes, shedding of vortices is accompanied by engulfment of air pockets into the jump in a periodic manner, while for lower Webber number regimes such events are significantly suppressed. Reynolds number is shown to have a negligible effect on the air entrainment, wave breaking and micro-bubble generation, contrary to the previous assumptions in other studies. Supported by ONR.
Theory of viscous transonic flow over airfoils at high Reynolds number
Melnik, R. E.; Chow, R.; Mead, H. R.
1977-01-01
This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.
Chitta, Varun
Lifting surfaces of unmanned aerial vehicles (UAV) are often operated in low Reynolds number (Re) ranges, wherein the transition of boundary layer from laminar-to-turbulent plays a more significant role than in high-Re aerodynamics applications. This poses a challenge for traditional computational fluid dynamics (CFD) simulations, since typical modeling approaches assume either fully laminar or fully turbulent flow. In particular, the boundary layer state must be accurately predicted to successfully determine the separation behavior which significantly influences the aerodynamic characteristics of the airfoil. Reynolds-averaged Navier-Stokes (RANS) based CFD simulations of an elliptic airfoil are performed for time-varying angles of attack, and results are used to elucidate relevant flow physics and aerodynamic data for an elliptic airfoil under realistic operating conditions. Results are also used to evaluate the performance of several different RANS-based turbulence modeling approaches for this class of flowfield.
Abu Rowin, W.; Hou, J.; Ghaemi, S.
2017-09-01
The inner and outer layers of a turbulent channel flow over a superhydrophobic surface (SHS) are characterized using simultaneous long-range microscopic particle tracking velocimetry (micro-PTV) and particle image velocimetry, respectively. The channel flow is operated at a low Reynolds number of ReH = 4400 (based on full channel height and 0.174 m/s bulk velocity), equivalent to Reτ = 140 (based on half channel height and friction velocity). The SHS is produced by spray coating, and the root-mean-square of wall roughness normalized by wall-unit is k+rms = 0.11. The micro-PTV shows 0.023 m/s slip velocity over the SHS (about 13% of the bulk velocity), which corresponds to a slip-length of ˜200 μm. A drag reduction of ˜19% based on the slope of the linear viscous sublayer and 22% based on an analytical expression of Rastegari and Akhavan [J. Fluid Mech. 773, R4 (2015)] realized. The reduced Reτ over the SHS based on the corresponding friction velocity is ˜125, which is in the lower limit of a turbulence regime. The results show the increase of streamwise Reynolds stresses for the SHS in the linear viscous sublayer due to the slip boundary condition. The peak does not change in magnitude while it is displaced closer to the wall in physical distance. The wall-normal Reynolds stress over the SHS and smooth surface is observed to overlap near the wall at y+ for the SHS is smaller further away from the wall in physical dimensions. At y+ = 30, is 30% smaller for the SHS. A small increase of Reynolds shear stress for the SHS is observed at y+ friction velocity, the non-dimensional stresses show a large increase of and a small increase of over the SHS at y+ 20, the scaling of Reynolds stresses based on the corresponding uτ results in their overlap for the smooth and SHSs. The drag reduction is mainly associated with the reduction of viscous wall-shear stress, while the variation in Reynolds shear stress at the wall is negligible. The quadrant analysis of turbulent
Swimming at low Reynolds number in fluids with odd, or Hall, viscosity.
Lapa, Matthew F; Hughes, Taylor L
2014-04-01
We apply the geometric theory of swimming at low Reynolds number to the study of nearly circular swimmers in two-dimensional fluids with nonvanishing "odd," or Hall, viscosity. The odd viscosity gives an off-diagonal contribution to the fluid stress tensor, which results in a number of striking effects. In particular, we find that a swimmer whose area is changing will experience a torque proportional to the rate of change of the area, with the constant of proportionality given by the coefficient ηo of odd viscosity. After working out the general theory of swimming in fluids with odd viscosity for a class of simple swimmers, we give a number of example swimming strokes which clearly demonstrate the differences between swimming in a fluid with conventional viscosity and a fluid which also has an odd viscosity. We also include a discussion of the extension of the famous Scallop theorem of low Reynolds number swimming to the case where the fluid has a nonzero odd viscosity. A number of more technical results, including a proof of the torque-area relation for swimmers of more general shape, are explained in a set of Appendixes.
Stochastic representation of the Reynolds transport theorem: revisiting large-scale modeling
Harouna, S Kadri
2016-01-01
We explore the potential of a formulation of the Navier-Stokes equations incorporating a random description of the small-scale velocity component. This model, established from a version of the Reynolds transport theorem adapted to a stochastic representation of the flow, gives rise to a large-scale description of the flow dynamics in which emerges an anisotropic subgrid tensor, reminiscent to the Reynolds stress tensor, together with a drift correction due to an inhomogeneous turbulence. The corresponding subgrid model, which depends on the small scales velocity variance, generalizes the Boussinesq eddy viscosity assumption. However, it is not anymore obtained from an analogy with molecular dissipation but ensues rigorously from the random modeling of the flow. This principle allows us to propose several subgrid models defined directly on the resolved flow component. We assess and compare numerically those models on a standard Green-Taylor vortex flow at Reynolds 1600. The numerical simulations, carried out w...
Flowing of supersonic underexpanded micro-jets in the range of moderate Reynolds numbers
Mironov, S. G.; Aniskin, V. M.; Maslov, A. A.
2017-10-01
The paper presents new experimental results on the simulation of supersonic underexpanded micro-jets by macro-jet in the range of moderate Reynolds numbers of air outflow from the nozzle. A correlation is shown between the variations in the Pitot pressure in the model micro-jet with variations in the length of the supersonic core of real the micro-jets. The results of experiments on the effect of humidity on the pulsation of mass flow rate in a micro-jet are presented.
Kilgore, R. A.; Dress, D. A.
1984-01-01
During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.
Directory of Open Access Journals (Sweden)
Peter Bachant
2016-01-01
Full Text Available Experiments were performed with a large laboratory-scale high solidity cross-flow turbine to investigate Reynolds number effects on performance and wake characteristics and to establish scale thresholds for physical and numerical modeling of individual devices and arrays. It was demonstrated that the performance of the cross-flow turbine becomes essentially R e -independent at a Reynolds number based on the rotor diameter R e D ≈ 10 6 or an approximate average Reynolds number based on the blade chord length R e c ≈ 2 × 10 5 . A simple model that calculates the peak torque coefficient from static foil data and cross-flow turbine kinematics was shown to be a reasonable predictor for Reynolds number dependence of an actual cross-flow turbine operating under dynamic conditions. Mean velocity and turbulence measurements in the near-wake showed subtle differences over the range of R e investigated. However, when transport terms for the streamwise momentum and mean kinetic energy were calculated, a similar R e threshold was revealed. These results imply that physical model studies of cross-flow turbines should achieve R e D ∼ 10 6 to properly approximate both the performance and wake dynamics of full-scale devices and arrays.
Effect of Fin Porosity on Wake Geometry for Flapping Fins at Intermediate Reynolds Number
Chen, J.; Xia, B.; Krueger, P. S.
2017-11-01
Low aspect ratio flapping fins generate interesting 3-dimensional flow structures as has been observed, for example, in studies of fish swimming. As the Reynolds number is reduced, the exact geometry of the fin is less important and even certain amounts of porosity might be allowed without significantly affecting propulsive performance. These effects are investigated experimentally using flapping rectangular fins of aspect ratio 2 at Reynolds numbers in the range 100 - 1000. The experiments were conducted using a water tunnel to supply the free stream flow and the fin flapping parameters were set to provide a Strouhal number (based on amplitude of the fin tip motion) in the range 0.15 - 0.35. Phase-averaged measurements were made of the 3-dimensional, volumetric flow field, allowing visualization of the typical shed vortex structure behind the fin and calculation of time averaged thrust and propulsive efficiency. Results comparing the flow structure in the fin wake and the resulting propulsive performance will be presented for several fins with different planform porosities where the porosities are set using arrays of holes in the fins. This material is based on the work supported by the National Science Foundation under Grant No. 1510707.
Dynamics and Energetics of Deformable Evaporating Droplets at Intermediate Reynolds Numbers.
Haywood, Ross Jeffrey
The behaviour of vaporizing droplets, representative of droplets present in hydrocarbon fuel sprays, has been investigated. A finite volume numerical model using a non-orthogonal, adaptive grid has been developed to examine both steady deformed and transient deforming droplet behaviour. Computations are made of the shapes of, and the velocity, pressure, temperature and concentration fields around and within n-heptane droplets evaporating in high temperature air environments at intermediate Reynolds and Weber numbers (10 correlations of Nusselt and Sherwood numbers (Renksizbulut and Yuen (1983), Haywood et al. (1989), and Renksizbulut et al. (1991)) for spherical droplets are in good agreement with the numerical results. Providing they are based on actual frontal area, the computed drag coefficients are also reasonably well predicted by the existing quasi-steady drag correlation (Haywood et al. (1989), Renksizbulut and Yuen (1983)). A new correlation is developed for the total drag coefficient of quasi-steady deformed vaporizing droplets. The computed transient histories of droplets injected with an initial Reynolds number of 100 into 1000 K air at 1 and 10 atmospheres ambient pressure show strongly damped initial oscillations at frequencies within 25 percent of the theoretical natural frequency of Lamb (1932). Gas phase shear induced circulation within the droplets is responsible for the observed strong damping and promotes the formation of prolate shapes. The computed rates of heat and mass transfer of transient deforming drops are well predicted by the quasi-steady correlations indicated above.
Compressibility effects on flat-plates with serrated leading-edges at a low Reynolds number
Mangeol, Étienne; Ishiwaki, Daichi; Wallisky, Nicolas; Asai, Keisuke; Nonomura, Taku
2017-11-01
This study evaluates the influence of a serrated leading edge on flat-plate aerodynamics at low-Reynolds-number and subsonic high-Mach-number conditions. Forces are measured for a Mach number ranging from 0.2 to 0.64 at a Reynolds number of (12,000 ± 1000). Pressure distributions are obtained under the same conditions using pressure sensitive paint (PSP) measurement. Three models are tested: a flat plate without serrations used as the baseline case and two flat plates with serrated leading edges of different wavelength-to-amplitude ratios. Results show that the aerodynamic performance of flat plates with serrations is slightly changed from the baseline case. The plate with short-wavelength serrations underperforms in terms of the lift-to-drag ratio under all the conditions compared to the baseline case while the plate with large-wavelength serrations slightly outperforms it at around the stall angle. The Mach number has little effect on the attached flow while the lift increases with the Mach number under deep stall conditions. Serrations maintain the lift even under high angle of attack conditions when Mach number varies. The two-dimensional pressure distributions and the analyses of local chordwise pressure coefficient distributions at different spanwise locations and of periodicity of spanwise pressure coefficients allow categorisation of the complex flow structures into three types. These configurations feature different types of low pressure regions downstream of troughs. The periodicity of the pattern depends not only on the angle of attack but also on the Mach number.
National Research Council Canada - National Science Library
Racisz, Stanley
1952-01-01
An investigation has been made in the Langley low-turbulence pressure tunnel to determine the effects of Mach number and Reynolds number on the maximum-lift characteristics of the NACA 65-006, 64-009...
Transport coefficients for the shear dynamo problem at small Reynolds numbers.
Singh, Nishant K; Sridhar, S
2011-05-01
We build on the formulation developed in S. Sridhar and N. K. Singh [J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients α(il) and η(il) are derived. We prove that when the velocity field is nonhelical, the transport coefficient α(il) vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X(3) and time τ; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Rädler, M. Rheinhardt, and P. J. Käpylä [Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor η(il)(τ). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter. © 2011 American Physical Society
Maximizing propulsive thrust of a driven filament at low Reynolds number via variable flexibility.
Peng, Zhiwei; Elfring, Gwynn J; Pak, On Shun
2017-03-22
At low Reynolds numbers the locomotive capability of a body can be dramatically hindered by the absence of inertia. In this work, we show how propulsive performance in this regime can be significantly enhanced by employing spatially varying flexibility. As a prototypical example, we consider the propulsive thrust generated by a filament periodically driven at one end. The rigid case leads to zero propulsion, as so constrained by Purcell's scallop theorem, while for uniform filaments there exists a bending stiffness maximizing the propulsive force at a given frequency; here we demonstrate explicitly how considerable further improvement can be achieved by simply varying the stiffness along the filament. The optimal flexibility distribution is strongly configuration-dependent: while increasing the flexibility towards the tail-end enhances the propulsion of a clamped filament, for a hinged filament decreasing the flexibility towards the tail-end is instead favorable. The results reveal new design principles for maximizing propulsion at low Reynolds numbers, potentially useful for developing synthetic micro-swimmers requiring large propulsive force for various biomedical applications.
Finite volume simulation of 2-D steady square lid driven cavity flow at high reynolds numbers
Directory of Open Access Journals (Sweden)
K. Yapici
2013-12-01
Full Text Available In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform staggered grid arrangement of 768x768 is employed to discretize the flow geometry. Algebraic forms of the coupled flow equations are then solved through the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation algorithm. The outlined computational methodology allows one to meet the main objective of this work, which is to address the computational convergence and wiggled flow problems encountered at high Reynolds and Peclet (Pe numbers. Furthermore, after Re > 25000 additional vortexes appear at the bottom left and right corners that have not been observed in earlier studies.
An Experimental Comparison Between Flexible and Rigid Airfoils at Low Reynolds Numbers
Uzodinma, Jaylon; Macphee, David
2017-11-01
This study uses experimental and computational research methods to compare the aerodynamic performance of rigid and flexible airfoils at a low Reynolds number throughout varying angles of attack. This research can be used to improve the design of small wind turbines, micro-aerial vehicles, and any other devices that operate at low Reynolds numbers. Experimental testing was conducted in the University of Alabama's low-speed wind tunnel, and computational testing was conducted using the open-source CFD code OpenFOAM. For experimental testing, polyurethane-based (rigid) airfoils and silicone-based (flexible) airfoils were constructed using acrylic molds for NACA 0012 and NACA 2412 airfoil profiles. Computer models of the previously-specified airfoils were also created for a computational analysis. Both experimental and computational data were analyzed to examine the critical angles of attack, the lift and drag coefficients, and the occurrence of laminar boundary separation for each airfoil. Moreover, the computational simulations were used to examine the resulting flow fields, in order to provide possible explanations for the aerodynamic performances of each airfoil type. EEC 1659710.
Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg
2015-09-01
In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.
Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe
2014-01-01
Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.
Wave Characteristics of Falling Film on Inclination Plate at Moderate Reynolds Number
Directory of Open Access Journals (Sweden)
Chuan Lu
2016-01-01
Full Text Available Falling water film on an inclined plane is studied by shadowgraphy. The ranges of inclination angle and the film Reynolds number are, respectively, up to 21° and 60. Water is used as working fluid. The scenario of wave regime evolution is identified as three distinctive regimes, namely, initial quiescent smooth film flow, two-dimensional regular solitary wave pattern riding on film flow, and three-dimensional irregular wave pattern. Three characteristic parameters of two-dimensional solitary wave pattern, namely, inception length, primary pulse spacing, and propagation velocity, are examined, which are significant in engineering applications for estimation of heat and mass transfer on film flow. The present experimental data are well in agreement with the Koizumi correlations, the deviation from which is limited to 20% and 15%, respectively, for primary pulse spacing and propagation velocity. Through the scrutiny of the present experimental observation, it is concluded that wave evolution on film flow at the moderate Reynolds number is controlled by gravity and drag and the Rayleigh-Taylor instability that occurred on the steep front of primary pulse triggers the disintegration of continuous two-dimensional regular solitary wave pattern into three-dimensional irregular wave pattern.
Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar
2017-07-01
Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.
Meyers, Johan; Meneveau, Charles; Geurts, Bernard J.
2010-12-01
A suite of large-eddy simulations (LESs) of decaying homogeneous isotropic turbulence at high Reynolds numbers is performed and compared to wind-tunnel experiments in the tradition of Comte-Bellot and Corrsin. The error-landscape approach is used for the evaluation of the Smagorinsky model, and the results are used to identify an optimal combination of model parameter and resolution in a statistically robust fashion. The use of experimental reference data in the error-landscape approach allows to evaluate the optimal Smagorinsky coefficient at high Reynolds numbers and to perform detailed comparisons with analytical predictions. We demonstrate, using a pseudospectral discretization, that the optimal so-called Smagorinsky trajectory obtained from the error-landscape analysis converges at high simulation resolutions to the high-Re theoretical Lilly prediction for the Smagorinsky coefficient. Using modified wavenumbers in the same spectral code, the current study also presents error-landscape results based on LES with "second-order" discretization errors. By slightly revising Lilly's analysis, we show that including the effect of numerical discretization when evaluating the strain-rate tensor needed in the subgrid-scale model leads to a good prediction of the optimal Smagorinsky parameter obtained from the corresponding error-landscape. Using similar analytical tools, we further demonstrate that the dynamic procedure can also be adapted to better account for the effects of discretization and test-filter shape.
Ma, Wenyong; Liu, Qingkuan; Du, Xiaoqing; Liu, Xiaobing
2017-08-01
The mechanism of large-amplitude aeroelastic vibrations of cylindrical bodies in the critical Reynolds number range are still unclear. This study concerns the aerodynamic forces acting on elliptical cylinders and the induced galloping instability resulting from skew flows (i.e., the direction of the flow is angled 0°-45° with respect to the central axis of the cylinder) for Reynolds numbers in the range of 37-235 k. The effects of the critical Reynolds number and the skew angle on the aerodynamic forces and the galloping instability are investigated with pressure wind tunnel tests. In all of the cases investigated in the present study, a sharp decrease in the lift coefficient with increasing angle of attack and a reduction in the drag coefficient at the critical Reynolds number could be responsible for the galloping instability. Variations in the torque coefficient leads to a torsional aerodynamic instability at the critical Reynolds number. Furthermore, the skew flow cause a critical flow state at lower Reynolds numbers. One possible reason for this behavior is that the longer effective cross section allows the flow to reattach.
Energy Technology Data Exchange (ETDEWEB)
Choi, Min Suk; Baek, Je Hyun [Pohang University of Science and Technology, Pohang (Korea, Republic of); Chung, Hee Taeg [Gyeongsang National University, Jinju (Korea, Republic of); Oh, Seong Hwan; Ko, Han Young [Agency for Defense Development, Daejeon (Korea, Republic of)
2008-02-15
A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density because it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise was diminished by the separation on the suction surface with full span and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 85% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as the profile loss, the tip leakage loss and the endwall loss using Denton's loss model, and the effects of the low Reynolds number on the performance were analyzed in detail.
Steffen, C. J., Jr.
1993-01-01
Turbulent backward-facing step flow was examined using four low turbulent Reynolds number k-epsilon models and one standard high Reynolds number technique. A tunnel configuration of 1:9 (step height: exit tunnel height) was used. The models tested include: the original Jones and Launder; Chien; Launder and Sharma; and the recent Shih and Lumley formulation. The experimental reference of Driver and Seegmiller was used to make detailed comparisons between reattachment length, velocity, pressure, turbulent kinetic energy, Reynolds shear stress, and skin friction predictions. The results indicated that the use of a wall function for the standard k-epsilon technique did not reduce the calculation accuracy for this separated flow when compared to the low turbulent Reynolds number techniques.
2009-01-01
natural transition production term Re = Reynolds number based on axial chord 1...turbine. As aircraft altitude increases, the operational Reynolds number decreases due to the change in density. The low Reynolds number causes the...cooling and a flat plate with pressure distribution similar to an axial compressor undergoing passing wakes by Walters and Leylek 10,11 . The intent of
TR-PIV measurement of the wake behind a grooved cylinder at low Reynolds number
Liu, Ying Zheng; Shi, Liu Liu; Yu, Jun
2011-04-01
A comparative study of the wakes behind cylinders with grooved and smooth surfaces was performed with a view to understand the wake characteristics associated with the adult Saguaro cacti. A low-speed recirculation water channel was established for the experiment; the Reynolds number, based on the free-stream velocity and cylinder diameter (D), was kept at ReD=1500. State-of-the-art time-resolved particle image velocimetry (TR-PIV) was employed to measure a total of 20 480 realizations of the wake field at a frame rate of 250 Hz, enabling a comprehensive view of the time- and phase-averaged wake pattern. In comparison to the wake behind the smooth cylinder, the length of the recirculation zone behind the grooved cylinder was extended by nearly 18.2%, yet the longitudinal velocity fluctuation intensity was considerably weakened. A global view of the peaked spectrum of the longitudinal velocity component revealed that the intermediate region for the grooved cylinder, which approximately corresponds to the transition region where the shear layer vortices interact, merge and shed before the formation of the Karman-like vortex street, was much wider than that for the smooth one. The unsteady events near St=0.3-0.4 were detected in the intermediate region behind the grooved cylinder, but no such events were found in the smooth cylinder system. Although the formation of the Karman-like vortex street was delayed by about 0.6D downstream for the grooved cylinder, no prominent difference in the vortex street region was found in the far wake for both cylinders. The Proper Orthogonal Decomposition (POD) method was used extensively to decompose the vector and swirling strength fields, which gave a close-up view of the vortices in the near wake. The first two POD modes of the swirling strength clarified the spatio-temporal characteristics of the shear layer vortices behind the grooved cylinder. The small-scale vortices superimposed on the shear layers behind the grooved cylinder
Factorial Validity of the Reynolds Intellectual Assessment Scales for Referred Students
Beaujean, A. Alexander; McGlaughlin, Sean M.; Margulies, Allison S.
2009-01-01
The Reynolds Intellectual Assessment Scales (RIAS) is a recently developed, individually administered psychometric instrument designed to measure general cognitive ability, as well as verbal (crystallized) intelligence, nonverbal (fluid) intelligence, and memory. Test reviewers have recommended the use of the RIAS despite the fact that, although…
Reynolds Number Scaling and Parameterization of Stratified Turbulent Wakes
2017-04-17
left panel. The drifts in the mean orbital position are so small that orbits from five periods effectively overlap into one closed trajectory ...simulations into three broader categories, based on the observed particle orbits within the reflection region (Figures 2 to 4). Type-A trajectories ...velocity linked to the residual displacement of a particle after it has completed one full cycle of its orbit over one wave period. The Stokes drift
Purdy, K. R.; Ventrice, M. B.; Fang, J.
1972-01-01
Analytical and experimental studies were initiated to determine if the response of a constant temperature hot wire anemometer to acoustic oscillations could serve as an analog to the response of the drop vaporization burning rate process to acoustic oscillations, and, perhaps, also as an analog to any Reynolds number dependent process. The motivation behind this study was a recent analytical study which showed that distorted acoustic oscillations could amplify the open-loop response of vaporization limited combustion. This type of amplification may be the cause of unstable combustion in liquid propellant rocket engines. The analytical results obtained for the constant temperature anemometer are similar in nature to those previously obtained for vaporization limited combustion and indicate that the response is dependent on the amount and type of distortion as well as other factors, such as sound pressure level, Mach number and hot wire temperature. Preliminary results indicate qualitative agreement between theory and experiment.
Analysis of compressible light dynamic stall flow at transitional Reynolds numbers
DEFF Research Database (Denmark)
Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.
1996-01-01
-order-accurate scheme for the numerical integration. Remarkably good agreement with experiments is obtained in steady flow for the pressure and velocity distributions near the leading edge. Oscillatory airfoil how results compare favorably on the upstroke, but on the downstroke, the computations do not predict......Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... bubble points to the role of transition in influencing the flow development. Its modeling, including the changes in transition onset location and transition length with increase in airfoil angle of attack, is critical for computing the dynamic stall flow properly. In this study, the transition onset...
Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
Levy, David-Elie; Seifert, Avraham
2010-10-21
Aerodynamic study of a simplified Dragonfly airfoil in gliding flight at Reynolds numbers below 10,000 is motivated by both pure scientific interest and technological applications. At these Reynolds numbers, the natural insect flight could provide inspiration for technology development of Micro UAV's and more. Insect wings are typically characterized by corrugated airfoils. The present study follows a fundamental flow physics study (Levy and Seifert, 2009), that revealed the importance of flow separation from the first corrugation, the roll-up of the separated shear layer to discrete vortices and their role in promoting flow reattachment to the aft arc, as the leading mechanism enabling high-lift, low drag performance of the Dragonfly gliding flight. This paper describes the effect of systematic airfoil geometry variations on the aerodynamic properties of a simplified Dragonfly airfoil at Reynolds number of 6000. The parameter study includes a detailed analysis of small variations of the nominal geometry, such as corrugation placement or height, rear arc and trailing edge shape. Numerical simulations using the 2D laminar Navier-Stokes equations revealed that the flow accelerating over the first corrugation slope is followed by an unsteady pressure recovery, combined with vortex shedding. The latter allows the reattachment of the flow over the rear arc. Also, the drag values are directly linked to the vortices' magnitude. This parametric study shows that geometric variations which reduce the vortices' amplitude, as reduction of the rear cavity depth or the reduction of the rear arc and trailing edge curvature, will reduce the drag values. Other changes will extend the flow reattachment over the rear arc for a larger mean lift coefficients range; such as the negative deflection of the forward flat plate. These changes consequently reduce the drag values at higher mean lift coefficients. The detailed geometry study enabled the definition of a corrugated airfoil
Fuller, Nathaniel J
2016-01-01
Obtaining a detailed understanding of the physical interactions between a cell and its environment often requires information about the flow of fluid surrounding the cell. Cells must be able to effectively absorb and discard material in order to survive. Strategies for nutrient acquisition and toxin disposal, which have been evolutionarily selected for their efficacy, should reflect knowledge of the physics underlying this mass transport problem. Motivated by these considerations, in this paper we consider a two-dimensional advection-diffusion problem at small Reynolds number and large P\\'eclet number. We discuss the problem of mass transport for a circular cell in a uniform far-field flow. We approach the problem numerically, and also analytically through a rescaling of the concentration boundary layer. A biophysically motivated first-passage problem for the absorption of material by the cell demonstrates quantitative agreement between the numerical and analytical approaches.
Directory of Open Access Journals (Sweden)
Haiqing Si
2015-03-01
Full Text Available Lattice Boltzmann method combined with large eddy simulation is developed in the article to simulate fluid flow at high Reynolds numbers. A subgrid model is used as a large eddy simulation model in the numerical simulation for high Reynolds flow. The idea of subgrid model is based on an assumption to include the physical effects that the unresolved motion has on the resolved fluid motion. It takes a simple form of eddy viscosity models for the Reynolds stress. Lift and drag evaluation in the lattice Boltzmann equation takes momentum-exchange method for curved body surface. First of all, the present numerical method is validated at low Reynolds numbers. Second, the developed lattice Boltzmann method/large eddy simulation method is performed to solve flow problems at high Reynolds numbers. Some detailed quantitative comparisons are implemented to show the effectiveness of the present method. It is demonstrated that lattice Boltzmann method combined with large eddy simulation model can efficiently simulate high Reynolds numbers’ flows.
Energy Technology Data Exchange (ETDEWEB)
Kawamura, T.; Nakao, T.; Takahashi, M.; Hayashi, M.; Goto, N. [Hitachi, Ltd., Tokyo (Japan)
1999-07-25
Vortex-induced vibrations were measured for a circular cylinder subjected to a water cross flow at supercritical Reynolds numbers for a wide range of reduced velocities. Turbulence intensities were changed from 1% to 13% in order to investigate the effect of the Strouhal number on the region of synchronization by symmetrical and Karman vortex shedding. The reduced damping of the test cylinder was about 0.1 in water. The surface roughness of the cylinder was a mirror-polished surface. Strouhal number decreased from about 0.48 to 0.29 with increasing turbulence intensity. Synchronized vibrations were observed even at supercritical Reynolds numbers where fluctuating fluid force was small. Reduced velocities at which drag and lift direction lock-in by Karman vortex shedding were initiated decreased with increasing Strouhal number. When Strouhal number was about 0.29, the self-excited vibration in drag direction by symmetrical vortex shedding began at which the frequency ratio of Karman vortex shedding frequency to the natural frequency of cylinder was 0.32. (author)
Efficient swimming of an assembly of rigid spheres at low Reynolds number
Felderhof, B U
2015-01-01
The swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent is studied in low Reynolds number hydrodynamics. The instantaneous swimming velocity and rate of dissipation are expressed in terms of the time-dependent displacements of sphere centers about their collective motion. For small amplitude swimming with periodically oscillating displacements, optimization of the mean swimming speed at given mean power leads to an eigenvalue problem involving a velocity matrix and a power matrix. The corresponding optimal stroke permits generalization to large amplitude motion in a model of spheres with harmonic interactions and corresponding actuating forces. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres. A model of three collinear spheres with motion along the common axis is studied as an example.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Luiz Antonio Alcantara [Federal University of Itajuba (UNIFEI), MG (Brazil). Inst. of Mechanical Engineering], E-mail: luizantp@unifei.edu.br; Hirata, Miguel Hiroo [State University of Rio de Janeiro (FAT/UERJ), Resende, RJ (Brazil). Fac. de Tecnologia], E-mail: hirata@fat.uerj.br
2010-07-01
Understanding vortex induced vibrations is of great importance in the design of a variety of offshore engineering structures, nuclear plant components and cylindrical elements in tube-bank heat exchangers, for example. If a body is placed in a flow, it experiences alternating lift and drag forces caused by the asymmetric formation of vortices, which can cause a structure to vibrate. One of the most interesting features of this flow is the phenomenon of lock-in which is observed when the vortex shedding frequency is close to the body oscillation frequency. This paper presents the results of numerical experiments on vortex shedding from a circular cylinder vibrating in-line or transversely with an incident uniform flow at Reynolds number of 1.0 x 10{sup 5}. The frequencies of the lift and drag coefficients are compared with the body motion frequency when the frequency ratio is about unity. (author)
Delgado, Joaquín.; González-García, José S.
2002-08-01
Swimming spherical shapes at low Reynolds number have been used as a model to describe locomotion of several microorganisms such as cyanobacteria. Other examples of biological interest include the motion of vesicles within eucaryotic cells which persists even in the absence of microtubules [Eur. J. Cell. Biol. 60 (1993) 217]. The role of tangential deformation has been pointed out as a reasonable mechanism for self-propulsion of shapes lacking appendages such as cilia or flagella [BMC Microbiol. 1 (1) (2001) 4] and even ranges of wave parameter values have been predicted consistently with its average speed [R. Proc. Natl. Acad. Sci. 93 (1996) 8340] in the case of Synechococcus. Here we re-evaluate the strategy of tangential deformations of a sphere as compared to radial ones in terms of their efficiencies. We confirm under this criterion of optimality that tangential waves are more efficient than radial waves at least within the same range of parameters.
2-D and 3-D CFD Investigation of NREL S826 Airfoil at Low Reynolds Numbers
Cakmakcioglu, S. C.; Sert, I. O.; Tugluk, O.; Sezer-Uzol, N.
2014-06-01
In this study CFD investigation of flow over the NREL S826 airfoil is performed. NREL S826 airfoil was designed for HAWTs of 10-15 meter diameters. However, it is used in the NTNU wind turbine rotor model and low Reynolds number flow characteristics become important in the validations with the test cases of this rotor model. The airfoil CFD simulations are carried out in 2-D and 3-D computational domains. The k-rn SST turbulence model with Langtry-Menter (γ-Reθ) transition prediction model for turbulence closure is used in the calculations. The Delayed DES is also performed in the stall region for comparisons. The results are compared with the available METUWIND experimental data, and are shown to be in fair agreement. It is observed that 3-D CFD analysis provides increased accuracy at increased computational cost.
Driving large magnetic Reynolds number flow in highly ionized, unmagnetized plasmas
Weisberg, D. B.; Peterson, E.; Milhone, J.; Endrizzi, D.; Cooper, C.; Désangles, V.; Khalzov, I.; Siller, R.; Forest, C. B.
2017-05-01
Electrically driven, unmagnetized plasma flows have been generated in the Madison plasma dynamo experiment with magnetic Reynolds numbers exceeding the predicted Rmcrit = 200 threshold for flow-driven MHD instability excitation. The plasma flow is driven using ten thermally emissive lanthanum hexaboride cathodes which generate a J ×B torque in helium and argon plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies are presented: edge-localized drive using the multi-cusp boundary field and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that the edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force, and measurements of velocity shear compare favorably to the Braginskii transport theory. Volumetric flow drive is shown to produce larger velocity shear and has the correct flow profile for studying the magnetorotational instability.
Felderhof, B U
2016-01-01
Swimming at small Reynolds number of a linear assembly of identical spheres immersed in a viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The swimming velocity is deduced from the momentum balance equation for the assembly of spheres, and the mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocity and the mean power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated in terms of prescribed periodic displacements. Explicit calculations are performed for a linear chain of three identical spheres.
On the motion of non-spherical particles at high Reynolds number
DEFF Research Database (Denmark)
Mandø, Matthias; Rosendahl, Lasse
2010-01-01
This paper contains a critical review of available methodology for dealing with the motion of non-spherical particles at higher Reynolds numbers in the Eulerian- Lagrangian methodology for dispersed flow. First, an account of the various attempts to classify the various shapes and the efforts...... towards finding a universal shape parameter is given and the details regarding the significant secondary motion associated with non-spherical particles are outlined. Most investigations concerning large non-spherical particles to date have been focused on finding appropriate correlations of the drag...... coefficient for specific shapes either by parameter variation or by using shape parameters. Particular emphasis is here placed on showing the incapability of one-dimensional shape parameters to predict the multifaceted secondary motion associated with non-spherical particles. To properly predict secondary...
Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations
DEFF Research Database (Denmark)
Jensen, Michael Vincent; Walther, Jens Honore
2010-01-01
Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary....... The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas...... density from the ideal gas law versus real gas data. In both cases the effect was found to be negligible....
DEFF Research Database (Denmark)
Jensen, Michael Vincent; Walther, Jens Honore
2013-01-01
Jet impingement heat transfer from a round gas jet to a flat wall was investigated numerically for a ratio of 2 between the jet inlet to wall distance and the jet inlet diameter. The influence of turbulence intensity at the jet inlet and choice of turbulence model on the wall heat transfer...... was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet...... was observed in the stagnation region, where the wall heat flux increased by a factor of almost 3 when increasing the turbulence intensity from 1.5% to 10%. The choice of turbulence model also influenced the heat transfer predictions significantly, especially in the stagnation region, where differences of up...
High Reynolds Number Effects on Multi-Hole Probes and Hot Wire Anemometers
Ramachandran, N.; Smith, A.; Gerry, G.; Kauffman, W.
1995-01-01
The paper reports on the results from an experimental investigation of the response of multi-hole and hot wire probes at high flow Reynolds numbers (Re approx. 10(exp 6)). The limited results available in literature for 5-hole probes are restricted to Re approx. 10(exp 4). The experiment aims to investigate the probe response (in terms of dimensionless pressure ratios, characterizing pitch, and yaw angles and the total and static pressures) at high Re values and to gauge their effect on the calculated velocity vector. Hot wire calibrations were also undertaken with a parametric variation of the flow pressure, velocity and temperature. Different correction and calibration schemes are sought to be tested against the acquired data set. The data is in the analysis stage at the present time. The test provided good benchmark quality data that can be used to test future calibration and testing methods.
Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
Herschlag, Gregory; Miller, Laura
2011-09-21
The Scallop theorem states that reciprocal methods of locomotion, such as jet propulsion or paddling, will not work in Stokes flow (Reynolds number=0). In nature the effective limit of jet propulsion is still in the range where inertial forces are significant. It appears that almost all animals that use jet propulsion swim at Reynolds numbers (Re) of about 5 or more. Juvenile squid and octopods hatch from the egg already swimming in this inertial regime. Juvenile jellyfish, or ephyrae, break off from polyps swimming at Re greater than 5. Many other organisms, such as scallops, rarely swim at Re less than 100. The limitations of jet propulsion at intermediate Re is explored here using the immersed boundary method to solve the 2D Navier-Stokes equations coupled to the motion of a simplified jellyfish. The contraction and expansion kinematics are prescribed, but the forward and backward swimming motions of the idealized jellyfish are emergent properties determined by the resulting fluid dynamics. Simulations are performed for both an oblate bell shape using a paddling mode of swimming and a prolate bell shape using jet propulsion. Average forward velocities and work put into the system are calculated for Re between 1 and 320. The results show that forward velocities rapidly decay with decreasing Re for all bell shapes when Reswimming velocities and vortex separation patterns for the model prolate agree with those observed in Nemopsis bachei. The forward swimming velocities of the model oblate jellyfish after two pulse cycles are comparable to those reported for Aurelia aurita, but discrepancies are observed in the vortex dynamics between when the 2D model oblate jellyfish and the organism. This discrepancy is likely due to a combination of the differences between the 3D reality of the jellyfish and the 2D simplification, as well as the rigidity of the time varying geometry imposed by the idealized model. Copyright © 2011 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
S. M. Yadav
2011-02-01
Full Text Available The computation of bed load allows for the fact that only part of the shear stress is used for transport of sediments and some of the shear stress is wasted in overcoming the resistance due to bed forms therefore the total shear stress developed in the open channel requires correction in the form of correction factor called ripple factor. Different methods have been followed for correcting the actual shear stress in order to compute the sediment load. Correction factors are based on particular characteristics grain size of particle. In the present paper the ripple factor has been obtained for non uniform bed material considering the various variables like discharge, hydraulic mean depth, flow velocity, bed slope, average diameter of particle etc. by collecting the field data of Tapi river for 15 years for a particular gauging station. The ripple factor is obtained using Meyer Peter and Muller formula, Einstein Formula, Kalinske’s formula, Du Boy’s formula, Shield’s formula, Bagnold’s formula, average of six formulae and multiple regression analysis. The variation of ripple factor with particle Reynolds Number is studied. The ripple factor obtained by different approaches are further analyzed using Origin software and carrying out multiple regression on the 15 years of data with more than 10 parameters, ripple factor by multiple regression has been obtained. These values are further analysed and giving statistical mean to the parameters a relationship of power form has been developed. The ripple factor increases with the increase in the value of Particle Reynolds number. The large deviation is observed in case of Kalinske’s approach when compare with other approaches
The effect of roughness at high Reynolds numbers on the performance of aerofoil DU 97-W-300Mod
Energy Technology Data Exchange (ETDEWEB)
Timmer, W.A. [Delft Univ. (Netherlands). Wind Energy Inst.; Schaffarczyk, A.P. [University of Applied Sciences, Kiel (Germany). Dept. of Mechanical Engineering
2004-07-01
This article discusses the results of wind tunnel measurements performed on a modified DU 97-W-300 aerofoil at Reynolds numbers between 1 x 10{sup 6} and 10 x 10{sup 6} in the cryogenic wind tunnel of DNW in Koeln, Germany. The aerofoil was modified by reducing the trailing edge thickness from 1.74% to 0.49% of the chord. Although the measurements showed large scatter when flow separation occurred on the model, it was possible to establish the variation with Reynolds number of the maximum lift coefficient, the maximum lift/drag ratio and the design lift coefficient for a Mach number of 0.2. Furthermore, the effect of wrap-around Carborundum 60 roughness and zigzag tape of 0.4 mm thickness on the upper and lower surfaces was studied. The experimental results were compared with RFOIL calculations. The measurements indicate that there was no significant variation in the maximum lift coefficient with Reynolds number for the clean aerofoil. In contrast to the RFOIL calculations, the experimental maximum lift/drag ratio decreased with increasing Reynolds number from an average of 95 at R = 3 x 10{sup 6} to about 85 at R = 10 x 10{sup 6}. The Carborundum 60 roughness had a larger negative effect on the aerofoil performance than the zigzag tape, but in both cases the aerofoil performance improved drastically with increasing Reynolds number. (author)
MASS TRANSFER CONTROL OF A BACKWARD-FACING STEP FLOW BY LOCAL FORCING- EFFECT OF REYNOLDS NUMBER
Directory of Open Access Journals (Sweden)
Zouhaier MEHREZ
2011-01-01
Full Text Available The control of fluid mechanics and mass transfer in separated and reattaching flow over a backward-facing step by a local forcing, is studied using Large Eddy Simulation (LES.To control the flow, the local forcing is realized by a sinusoidal oscillating jet at the step edge. The Reynolds number is varied in the range 10000 ≤ Re≤ 50000 and the Schmidt number is fixed at 1.The found results show that the flow structure is modified and the local mass transfer is enhanced by the applied forcing. The observed changes depend on the Reynolds number and vary with the frequency and amplitude of the local forcing. For the all Reynolds numbers, the largest recirculation zone size reduction is obtained at the optimum forcing frequency St = 0.25. At this frequency the local mass transfer enhancement attains the maximum.
Shallow and deep dynamic stall for flapping low Reynolds number airfoils
Energy Technology Data Exchange (ETDEWEB)
Ol, Michael V. [Wright-Patterson AFB, Air Force Research Lab., Dayton, OH (United States); Bernal, Luis; Kang, Chang-Kwon; Shyy, Wei [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States)
2009-05-15
We consider a combined experimental (based on flow visualization, direct force measurement and phase-averaged 2D particle image velocimetry in a water tunnel), computational (2D Reynolds-averaged Navier-Stokes) and theoretical (Theodorsen's formula) approach to study the fluid physics of rigid-airfoil pitch-plunge in nominally two-dimensional conditions. Shallow-stall (combined pitch-plunge) and deep-stall (pure-plunge) are compared at a reduced frequency commensurate with flapping-flight in cruise in nature. Objectives include assessment of how well attached-flow theory can predict lift coefficient even in the presence of significant separation, and how well 2D velocimetry and 2D computation can mutually validate one another. The shallow-stall case shows promising agreement between computation and experiment, while in the deep-stall case, the computation's prediction of flow separation lags that of the experiment, but eventually evinces qualitatively similar leading edge vortex size. Dye injection was found to give good qualitative match with particle image velocimetry in describing leading edge vortex formation and return to flow reattachment, and also gave evidence of strong spanwise growth of flow separation after leading-edge vortex formation. Reynolds number effects, in the range of 10,000-60,000, were found to influence the size of laminar separation in those phases of motion where instantaneous angle of attack was well below stall, but have limited effect on post-stall flowfield behavior. Discrepancy in lift coefficient time history between experiment, theory and computation was mutually comparable, with no clear failure of Theodorsen's formula. This is surprising and encouraging, especially for the deep-stall case, because the theory's assumptions are clearly violated, while its prediction of lift coefficient remains useful for capturing general trends. (orig.)
Directory of Open Access Journals (Sweden)
Nilanjan Chakraborty
2011-01-01
nature of the correlations remains unaffected. The dependence of displacement speed on strain rate and curvature is found to weaken with increasing turbulent Reynolds number when either Damköhler or Karlovitz number is held constant, but the qualitative nature of the correlation remains unaltered. The implications of turbulent Reynolds number effects in the context of Flame Surface Density (FSD modelling have also been addressed, with emphasis on the influence of displacement speed on the curvature and propagation terms in the FSD balance equation.
Large-eddy simulation of flow over a grooved cylinder up to transcritical Reynolds numbers
Cheng, W.
2017-11-27
We report wall-resolved large-eddy simulation (LES) of flow over a grooved cylinder up to the transcritical regime. The stretched-vortex subgrid-scale model is embedded in a general fourth-order finite-difference code discretization on a curvilinear mesh. In the present study grooves are equally distributed around the circumference of the cylinder, each of sinusoidal shape with height , invariant in the spanwise direction. Based on the two parameters, and the Reynolds number where is the free-stream velocity, the diameter of the cylinder and the kinematic viscosity, two main sets of simulations are described. The first set varies from to while fixing . We study the flow deviation from the smooth-cylinder case, with emphasis on several important statistics such as the length of the mean-flow recirculation bubble , the pressure coefficient , the skin-friction coefficient and the non-dimensional pressure gradient parameter . It is found that, with increasing at fixed , some properties of the mean flow behave somewhat similarly to changes in the smooth-cylinder flow when is increased. This includes shrinking and nearly constant minimum pressure coefficient. In contrast, while the non-dimensional pressure gradient parameter remains nearly constant for the front part of the smooth cylinder flow, shows an oscillatory variation for the grooved-cylinder case. The second main set of LES varies from to with fixed . It is found that this range spans the subcritical and supercritical regimes and reaches the beginning of the transcritical flow regime. Mean-flow properties are diagnosed and compared with available experimental data including and the drag coefficient . The timewise variation of the lift and drag coefficients are also studied to elucidate the transition among three regimes. Instantaneous images of the surface, skin-friction vector field and also of the three-dimensional Q-criterion field are utilized to further understand the dynamics of the near-surface flow
Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling
Energy Technology Data Exchange (ETDEWEB)
Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-05-01
The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up to 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.
Directory of Open Access Journals (Sweden)
Dan MATEESCU
2015-12-01
Full Text Available This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV flying at low speed and very low Reynolds number. The unsteady aerodynamic analysis is performed with an efficient time-accurate numerical method developed for the solution of the Navier-Stokes equations at low Reynolds numbers, which is second-order-accurate in time and space. The paper presents solutions for the unsteady aerodynamic coefficients of lift and drag and for the lift-to-drag ratio of several symmetric and cambered airfoils with Gurney flaps. It was found that although the airfoil is considered stationary, starting from a relatively small incidence (about 8 degrees the flow becomes unsteady due to the unsteadiness of the flow separations occurring at low Reynolds numbers, and the aerodynamic coefficients display periodic oscillations in time. A detailed study is presented in the paper on the influence of various geometric and flow parameters, such as the Gurney flap height, Reynolds number, airfoil relative thickness and relative camber, on the aerodynamic coefficients of lift, drag and lift-to-drag ratio. The flow separation is also studied with the aid of flow visualizations illustrating the changes in the flow pattern at various moments in time.
Energy Technology Data Exchange (ETDEWEB)
Li, Baoming; Kwok, Daniel Y. [Nanoscale Technology and Engineering Laboratory, Department of Mechanical Engineering, University of Alberta, Edmonton, AB (Canada)
2004-09-01
We present here a lattice Boltzmann model with high Reynolds number in the presence of external force fields to describe electrokinetic phenomena in microfluidics, by considering pressure as the only external force for liquid flow. Our results from a 9-bit square lattice Boltzmann model are in excellent agreement with experimental data in pressure-driven microchannel flow that could not be fully described by electrokinetic theory. The difference between the predicted and experimental Reynolds numbers from pressure gradients are well within 5%. Our results suggest that the lattice Boltzmann model described here is an effective computational tool to predict the more complex microfluidic systems that might be problematic using conventional methods. (orig.)
Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows
Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2011-01-01
Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803
The effect of permeability on the flow past permeable disks at low Reynolds numbers
Cummins, Cathal; Viola, Ignazio Maria; Mastropaolo, Enrico; Nakayama, Naomi
2017-09-01
The viscous flow over a thick permeable circular disk in the Reynolds number (Re) range of 10 to 130 and in the Darcy number (Da) range of 10-9 to 1 is examined. Direct numerical simulations are performed on a 2D grid with axisymmetric boundary conditions. Three flow regimes are observed: I, II, and III. In regime I (effectively impervious; D a 1 0-3) is the highly permeable regime, in which there is no recirculation. In I, good agreement with existing experimental data for impervious disks is found. In III, an analytical expression for the drag force on the disk is derived, showing good agreement with the numerical results. A global upper limit of D ac=D amax above which the disk is unable to maintain a recirculating wake for any Re is identified. Finally, in regime II, it is demonstrated that increasing the permeability can lead to large variations in the length of the recirculating wake but with minimal effect on the drag coefficient even when D a >D amax. This has important implications in our understanding of the locomotive strategies adopted by organisms that use porous bodies for movement.
Lift on a Steady Airfoil in Low Reynolds Number Shear Flow
Hammer, Patrick; Visbal, Miguel; Naguib, Ahmed; Koochesfahani, Manoochehr
2016-11-01
Current understanding of airfoil aerodynamics is primarily based on a uniform freestream velocity approaching the airfoil, without consideration for possible presence of shear in the approach flow. Inviscid theory by Tsien (1943) shows that a symmetric airfoil at zero angle of attack experiences positive lift, i.e. a shift in the zero-lift angle of attack, in the presence of positive mean shear in the approach flow. In the current work, 2D computations are conducted on a steady NACA 0012 airfoil at a chord Reynolds number of Re = 12,000, at zero angle of attack. A uniform shear profile (i.e. a linear velocity variation) is used for the approach flow by modifying the FDL3DI Navier-Stokes solver (Visbal and Gaitonde, 1999). Interestingly, opposite to the inviscid prediction of Tsien (1943), the results for the airfoil at zero angle of attack show that the average lift is negative in the shear flow. The magnitude of this lift grows as the shear rate increases. Additional results are presented regarding the physics underlying the shear effect on lift. A companion experimental study is also given in a separate presentation. This work was supported by AFOSR Award Number FA9550-15-1-0224.
Experiments on a Steady Low Reynolds Number Airfoil in a Shear Flow
Olson, David; Naguib, Ahmed; Koochesfahani, Manoochehr
2016-11-01
The aerodynamics of steady airfoils in uniform flow have received considerably more attention than that of an airfoil operating in a non-uniform flow. Inviscid theory by Tsien (1943) shows that an airfoil experiences a decrease in the zero lift angle of attack for a shear flow with uniform clockwise vorticity. The current work utilizes a shaped honeycomb technique to create a velocity profile with a large region of uniform shear in a water tunnel. Direct force measurements are implemented and validated using experiments on a circular cylinder and NACA 0012 in a uniform cross-flow. Results for a NACA 0012 airfoil with a chord Reynolds number of 1.2 ×104 in a non-uniform approach flow are compared to concurrent CFD calculations (presented in a companion talk) showing an increase in the zero lift angle of attack; in contradiction with inviscid theory. The effect of shear on the mean lift coefficient over a wide range of angles of attack is also explored. This work was supported by AFOSR Award Number FA9550-15-1-0224.
Computational Fluid Dynamic simulation of airfoils in unsteady low Reynolds number flows
Amiralaei, Mohammadreza
The inherent complexity of low Reynolds number (LRN) flows and their respective viscous vortical patterns demand an accurate solution method to achieve the desired accuracy. This complicated flow field needs even more robust methods when the flow is unsteady. The flow field of unsteady airfoils and wings in LRN regime is challenging to solve and Computational Fluid Dynamics (CFD) simulations stand out as solid solution techniques in this area. This thesis is motivated by an existing rotating-flapping mechanism, whose kinematics components can be broken into pitching, plunging and a novel figure-of-eight-like flapping motion of its blades and each blade's cross section. The focus is on two-dimensional low Reynolds number (LRN) flows using Computational Fluid Dynamics (CFD) and a Finite Volume Method (FVM). As one of the targets is to simulate a pair of blades, and consequently a pair of airfoils, a mesh motion library is developed to perform rotational and translational motions of multi-body configurations. The library and its sub-routines are tested on pairs of pitching, plunging and flapping airfoils, where the moving mesh problem is performed with a significant gain in the computational time compared to other moving mesh techniques such as Laplacian smoothing algorithm. The simulations of a single airfoil under harmonic and the novel figure-of-eight-like flapping motions, respectively, are conducted within 67% and 80% time it took to obtain a steady solution using the Laplace smoothing mesh motion algorithm, while the calculated force coefficients were in reasonably close agreement. Flow fields of single unsteady airfoils under pitching, plunging and figure-of-eight flapping motions are also simulated in this thesis accompanied with extensive parametric studies. The simulations of the considered figure-of-eight flapping pattern shows that its highly inclined asymmetrical kinematics results in higher vertical lift coefficients than the existing flapping patterns
Mesh Generation and Adaption for High Reynolds Number RANS Computations Project
National Aeronautics and Space Administration — This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models....
RICHTER, DAVID
2010-03-29
The results from a numerical investigation of inertial viscoelastic flow past a circular cylinder are presented which illustrate the significant effect that dilute concentrations of polymer additives have on complex flows. In particular, effects of polymer extensibility are studied as well as the role of viscoelasticity during three-dimensional cylinder wake transition. Simulations at two distinct Reynolds numbers (Re = 100 and Re = 300) revealed dramatic differences based on the choice of the polymer extensibility (L2 in the FENE-P model), as well as a stabilizing tendency of viscoelasticity. For the Re = 100 case, attention was focused on the effects of increasing polymer extensibility, which included a lengthening of the recirculation region immediately behind the cylinder and a sharp increase in average drag when compared to both the low extensibility and Newtonian cases. For Re = 300, a suppression of the three-dimensional Newtonian mode B instability was observed. This effect is more pronounced for higher polymer extensibilities where all three-dimensional structure is eliminated, and mechanisms for this stabilization are described in the context of roll-up instability inhibition in a viscoelastic shear layer. © 2010 Cambridge University Press.
Influence of synthetic jet location on active control of an airfoil at low Reynolds number
Feero, Mark A.; Lavoie, Philippe; Sullivan, Pierre E.
2017-08-01
The reattachment of post-stall separated flow on a NACA 0025 airfoil at a Reynolds number of 100,000 and angle-of-attack of 12° using synthetic jet control was studied experimentally. The goal of this work was to study the effect of control parameters including blowing ratio, frequency, and in particular, slot location, on aerodynamic performance. Slot locations both upstream and downstream of the mean separation point were tested. The results showed that for both drag reduction and lift increase, once a particular blowing ratio was met, the benefits of control saturated. Positioning the slot at the most upstream location was found to be the most effective, both in terms of having the lowest threshold blowing ratio and producing the largest lift-to-drag ratios. A monotonic increase in threshold blowing ratio (defined as being the blowing ratio required for fully attached flow) and decrease in lift-to-drag was observed as the slot location moved downstream. It was also found that while forcing at a frequency corresponding to the wake instability led to maximum lift increase, forcing in the range of the separated shear layer instability (frequencies an order of magnitude larger) led to maximum drag reduction.
Active Flow Control at Low Reynolds Numbers on a NACA 0015 Airfoil
Melton, LaTunia Pack; Hannon, Judith; Yao, Chung-Sheng; Harris, Jerome
2008-01-01
Results from a low Reynolds number wind tunnel experiment on a NACA 0015 airfoil with a 30% chord trailing edge flap tested at deflection angles of 0, 20, and 40 are presented and discussed. Zero net mass flux periodic excitation was applied at the ap shoulder to control flow separation for flap deflections larger than 0. The primary objective of the experiment was to compare force and moment data obtained from integrating surface pressures to data obtained from a 5-component strain-gage balance in preparation for additional three-dimensional testing of the model. To achieve this objective, active flow control is applied at an angle of attack of 6 where published results indicate that oscillatory momentum coefficients exceeding 1% are required to delay separation. Periodic excitation with an oscillatory momentum coefficient of 1.5% and a reduced frequency of 0.71 caused a significant delay of separation on the airfoil with a flap deflection of 20. Higher momentum coefficients at the same reduced frequency were required to achieve a similar level of flow attachment on the airfoil with a flap deflection of 40. There was a favorable comparison between the balance and integrated pressure force and moment results.
On the aerodynamic forces on heaving and pitching airfoils at low Reynolds number
Moriche, M.; Flores, O.; García-Villalba, M.
2017-10-01
The influence that the kinematics of pitching and heaving 2D airfoils have on the aerodynamic forces is investigated using Direct Numerical Simulations and a force decomposition algorithm. Large amplitude motions are considered (of the order of one chord), with moderate Reynolds numbers and reduced frequencies of order 1, varying the mean pitch angle and the phase shift between the pitching and heaving motions. Our results show that the surface vorticity contribution (viscous effects) to the aerodynamic force is negligible compared to the contributions from the body motion (fluid inertia) and the vorticity within the flow (circulation). For the range of parameters considered here, the latter tends to be instantaneously oriented in the direction normal to the chord of the airfoil. Based on the results discussed in the paper, a reduced order model for the instantaneous aerodynamic force is proposed, taking advantage of the force decomposition and the chord-normal orientation of the contribution from vorticity within the flow to the total aerodynamic force. The predictions of the proposed model are compared to those of a similar model from the literature, showing a noticeable improvement on the prediction of the mean thrust, and a smaller improvement on the prediction of mean lift and the instantaneous force coefficients.
Vortex-Induced Vibration Tests of a Marine Growth Wrapped Cylinder at Subcritical Reynolds Number
Directory of Open Access Journals (Sweden)
Kurian V. J.
2017-01-01
Full Text Available Vortex Induced Vibrations (VIV may cause great damage to deep water risers. Estimation of accurate hydrodynamic coefficients and response amplitudes for fouled tubular cylinders subjected to VIVs is a complex task. This paper presents the results of an extensive experimental investigation on in-line and cross-flow forces acting on cylinders wrapped with marine growth, subjected to current at Subcritical Reynolds Number. The drag and lift force coefficients have been determined through the use of the Fast Fourier Analysis methods. The different tests were conducted in the offshore engineering laboratory at Universiti Teknologi PETRONAS (UTP, Malaysia. In this study, a cylinder with outer diameter Do = 27 mm, fixed at top as cantilever beam was used. The in-line and cross-flow forces were measured using VIV Force Totaller (VIVFT. VIVFT is a two degree of freedom (2DOF forces sensor developed by UTP to measure the VIV forces. The tests were conducted for current velocity varied between 0.118 to 0.59 m/s. The test results suggest that the cylinder wrapped with marine growth has shown an overall increase in drag and inertia coefficients as well as on response amplitudes.
A study of flow patterns for staggered cylinders at low Reynolds number by spectral element method
Energy Technology Data Exchange (ETDEWEB)
Hsu, Li-Chieh; Chen, Chien-Lin; Ye, Jian-Zhi [National Yunlin University of Science and Technology, Taiwan (China)
2017-06-15
This study investigates the pattern of flow past two staggered array cylinders using the spectral element method by varying the distance between the cylinders and the angle of incidence (α) at low Reynolds numbers (Re = 100-800). Six flow patterns are identified as Shear layer reattachment (SLR), Induced separation (IS), Vortex impingement (VI), Synchronized vortex shedding (SVS), Vortex pairing and enveloping (VPE), and Vortex pairing splitting and enveloping (VPSE). These flow patterns can be transformed from one to another by changing the distance between the cylinders, the angle of incidence, or Re. SLR, IS and VI flow patterns appear in regimes with small angles of incidence (i.e., α ≤ 30° ) and hold only a single von Karman vortex shedding in a wake with one shedding frequency. SVS, VPE and VPSE flow patterns appear in regimes with large angles of incidence (i.e., 30° ≤ α ≤ 50° ) and present two synchronized von Karman vortices. Quantitative analyses and physical interpretation are also conducted to determine the generation mechanisms of the said flow patterns.
High-Reynolds-number flat-plate turbulent boundary layer measurements
Winkel, Eric S.; Cutbirth, James M.; Perlin, Marc; Ceccio, Steven L.; Dowling, David R.
2006-11-01
A set of experiments was conducted in the U.S. Navy's Large Cavitation Channel (LCC) into the characteristics of a liquid turbulent boundary layer at nearly zero-pressure-gradient. The hydraulically smooth, k^+ centered in the LCC test section. Data was gathered at flow speeds up to 20 m/s to achieve downstream-distance-based Reynolds numbers up to 220 million. Static pressure, skin-friction, and laser-Doppler velocimetry (LDV) measurements are presented. Static pressure measurements along the plate surface show a mild favorable pressure gradient, less than 2.5% flow acceleration over the model. Skin-friction was measured at six stream-wise positions with 15-cm-diameter, flush-mounted drag-balances. Flow profiles of the mean and second-order turbulence statistics of stream-wise and wall-normal velocity components were measured using two-component LDV. When normalized with the measured skin-friction, mean velocity profiles agree with the accepted law-of-the-wall constants and the total near-wall shear stress approaches unity.
Correlation of theory to wind-tunnel data at Reynolds numbers below 500,000
Evangelista, Raquel; Mcghee, Robert J.; Walker, Betty S.
1989-01-01
This paper presents results obtained from two airfoil analysis methods compared with previously published wind tunnel test data at chord Reynolds numbers below 500,000. The analysis methods are from the Eppler-Somers airfoil design/analysis code and from ISES, the Drela-Giles Airfoil design/analysis code. The experimental data are from recent tests of the Eppler 387 airfoil in the NASA Langley Low Turbulence Pressure Tunnel. For R not less than 200,000, lift and pitching moment predictions from both theories compare well with experiment. Drag predictions from both theories also agree with experiment, although to different degrees. However, most of the drag predictions from the Eppler-Somers code are accompanied with separation bubble warnings which indicate that the drag predictions are too low. With the Drela-Giles code, there is a large discrepancy between the computed and experimental pressure distributions in cases with laminar separation bubbles, although the drag polar predictions are similar in trend to experiment.
Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects
Energy Technology Data Exchange (ETDEWEB)
Ramirez-Munoz, J., E-mail: jrm@correo.azc.uam.mx [Departamento de Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico); Salinas-Rodriguez, E.; Soria, A. [Departamento de IPH, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340 Mexico D.F. (Mexico); Gama-Goicochea, A. [Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico)
2011-07-15
Graphical abstract: Display Omitted Highlights: > The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. > The leading bubble wake decreases the drag on the trailing bubble. > A new semi-analytical model for the trailing bubble's drag is presented. > The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 {<=} Re {<=} 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 {<=} Er {<=} 1.7, i.e., it is of the same order of the analytical predictions in the literature.
Effects of shear on vortex shedding patterns in high Reynolds number flow: an experimental study
Energy Technology Data Exchange (ETDEWEB)
None
1980-01-01
Vortex shedding has been identified as a potential major source of loading on the Ocean Thermal Energy Conversion (OTEC) Plant Cold Water Pipe (CWP). To gain a better understanding of the vortex shedding phenomena, a series of model tests has been conducted. The results of this investigation are presented. The effects of current shear on vortex shedding patterns in high Reynolds number (R/sub e/) flow around a circular cylinder used to model the OTEC CWP are addressed. Tests were conducted in a wind tunnel on a 56-inch long, 6-inch diameter circular cylinder for various flow and shear conditions. Measurements were conducted to describe the frequencies of the eddies shed from the cylinder and to investigate the fluctuating surface pressure on the cylinder. From these tests it was determined that shedding for high R/sub e/ sheared flow is characterized by the formation of distinct cells of eddies with constant frequency, that pressure fluctuations on the surface of the cylinder are greater for sheared flow than unsheared flow, and that the mean surface pressures are generally independent of the magnitude of shear.
Forces on aligned rising spherical bubbles at low-to-moderate Reynolds number
Ramírez-Muñoz, J.; Baz-Rodríguez, S.; Salinas-Rodríguez, E.; Castellanos-Sahagún, E.; Puebla, H.
2013-09-01
In this paper, the dynamic of a pair of equal-sized spherical gas bubbles rising in vertical line within a Newtonian liquid at low-to-moderate Reynolds numbers (Re ≤ 50) is studied. The dynamic momentum balance includes buoyancy, quasi-steady, and unsteady (history) drag, as well as inertial and added-mass body acceleration forces acting on the trailing bubble. This equation has been obtained under the following assumptions: (i) the bubble interaction occurs through the steady non-uniform wake induced by the leading bubble and (ii) the flow structure behind the leading bubble is known, so that proper expressions for the trailing bubble hydrodynamic force and its rising velocity can be derived. We propose an approximate analytical model for predicting the hydrodynamic force and the rise velocity of the trailing bubble. For this aim, we first use the well-known asymptotic far wake velocity solution (AWVS) for an axisymmetric body complementing it with an adequate drag expression. Then, the AWVS is modified via a Galilean transformation by introducing an artificial origin whose position is determined by fitting numerical data of known velocity profiles. Comparisons between the proposed models predictions with those reported experimental and numerical data for dimensionless distance between bubbles s/d in the interval 2 ≤ s/d ≤ 12.5 are presented. The results show that the added-mass body acceleration and the history forces are negligible compared to the other considered forces.
Reynolds Number Dependence of Vortex Ring Formation by Transient Jet Ejection
Krueger, Paul S.
2006-11-01
Vortex ring formation by the sudden ejection of a jet from tube and orifice openings is investigated numerically for jet Reynolds number (Re) in the range 10 -- 2000 and jet slug length-to-diameter ratios (L/D) in the range 0.5 -- 6.0. This Re range brackets nearly inviscid behavior (vortex sheet roll-up) at the high end and highly diffusive behavior at the low end. The present investigation is motivated by how the enhanced role of viscosity at low Re affects the development and properties of the resulting vortex rings. The results for Re = 2000 show classical behavior, namely, compact vortex rings at low L/D and a leading vortex ring followed by a trailing jet for L/D sufficiently high. As Re decreases below 100, viscous diffusion leads to rapid radial growth of the vortex ring trajectories, and rapid decay of total circulation and kinetic energy. For all Re, the ratio of the impulse obtained during jet ejection to that from a steady, uniform jet of the same duration increases with L/D until a trailing jet appears. The maximum impulse ratio achieved increases as Re decreases for the tube configuration, but the opposite trend is observed for the orifice configuration.
Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers
Beck, J. W.
1984-01-01
The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.
Fluid forces on a very low Reynolds number airfoil and their prediction
Energy Technology Data Exchange (ETDEWEB)
Zhou, Y., E-mail: mmyzhou@polyu.edu.h [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Alam, Md. Mahbub [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Yang, H.X. [Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Guo, H. [School of Aeronautical Science and Engineering, Beijing University of Aeronautics and Astronautics, Xue Yuan Road No. 37, HaiDian District, Beijing (China); Wood, D.H. [School of Engineering, University of Newcastle, Callaghan NSW 2308 (Australia)
2011-02-15
This paper presents the measurements of mean and fluctuating forces on an NACA0012 airfoil over a large range of angle ({alpha}) of attack (0-90{sup o}) and low to small chord Reynolds numbers (Re{sub c}), 5.3 x 10{sup 3}-5.1 x 10{sup 4}, which is of both fundamental and practical importance. The forces, measured using a load cell, display good agreement with the estimate from the LDA-measured cross-flow distributions of velocities in the wake based on the momentum conservation. The dependence of the forces on both {alpha} and Re{sub c} is determined and discussed in detail. It has been found that the stall of an airfoil, characterized by a drop in the lift force and a jump in the drag force, occurs at Re{sub c} {>=} 1.05 x 10{sup 4} but is absent at Re{sub c} = 5.3 x 10{sup 3}. A theoretical analysis is developed to predict and explain the observed dependence of the mean lift and drag on {alpha}.
Tonal noise of a controlled-diffusion airfoil at low angle of attack and Reynolds number.
Padois, Thomas; Laffay, Paul; Idier, Alexandre; Moreau, Stéphane
2016-07-01
The acoustic signature of a controlled-diffusion airfoil immersed in a flow is experimentally characterized. Acoustic measurements have been carried out in an anechoic open-jet-wind-tunnel for low Reynolds numbers (from 5 × 10(4) to 4.3 × 10(5)) and several angles of attack. As with the NACA0012, the acoustic spectrum is dominated by discrete tones. These tonal behaviors are divided into three different regimes. The first one is characterized by a dominant primary tone which is steady over time, surrounded by secondary peaks. The second consists of two unsteady primary tones associated with secondary peaks and the third consists of a hump dominated by several small peaks. A wavelet study allows one to identify an amplitude modulation of the acoustic signal mainly for the unsteady tonal regime. This amplitude modulation is equal to the frequency interval between two successive tones. Finally, a bispectral analysis explains the presence of tones at higher frequencies.
Directory of Open Access Journals (Sweden)
Martin Skote
2015-01-01
Full Text Available Spanwise oscillation applied on the wall under a spatially developing turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall forcing produces a considerable drag reduction over the region where oscillation occurs. Downstream development of drag reduction is investigated from Reynolds number dependency perspective. An alternative to the previously suggested power-law relation between Reynolds number and peak drag reduction values, which is valid for channel flow as well, is proposed. Considerable deviation in the variation of drag reduction with Reynolds number between different previous investigations of channel flow is found. The shift in velocity profile, which has been used in the past for explaining the diminishing drag reduction at higher Reynolds number for riblets, is investigated. A new predictive formula is derived, replacing the ones found in the literature. Furthermore, unlike for the case of riblets, the shift is varying downstream in the case of wall oscillations, which is a manifestation of the fact that the boundary layer has not reached a new equilibrium over the limited downstream distance in the simulations. Taking this into account, the predictive model agrees well with DNS data. On the other hand, the growth of the boundary layer does not influence the drag reduction prediction.
Oliveira, J.L.G.; van der Geld, C.W.M.; Kuerten, Johannes G.M.
2013-01-01
Three-dimensional particle tracking velocimetry (3D-PTV) measurements have provided accurate Eulerian and Lagrangian high-order statistics of velocity and acceleration fluctuations and correlations at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. Spatial resolution
DEFF Research Database (Denmark)
Yilmaz, Özlem Ceyhan; Pires, Oscar; Munduate, Xabier
2017-01-01
This paper summarizes the results of a blind test campaign organized in the AVATAR project to predict the high Reynolds number performance of a wind turbine airfoil for wind turbine applications. The DU00-W-210 airfoil was tested in the DNW-HDG pressurized wind tunnel in order to investigate...
Yonemoto, Koichi; Takato, Keiichiro; OCHI, Hiroshi; Fujie, Satoshi; Sato, Takaya; 米本, 浩一; 高藤, 圭一郎; 越智, 廣志; 藤江, 哲; 佐藤, 喬也
2009-01-01
Direct Numerical Simulation is applied to simulate two dimensional low Reynolds number flows around NACA0012 aerofoil. The calculation results show negative lift curve slope and the existence of the reverse flow around the trailing edge at low angle of attack. This paper discusses the flow mechanism of negative lift curve slope phenomena from the view point of "Kutta condition violation".
Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.
2015-08-01
Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very
Effect of radius of gyration on a wing rotating at low Reynolds number: A computational study
Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John; Thompson, Mark
2017-06-01
This computational study analyzes the effect of variation of the radius of gyration (rg), expressed as the Rossby number Ro=rg/C , with C the chord, on the aerodynamics of a rotating wing at a Reynolds number of 1400. The wing is represented as an aspect-ratio-unity rectangular flat plate aligned at 45 ∘ . This plate is accelerated near impulsively to a constant rotational velocity and the flow is allowed to develop. Flow structures are analyzed and force coefficients evaluated. Trends in velocity field degradation with increasing Ro are consistent with previous experimental studies. At low Ro the flow structure generated initially is mostly retained with a strong laminar leading-edge vortex (LEV) and tip vortex (TV). As both Ro and travel distance increase, the flow structure degrades such that at high Ro it begins to resemble that of a translating wing. Additionally, the present study has shown the following. (i) At low Ro the LEV and TV structure is laminar and steady; as Ro increases this structure breaks down, and the location at which it breaks down shifts closer to the wing root. (ii) For moderate Ro of 1.4 and higher, the LEV is no longer steady but enters a shedding regime fed by the leading-edge shear layer. (iii) At the lowest Ro of 0.7 the lift force rises during start-up and then stabilizes, consistent with the flow structure being retained, while for higher Ro a force peak occurs after the initial acceleration is complete, followed by a reduction in lift which appears to correspond to shedding of excess leading-edge vorticity generated during start-up. (iv) All rotating wings produced greater lift than a translating wing, this increase varied from ˜65 % at the lowest Ro=0.7 down to ˜5 % for the highest Ro examined of 9.1.
Yang, Xiang
2017-11-01
The sizes of fluid motions in wall-bounded flows scale approximately as their distances from the wall. At high Reynolds numbers, resolving near-wall, small-scale, yet momentum-transferring eddies are computationally intensive, and to alleviate the strict near-wall grid resolution requirement, a wall model is usually used. The wall model of interest here is the integral wall model. This model parameterizes the near-wall sub-grid velocity profile as being comprised of a linear inner-layer and a logarithmic meso-layer with one additional term that accounts for the effects of flow acceleration, pressure gradients etc. We use the integral wall model for wall-modeled large-eddy simulations (WMLES) of turbulent boundary layers over rough walls. The effects of rough-wall topology on drag forces are investigated. A rough-wall model is then developed based on considerations of such effects, which are now known as mutual sheltering among roughness elements. Last, we discuss briefly a new interpretation of the Townsend attached eddy hypothesis-the hierarchical random additive process model (HRAP). The analogy between the energy cascade and the momentum cascade is mathematically formal as HRAP follows the multi-fractal formulism, which was extensively used for the energy cascade.
Xu, Yang; He, GuoSheng; Kulkarni, Varun; Wang, JinJun
2017-01-01
Time-resolved particle image velocimetry was employed to study the effect of Reynolds number ( Re sj) on synthetic jet vortex rings impinging onto a solid wall. Four Reynolds numbers ranging from 166 to 664 were investigated for comparison while other parameters were kept constant. It is found that the Reynolds number has a significant impact on the spatial evolution of near-wall vortical structures of the impinging synthetic jet. Velocity triple decomposition reveals that periodic Reynolds shear stresses produced by both impinging and secondary vortex rings agree well with a four-quadrant-type distribution rule, and the random velocity fluctuations are strengthened as Re sj increases. For radial wall jet, radial velocity profiles exhibit a self-similar behavior for all Re sj, and this self-similar profile gradually deviates from the laminar solution as Re sj is increased. In particular, the self-similar profile for low Re sj (166) coincides with the laminar solution indicating that periodic velocity fluctuations produced by vortex rings have little effect on the velocity profile of the laminar wall jet. This also provides evidence that the impinging synthetic jet is more effective in mixing than the continuous jet for the laminar flow. For the high Re sj, the mean skin friction coefficient has a slower decay rate after reaching peak, and the radial momentum flux has a higher value at locations far away from the impingement region, both of these can be attributed to the enhanced random fluctuations.
Kirsch, V. A.; Volkov, V. V.; Bildukevich, A. V.
A method for calculating the external mass transfer in a contactor with a transverse confined flow of a viscous incompressible liquid (gas) past hollow fibers at low Reynolds numbers is proposed. The method is based on the concept of regular arrays of parallel fibers with a well-defined flowfield. As a simplest model system, a row of parallel fibers is considered, for which dependences of a drag force and an efficiency of a solute retention on the inter-fiber distance, membrane mass transfer coefficient, Peclet and Reynolds numbers are computed. The influence of the fluid inertia on the mass transport is studied. It is shown that a linear Stokes equations can be used for as higher Re numbers, as denser is the fiber array. In this case the flow field is independent on the Re number, and analytical solutions for the flowfield and fiber sorption efficiency (fiber Sherwood number) can be used.
Large aerodynamic forces on a sweeping wing at low Reynolds number
Mao, Sun; Jianghao, Wu
2004-02-01
The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically. After an initial start from rest, the wing is made to execute an azimuthal rotation (sweeping) at a large angle of attack and constant angular velocity. The Reynolds number ( Re) considered in the present note is 480 ( Re is based on the mean chord length of the wing and the speed at 60% wing length from the wing root). During the constant-speed sweeping motion, the stall is absent and large and approximately constant lift and drag coefficients can be maintained. The mechanism for the absence of the stall or the maintenance of large aerodynamic force coefficients is as follows. Soon after the initial start, a vortex ring, which consists of the leading-edge vortex (LEV), the starting vortex, and the two wing-tip vortices, is formed in the wake of the wing. During the subsequent motion of the wing, a base-to-tip spanwise flow converts the vorticity in the LEV to the wing tip and the LEV keeps an approximately constant strength. This prevents the LEV from shedding. As a result, the size of the vortex ring increases approximately linearly with time, resulting in an approximately constant time rate of the first moment of vorticity, or approximately constant lift and drag coefficients. The variation of the relative velocity along the wing span causes a pressure gradient along the wingspan. The base-to-tip spanwise flow is mainly maintained by the pressure-gradient force.
Vortex-induced vibrations of three staggered circular cylinders at low Reynolds numbers
Behara, Suresh; Ravikanth, B.; Chandra, Venu
2017-08-01
Vortex-induced vibrations of three staggered circular cylinders are investigated via two-dimensional finite element computations. All the cylinders are of equal diameter (D) and are mounted on elastic supports in both streamwise (x -) and transverse (y -) directions. The two downstream cylinders are placed symmetrically on either side of the upstream body at a streamwise gap of 5D, with the vertical distance between them being 3D. Flow simulations are carried out for Reynolds numbers (Re) in the range of Re = 60-160. Reduced mass (m*) of 10 is considered and the damping is set to zero value. The present investigations show that the upstream cylinder exhibits initial and lower synchronization response modes like an isolated cylinder does at low Re. Whereas for both the downstream cylinders, the upper lock-in branch also appears. The initial and the upper modes are characterized by periodic oscillations, while the lower lock-in branch is associated with nonperiodic vibrations. The 2S mode of vortex shedding is observed in the near wake of all the cylinders for all Re, except for the upper branch corresponding to the downstream bodies. In the upper branch, both the downstream cylinders shed the primary vortices of the P+S mode. For the upstream cylinder, the phase between lift and the transverse displacement exhibits a 18 0° jump at certain Re in the lower branch. On the other hand, the downstream bodies undergo transverse oscillations in phase with lift in all lock-in modes, while the phase jumps by 18 0° as the oscillation response reaches the desynchronization regime.
Small-scale dynamo at low magnetic Prandtl numbers.
Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S
2012-12-01
The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.
LEBU drag reduction in high Reynolds number boundary layers. [Large Eddy Break-Up
Anders, J. B.
1989-01-01
Conventional and inverted, outer-layer leading-edge breakup devices (LEBUs) were water tunnel tested on an axisymmetric body over the Re number range from 380,000 to 3.8 million. Test results indicate a sharp degradation of the LEBUs' drag-reduction mechanism with increasing Re number. The most likely result of this degradation is a decoupling of the inner and outer scales at higher Re numbers; due to this decoupling, the breakup of the large structures by outer-layer devices has minimal influence on the near-wall, shear-producing scales. This suggests that smaller devices, closer to the walls, may be required for operation at elevated Re numbers.
A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case
DEFF Research Database (Denmark)
Weng, Miaocheng; Nielsen, Peter V.; Liu, Li
The use of CFD in ventilation research has arrived to a high level, but there are some conditions in the general CFD procedure which do not apply to all situations in the ventilation research. An example of this isthe turbulence models in Reynolds-averaged Navier-Stokes equations, i.e. (RANS) equ...
Energy Technology Data Exchange (ETDEWEB)
Cardenas, Camilo [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany); Convenio Andres Bello, Instituto Internacional de Investigaciones Educativas para la Integracion, La Paz (Bolivia); Denev, Jordan A.; Bockhorn, Henning [Karlsruhe Institute of Technology, Engler-Bunte-Institute, Combustion Division, Karlsruhe (Germany); Suntz, Rainer [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany)
2012-10-15
Investigation of the mixing process is one of the main issues in chemical engineering and combustion and the configuration of a jet into a cross-flow (JCF) is often employed for this purpose. Experimental data are gained for the symmetry plane in a JCF-arrangement of an air flow using a combination of particle image velocimetry (PIV) with laser-induced fluorescence (LIF). The experimental data with thoroughly measured boundary conditions are complemented with direct numerical simulations, which are based on idealized boundary conditions. Two similar cases are studied with a fixed jet-to-cross-flow velocity ratio of 3.5 and variable cross-flow Reynolds numbers equal to 4,120 and 8,240; in both cases the jet issues from the pipe at laminar conditions. This leads to a laminar-to-turbulent transition, which depends on the Reynolds number and occurs quicker for the case with higher Reynolds number in both experiments and simulations as well. It was found that the Reynolds number only slightly affects the jet trajectory, which in the case with the higher Reynolds number is slightly deeper. It is attributed to the changed boundary layer shape of the cross-flow. Leeward streamlines bend toward the jet and are responsible for the strong entrainment of cross-flow fluid into the jet. Velocity components are compared for the two Reynolds numbers at the leeward side at positions where strongest entrainment is present and a pressure minimum near the jet trajectory is found. The numerical simulations showed that entrainment is higher for the case with the higher Reynolds number. The latter is attributed to the earlier transition in this case. Fluid entrainment of the jet in cross-flow is more than twice stronger than for a similar flow of a jet issuing into a co-flowing stream. This comparison is made along the trajectory of the two jets at a distance of 5.5 jet diameters downstream and is based on the results from the direct numerical simulations and recently published
Tank, J; Smith, L; Spedding, G R
2017-02-06
The flight of many birds and bats, and their robotic counterparts, occurs over a range of chord-based Reynolds numbers from 1 × 10 4 to 1.5 × 10 5 . It is precisely over this range where the aerodynamics of simple, rigid, fixed wings becomes extraordinarily sensitive to small changes in geometry and the environment, with two sets of consequences. The first is that practical lifting devices at this scale will likely not be simple, rigid, fixed wings. The second is that it becomes non-trivial to make baseline comparisons for experiment and computation, when either one can be wrong. Here we examine one ostensibly simple case of the NACA 0012 aerofoil and make careful comparison between the technical literature, and new experiments and computations. The agreement (or lack thereof) will establish one or more baseline results and some sensitivities around them. The idea is that the diagnostic procedures will help to guide comparisons and predictions in subsequent more complex cases.
Birch, James M; Dickson, William B; Dickinson, Michael H
2004-03-01
The elevated aerodynamic performance of insects has been attributed in part to the generation and maintenance of a stable region of vorticity known as the leading edge vortex (LEV). One explanation for the stability of the LEV is that spiraling axial flow within the vortex core drains energy into the tip vortex, forming a leading-edge spiral vortex analogous to the flow structure generated by delta wing aircraft. However, whereas spiral flow is a conspicuous feature of flapping wings at Reynolds numbers (Re) of 5000, similar experiments at Re=100 failed to identify a comparable structure. We used a dynamically scaled robot to investigate both the forces and the flows created by a wing undergoing identical motion at Re of approximately 120 and approximately 1400. In both cases, motion at constant angular velocity and fixed angle of attack generated a stable LEV with no evidence of shedding. At Re=1400, flow visualization indicated an intense narrow region of spanwise flow within the core of the LEV, a feature conspicuously absent at Re=120. The results suggest that the transport of vorticity from the leading edge to the wake that permits prolonged vortex attachment takes different forms at different Re.
Coupled dynamics of vortex-induced vibration and stationary wall at low Reynolds number
Li, Zhong; Jaiman, Rajeev K.; Khoo, Boo Cheong
2017-09-01
The flow past an elastically mounted circular cylinder placed in proximity to a plane wall is numerically studied in both two dimensions (2D) and three dimensions (3D). This paper aims to explain the mechanism of the cylinder bottom shear layer roll-up suppression in the context of laminar vortex-induced vibration (VIV) of a cylinder placed in the vicinity of a plane stationary wall. In 2D simulations, VIV of a near-wall cylinder with structure-to-displaced fluid mass ratios of m* = 2 and 10 is investigated at the Reynolds number of Re = 100 at a representative gap ratio of e/D = 0.90, where e denotes the gap distance between the cylinder surface and the plane wall. First, the cylinder is placed at five different upstream distances, LU, to study the effects of the normalized wall boundary layer thickness, δ /D , on the hydrodynamic quantities involved in the VIV of a near-wall cylinder. It is found that the lock-in range shifts towards the direction of the higher reduced velocity Ur as δ /D increases and that the lock-in range widens as m* reduces. Second, via visualization of the vortex shedding patterns, four different modes are classified and the regime maps are provided for both m* = 2 and 10. Third, the proper orthogonal decomposition analysis is employed to assess the cylinder bottom shear layer roll-up suppression mechanism. For 3D simulations at Re = 200, the circular cylinder of a mass ratio of m* = 10 with a spanwise length of 4D is placed at a gap ratio of e/D = 0.90 and an upstream distance of LU = 10D. The 3D vortex patterns are investigated to re-affirm the vortex shedding suppression mechanism. The pressure distributions around the cylinder are identified within one oscillation cycle of VIV. The pressure and the shear stress distributions on the bottom wall are examined to demonstrate the effects of near-wall VIV on the force distributions along the plane wall. It is found that both the suction pressure and the shear stress right below the cylinder
Stanewsky, E.; Demurie, F.; Ray, Edward J.; Johnson, C. B.
1989-01-01
The transonic airfoil CAST 10-2/DOA 2 was investigated in several major transonic wind tunnels at Reynolds numbers ranging from Re=1.3 x 10(exp 6) to 45 x 10(exp 6) at ambient and cryogenic temperature conditions. The main objective was to study the degree and extent of the effects of Reynolds number on both the airfoil aerodynamic characteristics and the interference effects of various model-wind-tunnel systems. The initial analysis of the CAST 10-2 airfoil results revealed appreciable real Reynolds number effects on this airfoil and showed that wall interference can be significantly affected by changes in Reynolds number thus appearing as true Reynolds number effects.
Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim
2010-01-01
This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.
Zhang, Bin; Li, Jingyin; Guo, Penghua; Lv, Qian
2017-09-01
The impact force of low-speed droplets colliding with a solid surface was recorded with an experimental setup involving a highly sensitive piezoelectric force transducer and a high-speed camera recording the droplet shape. Water, ethanol, pure glycerin and aqueous glycerin solutions were used. Experimental results showed that dimensionless force is independent of the Weber number in the experimental range of 68-858 but varies with the Reynolds number. The impact is categorized into three types of processes according to the data on dimensionless peak force against the Reynolds number. The first type is a viscosity-dominated one, in which the Reynolds number ranges between 2.9 and 20. In the second type, transition process, the Reynolds number is in the range of 20-230. In the inertia-dominated type, the Reynolds number is larger than 230. In the viscosity-dominated impact, dimensionless peak force decreases rapidly with increasing Reynolds number, and the effect of viscosity could not be ignored. In the inertia-dominated impact, dimensionless peak force remains constant with varying the Reynolds number, that is, impact force is directly proportional to the product of liquid density, velocity squared and diameter squared but is unaffected by the changes in viscosity and surface tension. Furthermore, the deformation of droplet shape due to oscillation affects the impact force; a small horizontal-to-vertical ratio results in small impact force and vice versa.
Energy Technology Data Exchange (ETDEWEB)
Oishi, Jeffrey S.; /KIPAC, Menlo Park; Low, Mordecai-Mark Mac; /Amer. Museum Natural Hist.
2012-02-14
The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included, mean field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm-dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.
Dou, Zhongwang; Pecenak, Zachary K.; Cao, Lujie; Woodward, Scott H.; Liang, Zach; Meng, Hui
2016-03-01
Enclosed flow apparatuses with negligible mean flow are emerging as alternatives to wind tunnels for laboratory studies of homogeneous and isotropic turbulence (HIT) with or without aerosol particles, especially in experimental validation of Direct Numerical Simulation (DNS). It is desired that these flow apparatuses generate HIT at high Taylor-microscale Reynolds numbers ({{R}λ} ) and enable accurate measurement of turbulence parameters including kinetic energy dissipation rate and thereby {{R}λ} . We have designed an enclosed, fan-driven, highly symmetric truncated-icosahedron ‘soccer ball’ airflow apparatus that enables particle imaging velocimetry (PIV) and other whole-field flow measurement techniques. To minimize gravity effect on inertial particles and improve isotropy, we chose fans instead of synthetic jets as flow actuators. We developed explicit relations between {{R}λ} and physical as well as operational parameters of enclosed HIT chambers. To experimentally characterize turbulence in this near-zero-mean flow chamber, we devised a new two-scale PIV approach utilizing two independent PIV systems to obtain both high resolution and large field of view. Velocity measurement results show that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48 mm diameter) of the chamber. From PIV-measured velocity fields, we obtained turbulence dissipation rates and thereby {{R}λ} by using the second-order velocity structure function. A maximum {{R}λ} of 384 was achieved. Furthermore, experiments confirmed that the root mean square (RMS) velocity increases linearly with fan speed, and {{R}λ} increases with the square root of fan speed. Characterizing turbulence in such apparatus paves the way for further investigation of particle dynamics in particle-laden homogeneous and isotropic turbulence.
Nimmagadda, Rajesh; Venkatasubbaiah, K.
2017-06-01
The present study investigates the laminar forced convection flow of single walled carbon nanotube (SWCNT), gold (Au), aluminum oxide (Al2O3), silver (Ag) and hybrid (Al2O3 + Ag) nanofluids (HyNF) in a wide rectangular micro-channel at low Reynolds numbers. The heat transfer characteristics of de-ionized (DI) water and SWCNT nanofluid with different nanoparticle volume concentrations have been experimental studied. Furthermore, numerical study has also been carried out to investigate the flow and heat transfer characteristics of DI water, SWCNT, Au, Al2O3, Ag and HyNF at different Reynolds numbers with different nanoparticle volume concentrations and particle diameters. The numerical study consider the effects of both inertial and viscous forces by solving the full Navier-Stokes equations at low Reynolds numbers. A two dimensional conjugate heat transfer multiphase mixture model has been developed and used for numerical study. A significant enhancement in the average Nusselt number is observed both experimentally and numerically for nanofluids. The study presents four optimized combinations of nanofluids (1 vol% SWCNT and 1 vol% Au with d_p = 50 nm), (2 vol% SWCNT and 3 vol% Au with d_p = 70 nm), (3 vol% Al2O3 and 2 vol% Au with d_p = 70 nm) as well as (3 vol% HyNF (2.4% Al2O3 + 0.6% Ag) and 3 vol% Au with d_p = 50 nm) that provides a better switching option in choosing efficient working fluid with minimum cost based on cooling requirement. The conduction phenomenon of the solid region at bottom of the micro-channel is considered in the present investigation. This phenomenon shows that the interface temperature between solid and fluid region increases along the length of the channel. The present results has been validated with the experimental and numerical results available in the literature.
National Research Council Canada - National Science Library
George P Kouropoulos
2014-01-01
At this study, an attempt for the theoretical approach of the Reynolds number effect of air flow to the particle collection efficiency of a fibrous filter, with cylindrical section, will be made...
Rostamzadeh, Nikan; Kelso, Richard M.; Dally, Bassam
2017-02-01
Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies.
Che Hsin, Lin; Lung Ming, Fu; 10.1088/0960-1317/15/5/006
2005-01-01
This paper proposes a novel three-dimensional (3D) vortex micromixer for micro-total-analysis-systems ( mu TAS) applications which utilizes self-rotation effects to mix fluids in a circular chamber at low Reynolds numbers (Re). The microfluidic mixer is fabricated in a three-layer glass structure for delivering fluid samples in parallel. The fluids are driven into the circular mixing chamber by means of hydrodynamic pumps from two fluid inlet ports. The two inlet channels divide into eight individual channels tangent to a 3D circular chamber for the purpose of mixing. Numerical simulation of the microfluidic dynamics is employed to predict the self-rotation phenomenon and to estimate the mixing performance under various Reynolds number conditions. Experimental flow visualization by mixing dye samples is performed in order to verify the numerical simulation results. A good agreement is found to exist between the two sets of results. The numerical results indicate that the mixing performance can be as high as 9...
Gregorek, G. M.
1995-01-01
An experimental program to measure the aerodynamic characteristics of the NACA 64-621 airfoil when equipped with plain ailerons of 0.38 chord and 0.30 chord and with 0.38 chord balanced aileron has been conducted in the pressurized O.S.U. 6 x 12 ft High Reynolds Number Wind Tunnel. Surface pressures were measured and integrated to yield lift and pressure drag coefficients for angles of attack from -3 to +42 deg and for selected aileron deflections from 0 to -90 deg at nominal Mach and Reynolds numbers of 0.25 and 5 x 10(exp 6). When resolved into thrust coefficient for wind turbine aerodynamic control applications, the data indicated the anticipated decrease in thrust coefficient with negative aileron deflection at low angles of attack; however, as angle of attack increased, thrust coefficients eventually became positive. All aileron configurations, even at -90 deg deflections showed this trend. Hinge moments for each configuration complete the data set.
Steffen, Christopher J., Jr.
1993-01-01
Turbulent backward-facing step flow was examined using four low turbulent Reynolds number k-epsilon models and one standard high Reynolds number technique. A tunnel configuration of 1:9 (step height: exit tunnel height) was used. The models tested include: the original Jones and Launder; Chien; Launder and Sharma; and the recent Shih and Lumley formulation. The experimental reference of Driver and Seegmiller was used to make detailed comparisons between reattachment length, velocity, pressure, turbulent kinetic energy, Reynolds shear stress, and skin friction predictions. The results indicated that the use of a wall function for the standard k-epsilon technique did not reduce the calculation accuracy for this separated flow when compared to the low turbulent Reynolds number techniques.
Başbuǧ, S.; Papadakis, G.; Vassilicos, J. C.
2017-06-01
Flow in an unbaffled stirred vessel agitated by a four-bladed radial impeller is investigated by using direct numerical simulations at Re = 320 and 1600. We observe fluctuations in the power consumption with a peak frequency at ca. three times the impeller rotational speed for both Reynolds numbers. It is discovered that these fluctuations are associated with a periodic event in the wake of the blades, which involves alternating growth and decay of the upper and lower cores of the trailing vortex pair as well as up-and-down swinging motion of the radial jet. Moreover, the phase relation between the wakes of the different blades is examined in detail. Further studies using fractal-shaped blades show that the exact blade shape does not have a strong influence on this phenomenon. However, the wake interaction between the blades, hence the number of blades, has a direct influence on the unsteadiness of trailing vortices.
Prospathopoulos, John M.; Papadakis, Giorgos; Sieros, Giorgos; Voutsinas, Spyros G.; Chaviaropoulos, Takis K.; Diakakis, Kostas
2014-06-01
The aerodynamic characteristics of thick airfoils in high Reynolds number is assessed using two different CFD RANS solvers: the compressible MaPFlow and the incompressible CRES-flowNS-2D both equipped with the k-ω SST turbulence model. Validation is carried out by comparing simulations against existing high Reynolds experimental data for the NACA 63-018 airfoil in the range of -10° to 20°. The use of two different solvers aims on one hand at increasing the credibility in the results and on the other at quantifying the compressibility effects. Convergence of steady simulations is achieved within a mean range of -10° to 14° which refers to attached or light stall conditions. Over this range the simulations from the two codes are in good agreement. As stall gets deeper, steady convergence ceases and the simulations must switch to unsteady. Lift and drag oscillations are produced which increase in amplitude as the angle of attack increases. Finally in post stall, the average CL is found to decrease up to ~24° or 32° for the FFA or the NACA 63-018 airfoils respectively, and then recover to higher values indicating a change in the unsteady features of the flow.
Gupta, Nikhil; Mitra, Sushanta K; Kumar, Aloke
2015-01-01
In this paper, we obtain analytical results for shear stress distributions inside an elastic body placed in a low Reynolds number transport. The problem definition is inspired by a recent experimental study (Valiei et al., Lab Chip, 2012, 12, 5133-5137) that reports the flow-triggered deformation of bacterial biofilms, formed on cylindrical rigid microposts, into long filamentous structures known as streamers. In our analysis, we consider an elastic body of finite thickness (forming a rim) placed over a rigid cylinder, i.e., we mimic the biofilm structure in the experiment. We consider Oseen flow solution to describe the low Reynolds transport past this cylindrical elastic structure. The stress and strain distributions inside the elastic structure are found to be functions of position, Poisson ratio, initial thickness of the elastic rim and the ratio of the flow-driven shear stress to the shear modulus of the elastic body. More importantly, these analyses, which can be deemed as one of the first formal analys...
Directory of Open Access Journals (Sweden)
Mao Liangjie
Full Text Available A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.
Weisberg, David B.
A new method for studying flow-driven MHD instabilities in the laboratory has been developed, using a highly conductive, low viscosity, spherical plasma. The confinement, heating, and stirring of this unmagnetized plasma has been demonstrated experimentally, laying the foundations for the laboratory studies of a diverse collection of astrophysically-relevant instabilities. Specifically, plasma flows conducive to studies of the dynamo effect and the magnetorotational instability (MRI) are measured using a wide array of plasma diagnostics, and compare favorably to hydrodynamic numerical models. The Madison plasma dynamo experiment (MPDX) uses a cylindrically symmetric spherical boundary ring cusp geometry built from strong permanent magnets to confine a large (R=1.5 m), warm (Te torques using current drawn from emissive LaB6 cathodes located at the magnetized plasma edge, which also ionize and heat the plasma via sizable discharge current injection. Combination Langmuir/Mach probes measure maximum velocities of 6 km/s and 3 km/s in helium and argon plasmas, respectively, and ion viscosity is shown to be an efficient mechanism for transporting momentum from the magnetized edge into the unmagnetized core. Momentum loss to neutral charge-exchange collisions serves as the main source of drag on the bulk plasma velocity, and ionization fraction (He ˜ 0.6, Ar ˜ 0.95) is shown to be a limiting factor in momentum penetration. High Alfven Mach number flows have also been generated by drawing current across a global axial magnetic field, resulting in a velocity geometry conducive to MRI experiments. The experiment has achieved magnetic Reynolds numbers of Rm < 250 and fluid Reynolds numbers of Re < 200 (significantly higher than previous flow experiments in cusp-confined plasmas), setting the stage for future research of flow-driven MHD instabilities.
Sojka, Paul E.; Rodrigues, Neil S.
2015-11-01
The current study investigates the drop characteristics of three Carboxymethylcellulose (CMC) sprays produced by the impingement of two liquid jets. The three water-based solutions used in this work (0.5 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, and 1.4 wt.-% CMC-7MF) exhibited strong shear-thinning, non-Newtonian behavior - characterized by the Bird-Carreau rheological model. A generalized Bird-Carreau jet Reynolds number was used as the primary parameter to characterize the drop size and the drop velocity, which were measured using Phase Doppler Anemometry (PDA). PDA optical configuration enabled a drop size measurement range of approximately 2.3 to 116.2 μm. 50,000 drops were measured at each test condition to ensure statistical significance. The arithmetic mean diameter (D10) , Sauter mean diameter (D32) , and mass median diameter (MMD) were used as representative diameters to characterize drop size. The mean axial drop velocity Uz -mean along with its root-mean square Uz -rms were used to characterize drop velocity. Incredibly, measurements for all three CMC liquids and reference DI water sprays seemed to follow a single curve for D32 and MMD drop diameters in the high generalized Bird-Carreau jet Reynolds number range considered in this work (9.21E +03
2016-03-24
which is commonly converted to a length scale using Taylor’s “ frozen turbulence” hypothesis that states that integral length scale (λI) is U0 τ...diagnostics. Combustion in three regimes on the Borghi regime diagram of premixed turbulent flames was quantified for the first time, by imaging the...Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998. 2. REPORT TYPE. State the type of report, such as final, technical, interim
2013-12-24
U., Moin, P. & Cabot , W. H. 1991 A dynamic subgrid-scale eddy-viscosity model. Physics of Fluids (A) 3 (7), 1760–1765. Gerritsen, M. & Olsson, P...projection method for locally refined grids. Journal of Computational Physics 127, 158–178. Moin, P., Squires, K., Cabot , W. & Lee, S. 1991 A dynamic
Effect of Reynolds number and inflow parameters on mean and turbulent flow over complex topography
DEFF Research Database (Denmark)
Kilpatrick, Ryan; Hangan, Horia; Siddiqui, Kamran
2016-01-01
A characterization of mean and turbulent flow behaviour over complex topography was conducted using a large-scale (1 : 25) model in the WindEEE Dome at Western University. The specific topographic feature considered was the Bolund Hill escarpment facing westerly winds. A total of eight unique...
A New Approach to Validate Subgrid Models in Complex High Reynolds Number Flows
1994-05-01
data are also shown. These figures show the characteristic decrease in correla- tion when the grid is coarsened with the scale similarity model showing...passmms sogbe .iului by a Pus* dll- apWaishmalm ass" immp to bpssm do af sepia abdas h bell pufai aftg a pmiuayomd NO P) emd a smA amedidg of do @*M
Rastan, M. R.; Sohankar, A.; Alam, Md. Mahbub
2017-10-01
A direct numerical simulation is applied to investigate three-dimensional unsteady flow characteristics around a finite wall-mounted square cylinder with an aspect ratio of 7 at a Reynolds number (Re) of 40-250. Determination of Re for the onset of vortex shedding and Re influence on the wake structure and integral parameters are the major objectives of the current research. The results show that the vortex shedding inception occurs within the range of 75 topology and integral parameters. As such, the wake flow changes from a dipole to a quadrupole type, when the flow changes from steady to unsteady. A transition flow commences at Re = 150-200, where the wake instabilities are intensified with increasing Re, and the force signal oscillation alters from a sinusoidal to a chaotic type. Finally, the wake flow becomes turbulent at Re > 200.
Felderhof, B U
2016-01-01
Translational and rotational swimming at small Reynolds number of a planar assembly of identical spheres immersed in an incompressible viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The translational and rotational swimming velocities of the assembly are deduced from momentum and angular momentum balance equations. The mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocities and the power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated for prescribed periodic displacements. Explicit calculations are performed for three spheres interacting such that they form an equilat...
Felderhof, B. U.
2017-09-01
Translational and rotational swimming at small Reynolds numbers of a planar assembly of identical spheres immersed in an incompressible viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The translational and rotational swimming velocities of the assembly are deduced from momentum and angular momentum balance equations. The mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocities and the mean power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated for prescribed periodic displacements. Explicit calculations are performed for three spheres interacting such that they form an equilateral triangle in the rest frame of the configuration.
Directory of Open Access Journals (Sweden)
Takahiro Tsukahara
2013-01-01
Full Text Available A low-Reynolds-number k-ε model applicable for viscoelastic fluid was proposed to predict the frictional-drag reduction and the turbulence modification in a wall-bounded turbulent flow. In this model, an additional damping function was introduced into the model of eddy viscosity, while the treatment of the turbulent kinetic energy (k and its dissipation rate (ε is an extension of the model for Newtonian fluids. For constructing the damping function, we considered the influence of viscoelasticity on the turbulent eddy motion and its dissipative scale and investigated the frequency response for the constitutive equation based on the Giesekus fluid model. Assessment of the proposed model’s performance in several rheological conditions for drag-reduced turbulent channel flows demonstrated good agreement with DNS (direct numerical simulation data.
Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.
2016-05-01
Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.
Cuvier, C.; Srinath, S.; Stanislas, M.; Foucaut, J. M.; Laval, J. P.; Kähler, C. J.; Hain, R.; Scharnowski, S.; Schröder, A.; Geisler, R.; Agocs, J.; Röse, A.; Willert, C.; Klinner, J.; Amili, O.; Atkinson, C.; Soria, J.
2017-10-01
An experiment conducted in the framework of the EUHIT project and designed to characterize large scale structures in an adverse pressure gradient boundary layer flow is presented. Up to 16 sCMOS cameras were used in order to perform large scale turbulent boundary layer PIV measurements with a large field of view and appropriate spatial resolution. To access the span-wise / wall-normal signature of the structures as well, stereoscopic PIV measurements in span-wise/wall-normal planes were performed at specific stream-wise locations. To complement these large field of view measurements, long-range micro-PIV, time resolved near wall velocity profiles and film-based measurements were performed in order to determine the wall-shear stress and its fluctuations at some specific locations along the model.
Design and Calibration of the ARL Mach 3 High Reynolds Number Facility
1975-01-01
Facility. The authors wish to acknowledge the significant contributions of Mr. Emil Walk, formerly of the Fluid Mechanics Research Laboratory, as the...Figure A-15 presents the results of calculating maximum attainable model Rey- nolds numbers, for a range of test section sizes, based on the maximum
Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles
Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven
2010-11-01
The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.
Initial Low-Reynolds Number Iced Aerodynamic Performance for CRM Wing
Woodard, Brian; Diebold, Jeff; Broeren, Andy; Potapczuk, Mark; Lee, Sam; Bragg, Michael
2015-01-01
NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.
Drag and Torque on Clusters of N Arbitrary Spheres at Low Reynolds Number.
Filippov
2000-09-01
Hydrodynamics of particle clusters suspended in viscous fluids is a subject of considerable theoretical and practical importance. Using a multipole expansion of the flow velocity in a series of spherical harmonics, Lamb's fundamental solution of the Stokes flow outside a single sphere is generalized in this work to the case of N nonoverlapping spheres of arbitrary size with slip boundary conditions. The expansion coefficients are found by transforming the boundary conditions to the Lamb form and by transforming the spherical coordinates and solid spherical harmonics centered at different spheres. The problem is reduced to the solution of the linear system of equations for the expansion coefficients, which is carried out numerically. Based on the developed theory, the relation between the hydrodynamic and gyration radius of fractal-like aggregates with different structure is established. In another application, an asymptotic slip-regime dependence of the aggregate hydrodynamic radius on the Knudsen number and the number of particles is found by performing calculations of drag forces acting on the gas-borne fractal-like and straight chain aggregates. A good agreement is shown in comparing predictions of the described theory with available experimental and theoretical results on motion of various small sphere clusters in viscous fluid. Copyright 2000 Academic Press.
Directory of Open Access Journals (Sweden)
Mingyue Liu
2015-09-01
Full Text Available The Deep Draft Semi-Submersible (DDS concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around α = 15°. Furthermore, the flow around circular- section-cylinder arrays is also discussed in comparison with that of square cylinders.
Heat transfer enhancement in sphere-packed pipes under high Reynolds number conditions
Energy Technology Data Exchange (ETDEWEB)
Seto, Nao [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-01-02, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)], E-mail: nseto@karma.qse.tohoku.ac.jp; Yuki, Kazuhisa; Hashizume, Hidetoshi [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-01-02, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Sagara, Akio [National Institute for Fusion Science, Oroshicho, 322-6, Toki, 509-5292 Gifu (Japan)
2008-12-15
Flow analysis in sphere-packed pipes (SPP) for different pipe to sphere diameter ratios was experimentally performed in order to clarify a relationship between the heat transfer and pressure drop characteristics. The experiments, using water as a working fluid, were carried out with Re{sub D} = 2000-33,000 and Pr = 5.0-6.0. Experimental results of the pressure drop characteristics were compared with the Ergun's and Drag model correlations. Empirical correlations for the averaged Nusselt number are proposed, and SPP heat transfer performance is compared with that of the swirl flow. Furthermore, the applicability of the SPP system to the first wall cooling is also discussed from the temperature distribution aspect of the heating wall.
Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment
Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor
2015-11-01
Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.
Directory of Open Access Journals (Sweden)
Guo-qiang Tang
2015-10-01
Full Text Available Fluid flow past twin circular cylinders in a tandem arrangement placed near a plane wall was investigated by means of numerical simulations. The two-dimensional Navier-Stokes equations were solved with a three-step finite element method at a relatively low Reynolds number of Re = 200 for various dimensionless ratios of and , where D is the cylinder diameter, L is the center-to-center distance between the two cylinders, and G is the gap between the lowest surface of the twin cylinders and the plane wall. The influences of and on the hydrodynamic force coefficients, Strouhal numbers, and vortex shedding modes were examined. Three different vortex shedding modes of the near wake were identified according to the numerical results. It was found that the hydrodynamic force coefficients and vortex shedding modes are quite different with respect to various combinations of and . For very small values of , the vortex shedding is completely suppressed, resulting in the root mean square (RMS values of drag and lift coefficients of both cylinders and the Strouhal number for the downstream cylinder being almost zero. The mean drag coefficient of the upstream cylinder is larger than that of the downstream cylinder for the same combination of and . It is also observed that change in the vortex shedding modes leads to a significant increase in the RMS values of drag and lift coefficients.
Umphress, Thomas B
2008-06-01
Twenty people with suspected intellectual disability took the Reynolds Intellectual Assessment Scales (RIAS; C. R. Reynolds & R. W. Kamphaus, 1998) and the Wechsler Adult Intelligence Scale-3rd Edition (WAIS-III; D. Wechsler, 1997) to see if the 2 IQ tests produced comparable results. A t test showed that the RIAS Composite Intelligence Index scores were significantly higher than WAIS-III Full Scale IQ scores at the alpha level of .01. There was a significant difference between the RIAS Nonverbal Intelligence and WAIS-III Performance Scale, but there was no significant difference between the RIAS Verbal Intelligence Index and the WAIS-III Verbal Scale IQ. The results raise questions concerning test selection for diagnosing intellectual disability and the use of the correlation statistic for comparing intelligence tests.
Shields, Matt
The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the
Nano-particle drag prediction at low Reynolds number using a direct Boltzmann-BGK solution approach
Evans, B.
2018-01-01
This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano-particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25-2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics.
Anzai, Yosuke; Fukagata, Koji; Meliga, Philippe; Boujo, Edouard; Gallaire, François
2017-04-01
Flow around a square cylinder controlled using plasma actuators (PAs) is numerically investigated by direct numerical simulation in order to clarify the most effective location of actuator installation and to elucidate the mechanism of control effect. The Reynolds number based on the cylinder diameter and the free-stream velocity is set to be 100 to study the fundamental effect of PAs on two-dimensional vortex shedding, and three different locations of PAs are considered. The mean drag and the root-mean-square of lift fluctuations are found to be reduced by 51% and 99% in the case where two opposing PAs are aligned vertically on the rear surface. In that case, a jet flow similar to a base jet is generated by the collision of the streaming flows induced by the two opposing PAs, and the vortex shedding is completely suppressed. The simulation results are ultimately revisited in the frame of linear sensitivity analysis, whose computational cost is much lower than that of performing the full simulation. A good agreement is reported for low control amplitudes, which allows further discussion of the linear optimal arrangement for any number of PAs.
Nash, Rupert W.; Carver, Hywel B.; Bernabeu, Miguel O.; Hetherington, James; Groen, Derek; Krüger, Timm; Coveney, Peter V.
2014-02-01
Modeling blood flow in larger vessels using lattice-Boltzmann methods comes with a challenging set of constraints: a complex geometry with walls and inlets and outlets at arbitrary orientations with respect to the lattice, intermediate Reynolds (Re) number, and unsteady flow. Simple bounce-back is one of the most commonly used, simplest, and most computationally efficient boundary conditions, but many others have been proposed. We implement three other methods applicable to complex geometries [Guo, Zheng, and Shi, Phys. Fluids 14, 2007 (2002), 10.1063/1.1471914; Bouzidi, Firdaouss, and Lallemand, Phys. Fluids 13, 3452 (2001), 10.1063/1.1399290; Junk and Yang, Phys. Rev. E 72, 066701 (2005), 10.1103/PhysRevE.72.066701] in our open-source application hemelb. We use these to simulate Poiseuille and Womersley flows in a cylindrical pipe with an arbitrary orientation at physiologically relevant Re number (1-300) and Womersley (4-12) numbers and steady flow in a curved pipe at relevant Dean number (100-200) and compare the accuracy to analytical solutions. We find that both the Bouzidi-Firdaouss-Lallemand (BFL) and Guo-Zheng-Shi (GZS) methods give second-order convergence in space while simple bounce-back degrades to first order. The BFL method appears to perform better than GZS in unsteady flows and is significantly less computationally expensive. The Junk-Yang method shows poor stability at larger Re number and so cannot be recommended here. The choice of collision operator (lattice Bhatnagar-Gross-Krook vs multiple relaxation time) and velocity set (D3Q15 vs D3Q19 vs D3Q27) does not significantly affect the accuracy in the problems studied.
Directory of Open Access Journals (Sweden)
Matas Richard
2012-04-01
Full Text Available The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.
Lávička, David; Matas, Richard
2012-04-01
The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped) pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.
Sznitman, Josue; Purohit, Prashant K; Arratia, Paulo E
2009-01-01
The effects of fluid viscosity on the kinematics of a small swimmer at low Reynolds number are investigated in both experiments and in a simple model. The swimmer is the nematode Caenorhabditis elegans, which is an undulating roundworm approximately 1 mm long. Experiments show that the nematode maintains a highly periodic swimming behavior as the fluid viscosity is varied from 1.0 mPa-s to 12 mPa-s. Surprisingly, the nematode's swimming speed (~0.35 mm/s) is nearly insensitive to the range of fluid viscosities investigated here. However, the nematode's beating frequency decreases to an asymptotic value (~1.7 Hz) with increasing fluid viscosity. A simple model is used to estimate the nematode's Young's modulus and tissue viscosity. Both material properties increase with increasing fluid viscosity. It is proposed that the increase in Young's modulus may be associated with muscle contraction in response to larger mechanical loading while the increase in effective tissue viscosity may be associated with the energ...
Albertson, Theodore; Troian, Sandra
2017-11-01
Previous studies by Zubarev (2001) and Suvorov and Zubarev (2004) have shown that above a critical field strength, an ideal (inviscid) conducting fluid film will deform into a singular profile characterized by a conic cusp. The governing equations for the electrohydrodynamic response beneath the cusp admit self-similar solutions leading to so-called blow-up behavior in the Maxwell pressure, capillary pressure and kinetic energy density. The runaway behavior in these variables reflects divergence in time characterized by an exponent of -2/3. Here we extend the physical system to include viscous effects and conduct a computational study of the cusp region as a function of increasing electrical Reynolds number ReE . We employ a finite element, moving mesh algorithm to examine the behavior of the film shape, Maxwell pressure and capillary pressure upon approach to the blow-up event. Our study indicates that self-similarity establishes at relatively low ReE despite the presence of vorticity, which is localized to the cusp surface region. With increasing ReE , the period of self-similiarity extends further in time as the exponent changes from about -4/5 to the ideal value of -2/3, with slightly different values distinguishing the Maxwell and capillary stresses. T. Albertson gratefully acknowledges support from a NASA Space Technology Research Fellowship.
González Cornejo, Felipe A.; Cruchaga, Marcela A.; Celentano, Diego J.
2017-11-01
The present work reports a fluid-rigid solid interaction formulation described within the framework of a fixed-mesh technique. The numerical analysis is focussed on the study of a vortex-induced vibration (VIV) of a circular cylinder at low Reynolds number. The proposed numerical scheme encompasses the fluid dynamics computation in an Eulerian domain where the body is embedded using a collection of markers to describe its shape, and the rigid solid's motion is obtained with the well-known Newton's law. The body's velocity is imposed on the fluid domain through a penalty technique on the embedded fluid-solid interface. The fluid tractions acting on the solid are computed from the fluid dynamic solution of the flow around the body. The resulting forces are considered to solve the solid motion. The numerical code is validated by contrasting the obtained results with those reported in the literature using different approaches for simulating the flow past a fixed circular cylinder as a benchmark problem. Moreover, a mesh convergence analysis is also done providing a satisfactory response. In particular, a VIV problem is analyzed, emphasizing the description of the synchronization phenomenon.
Kato, Hiromasa; Taniguchi, Hideo; Matsuda, Kazunari; Funazaki, Ken-Ichi; Kato, Dai; Pallot, Guillaume
2011-12-01
High flow rate aeroengines typically employ axial flow compressors, where aerodynamic loss is predominantly due to secondary flow features such as tip leakage and corner vortices. In very high altitude missions, turbomachinery operates at low density ambient atmosphere, and the recent trend toward more compact engine core inevitably leads to the reduction of blade size, which in turn increases the relative height of the blade tip clearance. Low Reynolds number flowfield as a result of these two factors amplifies the relative importance of secondary flow effects. This paper focuses on the behavior of tip leakage flow, investigating by use of both experimental and numerical approaches. In order to understand the complex secondary flow behavior, cascade tests are usually conducted using intrusive probes to determine the loss. However relatively few experimental studies are published on tip leakage flows which take into account the interaction between a rotating blade row and its casing wall. Hence a new linear cascade facility has been designed with a moving belt casing in order to reproduce more realistic flowfield as encountered by a rotating compressor row. Numerical simulations were also performed to aid in the understanding of the complex flow features. The experimental results indicate a significant difference in the flowfield when the moving belt casing is present. The numerical simulations reveal that the leakage vortex is pulled by the shearing motion of the endwall toward the pressure side of the adjacent blade. The results highlight the importance of casing wall relative motion in analyzing leakage flow effects.
Directory of Open Access Journals (Sweden)
Ivana Stiperski
2017-01-01
Full Text Available In this article, we present an overview of the HyIV-CNRS-SecORo (Hydralab IV-CNRS-Secondary Orography and Rotors Experiments laboratory experiments carried out in the CNRM (Centre National de Recherches Météorologiques large stratified water flume. The experiments were designed to systematically study the influence of double obstacles on stably stratified flow. The experimental set-up consists of a two-layer flow in the water tank, with a lower neutral and an upper stable layer separated by a sharp density discontinuity. This type of layering over terrain is known to be conducive to a variety of possible responses in the atmosphere, from hydraulic jumps to lee waves and highly turbulent rotors. In each experiment, obstacles were towed through the tank at a constant speed. The towing speed and the size of the tank allowed high Reynolds-number flow similar to the atmosphere. Here, we present the experimental design, together with an overview of laboratory experiments conducted and their results. We develop a regime diagram for flow over single and double obstacles and examine the parameter space where the secondary obstacle has the largest influence on the flow. Trapped lee waves, rotors, hydraulic jumps, lee-wave interference and flushing of the valley atmosphere are successfully reproduced in the stratified water tank. Obstacle height and ridge separation distance are shown to control lee-wave interference. Results, however, differ partially from previous findings on the flow over double ridges reported in the literature due to the presence of nonlinearities and possible differences in the boundary layer structure. The secondary obstacle also influences the transition between different flow regimes and makes trapped lee waves possible for higher Froude numbers than expected for an isolated obstacle.
Hardy, Richard J.; Best, James L.; Lane, Stuart N.; Carbonneau, Patrice E.
2009-03-01
In gravel bed rivers, the microtopography of the bed exerts a significant effect on the generation of turbulent flow structures. Although field and laboratory measurements have indicated that flows over gravel beds contain coherent macroturbulent flow structures, the origin of these phenomena, and their relationship to the ensemble of individual roughness elements forming the bed, is not quantitatively well understood. Here we report upon a flume experiment in which flow over a gravel surface is quantified through the application of digital particle imaging velocimetry, which allows study of the downstream and vertical components of velocity over the entire flow field. The results indicate that as the Reynolds number increases (1) the visual distinctiveness of the coherent flow structures becomes more defined, (2) the upstream slope of the structures increases, and (3) the turbulence intensity of the structures increases. Analysis of the mean velocity components, the turbulence intensity, and the flow structure using quadrant analysis demonstrates that these large-scale turbulent structures originate from flow interactions with the bed topography. Detection of the dominant temporal length scales through wavelet analysis enables calculation of mean separation zone lengths associated with the gravel roughness through standard scaling laws. The calculated separation zone lengths demonstrate that wake flapping is a dominant mechanism in the production of large-scale coherent flow structures in gravel bed rivers. Thus, we show that coherent flow structures over gravels owe their origin to bed-generated turbulence and that large-scale outer layer structures are the result of flow-topography interactions in the near-bed region associated with wake flapping.
Zhang, Di; Cheng, Liang; An, Hongwei; Zhao, Ming
2017-04-01
With the aid of direct numerical simulation, this paper presents a detailed investigation on the flow around a finite square cylinder at a fixed aspect ratio (AR) of 4 and six Reynolds numbers (Re = 50, 100, 150, 250, 500, and 1000). It is found that the mean streamwise vortex structure is also affected by Re, apart from the AR value. Three types of mean streamwise vortices have been identified and analyzed in detail, namely, "Quadrupole Type" at Re = 50 and Re = 100, "Six-Vortices Type" at Re = 150 and Re = 250, and "Dipole Type" at Re = 500 and Re = 1000. It is the first time that the "Six-Vortices Type" mean streamwise vortices are reported, which is considered as a transitional structure between the other two types. Besides, three kinds of spanwise vortex-shedding models have been observed in this study, namely, "Hairpin Vortex Model" at Re = 150, "C and Reverse-C and Hairpin Vortex Model (Symmetric Shedding)" at Re = 250, and "C and Reverse-C and Hairpin Vortex Model (Symmetric/Antisymmetric Shedding)" at Re = 500 and Re = 1000. The newly proposed "C and Reverse-C and Hairpin Vortex Model" shares some similarities with "Wang's Model" [H. F. Wang and Y. Zhou, "The finite-length square cylinder near wake," J. Fluid Mech. 638, 453-490 (2009)] but differs in aspects such as the absence of the connection line near the free-end and the "C-Shape" vortex structure in the early stage of the formation of the spanwise vortex.
Thomareis, Nikitas; Papadakis, George
2017-01-01
Direct numerical simulations of the flow field around a NACA 0012 airfoil at Reynolds number 50 000 and angle of attack 5° with 3 different trailing edge shapes (straight, blunt, and serrated) have been performed. Both time-averaged flow characteristics and the most dominant flow structures and their frequencies are investigated using the dynamic mode decomposition method. It is shown that for the straight trailing edge airfoil, this method can capture the fundamental as well as the subharmonic of the Kelvin-Helmholtz instability that develops naturally in the separating shear layer. The fundamental frequency matches well with relevant data in the literature. The blunt trailing edge results in periodic vortex shedding, with frequency close to the subharmonic of the natural shear layer frequency. The shedding, resulting from a global instability, has an upstream effect and forces the separating shear layer. Due to forcing, the shear layer frequency locks onto the shedding frequency while the natural frequency (and its subharmonic) is suppressed. The presence of serrations in the trailing edge creates a spanwise pressure gradient, which is responsible for the development of a secondary flow pattern in the spanwise direction. This pattern affects the mean flow in the near wake. It can explain an unexpected observation, namely, that the velocity deficit downstream of a trough is smaller than the deficit after a protrusion. Furthermore, the insertion of serrations attenuates the energy of vortex shedding by de-correlating the spanwise coherence of the vortices. This results in weaker forcing of the separating shear layer, and both the subharmonics of the natural frequency and the shedding frequency appear in the spectra.
Goyal, Rahul; Gandhi, Bhupendra K.; Cervantes, Michel J.
2017-10-01
The flow in the off-design operation of a Francis turbine may lead to the formation of spiral vortex breakdowns in the draft tube, a diffuser installed after the runner. The spiral vortex breakdown, also named a vortex rope, may induce several low-frequency fluctuations leading to structural vibrations and a reduction in the overall efficiency of the turbine. In the present study, synchronized particle image velocimetry, pressure, and turbine flow parameter (Q, H, α, and T) measurements have been carried out in the draft tube cone of a high head model Francis turbine. The transient operating condition from the part load to the best efficiency point was selected to investigate the mitigation of the vortex rope in the draft tube cone. The experiments were performed 20 times to assess the significance of the results. A precession frequency of 1.61 Hz [i.e., 0.29 times the runner rotational frequency (Rheingans frequency)] is observed in the draft tube cone. The frequency is captured in both pressure and velocity data with its harmonics. The accelerating flow condition at the center of the cone with a guide vane opening is observed to diminish the spiral form of the vortex breakdown in the quasi-stagnant region. This further mitigates the stagnant part of the cone with a highly dominated axial flow condition of the turbine at the best efficiency point. The disappearance of the stagnant region is the most important state in the present case, which mitigates the spiral vortex breakdown of the cone at high Reynolds numbers. In contrast to a typical transition, a new type of transition from wake to jet is observed during the mitigation of the breakdown. The obtained 2D instantaneous velocity fields demonstrate the disappearance region of shear layers and stagnation in the cone. The results also demonstrate the existence of high axial velocity gradients in an elbow draft tube cone.
Directory of Open Access Journals (Sweden)
Takayuki Matsunuma
2012-01-01
Full Text Available Active flow control using dielectric barrier discharge (DBD plasma actuators was investigated to reattach the simulated boundary layer separation on the suction surface of a turbine blade at low Reynolds number, Re = 1.7 × 104. The flow separation is induced on a curved plate installed in the test section of a low-speed wind tunnel. Particle image velocimetry (PIV was used to obtain instantaneous and time-averaged two-dimensional velocity measurements. The amplitude of input voltage for the plasma actuator was varied from ±2.0 kV to ±2.8 kV. The separated flow reattached on the curved wall when the input voltage was ±2.4 kV and above. The displacement thickness of the boundary layer near the trailing edge decreased by 20% at ±2.0 kV. The displacement thickness was suddenly reduced as much as 56% at ±2.2 kV, and it was reduced gradually from ±2.4 kV to ±2.8 kV (77% reduction. The total pressure loss coefficient, estimated from the boundary layer displacement thickness and momentum thickness, was 0.172 at the baseline (actuator off condition. The total pressure loss was reduced to 0.107 (38% reduction at ±2.2 kV and 0.078 (55% reduction at ±2.8 kV.
A Study of Low-Reynolds Number Effects in Backward-Facing Step Flow Using Large Eddy Simulations
DEFF Research Database (Denmark)
Davidson, Lars; Nielsen, Peter V.
The flow in ventilated rooms is often not fully turbulent, but in some regions the flow can be laminar. Problems have been encountered when simulating this type of flow using RANS (Reynolds Averaged Navier-Stokes) methods. Restivo carried out experiment on the flow after a backward-facing step......, with a large step....
Energy Technology Data Exchange (ETDEWEB)
Zhao, Chen-Ru; Zhang, Zhen [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Jiang, Pei-Xue, E-mail: jiangpx@tsinghua.edu.cn [Beijing Key Laboratory of CO_2 Utilization and Reduction Technology/Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Bo, Han-Liang [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China)
2017-03-15
Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).
Directory of Open Access Journals (Sweden)
George P. Kouropoulos
2014-01-01
Full Text Available At this study an attempt for the theoretical approach of the Re ynolds number effect of air flow to the particle collection efficiency of a fibrous fil ter with cylindrical section will be made. Initially, a report of the air filtration models to fibrous filter media will be presented along with an explanation of both the parameters and the physical quantities which govern the air filtration process. Furthermore, the resul ting equation from the mathematical model will be applied to a real filter medium and the characteristic curves of filter efficiency will be drawn. The change of a filter medi um efficiency with regard to the Reynolds number of air flow that passes through the filt er, derived from the curves, will be studied. The general conclusion that we have is that as the Reynolds number of filtered air increases, the collection efficiency of the filter decreases.
Ahmed, Bilal; Javed, Tariq; Ali, N.
2018-01-01
This paper analyzes the MHD flow of micropolar fluid induced by peristaltic waves passing through the porous saturated channel at large Reynolds number. The flow model is formulated in the absence of assumptions of lubrication theory which yields the governing equations into a non-linear set of coupled partial differential equations which allows studying the peristaltic mechanism at non-zero Reynolds and wave numbers. The influence of other involved parameters on velocity, stream function and microrotation are discussed through graphs plotted by using Galerkin's finite element method. Besides that, the phenomena of pumping and trapping are also analyzed in the later part of the paper. To ensure the accuracy of the developed code, obtained results are compared with the results available in the literature and found in excellent agreement. It is found that the peristalsis mixing can be enhanced by increasing Hartmann number while it reduces by increasing permeability of the porous medium.
Castiglioni, Giacomo
Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical Reynolds averaged Navier-Stokes turbulence models are inadequate for such flows. Direct numerical simulation is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of immersed boundary methods and large eddy simulations to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Rec = 5x104 and at 5° of incidence have been performed with an immersed boundary code and a commercial code using body fitted grids. Several sub-grid scale models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the immersed boundary method the results show good agreement with the direct numerical simulation benchmark data for the pressure coefficient Cp and the friction coefficient Cf, but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the immersed boundary. For the three-dimensional simulations the results show a good prediction of the separation point, but an inaccurate prediction of the reattachment point unless full direct numerical simulation resolution is used. The commercial code shows good agreement with the direct numerical simulation benchmark data in both two and three-dimensional simulations, but the presence of significant, unquantified numerical dissipation prevents a conclusive assessment of the actual prediction capabilities of very coarse large eddy simulations with low order schemes in general
Directory of Open Access Journals (Sweden)
Syed Murtuza Mehdi
2016-01-01
Full Text Available Metallic tubes have been widely used as primary heat transfer elements in laminar convectors for domestic and aerospace heating purpose. This paper uses CFD tool to investigate the heat output and pressure drop of liquid sodium flowing inside a circular tube having a wavy profile throughout its length. The wavy tube can be utilized in laminar liquid metal convectors as basic heat transfer element. The effect of Reynolds number (500≤Re≤2000 wave pitch (25 mm≤λ≤100 mm and wave amplitude (2 mm≤a≤6 mm on the heat output and pressure drop has been numerically studied. Based on the CFD results important controlling parameters have been identified and it is concluded that the heat output from the wavy tube is affected by the wave pitch and the wave amplitude while the pressure drop is mostly affected by the Reynolds number and wave amplitude.
Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At
Directory of Open Access Journals (Sweden)
E. Amami
2014-01-01
Full Text Available Tissues of apple, carrot and banana were pre-treated by pulsed electric field (PEF and subsequently osmotically dehydrated in an agitated flask at ambient temperature using a 65% sucrose solution as osmotic medium. The effect of stirring intensity was investigated through water loss (WL and solid gain (SG. Changes in product color were also considered to analyze the impact of the treatment. The impeller’s Reynolds number was used to quantify the agitation. The Reynolds number remained inferior to 300 thus displaying laminar flow regime. Water loss (WL and solid gain (SG increase with the increase of Reynolds number. Mass transfer in osmotic dehydration of all three test particles has been studied on the basis of a two-exponential kinetic model. Then, mass transfer coefficients were related to the agitation intensity. This paper shows that the proposed empirical model is able to describe mass transfer phenomena in osmotic dehydration of these tissues. It is also shown that a higher agitation intensity improves both the kinetics of water loss and solid gain.
Krach, S. Kathleen; Loe, Scott A.; Jones, W. Paul; Farrally, Autumn
2009-01-01
Validity studies with the Reynolds Intellectual Ability scales (RIAS) indicated that RIAS composite intelligence index (CIX) and verbal intelligence index (VIX) scores have moderate-to-high correlation with comparable scores on other instruments. The authors of the RIAS described the VIX scale as a measure of crystallized ability and the nonverbal…
Crivellini, A.; D'Alessandro, V.; Di Benedetto, D.; Montelpare, S.; Ricci, R.
2014-04-01
This work is devoted to the Computational Fluid-Dynamics (CFD) simulation of laminar separation bubble (LSB) on low Reynolds number operating airfoils. This phenomenon is of large interest in several fields, such as wind energy, and it is characterised by slow recirculating flow at an almost constant pressure. Presently Reynolds Averaged Navier-Stokes (RANS) methods, due to their limited computational requests, are the more efficient and feasible CFD simulation tool for complex engineering applications involving LSBs. However adopting RANS methods for LSB prediction is very challenging since widely used models assume a fully turbulent regime. For this reason several transitional models for RANS equations based on further Partial Differential Equations (PDE) have been recently introduced in literature. Nevertheless in some cases they show questionable results. In this work RANS equations and the standard Spalart-Allmaras (SA) turbulence model are used to deal with LSB problems obtaining promising results. This innovative result is related to: (i) a particular behaviour of the SA equation; (ii) a particular implementation of SA equation; (iii) the use of a high-order discontinuous Galerkin (DG) solver. The effectiveness of the proposed approach is tested on different airfoils at several angles of attack and Reynolds numbers. Numerical results were verified with both experimental measurements performed at the open circuit subsonic wind tunnel of Università Politecnica delle Marche (UNIVPM) and literature data.
Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall
Moskowitz, Barry; Jack, John R
1954-01-01
Pressure distributions for a series of four boattailed bodies of revolution were obtained and compared with theory for a Mach number of 3.12, a Reynolds number range of 2 x 10 to 6th power to 14 x 10 to the 6th power, and angles of attack from zero to 9 degrees. Second-order theory adequately predicted the pressure distribution for regions free of the effects of cross-flow separation.
Guda, Venkata Subba Sai Satish
There have been several advancements in the aerospace industry in areas of design such as aerodynamics, designs, controls and propulsion; all aimed at one common goal i.e. increasing efficiency --range and scope of operation with lesser fuel consumption. Several methods of flow control have been tried. Some were successful, some failed and many were termed as impractical. The low Reynolds number regime of 104 - 105 is a very interesting range. Flow physics in this range are quite different than those of higher Reynolds number range. Mid and high altitude UAV's, MAV's, sailplanes, jet engine fan blades, inboard helicopter rotor blades and wind turbine rotors are some of the aerodynamic applications that fall in this range. The current study deals with using dynamic roughness as a means of flow control over a NACA 0012 airfoil at low Reynolds numbers. Dynamic 3-D surface roughness elements on an airfoil placed near the leading edge aim at increasing the efficiency by suppressing the effects of leading edge separation like leading edge stall by delaying or totally eliminating flow separation. A numerical study of the above method has been carried out by means of a Large Eddy Simulation, a mathematical model for turbulence in Computational Fluid Dynamics, owing to the highly unsteady nature of the flow. A user defined function has been developed for the 3-D dynamic roughness element motion. Results from simulations have been compared to those from experimental PIV data. Large eddy simulations have relatively well captured the leading edge stall. For the clean cases, i.e. with the DR not actuated, the LES was able to reproduce experimental results in a reasonable fashion. However DR simulation results show that it fails to reattach the flow and suppress flow separation compared to experiments. Several novel techniques of grid design and hump creation are introduced through this study.
Radl, Stefan; Municchi, Federico; Goniva, Christoph
2016-11-01
Understanding transport phenomena in fluid-particle systems is of primary importance for the design of large-scale equipment, e.g., in the chemical industry. Typically, the analysis of such systems is performed by numerically solving a set of partial differential equations modeling the particle phase and the fluid phase as interpenetrating continua. Such models require a number of closure models that are often constructed via spatial filtering of data obtained from particle-resolved direct numerical simulations (PR-DNS). In the present work we make use of PR-DNS to evaluate corrections to existing closure models. Specifically, we aim on accounting for wall effects on the fluid-particle drag force and the particle-individual Nusselt number. We then propose an improved closure model to be used in particle-unresolved Euler-Lagrange (PU-EL) simulations. We demonstrate that such an advanced closure should account for a dimensionless filter size, as well as a normalized distance from the wall. In addition, we make an attempt to model the filtered fluid velocity profile in wall-bounded suspension flows. The authors acknowledge funding from the European Commission through FP7 Grant Agreement No. 604656, as well as VSC-3 and dcluster.tugraz.at.
Energy Technology Data Exchange (ETDEWEB)
Massol, A.
2004-02-15
The application of statistically averaged two-fluid models for the simulation of complex indus- trial two-phase flows requires the development of adequate models for the drag force exerted on the inclusions and the interfacial heat exchange. This task becomes problematic at high volume fractions of the dispersed phase. The quality of the simulation strongly depends upon the inter- facial exchange terms, starting with the steady drag force. For example, an accurate modelling of the drag force is therefore a crucial point to simulate the expansion of dense fluidized beds. Most models used to study the exchange terms between particles and fluids are based on the interaction between an isolated particle and a surrounding gas. Those models are clearly not adequate in cases where the volume fraction of particles increases and particle-particle interactions become important. Studying such cases is a complex task because of the multiple possible configurations. While the interaction between an isolated sphere and a gas depends only on the particle size and the slip velocity between gas and particles, the interaction between a cloud of particles and a gas depends on many more parameters: size and velocity distribution of particles, relative position of particles. Even if the particles keep relative fixed positions, there is an infinite number of combinations to construct such an array. The objective of the present work is to perform steady and unsteady simulations of the flow in regular arrays of fixed particles in order to analyze the influence of the size and distributions of spheres on drag force and heat transfer (the array of spheres can be either monodispersed, either bi-dispersed). Several authors have studied the drag exerted on the spheres, but only for low Reynolds numbers and/or solid volume fractions close to the packed limit. Moreover some discrepancies are observed between the different studies. On top of that, all existing studies are limited to steady flows
Numerical Dissipation and Subgrid Scale Modeling for Separated Flows at Moderate Reynolds Numbers
Cadieux, Francois; Domaradzki, Julian Andrzej
2014-11-01
Flows in rotating machinery, for unmanned and micro aerial vehicles, wind turbines, and propellers consist of different flow regimes. First, a laminar boundary layer is followed by a laminar separation bubble with a shear layer on top of it that experiences transition to turbulence. The separated turbulent flow then reattaches and evolves downstream from a nonequilibrium turbulent boundary layer to an equilibrium one. In previous work, the capability of LES to reduce the resolution requirements down to 1 % of DNS resolution for such flows was demonstrated (Cadieux et al., JFE 136-6). However, under-resolved DNS agreed better with the benchmark DNS than simulations with explicit SGS modeling because numerical dissipation and filtering alone acted as a surrogate SGS dissipation. In the present work numerical viscosity is quantified using a new method proposed recently by Schranner et al. and its effects are analyzed and compared to turbulent eddy viscosities of explicit SGS models. The effect of different SGS models on a simulation of the same flow using a non-dissipative code is also explored. Supported by NSF.
Lycett-Brown, Daniel; Luo, Kai H
2016-11-01
A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.
Leng, Xueyuan; Kolesnikov, Yuri B.; Krasnov, Dmitry; Li, Benwen
2018-01-01
The effect of an axial homogeneous magnetic field on the turbulence in the Taylor-Couette flow confined between two infinitely long conducting cylinders is studied by the direct numerical simulation using a periodic boundary condition in the axial direction. The inner cylinder is rotating, and the outer one is fixed. We consider the case when the magnetic Reynolds number Rem ≪ 1, i.e., the influence of the induced magnetic field on the flow is negligible that is typical for industry and laboratory study of liquid metals. Relevance of the present study is based on the similarity of flow characteristics at moderate and high magnetic field for the cases with periodic and end-wall conditions at the large flow aspect ratio, as proven in the earlier studies. Two sets of Reynolds numbers 4000 and 8000 with several Hartmann numbers varying from 0 to 120 are employed. The results show that the mean radial induced electrical current, resulting from the interaction of axial magnetic field with the mean flow, leads to the transformation of the mean flow and the modification of the turbulent structure. The effect of turbulence suppression is dominating at a strong magnetic field, but before reaching the complete laminarization, we capture the appearance of the hairpin-like structures in the flow.
Wosnik, M.; Bachant, P.; Nedyalkov, I.; Rowell, M.; Dufresne, N.; Lyon, V.
2013-12-01
We report on research related to MHK turbines at the Center for Ocean Renewable Energy (CORE) at the University of New Hampshire (UNH). The research projects span varies scales, levels of complexity and environments - from fundamental studies of hydrofoil sections in a high speed water tunnel, to moderate Reynolds number turbine tests with inflow and wake studies in a large cross-section tow tank, to deployments of highly instrumented process models at tidal energy test sites in New England. A concerted effort over the past few years has brought significant new research infrastructure for marine hydrokinetic energy conversion online at UNH-CORE. It includes: a high-speed cavitation tunnel with independent control of velocity and pressure; a highly accurate tow mechanism, turbine test bed and wake traversing system for the 3.7m x 2.4m cross-section UNH tow tank; a 10.7m x 3.0m tidal energy test platform which can accommodate turbines up to 1.5m in diameter, for deployments at the UNH-CORE Tidal Energy Test Site in Great Bay Estuary, NH, a sheltered 'nursery site' suitable for intermediate scale tidal energy conversion device testing with peak currents typically above 2 m/s during each tidal cycle. Further, a large boundary layer wind tunnel, the new UNH Flow Physics Facility (W6.0m x H2.7m xL72m) is being used for detailed turbine wake studies, producing data and insight also applicable to MHK turbines in low Froude number deployments. Bi-directional hydrofoils, which perform equally well in either flow direction and could avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, are being investigated theoretically, numerically and experimentally. For selected candidate shapes lift, drag, wake, and cavitation inception/desinence are measured. When combined with a cavitation inception model for MHK turbines, this information can be used to prescribe turbine design/operational parameters. Experiments were performed with a 1m diameter and 1m
Ashby, G. C., Jr.
1974-01-01
Experimental data have been obtained for two series of bodies at Mach 6 and Reynolds numbers, based on model length, from 1.4 million to 9.5 million. One series consisted of axisymmetric power-law bodies geometrically constrained for constant length and base diameter with values of the exponent n of 0.25, 0.5, 0.6, 0.667, 0.75, and 1.0. The other series consisted of positively and negatively cambered bodies of polygonal cross section, each having a constant longitudinal area distribution conforming to that required for minimizing zero-lift wave drag at hypersonic speeds under the geometric constraints of given length and volume. At the highest Reynolds number, the power-law body for minimum drag is blunter (exponent n lower) than predicted by inviscid theory (n approximately 0.6 instead of n = 0.667); however, the peak value of lift-drag ratio occurs at n = 0.667. Viscous effects were present on the bodies of polygonal cross section but were less pronounced than those on the power-law bodies. The trapezoidal bodies with maximum width at the bottom were found to have the highest maximum lift-drag ratio and the lowest mimimum drag.
Tabe, Reza; Ghalichi, Farzan; Hossainpour, Siamak; Ghasemzadeh, Kamran
2016-08-12
Laminar, turbulent, transitional, or combine areas of all three types of viscous flow can occur downstream of a stenosis depending upon the Reynolds number and constriction shape parameter. Neither laminar flow solver nor turbulent models for instance the k-ω (k-omega), k-ε (k-epsilon), RANS or LES are opportune for this type of flow. In the present study attention has been focused vigorously on the effect of the constriction in the flow field with a unique way. It means that the laminar solver was employed from entry up to the beginning of the turbulent shear flow. The turbulent model (k-ω SST Transitional Flows) was utilized from starting of turbulence to relaminarization zone while the laminar model was applied again with onset of the relaminarization district. Stenotic flows, with 50 and 75% cross-sectional area, were simulated at Reynolds numbers range from 500 to 2000 employing FLUENT (v6.3.17). The flow was considered to be steady, axisymmetric, and incompressible. Achieving results were reported as axial velocity, disturbance velocity, wall shear stress and the outcomes were compared with previously experimental and CFD computations. The analogy of axial velocity profiles shows that they are in acceptable compliance with the empirical data. As well as disturbance velocity and wall shear stresses anticipated by this new approach, part by part simulation, are reasonably valid with the acceptable experimental studies.
Energy Technology Data Exchange (ETDEWEB)
Benarafa, Y
2005-12-15
The main issue to perform a computational study of high Reynolds numbered turbulent flows consists on predicting their unsteadiness without implying a tremendous computational cost. First, the main drawbacks of large-eddy simulation with standard wall model on a coarse mesh for a plane channel flow are highlighted. To correct these drawbacks two coupling RANS/LES methods have been proposed. The first one relies on a sophisticated wall model (TBLE) which consists on solving Thin Boundary Layer Equations with a RANS type turbulent closure in the near wall region. The second one consists on a RANS/LES methods have been proposed. The second one consists on a RANS/LES coupling method using a forcing term approach. These various approaches have been implemented in the TRIO-U code developed at CEA (French Atomic Center) at Grenoble, France. The studied flow configurations are the fully developed plane channel flow and a flow around a surface-mounted cubical obstacle. Both approaches provide encouraging results and allow a surface-mounted cubical obstacle. Both approaches provide encouraging results and allow unsteady simulations for a low computational cost. (author)
Dress, D. A.; Mcguire, P. D.; Stanewsky, E.; Ray, E. J.
1983-01-01
A wind tunnel investigation of an advanced technology airfoil, the CAST 10-2/DOA 2, was conducted in the Langley 0.3 meter Transonic Cryogenic Tunnel (0.3 m TCT). This was the first of a series of tests conducted in a cooperative National Aeronautics and Space Administration (NASA) and the Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e. V. (DFVLR) airfoil research program. Test temperature was varied from 280 K to 100 K to pressures from slightly above 1 to 5.8 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 4 x 10 to the 8th power to 45 x 10 to the 6th power. This report presents the experimental aerodynamic data obtained for the airfoil and includes descriptions of the airfoil model, the 0.3 m TCT, the test instrumentation, and the testing procedures.
Dress, D. A.; Stanewsky, E.; Mcguire, P. D.; Ray, E. J.
1984-01-01
Wind tunnel tests of an advanced technology airfoil, the CAST 10-2/DOA 2, were conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). This was the third of a series of tests conducted in a cooperative airfoil research program between the National Aeronautics and Space Administration and the Deutsche Forschungsund Versuchsanstalt fur Luft- und Raumfahrt e. V. For these tests, temperature was varied from 270 K to 110 K at pressures from 1.5 to 5.75 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 2 to 20 million. The aerodynamic data for the 7.62 cm chord airfoil model used in these tests is presented without analysis. Descriptions of the 0.3-m TCT, the airfoil model, the test instrumentation, and the testing procedures are included.
Directory of Open Access Journals (Sweden)
Niaz Bahadur Khan
Full Text Available This study numerically investigates the vortex-induced vibration (VIV of an elastically mounted rigid cylinder by using Reynolds-averaged Navier-Stokes (RANS equations with computational fluid dynamic (CFD tools. CFD analysis is performed for a fixed-cylinder case with Reynolds number (Re = 104 and for a cylinder that is free to oscillate in the transverse direction and possesses a low mass-damping ratio and Re = 104. Previously, similar studies have been performed with 3-dimensional and comparatively expensive turbulent models. In the current study, the capability and accuracy of the RANS model are validated, and the results of this model are compared with those of detached eddy simulation, direct numerical simulation, and large eddy simulation models. All three response branches and the maximum amplitude are well captured. The 2-dimensional case with the RANS shear-stress transport k-w model, which involves minimal computational cost, is reliable and appropriate for analyzing the characteristics of VIV.
Ortuño-Sierra, Javier; Aritio-Solana, Rebeca; Inchausti, Félix; Chocarro de Luis, Edurne; Lucas Molina, Beatriz; Pérez de Albéniz, Alicia; Fonseca-Pedrero, Eduardo
2017-01-01
The main purpose of the present study was to assess the depressive symptomatology and to gather new validity evidences of the Reynolds Depression Scale-Short form (RADS-SF) in a representative sample of youths. The sample consisted of 2914 adolescents with a mean age of 15.85 years (SD = 1.68). We calculated the descriptive statistics and internal consistency of the RADS-SF scores. Also, confirmatory factor analyses (CFAs) at the item level and successive multigroup CFAs to test measurement invariance, were conducted. Latent mean differences across gender and educational level groups were estimated, and finally, we studied the sources of validity evidences with other external variables. The level of internal consistency of the RADS-SF Total score by means of Ordinal alpha was .89. Results from CFAs showed that the one-dimensional model displayed appropriate goodness of-fit indices with CFI value over .95, and RMSEA value under .08. In addition, the results support the strong measurement invariance of the RADS-SF scores across gender and age. When latent means were compared, statistically significant differences were found by gender and age. Females scored 0.347 over than males in Depression latent variable, whereas older adolescents scored 0.111 higher than the younger group. In addition, the RADS-SF score was associated with the RADS scores. The results suggest that the RADS-SF could be used as an efficient screening test to assess self-reported depressive symptoms in adolescents from the general population.
Madhukar, K.; Ramamohan, T. R.; Shivakumara, I. S.
2010-09-01
We make use of the formulation developed by Lovalenti and Brady [1] for the hydrodynamic force acting upon a spherical particle undergoing arbitrary time dependent motion in an arbitrary time dependent uniform flow field at low Reynolds numbers, to derive an expression for the effects of a constant bias force acting on a periodically forced rigid spherical particle in a Newtonian fluid. We use Newton's second law to relate the total force acting on the particle to the motion of the particle. The total force is given by: Total force = Fext+FH, where, Fext is the external force inclusive of both the periodic force and the constant bias force. FH is the hydrodynamic force derived by Lovalenti and Brady [1] including both unsteady and convective inertia. The equation derived contains a nonlinear history term and is nonlinear. This equation is solved numerically using an adaptive step size Runge—Kutta scheme. We obtain several phase plots (plots between particle displacement and particle velocity), which show the effects of low Reynolds numbers, the periodic force and the effects of the constant bias force on the particle motion. It is observed that at low magnitudes of the periodic forcing the external constant force dominates and the particle moves along the direction of the external constant force. As we increase the magnitude of the periodic forcing, the periodic force is seen to dominate and the particle is seen to oscillate along a mean position with a slight drift along the direction of the periodic force and the external constant force, when they are imposed in the same direction. However the motion of the particle becomes more complicated when the directions of the periodic forcing and external constant force are opposite to each other. We also observe a reflection in phase space when the directions of both the forces are reversed. The phase plots typically are of a half sinusoidal, sinusoidal and a coiled (solenoidal) pattern. These plots include the effects
1985-03-01
heat flux R Radiation .: Rf Flux Richardson Number - Ri Gradient Richardson Number SR (y’) Space correlation coefficient So Standard deviation (used...components = u, v or w a Boundary layer depth iv Symbol Definition Viscous dissipation e Temperature fluctuation r. = Kolmogoroff constant x m Peak wave...should follow €2/3k-/ l (k) K C k-5 /3 (23) where K is the Kolmogoroff constant (K = 0.5) and k = 2in is the U radian wave number. The values of both
Energy Technology Data Exchange (ETDEWEB)
Tanahashi, T.; Nakai, T. [Keio University, Tokyo (Japan). Faculty of Engineering
1995-12-15
Generally speaking, finite element methods in the computational fluid dynamics are universal, but not economical. In the present paper in order to overcome this defect ill FEM, we propose a new method using the discrete del operator which is a coordinate-free differential operator in the discrete space. This operator in the discrete space is defined as an element average of the gradient of the shape function and it has three characteristics such as orthogonality, identity and symmetricity. Furthermore the discrete del operator is useful in non-memorizing and in easy coding. As the analytical expression of the discrete del operator is a vector in the two or three dimensions, the natural description of programming becomes objective and compact, which is more understandable for non-specialists of CFD. Here we apply this method to thermal fluid flows at high Reynolds numbers. 10 refs., 5 figs., 1 tab.
Directory of Open Access Journals (Sweden)
Ben-Mansour R.
2005-01-01
Full Text Available Internal cooling is one of the effective techniques to cool turbine blades from inside. This internal cooling is achieved by pumping a relatively cold fluid through the internal-cooling channels. These channels are fed through short channels placed at the root of the turbine blade, usually called entrance region channels. The entrance region at the root of the turbine blade usually has a different geometry than the internal-cooling channel of the blade. This study investigates numerically the fluid flow and heat transfer in one-pass smooth isothermally heated channel using the RNG k−ϵ model. The effect of Reynolds number on the flow and heat transfer characteristics has been studied for two mass flow rate ratios ( 1/1 and 1/2 for the same cooling channel. The Reynolds number was varied between 10 000 and 50 000 . The study has shown that the cooling channel goes through hydrodynamic and thermal development which necessitates a detailed flow and heat transfer study to evaluate the pressure drop and heat transfer rates. For the case of unbalanced mass flow rate ratio, a maximum difference of 8.9 % in the heat transfer rate between the top and bottom surfaces occurs at Re=10 000 while the total heat transfer rate from both surfaces is the same for the balanced mass flow rate case. The effect of temperature-dependent property variation showed a small change in the heat transfer rates when all properties were allowed to vary with temperature. However, individual effects can be significant such as the effect of density variation, which resulted in as much as 9.6 % reduction in the heat transfer rate.
DEFF Research Database (Denmark)
Yilmaz, Özlem Ceyhan; Pires, Oscar; Munduate, Xabier
2017-01-01
. As a result of the blind test campaign it was found that although the codes are in general capable of predicting increased max lift and decreased minimum drag with Re number, the Re trend predictions in particular the glide ratio (lift over drag) need further improvement. In addition to that, the significant...... effect of the inflow turbulence on glide ratio especially at high Re numbers is found as the most important parameter where the prediction as well as the selection of the correct inflow turbulence levels is the key for correct airfoil designs for the future generation 10MW+ wind turbine blades....
Moore, P.D.
2009-01-01
Jet noise is an extensively studied phenomenon since the deployment of the first civil jet aircraft more than 50 years ago. Jet noise makes up a considerable portion of the total noise of jet aircraft, and the expansion of the numbers of airplanes and airports has only been possible by keeping the
Directory of Open Access Journals (Sweden)
Johnny ISSA
2015-09-01
Full Text Available Heat transfer in a laminar confined oscillating slot jet is numerically investigated. A uniform inlet velocity profile oscillating with an angle φ, having the following sinusoidal shape: φ= φmax*sin(2πft. φ is in radians, φmax is the maximum jet angle, and f is the oscillation frequency. The height-to-jet-width ratio (H/w was fixed to 5 and the fluid’s Prandtl number which is one of the dimensionless governing groups is 0.74. The other dimensionless groups characterizing this problem, which are, Strouhal’s number, St, and Reynolds number, Re, where varied. Re was in the range 100
Moran-Lopez, Tiberius; Schilling, Oleg
2013-11-01
Reshocked Richtmyer-Meshkov turbulent mixing of gases with various Atwood numbers and shock Mach numbers is simulated using a third-order weighted essentially nonoscillatory implementation of a K- ɛ multicomponent Reynolds-averaged Navier-Stokes model. First, mixing layer widths from simulations with Mach number Ma = 1 . 20 , Atwood number At = 0 . 67 (air/SF6), and different times of reshock are shown to be in very good agreement with the experimental data of Leinov et al. [J. Fluid Mech. 626, 449 (2009)]. Second, widths from simulations with Ma = 1 . 50 and At = +/- 0 . 21 , +/- 0 . 67 and +/- 0 . 87 (corresponding to air/CO2, air/SF6 and H2/air) are compared to the large-eddy simulation data of Lombardini et al. [J. Fluid Mech. 670, 439 (2011)] and discussed. Budgets of the turbulent transport equations are considered to elucidate the mechanisms contributing to turbulent mixing in reshocked Richtmyer-Meshkov instability. Convergence of the mixing layer widths, mean fields, and turbulent fields under grid refinement is also assessed. This work was funded by the U. S. Department of Energy NNSA under the Predictive Science Academic Alliances Program by grant DE-FC52-08NA28616 and performed under the auspices of the DOE by LLNL under Contract DE-AC52-s07NA27344.
Taherian, Gholamhossein; Nili-Ahmadabadi, Mahdi; Karimi, Mohammad Hassan; Tavakoli, Mohammad Reza
2017-01-01
In this study, the effect of cutting the end of a thick airfoil and adding a cavity on its flow pattern is studied experimentally using PIV technique. First, by cutting 30% chord length of the Riso airfoil, a thick blunt trialing-edge airfoil is generated. The velocity field around the original airfoil and the new airfoil is measured by PIV technique and compared with each other. Then, adding two parallel plates to the end of the new airfoil forms the desired cavity. Continuous measurement of unsteady flow velocity over the Riso airfoil with thick blunt trailing edge and base cavity is the most important innovation of this research. The results show that cutting off the end of the airfoil decreases the wake region behind the airfoil, when separation occurs. Moreover, adding a cavity to the end of the thickened airfoil causes an increase in momentum and a further decrease in the wake behind the trailing edge that leads to a drag reduction in comparison with the thickened airfoil without cavity. Furthermore, using cavity decreases the Strouhal number and vortex shedding frequency.
Ni, Ming-Jiu; Li, Jun-Feng
2012-01-01
The consistent and conservative scheme developed on a rectangular collocated mesh [M.-J. Ni, R. Munipalli, N.B. Morley, P. Huang, M.A. Abdou, A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: on a rectangular collocated grid system, Journal of Computational Physics 227 (2007) 174-204] and on an arbitrary collocated mesh [M.-J. Ni, R. Munipalli, P. Huang, N.B. Morley, M.A. Abdou, A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: on an arbitrary collocated mesh, Journal of Computational Physics 227 (2007) 205-228] has been extended and specially designed for calculation of the Lorentz force on a staggered grid system (Part III) by solving the electrical potential equation for magnetohydrodynamics (MHD) at a low magnetic Reynolds number. In a staggered mesh, pressure ( p) and electrical potential ( φ) are located in the cell center, while velocities and current fluxes are located on the cell faces of a main control volume. The scheme numerically meets the physical conservation laws, charge conservation law and momentum conservation law. Physically, the Lorentz force conserves the momentum when the magnetic field is constant or spatial coordinate independent. The calculation of current density fluxes on cell faces is conducted using a scheme consistent with the discretization for solution of the electrical potential Poisson equation, which can ensure the calculated current density conserves the charge. A divergence formula of the Lorentz force is used to calculate the Lorentz force at the cell center of a main control volume, which can numerically conserve the momentum at constant or spatial coordinate independent magnetic field. The calculated cell-center Lorentz forces are then interpolated to the cell faces, which are used to obtain the corresponding velocity fluxes by solving the momentum equations. The "conservative" is an important property of
Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit
2012-11-01
Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.
Directory of Open Access Journals (Sweden)
Marfaing Olivier
2017-01-01
Full Text Available In a recent paper, we derived an analytical expression for the void fraction profile in low Reynolds number bubbly pipe flows, based on a balance of hydrodynamic forces on bubbles. The objective of the present work is to perform a comparison of this analytical Bubble Force Balance Formula (BFBF with an experiment from the literature. We begin by simulating this experiment with the NEPTUNE_CFD code. In particular we show that using an Rij-ε model to account for the liquid velocity fluctuations yields reasonable results. In order to compare our analytical profile with experimental measurements, we restrict ourselves to the near-wall region. In this region, the void fraction profile results from a balance between dispersion and wall forces, and the dispersion coefficient can be considered as uniform. The analytical BFBF profile is seen to be in good agreement with the measurements. We are also capable to estimate the dispersion coefficient in this near-wall region.
Holland, Scott D.; Murphy, Kelly J.
1993-01-01
Since mission profiles for airbreathing hypersonic vehicles such as the National Aero-Space Plane include single-stage-to-orbit requirements, real gas effects may become important with respect to engine performance. The effects of the decrease in the ratio of specific heats have been investigated in generic three-dimensional sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane (where gamma=1.22) and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air (where gamma=1.4). In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.
A Chain Perspective on Large-scale Number Systems
Grijpink, J.H.A.M.
2012-01-01
As large-scale number systems gain significance in social and economic life (electronic communication, remote electronic authentication), the correct functioning and the integrity of public number systems take on crucial importance. They are needed to uniquely indicate people, objects or phenomena
Reynolds stress and shear flow generation
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.
2001-01-01
to the treatment of the pseudo-Reynolds stress, we present analytical and numerical results which demonstrate that the Reynolds stress in a plasma, indeed, generates a poloidal shear flow. The numerical simulations are performed both in a drift wave turbulence regime and a resistive interchange turbulence regime......The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding...... of improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method...
Directory of Open Access Journals (Sweden)
Anna Figueras-Masip
2008-01-01
Full Text Available En este estudio instrumental se analiza la estructura factorial de la Reynolds Adolescent Depression Scale (RADS mediante análisis factorial confirmatorio. Se prueban tres modelos: un modelo unifactorial, un modelo de cuatro factores y un tercer modelo de cinco factores. Los tres modelos presentan un buen ajuste, pero se escoge el modelo unifactorial por ser el más parsimonioso. Se presentan datos normativos para la RADS en su versión bilingüe, castellano y catalán, en una muestra comunitaria de 1.384 participantes (649 varones y 735 mujeres y en una muestra clínica de 217 participantes (95 varones y 122 mujeres con edades comprendidas entre los 11 y los 18 años. Las puntuaciones medias encontradas son inferiores a las de las muestras americanas utilizadas en la baremación. En general, las mujeres obtienen puntuaciones directas superiores a los varones. La fiabilidad de la RADS, tanto la consistencia interna como la correlación test-retest, es elevada, para la muestra comunitaria y la muestra clínica. El alfa de Cronbach oscila entre 0,88 (test, muestra comunitaria y 0,90 (retest, muestra comunitaria y es de 0,91en la fase de test de la muestra clínica. La fiabilidad test-retest es de 0,82 en la muestra comunitaria y de 0,84 en la muestra clínica.
Coordinated Scaling of Cortical and Cerebellar Numbers of Neurons
Herculano-Houzel, Suzana
2010-01-01
While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of four different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora), Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble. PMID:20300467
Coordinated scaling of cortical and cerebellar numbers of neurons
Directory of Open Access Journals (Sweden)
Suzana Herculano-Houzel
2010-03-01
Full Text Available While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of 4 different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora, Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.
Fermion number violating effects in low scale leptogenesis
Directory of Open Access Journals (Sweden)
Shintaro Eijima
2017-08-01
Full Text Available The existence of baryon asymmetry and dark matter in the Universe may be related to CP-violating reactions of three heavy neutral leptons (HNLs with masses well below the Fermi scale. The dynamical description of the lepton asymmetry generation, which is the key ingredient of baryogenesis and of dark matter production, is quite complicated due to the presence of many different relaxation time scales and the necessity to include quantum-mechanical coherent effects in HNL oscillations. We derive kinetic equations accounting for fermion number violating effects missed so far and identify one of the domains of HNL masses that can potentially lead to large lepton asymmetry generation boosting the sterile neutrino dark matter production.
A Scale Invariant Distribution of the Prime Numbers
Directory of Open Access Journals (Sweden)
Wayne S. Kendal
2015-10-01
Full Text Available The irregular distribution of prime numbers amongst the integers has found multiple uses, from engineering applications of cryptography to quantum theory. The degree to which this distribution can be predicted thus has become a subject of current interest. Here, we present a computational analysis of the deviations between the actual positions of the prime numbers and their predicted positions from Riemann’s counting formula, focused on the variance function of these deviations from sequential enumerative bins. We show empirically that these deviations can be described by a class of probabilistic models known as the Tweedie exponential dispersion models that are characterized by a power law relationship between the variance and the mean, known by biologists as Taylor’s power law and by engineers as fluctuation scaling. This power law behavior of the prime number deviations is remarkable in that the same behavior has been found within the distribution of genes and single nucleotide polymorphisms (SNPs within the human genome, the distribution of animals and plants within their habitats, as well as within many other biological and physical processes. We explain the common features of this behavior through a statistical convergence effect related to the central limit theorem that also generates 1/f noise.
A Cryogenic High-Reynolds Turbulence Experiment at CERN
Bézaguet, Alain-Arthur; Knoops, S; Lebrun, P; Pezzetti, M; Pirotte, O; Bret, J L; Chabaud, B; Garde, G; Guttin, C; Hébral, B; Pietropinto, S; Roche, P; Barbier-Neyret, J P; Baudet, C; Gagne, Y; Poulain, C; Castaing, B; Ladam, Y; Vittoz, F
2002-01-01
The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively ...
Jack, John R; MOSKOWITZ BARRY
1954-01-01
Pressure distributions and forces for a series of four bodies of revolution having nose-fineness ratios varying from 4 to 10 have been obtained and compared with theory for a Mach number of 3.12, a Reynolds number range of 2x10(sup)6 to 14x10(sup)6, and angles of attack from zero to 9 degrees. In general, a comparison of the experimental data with a second-order theory showed good agreement for the range of variables investigated.
Directory of Open Access Journals (Sweden)
Abhijit Paul
2016-09-01
Full Text Available Present article illustrates a computational study of three-dimensional steady state heat transfer and high turbulent flow characteristics through a rectangular duct with constant heat fluxed upper wall and single rectangular cross-sectioned baffle insertion at different angles. RNG k–ɛ model along with standard wall function based computations has been accomplished applying the finite volume method, and SIMPLE algorithm has been executed for solving the governing equations. For a Reynolds number, Re of 10,000 to 50,000, Prandtl Number, Pr of 0.707 and baffle angle, α of 30°, 60°, 90°, 120°, 150°, computational studies are executed, centred onto the hydraulic diameter, Dh, test section and hydrodynamic entry length of the duct. Flow field has been solved using Ansys Fluent 14.0 software. Study exposes that baffled rectangular duct has a higher average Nusselt number, Nu and Darcy friction factor, f compared to a smooth rectangular duct. Nu as well as f are found to be maximum at 90° baffle angle. Results illustrate that both α and Re play a significant role in heat transfer as well as flow characteristics and also effects TEF. The correctness of the results attained in this study is corroborated by comparing the results with those existing in the literature for smooth rectangular duct within a precision of ±2% for f and ±4% for Nu.
Directory of Open Access Journals (Sweden)
R.E. Abo-Elkhair
2017-04-01
Full Text Available This article addresses, effects of a magneto-fluid through a Darcy flow model with oscillatory wavy walled whose inner surface is ciliated. The equations that governing the flow are modeled without using any approximations. Adomian Decomposition Method (ADM is used to evaluate the solution of our system of nonlinear partial differential equations. Stream function, velocity and pressure gradient components are obtained by using the vorticity formula. The effects for our arbitrary physical parameters on flow characteristics are analyzed by plotting diagrams and discussed in details. With the help of stream lines the trapping mechanism has also been discussed. The major outcomes for the ciliated channel walls are: The axial velocity is higher without a ciliated walls than that for a ciliated walls and an opposite behaviour is shown near the ciliated channel walls. The pressure gradients in both directions are higher for a ciliated channel walls. More numbers of the trapped bolus in the absent of the eccentricity of the cilia elliptic path.
Readiness for Change. Scaling-Up Brief. Number 3
Fixsen, Dean L.; Blase, Karen A.; Horner, Rob; Sugai, George
2009-01-01
The purpose of this "Brief" is to define the variables a state or large district leadership team may wish to consider as they determine if they are "ready" to invest in the scaling-up of an innovation in education. As defined here, "scaling up" means that at least 60% of the students who could benefit from an innovation have access to that…
Quiet swimming at low Reynolds number
DEFF Research Database (Denmark)
Andersen, Anders Peter; Wadhwa, Navish; Kiørboe, Thomas
2015-01-01
-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws...
Mapping copy number variation by population-scale genome sequencing
DEFF Research Database (Denmark)
Mills, Ryan E.; Walter, Klaudia; Stewart, Chip
2011-01-01
, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications...... differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies....
Validation of the flux number as scaling parameter for top-spray fluidised bed systems
DEFF Research Database (Denmark)
Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn
2008-01-01
. Coating conditions with flux number values of 4.5 and 4.7 were however successful in terms of agglomeration tendency and match of particle size fractions, but indicated in addition a strong influence of nozzle pressure. The present paper suggests even narrower boundaries for the flux number compared......Top-spray fluidised bed coating scale-up experiments have been performed in three scales in order to test and validate the Akkermans flux number as possible scale-up parameter. Coating operations were performed on low porosity sodium sulphate cores (180-350 mu m) coated with aqueous solutions of Na......2SO4 using Dextrin as binder in three top-spray fluidised bed scales, i.e. a small-scale (type: GEA Aeromatic-Fielder Strea-1), medium-scale (type: Niro MP-1) and large-scale (type: GEA MP-2/3). Following the parameter guidelines adapted from the original patent description, the flux number...
Assessment of an Explicit Algebraic Reynolds Stress Model
Carlson, Jan-Renee
2005-01-01
This study assesses an explicit algebraic Reynolds stress turbulence model in the in the three-dimensional Reynolds averaged Navier-Stokes (RANS) solver, ISAAC (Integrated Solution Algorithm for Arbitrary Con gurations). Additionally, it compares solutions for two select configurations between ISAAC and the RANS solver PAB3D. This study compares with either direct numerical simulation data, experimental data, or empirical models for several different geometries with compressible, separated, and high Reynolds number flows. In general, the turbulence model matched data or followed experimental trends well, and for the selected configurations, the computational results of ISAAC closely matched those of PAB3D using the same turbulence model.
Directory of Open Access Journals (Sweden)
Jasmin T Gygi
Full Text Available This study examined measurement invariance and latent mean differences in the German version of the Reynolds Intellectual Assessment Scales (RIAS for 316 individuals with a migration background (defined as speaking German as a second language and 316 sex- and age-matched natives. The RIAS measures general intelligence (single-factor structure and its two components, verbal and nonverbal intelligence (two-factor structure. Results of a multi-group confirmatory factor analysis showed scalar invariance for the two-factor and partial scalar invariance for the single-factor structure. We conclude that the two-factor structure of the RIAS is comparable across groups. Hence, verbal and nonverbal intelligence but not general intelligence should be considered when comparing RIAS test results of individuals with and without a migration background. Further, latent mean differences especially on the verbal, but also on the nonverbal intelligence index indicate language barriers for individuals with a migration background, as subtests corresponding to verbal intelligence require higher skills in German language. Moreover, cultural, environmental, and social factors that have to be taken into account when assessing individuals with a migration background are discussed.
Medicine in words and numbers: a cross-sectional survey comparing probability assessment scales
Directory of Open Access Journals (Sweden)
Koele Pieter
2007-06-01
Full Text Available Abstract Background In the complex domain of medical decision making, reasoning under uncertainty can benefit from supporting tools. Automated decision support tools often build upon mathematical models, such as Bayesian networks. These networks require probabilities which often have to be assessed by experts in the domain of application. Probability response scales can be used to support the assessment process. We compare assessments obtained with different types of response scale. Methods General practitioners (GPs gave assessments on and preferences for three different probability response scales: a numerical scale, a scale with only verbal labels, and a combined verbal-numerical scale we had designed ourselves. Standard analyses of variance were performed. Results No differences in assessments over the three response scales were found. Preferences for type of scale differed: the less experienced GPs preferred the verbal scale, the most experienced preferred the numerical scale, with the groups in between having a preference for the combined verbal-numerical scale. Conclusion We conclude that all three response scales are equally suitable for supporting probability assessment. The combined verbal-numerical scale is a good choice for aiding the process, since it offers numerical labels to those who prefer numbers and verbal labels to those who prefer words, and accommodates both more and less experienced professionals.
Okie, Jordan G; Smith, Val H; Martin-Cereceda, Mercedes
2016-05-25
We investigate the effects of trophic lifestyle and two types of major evolutionary transitions in individuality-the endosymbiotic acquisition of organelles and development of multicellularity-on organellar and cellular metabolism and allometry. We develop a quantitative framework linking the size and metabolic scaling of eukaryotic cells to the abundance, size and metabolic scaling of mitochondria and chloroplasts and analyse a newly compiled, unprecedented database representing unicellular and multicellular cells covering diverse phyla and tissues. Irrespective of cellularity, numbers and total volumes of mitochondria scale linearly with cell volume, whereas chloroplasts scale sublinearly and sizes of both organelles remain largely invariant with cell size. Our framework allows us to estimate the metabolic scaling exponents of organelles and cells. Photoautotrophic cells and organelles exhibit photosynthetic scaling exponents always less than one, whereas chemoheterotrophic cells and organelles have steeper respiratory scaling exponents close to one. Multicellularity has no discernible effect on the metabolic scaling of organelles and cells. In contrast, trophic lifestyle has a profound and uniform effect, and our results suggest that endosymbiosis fundamentally altered the metabolic scaling of free-living bacterial ancestors of mitochondria and chloroplasts, from steep ancestral scaling to a shallower scaling in their endosymbiotic descendants. © 2016 The Author(s).
Map scale effects on estimating the number of undiscovered mineral deposits
Singer, D.A.; Menzie, W.D.
2008-01-01
Estimates of numbers of undiscovered mineral deposits, fundamental to assessing mineral resources, are affected by map scale. Where consistently defined deposits of a particular type are estimated, spatial and frequency distributions of deposits are linked in that some frequency distributions can be generated by processes randomly in space whereas others are generated by processes suggesting clustering in space. Possible spatial distributions of mineral deposits and their related frequency distributions are affected by map scale and associated inclusions of non-permissive or covered geological settings. More generalized map scales are more likely to cause inclusion of geologic settings that are not really permissive for the deposit type, or that include unreported cover over permissive areas, resulting in the appearance of deposit clustering. Thus, overly generalized map scales can cause deposits to appear clustered. We propose a model that captures the effects of map scale and the related inclusion of non-permissive geologic settings on numbers of deposits estimates, the zero-inflated Poisson distribution. Effects of map scale as represented by the zero-inflated Poisson distribution suggest that the appearance of deposit clustering should diminish as mapping becomes more detailed because the number of inflated zeros would decrease with more detailed maps. Based on observed worldwide relationships between map scale and areas permissive for deposit types, mapping at a scale with twice the detail should cut permissive area size of a porphyry copper tract to 29% and a volcanic-hosted massive sulfide tract to 50% of their original sizes. Thus some direct benefits of mapping an area at a more detailed scale are indicated by significant reductions in areas permissive for deposit types, increased deposit density and, as a consequence, reduced uncertainty in the estimate of number of undiscovered deposits. Exploration enterprises benefit from reduced areas requiring
Optimal fluxes and Reynolds stresses
Jimenez, Javier
2016-01-01
It is remarked that fluxes in conservation laws, such as the Reynolds stresses in the momentum equation of turbulent shear flows, or the spectral energy flux in isotropic turbulence, are only defined up to an arbitrary solenoidal field. While this is not usually significant for long-time averages, it becomes important when fluxes are modelled locally in large-eddy simulations, or in the analysis of intermittency and cascades. As an example, a numerical procedure is introduced to compute fluxes in scalar conservation equations in such a way that their total integrated magnitude is minimised. The result is an irrotational vector field that derives from a potential, thus minimising sterile flux `circuits'. The algorithm is generalised to tensor fluxes and applied to the transfer of momentum in a turbulent channel. The resulting instantaneous Reynolds stresses are compared with their traditional expressions, and found to be substantially different.
Weighing and Body Monitoring among College Women: The Scale Number as an Emotional Barometer
Mintz, Laurie B.; Awad, Germine H.; Stinson, Rebecca D.; Bledman, Rashanta A.; Coker, Angela D.; Kashubeck-West, Susan; Connelly, Kathleen
2013-01-01
This study investigated weighing and body-monitoring behaviors, as well as psychological and behavioral reactions to weighing, among female college students. Weighing and body monitoring were engaged in by the majority of participants. Participants changed food intake and exercise based on weight. About 63% reported that the scale number impacts…
Liang, Guolu; Chen, Hong
2015-01-01
This study aims to examine the expected scaling relationships between chromosome size and number across woody species and to clarify the importance of the scaling for the maintenance of chromosome diversity by analyzing the scaling at the inter- & intra-chromosomal level. To achieve for the goals, chromosome trait data were extracted for 191 woody species (including 56 evergreen species and 135 deciduous species) from the available literature. Cross-species analyses revealed a tradeoff among chromosomes between chromosome size and number, demonstrating there is selective mechanism crossing chromosomes among woody species. And the explanations for the result were presented from intra- to inter-chromosome contexts that the scaling may be compromises among scale symmetry, mechanical requirements, and resource allocation across chromosomes. Therein, a 3/4 scaling pattern was observed between total chromosomes and m-chromosomes within nucleus which may imply total chromosomes may evolve from more to less. In addition, the primary evolutionary trend of karyotype and the role of m-chromosomes in the process of karyotype evolution were also discussed.
On Reynolds stress and neutral azimuthal modes in the stability ...
Indian Academy of Sciences (India)
For singular neutral modes it is shown that the Reynolds stress varies like the inverse square of the radial distance in agreement with the homogeneous flow result of Maslowe & Nigam. It is also proved that singular neutral modes do not exist whenever the value of the Richardson number at the critical layer exceeds one ...
2011-09-02
... Employment and Training Administration Reynolds Food Packaging LLC, a Subsidiary of Reynolds Group Holding... Reynolds Food Packaging LLC, a subsidiary of Reynolds Group Holding Limited, Grove City, Pennsylvania... make the following certification: All workers of Reynolds Food Packaging LLC, a subsidiary of Reynolds...
Cellular Scaling Rules for the Brains of an Extended Number of Primate Species
Gabi, Mariana; Collins, Christine E.; Wong, Peiyan; Torres, Laila B.; Kaas, Jon H.; Herculano-Houzel, Suzana
2010-01-01
What are the rules relating the size of the brain and its structures to the number of cells that compose them and their average sizes? We have shown previously that the cerebral cortex, cerebellum and the remaining brain structures increase in size as a linear function of their numbers of neurons and non-neuronal cells across 6 species of primates. Here we describe that the cellular composition of the same brain structures of 5 other primate species, as well as humans, conform to the scaling rules identified previously, and that the updated power functions for the extended sample are similar to those determined earlier. Accounting for phylogenetic relatedness in the combined dataset does not affect the scaling slopes that apply to the cerebral cortex and cerebellum, but alters the slope for the remaining brain structures to a value that is similar to that observed in rodents, which raises the possibility that the neuronal scaling rules for these structures are shared among rodents and primates. The conformity of the new set of primate species to the previous rules strongly suggests that the cellular scaling rules we have identified apply to primates in general, including humans, and not only to particular subgroups of primate species. In contrast, the allometric rules relating body and brain size are highly sensitive to the particular species sampled, suggesting that brain size is neither determined by body size nor together with it, but is rather only loosely correlated with body size. PMID:20926854
Bhardwaj, Nitin; Carson, Matthew B; Abyzov, Alexej; Yan, Koon-Kiu; Lu, Hui; Gerstein, Mark B
2010-05-27
Through combinatorial regulation, regulators partner with each other to control common targets and this allows a small number of regulators to govern many targets. One interesting question is that given this combinatorial regulation, how does the number of regulators scale with the number of targets? Here, we address this question by building and analyzing co-regulation (co-transcription and co-phosphorylation) networks that describe partnerships between regulators controlling common genes. We carry out analyses across five diverse species: Escherichia coli to human. These reveal many properties of partnership networks, such as the absence of a classical power-law degree distribution despite the existence of nodes with many partners. We also find that the number of co-regulatory partnerships follows an exponential saturation curve in relation to the number of targets. (For E. coli and Bacillus subtilis, only the beginning linear part of this curve is evident due to arrangement of genes into operons.) To gain intuition into the saturation process, we relate the biological regulation to more commonplace social contexts where a small number of individuals can form an intricate web of connections on the internet. Indeed, we find that the size of partnership networks saturates even as the complexity of their output increases. We also present a variety of models to account for the saturation phenomenon. In particular, we develop a simple analytical model to show how new partnerships are acquired with an increasing number of target genes; with certain assumptions, it reproduces the observed saturation. Then, we build a more general simulation of network growth and find agreement with a wide range of real networks. Finally, we perform various down-sampling calculations on the observed data to illustrate the robustness of our conclusions.
Directory of Open Access Journals (Sweden)
Nitin Bhardwaj
2010-05-01
Full Text Available Through combinatorial regulation, regulators partner with each other to control common targets and this allows a small number of regulators to govern many targets. One interesting question is that given this combinatorial regulation, how does the number of regulators scale with the number of targets? Here, we address this question by building and analyzing co-regulation (co-transcription and co-phosphorylation networks that describe partnerships between regulators controlling common genes. We carry out analyses across five diverse species: Escherichia coli to human. These reveal many properties of partnership networks, such as the absence of a classical power-law degree distribution despite the existence of nodes with many partners. We also find that the number of co-regulatory partnerships follows an exponential saturation curve in relation to the number of targets. (For E. coli and Bacillus subtilis, only the beginning linear part of this curve is evident due to arrangement of genes into operons. To gain intuition into the saturation process, we relate the biological regulation to more commonplace social contexts where a small number of individuals can form an intricate web of connections on the internet. Indeed, we find that the size of partnership networks saturates even as the complexity of their output increases. We also present a variety of models to account for the saturation phenomenon. In particular, we develop a simple analytical model to show how new partnerships are acquired with an increasing number of target genes; with certain assumptions, it reproduces the observed saturation. Then, we build a more general simulation of network growth and find agreement with a wide range of real networks. Finally, we perform various down-sampling calculations on the observed data to illustrate the robustness of our conclusions.
Mach number scaling of helicopter rotor blade/vortex interaction noise
Leighton, Kenneth P.; Harris, Wesley L.
1985-01-01
A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.
A simple large-scale droplet generator for studies of inkjet printing.
Castrejón-Pita, J R; Martin, G D; Hoath, S D; Hutchings, I M
2008-07-01
A simple experimental device is presented, which can produce droplets on demand or in a continuous mode and provides a large-scale model for real inkjet printing systems. Experiments over different regimes of Reynolds and Weber number were carried out to test the system. The ranges of Reynolds and Weber numbers were adjusted by modifying the liquid properties or the jetting parameters. Reynolds numbers from 5.6 to 1000 and Weber numbers from 0.5 to 160 were obtained using water/glycerol mixtures in the drop-on-demand mode and Reynolds numbers from 30 to 5500 and Weber numbers from 20 to 550 for the continuous jet mode. The nozzle diameter can be varied from 0.15 to 3.00 mm and drop velocities were achieved in the range from 0.3 to 6.0 ms depending on the jetting parameters and the driving mode. Droplet, printer nozzle, drop on demand and continuous jet.
Compressible Reynolds equation for high-pressure gases
Chien, S. Y.; Cramer, M. S.; Untaroiu, A.
2017-11-01
We derive the Reynolds equation corresponding to steady, laminar, two-dimensional, compressible flows of single-phase Navier-Stokes fluids in a thin gap between a stationary surface and one translating with constant speed. The thermodynamic state of the fluid is taken to be in the dense and supercritical gas regimes. The equation of state is a well-known cubic equation, and the shear viscosity and thermal conductivity are taken to depend on density and temperature. Thermal boundary conditions are taken to include those for constant-temperature and adiabatic walls. The flow is seen to be governed by both the speed number and a single thermodynamic parameter referred to as the effective bulk modulus. Numerical solutions to the Reynolds equation are compared to those of the full Navier-Stokes equations. It is shown that the Reynolds equation breaks down in the vicinity of the thermodynamic critical point. Furthermore, we show that energy convection is negligible whenever the Reynolds equation is valid which enables us to present new explicit solutions for the temperature distributions.
Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up
2017-01-01
The use of solar energy to power chemical reactions is a long-standing dream of the chemical community. Recently, visible-light-mediated photoredox catalysis has been recognized as the ideal catalytic transformation to convert solar energy into chemical bonds. However, scaling photochemical transformations has been extremely challenging due to Bouguer–Lambert–Beer law. Recently, we have pioneered the development of luminescent solar concentrator photomicroreactors (LSC-PMs), which display an excellent energy efficiency. These devices harvest solar energy, convert the broad solar energy spectrum to a narrow-wavelength region, and subsequently waveguide the re-emitted photons to the reaction channels. Herein, we report on the scalability of such LSC-PMs via a numbering-up strategy. Paramount in our work was the use of molds that were fabricated via 3D printing. This allowed us to rapidly produce many different prototypes and to optimize experimentally key design aspects in a time-efficient fashion. Reactors up to 32 parallel channels have been fabricated that display an excellent flow distribution using a bifurcated flow distributor (standard deviations below 10%). This excellent flow distribution was crucial to scale up a model reaction efficiently, displaying yields comparable to those obtained in a single-channel device. We also found that interchannel spacing is an important and unique design parameter for numbered-up LSC-PMs, which influences greatly the photon flux experienced within the reaction channels. PMID:29333350
Platinum clusters with precise numbers of atoms for preparative-scale catalysis.
Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa
2017-09-25
Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.
Multiple-scale modelling of acoustic sources in low Mach-number flow
Munz, Claus-Dieter; Fortenbach, Roland; Dumbser, Michael
2005-09-01
The main difficulty in the calculation of sound generated by fluid flow at low Mach numbers is the occurrence of different scales. The fluid flow is characterized by small spatial structures containing a large amount of energy that may propagate with a small convective velocity, such as small vortices in a turbulent flow. The radiated acoustic waves have small amplitudes and carry a small amount of energy, but have a long wavelength due to their fast propagation velocity. In this paper a perturbation method is used to calculate noise generation and propagation in combination with fluid flow based on the incompressible equations. The idea for the numerical modelling is to introduce a fine grid for the resolution of the fluid flow that is embedded into a larger acoustical domain with a coarse grid adapted to the long wavelength acoustics. To get an appropriate restriction of the acoustic source terms from the fine CFD-grid to the coarse CAA-grid, a multi-scale expansion with one time and two space scales is introduced. To cite this article: C.-D. Munz et al., C. R. Mecanique 333 (2005).
The human brain in numbers: a linearly scaled-up primate brain
Directory of Open Access Journals (Sweden)
Suzana Herculano-Houzel
2009-11-01
Full Text Available The human brain has often been viewed as outstanding among mammalian brains: the most cognitively able, the largest-than-expected from body size, endowed with an overdeveloped cerebral cortex that represents over 80% of brain mass, and purportedly containing 100 billion neurons and 10x more glial cells. Such uniqueness was seemingly necessary to justify the superior cognitive abilities of humans over larger-brained mammals such as elephants and whales. However, our recent studies using a novel method to determine the cellular composition of the brain of humans and other primates as well as of rodents and insectivores show that, since different cellular scaling rules apply to the brains within these orders, brain size can no longer be considered a proxy for the number of neurons in the brain. These studies also showed that the human brain is not exceptional in its cellular composition, as it was found to contain as many neuronal and nonneuronal cells as would be expected of a primate brain of its size. Additionally, the so-called overdeveloped human cerebral cortex holds only 19% of all brain neurons, a fraction that is similar to that found in other mammals. In what regards absolute numbers of neurons, however, the human brain does have two advantages compared to other mammalian brains: compared to rodents, and probably to whales and elephants as well, it is built according to the very economical, space-saving scaling rules that apply to other primates; and, among economically-built primate brains, it is the largest, hence containing the most neurons. These findings argue in favor of a view of cognitive abilities that is centered on absolute numbers of neurons, rather than on body size or encephalization, and call for a re-examination of several concepts related to the exceptionality of the human brain.
The Human Brain in Numbers: A Linearly Scaled-up Primate Brain
Herculano-Houzel, Suzana
2009-01-01
The human brain has often been viewed as outstanding among mammalian brains: the most cognitively able, the largest-than-expected from body size, endowed with an overdeveloped cerebral cortex that represents over 80% of brain mass, and purportedly containing 100 billion neurons and 10× more glial cells. Such uniqueness was seemingly necessary to justify the superior cognitive abilities of humans over larger-brained mammals such as elephants and whales. However, our recent studies using a novel method to determine the cellular composition of the brain of humans and other primates as well as of rodents and insectivores show that, since different cellular scaling rules apply to the brains within these orders, brain size can no longer be considered a proxy for the number of neurons in the brain. These studies also showed that the human brain is not exceptional in its cellular composition, as it was found to contain as many neuronal and non-neuronal cells as would be expected of a primate brain of its size. Additionally, the so-called overdeveloped human cerebral cortex holds only 19% of all brain neurons, a fraction that is similar to that found in other mammals. In what regards absolute numbers of neurons, however, the human brain does have two advantages compared to other mammalian brains: compared to rodents, and probably to whales and elephants as well, it is built according to the very economical, space-saving scaling rules that apply to other primates; and, among economically built primate brains, it is the largest, hence containing the most neurons. These findings argue in favor of a view of cognitive abilities that is centered on absolute numbers of neurons, rather than on body size or encephalization, and call for a re-examination of several concepts related to the exceptionality of the human brain. PMID:19915731
Laboratory-Scale Simulation of Spiral Plumes in Fluid with Hight Ptandtl Number
Sharifulin, A N
2013-01-01
We experimentally investigated the appearance of a plumes from local hot spot and study its interaction with cellular flow in closed cavity filled by silicon oil with Prandtl number Pr ~2*10^3 . Convective plume is generated by a local heat source, located on the top of the small rubber cylinder, which is located in the center of the bottom of the rectangular cell. Green laser has been used to simulate the hot-spot. Roll-type large-scale convective flow is generated by heating of the one vertical sides of cavity. Influence of power of hot point on the shape of plume has been investigated. It is shown that the presence of cellular convective motion may lead to the formation of a strange spiral convective plume. This plume looks like Archimedes spiral replaced on vertical plane. Physical mechanism of the formation of strange spiral plume and application of obtained results for mantle convection problems are discussed.
Improvement of Reynolds-Stress and Triple-Product Lag Models
Olsen, Michael E.; Lillard, Randolph P.
2017-01-01
The Reynolds-stress and triple product Lag models were created with a normal stress distribution which was denied by a 4:3:2 distribution of streamwise, spanwise and wall normal stresses, and a ratio of r(sub w) = 0.3k in the log layer region of high Reynolds number flat plate flow, which implies R11(+)= [4/(9/2)*.3] approximately 2.96. More recent measurements show a more complex picture of the log layer region at high Reynolds numbers. The first cut at improving these models along with the direction for future refinements is described. Comparison with recent high Reynolds number data shows areas where further work is needed, but also shows inclusion of the modeled turbulent transport terms improve the prediction where they influence the solution. Additional work is needed to make the model better match experiment, but there is significant improvement in many of the details of the log layer behavior.
Measurements of Reynolds stress in a wind-driven lagoonal estuary
Whipple, Anthony C.; Luettich, Richard A.; Seim, Harvey E.
2006-07-01
Acoustic Doppler current profilers (ADCPs) have been used to measure Reynolds stresses in tidally dominated environments where wave action was minimal. In this paper, we examine observations from a microtidal estuary where the effects of wind stress and surface waves dominate the velocity variance. Reynolds stress measurements in this setting require a technique for addressing surface gravity wave contamination. We present here a method of reducing the effect of wave motion on Reynolds stresses by subtracting coincident observations along the axis of the ADCP beam. Linear wave theory is used to account for the attenuation of wave orbital velocities with depth. Using this method, Reynolds stress values are brought in line with those predicted by drag laws at the surface and bottom. The apparent Reynolds stress that is removed by the along-axis subtraction is shown to be largely due to the interaction of a slight tilt (1°) in the ADCP and the wave orbital velocity. During periods of stronger wind and waves, there is evidence of enhanced near-surface turbulence and momentum flux, presumably due to breaking waves. During these events, our calculated Reynolds stress magnitudes still appear reasonable, although the directions are suspect. We develop a diagnostic technique that clearly demarcates this region when it occurs. Coincident density profile measurements are used with the ADCP data to compute gradient Richardson numbers throughout the water column. Enhanced Reynolds stresses appear to correspond to Richardson numbers less than one.
Marion Reynolds honored with emeritus status
Owczarski, Mark
2010-01-01
Marion Reynolds, professor of statistics in the College of Science and professor of forestry in the College of Natural Resources and Environment at Virginia Tech, has been conferred the "professor emeritus" title by the Virginia Tech Board of Visitors.
Control of Low Reynolds Number Flows with Fluid Structure Interactions
2014-02-02
public release; distribution is unlimited. 15 The second parameter is more relevant to the thrust generation. The history of the subject is given in the...airfoil. This form of flow field (no convected LEV) does not arise abruptly; Figure 14(d) shows a mixed mode. A time history of a mode-2 vortex... Zoology , Vol. 193, No. APR, 1981, pp. 447-468. [16] Steppan, S.J., "Flexural Stiffness Patterns of Butterfly Wings (Papilionoidea)," Journal of Research
Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics
1985-06-01
Measurements All pressures were measured by means of a 10 Torr variable- capacitance diaphragm-type pressure transducer. Wind tunnel dynamic pressure was sensed...water table, and in the water tunnel of the Aerodynarnisches Institut. Presently experiments are being set up in an Eiffel tunnel. INTRODUCTION Unsteady...discussion of the flow studies in the water tunnel. In the last section, a short description of a new experimental facility is given, which uses an Eiffel
Low-Reynolds-number flow over partially covered cavities
Driesen, C.H.; Kuerten, Johannes G.M.; Streng, Martin; Streng, M.
1998-01-01
We solve the problem of two-dimensional flow of a viscous fluid over a rectangular approximation of an etched hole. In the absence of inertia, the problem is solved by a technique involving the matching of biorthogonal infinite eigenfunction expansions in different parts of the domain. Truncated
Thermocapillary rupture in falling liquid films at moderate Reynolds numbers
Directory of Open Access Journals (Sweden)
Shatskiy Evgeny
2017-01-01
Full Text Available An experimental study of the flow of a water film over a heated surface for Re = 15-50 was performed. The influence of the development of thermocapillary instability on the wave amplitudes, the deformation of the surface of the liquid film, and the formation of the first stable dry spot on the heater are investigated. It is shown that the interaction of waves with thermocapillary structures can lead to an increase in the critical heat flux corresponding to the rupture of the liquid film, as compared with the data known in the literature.
High Reynolds number liquid layer flow with flexible walls
Indian Academy of Sciences (India)
layer flows over flat plates have been extensively studied and it is well-known that wall flexibility greatly affects the growth of Tollmien-Schlichting waves, see Carpenter & Garrad (1985). The problem of a lami- nar separation bubble interacting with ...
Revolutionary Performance For Ultra Low Reynolds Number Vehicles Project
National Aeronautics and Space Administration — An important mission for NASA is the development of revolutionary flight concepts and technology. The development of Micro unmanned air vehicles (Micro-UAVs) and...
The Design of a Fire Source in Scale-Model Experiments with Smoke Ventilation
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm; Brohus, Henrik; la Cour-Harbo, H.
2004-01-01
The paper describes the design of a fire and a smoke source for scale-model experiments with smoke ventilation. It is only possible to work with scale-model experiments where the Reynolds number is reduced compared to full scale, and it is demonstrated that special attention to the fire source...... (heat and smoke source) may improve the possibility of obtaining Reynolds number independent solutions with a fully developed flow. The paper shows scale-model experiments for the Ofenegg tunnel case. Design of a fire source for experiments with smoke ventilation in a large room and smoke movement...
Total number of planetary nebulae in different galaxies and the PN distance scale.
Peimbert, M.
1990-12-01
RESUMEN A partir de una muestra de quince galaxias se encuentra que la tasa de natalidad de nebulosas planetarias por unidad de luminosidad, , disminuye al aumentar la luminosidad y al aumentar (B - V)0. Se discuten posibles explicaciones para estos resultados. Se estima el valor de para la Galaxia y a partir de el se encuentra que el numero total de nebulosas planetarias en nuestra galaxia con R mortalidad estelar por unidad de luminosidad y la tasa de natalidad de enanas blancas favorecen escalas de distancias largas para nebulosas planetarias, como la de Cudworth (1974) y la de Mallik y Peimbert (1988). ABSTRACT From a sample of fifteen galaxies it is found that the birth rate of PN per unit luminosity, , decreases with increasing luminosity and with increasing (B - V)0 possible reasons for these relationships are discussed. The value for the Galaxy is estimated and, from it, a total number of PN of 7200 # 1800 wid R < 0.64 pc is obtained. The galactic value implies that most of the intermediate mass stars go through the PN stage. The galactic value, the stellar death rate per unit luminosity and the white dwarf birth rate are in favor of long distance scales to PN like those of Cudworth (1974) and Mallik and (1988). Key wonis: NEBULAE.PLANETARY - STARS-EVOLUTION - STARS-SThLIAR STA. S
Massive screening of copy number population-scale variation in Bos taurus genome.
Cicconardi, Francesco; Chillemi, Giovanni; Tramontano, Anna; Marchitelli, Cinzia; Valentini, Alessio; Ajmone-Marsan, Paolo; Nardone, Alessandro
2013-02-26
Copy number variations (CNVs) represent a significant source of genomic structural variation. Their length ranges from approximately one hundred to millions of base pair. Genome-wide screenings have clarified that CNVs are a ubiquitous phenomenon affecting essentially the whole genome. Although Bos taurus is one of the most important domestic animal species worldwide and one of the most studied ruminant models for metabolism, reproduction, and disease, relatively few studies have investigated CNVs in cattle and little is known about how CNVs contribute to normal phenotypic variation and to disease susceptibility in this species, compared to humans and other model organisms. Here we characterize and compare CNV profiles in 2654 animals from five dairy and beef Bos taurus breeds, using the Illumina BovineSNP50 genotyping array (54001 SNP probes). In this study we applied the two most commonly used algorithms for CNV discovery (QuantiSNP and PennCNV) and identified 4830 unique candidate CNVs belonging to 326 regions. These regions overlap with 5789 known genes, 76.7% of which are significantly co-localized with segmental duplications (SD). This large scale screening significantly contributes to the enrichment of the Bos taurus CNV map, demonstrates the ubiquity, great diversity and complexity of this type of genomic variation and sets the basis for testing the influence of CNVs on Bos taurus complex functional and production traits.
A multi-layer description of Reynolds stresses in canonical wall bounded flows
Chen, Xi; Hussain, Fazle; She, Zhen-Su
2015-11-01
A complete description of the Reynolds stress tensor is obtained for all three canonical wall turbulence (channel, pipe and turbulent boundary layer - TBL). The result builds on a multi-layer description of length (order) functions and their ratios, including viscous sublayer, buffer layer, meso-layer for the near wall (inner) region, and bulk flow or a central core (absent in TBL) for the outer region. It is shown that the streamwise mean kinetic-energy profile is quantified with high accuracy over the entire flow domain. The model contains only three Re-dependent parameters for Reynolds number (Re) covering nearly three decades. Furthermore, the inner peak location is predicted to be invariant at y+ = 15, while its magnitude shows notable Re and geometry effects, predicted to be .9.2 for high Re's pipe flows. A mechanism is proposed for the emergence of outer peak in pipes, whose magnitude is predicted to scale as .Reτ0. 05 beyond a critical Reτ about 104(). The recently reported logarithmic dependence in the bulk is recovered, but with an alternative explanation. The result is successfully extended to TBL flows by a fractional total stress and an absence of core. Equally accurate descriptions of vertical and spanwise kinetic-energy are also presented for the three flows. The result has been used to modify turbulent engineering models (i.e. k- ω model) with significant improvement.
Wang, Jian-Xun; Wu, Jin-Long; Xiao, Heng
2017-03-01
Turbulence modeling is a critical component in numerical simulations of industrial flows based on Reynolds-averaged Navier-Stokes (RANS) equations. However, after decades of efforts in the turbulence modeling community, universally applicable RANS models with predictive capabilities are still lacking. Large discrepancies in the RANS-modeled Reynolds stresses are the main source that limits the predictive accuracy of RANS models. Identifying these discrepancies is of significance to possibly improve the RANS modeling. In this work, we propose a data-driven, physics-informed machine learning approach for reconstructing discrepancies in RANS modeled Reynolds stresses. The discrepancies are formulated as functions of the mean flow features. By using a modern machine learning technique based on random forests, the discrepancy functions are trained by existing direct numerical simulation (DNS) databases and then used to predict Reynolds stress discrepancies in different flows where data are not available. The proposed method is evaluated by two classes of flows: (1) fully developed turbulent flows in a square duct at various Reynolds numbers and (2) flows with massive separations. In separated flows, two training flow scenarios of increasing difficulties are considered: (1) the flow in the same periodic hills geometry yet at a lower Reynolds number and (2) the flow in a different hill geometry with a similar recirculation zone. Excellent predictive performances were observed in both scenarios, demonstrating the merits of the proposed method.
A numerical study of scale effects on performance of a tractor type podded propeller
Choi, Jung-Kyu; Park, Hyoung-Gil; Kim, Hyoung-Tae
2014-06-01
In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called `drag ratio', which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.
A numerical study of scale effects on performance of a tractor type podded propeller
Directory of Open Access Journals (Sweden)
Choi Jung-Kyu
2014-06-01
Full Text Available In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called ‘drag ratio’, which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.
Directory of Open Access Journals (Sweden)
Ilse Storch
2002-06-01
Full Text Available This paper explores the effects of spatial resolution on the performance and applicability of habitat models in wildlife management and conservation. A Habitat Suitability Index (HSI model for the Capercaillie (Tetrao urogallus in the Bavarian Alps, Germany, is presented. The model was exclusively built on non-spatial, small-scale variables of forest structure and without any consideration of landscape patterns. The main goal was to assess whether a HSI model developed from small-scale habitat preferences can explain differences in population abundance at larger scales. To validate the model, habitat variables and indirect sign of Capercaillie use (such as feathers or feces were mapped in six study areas based on a total of 2901 20 m radius (for habitat variables and 5 m radius sample plots (for Capercaillie sign. First, the model's representation of Capercaillie habitat preferences was assessed. Habitat selection, as expressed by Ivlev's electivity index, was closely related to HSI scores, increased from poor to excellent habitat suitability, and was consistent across all study areas. Then, habitat use was related to HSI scores at different spatial scales. Capercaillie use was best predicted from HSI scores at the small scale. Lowering the spatial resolution of the model stepwise to 36-ha, 100-ha, 400-ha, and 2000-ha areas and relating Capercaillie use to aggregated HSI scores resulted in a deterioration of fit at larger scales. Most importantly, there were pronounced differences in Capercaillie abundance at the scale of study areas, which could not be explained by the HSI model. The results illustrate that even if a habitat model correctly reflects a species' smaller scale habitat preferences, its potential to predict population abundance at larger scales may remain limited.
Revised Reynolds Stress and Triple Product Models
Olsen, Michael E.; Lillard, Randolph P.
2017-01-01
Revised versions of Lag methodology Reynolds-stress and triple product models are applied to accepted test cases to assess the improvement, or lack thereof, in the prediction capability of the models. The Bachalo-Johnson bump flow is shown as an example for this abstract submission.
Kathryn Reynolds | IDRC - International Development Research ...
International Development Research Centre (IDRC) Digital Library (Canada)
Kathryn Reynolds is Regional Director, Middle East and North Africa, based in Cairo, Egypt. Previously, she was Senior Legal Counsel at IDRC. Before joining IDRC in 2012, Kathryn worked in the legal and policy divisions of federal government and not-for-profit institutions. She holds an LL.B. from the University of Ottawa, ...
Lin, L.; Ng, C. S.; Bhattacharjee, A.
2008-11-01
We have recently obtained new scaling results in 2D for a ``tectonics model'' of coronal heating which suggest that the heating rate becomes independent of resistivity in a statistical steady state [Ng & Bhattacharjee, Astrophys. J., 675, 899 (2008)]. Here we extend our 2D results to 3D by means of numerical simulations. Random photospheric footpoint motion is applied for a time much longer than the correlation time to obtain converged average coronal heating rates. Simulations are done for different values of the Lundquist number to determine scaling. In the large Lundquist number limit, we recover the case in which the heating rate is independent of the Lundquist number, predicted by previous analysis as well as 2D simulations. In the same limit the average magnetic energy built up by the random footpoint motion saturates at a constant level, apparently limited by nonlinear processes, such as instabilities and/or magnetic reconnection.
Generation of magnetic fields by large-scale vortices in rotating convection
Guervilly, Celine; Jones, Chris A
2015-01-01
We propose a new self-consistent dynamo mechanism for the generation of large-scale magnetic fields in natural objects. Recent computational studies have described the formation of large-scale vortices (LSVs) in rotating turbulent convection. Here we demonstrate that for magnetic Reynolds numbers below the threshold for small-scale dynamo action, such turbulent flows can sustain large-scale magnetic fields --- i.e. fields with a significant component on the scale of the system.
Onset of meso-scale turbulence in active nematics
Doostmohammadi, Amin; Shendruk, Tyler N.; Thijssen, Kristian; Yeomans, Julia M.
2017-05-01
Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the collective behaviour in prominent biological processes, including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in such physiological processes, understanding meso-scale turbulence and any relation to classical inertial turbulence remains obscure. Here we show how the motion of active matter along a micro-channel transitions to meso-scale turbulence through the evolution of locally disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate that the stationary critical exponents of this transition to meso-scale turbulence in a channel coincide with the directed percolation universality class. This finding bridges our understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional scale-invariant turbulence in confinement.
Onset of meso-scale turbulence in active nematics.
Doostmohammadi, Amin; Shendruk, Tyler N; Thijssen, Kristian; Yeomans, Julia M
2017-05-16
Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the collective behaviour in prominent biological processes, including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in such physiological processes, understanding meso-scale turbulence and any relation to classical inertial turbulence remains obscure. Here we show how the motion of active matter along a micro-channel transitions to meso-scale turbulence through the evolution of locally disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate that the stationary critical exponents of this transition to meso-scale turbulence in a channel coincide with the directed percolation universality class. This finding bridges our understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional scale-invariant turbulence in confinement.
Daalen, E. van; Kemner, C.; Verbeek, N.E.; Zwaag, B. van der; Dijkhuizen, T.; Rump, P.; Houben, R.; Slot, R. van 't; Jonge, M.V. de; Staal, W.G.; Beemer, F.A.; Vorstman, J.A.; Burbach, J.P.H.; Amstel, H.K. van; Hochstenbach, R.; Brilstra, E.H.; Poot, M.
2011-01-01
Recent array-based studies have detected a wealth of copy number variations (CNVs) in patients with autism spectrum disorders (ASD). Since CNVs also occur in healthy individuals, their contributions to the patient's phenotype remain largely unclear. In a cohort of children with symptoms of ASD,
A regular Strouhal number for large-scale instability in the far wake of a rotor
DEFF Research Database (Denmark)
Okulov, Valery; Naumov, Igor V.; Mikkelsen, Robert Flemming
2014-01-01
Theory, vol. IV, 1935, pp. 169–360). The wake properties are studied for different tip speed ratios and free stream speeds. The data for the various rotor regimes show the existence of a regular Strouhal number associated with the development of an instability in the far wake of the rotor. From...
78 FR 56610 - Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY
2013-09-13
... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY... operation of the Atlantic Beach Bridge, mile 0.4, across Reynolds Channel, at Lawrence, New York. This... Atlantic Beach Bridge, across Reynolds Channel, mile 0.4, at Lawrence, New York, has a vertical clearance...
78 FR 66265 - Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY
2013-11-05
... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY... operation of the Atlantic Beach Bridge, mile 0.4, across Reynolds Channel, at Lawrence, New York. This... Atlantic Beach Bridge, across Reynolds Channel, mile 0.4, at Lawrence, New York, has a vertical clearance...
77 FR 37316 - Drawbridge Operation Regulations; Reynolds Channel, Nassau, NY
2012-06-21
... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Reynolds Channel, Nassau, NY AGENCY... the Long Beach Bridge, mile 4.7, across Reynolds Channel, at Nassau, New York. This temporary... Operations, telephone 202-366-9826. SUPPLEMENTARY INFORMATION: The Long Beach Bridge, across Reynolds Channel...
78 FR 34893 - Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY
2013-06-11
... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY... operation of the Atlantic Beach Bridge, mile 0.4, across Reynolds Channel, at Lawrence, New York. This...-9826. SUPPLEMENTARY INFORMATION: The Atlantic Beach Bridge, across Reynolds Channel, mile 0.4, at...
Roth, J. R.
1976-01-01
Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.
Atomic number scaling of the nickel-like soft x-ray lasers
Energy Technology Data Exchange (ETDEWEB)
Daido, H.; Ninomiya, S.; Imani, T. [Osaka Univ., Suita, Osaka (Japan). Inst. of Laser Engineering] [and others
1997-03-30
The authors report the review of the experimental results obtained at the Institute of Laser Engineering, Osaka University, of the soft X-ray lasing in various Ni-like ions whose atomic numbers range from 47(Ag) to 66(Dy). The lasing wavelengths are between 14 nm and 5 nm. X-ray lasing in these materials were obtained when the plasma profiles were properly controlled in time and space by irradiation of curved slab targets with multiple laser pulses. They also describe the original work of the atomic physics calculations which provide the transition energies, transition probabilities and other atomic constants for Ni-like ion species whose atomic numbers range from 36 to 92 calculated with GRASP code (multi-configuration Dirac Fock code) and YODA code (relativistic distorted wave code). Based on these atomic constants, they have calculated the kinetics of the population inversion with a simplified rate equation model in conjunction with a one-dimensional hydrodynamic code to find out the desired pumping conditions. They show a possibility for significant improvement in the pumping efficiency with the use of a picosecond laser irradiating a properly configured preformed plasma. Finally, a simplified estimation of the pumping efficiency is described based on the atomic constants and plasma physics issues.
Singha, Subhash
2016-01-01
We studied the number of constituent quark scaling (NCQ) behaviour of elliptic flow ($v_{2}$) under the framework of A Multi-Phase Transport model (AMPT) at both top-RHIC and LHC energies. The NCQ-scaling in $v_{2}$ holds at top-RHIC energy with AMPT string melting version, while it breaks in Pb+Pb collisions at LHC energy using the same framework. The breaking of NCQ-scaling at LHC energy has been studied by varying the magnitude of parton-parton scattering cross-section and lifetime of hadronic cascade as implemented in AMPT. We find that the breaking of NCQ scaling in Pb+Pb collisions at $\\sqrt{s_{NN}}$ =2.76 TeV is independent of the magnitude of parton-parton cross-section and the later stage hadronic interactions. Further we observed that scaling holds in a small collision system like Si+Si at $\\sqrt{s_{NN}}$ = 2.76 TeV. We discussed that the breaking of NCQ scaling is possibly due to high phase-space density of constituents quarks in Pb+Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV.
Lee, Sam; Addy, Harold E. Jr.; Broeren, Andy P.; Orchard, David M.
2017-01-01
A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two new scaling methods based on Weber number were compared against a method based on Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel where the three methods of scaling were also tested and compared along with reference (altitude) icing conditions. In those tests, the Weber number-based scaling methods yielded results much closer to those observed at the reference icing conditions than the Reynolds number-based icing conditions. The test in the NASA IRT used a much larger, asymmetric airfoil with an ice protection system that more closely resembled designs used in commercial aircraft. Following the trends observed during the AIWT tests, the Weber number based scaling methods resulted in smaller runback ice than the Reynolds number based scaling, and the ice formed farther upstream. The results show that the new Weber number based scaling methods, particularly the Weber number with water loading scaling, continue to show promise for ice protection system development and evaluation in atmospheric icing tunnels.
Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle Shapes for Any Size.
Rahm, J Magnus; Erhart, Paul
2017-09-13
In the pursuit of complete control over morphology in nanoparticle synthesis, knowledge of the thermodynamic equilibrium shapes is a key ingredient. While approaches exist to determine the equilibrium shape in the large size limit (≳10-20 nm) as well as for very small particles (≲2 nm), the experimentally increasingly important intermediate size regime has largely remained elusive. Here, we present an algorithm, based on atomistic simulations in a constrained thermodynamic ensemble, that efficiently predicts equilibrium shapes for any number of atoms in the range from a few tens to many thousands of atoms. We apply the algorithm to Cu, Ag, Au, and Pd particles with diameters between approximately 1 and 7 nm and reveal an energy landscape that is more intricate than previously suggested. The thus obtained particle type distributions demonstrate that the transition from icosahedral particles to decahedral and further into truncated octahedral particles occurs only very gradually, which has implications for the interpretation of experimental data. The approach presented here is extensible to alloys and can in principle also be adapted to represent different chemical environments.
A Multicoefficient Slip-Corrected Reynolds Equation for Micro-Thin Film Gas Lubrication
Directory of Open Access Journals (Sweden)
Ng Eddie Yin-Kwee
2005-01-01
Full Text Available This work investigates and analyzes the performance of conventional slip models among various regimes of Knudsen number and developes a new multicoefficient slip-velocity model, by using Taguchi quality control techniques and numerical analysis. A modified Reynolds equation is also derived based on the new slip-flow model. The multicoefficient slip model and its slip-corrected Reynolds equation are suitable to a wide Knudsen range from slip to transition regime. In comparison with other conventional slip models, it is found that the current results have a better agreement with the solution obtained from the linearized Boltzmann equation and direct simulation of Monte Carlo method (DSMC.
Amano, R. S.; Chai, J. C.
1988-01-01
A study is made for the development and computations of the separating and reattaching shear flows. The highlight of the study is an attempt to predict the third-moments of turbulent velocity which is responsible for the diffusion transport of the Reynolds stresses. The present computations show that the third-moments obtained by employing the low-Reynolds number model of transport equations improve the prediction of the third-moments.
Kim, Kyoungyoun; Sureshkumar, Radhakrishna
2013-06-01
To study the influence of dynamic interactions between turbulent vortical structures and polymer stress on turbulent friction drag reduction, a series of simulations of channel flow is performed. We obtain self-consistent evolution of an initial eddy in the presence of polymer stresses by utilizing the finitely extensible nonlinear elastic-Peterlin (FENE-P) model. The initial eddy is extracted by the conditional averages for the second quadrant event from fully turbulent Newtonian flow, and the initial polymer conformation fields are given by the solutions of the FENE-P model equations corresponding to the mean shear flow in the Newtonian case. At a relatively low Weissenberg number We(τ) (=50), defined as the ratio of the polymer relaxation time to the wall time scale, the generation of new vortices is inhibited by polymer-induced countertorques. Thus fewer vortices are generated in the buffer layer. However, the head of the primary hairpin is unaffected by the polymer stress. At larger We(τ) values (≥100), the hairpin head becomes weaker and vortex autogeneration and Reynolds stress growth are almost entirely suppressed. The temporal evolution of the vortex strength and polymer torque magnitude reveals that polymer extension by the vortical motion results in a polymer torque that increases in magnitude with time until a maximum value is reached over a time scale comparable to the polymer relaxation time. The polymer torque retards the vortical motion and Reynolds stress production, which in turn weakens flow-induced chain extension and torque itself. An analysis of the vortex time scales reveals that with increasing We(τ), vortical motions associated with a broader range of time scales are affected by the polymer stress. This is qualitatively consistent with Lumley's time criterion for the onset of drag reduction.
Rigorous Error Estimates for Reynolds' Lubrication Approximation
Wilkening, Jon
2006-11-01
Reynolds' lubrication equation is used extensively in engineering calculations to study flows between moving machine parts, e.g. in journal bearings or computer disk drives. It is also used extensively in micro- and bio-fluid mechanics to model creeping flows through narrow channels and in thin films. To date, the only rigorous justification of this equation (due to Bayada and Chambat in 1986 and to Nazarov in 1987) states that the solution of the Navier-Stokes equations converges to the solution of Reynolds' equation in the limit as the aspect ratio ɛ approaches zero. In this talk, I will show how the constants in these error bounds depend on the geometry. More specifically, I will show how to compute expansion solutions of the Stokes equations in a 2-d periodic geometry to arbitrary order and exhibit error estimates with constants which are either (1) given in the problem statement or easily computable from h(x), or (2) difficult to compute but universal (independent of h(x)). Studying the constants in the latter category, we find that the effective radius of convergence actually increases through 10th order, but then begins to decrease as the inverse of the order, indicating that the expansion solution is probably an asymptotic series rather than a convergent series.
Directory of Open Access Journals (Sweden)
Jichul Ryu
2016-04-01
Full Text Available In this study, 52 asymptotic Curve Number (CN regression equations were developed for combinations of representative land covers and hydrologic soil groups. In addition, to overcome the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA model when it is applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN regression equation model (watershed-scale L-THIA ACN model was developed by integrating the asymptotic CN regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its streamflow prediction. The coefficient of determination (R2 and Nash–Sutcliffe Efficiency (NSE values for observed versus simulated streamflows over intervals of eight days were greater than 0.6 for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic CN regression equation method, can simulate long-term streamflow sufficiently well with the ten parameters that have been added for the characterization of streamflow.
Pietropinto, S; Baudet, C; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Roche, P
2003-01-01
Turbulence is of common experience and of high interest for industrial applications, despite its physical grounds is still not understood. Cryogenic gaseous helium gives access to extremely high Reynolds numbers (Re). We describe an instrumentation hosted in CERN, which provides a 6 kW @ 4.5 K helium refrigerator directly connected to the experiment. The flow is a round jet; the flow rates range from 20 g/s up to 260 g/s at 4.8 K and about 1.2 bar, giving access to the highest controlled Re flow ever developed. The experimental challenge lies in the range of scales which have to be investigated: from the smallest viscous scale η, typically 1 μm at Re=107 to the largest L∼10 cm. The corresponding frequencies: f=v/η can be as large as 1 MHz. The development of an original micrometric superconducting anemometer using a hot spot and its characteristics will be discussed together with its operation and the perspectives associated with superconducting anemometry.
Werner, Hans-Joachim; Knizia, Gerald; Krause, Christine; Schwilk, Max; Dornbach, Mark
2015-02-10
We propose to construct electron correlation methods that are scalable in both molecule size and aggregated parallel computational power, in the sense that the total elapsed time of a calculation becomes nearly independent of the molecular size when the number of processors grows linearly with the molecular size. This is shown to be possible by exploiting a combination of local approximations and parallel algorithms. The concept is demonstrated with a linear scaling pair natural orbital local second-order Møller-Plesset perturbation theory (PNO-LMP2) method. In this method, both the wave function manifold and the integrals are transformed incrementally from projected atomic orbitals (PAOs) first to orbital-specific virtuals (OSVs) and finally to pair natural orbitals (PNOs), which allow for minimum domain sizes and fine-grained accuracy control using very few parameters. A parallel algorithm design is discussed, which is efficient for both small and large molecules, and numbers of processors, although true inverse-linear scaling with compute power is not yet reached in all cases. Initial applications to reactions involving large molecules reveal surprisingly large effects of dispersion energy contributions as well as large intramolecular basis set superposition errors in canonical MP2 calculations. In order to account for the dispersion effects, the usual selection of PNOs on the basis of natural occupation numbers turns out to be insufficient, and a new energy-based criterion is proposed. If explicitly correlated (F12) terms are included, fast convergence to the MP2 complete basis set (CBS) limit is achieved. For the studied reactions, the PNO-LMP2-F12 results deviate from the canonical MP2/CBS and MP2-F12 values by <1 kJ mol(-1), using triple-ζ (VTZ-F12) basis sets.
Beckstead, Jason W
2014-05-01
This is the last in a short series of papers on measurement theory and practice with particular relevance to intervention research in nursing, midwifery, and healthcare. Understanding how it is that people respond to the questions posed by researchers is fundamental to progress in the social and health sciences. For decades methodologists in psychology, marketing, education, and survey research have studied this issue. In this paper I review this diverse empirical literature to synthesize basic principles for creating rating scales which can reduce measurement error and increase the quality of resulting data. After introducing a theoretical framework known as the cognitive aspects of survey methods (CASM), I review the fundamentals of psychological scaling theory and discuss how it has been used to study the meanings of verbal response options and provide an illustration of how the quality of measurements may be influenced by our choice of the verbal phrases we present as response options. Next, I review the research on the optimal number of response options to use in various measurement situations and how verbal and numeric anchors can combine to influence data quality. Finally, I summarize the issues covered and present recommendations for best practice when creating and using rating scales in research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Daniel Pettersson
2016-01-01
later the growing importance of transnational agencies and international, regional and national assessments. How to reference this article Pettersson, D., Popkewitz, T. S., & Lindblad, S. (2016. On the Use of Educational Numbers: Comparative Constructions of Hierarchies by Means of Large-Scale Assessments. Espacio, Tiempo y Educación, 3(1, 177-202. doi: http://dx.doi.org/10.14516/ete.2016.003.001.10
78 FR 56609 - Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY
2013-09-13
... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Reynolds Channel, Lawrence, NY... 34893) governing the operation of the Atlantic Beach Bridge, mile 0.4, across Reynolds Channel, at... Channel, Lawrence, NY'', in the Federal Register (78 FR 34893). The temporary deviation concerned was for...
78 FR 37456 - Drawbridge Operation Regulations; Reynolds Channel, Nassau, NY
2013-06-21
... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Reynolds Channel, Nassau, NY AGENCY... the Long Beach Bridge, mile 4.7, across Reynolds Channel at Nassau, New York. Under this temporary...
78 FR 26508 - Drawbridge Operation Regulations; Reynolds Channel, Nassau, NY
2013-05-07
... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Reynolds Channel, Nassau, NY AGENCY... the Long Beach Bridge, mile 4.7, across Reynolds Channel at Nassau, New York. Under this temporary...
On Reynolds stress and neutral azimuthal modes in the stability ...
Indian Academy of Sciences (India)
Reynolds stress. 1. Introduction. The stability of swirling flows has been studied extensively and for the vast literature on this problem one may be referred to the .... Moreover, in the recent work of Maslowe & Nigam (2008) linear and ... which is different from that of parallel shear flows in which case the Reynolds stress is.
Garstecki, Piotr; Cieplak, Marek
2009-05-01
Microbes are important: their lives are intimately (both symbiotically and hostilely) intertwined with the lives of humans. Microbes are the tiniest organisms that we know of; although they inhabit largely the same environment as humans, their world is strange to us. This is because we cannot see them with a bare eye and because the different length scales select different rules of physics to be important. As the microbes affect us, we devote significant activity to control them. This goal obviously challenges our comprehension of 'how the microbes work'. There are at least two strategies to accumulate this understanding. One is to simply 'look', classify their type and behavior and make reason out of these observations. This approach is fathered by Antonie van Leeuwenhoek, the inventor and constructor of the famous single lens microscope. A second strategy is to create models that are either analytically or experimentally tractable, and to take advantage of this tractability to analyze the models thoroughly and then relate the findings to the actual biological problem. This second strategy is naturally the domain of physics. Especially, when it comes down to one of the more mechanical aspects of microbial biology—motility. As pointed out in the seminal works of Taylor [1] and Purcell [2] the physics of swimming at the length scales of single micrometers is very different from our common macro-scale experience. The most important difference is reflected by the low value of the Reynolds number—the ratio yielding the relative importance of inertial and viscous forces. At the microscale, inertia is not important and macro-scale mechanisms of swimming simply do not work. This was clearly discussed by Purcell [2] and is encapsulated by the dogma known as Purcell's scallop theorem. It implies that because of the linearity of the equations of flow at low Reynolds numbers (that is within the Stokes approximation) that any periodic and reciprocal motion cannot lead to a
Directory of Open Access Journals (Sweden)
Xuchao Li
Full Text Available BACKGROUND: Copy number variations (CNVs represent an important type of genetic variation that deeply impact phenotypic polymorphisms and human diseases. The advent of high-throughput sequencing technologies provides an opportunity to revolutionize the discovery of CNVs and to explore their relationship with diseases. However, most of the existing methods depend on sequencing depth and show instability with low sequence coverage. In this study, using low coverage whole-genome sequencing (LCS we have developed an effective population-scale CNV calling (PSCC method. METHODOLOGY/PRINCIPAL FINDINGS: In our novel method, two-step correction was used to remove biases caused by local GC content and complex genomic characteristics. We chose a binary segmentation method to locate CNV segments and designed combined statistics tests to ensure the stable performance of the false positive control. The simulation data showed that our PSCC method could achieve 99.7%/100% and 98.6%/100% sensitivity and specificity for over 300 kb CNV calling in the condition of LCS (∼2× and ultra LCS (∼0.2×, respectively. Finally, we applied this novel method to analyze 34 clinical samples with an average of 2× LCS. In the final results, all the 31 pathogenic CNVs identified by aCGH were successfully detected. In addition, the performance comparison revealed that our method had significant advantages over existing methods using ultra LCS. CONCLUSIONS/SIGNIFICANCE: Our study showed that PSCC can sensitively and reliably detect CNVs using low coverage or even ultra-low coverage data through population-scale sequencing.
Chen, Sheng; Tölke, Jonas; Krafczyk, Manfred
2009-08-01
Natural convection within an enclosed circular annular cavity formed by two concentric vertical cylinders is of fundamental interest and practical importance. Generally, the assumption of axisymmetric thermal flow is adopted for simulating such natural convections and the validity of the assumption of axisymmetric thermal flow is still held even for some turbulent convection. Usually the Rayleigh numbers (Ra) of realistic flows are very high. However, the work to design suitable and efficient lattice Boltzmann (LB) models on such flows is quite rare. To bridge the gap, in this paper a simple LB subgrid-scale (SGS) model, which is based on our recent work [S. Chen, J. Tölke, and M. Krafczyk, Phys. Rev. E 79, 016704 (2009); S. Chen, J. Tölke, S. Geller, and M. Krafczyk, Phys. Rev. E 78, 046703 (2008)], is proposed for simulating convectional flow with high Ra within an enclosed circular annular cavity. The key parameter for the SGS model can be quite easily and efficiently evaluated by the present model. The numerical experiments demonstrate that the present model works well for a large range of Ra and Prandtl number (Pr). Though in the present study a popularly used static Smagorinsky turbulence model is adopted to demonstrate how to develop a LB SGS model for simulating axisymmetric thermal flows with high Ra, other state-of-the-art turbulence models can be incorporated into the present model in the same way. In addition, the present model can be extended straightforwardly to simulate other axisymmetric convectional flows with high Ra, for example, turbulent convection with internal volumetric heat generation in a vertical cylinder, which is an important simplified representation of a nuclear reactor.
Differential Reynolds stress modeling for separating flows in industrial aerodynamics
2015-01-01
This book presents recent progress in the application of RANS turbulence models based on the Reynolds stress transport equations. A variety of models has been implemented by different groups into different flow solvers and applied to external as well as to turbomachinery flows. Comparisons between the models allow an assessment of their performance in different flow conditions. The results demonstrate the general applicability of differential Reynolds stress models to separating flows in industrial aerodynamics.
Kate Watson on Reynold Humphries’ Hollywood’s Blacklists
Directory of Open Access Journals (Sweden)
2008-12-01
Full Text Available Reynold Humphries. Hollywood’s Blacklists: A Political and Cultural History. Edinburgh: Edinburgh University Press, 2008. Reynold Humphries’ Hollywood’s Blacklists provides a comprehensive examination of the historical and political ramifications of the blacklisting process and of Communism in the motion picture industry. His section on ‘The Background’ initially sets up just this, making the debate and dispute accessible even to those not au fait with such knowledge. This section is informat...
Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R
Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.
2005-08-01
The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E × B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport.
Optimal Length Scale for a Turbulent Dynamo.
Sadek, Mira; Alexakis, Alexandros; Fauve, Stephan
2016-02-19
We demonstrate that there is an optimal forcing length scale for low Prandtl number dynamo flows that can significantly reduce the required energy injection rate. The investigation is based on simulations of the induction equation in a periodic box of size 2πL. The flows considered are the laminar and turbulent ABC flows forced at different forcing wave numbers k_{f}, where the turbulent case is simulated using a subgrid turbulence model. At the smallest allowed forcing wave number k_{f}=k_{min}=1/L the laminar critical magnetic Reynolds number Rm_{c}^{lam} is more than an order of magnitude smaller than the turbulent critical magnetic Reynolds number Rm_{c}^{turb} due to the hindering effect of turbulent fluctuations. We show that this hindering effect is almost suppressed when the forcing wave number k_{f} is increased above an optimum wave number k_{f}L≃4 for which Rm_{c}^{turb} is minimum. At this optimal wave number, Rm_{c}^{turb} is smaller by more than a factor of 10 than the case forced in k_{f}=1. This leads to a reduction of the energy injection rate by 3 orders of magnitude when compared to the case where the system is forced at the largest scales and thus provides a new strategy for the design of a fully turbulent experimental dynamo.
Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics
Ericsson, L. E.; Reding, J. P.
1988-01-01
Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.
Scale interactions in a mixing layer – the role of the large-scale gradients
Fiscaletti, D.
2016-02-15
© 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.
Small-scale fixed wing airplane software verification flight test
Miller, Natasha R.
The increased demand for micro Unmanned Air Vehicles (UAV) driven by military requirements, commercial use, and academia is creating a need for the ability to quickly and accurately conduct low Reynolds Number aircraft design. There exist several open source software programs that are free or inexpensive that can be used for large scale aircraft design, but few software programs target the realm of low Reynolds Number flight. XFLR5 is an open source, free to download, software program that attempts to take into consideration viscous effects that occur at low Reynolds Number in airfoil design, 3D wing design, and 3D airplane design. An off the shelf, remote control airplane was used as a test bed to model in XFLR5 and then compared to flight test collected data. Flight test focused on the stability modes of the 3D plane, specifically the phugoid mode. Design and execution of the flight tests were accomplished for the RC airplane using methodology from full scale military airplane test procedures. Results from flight test were not conclusive in determining the accuracy of the XFLR5 software program. There were several sources of uncertainty that did not allow for a full analysis of the flight test results. An off the shelf drone autopilot was used as a data collection device for flight testing. The precision and accuracy of the autopilot is unknown. Potential future work should investigate flight test methods for small scale UAV flight.
Large Eddy Simulation of Engineering Flows: A Bill Reynolds Legacy.
Moin, Parviz
2004-11-01
The term, Large eddy simulation, LES, was coined by Bill Reynolds, thirty years ago when he and his colleagues pioneered the introduction of LES in the engineering community. Bill's legacy in LES features his insistence on having a proper mathematical definition of the large scale field independent of the numerical method used, and his vision for using numerical simulation output as data for research in turbulence physics and modeling, just as one would think of using experimental data. However, as an engineer, Bill was pre-dominantly interested in the predictive capability of computational fluid dynamics and in particular LES. In this talk I will present the state of the art in large eddy simulation of complex engineering flows. Most of this technology has been developed in the Department of Energy's ASCI Program at Stanford which was led by Bill in the last years of his distinguished career. At the core of this technology is a fully implicit non-dissipative LES code which uses unstructured grids with arbitrary elements. A hybrid Eulerian/ Largangian approach is used for multi-phase flows, and chemical reactions are introduced through dynamic equations for mixture fraction and reaction progress variable in conjunction with flamelet tables. The predictive capability of LES is demonstrated in several validation studies in flows with complex physics and complex geometry including flow in the combustor of a modern aircraft engine. LES in such a complex application is only possible through efficient utilization of modern parallel super-computers which was recognized and emphasized by Bill from the beginning. The presentation will include a brief mention of computer science efforts for efficient implementation of LES.
Are Discrepancies in RANS Modeled Reynolds Stresses Random?
Xiao, Heng; Wang, Jian-xun; Paterson, Eric G
2016-01-01
In the turbulence modeling community, significant efforts have been made to quantify the uncertainties in the Reynolds-Averaged Navier--Stokes (RANS) models and to improve their predictive capabilities. Of crucial importance in these efforts is the understanding of the discrepancies in the RANS modeled Reynolds stresses. However, to what extent these discrepancies can be predicted or whether they are completely random remains a fundamental open question. In this work we used a machine learning algorithm based on random forest regression to predict the discrepancies. The success of the regression--prediction procedure indicates that, to a large extent, the discrepancies in the modeled Reynolds stresses can be explained by the mean flow feature, and thus they are universal quantities that can be extrapolated from one flow to another, at least among different flows sharing the same characteristics such as separation. This finding has profound implications to the future development of RANS models, opening up new ...
Inlet Turbulence and Length Scale Measurements in a Large Scale Transonic Turbine Cascade
Thurman, Douglas; Flegel, Ashlie; Giel, Paul
2014-01-01
Constant temperature hotwire anemometry data were acquired to determine the inlet turbulence conditions of a transonic turbine blade linear cascade. Flow conditions and angles were investigated that corresponded to the take-off and cruise conditions of the Variable Speed Power Turbine (VSPT) project and to an Energy Efficient Engine (EEE) scaled rotor blade tip section. Mean and turbulent flowfield measurements including intensity, length scale, turbulence decay, and power spectra were determined for high and low turbulence intensity flows at various Reynolds numbers and spanwise locations. The experimental data will be useful for establishing the inlet boundary conditions needed to validate turbulence models in CFD codes.
Theoretical prediction of Reynolds stresses and velocity profiles for barotropic turbulent jets
Woillez, E.; Bouchet, F.
2017-06-01
It is extremely uncommon to be able to predict the velocity profile of a turbulent flow. In two-dimensional flows, atmosphere dynamics, and plasma physics, large-scale coherent jets are created through inverse energy transfers from small scales to the largest scales of the flow. We prove that in the limits of vanishing energy injection, vanishing friction, and small-scale forcing, the velocity profile of a jet obeys an equation independently of the details of the forcing. We find another general relation for the maximal curvature of a jet and we give strong arguments to support the existence of a hydrodynamic instability at the point with minimal jet velocity. Those results are the first computations of Reynolds stresses and self-consistent velocity profiles from the turbulent dynamics, and the first consistent analytic theory of zonal jets in barotropic turbulence.
Even number of positive solutions for 3nth order three-point boundary value problem on time scales
Directory of Open Access Journals (Sweden)
K. Prasad
2011-12-01
Full Text Available We establish the existence of at least two positive solutions for the 3nth order three-point boundary value problem on time scales by using Avery-Henderson fixed point theorem. We also establish the existence of at least 2m positive solutions for an arbitrary positive integer m.
Tomita, Toshihiro; Miyaji, Kousuke
2016-04-01
The dependence of random telegraph noise (RTN) amplitude distribution on the number of traps and trap depth position is investigated using three-dimensional Monte Carlo device simulation including random dopant fluctuation (RDF) in a 30 nm NAND multi level flash memory. The ΔV th tail distribution becomes broad at fixed double traps, indicating that the number of traps greatly affects the worst RTN characteristics. It is also found that for both fixed single and fixed double traps, the ΔV th distribution in the lowest cell threshold voltage (V th) state shows the broadest distribution among all cell V th states. This is because the drain current flows at the channel surface in the lowest cell V th state, while at a high cell V th, it flows at the deeper position owing to the fringing coupling between the control gate (CG) and the channel. In this work, the ΔV th distribution with the number of traps following the Poisson distribution is also considered to cope with the variations in trap number. As a result, it is found that the number of traps is an important factor for understanding RTN characteristics. In addition, considering trap position in the tunnel oxide thickness direction is also an important factor.
Validity of classical scaling laws in laminar channel flow with periodic spacer-like obstacles
Rohlfs, Wilko; Lienhard, John H.
2015-11-01
Laminar channel flows with periodic obstacles occur in different technical applications involving heat and mass transfer. They are present in membrane technologies such as electro-dialysis or spirally wound membrane modules. For process design, classical scaling laws of heat and mass transfer are typically used. The laws scale the transfer (Sherwood) number, Sh , to the hydrodynamic Reynolds, Re , the fluid specific Schmidt number, Sc , and to some dimensionless geometric parameters, G, in a classical form like Sh = CReα ScβGγ . However, the validity of those classical scaling laws is limited to the region where the concentration boundary layer develops as it is well known that the transfer numbers approach a constant (Reynolds and Schmidt independent) value in the developed region of a laminar channel flow. This study examines numerically the validity of the scaling laws if the channel flow is interrupted periodically by cylindrical obstacles of different size and separation distance. In the developed region, a Schmidt and Reynolds number dependency is found and associated to wall-normal flow induced by the obstacles, for which this dependency varies with obstacle size and separation distance. Funding for WR was provided by the German Academic Exchange Service DAAD.
The growth of the tearing mode - Boundary and scaling effects
Steinolfson, R. S.; Van Hoven, G.
1983-01-01
A numerical model of resistive magnetic tearing is developed in order to verify and relate the results of the principal approximations used in analytic analyses and to investigate the solutions and their growth-rate scalings over a large range of primary parameters which include parametric values applicable to the solar atmosphere. The computations cover the linear behavior for a variety of boundary conditions, emphasizing effects which differentiate magnetic tearing in astrophysical situations from that in laboratory devices. Eigenfunction profiles for long and short wavelengths are computed and the applicability of the 'constant psi' approximation is investigated. The growth rate is computed for values of the magnetic Reynolds number up to a trillion and of the dimensionless wavelength parameter down to 0.001. The analysis predicts significant effects due to differing values of the magnetic Reynolds number.
Directory of Open Access Journals (Sweden)
Yuli Darni
2011-12-01
Full Text Available The article reported the laboratory experiment to obtain the optimal condition of particle size and Reynold Number of bioplastic film based on the plastic package standard of High Density Polyethylene (HDPE. Particle sizes of starch were varied at 63, 90, 106, 600, and 1000 micron, and the mixing rate were changes at 190, 252, 313, 375, and 437 rpm. The concentration of chitosan and gliserol added to solution were set as constant variable as 20 and 10 wt %, respectively. The temperature of gelatinitation was also fixed at 95OC. The fabricated of bioplastic film were characterized for mechanical property such as tensile strength, elongation at break and Modulus Young by using a Universal Testing Machine. The morphology of film sheets were observed by using a scanning electron microscopy (SEM. Moreover, the obtained film was also investigated for water uptake parameter. The result showed that the mechanical properties were improve by increasing mixing rate at smallest particle sizes of starch. The water uptakes shows decrease at hight mixing rate. SEM images showed that the morphology of bioplastic was almost simmilar to the morphology of HDPE. The optimum condition was found that the best film was obtained at particle size of starch 63 micron, Reynold Number of 959, with mixing rate of 375 rpm. The mechanical value at best condition was 19.27%, 757.046 Mpa, and 142.875 for elongation, Modulus Young, and tensile strength, respectively. Keywords: bioplastic, reynold Number, starch, sorgum
Scale-locality of magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Aluie, Hussein [Los Alamos National Laboratory; Eyink, Gregory L [JOHNS HOPKINS UNIV.
2009-01-01
We investigate the scale-locality of cascades of conserved invariants at high kinetic and magnetic Reynolds numbers in the 'inertial-inductive range' of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross-helicity - or, equivalently, fluxes of Elsaesser energies - are dominated by the contributions of local triads. Corresponding spectral transfers are also scale-local when defined using octave wavenumber bands. Flux and transfer of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term also may be dominated by non-local triads but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion non locally between disparate scales. We present supporting data from a 1024{sup 3} simulation of forced MHD turbulence.
Energy transfers in dynamos with small magnetic Prandtl numbers
Kumar, Rohit
2015-06-25
We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo. © 2015 Taylor & Francis.
Gomez, T; Flutet, V; Sagaut, P
2009-03-01
An exact relationship for the local skin friction is derived for the compressible turbulent wall-bounded flow (channel, pipe, flat plate). This expression is an extension of the compressible case of that derived by Fukagata [Phys. Fluids 14, L73 (2002)] in the case of incompressible wall-bounded flows. This decomposition shows that the skin friction can be interpreted as the contribution of four physical processes, i.e., laminar, turbulent, compressible, and a fourth coming from the interaction between turbulence and compressibility. Compressible numerical simulations show that, even at Mach number M=2 , the main contribution comes from the turbulence, i.e., the Reynolds stress term.
Scale locality and the inertial range in compressible turbulence
Aluie, Hussein
2011-01-01
We use a coarse-graining approach to prove that inter-scale transfer of kinetic energy in compressible turbulence is dominated by local interactions. Locality here means that interactions between disparate scales decay at least as fast as a power-law function of the scale-disparity ratio. In particular, our results preclude transfer of kinetic energy from large-scales directly to dissipation scales, such as into shocks, in the limit of high Reynolds number turbulence as is commonly believed. The results hold in broad generality, at any Mach number, for any equation of state, and without the requirement of homogeneity or isotropy. The assumptions we make in our proofs on the scaling of velocity, pressure, and density structure functions are weak and enjoy compelling empirical support. Under a stronger assumption on pressure dilatation co-spectrum, we show that \\emph{mean} kinetic and internal energy budgets statistically decouple beyond a transitional "conversion" range. Our analysis demonstrates the existence...
Energy Technology Data Exchange (ETDEWEB)
Pietri, L.; Amielh, M.; Anselmet, F.; Fulachier, L. [Institut de Recherche sur les Phinomenes Hors Equilibre Equipe Turbulence, 13 - Marseille (France)
1997-12-31
Turbulent flows with strong density variations, like helium jets in the ambient air, have specific properties linked with the difference of gas densities. This paper presents some experimental results of turbulence properties inside such flows: the Reynolds tensions and the associated turbulent viscosity, and some characteristics linked with the statistical properties of the different turbulence scales. These last results allows to show the complexity of such flows characterized by the influence of external parameters (Reynolds number, initial density ratio, initial momentum flux) that govern the evolution of these parameters inside the jet from the nozzle up to regions where similarity properties are reached. (J.S.) 12 refs.
Final Report PetaScale Application Development Analysis Grant Number DE-FG02-04ER25629
Energy Technology Data Exchange (ETDEWEB)
Robert W. Numrich
2008-06-20
The results obtained from this project will fundamentally change the way we look at computer performance analysis. These results are made possible by the precise definition of a consistent system of measurement with a set of primary units designed specifically for computer performance analysis. This system of units, along with their associated dimensions, allows us to apply the methods of dimensional analysis, based on the Pi Theorem, to define scaling and self-similarity relationships. These relationships reveal new insights into experimental results that otherwise seems only vaguely correlated. Applying the method to cache-miss data revealed scaling relationships that were not seen by those who originally collected the data. Applying dimensional analysis to the performance of parallel numerical algorithms revealed that computational force is a unifying concept for understanding the interaction between hardware and software. The efficiency of these algorithms depends, in a very intimate way, on the balance between hardware forces and software forces. Analysis of five different algorithms showed that performance analysis can be reduced to a study of the differential geometry of the efficiency surface. Each algorithm defines a set of curvilinear coordinates, specific to that algorithm, and different machines follow different paths along the surface depending on the difference in balance between hardware forces and software forces. Two machines with the same balance in forces follow the same path and are self-similar. The most important result from the project is the statement of the Principle of Computational Least Action. This principle follows from the identification of a dynamical system underlying computer performance analysis. Instructions in a computer are modeled as a classical system under the influence of computational forces. Each instruction generates kinetic energy during execution, and the sum of the kinetic energy for all instructions produces a
Directory of Open Access Journals (Sweden)
Park Dong-Woo
2015-01-01
Full Text Available Flat plate friction lines hare been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study- was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996, and the curve developed by Katsui et al (2005. In the second part, change in the form factor by three kinds of
Directory of Open Access Journals (Sweden)
Lucas B. Fortini
2017-07-01
Full Text Available For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also found other (but not all anthropogenic threats are also similarly associated with more threats. Our findings serve as a reminder that ecological research should seriously consider these potential threat interactions, especially for species under elevated conservation concern.
Li, Shaohong; Gao, Yi; Neuhauser, Daniel
2012-06-21
We extend the recently developed near-field (NF) method to include an arbitrary number of dielectrics. NF assumes that the dipoles and fields respond instantaneously to the density, without retardation. The central task in NF is the solution of the Poisson equation for every time step, which is here done by a conjugate gradient method which handles any dielectric distribution. The optical response of any metal-dielectric system can now be studied very efficiently in the near field region. The improved NF method is first applied to simple benchmark systems: a gold nanoparticle in vacuum and embedded in silica. The surface plasmons in these systems and their dependence on the dielectrics are reproduced in the new NF approach. As a further application, we study a silver nanoparticle-based structure for the optical detection of a "lipid" (i.e., dielectric) layer in water, where the layer is wrapping around part of the metallic nanostructure. We show the ~0.1-0.15 eV shift in the spectrum due to the presence of the layer, for both spherical and non-spherical (sphere+rod) systems with various polarizations.
Fortini, Lucas B.; Dye, Kaipo
2017-01-01
For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also
Sonic Actuation of Small-Scale Robots in a Fluidic Environment
2014-05-09
the submerged object are essentially negligible. Using the Navier-Stokes equation, it can be shown that the drag force on a submerged object is...equation is Table 1 shows a comparison of Reynolds numbers of different scale sizes of robots submerged in different fluids. While the...materials, the joint sections were composed of the more flexible material (styrene or PETG) and acrylic blocks were bonded (using JB Weld epoxy®) onto
Bandopadhyay, Aditya; Le Borgne, Tanguy; Méheust, Yves; Dentz, Marco
2017-02-01
Mixing fronts, where fluids of different chemical compositions mix with each other, are known to represent hotspots of chemical reaction in hydrological systems. These fronts are typically subjected to velocity gradients, ranging from the pore scale due to no slip boundary conditions at fluid solid interfaces, to the catchment scale due to permeability variations and complex geometry of the Darcy velocity streamlines. A common trait of these processes is that the mixing interface is strained by shear. Depending on the Péclet number Pe , which represents the ratio of the characteristic diffusion time to the characteristic shear time, and the Damköhler number Da , which represents the ratio of the characteristic diffusion time to the characteristic reaction time, the local reaction rates can be strongly impacted by the dynamics of the mixing interface. So far, this impact has been characterized mostly either in kinetics-limited or in mixing-limited conditions, that is, for either low or high Da. Here the coupling of shear flow and chemical reactivity is investigated for arbitrary Damköhler numbers, for a bimolecular reaction and an initial interface with separated reactants. Approximate analytical expressions for the global production rate and reactive mixing scale are derived based on a reactive lamella approach that allows for a general coupling between stretching enhanced mixing and chemical reactions. While for Pe Da , we uncover a "strong stretching" scenario where new scaling laws emerge from the interplay between reaction kinetics, diffusion, and stretching. The analytical results are validated against numerical simulations. These findings shed light on the effect of flow heterogeneity on the enhancement of chemical reaction and the creation of spatially localized hotspots of reactivity for a broad range of systems ranging from kinetic limited to mixing limited situations.
Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations
Lee, Jae Hwa; Sung, Hyung Jin
2013-04-01
A direct numerical simulation of a fully developed turbulent pipe flow was performed to investigate the similarities and differences of very-large-scale motions (VLSMs) to those of turbulent boundary layer (TBL) flows. The Reynolds number was set to ReD = 35 000, and the computational domain was 30 pipe radii in length. Inspection of instantaneous fields, streamwise two-point correlations, and population trends of the momentum regions showed that the streamwise length of the structures in the pipe flow grew continuously beyond the log layer (y/δ 3δ), and the maximum length of the VLSMs increased up to ˜30δ. Such differences between the TBL and pipe flows arose due to the entrainment of large plumes of the intermittent potential flow in the TBL, creating break-down of the streamwise coherence of the structures above the log layer with the strong swirling strength and Reynolds shear stress. The average streamwise length scale of the pipe flow was approximately 1.5-3.0 times larger than that of the TBL through the log and wake regions. The maximum contribution of the structures to the Reynolds shear stress was observed at approximately 6δ in length, whereas that of the TBL was at 1δ-2δ, indicating a higher contribution of the VLSMs to the Reynolds shear stress in the pipe flow than in the TBL flow.
History effect on the Reynolds stress in turbulent swirling flow
Hamba, Fujihiro
2017-02-01
The eddy-viscosity model for turbulence has some difficulty in predicting rotating and swirling flows. Turbulent swirling flow in a straight pipe is a typical example. A rapidly rotating core in the pipe decays too quickly in results obtained from the standard k-ɛ model. The eddy viscosity needs to be reduced to predict the velocity profiles well; the mechanism of the decrease in the eddy viscosity has not been clarified yet. In this work, the eddy-viscosity model was investigated using a temporally nonlocal expression for the Reynolds stress that represents the history effect. A simple transport equation for the Reynolds stress was integrated along a mean-flow pathline to obtain a temporally nonlocal model for the Reynolds stress. The nonlocal model was applied to simple swirling flows for which the time integral can be further calculated to investigate the history effect. It was shown that the history effect associated with the rotating motion gives rise to a small factor in the expression for the eddy viscosity. In order to confirm the history effect, the present model and the linear eddy-viscosity model were used to simulate a swirling pipe flow. The velocity profiles obtained from the present model agree well with experimental results; the reduced eddy viscosity can account for the slow decay of the swirling motion in the core region. The anisotropic nature of the eddy viscosity was also discussed in relation to the small factor caused by the history effect.
On the scaling and dynamics of periodically generated vortex rings
Asadi, Hossein; Asgharzadeh, Hafez; Borazjani, Iman; Scientific Computing; Biofluids Team
2017-11-01
Periodically generated vortex rings are observed in nature, e.g., left ventricle or jellyfish, but their scaling and dynamics is not completely well understood. We are interested in identifying the main parameters governing the propagation and dynamics of periodically generated vortex rings. Therefore, vortex rings, generated periodically through a circular cylinder into a tank, is numerically investigated for a range of Reynolds numbers (Re), non-dimensional periods (T), and stroke ratios (stroke time to period) for a simple square wave. Based on the results, by using the averaged inflow velocity in definition of Reynolds number and non-dimensional period, vortex ring velocity becomes approximately independent of the stroke ratio. The results also show that reducing Reynolds number or increasing non-dimensional period increases the translational velocity of vortex ring. Based on our test cases, an empirical relation is proposed to predict the location of vortex cores propagating into domain which shows good agreement with other experimental data. The vortex instabilities and interactions are also visualized and discussed. This work was supported by AHA Grant 13SDG17220022, NIH Grant R03EB014860, and the Center of Computational Research (CCR) of University at Buffalo.
Numerical simulation of tsunami-scale wave boundary layers
DEFF Research Database (Denmark)
Williams, Isaac A.; Fuhrman, David R.
2016-01-01
This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...... duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow...
Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.
van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo
2008-03-01
The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.
Doreau-Malioche, Jeanne; Combe, Gaël; Toni, Jean-Benoît; Viggiani, Gioacchino
2017-06-01
This study presents the results of laboratory-scale cyclic loading tests performed on an instrumented pile in sand using x-ray micro tomography and three-dimensional (3D) image analysis techniques. The macroscopic behaviour of sand-pile interface shows a two-phases evolution during cycles with a non negligible increase of shaft friction in the second phase. A discrete version of Digital Image Correlation (DIC) is employed to analyze quantitatively the mechanisms occurring at the grain scale. Using segmented images this method is able to correlate and follow each grain individually between two configurations. Displacement fields are measured and compared for different amounts of cycles. Grain breakage and density evolution are investigated using grey level measurements. The results provide a better understanding of the phenomena observed at the macroscale for a high number of load cycles.
Filocamo, Giovanni; Davì, Sergio; Pistorio, Angela; Bertamino, Marta; Ruperto, Nicolino; Lattanzi, Bianca; Consolaro, Alessandro; Magni-Manzoni, Silvia; Galasso, Roberta; Varnier, Giulia Camilla; Martini, Alberto; Ravelli, Angelo
2010-07-01
To evaluate the measurement properties of 21-numbered circle visual analog scales (VAS) and traditional 10-cm horizontal line VAS for physician and parent subjective ratings in children with juvenile idiopathic arthritis (JIA). We studied 2 patient samples in whom physician global rating of overall disease activity, parent global rating of the child's overall well-being, and parent rating of intensity of child's pain were performed using traditional 10-cm horizontal line VAS (n = 397) or 21-numbered circle VAS (n = 471). The measurement performances of the 2 VAS formats were examined by assessing construct validity, score distribution, responsiveness to change over time, and minimal clinically important difference (MCID). Most Spearman correlations with other JIA outcome measures yielded by 21-numbered circle VAS were greater than those obtained with 10-cm horizontal line VAS, revealing that the circle VAS format has better construct validity. Ceiling effects (i.e., score = 0) for physician and parent global ratings were 43.7% and 32.9%, respectively, on 21-numbered circle VAS, and 31.6% and 35.3%, respectively, on 10-cm horizontal line VAS. Responsiveness of 21-numbered circle VAS was good (standardized response mean > 0.8) or moderate (standardized response mean > 0.6) among patients classified as improved or worsened, respectively, by the physician or the parent. Overall, MCID values for 21-numbered circle VAS tended to be greater for worsening than for improvement. The 21-numbered circle VAS are a suitable alternative to the 10-cm horizontal line VAS and may facilitate incorporation of physician and parent subjective ratings in standard clinical practice.
Herculano-Houzel, Suzana; Manger, Paul R.; Kaas, Jon H.
2014-01-01
Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution. PMID:25157220
Directory of Open Access Journals (Sweden)
Suzana eHerculano-Houzel
2014-08-01
Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.
Boundary effects on the drag of a cylinder in axial motion at low Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Wehbeh, E.G.
1987-01-01
This work is an experimental study of the Stokes drag on a right circular cylinder moving with constant velocity through a Newtonian viscous fluid. The cylinder velocity is parallel to its longitudinal axis, and the fluid is bounded on the outside by a fixed coaxial cylindrical tube of circular cross section. The length-to-diameter ratio of the moving cylinder ranges from 1.0 to 390, the ratio of the width of the annular gap to the cylinder length ranges from 0.0077 to 0.86, and the ratio ..cap alpha.. of the cylinder diameter to the tube diameter ranges from 0.022 to 0.91. Experimental values of the drag are compared with a theoretical expression which assumes a flow entirely axial in the annular region and a drag that is due entirely to the viscous stress on the cylinder side plus the effect of the dynamic pressure difference on the ends of the cylinder. A second problem is considered in which a thin circular disk moves broadside through a viscous fluid toward a plane wall that is parallel to the disk. An expression obtained for the Stokes drag agrees with the experiment and reduces to known theoretical results at extremes of large and small distances form the disk to the plane.
Boundary Effects on the Drag of a Cylinder in Axial Motion at Low Reynolds Number.
Wehbeh, Elias George
1987-09-01
This work is an experimental study of the Stokes drag on a right circular cylinder moving with constant velocity through a Newtonian viscous fluid. The cylinder velocity is parallel to its longitudinal axis, and the fluid is bounded on the outside by a fixed coaxial cylindrical tube of circular cross section. The length to diameter ratio of the moving cylinder ranges from 1.0 to 390, the ratio of the width of the annular gap to the cylinder length ranges from 0.0077 to 0.86, and the ratio alpha of the cylinder diameter to the tube diameter ranges from 0.022 to 0.91. Experimental values of the drag are compared with a theoretical expression which assumes a flow that is entirely axial in the annular region and a drag that is due entirely to the viscous stress on the cylinder side plus the effect of the dynamic pressure difference on the ends of the cylinder. An end correction term is obtained which is found to be proportional to the annular gap width and to the square root of alpha . This term is found to be consistent with previous numerical studies of the narrow gap case and with experimental studies of the wide gap case. Drag values are also presented for the situation in which the bottom of the tube is open to a larger fluid reservoir. A second problem is considered in which a thin circular disk moves broadside through a viscous fluid toward a plane wall that is parallel to the disk. An expression for the Stokes drag is obtained which agrees with the experiment and reduces to known theoretical results at extremes of large and small distances from the disk to the plane.
A Quantitative Analysis of Starting Jet Vortex Ring Entrainment at Low Reynolds Number
2007-05-07
calibration images, showing grid definition ............................................... 37 Figure 24. Plot of variation with glycerin concentration... glycerin solution. 45 L I S T O F S Y M B O L S A............................................. area of nozzle exit plane D...propagates downstream, ambient fluid is entrained into the vortex bubble and accelerated, . These regions are shown in dark gray in entrainedm Figure 8
Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows
Raayai-Ardakani, Shabnam; McKinley, Gareth H.
2017-09-01
Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.
High-Reynolds Number Viscous Flow Simulations on Embedded-Boundary CartesianGrids
2016-05-05
grids. The main stumbling block is the lack of an affordable refinement strategy that is common- place in structured grids - namely, the use of highly...are f(χ) = { 1 χ > 0 1 + χ2 otherwise , Production = { cb1 Ŝ ν̃ χ > 0 cb1 Ω gn ν̃ otherwise , (4) with Ŝ = { Ω + S̄ S̄ > −cv2 ω Ω + Ω (c2v2+cv3S̄) (Ω
Directory of Open Access Journals (Sweden)
Kuo L.
2010-06-01
Full Text Available This paper experimentally investigates drag reduction, durability for operations and effects for preventing microorganism from adhering to the surface when the superhydrophobic coating is applied on a solid surface. The experiments are divided into two parts. In the first part, a pipe flow system was established to measure the drag and to test the durability of the micro-structure of superhydrophobic coating at average speeds varying from 1m/sec to 6m/sec. In the second part, we tested the effect for preventing microorganism from adhering to the surface by putting the coated steel plates into sea water. There are four different superhydrophobic coatings in the present study. The experimental results were compared to those applied by ship paint usually used at CSBC.
Gas-liquid dynamics at low Reynolds numbers in pillared rectangular micro channels
de Loos, S.R.A.; van der Schaaf, J.; Tiggelaar, Roald M.; Nijhuis, T.A.; de Croon, M.H.J.M.; Schouten, J.C.
2010-01-01
Most heterogeneously catalyzed gas–liquid reactions in micro channels are chemically/kinetically limited because of the high gas–liquid and liquid–solid mass transfer rates that can be achieved. This motivates the design of systems with a larger surface area, which can be expected to offer higher
A Fluid Structure Interaction Strategy with Application to Low Reynolds Number Flapping Flight
2010-01-01
In the airfoil simulations, it is found that peak performance is located in structural exibility-inertia regions where non-linear resonances are...structural flexibility-inertia regions where non-linear resonances are present. A FLUID STRUCTURE INTERACTION STRATEGY WITH APPLICATION TO LOW...driving power coefficient ( CPW ) versus ωf/ωn: same definitions as in (b). . . . . . . . . . . . . . . . . . . . . . . . . 115 5.4 Time histories of lift
Oscillating viscous boundary layer at high Reynolds number: Experiments and numerical calculations
Reyt, I.; Bailliet, H.; Foucault, E.; Valière, J.-Ch.
2015-10-01
Transition to turbulence for an acoustically oscillating flow (without any mean motion) in a resonant wave guide is considered. Departure from the laminar behaviour of the Stokes boundary layer formed in the near wall region is studied both experimentally and numerically for increasing acoustic levels. Laser Doppler Velocimetry is used to measure velocity profiles at different phases along the acoustic period and the experimental profile distortion is interpreted as the consequence of the development of a turbulent boundary layer. On the other hand, the oscillating flow is investigated numerically with a high order resolution one dimensional scheme for comparison with experimental results. The effective viscosity that models transition to turbulence is included and the velocity profile is integrated along the radial coordinate. Results from experiments and from numerical calculation are in very good agreement.
Flow Features of Three Side-by-side Circular Cylinders at Low Reynolds Number
Directory of Open Access Journals (Sweden)
Liu Junkao
2016-01-01
Full Text Available In order to study the fluctuation of kinetic parameter of cylinder matrix in incompressible stationary flow, the flow fluid around three side-by-side circular cylinders are simulated using Immersed Boundary–Lattice Boltzmann method (IB-LBM. Drag and lift force of the three cylinders are investigated as the interval between each cylinder varied from zero to five times of the cylinder diameter. Five flow patterns are defined according to the vortices structure in the downstream of the cylinders. Power spectrum analysis of lift force is developed to explain the vortex patterns. Through the research, we find the strength and phase of the gap flow play an important role in the vortex formatting process. The vortices shedding from different cylinders neutralize and combine in the near wake, contributing a lot to the variation of forces.
Explosion Driven Magnetogasdynamic Flows with High Magnetic Reynolds and Interaction Numbers.
1981-12-01
into Eq. (3), we solve for the tran- sition probability amplitude from the resulting equation by means of first- order perturbation theory [4,5] where 0...is the pertubing potential. The tran- sition probability amplitude from a state I with momentum pl to a state 2 with momentum p2 of the electron is
The effect of shear thinning viscosity on the performance of low Reynolds number swimmers
Zenit, R.; Godinez, F.; Belleville, C.; Lauga, E.
2012-11-01
In addidion to viscoelastic effects, biological fluids can also show shear-thinning viscosity as part of their non Newtonian behavior. To assess the effect of a varying viscosity with shear rate on the performance of swimming, we conducted experiments using two types of magnetically driven swimmers. We consider oscillating flexible tail and rotating rigid coil devices to test this effect. We prepared carbopol-based inelastic shear-thinning fluids with different values of the thinning coefficient, n, and an equivalent Newtonian liquid for comparisons. The motion was filmed and the swimming velocity was measured via digital image processing. We found that the swimming efficiency changes in an important manner if the fluid does not have constant viscosity. We will present and discuss our preliminary results. To our knowledge, this effect has not been addressed in the specialized literature to date.
Friction Drag Reduction Using Superhydrophobic Surface in High Reynolds Number Turbulent Flow
2017-12-25
decided, as part of the overall research strategy on SLIPS surfaces, and with the advice and consultation of the Program Manager Dr. Ki...Aizenberg); Innovators Under 35, MIT Technology Review 2014 (Wong); DARPA Young Faculty Award 2014 (Wong); NSF CAREER Award 2014 (Wong
Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number
Tamayol, A.; Wong, K. W.; Bahrami, M.
2012-02-01
In this study, effects of microstructure on the viscous permeability and Forchheimer coefficient of monodispersed fibers are investigated. The porous material is represented by a unit cell which is assumed to be repeated throughout the medium. Based on the orientation of the fibers in the space, fibrous media are divided into three categories: one-, two-, and three-directional (1D, 2D, and 3D) structures. Parallel and transverse flow through square arrangements of 1D fibers, simple 2D mats, and 3D simple cubic structures are solved numerically over a wide range of porosity (0.35 Ergun equation reveals that this equation is not suitable for highly porous materials. As such, accurate correlations are proposed for determining the Forchheimer coefficient in fibrous porous media.
CALCULATION OF PROPELLER UAV BASED REYNOLDS NUMBER AND DEGREE OF REDUCTION
Directory of Open Access Journals (Sweden)
O. V. Gerasimov
2014-01-01
Full Text Available Presented methodology to the design and check calculations of an isolated propeller for mini-UAV based on the vortex theory of Zhukovsky. Results of the calculation of propeller mini-UAVs and their comparison with results matching propeller on a normal chart. Shows the effect of Re, as well as the degree of reduction in the aerodynamic and geometric characteristics of the propeller.
Mesh Generation and Adaption for High Reynolds Number RANS Computations Project
National Aeronautics and Space Administration — The innovation of our Phase II STTR program is to develop and provide to NASA automatic mesh generation software for the simulation of fluid flows using...
Reynolds Number Effects on Thrust Coefficients and PIV for Flapping Wing Micro Air Vehicles
2012-03-09
the motor is measured by strain gages in the torque cell. The electrical signal from the strain gages passes through a Wheatstone bridge , a low pass...strain gages is passed through a Wheatstone bridge and into the digital display. This signal is also routed to the digital storage oscilloscope to
An Analytical Study of a Locally Cooled High Reynolds Number Simulation Technique.
1984-03-01
2262. Hampton, Virginia: NASA Langley Research Center, 5-9 May 1982. 3. Lan, Chuan-Tau Edward and Jan Roskam , Airplane Aerodynamics and Performance... Roskam Aviation and Engineering Corp., Ottawa, Kansas, 1981. 4. Luchuk, W., unpublished correspondence, Arvin Calspan Field Services, Inc. 5. Yih, Chia
Cross and clover shaped orifice jets analysis at low Reynolds number
Directory of Open Access Journals (Sweden)
Meslem Amina
2015-01-01
Full Text Available The jet coming from a cross-shaped orifice with an open center has been shown in the past, to provide substantial increase in the near field convective transport-mixing, in comparison to a classical round orifice jet. Detailed information has been reported in previous works on the role played in the jet mixing enhancement by the crow of vortices composed of counter-rotating pairs of secondary streamwise structures which are developing in orifice’s troughs. A trough in the cross-shaped jet generates a local shear like the one generated by a triangular tab in a square jet. In the present study we are interested by the modification of local shears in the troughs of the cross-shaped jet, when orifice geometry is modified, such as the center of the orifice becomes closed, leading to a clover-shaped orifice. The general motivation is to understand the effect of using a set of combination of longitudinal structures, themselves produced by the superposition of local shear regions, in mixing performance of a cross jet. It is shown that lower entrainment rates in the clover jet is a results of a additional internal crown of vortices which opposes the external one due to inner shears generated by closing the center of the orifice.
Effects of non-uniform interfacial tension in small Reynolds number ...
Indian Academy of Sciences (India)
Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa; Department of Mathematical Sciences, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa ...
Fluid-Structure Interaction of Oscillating Low Aspect Ratio Wings at Low Reynolds Numbers
2010-03-01
the University of Bath. The forced plunging motion of a rectangular wing (semi aspect ratio sAR=2) with NACA0012 cross-section was provided by a...oscillation frequency A previous study [6] on the aerodynamic performance of an oscillating two-dimensional NACA0012 profile, elicited the existence of...Figure 9 with the vortex shedding frequencies reported by Huang and Lin [8] using the same NACA0012 profile at Re=1.1×10 4 , albeit with a larger
A numerical study on effect of corner radius and Reynolds number ...
Indian Academy of Sciences (India)
Prasenjit Dey
Corner radius; boundary layer; displacement thickness; velocity profile; CFD. 1. Introduction. Over the last many years, the flow around slender cylin- drical bluff bodies has been the subject of intense research, mainly owing to the engineering significance of structural design, flow-induced vibration and heat exchanger tube.
Low Reynolds Number Droplet Combustion In CO2 Enriched Atmospheres In Microgravity
Hicks, M. C.
2003-01-01
The effect of radiative feedback from the gas phase in micro-gravity combustion processes has been of increasing concern because of the implications in the selection and evaluation of appropriate fire suppressants. The use of CO2, an optically thick gas in the infrared region of the electromagnetic spectrum, has garnered widespread acceptance as an effective fire suppressant for most ground based applications. Since buoyant forces often dominate the flow field in 1-g environments the temperature field between the flame front and the fuel surface is not significantly affected by gas phase radiative absorption and re-emission as these hot gases are quickly swept downstream. However, in reduced gravity environments where buoyant-driven convective flows are negligible and where low-speed forced convective flows may be present at levels where gas phase radiation becomes important, then changes in environment that enhance gas phase radiative effects need to be better understood. This is particularly true in assessments of flammability limits and selection of appropriate fire suppressants for future space applications. In recognition of this, a ground-based investigation has been established that uses a droplet combustion configuration to systematically study the effects of enhanced gas phase radiation on droplet burn rates, flame structure, and radiative output from the flame zone.
Dislodging a sessile drop by a high-Reynolds-number shear flow at subfreezing temperatures.
Roisman, Ilia V; Criscione, Antonio; Tropea, Cameron; Mandal, Deepak Kumar; Amirfazli, Alidad
2015-08-01
The drop, exposed to an air flow parallel to the substrate, starts to dislodge when the air velocity reaches some threshold value, which depends on the substrate wetting properties and drop volume. In this study the critical air velocity is measured for different drop volumes, on substrates of various wettabilities. The substrate initial temperatures varied between the normal room temperature (24.5∘C) and subfreezing temperatures (-5∘C and -1∘C). The physics of the drop did not change at the subfreezing temperatures of the substrates, which clearly indicates that the drop does not freeze and remains liquid for a relatively long time. During this time solidification is not initiated, neither by the air flow nor by mechanical disturbances. An approximate theoretical model is proposed that allows estimation of the aerodynamic forces acting on the sessile drop. The model is valid for the case when the drop height is of the same order as the thickness of the viscous boundary in the airflow, but the inertial effects are still dominant. Such a situation, relevant to many practical applications, was never modeled before. The theoretical predictions for the critical velocity of drop dislodging agree well with the experimental data for both room temperature and lower temperatures of the substrates.
Dislodging a sessile drop by a high-Reynolds-number shear flow at subfreezing temperatures
Roisman, Ilia V.; Criscione, Antonio; Tropea, Cameron; Mandal, Deepak Kumar; Amirfazli, Alidad
2015-08-01
The drop, exposed to an air flow parallel to the substrate, starts to dislodge when the air velocity reaches some threshold value, which depends on the substrate wetting properties and drop volume. In this study the critical air velocity is measured for different drop volumes, on substrates of various wettabilities. The substrate initial temperatures varied between the normal room temperature (24 .5∘C ) and subfreezing temperatures (-5∘C and -1∘C ). The physics of the drop did not change at the subfreezing temperatures of the substrates, which clearly indicates that the drop does not freeze and remains liquid for a relatively long time. During this time solidification is not initiated, neither by the air flow nor by mechanical disturbances. An approximate theoretical model is proposed that allows estimation of the aerodynamic forces acting on the sessile drop. The model is valid for the case when the drop height is of the same order as the thickness of the viscous boundary in the airflow, but the inertial effects are still dominant. Such a situation, relevant to many practical applications, was never modeled before. The theoretical predictions for the critical velocity of drop dislodging agree well with the experimental data for both room temperature and lower temperatures of the substrates.
Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number
National Research Council Canada - National Science Library
Ma Dongli Zhao Yanping Qiao Yuhang Li Guanxiong
2015-01-01
... method.Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses（12%, 14%, 16%, 18...
Rotating Convection in F-Planes: Mean Flow and Reynolds Stress
Chan, Kwing L.
2001-02-01
We study turbulent compressible convection under the influence of rotation in an f-plane configuration using numerical simulation. Our focus is on the behaviors of the mean flows and the Reynolds stress. A parametric study is conducted, using 36 computed cases with different energy fluxes, rotation rates (Ω), and inclinations of the rotation vector. The flux varies over a factor of 8; the Coriolis number ranges from 0 to approximately 7; the inclination of the rotation vector covers the range from 0 (at the pole) to π/2 (at the equator). The coverage of this piece of parameter space is rather full and dense, so that we do not need to base our discussions on extrapolations of sparsely distributed cases. Special attention is paid to obtaining statistical convergence of the Reynolds stress, a very slow process that consumes much computer time. The numerical results show that: (1) Even though the properties of the convection zones are different (efficient versus inefficient convection), the behavior of our cases has considerable similarity to that of the turbulent cases explored by Brummell et al. (2) Between the two studies, the most significant difference in flow behavior occurs in the mean zonal velocity at low Rossby numbers. While Brummell et al. found a ``constant-with-depth profile in the bulk of the layer'' (and two ``boundary layers''), we find that the profile develops a prominent retrograde dip at the top of the convection zone. (3) We offer an explanation for the dip based on the vertical distribution of the vertical-meridional component of the Reynolds stress. This may have relevance for understanding the radial drop of the solar angular velocity near the Sun's surface. (4) When the rotation vector is perpendicular to the vertical direction (at the equator), the behavior of the system undergoes a qualitative jump from those with other rotation vector inclinations. A shear with a strain rate of -2Ω develops in the mean zonal velocity, independent of the
Large-scale control strategy for drag reduction in turbulent channel flows
Yao, Jie; Chen, Xi; Thomas, Flint; Hussain, Fazle
2017-06-01
In a recent article, Canton et al. [J. Canton et al., Phys. Rev. Fluids 1, 081501(R) (2016), 10.1103/PhysRevFluids.1.081501] reported significant drag reduction in turbulent channel flow by using large-scale, near-wall streamwise swirls following the control strategy of Schoppa and Hussain [W. Schoppa and F. Hussain, Phys. Fluids 10, 1049 (1998), 10.1063/1.869789] for low Reynolds numbers only, but found no drag reduction at high friction Reynolds numbers (Reτ=550 ). Here we show that the lack of drag reduction at high Re observed by Canton et al. is remedied by the proper choice of the large-scale control flow. In this study, we apply near-wall opposed wall-jet forcing to achieve drag reduction at the same (high) Reynolds number where Canton et al. found no drag reduction. The steady excitation is characterized by three control parameters, namely, the wall-jet-forcing amplitude A+, the spanwise spacing Λ+, and the wall jet height yc+ (+ indicates viscous scaling); the primary difference between Schoppa and Hussain's work (also that of Canton et al.) and this Rapid Communication is the emphasis on the explicit choice of yc+ here. We show as an example that with a choice of A+≈0.015 ,Λ+≈1200 , and yc+≈30 the flow control definitely suppresses the wall shear stress at a series of Reynolds numbers, namely, 19 %,14 % , and 12 % drag reductions at Reτ=180 , 395, and 550, respectively. Further study should explore optimization of these parameter values.
A new definition of Bejan number
Directory of Open Access Journals (Sweden)
Awad Mohamed M.
2012-01-01
Full Text Available A new definition of Bejan number will be generated by replacing the thermal diffusivity with the mass diffusivity. For example, the Schmidt number is the mass transfer analog of the Prandtl number. For the case of Reynolds analogy (Sc = Pr = = 1, both current and new definitions of Bejan number are the same. This new definition is useful and needed for diffusion of mass (mass diffusion.
Energy Technology Data Exchange (ETDEWEB)
Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Zhou, Yue
2016-09-01
Rodents are routinely used in inhalation toxicology tests as human surrogates. However, in vitro dosimetry tests in rodent casts are still scarce due to small rodent airways and in vitro tests to quantify sub-regional dosimetry are still impractical. We hypothesized that for inertial particles whose deposition is dominated by airflow convection (Reynolds number) and particle inertia (Stokes number), the deposition should be similar among airway replicas of different scales if their Reynolds and Stokes numbers are kept the same. In this study, we aimed to (1) numerically test the hypothesis in three airway geometries: a USP induction port, a human nose model, and a Sprague-Dawley rat nose model, and (2) find the range of applicability of this hypothesis. Five variants of the USP and human nose models and three variants of the rat nose model were tested. Inhalation rates and particle sizes were scaled to match the Reynolds number and Stokes numbers. A low-Reynolds-number k–ω model was used to resolve the airflow and a Lagrangian tracking algorithm was used to simulate the particle transport and deposition. Statistical analysis of predicted doses was conducted using ANOVA. For normal inhalation rates and particle dia- meters ranging from 0.5 to 24 mm, the deposition differences between the life-size and scaled models are insignificant for all airway geometries considered (i.e., human nose, USP, and rat nose). Furthermore, the deposition patterns and exit particle profiles also look similar among scaled models. However, deposition rates and patterns start to deviate if inhalation rates are too low, or particle sizes are too large. For the rat nose, the threshold velocity was found to be 0.71 m/s and the threshold Froude number to be 50. Results of this study provide a theoretical foundation for sub-regional in vitro dosimetry tests in small animals and for interpretation of data from inter-species or intra-species with varying body sizes.
Rigorous justification of the Reynolds equations for gas lubrication
Marušić-Paloka, Eduard; Starčević, Maja
2005-07-01
The goal of this Note is to give a rigorous justification of the compressible Reynolds model for gas lubrication, via asymptotic analysis. We start from the equations of motion of compressible viscous fluid in a thin domain and study the limit as the domain thickness tends to zero. At the limit we find the known engineering model. The key of the proof is the strong convergence for the pressure obtained by its decomposition. To cite this article: E. Marušić-Paloka, M. Starčević, C. R. Mecanique 333 (2005).
Jones, Sam; Jemcov, Aleksandar; Corke, Thomas
2016-11-01
An Embedded Large Eddy Simulation (ELES) approach is used to simulate the flow path through a high pressure turbine stage that includes the entry duct, stationary inlet and exit guide vanes, and a rotor. The flowfield around the rotor is simulated using LES. A Reynolds Averaged Simulation (RAS) is used for the rest of the flow domain. The interface between RAS and LES domains uses the RAS turbulence quantities as a means of obtaining length scales that are used in computing the vorticity required to trigger a proper energy cascade within the LES part of the flow field. The objective is to resolve the unsteady vortical motions that eminate from the gap between the rotor tip and duct walls that are presumably under-resolved in a RAS approach. A comparative analysis between RAS and ELES approaches for this turbomachinery problem is then presented. APS Fellow.
Energy Technology Data Exchange (ETDEWEB)
Schmitt, Francois G., E-mail: francois.schmitt@univ-lille1.f [Laboratoire d' Oceanologie et de Geosciences, CNRS UMR LOG 8187, Universite des sciences et technologies de Lille, Lille 1, Wimereux (France); Vinkovic, Ivana, E-mail: ivana.vinkovic@univ-lyon1.f [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS UMR 5509, Universite Claude Bernard Lyon, Lyon 1, Villeurbanne (France); Buffat, Marc, E-mail: marc.buffat@univ-lyon1.f [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS UMR 5509, Universite Claude Bernard Lyon, Lyon 1, Villeurbanne (France)
2010-07-19
Turbulence models often involve Reynolds averaging, with a closure providing the Reynolds stress tensor as function of mean velocity gradients, through a turbulence constitutive equation. The main limitation of this linear closure is that it rests on an analogy with kinetic theory. For this analogy to be valid there has to be a scale separation between the mean velocity variations and the turbulent Lagrangian free path whose mean value is the turbulent mixing length. The aim of this work is to better understand this hypothesis from a microscopic point of view. Therefore, fluid elements are tracked in a turbulent channel flow. The flow is resolved by direct numerical simulation (DNS). Statistics on particle trajectories ending on a certain distance y{sub 0} from the wall are computed, leading to estimations of the turbulent mixing length scale and the Knudsen number. Comparing the computed values to the Knudsen number in the case of scale separation, we may know in which region of the flow and to what extent the turbulence constitutive equation is not verified. Finally, a new non-local formulation for predicting the Reynolds stress is proposed.
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results of a wind tunnel test program to determine aerodynamic heat transfer distributions on an orbiter configuration are presented. Heat-transfer rates were determined by the phase change paint technique on 0.013-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, length Reynolds numbers of 6.0 x 1 million and 8.9 x 1 million, and angles of attack from 10 to 50 deg in 10-deg increments. At the higher Reynolds number, data were obtained with and without boundary layer trips. Model details, test conditions, and reduced heat-transfer data are presented. Data reduction of the phase-change paint photographs was performed by utilizing a new technique which is described in the data presentation section.
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results of a wind tunnel test program to determine aerodynamic heat transfer distributions on the McDonnell Douglas Booster configuration are presented. Heat-transfer rates were determined by the phase-change paint technique on 0.009-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, length Reynolds numbers 5 million and 7.3 million, and angles of attack of 40, 50, and 60 deg. At the higher Reynolds number, data were obtained with and without boundary layer trips. Model details, test conditions, and reduced heat-transfer data are presented. Data reduction of the phase-change paint photographs was performed by utilizing a new technique which is described.
Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu
2017-12-01
A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.
Achieving Full Dynamic Similarity with Small-Scale Wind Turbine Models
Miller, Mark; Kiefer, Janik; Westergaard, Carsten; Hultmark, Marcus
2016-11-01
Power and thrust data as a function of Reynolds number and Tip Speed Ratio are presented at conditions matching those of a full scale turbine. Such data has traditionally been very difficult to acquire due to the large length-scales of wind turbines, and the limited size of conventional wind tunnels. Ongoing work at Princeton University employs a novel, high-pressure wind tunnel (up to 220 atmospheres of static pressure) which uses air as the working fluid. This facility allows adjustment of the Reynolds number (via the fluid density) independent of the Tip Speed Ratio, up to a Reynolds number (based on chord and velocity at the tip) of over 3 million. Achieving dynamic similarity using this approach implies very high power and thrust loading, which results in mechanical loads greater than 200 times those experienced by a similarly sized model in a conventional wind tunnel. In order to accurately report the power coefficients, a series of tests were carried out on a specially designed model turbine drive-train using an external testing bench to replicate tunnel loading. An accurate map of the drive-train performance at various operating conditions was determined. Finally, subsequent corrections to the power coefficient are discussed in detail. Supported by: National Science Foundation Grant CBET-1435254 (program director Gregory Rorrer).
Sub-Grid-Scale Description of Turbulent Magnetic Reconnection in Magnetohydrodynamics
Widmer, Fabien; Yokoi, Nobumitsu
2015-01-01
Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could permit this instead of the too rare binary collisions. We investigated the influence of turbulence on the reconnection rate in the framework of a single fluid compressible MHD approach. The goal is to find out, whether unresolved, sub-grid for MHD simulations, turbulence can enhance the reconnection process in high Reynolds number astrophysical plasma. We solve, simultaneously with the grid-scale MHD equations, evolution equations for the sub-grid turbulent energy and cross helicity according to Yokoi's model (Yokoi (2013)) where turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. Simulations of Harris and force free sheets confirm the results of Higashimori et al. (2013) and new results are obtained about the dependence on resistivity for large Reynolds number as well as guide field effects. The amount of energy transferred f...
A novel scaling approach for sooting laminar coflow flames at elevated pressures
Abdelgadir, Ahmed; Steinmetz, Scott A.; Attili, Antonio; Bisetti, Fabrizio; Roberts, William L.
2016-11-01
Laminar coflow diffusion flames are often used to study soot formation at elevated pressures due to their well-characterized configuration. In these expriments, these flames are operated at constant mass flow rate (constant Reynolds number) at increasing pressures. Due to the effect of gravity, the flame shape changes and as a results, the mixing field changes, which in return has a great effect on soot formation. In this study, a novel scaling approach of the flame at different pressures is proposed. In this approach, both the Reynolds and Grashof's numbers are kept constant so that the effect of gravity is the same at all pressures. In order to keep the Grashof number constant, the diameter of the nozzle is modified as pressure varies. We report both numerical and experimental data proving that this approach guarantees the same nondimensional flow fields over a broad range of pressures. In the range of conditions studied, the Damkoehler number, which varies when both Reynolds and Grashof numbers are kept constant, is shown to play a minor role. Hence, a set of suitable flames for investigating soot formation at pressure is identified. This research made use of the resources of IT Research Computing at King Abdullah University of Science & Technology (KAUST), Saudi Arabia.
Evaluation of Algebraic Reynolds Stress Model Assumptions Using Experimental Data
Jyoti, B.; Ewing, D.; Matovic, D.
1996-11-01
The accuracy of Rodi's ASM assumption is examined by evaluating the terms in Reynolds stress transport equation and their modelled counterparts. The basic model assumption: Dτ_ij/Dt + partial T_ijl/partial xl = (τ_ij/k )(Dk/Dt + partial Tl /partial xl ) (Rodi( Rodi W., ZAMM.), 56, pp. 219-221, 1976.), can also be broken into two stronger assumptions: Da_ij/Dt = 0 and (2) partial T_ijl/partial xl = (τ_ij/k )(partial Tl /partial xl ) (e.g. Taulbee( Taulbee D. B., Phys. of Fluids), 4(11), pp. 2555-2561, 1992.). Fu et al( Fu S., Huang P.G., Launder B.E. & Leschziner M.A., J. Fluid Eng.), 110(2), pp. 216-221., 1988 examined the accuracy of Rodi's assumption using the results of RSM calculation of axisymmetric jets. Since the RSM results did not accurately predict the experimental results either, it may be useful to examine the basic ASM model assumptions using experimental data. The database of Hussein, Capp and George( Hussein H., Capp S. & George W., J.F.M.), 258, pp.31-75., 1994. is sufficiently detailed to evaluate the terms of Reynolds stress transport equations individually, thus allowing both Rodi's and the stronger assumptions to be tested. For this flow assumption (1) is well satisfied for all the components (including \\overlineuv); however, assumption (2) does not seem as well satisfied.
Global and local statistics in turbulent convection at low Prandtl numbers
Scheel, Janet D
2016-01-01
Statistical properties of turbulent Rayleigh-Benard convection at low Prandtl numbers (Pr), which are typical for liquid metals such as mercury, gallium or liquid sodium, are investigated in high-resolution three-dimensional spectral element simulations in a closed cylindrical cell with an aspect ratio of one and are compared to previous turbulent convection simulations in air. We compare the scaling of global momentum and heat transfer. The scaling exponents are found to be in agreement with experiments. Mean profiles of the root-mean-square velocity as well as the thermal and kinetic energy dissipation rates have growing amplitudes with decreasing Prandtl number which underlies a more vigorous bulk turbulence in the low-Pr regime. The skin-friction coefficient displays a Reynolds-number dependence that is close to that of an isothermal, intermittently turbulent velocity boundary layer. The thermal boundary layer thicknesses are larger as Pr decreases and conversely the velocity boundary layer thicknesses be...
Numerical analysis of the scale effect of the nominal wake field of KCS
Directory of Open Access Journals (Sweden)
ZHANG Haipeng
2017-01-01
Full Text Available In order to study the scale effect of the nominal wake field, the viscous flow field of KCS is studied without considering the free surface effect, and the nominal wake fields of KCS at different scales including full scale are solved numerically using the RANS method and the SST k-ω turbulence model. By comprehensively comparing the computed results with experimental data, the scale effect of the nominal wake field is further investigated. This shows that the reciprocal of the mean axial wake fraction at each radius exhibits a near-linear dependence on the Reynolds number in a logarithmic scale; for the nominal wake field of the propeller disc of KCS without a propeller, two wake peaks exit, and the amplitude of the axial wake peak decreases with the increase of the Reynolds number, which is conducive to a decrease in propeller exciting force and propeller cavitation; the scale effect of the small scale model is more obvious, and the scale effect of the mean axial wake fraction in the inner area is stronger than it is in the outer area.
Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames
Attili, Antonio
2016-02-13
Turbulence statistics from two three-dimensional direct numerical simulations of planar n-heptane/air turbulent jets are compared to assess the effect of the gas-phase species diffusion model on flame dynamics and soot formation. The Reynolds number based on the initial jet width and velocity is around 15, 000, corresponding to a Taylor scale Reynolds number in the range 100 ≤ Reλ ≤ 150. In one simulation, multicomponent transport based on a mixture-averaged approach is employed, while in the other the gas-phase species Lewis numbers are set equal to unity. The statistics of temperature and major species obtained with the mixture-averaged formulation are very similar to those in the unity Lewis number case. In both cases, the statistics of temperature are captured with remarkable accuracy by a laminar flamelet model with unity Lewis numbers. On the contrary, a flamelet with a mixture-averaged diffusion model, which corresponds to the model used in the multi-component diffusion three-dimensional DNS, produces significant differences with respect to the DNS results. The total mass of soot precursors decreases by 20-30% with the unity Lewis number approximation, and their distribution is more homogeneous in space and time. Due to the non-linearity of the soot growth rate with respect to the precursors\\' concentration, the soot mass yield decreases by a factor of two. Being strongly affected by coagulation, soot number density is not altered significantly if the unity Lewis number model is used rather than the mixture-averaged diffusion. The dominant role of turbulent transport over differential diffusion effects is expected to become more pronounced for higher Reynolds numbers. © 2016 The Combustion Institute.
Srivastava, D K
1999-01-01
In view of the recent WA98 data of pi /sup 0/ spectra from central Pb +Pb collisions at the CERN SPS, we analyze the production of neutral pions for A+A collisions across the periodic table at square root (s) =17 AGeV and 200 AGeV within the framework of the parton-cascade model for relativistic heavy ion collisions. The multiplicity of the pions (having p/sub T/ > 0.5 GeV) in the central rapidity region, is seen to scale as ~(N/sub part/)/sup alpha /, where N/sub part/ is the number of participating nucleons, which we have approximated as 2 A for central collisions of identical nuclei. We argue that the deviation of alpha ( equivalent to 1.2) from unity may have its origin in the multiple scattering suffered by the partons. We also find that the constant of proportionality in the above scaling relation increases substantially in going from SPS to RHIC energies. This would imply that the (semi)hard partonic activity becomes a much cleaner signal above the soft particle production at the higher energy of RHIC,...
Afzal, Noor
2014-11-01
The Reynolds shear stress around maxima, turbulent bursting process and associate velocity profile in ZGP turbulent boundary layer is considered in the intermediate layer/mesolayer proposed by Afzal (1982 Ing. Arch. 53, 355-277), in addition to inner and outer layers. The intermediate length scale δm = δRτ- 1 / 2 having velocity Um = mUe with 1 / 2 proposed critical layer / mesolayer, cited/adopted work Long and Chen and McKeon, B.J. & Sharma, A. 2010 JFM 658, page 370 stated ``retaining the assumption that the critical layer occurs when U (y) = (2 / 3) UCL (i.e. that the critical layer scales with y+ ~Rτ+ 2 / 3),'' both untenable assumptions, but ignored citation of papers Afzal 1982 onwards on pipe flow. The present turbulent boundary layer work shows that Reynolds shear maxima, shape factor and turbulent bursting time scale with mesolayer variables and Taylor length/time scale. Residence, Embassy Hotel Rasal Gang Aligarh 202001 UP India.
Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Widmer, F., E-mail: widmer@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany); Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Büchner, J. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany); Yokoi, N. [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)
2016-04-15
Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could transport energy from large to small scales where binary particle collisions are rare. We have investigated the influence of small scale magnetohydrodynamics (MHD) turbulence on the reconnection rate in the framework of a compressible MHD approach including sub-grid-scale (SGS) turbulence. For this sake, we considered Harris-type and force-free current sheets with finite guide magnetic fields directed out of the reconnection plane. The goal is to find out whether unresolved by conventional simulations MHD turbulence can enhance the reconnection process in high-Reynolds-number astrophysical plasmas. Together with the MHD equations, we solve evolution equations for the SGS energy and cross-helicity due to turbulence according to a Reynolds-averaged turbulence model. The SGS turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. By this way, the feedback of the unresolved turbulence into the MHD reconnection process is taken into account. It is shown that the turbulence controls the regimes of reconnection by its characteristic timescale τ{sub t}. The dependence on resistivity was investigated for large-Reynolds-number plasmas for Harris-type as well as force-free current sheets with guide field. We found that magnetic reconnection depends on the relation between the molecular and apparent effective turbulent resistivity. We found that the turbulence timescale τ{sub t} decides whether fast reconnection takes place or whether the stored energy is just diffused away to small scale turbulence. If the amount of energy transferred from large to small scales is enhanced, fast reconnection can take place. Energy spectra allowed us to characterize the different regimes of reconnection. It was found that reconnection is even faster for larger Reynolds numbers controlled by the molecular
Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.
2013-09-01
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.
Scale Adaptive Simulation Model for the Darrieus Wind Turbine
DEFF Research Database (Denmark)
Rogowski, K.; Hansen, Martin Otto Laver; Maroński, R.
2016-01-01
the scale adaptive simulation (SAS) approach for performance analysis of a one-bladed Darrieus wind turbine working at a tip speed ratio of 5 and at a blade Reynolds number of 40 000. The three-dimensional incompressible unsteady Navier-Stokes equations are used. Numerical results of aerodynamic loads......Accurate prediction of aerodynamic loads for the Darrieus wind turbine using more or less complex aerodynamic models is still a challenge. One of the problems is the small amount of experimental data available to validate the numerical codes. The major objective of the present study is to examine...
Scale Adaptive Simulation Model for the Darrieus Wind Turbine
Rogowski, K.; Hansen, Martin Otto Laver; Maroński, R.; Lichota, P.
2016-01-01
Accurate prediction of aerodynamic loads for the Darrieus wind turbine using more or less complex aerodynamic models is still a challenge. One of the problems is the small amount of experimental data available to validate the numerical codes. The major objective of the present study is to examine the scale adaptive simulation (SAS) approach for performance analysis of a one-bladed Darrieus wind turbine working at a tip speed ratio of 5 and at a blade Reynolds number of 40 000. The three-dimen...