WorldWideScience

Sample records for review indoor air

  1. Research review: Indoor air quality control techniques

    International Nuclear Information System (INIS)

    Fisk, W.J.

    1986-10-01

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs

  2. Core public health functions for BC : evidence review : air quality-indoor

    Energy Technology Data Exchange (ETDEWEB)

    Copes, R.; Ouellette, V.; Lee, K.S.; Brauer, M. [British Columbia Ministry of Health, Victoria, BC (Canada)

    2006-04-15

    Indoor sources of pollutants can have a major impact on the health of Canadians, as pollutant concentrations are often higher indoors than outdoors. This paper assessed data compiled by public health indoor air interventions. The aim of the study was to identify the current state of evidence on the impacts of indoor pollution in order to develop performance improvement plans for public health programs in British Columbia (BC). The literature review used several databases to review interventions involving humidity control; ventilation; particulate matter; indoor allergens; and environmental tobacco smoke. Results of the review showed that improving inadequate ventilation can significantly decrease the prevalence of sick building syndrome as well as other self-reported symptoms attributed to indoor air pollution. A review of the literature also demonstrated that many building ventilation systems are not functioning to design specifications. The poor quality of studies on the health impacts of particulate matter or dust made it difficult to fully assess the benefits of particle filtration on human health. Studies investigating the impacts of controlling indoor allergens suggested that the avoidance of dust mites may benefit people with allergies. Evidence gained from studies on environmental tobacco smoke showed that banning or restricting smoking will reduce the burden of illness from pollutants in indoor air. 20 refs., 3 tabs.

  3. Core public health functions for BC : evidence review : air quality-indoor

    International Nuclear Information System (INIS)

    Copes, R.; Ouellette, V.; Lee, K.S.; Brauer, M.

    2006-04-01

    Indoor sources of pollutants can have a major impact on the health of Canadians, as pollutant concentrations are often higher indoors than outdoors. This paper assessed data compiled by public health indoor air interventions. The aim of the study was to identify the current state of evidence on the impacts of indoor pollution in order to develop performance improvement plans for public health programs in British Columbia (BC). The literature review used several databases to review interventions involving humidity control; ventilation; particulate matter; indoor allergens; and environmental tobacco smoke. Results of the review showed that improving inadequate ventilation can significantly decrease the prevalence of sick building syndrome as well as other self-reported symptoms attributed to indoor air pollution. A review of the literature also demonstrated that many building ventilation systems are not functioning to design specifications. The poor quality of studies on the health impacts of particulate matter or dust made it difficult to fully assess the benefits of particle filtration on human health. Studies investigating the impacts of controlling indoor allergens suggested that the avoidance of dust mites may benefit people with allergies. Evidence gained from studies on environmental tobacco smoke showed that banning or restricting smoking will reduce the burden of illness from pollutants in indoor air. 20 refs., 3 tabs

  4. [Schools, office buildings, leisure settings: diversity of indoor air quality issues. Global review on indoor air quality in these settings].

    Science.gov (United States)

    Mandin, C; Derbez, M; Kirchner, S

    2012-07-01

    This review provides a global overview of indoor air quality issues in schools, office buildings and recreational settings. It presents the most recent scientific publications and the on-going work conducted in France in the frame of the indoor air quality Observatory. Monitoring campaigns on indoor air quality in schools have been carried out in the recent years in Europe. However, few studies have specifically addressed the role of exposure in these buildings on children's health. Indoor air quality in office buildings has been little studied so far. However, some specificities, such as emissions from electronic devices, frequent cleaning, impossibility to open windows in high-rise buildings, for example, should be examined and their role on the health and comfort studied. Finally, even if the time spent in recreational settings is short, the quality of indoor air should also be considered because of specific pollution. This is the case of indoor swimming pools (exposure to chlorination byproducts) and ice-rinks (exposure to exhaust from machines used to smooth the ice). Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Current Indoor Air Quality in Japan.

    Science.gov (United States)

    Jinno, Hideto

    2016-01-01

    People spend more than two thirds of their daily time indoors. Hence, maintaining a healthy indoor environment is indispensable for the prevention of building related illness. In Japan, guidelines for indoor air quality have been established for 13 volatile/semi-volatile organic compounds (VOCs/SVOCs). These guidelines are now under revision by the Committee on Sick House Syndrome: Indoor Air Pollution. In order to gain information on the current indoor air pollutants and their levels, we carried out a nation-wide survey of VOCs and aldehydes in indoor residential air during 2012-2013. In this review, I concisely summarized the current indoor air quality of Japan.

  6. Enhancing indoor air quality -The air filter advantage.

    Science.gov (United States)

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  7. HVAC SYSTEMS AS A TOOL IN CONTROLLING INDOOR AIR QUALITY: A LITERATURE REVIEW

    Science.gov (United States)

    The report gives results of a review of literature on the use of heating, ventilating, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). Although significant progress has been made in reducing the energy consumption of HVAC systems, their effect on indoor a...

  8. Indoor air quality: a UK perspective

    International Nuclear Information System (INIS)

    Wadge, A.

    1995-01-01

    Outdoor air quality has generally improved in the UK over the last 2 decades but during this period changing conditions within the home have tended to reduce ventilation and increase the opportunity for accumulation of undesirable levels of indoor air pollutants. Information obtained from laboratory and epidemiological studies suggest that indoor air pollutants are an important cause of avoidable morbidity and mortality in the UK. This paper reviews the major indoor air pollutants of concern in the UK and considers some of the special issues relevant to indoor environment. (author) 3 figs., 37 refs

  9. Residential indoor air quality guideline : ozone

    International Nuclear Information System (INIS)

    2010-01-01

    Ozone (O 3 ) is a colourless gas that reacts rapidly on surfaces and with other constituents in the air. Sources of indoor O 3 include devices sold as home air cleaners, and some types of office equipment. Outdoor O 3 is also an important contributor to indoor levels of O 3 , depending on the air exchange rate with indoor environments. This residential indoor air quality guideline examined factors that affect the introduction, dispersion and removal of O 3 indoors. The health effects of prolonged exposure to O 3 were discussed, and studies conducted to evaluate the population health impacts of O 3 were reviewed. The studies demonstrated that there is a significant association between ambient O 3 and adverse health impacts. Exposure guidelines for residential indoor air quality were discussed. 14 refs.

  10. Behavioural change, indoor air pollution and child respiratory health in developing countries: a review.

    Science.gov (United States)

    Barnes, Brendon R

    2014-04-25

    Indoor air pollution caused by the indoor burning of solid biomass fuels has been associated with Acute Respiratory Infections such as pneumonia amongst children of less than five years of age. Behavioural change interventions have been identified as a potential strategy to reduce child indoor air pollution exposure, yet very little is known about the impact of behavioural change interventions to reduce indoor air pollution. Even less is known about how behaviour change theory has been incorporated into indoor air pollution behaviour change interventions. A review of published studies spanning 1983-2013 suggests that behavioural change strategies have the potential to reduce indoor air pollution exposure by 20%-98% in laboratory settings and 31%-94% in field settings. However, the evidence is: (1) based on studies that are methodologically weak; and (2) have little or no underlying theory. The paper concludes with a call for more rigorous studies to evaluate the role of behavioural change strategies (with or without improved technologies) to reduce indoor air pollution exposure in developing countries as well as interventions that draw more strongly on existing behavioural change theory and practice.

  11. Indoor air quality of environments used for physical exercise and sports practice: Systematic review.

    Science.gov (United States)

    Andrade, Alexandro; Dominski, Fábio Hech

    2018-01-15

    Systematic reviews have the potential to contribute substantially to environmental health and risk assessment. This study aimed to investigate indoor air quality of environments used for physical exercise and sports practice through a systematic review. The systematic review followed the PRISMA guidelines and was recorded in the PROSPERO registry (CRD42016036057). The search was performed using the SciELO, Science Direct, Scopus, LILACS, MEDLINE via PubMed, and SPORTDiscus databases, from their inception through April 2017. The search terms used in the databases were {air pollution" OR "air pollutants" OR "air quality"} AND {"physical exercise" OR "physical activity" OR "sport"}. The results of selected studies were divided into 5 categories for analysis: monitoring of air quality in the environment according to international guidelines, indoor-to-outdoor ratio (I/O), air quality during physical exercise, impact of air quality on health, and interventions to improve indoor air quality. Among 1281 studies screened, 34 satisfied the inclusion criteria. The monitoring of pollutants was conducted in 20 studies. CO and NO 2 were the most investigated pollutants, and guidelines were discussed in most studies. The I/O ratio was investigated in 12 studies, of which 9 showed a higher concentration of some pollutants in indoor rather than outdoor environments. Among the 34 studies selected, only 7 investigated the impact of indoor air pollution on human health. The population in most of these studies consisted of hockey players. Most studies conducted monitoring of pollutants in indoor environments used for physical exercise and sports practice. The earliest studies were conducted in ice skating rinks and the most recent evaluated gymnasiums, fitness centers, and sports centers. The CO, particulate matter, and NO 2 concentrations were the most investigated and have the longest history of investigation. These pollutants were within the limits established by guidelines in most

  12. Air quality inside subway metro indoor environment worldwide: A review.

    Science.gov (United States)

    Xu, Bin; Hao, Jinliang

    2017-10-01

    The air quality in the subway metro indoor microenvironment has been of particular public concern. With specific reference to the growing demand of green transportation and sustainable development, subway metro systems have been rapidly developed worldwide in last decades. The number of metro commuters has continuously increased over recent years in metropolitan cities. In some cities, metro system has become the primary public transportation mode. Although commuters typically spend only 30-40min in metros, the air pollutants emitted from various interior components of metro system as well as air pollutants carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure. Commuters' exposure to various air pollutants in metro carriages may cause perceivable health risk as reported by many environmental health studies. This review summarizes significant findings in the literature on air quality inside metro indoor environment, including pollutant concentration levels, chemical species, related sources and health risk assessment. More than 160 relevant studies performed across over 20 countries were carefully reviewed. These comprised more than 2000 individual measurement trips. Particulate matters, aromatic hydrocarbons, carbonyls and airborne bacteria have been identified as the primary air pollutants inside metro system. On this basis, future work could focus on investigating the chronic health risks of exposure to various air pollutants other than PM, and/or further developing advanced air purification unit to improve metro in-station air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Health effects and sources of indoor air pollution. Part I

    International Nuclear Information System (INIS)

    Samet, J.M.; Marbury, M.C.; Spengler, J.D.

    1987-01-01

    Since the early 1970s, the health effects of indoor air pollution have been investigated with increasing intensity. Consequently, a large body of literature is now available on diverse aspects of indoor air pollution: sources, concentrations, health effects, engineering, and policy. This review begins with a review of the principal pollutants found in indoor environments and their sources. Subsequently, exposure to indoor air pollutants and health effects are considered, with an emphasis on those indoor air quality problems of greatest concern at present: passive exposure to tobacco smoke, nitrogen dioxide from gas-fueled cooking stoves, formaldehyde exposure, radon daughter exposure, and the diverse health problems encountered by workers in newer sealed office buildings. The review concludes by briefly addressing assessment of indoor air quality, control technology, research needs, and clinical implications. 243 references

  14. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  15. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  16. REVIEW OF CONCENTRATION STANDARDS AND GUIDELINES FOR FUNGI IN INDOOR AIR

    Science.gov (United States)

    The paper reviews and compares existing guidelines for indoor airborne fungi, discusses limitations of existing guidelines, and identifies research needs that should contribute to the development of realistic and useful guidelines for these important air pollutants. (NOTE: Exposu...

  17. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    Energy Technology Data Exchange (ETDEWEB)

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  18. Indoor air quality in public utility environments-a review.

    Science.gov (United States)

    Śmiełowska, Monika; Marć, Mariusz; Zabiegała, Bożena

    2017-04-01

    Indoor air quality has been the object of interest for scientists and specialists from the fields of science such as chemistry, medicine and ventilation system design. This results from a considerable number of potential factors, which may influence the quality of the broadly understood indoor air in a negative way. Poor quality of indoor air in various types of public utility buildings may significantly affect an increase in the incidence of various types of civilisation diseases. This paper presents information about a broad spectrum of chemical compounds that were identified and determined in the indoor environment of various types of public utility rooms such as churches, museums, libraries, temples and hospitals. An analysis of literature data allowed for identification of the most important transport paths of chemical compounds that significantly influence the quality of the indoor environment and thus the comfort of living and the health of persons staying in it.

  19. Indoor air pollution

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2001-01-01

    Indoor air pollution is a potential risk to human health. Prolonged exposure to indoor pollutants may cause various infectious, allergic and other diseases. Indoor pollutants can emanate from a broad array of internal and external sources. Internal sources include building and furnishing materials, consumer and commercial products, office equipment, micro-organisms, pesticides and human occupants activities. External sources include soil, water supplies and outside makeup air. The main indoor air pollutants of concern are inorganic gases, formaldehyde and other volatile organic compounds, pesticides, radon and its daughters, particulates and microbes. The magnitude of human exposure to indoor pollutants can be estimated or predicted with the help of mathematical models which have been developed using the data from source emission testing and field monitoring of pollutants. In order to minimize human exposure to indoor pollutants, many countries have formulated guidelines / standards for the maximum permissible levels of main pollutants. Acceptable indoor air quality can be achieved by controlling indoor pollution sources and by effective ventilation system for removal of indoor pollutants. (author)

  20. Outdoor-indoor air pollution in urban environment: Challenges and opportunity

    Directory of Open Access Journals (Sweden)

    Dennis Y.C. eLeung

    2015-01-01

    Full Text Available With the continual improvement in our quality of life, indoor air quality has become an important area of concern in the 21st century. Indoor air quality is affected by many factors including the type and running conditions of indoor pollution sources, ventilation conditions, as well as indoor activities. Studies revealed that the outdoor environment is also an important factor that cannot be neglected for indoor air quality studies. In this review, the indoor and outdoor air pollution relationships obtained from different studies are discussed in order to identify the key factors affecting the indoor air quality. As climate change is recognized as imposing impacts on the environment, how it affects the indoor air quality and the health impacts to the occupants will be evaluated in this paper. The major challenges and opportunities in indoor/outdoor air pollution studies will be highlighted.

  1. Coping with Indoor Air Pollution

    Science.gov (United States)

    ... Pollution > Coping with Indoor Air Pollution Font: Outdoor Pollution Indoor Air Pollution Asthma Triggers For Kids and Teachers Coping with Indoor Air Pollution Indoor air pollution is irritating to everyone: But people who ...

  2. Indoor air quality

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Indoor Air Quality is rapidly becoming a major environmental concern because a significant amount of people spend a substantial amount of time in a variety of different indoor environments. Health effects from indoor pollutants fall into two categories: those that are experienced immediately after exposure and those that do not show up until years later. They are: radon, formaldehyde, asbestos, lead and household organic chemicals. The authors presented a source-by-source look at the most common indoor air pollutants, their potential health effects, and ways to reduce their levels in the home. There are three basic strategies to improve indoor air quality: one method is source control, another is through ventilation improvements, and the third is the utilization of some sort of mechanical device such as air cleaners

  3. Indoor air pollution

    International Nuclear Information System (INIS)

    Spengler, J.D.

    1985-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  4. Indoor air: Reference bibliography

    International Nuclear Information System (INIS)

    Campbell, D.; Staves, D.; McDonald, S.

    1989-07-01

    The U. S. Environmental Protection Agency initially established the indoor air Reference Bibliography in 1987 as an appendix to the Indoor Air Quality Implementation Plan. The document was submitted to Congress as required under Title IV--Radon Gas and Indoor Air Quality Research of the Superfund Amendments and Reauthorization Act of 1986. The Reference Bibliography is an extensive bibliography of reference materials on indoor air pollution. The Bibliography contains over 4500 citations and continues to increase as new articles appear

  5. Indoor air humidity, air quality, and health - An overview.

    Science.gov (United States)

    Wolkoff, Peder

    2018-04-01

    There is a long-standing dispute about indoor air humidity and perceived indoor air quality (IAQ) and associated health effects. Complaints about sensory irritation in eyes and upper airways are generally among top-two symptoms together with the perception "dry air" in office environments. This calls for an integrated analysis of indoor air humidity and eye and airway health effects. This overview has reviewed the literature about the effects of extended exposure to low humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus survival, and voice disruption. Elevation of the indoor air humidity may positively impact perceived IAQ, eye symptomatology, and possibly work performance in the office environment; however, mice inhalation studies do not show exacerbation of sensory irritation in the airways by low humidity. Elevated humidified indoor air appears to reduce nasal symptoms in patients suffering from obstructive apnea syndrome, while no clear improvement on voice production has been identified, except for those with vocal fatigue. Both low and high RH, and perhaps even better absolute humidity (water vapor), favors transmission and survival of influenza virus in many studies, but the relationship between temperature, humidity, and the virus and aerosol dynamics is complex, which in the end depends on the individual virus type and its physical/chemical properties. Dry and humid air perception continues to be reported in offices and in residential areas, despite the IAQ parameter "dry air" (or "wet/humid air") is semantically misleading, because a sensory organ for humidity is non-existing in humans. This IAQ parameter appears to reflect different perceptions among other odor, dustiness, and possibly exacerbated by desiccation effect of low air humidity. It is salient to distinguish between indoor air humidity (relative or absolute) near the breathing and ocular zone and phenomena caused by moisture

  6. Indoor air quality environmental information handbook: Combustion sources

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  7. Indoor air pollution and respiratory health in the elderly.

    Science.gov (United States)

    Bentayeb, Malek; Simoni, Marzia; Norback, Dan; Baldacci, Sandra; Maio, Sara; Viegi, Giovanni; Annesi-Maesano, Isabella

    2013-01-01

    Data on respiratory effects of indoor air pollution in elderly are scanty. The purpose of this review is to summarize current knowledge on adverse respiratory effects of indoor air pollution in individuals aged over 65 years, by presenting existing epidemiological evidence. Using MEDLINE database through PubMed, we identified relevant publications published between 1991 and 2011 in English on respiratory health effects of indoor air pollution in elderly (>65 years). A total of 61 studies were found and after application of the inclusion criteria: (i) epidemiologic studies published in English in peer-reviewed journals between January 1991 and December 2011, (ii) study population with age over or equal 65 years, and (iii) outcome of respiratory symptoms and disease with the exclusion of lung cancer, 33 relevant publications were selected. Most of them showed significant relationships between exposure to major indoor air pollutants and various short-term and long-term respiratory health outcomes such as wheezing, breathlessness, cough, phlegm, asthma, COPD, lung cancer and more rarely lung function decline. The most consistent relationship is found between chronic obstructive pulmonary disease (COPD) and environmental tobacco smoke (ETS). Further studies in the elderly population are needed in order to define causal relationships between exposures to indoor air pollution and underlying mechanisms in this sub-population.

  8. Indoor air pollution

    International Nuclear Information System (INIS)

    Anwar, J.; Hussain, F.

    2005-01-01

    Indoor air pollution after being a neglected subject for a number of years, is attracting attention recently because it is a side effect of energy crisis. About 50% of world's 6 billion population, mostly in developing countries, depend on biomass and coal in the form of wood, dung and crop residues for domestic energy because of poverty. These materials are burnt in simple stoves with incomplete combustion and infants, children and women are exposed to high levels of indoor air pollution for a considerable period, approximately between 2-4 hours daily. Current worldwide trade in wood fuel is over US $7 billion and about 2 million people are employed full time in production and marketing it. One of the most annoying and common indoor pollutant in both, developing and developed countries, is cigarette smoke. Children in gas-equipped homes had higher incidences of respiratory disease. Babies' DNA can be damaged even before they are born if their mothers breathe polluted air. Exposure to indoor air pollution may be responsible for nearly 2 million excess deaths in developing countries and for 4% of the global burden of the disease. Only a few indoor pollutants have been studied in detail. Indoor air pollution is a major health threat on which further research is needed to define the extent of the problem more precisely and to determine solutions by the policy-makers instead of neglecting it because sufferers mostly belong to Third World countries. (author)

  9. Indoor air quality

    International Nuclear Information System (INIS)

    Hollowell, C.D.

    1981-06-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced ventilation in buildings may significantly increase exposure to indoor air pollution and perhaps have adverse effects on occupant health and comfort. Preliminary findings suggest that reduced ventilation may adversely affect indoor air quality unless appropriate control strategies are undertaken. The strategies used to control indoor air pollution depend on the specific pollutant or class of pollutants encountered, and differ somewhat depending on whether the application is to an existing building or a new building under design and construction. Whenever possible, the first course of action is prevention or reduction of pollutant emissions at the source. In most buildings, control measures involve a combination of prevention, removal, and suppression. Common sources of indoor air pollution in buildings, the specific pollutants emitted by each source, the potential health effects, and possible control techniques are discussed

  10. Do Carpets Impair Indoor Air Quality and Cause Adverse Health Outcomes: A Review.

    Science.gov (United States)

    Becher, Rune; Øvrevik, Johan; Schwarze, Per E; Nilsen, Steinar; Hongslo, Jan K; Bakke, Jan Vilhelm

    2018-01-23

    Several earlier studies have shown the presence of more dust and allergens in carpets compared with non-carpeted floors. At the same time, adverse effects of carpeted floors on perceived indoor air quality as well as worsening of symptoms in individuals with asthma and allergies were reported. Avoiding extensive carpet use in offices, schools, kindergartens and bedrooms has therefore been recommended by several health authorities. More recently, carpet producers have argued that former assessments were obsolete and that modern rugs are unproblematic, even for those with asthma and allergies. To investigate whether the recommendation to be cautious with the use of carpets is still valid, or whether there are new data supporting that carpet flooring do not present a problem for indoor air quality and health, we have reviewed the literature on this matter. We have not found updated peer reviewed evidence that carpeted floor is unproblematic for the indoor environment. On the contrary, also more recent data support that carpets may act as a repository for pollutants which may become resuspended upon activity in the carpeted area. Also, the use of carpets is still linked to perception of reduced indoor air quality as well as adverse health effects as previously reported. To our knowledge, there are no publications that report on deposition of pollutants and adverse health outcomes associated with modern rugs. However, due to the three-dimensional structure of carpets, any carpet will to some extent act like a sink. Thus, continued caution should still be exercised when considering the use of wall-to-wall carpeted floors in schools, kindergartens and offices, as well as in children's bedrooms unless special needs indicate that carpets are preferable.

  11. Polluted air--outdoors and indoors.

    Science.gov (United States)

    Myers, I; Maynard, R L

    2005-09-01

    Many air pollutants which are considered important in ambient (outdoor) air are also found, sometimes at higher levels, in indoor air. With demanding standards having been set for many of these pollutants, both in the workplace and ambient air, consideration of the problems posed by indoor pollution is gaining pace. Studies on exposure to pollutants found in the indoor domestic environment are increasing and are contributing to an already significant compilation of datasets. Improvement in monitoring techniques has helped this process. Documented reports of fatalities from carbon monoxide poisonings are still worrying. However, studies on health effects of non-fatal, long term, low dose, indoor exposure to carbon monoxide and other pollutants, are still inconclusive and too infrequently documented. Of particular concern are the levels of air pollutants found in the domestic indoor environment in developing countries, despite simple interventions such as vented stoves having shown their value. Exposure to biomass smoke is still a level that would be considered unacceptable on health grounds in developed countries. As in the occupational environment, steps need to be taken to control the risks from exposure to the harmful constituents of indoor air in the home. However, the difficulty regarding regulation of the domestic indoor environment is its inherent privacy. Monitoring levels of pollutants in the home and ensuring regulations are adhered to, would likely prove difficult, especially when individual behaviour patterns and activities have the greatest influence on pollutant levels in indoor air. To this end, the Department of Health is developing guidance on indoor air pollution to encourage the reduction of pollutant levels in indoor domestic air. The importance of the effects of domestic indoor air on health and its contribution to the health of the worker are increasingly appreciated. Occupational physicians, by training and interest, are well placed to extend

  12. Indoor and Outdoor Air Pollution- related Health Problem in Ethiopia: Review of Related Literature.

    Science.gov (United States)

    Tefera, Worku; Asfaw, Araya; Gilliland, Frank; Worku, Alemayehu; Wondimagegn, Mehari; Kumie, Abera; Samet, Jonathan; Berhane, Kiros

    2016-01-01

    The health effects of air pollution are generally global problems, but they have, since recently become issues of particular concern for developing countries. This review assessed the situation of air pollution and related health effects in the context of Ethiopia. The materials reviewed in this publication are published scientific papers from online search engines, unpublished government reports and academic theses/dissertations. In addition, interview data obtained from authorities and experts involved in the management of air quality were analyzed, interpreted and reported in the article. Review of the few studies conducted in Ethiopia showed that average concentrations of PM 2.5 reached as high as 280 µg/m 3 for 24-hour measurements (range: 2,417-12,739 µg/m 3 ). Indoor carbon monoxide (CO) levels were universally higher than regulatory limits for the United States and were found to be much higher among households using traditional stoves and solid biomass fuels. The use of traditional stoves and solid biomass fuels was reported in >95% of the households considered. High average levels of NO 2 (97 ppb) were reported in a large longitudinal study. The ambient PM 10 level was below the WHO guideline values in the majority of the samples. About 50% of the on-road CO samples taken from traffic roads in Addis Ababa were found to be less than the guideline values while the number of motor vehicles in Ethiopia is reported to be increasing by more than 9% per annum. There is a very limited air quality monitoring capacity in the country. The co-ordination between stakeholders in this regard is also inadequate. The limited evidence available on health effects of air pollution indicates that the prevalence of acute respiratory illness among children living in households using crude biomass fuels is significantly higher than the national average figures. The limited evidence reviewed and reported in this article indicates high levels of indoor air pollution and trends of

  13. INDOOR AIR POLLUTION

    Directory of Open Access Journals (Sweden)

    Ahmet Soysal

    2007-06-01

    Full Text Available The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas and people in the cities have spending approximetely 90% of their time in the closed enviroments, health problems could increased due to indoor air pollution. Moreover, currently there is no specific regulation on this area. [TAF Prev Med Bull 2007; 6(3.000: 221-226

  14. INDOOR AIR POLLUTION

    Directory of Open Access Journals (Sweden)

    Ahmet Soysal

    2007-06-01

    Full Text Available The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas and people in the cities have spending approximetely 90% of their time in the closed enviroments, health problems could increased due to indoor air pollution. Moreover, currently there is no specific regulation on this area. [TAF Prev Med Bull. 2007; 6(3: 221-226

  15. Do Carpets Impair Indoor Air Quality and Cause Adverse Health Outcomes: A Review

    Directory of Open Access Journals (Sweden)

    Rune Becher

    2018-01-01

    Full Text Available Several earlier studies have shown the presence of more dust and allergens in carpets compared with non-carpeted floors. At the same time, adverse effects of carpeted floors on perceived indoor air quality as well as worsening of symptoms in individuals with asthma and allergies were reported. Avoiding extensive carpet use in offices, schools, kindergartens and bedrooms has therefore been recommended by several health authorities. More recently, carpet producers have argued that former assessments were obsolete and that modern rugs are unproblematic, even for those with asthma and allergies. To investigate whether the recommendation to be cautious with the use of carpets is still valid, or whether there are new data supporting that carpet flooring do not present a problem for indoor air quality and health, we have reviewed the literature on this matter. We have not found updated peer reviewed evidence that carpeted floor is unproblematic for the indoor environment. On the contrary, also more recent data support that carpets may act as a repository for pollutants which may become resuspended upon activity in the carpeted area. Also, the use of carpets is still linked to perception of reduced indoor air quality as well as adverse health effects as previously reported. To our knowledge, there are no publications that report on deposition of pollutants and adverse health outcomes associated with modern rugs. However, due to the three-dimensional structure of carpets, any carpet will to some extent act like a sink. Thus, continued caution should still be exercised when considering the use of wall-to-wall carpeted floors in schools, kindergartens and offices, as well as in children’s bedrooms unless special needs indicate that carpets are preferable.

  16. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review

    DEFF Research Database (Denmark)

    Zhang, Yinping; Mo, Jinhan; Li, Yuguo

    2011-01-01

    America, and Asia with expertise in air cleaning, aerosol science, medicine, chemistry and ventilation. The effects on health were not examined. Over 26,000 articles were identified in major literature databases; 400 were selected as being relevant based on their titles and abstracts by the first two......Air cleaning techniques have been applied worldwide with the goal of improving indoor air quality. The effectiveness of applying these techniques varies widely, and pollutant removal efficiency is usually determined in controlled laboratory environments which may not be realized in practice. Some...... air cleaners are largely ineffective, and some produce harmful by-products. To summarize what is known regarding the effectiveness of fan-driven air cleaning technologies, a state-of-the-art review of the scientific literature was undertaken by a multidisciplinary panel of experts from Europe, North...

  17. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    ... Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ... Pollution Indoor Air Pollution Print this Page Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ...

  18. Indoor Air Quality Manual.

    Science.gov (United States)

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  19. Controlling Indoor Air Pollution from Moxibustion

    Directory of Open Access Journals (Sweden)

    Chung-Yen Lu

    2016-06-01

    Full Text Available Indoor air quality (IAQ control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs of traditional Chinese medicine (TCM may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2, carbon monoxide (CO, formaldehyde (HCHO, total volatile organic compounds (TVOCs, airborne particulate matter with a diameter of ≤10 µm (PM10 and ≤2.5 µm (PM2.5 during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  20. Actions to reduce the impact of construction products on indoor air: Outcomes of the European Project HealthyAir

    NARCIS (Netherlands)

    Bluyssen, P.M.; Richemont, S.de; Crump, D.; Maupetit, F.; Witterseh, T.; Gajdos, P.

    2010-01-01

    The European project - HealthyAir is a network project involving six institutions in Europe on actions and activities that address the effects of construction products on indoor air. Different ways to improve indoor air quality were reviewed, ranging from source control to education of occupants on

  1. INDOOR AIR POLLUTION

    OpenAIRE

    Ahmet Soysal; Yucel Demiral

    2007-01-01

    The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas...

  2. Introduction to Indoor Air Quality

    Science.gov (United States)

    ... Offices Regional Offices Labs and Research Centers Indoor Air Quality (IAQ) Contact Us Share Introduction to Indoor Air Quality Health Effects Primary Causes Identifying Problems Improving IAQ ...

  3. Ventilation influence upon indoor air radon level

    International Nuclear Information System (INIS)

    Tian Deyuan

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level. Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition, although using household conditioner requires a sealed room which should lead to a higher radon level. Turning on air conditioner helps lower indoor radon level. Therefore, the total indoor air Rn levels are normal > ventilation > exhaust or in-draft > exhaust plus in-draft

  4. A Breath of Fresh Air: Addressing Indoor Air Quality

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  5. Indoor air quality in Brazilian universities.

    Science.gov (United States)

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  6. Passive sampling of polychlorinated biphenyls (PCB) in indoor air

    DEFF Research Database (Denmark)

    Vorkamp, Katrin; Mayer, Philipp

    PCBs were widely used in construction materials in the 1906s and 1970s, a period of high building activity in Denmark. The objective of this study was therefore to use passive sampling techniques to develop a simple and cost-effective screening tool for PCBs in indoor air. The study proceeded...... in three phases combining a literature review, laboratory experiments and measurements in buildings potentially containing PCBs in indoor air. The laboratory experiments showed a strong influence of air velocity on the PCB partitioning between air and the passive sampler. Based on the results of the first...

  7. Workshop on indoor air quality research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  8. Workshop on indoor air quality research needs

    International Nuclear Information System (INIS)

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized

  9. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review.

    Science.gov (United States)

    Ye, Wei; Zhang, Xu; Gao, Jun; Cao, Guangyu; Zhou, Xiang; Su, Xing

    2017-05-15

    After nearly twenty years of rapid modernization and urbanization in China, huge achievements have transformed the daily lives of the Chinese people. However, unprecedented environmental consequences in both indoor and outdoor environments have accompanied this progress and have triggered public awareness and demands for improved living standards, especially in residential environments. Indoor pollution data measured for >7000 dwellings (approximately 1/3 were newly decorated and were tested for volatile organic compound (VOC) measurements, while the rest were tested for particles, phthalates and other semi-volatile organic compounds (SVOCs), moisture/mold, inorganic gases and radon) in China within the last ten years were reviewed, summarized and compared with indoor concentration recommendations based on sensory or health end-points. Ubiquitous pollutants that exceed the concentration recommendations, including particulate matter, formaldehyde, benzene and other VOCs, moisture/mold, inorganic gases and radon, were found, indicating a common indoor air quality (IAQ) issue in Chinese dwellings. With very little prevention, oral, inhalation and dermal exposure to those pollutants at unhealthy concentration levels is almost inevitable. CO 2 , VOCs, humidity and radon can serve as ventilation determinants, each with different ventilation demands and strategies, at typical occupant densities in China; and particle reduction should be a prerequisite for determining ventilation requirements. Two directional ventilation modes would have profound impacts on improving IAQ for Chinese residences are: 1) natural (or window) ventilation with an air cleaner and 2) mechanical ventilation with an air filtration unit, these two modes were reviewed and compared for their applicability and advantages and disadvantages for reducing human exposure to indoor air pollutants. In general, mode 2 can more reliably ensure good IAQ for occupants; while mode 1 is more applicable due to its

  10. Indoor air quality – buildings design

    Directory of Open Access Journals (Sweden)

    Juhásová Šenitková Ingrid

    2017-01-01

    Full Text Available Growing attention is being paid to indoor air quality as one of the main health and well-being factors. The indoor research is concerned mostly to indoor air chemicals within indoor engineering related to building design. The providing good indoor air quality can be achieved effectively by avoiding or reducing indoor air pollution sources and by selecting low-polluting building materials, both being low-cost and energyefficient solutions. On the base of the last large experimental monitoring results, it was possible to know the level of selected indoor chemicals occurrence, rank them as well as to predict the tendencies of occurrence and establish the priorities for the future. There has been very limited attention to rigorous analysis of buildings actual environmental impacts to date. Healthy/green/sustainable building practices are typically applied in unsystematic and inconsistent ways often without resolution of inherent conflicts between and among such practices. Designers, products manufacturers, constructors, and owners declare their buildings and the applied technologies to be beneficial to the environment without validating those claims.

  11. [Health evaluation of fine particulate matter in indoor air].

    Science.gov (United States)

    2008-11-01

    When evaluating the health effects of indoor air fine particulate matter, the indoor dynamics as well as the physical, chemical and biological properties of fine particles have to be considered. The indoor air fraction PM2.5 largely stems from outdoor air. Accordingly, the German Working Group on Indoor Guideline Values of the Federal Environmental Agency and the States' Health Authorities also recommends WHO's (2006) 24-hour mean guideline value of 25 microg PM2,5 per cubic meter for indoor air evaluation. In contrast to PM2.5, coarse particles (PM10) in schools, kindergartens and dwellings show much higher indoor air concentrations. Additional sources indoors have to be assumed. Because of the different composition of indoor air compared to outdoor air and due to the lack of dose-response relationships of coarse particles in indoor air, the health effects of indoor air PM10 can not be evaluated yet. Sufficient and consistent ventilation is an indispensable basis to reduce PM concentrations in indoor spaces. Furthermore, known sources of PM indoors should be detected consequently and subsequently minimized.

  12. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  13. A Study on Public Opinion Poll and Policy on Indoor Air Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.S.; Lee, H.S.; Kong, S.Y.; Ku, H.J. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    The purpose of this study is to review previous studies on indoor air pollution and to propose national strategies and policy measures for protecting public health from indoor air pollution based on the results of public survey research. Indoor air has the potential to be polluted by hazardous materials that might lead to serious health problems. It is well known that the indoor spaces are more polluted than outdoor ones, which can be a major health problem for those that live in urban areas who spend most of their time indoors. In Korea, studies on indoor air pollution are usually conducted under the auspices of academic research, which only focus on particular types of indoor spaces and certain concepts of indoor air quality. Thus, at present, the studies on the policies or policy measures concerning indoor air quality management are difficult to find in the country. The governmental agencies that are presently involved in the management of indoor air quality include: the Ministry of Health and Welfare, Ministry of Construction and Transportation, Ministry of Education and Human Resources Development, and Ministry of Environment. However, due to differing regulatory standards between the concerned agencies, the national management of indoor air quality has so far proven to be ineffective. Although the Ministry of Environment recently proposed a law to manage indoor air quality, it is only focuses on managing particular types of indoor spaces not regulated by other governmental bodies and is not effective in the effort towards a national managing system for indoor air pollution. According to a survey conducted by the Korea Environment Institute (KEI), the residents of the Seoul metropolitan area have been felt that environmental pollution negatively affects their health, and especially consider outdoor air pollution to be the most harmful type of pollution. Although these urban residents spend more than 20 hours a day indoors, the survey shows that they do not

  14. Strength of smoke-free air laws and indoor air quality.

    Science.gov (United States)

    Lee, Kiyoung; Hahn, Ellen J; Robertson, Heather E; Lee, Seongjik; Vogel, Suzann L; Travers, Mark J

    2009-04-01

    Smoke-free air laws have been implemented in many Kentucky communities to protect the public from the harmful effects of secondhand smoke exposure. The impact of different strengths of smoke-free air laws on indoor air quality was assessed. Indoor air quality in hospitality venues was assessed in seven communities before and after comprehensive smoke-free air laws and in two communities only after partial smoke-free air laws. One community was measured three times: before any smoke-free air law, after the initial partial law, and after the law was strengthened to cover all workplaces and public places with few exemptions. Real-time measurements of particulate matters with 2.5 mum aerodynamic diameter or smaller (PM(2.5)) were obtained. When comprehensive smoke-free air laws were implemented, indoor PM(2.5) concentrations decreased significantly from 161 to 20 microg/m3. In one community that implemented a comprehensive smoke-free law after initially passing a partial law, indoor PM(2.5) concentrations were 304 microg/m3 before the law, 338 microg/m3 after the partial law, and 9 microg/m3 after the comprehensive law. The study clearly demonstrated that partial smoke-free air laws do not improve indoor air quality. A significant linear trend indicated that PM(2.5) levels in the establishments decreased with fewer numbers of burning cigarettes. Only comprehensive smoke-free air laws are effective in reducing indoor air pollution from secondhand tobacco smoke.

  15. Indoor air quality in mechanically ventilated residential dwellings/low-rise buildings: A review of existing information

    DEFF Research Database (Denmark)

    Aganovic, Amar; Hamon, Mathieu; Kolarik, Jakub

    Mechanical ventilation has become a mandatory requirement in multiple European standards addressing indoor air quality (IAQ) and ventilation in residential dwellings (single family houses and low-rise apartment buildings). This article presents the state of the art study through a review...... of the existing literature, to establish a link between ventilation rate and key indoor air pollutants. Design characteristics of a mechanical ventilation system such as supply/exhaustairflow, system and design of supply and exhaust outlets were considered. The performance of various ventilation solutionswas......-house ventilation rate was reported below 0.5h-1 or 14 l/s·person in bedrooms, the concentrations of the pollutants elevated above minimum threshold limits (CO2>1350 ppm; TVOC >3000 μg/m3) defined by the standard. Insufficient or non-existent supply of air was related to significantly higher pollutant...

  16. Relationships in indoor/outdoor air pollution

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    Beryllium-7 and sulphurhexaflourid has been used as tracers in measurements designed to enable an estimate of the ratio of the outdoor to indoor time-integrated concentration for aerosols and non-reactive gasses of outdoor origin with a special reference to the reduction in inhalation dose that can be achieved by staying indoors during a pollution episode, especially a reactor accident. The effect of operating a vacuum cleaner during the pollution episode and airing shortly after is also investigated. Earlier relevant literature is reviewed and shows goos agreement with the results in this study. Protection factor from 1-12 has been found. (author)

  17. Office of radiation and indoor air: Program description

    International Nuclear Information System (INIS)

    1993-06-01

    The goal of the Environmental Protection Agency's (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA's regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA's lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants

  18. Psychosocial dimensions of solving an indoor air problem.

    Science.gov (United States)

    Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari

    2002-03-01

    This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems.

  19. Air Quality and Indoor Environmental Exposures: Clinical ...

    Science.gov (United States)

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more polluted than ambient air, the USEPA lists poor IAQ as a major environmental concern. In the sections that follow, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. In some cases, exposure may be acute, with one or more pets (and owners) experiencing signs within a relatively short period. However, most exposures are episodic or chronic, making it difficult to definitively link poor IAQ to respiratory or other adverse health outcomes. Age or underlying immunologic, cardiac, or respiratory disease may further complicate the clinical picture, as those patients may be more sensitive to (and affected by) lower concentrations than prove problematic for healthy housemates. Because pets, like their owners, spend most of their lives indoors, we will discuss how certain home conditions can worsen indoor air quality and will briefly discuss measures to improve IAQ for owners and their pets. In this overview presentation, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. Because pets, like their owners, spend most of their lives indoo

  20. Recognition, evaluation, and control of indoor air pollution

    International Nuclear Information System (INIS)

    Chastain, B.

    1993-01-01

    Indoor air pollution is typically associated with terms sick building syndrome, tight building syndrome, building related illness, and problem building. Indoor air pollution is a relatively new public health concern (approximately 15 years old) although this issue is an age-old problem dating back to prehistoric times when humans came to live indoors. This presentation summarizes indoor air quality issues in order to provide you with usable information concerning the recognition and evaluation of indoor air quality (IAQ) problems and the subsequent control measures which can be used for maintaining or improving the indoor air environment for better occupant health and comfort control. Why has the subject become so vocalized in the last fifteen years? Why the sudden interest and awareness concerning indoor air quality issues? During the last half of the 1970's and all of the 1980's, buildings were built or remodeled to minimize air handling, heating, and cooling costs, often limiting the amount of outside air brought into the buildings to near minimums. Paralleling these developments, complaints related to modern buildings increased. The new terms tight building syndrome, sick building syndrome, and indoor air quality became widely used by health and safety professionals and subsequently by newspaper columnist and the general public

  1. Indoor Air Quality in Brazilian Universities

    Directory of Open Access Journals (Sweden)

    Sonia R. Jurado

    2014-07-01

    Full Text Available This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC (n = 15 and naturally ventilated (NV (n = 15 classrooms. The parameters of interest were indoor carbon dioxide (CO2, temperature, relative humidity (RH, wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively. The average indoor airborne dust concentration exceeded the Brazilian standards (<80 µg/m3 in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively. The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  2. Health Effects of Indoor Air Pollutants and their Mitigation and Control (invited paper)

    International Nuclear Information System (INIS)

    Maroni, M.

    1998-01-01

    The nature of chemical, biological and physical contaminants present in indoor air, their sources, and the health effects they cause are reviewed. Among the physical agents, the interaction between tobacco smoke and radon is discussed. Control and improvement of indoor air quality can be achieved combining the use of two main strategies: proper design and construction of buildings, and control of indoor air pollution through source control, ventilation, air cleaning, exposure control, or a combination of them. A number of control measures primarily targeted to pollutants other than radon can also be particularly effective for radon. On the other hand, measures primarily targeted to radon containment can also be beneficial for other pollutants. Effective programmes on indoor air improvement are urgently needed to benefit the health, comfort and productivity of our communities. (author)

  3. Air Quality and Indoor Environmental Exposures: Clinical Impacts

    Science.gov (United States)

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more pol...

  4. Indoor air pollution from unprocessed solid fuels in developing countries.

    Science.gov (United States)

    Kaplan, Charlotte

    2010-01-01

    Approximately half of the world's population relies on biomass (primarily wood and agricultural residues) or coal fuels (collectively termed solid fuels) for heating, lighting, and cooking. The incomplete combustion of such materials releases byproducts with well-known adverse health effects, hence increasing the risk of many diseases and death. Among these conditions are acute respiratory infections, chronic obstructive pulmonary disease, heart disease, stroke, lung cancer, cataracts and blindness, tuberculosis, asthma, and adverse pregnancy outcomes. The International Agency for Research on Cancer has classified the indoor combustion of coal emissions as Group 1, a known carcinogen to humans. Indoor air pollution exposure is greatest in individuals who live in rural developing countries. Interventions have been limited and show only mixed results. To reduce the morbidity and mortality from indoor air pollution, countermeasures have to be developed that are practical, efficient, sustainable, and economical with involvement from the government, the commercial sector, and individuals. This review focuses on the contribution of solid fuels to indoor air pollution.

  5. Pilot study on indoor air quality: Managing indoor air-quality risks. Report on a meeting held in St. Michaels, Maryland on October 25-27, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    Included in this study are the following: quantifying future trends of indoor air quality as a basis for government policy plans; assessing indoor air quality risks of pesticides; formaldehyde emission standards in the Federal Republic of Germany; orientations and actions of the European Community in the assessment and prevention of indoor air pollution; EPA and indoor air quality; the non-regulatory approach to reducing risks from radon exposure; U.S. consumer product safety commission; a builders guide to healthy homes; WHO air quality guidelines for Europe; the approach to control indoor air quality in Italy; guidelines - ventilation classes; energy consequences of upgrading indoor air quality; Canada's guidelines for residential indoor air quality: rationale and scope; Canadian ventilation and venting standards; indoor air quality building surveys case studies; design of indoor air quality studies; summary findings of inter-ministerial committee on indoor air quality (Ontario); the Quebec approach; employee survey EPA headquarters; pollution in closed spaces and its consequences in conservation of works of art; and how Norwegian health authorities will handle indoor air quality problems

  6. Parent's Guide to School Indoor Air Quality. Revised

    Science.gov (United States)

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Air pollution is air pollution, indoors or out. Good indoor air quality (IAQ) contributes to a favorable learning environment for students, protects health, and supports the productivity of school personnel. In schools in poor repair, leaky roofs and crumbling walls have caused additional indoor air quality problems, including contamination with…

  7. Indoor Air Quality in Schools

    Science.gov (United States)

    This web site will educate the public about indoor environmental issues specific to educational facilities and the importance of developing and sustaining comprehensive indoor air quality management programs.

  8. Indoor air quality in the Greater Beirut area: a characterization and modeling assessment

    International Nuclear Information System (INIS)

    El-Fadel, Mutasem; El-Hougeiri, Nisrine; Oulabi, Mawiya

    2003-01-01

    This report presents the assessment of IAQ at various environments selected from different geographic categories from the Greater Beirut area (GBA) in Lebanon. For this purpose, background information about indoor air quality was reviewed, existing conditions were characterized, an air-sampling program was implemented and mathematical modeling was conducted. Twenty-eight indoor buildings were selected from various geographic categories representing different environments (commercial and residential...). Indoor and outdoor air samples were collected and analyzed using carbon monoxide (CO), particulate matter (TSP), nitrogen dioxide (NO 2 ) and total volatile organic compounds (TVOC) as indicators of indoor air pollution (IAP).Samples were further analyzed using the energy dispersive x-ray fluorescence technique (EDXRF) for the presence of major priority metals including iron (Fe), calcium (Ca), zinc (Zn), lead (Pb), manganese (Mn), copper (Cu) and bromine (Br). Indoor and outdoor measured levels were compared to the American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE) and health-based National Ambient Air Quality standards (NAAQS), respectively. For the priority metals, on the other hand, indoor measured values were compared to occupational standards recommended by the National Institute of Occupational Safety and Health (NIOSH) and Occupational Safety and Health Administration (OSHA)

  9. Healthier Schools: A Review of State Policies for Improving Indoor Air Quality. Research Report.

    Science.gov (United States)

    Bernstein, Tobie

    Existing indoor air quality (IAQ) policies for schools reflect the variety of institutional, political, social, and economic contexts that exist within individual states. The purpose of this report is to provide a better understanding of the types of policy strategies used by states in addressing general indoor air quality problems. The policies…

  10. Indoor air pollution: a public health perspective

    International Nuclear Information System (INIS)

    Spengler, J.D.; Sexton, K.

    1983-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms, and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  11. An overview of indoor air quality and its impact on respiratory health among Malaysian school-aged children.

    Science.gov (United States)

    Choo, Chua Poh; Jalaludin, Juliana

    2015-01-01

    The indoor environment is a major source of human exposure to pollutants. Some pollutants can have concentrations that are several times higher indoors than outdoors. Prolonged exposure may lead to adverse biologic effects, even at low concentrations. Several studies done in Malaysia had underlined the role of indoor air pollution in affecting respiratory health, especially for school-aged children. A critical review was conducted on the quantitative literature linking indoor air pollution with respiratory illnesses among school-aged children. This paper reviews evidence of the association between indoor air quality (IAQ) and its implications on respiratory health among Malaysian school-aged children. This review summarizes six relevant studies conducted in Malaysia for the past 10 years. Previous epidemiologic studies relevant to indoor air pollutants and their implications on school-aged children's respiratory health were obtained from electronic database and included as a reference in this review. The existing reviewed data emphasize the impact of IAQ parameters, namely, indoor temperature, ventilation rates, indoor concentration of carbon dioxide (CO2), carbon monoxide (CO), particulate matters (PM), volatile organic compounds (VOCs), nitrogen dioxide (NO2) and airborne microbes, on children's respiratory health. The study found that most of the Malaysian school-aged children are exposed to the inadequate environment during their times spent either in their houses or in their classrooms, which is not in compliance with the established standards. Children living in households or studying in schools in urban areas are more likely to suffer from respiratory illnesses compared with children living in homes or studying in schools in rural areas.

  12. HVAC design guidelines for effective indoor air quality

    International Nuclear Information System (INIS)

    Bladykas, M.P.

    1993-01-01

    Building owners, designers and occupants need to consider all the design measures that contribute to high indoor air quality. Building occupants, furnishings, equipment, and ambient air pollution all contribute to surmounting indoor air quality concerns. However, these can be minimized by following HVAC design guidelines which promote high indoor air quality while maintaining reasonable energy-efficiency. The possible liabilities and loss of business productivity due to air quality problems are too great to ignore

  13. Indoor Air Quality Science and Technology

    Science.gov (United States)

    Understand indoor air in homes, schools, and offices. Most of us spend much of our time indoors. The air that we breathe in our homes, in schools, and in offices can put us at risk for health problems. Some pollutants can be chemicals, gases, and living or

  14. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  15. Indoor air quality of everyday use spaces dedicated to specific purposes-a review.

    Science.gov (United States)

    Marć, Mariusz; Śmiełowska, Monika; Namieśnik, Jacek; Zabiegała, Bożena

    2018-01-01

    According to literature data, some of the main factors which significantly affect the quality of the indoor environment in residential households or apartments are human activities such as cooking, smoking, cleaning, and indoor exercising. The paper presents a literature overview related to air quality in everyday use spaces dedicated to specific purposes which are integral parts of residential buildings, such as kitchens, basements, and individual garages. Some aspects of air quality in large-scale car parks, as a specific type of indoor environment, are also discussed. All those areas are characterized by relatively short time use. On the other hand, high and very high concentration levels of xenobiotics can be observed, resulting in higher exposure risk. The main compounds or group of chemical compounds are presented and discussed. The main factors influencing the type and amount of chemical pollutants present in the air of such areas are indicated.

  16. Manual on indoor air quality

    International Nuclear Information System (INIS)

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues

  17. Manual on indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  18. Plants for Sustainable Improvement of Indoor Air Quality.

    Science.gov (United States)

    Brilli, Federico; Fares, Silvano; Ghirardo, Andrea; de Visser, Pieter; Calatayud, Vicent; Muñoz, Amalia; Annesi-Maesano, Isabella; Sebastiani, Federico; Alivernini, Alessandro; Varriale, Vincenzo; Menghini, Flavio

    2018-04-10

    Indoor pollution poses a serious threat to human health. Plants represent a sustainable but underexploited solution to enhance indoor air quality. However, the current selection of plants suitable for indoors fails to consider the physiological processes and mechanisms involved in phytoremediation. Therefore, the capacity of plants to remove indoor air pollutants through stomatal uptake (absorption) and non-stomatal deposition (adsorption) remains largely unknown. Moreover, the effects of the indoor plant-associated microbiome still need to be fully analyzed. Here, we discuss how a combination of the enhanced phytoremediation capacity of plants together with cutting-edge air-cleaning and smart sensor technologies can improve indoor life while reducing energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    Science.gov (United States)

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  20. Publications and Resources About Indoor airPLUS

    Science.gov (United States)

    Presented are useful materials to help you build homes that meet Indoor airPLUS specifications and to promote Indoor airPLUS qualified homes. These materials are FREE of charge and are available in PDF.

  1. Federal Interagency Committee on Indoor Air Quality

    Science.gov (United States)

    The Federal Interagency Committee on Indoor Air Quality (CIAQ), which meets three times a year, was established by Congress to coordinate the activities of the Federal Government on issues relating to Indoor Air Quality.

  2. Indoor Air Quality: Maryland Public Schools.

    Science.gov (United States)

    Maryland State Dept. of Education, College Park. Office of Administration and Finance.

    Less than adequate indoor air quality in schools can lead to a higher risk of health problems, an increase in student and teacher absenteeism, diminished learning, and even hazardous conditions. An indoor air quality program that addresses the planning, design, maintenance, and operation of public school buildings should be implemented at the…

  3. CFD simulation research on residential indoor air quality.

    Science.gov (United States)

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Indoor Air Pollution in Non Ac Passenger Bus

    Science.gov (United States)

    El Husna, Iksiroh; Unzilatirrizqi, Rizal D. Yan El; Karyanto, Yudi; Sunoko, Henna R.

    2018-02-01

    Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR). The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR) on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  5. Indoor Air Pollution in Non Ac Passenger Bus

    Directory of Open Access Journals (Sweden)

    El Husna Iksiroh

    2018-01-01

    Full Text Available Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR. The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  6. Towards an integrative approach of improving indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Bluyssen, Philomena M. [TNO Built Environment and Geosciences, P.O. Box 49, 2600 AA Delft (Netherlands)

    2009-09-15

    There seems to be a discrepancy between current Indoor Air Quality standards and end-users wishes and demands. Indoor air quality can be approached from three points of view: the human, the indoor air of the space and the sources contributing to indoor air pollution. Standards currently in use mainly address the indoor air of the space. ''Other or additional'' recommendations and guidelines are required to improve indoor air quality. Even though we do not fully understand the mechanisms behind the physical, chemical, physiological and psychological processes, it is still possible to identify the different ways to be taken regulatory, politically-socially (awareness), technically (process and product) and scientifically. Besides the fact that there is an urgent need to involve medicine and neuro-psychology in research to investigate the mechanisms behind dose-response, health effects and interactions between and with the other factors and parameters of the indoor environment and the human body and mind, a holistic approach is required including the sources, the air and last but not least the human beings (occupants) themselves. This paper mainly focuses on the European situation. (author)

  7. Health effects from indoor air pollution: case studies.

    Science.gov (United States)

    White, L E; Clarkson, J R; Chang, S N

    1987-01-01

    In recent years there has been a growing awareness of the health effects associated with the presence of contaminants in indoor air. Numerous agents can accumulate in public buildings, homes and automobiles as a result of ongoing activities that normally occur in these closed spaces. Ventilation is a major factor in the control of indoor air pollutants since proper movement of air can prevent or minimize the build up of compounds in buildings. The recent emphasis on energy conservation has lead to measures which economize on energy for heating and air conditioning, but which also trap pollutants within a building. Three cases of indoor air pollution were investigated. A typical investigation of indoor air pollutant problems includes the following: interviews with building occupants; history of the building with regard to maintenance, pesticide treatment, etc.; a survey of the building and ventilation; and when warranted, sampling and analysis of air. Each case presented is unique in that atypical situations caused agents to accumulate in a building or section of a building. The indoor air problems in these cases were solved by identifying and removing the source of the offending agent and/or improving the ventilation in the building.

  8. Investigation of infiltration and indoor air quality

    International Nuclear Information System (INIS)

    1990-03-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During the study, the statistical distribution of radon concentrations inside 2,400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures--caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors--have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO 2 , CO, SO 2 , and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality

  9. Allegheny County Clean Indoor Air Act Exemptions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List and location of all the businesses and social clubs who have received an exemption from the Pennsylvania Clean Indoor Air Act. “The Clean Indoor Air Act, Act...

  10. Design an Indoor Air Quality Controller Based on LPC2478

    Directory of Open Access Journals (Sweden)

    Shi Shuheng

    2014-07-01

    Full Text Available Indoor air quality is very important to our lives, because we spend most of our time indoor. In order to improve the air quality of indoor, this paper designs an indoor environment quality monitoring and controlling system based on ARM microcontroller LPC2478. It will do a real-time monitoring work for detecting the indoor environmental factors and comprehensively evaluate its air quality level. While the indoor air quality status is "poor", this intelligent system will automatically start the heat exchange ventilator for indoor environmental quality improvement. The results compared to traditional natural ventilation method show the better performance of proposed system.

  11. Managing Indoor Air Quality in Schools.

    Science.gov (United States)

    Woolums, Jennifer

    This publication examines the causes and effects of poor indoor air quality and provides information for reducing exposure to indoor contaminants in schools. It discusses the various indoor pollutants found in schools, including dust, chemical agents, gases, and volatile organic compounds; where they are found in schools; and their health effects…

  12. Residential indoor air quality guideline : carbon monoxide

    International Nuclear Information System (INIS)

    2010-01-01

    Carbon monoxide (CO) is a tasteless, odourless, and colourless gas that can be produced by both natural and anthropogenic processes, but is most often formed during the incomplete combustion of organic materials. In the indoor environment, CO occurs directly as a result of emissions from indoor sources or as a result of infiltration from outdoor air containing CO. Studies have shown that the use of specific sources can lead to increased concentrations of CO indoors. This residential indoor air quality guideline examined the factors influencing the introduction, dispersion and removal of CO indoors. The health effects of exposure to low and higher concentrations of CO were discussed. Residential maximum exposure limits for CO were presented. Sources and concentrations in indoor environments were also examined. 17 refs., 2 tabs.

  13. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  14. Indoor Air Quality and Asthma

    Directory of Open Access Journals (Sweden)

    Robert Golden

    2017-02-01

    Full Text Available Numerous contaminants in indoor air and their potential to cause or exacerbate asthma continue to be a subject of public health concern. Many agents are causally associated with or can exacerbate asthma, particularly in children. For formaldehyde, an established respiratory irritant based on numerous studies, the evidence for an association with asthma is still considered only limited or suggestive. However, there is no evidence that indicates increased sensitivity to sensory irritation to formaldehyde in people often regarded as susceptible such as asthmatics. Acrolein, but not formaldehyde, was significantly associated with asthma in a large cohort of children. This prompted an evaluation of this highly irritating chemical that had never previously been considered in the context of the indoor air/childhood asthma issue. Because acrolein is more potent than formaldehyde as a respiratory irritant and ubiquitous in indoor air, it is plausible that previous studies on potential risk factors and childhood asthma may be confounded by formaldehyde acting as an unrecognized proxy for acrolein.

  15. Indoor Air Pollution

    OpenAIRE

    Kirk R. Smith

    2003-01-01

    Outdoor air pollution in developing-country cities is difficult to overlook. Indoor air pollution caused by burning such traditional fuels as wood, crop residues, and dung is less evident, yet it is responsible for a significant part of country and global disease burdens. The main groups affected are poor women and children in rural areas and urban slums as they go about their daily activi...

  16. Microbiological assessment of indoor air of teaching hospital wards ...

    African Journals Online (AJOL)

    Thus, the objective of this study is to provide fundamental data related to the microbial quality of indoor air of Jimma University Specialized Hospital wards, to estimate the health hazard and to create standards for indoor air quality control. METHODS: The microbial quality of indoor air of seven wards of Jimma University ...

  17. Effectiveness of interventions to reduce indoor air pollution and/or improve health in homes using solid fuel in lower and middle income countries: protocol for a systematic review.

    Science.gov (United States)

    Quansah, Reginald; Ochieng, Caroline A; Semple, Sean; Juvekar, Sanjar; Emina, Jacques; Armah, Frederick Ato; Luginaah, Isaac

    2015-03-04

    Indoor air pollution (IAP) interventions are widely promoted as a means of reducing indoor air pollution/health from solid fuel use; and research addressing impact of these interventions has increased substantially in the past two decades. It is timely and important to understand more about effectiveness of these interventions. We describe the protocol of a systematic review to (i) evaluate effectiveness of IAP interventions to improve indoor air quality and/or health in homes using solid fuel for cooking and/or heating in lower- and middle-income countries, (ii) identify the most effective intervention to improve indoor air quality and/or health, and (iii) identify future research needs. This review will be conducted according to the National Institute for Health and Care Excellence (NICE) guidelines and will be reported following the PRISMA statement. Ovid MEDLINE, Ovid Embase, SCOPUS, and PubMed searches were conducted in September 2013 and updated in November 2014 (and include any further search updates in February 2015). Additional references will be located through searching the references cited by identified studies and through the World Health Organization Global database of household air pollution measurements. We will also search our own archives. Data extraction and risk of bias assessment of all included papers will be conducted independently by five reviewers. The study will provide insights into what interventions are most effective in reducing indoor air pollution and/or adverse health outcomes in homes using solid fuel for cooking or heating in lower- or middle-income countries. The findings from this review will be used to inform future IAP interventions and policy on poverty reduction and health improvement in poor communities who rely on biomass and solid fuels for cooking and heating. The review has been registered with PROSPERO (registration number CRD42014009768 ).

  18. Monitoring Indoor Air Quality for Enhanced Occupational Health.

    Science.gov (United States)

    Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque

    2017-02-01

    Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".

  19. Can ornamental potted plants remove volatile organic compounds from indoor air? - a review

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge

    2014-01-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at t...... concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results....... that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants' rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC...

  20. Immediate impact of smoke-free laws on indoor air quality.

    Science.gov (United States)

    Lee, Kiyoung; Hahn, Ellen J; Riker, Carol; Head, Sara; Seithers, Peggy

    2007-09-01

    Smoke-free laws significantly impact indoor air quality. However, the temporal effects of these laws on indoor air pollution have not been determined. This paper assesses the temporal impact of one smoke-free law on indoor air quality. This quasi-experimental study compared the indoor air quality of nine hospitality venues and one bingo hall in Georgetown, Kentucky, before and after implementation of a 100% smoke-free workplace law. We made real-time measurements of particulate matter with 2.5 microm aerodynamic diameter or smaller (PM2.5). Among the nine Georgetown hospitality venues, the average indoor PM2.5 concentration was 84 microg/m3 before the law took effect. The average indoor PM2.5 concentrations in nine compliant venues significantly decreased to 18 microg/m3 one week after the law took effect. Three venues having 82 microg/m3 before the law had significantly lower levels from the first day the law was implemented, and the low level was maintained. Compliance with the law is critical to achieving clean indoor air. Indoor air pollution in the bingo hall was not reduced until the establishment decided to comply with the law. The smoke-free law showed immediate impact on indoor air quality.

  1. The right to healthy indoor air: Status by 2002

    DEFF Research Database (Denmark)

    Mølhave, Lars; Krzyzanowski, M.

    2003-01-01

    . The discussions and statements are available as a WHO report. It informs the individuals and groups responsible for healthy indoor air about their rights and obligations, and empowers the general public by making people familiar with those rights. One year after their publication the statements have been adopted......One of the reasons for the inadequate quality of indoor air arises from the poor articulation, appreciation and understanding of basic principles underlying the policies and actions related to indoor air quality. A WHO Working Group derived nine statements on rights to healthy indoor air...... as the base for future regulation and guidance. The Board of Directors of the International Society of Indoor Air Quality (ISIAQ) and the participants of two international conferences endorse the use of the statements. No opposition to the statements have been registered. The statements have entered curricula...

  2. Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  3. Standards for securing adequate indoor air quality across Europe

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Carrer, P.; de Oliveira Fernandes, E.

    2013-01-01

    Background: Inadequate IAQ causes a loss of 2 million healthy life years annually in the EU. Europeans spend typically over 85–90% of their time indoors and the main factors that affect negatively the characteristics of the air they breathe are outdoor air used to ventilate indoor spaces and indoor...... effects of IAQ into different components: exposures to indoor and outdoor air pollutants, association with different morbidities and the way ventilation based approaches could minimise their impact. Disability adjusted life years (DALYs), a common metric to allow comparability of impacts on various types...... and is determined mainly considering the metabolic CO2 production. It is only applicable if all other pollutants meet WHO guidelines for ambient and indoor air quality. If they do not meet these guidelines after applying source control and when air used for ventilation is clean health-based ventilation rate should...

  4. Indoor Air Quality in Schools.

    Science.gov (United States)

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  5. Integrated Management of Residential Indoor Air Quality: A Call for Stakeholders in a Changing Climate.

    Science.gov (United States)

    Levasseur, Marie-Eve; Poulin, Patrick; Campagna, Céline; Leclerc, Jean-Marc

    2017-11-25

    A paradigm change in the management of environmental health issues has been observed in recent years: instead of managing specific risks individually, a holistic vision of environmental problems would assure sustainable solutions. However, concrete actions that could help translate these recommendations into interventions are lacking. This review presents the relevance of using an integrated indoor air quality management approach to ensure occupant health and comfort. At the nexus of three basic concepts (reducing contaminants at the source, improving ventilation, and, when relevant, purifying the indoor air), this approach can help maintain and improve indoor air quality and limit exposure to several contaminants. Its application is particularly relevant in a climate change context since the evolving outdoor conditions have to be taken into account during building construction and renovation. The measures presented through this approach target public health players, building managers, owners, occupants, and professionals involved in building design, construction, renovation, and maintenance. The findings of this review will help the various stakeholders initiate a strategic reflection on the importance of indoor air quality and climate change issues for existing and future buildings. Several new avenues and recommendations are presented to set the path for future research activities.

  6. Indoor Air Quality: A Guide for Educators.

    Science.gov (United States)

    California State Dept. of Education, Sacramento.

    Indoor air quality is a major concern for educators involved in the development of new school facilities, or the remodeling and maintenance of existing ones. This guide addresses the issue of air quality, the health concerns involved, and procedures for minimizing the impact of pollutants in the school environment. It defines common indoor air…

  7. Effects of Indoor Air Pollution on Human Health

    DEFF Research Database (Denmark)

    Berglund, B.; Brunekreef, B.; Knöppel, H.

    1992-01-01

    This article contains a summary discussion of human health effects linked to indoor air pollution (UP) in homes and other non-industrial environments. Rather than discussing the health effects of the many different pollutants which can be found in indoor air, the approach has been to group broad...... these are respiratory disease (particularly among children), allergy (particularly to house dust mites) and mucous membrane irritation (particularly due to formaldehyde). Large numbers of people have been, and are still being affected. Many chemicals encountered in indoor air are known or suspected to cause sensory...... irritation or stimulation. These, in turn, may give rise to a sense of discomfort and other symptums cummonly reported in so-called “sick” buildings. Camplex mixtures of organic chemicals in indoor air also have the potential to invoke subtle effects on the central and peripheral nervous system, leading...

  8. A Comprehensive Real-Time Indoor Air-Quality Level Indicator

    Directory of Open Access Journals (Sweden)

    Jungho Kang

    2016-09-01

    Full Text Available The growing concern about Indoor Air-Quality has accelerated the development of small, low-cost air-quality monitoring systems. These systems are capable of monitoring various indoor air pollutants in real time, notifying users about the current air-quality status and gathering the information to the central server. However, most Internet of Things (IoT-based air-quality monitoring systems numerically present the sensed value per pollutant, making it difficult for general users to identify how polluted the air is. Therefore, in this paper, we first introduce a tiny air-quality monitoring system that we developed and, based on the system, we also test the applicability of the comprehensive Air-Quality Index (AQI, which is widely used all over the world, in terms of its capacity for a comprehensive indoor air-quality indication. We also develop design considerations for an IoT-based air-quality monitoring system and propose a real-time comprehensive indoor air-quality level indication method, which effectively copes with dynamic changes and is efficient in terms of processing and memory overhead.

  9. Indoor climate and air quality . Review of current and future topics in the field of ISB study group 10

    Science.gov (United States)

    Höppe, P.; Martinac, Ivo

    In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants' clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of ''sick building syndrome''.

  10. Indoor air quality environmental information handbook: Building system characteristics

    International Nuclear Information System (INIS)

    1987-01-01

    This manual, the third in a series, focuses on residential building system characteristics and their effects on indoor air quality. The manual addresses: residential indoor air pollutants by source, indoor concentrations, health effects, source control and mitigation techniques, standards and guidelines; building system characteristics of air exchange, pollutant source strength, residence volume, site characteristics, structural design, construction, and operation, infiltration and ventilation system, building occupancy; and monitoring methods

  11. Electronic cigarettes and indoor air quality: a review of studies using human volunteers.

    Science.gov (United States)

    Zainol Abidin, Najihah; Zainal Abidin, Emilia; Zulkifli, Aziemah; Karuppiah, Karmegam; Syed Ismail, Sharifah Norkhadijah; Amer Nordin, Amer Siddiq

    2017-09-26

    This paper is primarily aimed to review articles on electronic cigarettes (e-cigarettes) focusing on indoor air quality (IAQ) assessment that were conducted using human volunteers under natural settings that mimic actual vaping scenarios. Such studies may give a better representation of the actual potential exposure towards e-cigarettes emissions in indoor settings. A systematic literature search was conducted using PubMed search engine database. Search terms such as "electronic cigarette", "e-cigarette", "electronic nicotine delivery system", and "indoor air quality" were used to identify the relevant articles to be included in this review. Articles that involved human volunteers who were asked to vape in natural settings or settings that mimic the actual vaping scenario were chosen to be reviewed. The search yielded a total of 15 published articles. Eleven articles were excluded due to 1) unavailability of its full-text (n=1), 2) did not involve human volunteers (n=5) and 3) did not involve an IAQ study (n=5). Four articles were critically reviewed in this paper. From the four selected articles, two of the papers focused on the determination of nicotine level released by e-cigarettes whereas the other two covered IAQ parameters namely; particulate matters (PM), propylene glycols, formaldehyde, metals and polycyclic aromatic hydrocarbons (PAHs). Only two of the studies involved determination of biomarkers of exposure. The level of chemical contents released varied between studies. The differences in the brands of e-cigarette used, number of vapers recruited and the sensitivity of the methodologies employed in these studies may be the possible causes for such differences. However, studies using human volunteers conducted in a natural setting are more relevant to portray the actual exposure to vapors among e-cigarettes users and non-users compared to studies using a smoking machine/an exposure chamber. This is because such studies take into account the behavior of

  12. Indoor Climate and Air Quality Problems

    DEFF Research Database (Denmark)

    Valbjørn, O.; Hagen, H.; Kukkonen, E.

    This report presents a stepwise method for the investigation of and remedial actions for indoor climate and air quality problems. The report gives the basis for evaluation of the prevalence and causes of building related symptoms like mucosal irritation and headache. The report adresses members...... of occupational health and safety organisations, consulting engineers and architects, and also the people responsible for the operation of buildings and installations which is essential for the indoor climate and air quality....

  13. Indoor Air Quality

    DEFF Research Database (Denmark)

    Selman, Ayser Dawod; Heiselberg, Per

    Overall purpose of the research is to provide an overview of the relevance and importance of various defined Indoor Air Quality (IAQ) parameters in a European perspective. Based on the report it should be possible to prioritize which countries to target for further activities as well as it should...

  14. Development of an indoor air quality checklist for risk assessment of indoor air pollutants by semiquantitative score in nonindustrial workplaces

    Directory of Open Access Journals (Sweden)

    Syazwan AI

    2012-04-01

    employers, workers, and assessors in understanding a wide range of important elements in the indoor air environment to promote awareness in nonindustrial workplaces.Methods: The general structure of and specific items in the IAQ checklist were discussed in a focus group meeting with IAQ assessors based upon the result of a literature review, previous industrial code of practice, and previous interviews with company employers and workers.Results: For practicality and validity, several sessions were held to elicit the opinions of company members, and, as a result, modifications were made. The newly developed IAQ checklist was finally formulated, consisting of seven core areas, nine technical areas, and 71 essential items. Each item was linked to a suitable section in the Industry Code of Practice on Indoor Air Quality published by the Department of Occupational Safety and Health.Conclusion: Combined usage of an IAQ checklist with the information from the Industry Code of Practice on Indoor Air Quality would provide easily comprehensible information and practical support. Intervention and evaluation studies using this newly developed IAQ checklist will clarify the effectiveness of a new approach in evaluating the risk of indoor air pollutants in the workplace.Keywords: action checklist, aggregated risk index (ARI, qualitative, reliability, SME, enterprise, indoor environmental quality (IEQ, sick building syndrome, indoor air quality assessment

  15. Exploring the consequences of climate change for indoor air quality

    International Nuclear Information System (INIS)

    Nazaroff, William W

    2013-01-01

    Climate change will affect the concentrations of air pollutants in buildings. The resulting shifts in human exposure may influence public health. Changes can be anticipated because of altered outdoor pollution and also owing to changes in buildings effected in response to changing climate. Three classes of factors govern indoor pollutant levels in occupied spaces: (a) properties of pollutants; (b) building factors, such as the ventilation rate; and (c) occupant behavior. Diversity of indoor conditions influences the public health significance of climate change. Potentially vulnerable subpopulations include not only the young and the infirm but also those who lack resources to respond effectively to changing conditions. Indoor air pollutant levels reflect the sum of contributions from indoor sources and from outdoor pollutants that enter with ventilation air. Pollutant classes with important indoor sources include the byproducts of combustion, radon, and volatile and semivolatile organic compounds. Outdoor pollutants of special concern include particulate matter and ozone. To ensure good indoor air quality it is important first to avoid high indoor emission rates for all pollutants and second to ensure adequate ventilation. A third factor is the use of air filtration or air cleaning to achieve further improvements where warranted. (letter)

  16. Report. no. 20. Sensory evaluation of indoor air quality

    DEFF Research Database (Denmark)

    Berglund, Birgitta; Bluyssen, Philomena; Clausen, Geo

    Human subjects are indispensable in the measurement of perceived indoor air quality. Chemical and physical methods of characterisation often are insensitive to odorous and sensory irritating air pollutants, or do not take account of combinations of singular pollutants in a biologically meaningful...... way. Therefore, sensory methods many times are the only or the preferred tool for evaluation of perceived indoor air quality. This report presents background to and advice on methodologies for sensory evaluation of perceived indoor air quality. It proposes methods which apply to source assessments...... as well as field investigations. The methods will assist in labelling of building materials, characterising air quality in indoor spaces, controlling ventilation performance, and measuring occupant responses in questionnaire field studies of the sick building syndrome. The proposed methods will enable...

  17. Perceived indoor air quality and its relationship to air pollutants in French dwellings.

    Science.gov (United States)

    Langer, S; Ramalho, O; Le Ponner, E; Derbez, M; Kirchner, S; Mandin, C

    2017-11-01

    Perception of indoor air quality (PIAQ) was evaluated in a nationwide survey of 567 French dwellings, and this survey was combined with measurements of gaseous and particulate matter (PM 10 and PM 2.5 ) indoor air pollutants and indoor climate parameters. The perception was assessed on a nine-grade scale by both the occupants of the dwellings and the inspectors who performed the measurements. The occupants perceived the air quality in their homes as more pleasant than the inspectors. The inspectors perceived the air quality as more unpleasant in dwellings in which the residents smoked indoors. Significant associations between PIAQ and indoor air pollutant concentrations were observed for both the inspectors and, to a lesser extent, the occupants. Introducing confounding parameters, such as building and personal characteristics, into a multivariate model suppressed most of the observed bivariate correlations and identified the tenure status of the occupants and their occupation as the parameters that most influenced their PIAQ. For the inspectors, perceived air quality was affected by the presence of smokers, the season, the type of ventilation, retrofitting, and the concentrations of acetaldehyde and acrolein. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Improving Indoor Air Quality

    Science.gov (United States)

    Usually the most effective way to improve indoor air quality is to eliminate individual sources of pollution or to reduce their emissions. Some sources, like those that contain asbestos, can be sealed or enclosed.

  19. Indoor plants as air cleaners

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Müller, Renate

    2015-01-01

    Plants have been used decoratively indoors for centuries. For the last 25-30 years, their beneficial abilities to reduce the levels of harmful volatile organic compounds (VOCs) from the indoor air have also been investigated. Previous studies have shown that VOCs are removed by the plant itself...... experiments is not directly transferrable to real life settings. The largest problem is the use of closed chambers where there is no air exchange. This also results in a declining VOC concentration over time. Due to this limitation, we constructed a new experimental system which among others can allow for air...... exchange and a constant VOC concentration. With the new system it was found that removal rates obtained in chambers with air exchange and constant VOC concentration were significantly higher than removal rates obtained in closed chambers. This means that removal rates obtained in closed chambers may...

  20. Cooperative Agreement Funding for Indoor Air Quality

    Science.gov (United States)

    The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.

  1. Indoor Air Quality Building Education and Assessment Model Forms

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  2. Indoor air and human health: major indoor air pollutants and their health implications

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a collection of abstracts of papers presented at the Indoor Air and Human Health symposium. Session titles include: Radon, Microorganisms, Passive Cigarette Smoke, Combustion Products, Organics, and Panel and Audience Discussion

  3. Indoor air and human health: major indoor air pollutants and their health implications

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This publication is a collection of abstracts of papers presented at the Indoor Air and Human Health symposium. Session titles include: Radon, Microorganisms, Passive Cigarette Smoke, Combustion Products, Organics, and Panel and Audience Discussion.

  4. Waste-based materials; capability, application and impact on indoor environment – literature review

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Rode, Carsten; Kolarik, Jakub

    2014-01-01

    This paper reviews and discusses various sustainable materials utilizing waste products with the focus on their properties having an impact on the indoor environmental conditions and indoor air quality (IAQ). Materials included in the review are selected considering the following aspects......: sustainability, cradle to cradle perspective, application, their impact on indoor environment and human well-being. The attempt of the paper is to cover a wide spectrum of information so to provide better understanding of waste utilization in construction industry....

  5. Indoor Chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Carslaw, Nicola

    2018-01-01

    This review aims to encapsulate the importance, ubiquity, and complexity of indoor chemistry. We discuss the many sources of indoor air pollutants and summarize their chemical reactions in the air and on surfaces. We also summarize some of the known impacts of human occupants, who act as sources...... and sinks of indoor chemicals, and whose activities (e.g., cooking, cleaning, smoking) can lead to extremely high pollutant concentrations. As we begin to use increasingly sensitive and selective instrumentation indoors, we are learning more about chemistry in this relatively understudied environment....

  6. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  7. Plants for Sustainable Improvement of Indoor Air Quality

    NARCIS (Netherlands)

    Brilli, Federico; Fares, Silvano; Ghirardo, Andrea; Visser, de Pieter; Calatayud, Vicent; Muñoz, Amalia; Annesi-Maesano, Isabella; Sebastiani, Federico; Alivernini, Alessandro; Varriale, Vincenzo; Menghini, Flavio

    2018-01-01

    Indoor pollution poses a serious threat to human health. Plants represent a sustainable but underexploited solution to enhance indoor air quality. However, the current selection of plants suitable for indoors fails to consider the physiological processes and mechanisms involved in phytoremediation.

  8. Effect of fresh air ventilation on indoor radon concentration

    International Nuclear Information System (INIS)

    Sun Hao; Wu Jianhua; Fu Shi

    2012-01-01

    The radon concentration of laboratory for radon simulation (LRS) was measured by the RAD7 radon monitor, and the effect of the different fresh air ventilations on indoor radon concentration was studied and analyzed. The indoor radon concentration of LRS can be accumulated up to 2000 Bq/m 3 and the average radon exhalation rate of the LRS is 14.5 Bq · m -2 . h -1 . Furthermore, when the fresh air enters into the LRS continuously, the indoor radon concentration decreases exponentially with the increase of time. The equilibrium radon concentration and equilibrium time of LRS decrease exponentially with the increase of the rate of fresh air ventilation. In addition, the indoor radon concentration increases by accumulation with the decrease of the rate of fresh air ventilation. (authors)

  9. Indoor Air Pollution

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Indoor Air Pollution - Danger at Home. N Pon Saravanan. General Article Volume 9 Issue 1 January 2004 pp 6-11. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0006-0011. Keywords.

  10. Impact of operating wood-burning stoves on indoor air quality

    DEFF Research Database (Denmark)

    Afshari, Alireza; Jensen, Ole Michael; Bergsøe, Niels Christian

    2011-01-01

    A field study on the impact of operating and reloading wood-burning stoves on the indoor air quality was carried out during two consecutive winters. In contrast to the majority of recent studies, which focussed on the ambient air quality and the penetration of particles to the indoor air......, this study aims to understand to what extent the operation of a stove contributes to the generation of concentration of ultrafine particles in the indoor air. Therefore, different stoves were ignited in one session by the owner of the stove and in a subsequent session by an expert on wood-burning stoves....... The study was conducted in seven typical Danish detached houses without other indoor activities taking place. In each house the average air change rate during one week was measured (using passive tracer gas technique) and the indoor and outdoor temperature and relative humidity were recorded continuously...

  11. Indoor air. Seminar of Zentrale Informationsstelle, Umweltberatung Bayern. Vol. 2

    International Nuclear Information System (INIS)

    Koller, U.; Haury, H.J.

    1994-02-01

    This seminar dealt with the subject of indoor air pollution and welcomed participants from environmental consultancy agencies and authorities and institutions related with environmental protection. Leading scientists from research and authorities presented the current state of knowledge abut the risks of indoorair pollution. The papers contained in these proceedings addressed: room climate and sick-building syndrome; allergens in indoor spaces; pollutants emitted by exemplary building materials; pollutant levels of organic compounds in indoor spaces; air quality in motor vehicle interiors; indoor air pollution - risk assessment and need for actions. (Uhe) [de

  12. Reference Guide. Indoor Air Quality Tools for Schools

    Science.gov (United States)

    US Environmental Protection Agency, 2009

    2009-01-01

    Understanding the importance of good indoor air quality (IAQ) in schools is the backbone of developing an effective Indoor Air Quality (IAQ) program. Poor IAQ can lead to a large variety of health problems and potentially affect comfort, concentration, and staff/student performance. In recognition of tight school budgets, this guidance is designed…

  13. Indoor air problems in Asia

    International Nuclear Information System (INIS)

    Leslie, G.B.

    1995-01-01

    Respiratory disease and mortality due to indoor air pollution are amongst the greatest environmental threats to health in the developing countries of Asia. World-wide, acute respiratory infection is the cause of death of at least 5 million children under the age of 5 every year. The World Bank has claimed that smoke from biomass fuels resulted in an estimated 4 million deaths annually amongst infants and children. Most of these deaths occur in developing countries. Combustion in its various forms must head the list of pollution sources in Asia. Combustion of various fuels for domestic heating, lighting and cooking comprises the major source of internally generated pollutants and combustion in industrial plants, power generation and transportation is the major cause of externally generated pollutants. The products of pyrolysis and combustion include many compounds with well-known adverse health effects. These include gases such as CO, CO 2 , NO x and SO 2 , volatile organic compounds such as polynuclear aromatic hydrocarbons and nitroamines as well as respirable particulates of variable composition. The nature and magnitude of the health risks posed by these materials vary with season, climate, location housing, method of ventilation, culture and socio-economic status. The most important cause of lung cancer in non-smokers in Northern Asia is the domestic combustion of smoky coal. Acute carbon monoxide poisoning is common in many Asian countries. Roads traffic exhaust pollution is worse in the major cities of South East Asia than almost anywhere else in the world and this externally generated air pollution forms the indoor air for the urban poor. Despite all these major problems there has been a tendency for international agencies to focus attention and resources on the more trivial problems of indoor air encountered in the affluent countries of the West. Regulatory agencies in Asia have been too frequently persuaded that their problems of indoor air pollution are

  14. Indoor air quality investigation and health risk assessment at correctional institutions.

    Science.gov (United States)

    Ofungwu, Joseph

    2005-04-01

    A comprehensive indoor air-quality (IAQ) investigation was conducted at a state correctional facility in New Jersey, USA with a lengthy history of IAQ problems. The IAQ investigation comprised preliminary indoor air screening using direct readout instrumentation, indoor air/surface wipe sampling and laboratory analysis, as well as a heating, ventilation, and air-conditioning system evaluation, and a building envelope survey. In addition to air sampling, a human health risk assessment was performed to evaluate the potential for exposure to site-related air contaminants with respect to the inmate and worker populations. The risk assessment results for the prison facility indicated the potential for significant health risks for the inmate population, possibly reflecting the effects of their confinement and extended exposure to indoor air contaminants, as compared to the prison guard and worker population. Based on the results of the risk assessment, several mitigation measures are recommended to minimize prison population health risks and improve indoor air quality at prison facilities.

  15. Indoor air quality and the law in Singapore.

    Science.gov (United States)

    Chan, P

    1999-12-01

    With the greater use of air-conditioned offices in Singapore, achieving good indoor air quality has become an important issue. The laws that impose duties upon designers and contractors with respect to the design and construction of air-conditioning and mechanical ventilation (ACMV) systems are set out in the Building Control Regulations and the Singapore Standard Code of Practice for Mechanical Ventilation and Air-conditioning in Buildings (hereinafter "SS CP 13:1980"). ACMV maintenance is governed by the Environmental Public Health Act, the Building and Common Property (Maintenance and Management) Act, and the Land Titles (Strata) Act, as well as by lease or tenancy agreements. Designers, contractors, developers, building owners and management corporations may also be liable to the workers, occupants and other premises users for indoor air quality (IAQ)-related injuries under the general principles of contract and tort. Recently, the Guidelines for Good Indoor Air Quality in Office Premises was issued by the Ministry of Environment to complement SS CP 13:1980 toward improving the indoor air quality of air-conditioned office premises. Although the Guidelines have no statutory effect, they may be adopted as contractual requirements in construction, lease and maintenance contracts. They may also be used to determine the relevant standard of duty of care required to discharge tortious liability. This paper looks at the existing laws and rules affecting the design, construction and maintenance of air-conditioned offices in light of Part III of the Ministry's Guidelines.

  16. Risk factors for indoor air pollution in rural households in Mauche ...

    African Journals Online (AJOL)

    Risk factors for indoor air pollution in rural households in Mauche division, Molo ... indoor air pollution, which has been associated with various diseases. Key words: biomass fuel, children, indoor pollution, respiratory infections, ventilation.

  17. Indoor air-quality measurements in energy-efficient residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Berk, J.V.; Hollowell, C.D.; Pepper, J.H.; Young, R.

    1980-05-01

    The potential impact on indoor air quality of energy-conserving measures that reduce ventilation is being assessed in a field-monitoring program conducted by the Lawrence Berkeley Laboratory. Using a mobile laboratory, on-site monitoring of infiltration rate, carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, formaldehyde, total aldehydes, and particulates was conducted in three houses designed to be energy-efficient. Preliminary results show that energy-conserving design features that reduce air-exchange rates compromise indoor air quality; specifically, indoor levels of several pollutants were found to exceed levels detected outdoors. Although the indoor levels of most pollutants are within limits established by present outdoor air-quality standards, considerable work remains to be accomplished before health-risk effects can be accurately assessed and broad-scale regulatory guidelines revised to comply with energy-conservation goals.

  18. Assessing future trends in indoor air quality

    International Nuclear Information System (INIS)

    van de Wiel, H.J.; Lebret, E.; van der Lingen, W.K.; Eerens, H.C.; Vaas, L.H.; Leupen, M.J.

    1990-01-01

    Several national and international health organizations have derived concentration levels below which adverse effects on men are not expected or levels below which the excess risk for individuals is less than a specified value. For every priority pollutant indoor concentrations below this limit are considered healthy. The percentage of Dutch homes exceeding such a limit is taken as a measure of indoor air quality for that component. The present and future indoor air quality of the Dutch housing stock is described for fourteen air pollutants. The highest percentages are scored by radon, environmental tobacco smoke, nitrogen dioxide from unvented combustion, and the potential presence of housedust mite and mould allergen in damp houses. Although the trend for all priority pollutants is downward the most serious ones remain high in the coming decades if no additional measures will be instituted

  19. INDOOR AIR QUALITY AND INHALATION EXPOSURE - SIMULATION TOOL KIT

    Science.gov (United States)

    A Microsoft Windows-based indoor air quality (IAQ) simulation software package is presented. Named Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short, this package complements and supplements existing IAQ simulation programs and is desi...

  20. Dermal Uptake of Organic Vapors Commonly Found in Indoor Air

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, William W

    2014-01-01

    Transdermal uptake directly from air is a potentially important yet largely overlooked pathway for human exposure to organic vapors indoors. We recently reported (Indoor Air 2012, 22, 356) that transdermal uptake directly from air could be comparable to or larger than intake via inhalation for many......, formaldehyde, and acrolein. Analysis of published experimental data for human subjects for twenty different organic compounds substantiates these model predictions. However, transdermal uptake rates from air have not been measured for the indoor organics that have the largest modeled ratios of dermal......-to-inhalation uptake; for such compounds, the estimates reported here require experimental verification. In accounting for total exposure to indoor organic pollutants and in assessing potential health consequences of such exposures, it is important to consider direct transdermal absorption from air....

  1. The indoor air we breathe.

    Science.gov (United States)

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions.

  2. Indoor air quality and health in schools.

    Science.gov (United States)

    Ferreira, Ana Maria da Conceição; Cardoso, Massano

    2014-01-01

    To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations.

  3. Two studies on the effects of small exhaust fans on indoor air quality: Field study of exhaust fans for mitigating indoor air quality problems; Indoor air quality, exhaust fan mitigation

    International Nuclear Information System (INIS)

    1987-07-01

    Overall, the findings show that exhaust fans basically provide small amounts of ventilation compensation. By monitoring the common indoor air pollutants (radon, formaldehyde, carbon monoxide, nitrogen dioxide, and water vapor), it was found that the quality of the indoor air was not adversely affected by the use of exhaust fans. Nor did their use provide any measurable or significant benefits since no improvement in air quality was ascertained. While exhaust fans of this small size did not increase radon, which is the contaminant of most concern, the researchers caution that operation of a larger fan or installation in a very tight home could result in higher levels because depressurization is greater. The daily energy consumption for use of these appliances during the heating season was calculated to be 1.5 kilowatt hours or approximately 3% of the energy consumption in the study homes. The information collected in this collaborative field study indicates that the use of these particular ventilation systems has no significant effect on indoor air quality

  4. Indoor air pollution and cognitive function among older Mexican adults.

    Science.gov (United States)

    Saenz, Joseph L; Wong, Rebeca; Ailshire, Jennifer A

    2018-01-01

    A growing body of research suggests exposure to high levels of outdoor air pollution may negatively affect cognitive functioning in older adults, but less is known about the link between indoor sources of air pollution and cognitive functioning. We examine the association between exposure to indoor air pollution and cognitive function among older adults in Mexico, a developing country where combustion of biomass for domestic energy remains common. Data come from the 2012 Wave of the Mexican Health and Aging Study. The analytic sample consists of 13 023 Mexican adults over age 50. Indoor air pollution is assessed by the reported use of wood or coal as the household's primary cooking fuel. Cognitive function is measured with assessments of verbal learning, verbal recall, attention, orientation and verbal fluency. Ordinary least squares regression is used to examine cross-sectional differences in cognitive function according to indoor air pollution exposure while accounting for demographic, household, health and economic characteristics. Approximately 16% of the sample reported using wood or coal as their primary cooking fuel, but this was far more common among those residing in the most rural areas (53%). Exposure to indoor air pollution was associated with poorer cognitive performance across all assessments, with the exception of verbal recall, even in fully adjusted models. Indoor air pollution may be an important factor for the cognitive health of older Mexican adults. Public health efforts should continue to develop interventions to reduce exposure to indoor air pollution in rural Mexico. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Indoor Air Quality Test House

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In order to enable studies of a range of indoor air quality and ventilation issues, EL maintains a highly instrumented three-bedroom test house. Previous...

  6. Indoor air 1. Recent advances in the health science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, B; Lindvall, T; Sundell, J [eds.

    1984-01-01

    Health problems and discomfort caused by a bed indoor environment is discussed. The key note adresses in the first part of this volume covers the following subjects: Future buildings and building hygiene; Sick building syndrome; Lung cancer from radon and passive smoking; Total exposure estimation; Health implications of indoor air humidity; Indoor odors; Indoor allergies; Effect of moderate thermal stress and education of thermal discomfort; Airborne infections and modern building technology, Free radicals and oxidizing agents in the indoor air; Air quality control strategies, Achievement of the superclean environment. The seecond part of this publication contains works on policy and regulatory issues.

  7. Clean indoor air increases physical independence : a pilot study

    NARCIS (Netherlands)

    Snijders, M.C.L.; Koren, L.G.H.; Kort, H.S.M.; Bronswijk, van J.E.M.H.

    2001-01-01

    Clean indoor air enhances health. In a pilot study, we examined whether a good indoor air quality increases the activity potential of older persons with chronic lung disease. Five older persons were studied while performing kitchen activities. Body movement and heart rate were monitored.

  8. Impact of indoor surface material on perceived air quality.

    Science.gov (United States)

    Senitkova, I

    2014-03-01

    The material combination impact on perceived indoor air quality for various surface interior materials is presented in this paper. The chemical analysis and sensory assessments identifies health adverse of indoor air pollutants (TVOCs). In this study, emissions and odors from different common indoor surface materials were investigated in glass test chamber under standardized conditions. Chemical measurements (TVOC concentration) and sensory assessments (odor intensity, air acceptability) were done after building materials exposure to standardized conditions. The results of the chemical and sensory assessment of individual materials and their combinations are compared and discussed within the paper. The using possibility of individual material surface sorption ability was investigated. The knowledge of targeted sorption effects can be used in the interior design phase. The results demonstrate the various sorption abilities of various indoor materials as well as the various sorption abilities of the same indoor material in various combinations. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Mind Your Indoor Air Quality

    Science.gov (United States)

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  10. EPA (Environmental Protection Agency) Indoor-Air Quality Implementation Plan. A report to Congress under Title IV of the Superfund Amendments and Reauthorization Act of 1986: radon gas and indoor air-quality research. Final report

    International Nuclear Information System (INIS)

    1987-06-01

    The EPA Indoor Air Quality Implementation Plan provides information on the direction of EPA's indoor air program, including the Agency's policy on indoor air and priorities for research and information dissemination over the next two years. EPA submitted the report to Congress on July 2, 1987 as required by the Superfund Amendments and Reauthorization Act of 1986. There are five appendices to the report: Appendix A--Preliminary Indoor Air Pollution Information Assessment; Appendix B--FY 87 Indoor Air Research Program; Appendix C--EPA Radon Program; Appendix D--Indoor Air Resource History (Published with Appendix C); Appendix E--Indoor Air Reference Data Base

  11. Indoor air quality research

    International Nuclear Information System (INIS)

    1986-01-01

    The various types of pollutant found in indoor air are introduced and the effects on the health of the occupants of buildings summarized. The ''sick'' building syndrome is described in detail and the need for further investigation into its causes and remedies is stressed. 8 tabs

  12. Review of the health risks associated with nitrogen dioxide and sulfur dioxide in indoor air

    International Nuclear Information System (INIS)

    Brauer, M.; Henderson, S.; Kirkham, T.; Lee, K.S.; Rich, R.; Teschke, K.

    2002-01-01

    The scientific literature on the health effects of nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ) were reviewed with particular focus on the chemical and physical properties of the 2 gases and the toxicological characteristics identified in animal studies at exposure concentrations near the rate of ambient human exposures. The study also examined the expected levels of non-industrial indoor exposure of Canadians compared to other regions with similar climates. The sources of indoor pollution were also reviewed, along with the contribution of outdoor pollution to indoor levels. Results from epidemiological studies of indoor exposures in homes, offices and schools were also presented. For each pollutant, the study identified anthropogenic sources, indoor sources, toxicological characteristics, biochemistry, pulmonary effects, immune response, and other effects. Indoor sources of NO 2 include gas-fired appliances, pilot lights, hot water heaters, kerosene heaters, and tobacco smoke. The impact of ventilation on both NO 2 and SO 2 levels was also examined. Outdoor sources such as traffic can also contribute to indoor levels, particularly in urban areas. In the case of SO 2 , coal heating and cooling appear to be associated in increased indoor levels. The epidemiological studies that were reviewed failed in general to indicate an association between NO 2 exposure and a wide range of health impacts. The studies, however, indicate that asthmatics are more susceptible to the effects of NO 2 exposure. In the case of SO 2 , evidence suggests that it has a chronic effect on lung function and respiratory symptoms and disease. 243 refs., 13 tabs

  13. Relationship between indoor radon concentrations and air exchange rate

    International Nuclear Information System (INIS)

    Wang Jingshu; Liu Yuyu; Yao Xiaohua; Meng Jianfeng; Zhang Yongyi; Wang Xiaohe; Yu Xiufen.

    1995-01-01

    The indoor concentration of radon and the air exchange rate were simultaneously measured in four empty rooms, made of brick and cement, which were located in different floors of dwelling houses in Taiyuan, Shanxi, China. SF 6 tracer gas decay method was used to measure the air exchange rate. Indoor radon was collected with the dimembrane method. When the ventilation rate increased, the concentration of radon dropped rapidly. Regression analysis indicated that the indoor concentration of radon was equal to the outdoor level of radon when the air exchange rate was greater than 3-4. SF 6 decay method was an effective and convenient method for measuring the air exchange rate. There was no marked difference in measurements obtained in different locations of a room. (N.K.)

  14. Indoor air quality in cold climates: hazards and abatement measures

    National Research Council Canada - National Science Library

    Walkinshaw, D. S

    1986-01-01

    The first APCA Conference on Indoor Air Quality, held April 29, 30 and May 1, 1985 in Ottawa, featured some 67 presentations covering many aspects of indoor air quality, with the focus on cold climate...

  15. Indoor air quality in low-energy houses in the Netherlands: Does mechanical ventilation provide a healthy indoor environment?

    NARCIS (Netherlands)

    Balvers, J.R.; Boxem, G.; Wit, de M.H.; Strøm-Tejsen, P; Olesen, B.W.; Wargocki, P; Zukowska, D; Toftum, J

    2008-01-01

    Increasing environmental awareness has led to new, energy-efficient building standards such as the German Passivhaus-standard. This study was designed to investigate the indoor air quality (IAQ) of four different Dutch low-energy houses built according to this standard. Air flow, indoor air

  16. Development of a model for radon concentration in indoor air

    International Nuclear Information System (INIS)

    Jelle, Bjørn Petter

    2012-01-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities. - Highlights: ► Model development for calculation of radon concentration in indoor air. ► Radon model accounting for various important parameters. ► Characteristic case studies depicted in 2D and 3D graphical plots. ► May be utilized for examining radon preventive measures.

  17. Indoor air quality at nine shopping malls in Hong Kong.

    Science.gov (United States)

    Li, W M; Lee, S C; Chan, L Y

    2001-06-12

    Hong Kong is one of the most attractive shopping paradises in the world. Many local people and international tourists favor to spend their time in shopping malls in Hong Kong. Good indoor air quality is, therefore, very essential to shoppers. In order to characterize the indoor air quality in shopping malls, nine shopping malls in Hong Kong were selected for this study. The indoor air pollutants included carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), formaldehyde (HCHO), respirable particulate matter (PM10) and total bacteria count (TBC). More than 40% of the shopping malls had 1-h average CO2 levels above the 1000 ppm of the ASHRAE standard on both weekdays and weekends. Also, they had average weekday PM10 concentrations that exceeded the Hong Kong Indoor Air Quality Objective (HKIAQO). The highest indoor PM10 level at a mall was 380 microg/m3. Of the malls surveyed, 30% had indoor airborne bacteria levels above 1000 cfu/m3 set by the HKIAQO. The elevated indoor CO2 and bacteria levels could result from high occupancy combined with insufficient ventilation. The increased PM10 levels could be probably attributed to illegal smoking inside these establishments. In comparison, the shopping malls that contained internal public transport drop-off areas, where vehicles were parked with idling engines and had major entry doors close to heavy traffic roads had higher CO and PM10 indoor levels. In addition, the extensive use of cooking stoves without adequate ventilation inside food courts could increase indoor CO2, CO and PM10 levels.

  18. Indoor Air Quality and Health

    Directory of Open Access Journals (Sweden)

    Alessandra Cincinelli

    2017-10-01

    Full Text Available In the last few decades, Indoor Air Quality (IAQ has received increasing attention from the international scientific community, political institutions, and environmental governances for improving the comfort, health, and wellbeing of building occupants.[...

  19. Impact of operating wood-burning fireplace ovens on indoor air quality.

    Science.gov (United States)

    Salthammer, Tunga; Schripp, Tobias; Wientzek, Sebastian; Wensing, Michael

    2014-05-01

    The use of combustion heat sources like wood-burning fireplaces has regained popularity in the past years due to increasing energy costs. While the outdoor emissions from wood ovens are strictly regulated in Germany, the indoor release of combustion products is rarely considered. Seven wood burning fireplaces were tested in private homes between November 2012 and March 2013. The indoor air quality was monitored before, during and after operation. The following parameters were measured: ultra-fine particles (5.6-560 nm), fine particles (0.3-20 μm), PM2.5, NOx, CO, CO2, formaldehyde, acetaldehyde, volatile organic compounds (VOCs) and benzo[a]pyrene (BaP). Most ovens were significant sources of particulate matter. In some cases, an increase of benzene and BaP concentrations was observed in the indoor air. The results illustrate that wood-burning fireplaces are potential sources of indoor air contaminants, especially ultra-fine particles. Under the aspect of lowering indoor air exchange rates and increasing the use of fuels with a net zero-carbon footprint, indoor combustion sources are an important topic for the future. With regards to consumer safety, product development and inspection should consider indoor air quality in addition to the present fire protection requirements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Indoor Air Quality and Student Performance [and Case Studies].

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This report examines how indoor air quality (IAQ) affects a child's ability to learn and provides several case studies of schools that have successfully addressed their indoor air problems, the lessons learned from that experience, and what long-term practices and policies emerged from the effort. The report covers the effects from…

  1. School Policies and Practices that Improve Indoor Air Quality

    Science.gov (United States)

    Jones, Sherry Everett; Smith, Alisa M.; Wheeler, Lani S.; McManus, Tim

    2010-01-01

    Background: To determine whether schools with a formal indoor air quality management program were more likely than schools without a formal program to have policies and practices that promote superior indoor air quality. Methods: This study analyzed school-level data from the 2006 School Health Policies and Programs Study, a national study of…

  2. Wireless Sensor Network for Indoor Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-06-01

    Full Text Available Indoor air quality monitoring system consists of wireless sensor device, nRF24L01 wireless transceiver modules, C8051MCU, STM32103 remote monitoring platform, alarm device and data server. Distributed in the interior space of wireless sensors measure parameters of the local air quality, wireless transceiver module of the MCU to transmit data to the remote monitoring platform for analysis which displayed and stored field environment data or charts. The data collecting from wireless sensors to be send by wireless Access Point to the remote data server based on B/S architecture, intelligent terminals such as mobile phone, laptop, tablet PC on the Internet monitor indoor air quality in real-time. When site environment air quality index data exceeds the threshold in the monitoring device, the remote monitoring platform sends out the alarm SMS signal to inform user by GSM module. Indoor air quality monitoring system uses modular design method, has the portability and scalability has the low manufacture cost, real-time monitoring data and man-machine interaction.

  3. A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air

    Directory of Open Access Journals (Sweden)

    Chunrong Jia

    2010-07-01

    Full Text Available Both the recent classification of naphthalene as a possible human carcinogen and its ubiquitous presence motivate this critical review of naphthalene’s sources and exposures. We evaluate the environmental literature on naphthalene published since 1990, drawing on nearly 150 studies that report emissions and concentrations in indoor, outdoor and personal air. While naphthalene is both a volatile organic compound and a polycyclic aromatic hydrocarbon, concentrations and exposures are poorly characterized relative to many other pollutants. Most airborne emissions result from combustion, and key sources include industry, open burning, tailpipe emissions, and cigarettes. The second largest source is off-gassing, specifically from naphthalene’s use as a deodorizer, repellent and fumigant. In the U.S., naphthalene’s use as a moth repellant has been reduced in favor of para-dichlorobenzene, but extensive use continues in mothballs, which appears responsible for some of the highest indoor exposures, along with off-label uses. Among the studies judged to be representative, average concentrations ranged from 0.18 to 1.7 μg m-3 in non-smoker’s homes, and from 0.02 to 0.31 μg m-3 outdoors in urban areas. Personal exposures have been reported in only three European studies. Indoor sources are the major contributor to (non-occupational exposure. While its central tendencies fall well below guideline levels relevant to acute health impacts, several studies have reported maximum concentrations exceeding 100 μg m-3, far above guideline levels. Using current but draft estimates of cancer risks, naphthalene is a major environmental risk driver, with typical individual risk levels in the 10-4 range, which is high and notable given that millions of individuals are exposed. Several factors influence indoor and outdoor concentrations, but the literature is inconsistent on their effects. Further investigation is needed to better characterize naphthalene

  4. Indoor and outdoor poly- and perfluoroalkyl substances (PFASs) in Korea determined by passive air sampler

    International Nuclear Information System (INIS)

    Kim, Seung-Kyu; Shoeib, Mahiba; Kim, Kyeong-Soo; Park, Jong-Eun

    2012-01-01

    Despite concerns to their increasing contribution to ecological and human exposure, the atmospheric levels of poly- and perfluoroalkyl substances (PFASs) have been determined mainly in Europe and North America. This study presents the indoor and outdoor air concentrations of volatile PFASs [fluorotelomer alcohols (FTOHs), and perfluoroalkyl sulfonamides/sulfonamidoethanols/sulfonamide ethyl acetate (FOSAs/FOSEs/FOSEA)] for the first time in Korean cities. In contrast to the good agreement observed for indoor FTOHs levels in Korea and Europea/North America, FOSAs/FOSEs levels were 10–100-fold lower in Korean indoor air, representing a cultural difference of indoor source. Korean outdoor air contained higher PFAS levels than indoor air, and additionally showed different PFAS composition profile from indoor air. Thus, indoor air would not likely be a main contributor to atmospheric PFAS contamination in Korea, in contrast to western countries. Inhalation exposure of volatile PFASs was estimated to be a minor contributor to PFOA and PFOS exposure in Korea. - Highlights: ► Volatile PFASs were measured in indoor and outdoor airs of Korea, for the first time. ► Cultural difference in indoor source was observed for Korea v.s. western countries. ► Furthermore, PFASs concentrations were higher in indoor air than outdoor air. ► Indoor air was not a major contributor to atmospheric PFASs contamination in Korea. ► Release from industrial activities was considered a possible source. - Korean outdoor air showed not only different PFAS composition profile but higher PFAS levels than indoor airs, indicating indoor air would not be a main source to Korean atmospheric PFASs.

  5. REVIEW OF QUANTITATIVE STANDARDS AND GUIDELINES FOR FUNGI IN INDOOR AIR

    Science.gov (United States)

    Exposure to fungal aerosols clearly causes human disease. However, methods for assessing exposure remain poorly understood, and guidelines for interpreting data are often contradictory. The purposes of this paper are to review and compare existing guidelines for indoor airborne...

  6. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  7. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    Science.gov (United States)

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Assessment of indoor air quality at an electronic cigarette (Vaping) convention.

    Science.gov (United States)

    Chen, Rui; Aherrera, Angela; Isichei, Chineye; Olmedo, Pablo; Jarmul, Stephanie; Cohen, Joanna E; Navas-Acien, Ana; Rule, Ana M

    2017-12-29

    E-cigarette (vaping) conventions are public events promoting electronic cigarettes, in which indoor use of e-cigarettes is allowed. The large concentration of people using e-cigarettes and poor air ventilation can result in indoor air pollution. In order to estimate this worst-case exposure to e-cigarettes, we evaluated indoor air quality in a vaping convention in Maryland (MD), USA. Real-time concentrations of particulate matter (PM 10 ) and real-time total volatile organic compounds (TVOCs), CO 2 and NO 2 concentrations were measured. Integrated samples of air nicotine and PM 10 concentrations were also collected. The number of attendees was estimated to range from 75 to 600 at any single observation time. The estimated 24-h time-weighted average (TWA) PM 10 was 1800 μg/m 3 , 12-fold higher than the EPA 24-h regulation (150 μg/m 3 ). Median (range) indoor TVOCs concentration was 0.13 (0.04-0.3) ppm. PM 10 and TVOC concentrations were highly correlated with CO 2 concentrations, indicating the high number of people using e-cigarettes and poor indoor air quality. Air nicotine concentration was 125 μg/m 3 , equivalent to concentrations measured in bars and nightclubs. E-cigarette aerosol in a vaping convention that congregates many e-cigarette users is a major source of PM 10 , air nicotine and VOCs, impairing indoor air quality. These findings also raise occupational concerns for e-cigarette vendors and other venue staff workers.

  9. The measurement of the indoor absorbed dose rate in air in Beijing

    International Nuclear Information System (INIS)

    Guo Mingqiang; Pan Ziqiang; Yi Nanchang; Wei Zemin; Zhang Chao; Wang Huamin; Zhu Wencai

    1985-01-01

    This paper describes the indoor absorbed dose rate in air in Beijing. The average indoor absorbed dose rate in air is 8.29 μrad/h. The ratio of indoor to outdoor absorbed dose rate for 849 buildings is 1.51

  10. INDOOR AIR CONCENTRATION UNIT CONVERSIONS

    Science.gov (United States)

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which can migrate through subsurface soils and may enter the indoor air of overlying buil...

  11. Energy use, air infiltration, and indoor air quality in well-insulated residences

    International Nuclear Information System (INIS)

    Koontz, M.D.; Nagda, N.L.

    1989-01-01

    This paper reports two unoccupied bilevel houses of identical design and construction studied to determine the relationships among air exchange, energy consumption, and indoor air quality. The experimental house was retrofitted to increase building tightness and was equipped with an air-to-air heat exchanger; the control house was kept in its initial state of construction. Infiltration, energy, indoor air quality, and environmental parameters were monitored in both houses before and after the retrofit. It was found that the retrofit decreased air infiltration rates by nearly 25 percent, heating energy savings of 12 to 20 percent were achieved through the retrofit, and among the pollutants monitored, only radon and radon progeny increased in proportion to the reduced infiltration. Similarly, when the heat exchanger was operated, radon and radon progeny were the only pollutants reduced in proportion to the added air exchange

  12. Increased office productivity through improved indoor air quality

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2002-01-01

    Control of indoor pollution sources and ventilation are both means of improving indoor air quality. Three independent experiments have recently documented that removing a pollution source or increasing the ventilation rate will improve perceived air quality, reduce the intensity of several Sick...... with the air quality was reduced by either measure. The quantitative relationsh8ip was 1.1% change in performance per 10% dissatisfied, in the range 25-70% dissatisifed, or 0.5% change in performance per 1 decipol (dp), in the range 2-13 dp. Significant improvements in performance occurred only when......, future developments in HVCAC technology may include "personalized air ", new ways of improving the quality of supply air (e.g., by filtration), more extensive use of heat recovery from exhaust air and systematic selection of low-polluting building and furnishing materials....

  13. The influence of photocatalytic interior paints on indoor air quality

    Science.gov (United States)

    Auvinen, Joonas; Wirtanen, Leif

    2008-06-01

    A clean indoor air is important for the well-being and health of people. Lately, new photocatalytic paints have been launched on the market, which are claimed to have air-purifying effects. Photocatalysis initiates radical reactions. Radicals are formed when a photocatalyst (e.g. TiO2) is subjected to radiation. Typical radicals are the hydroxyl radical (radOH) and the superoxide radical (radO2-). Radicals cause chain reactions, which degrade and decompose organic compounds. The end products of these chain reactions are water and carbon dioxide, if the reactions are fully completed (mineralization). If mineralization does not take place, then a great number of side products can be formed, whose properties are not well understood. The side products of photocatalytic reactions can be permanent and stabile. The decomposition of indoor air impurities on the surface of photocatalytic paints is not obvious. The ability of photocatalytic indoor paints to reduce chemical indoor air impurities is the key issue of this study. Six different paints with different binder systems, such as lime, polyorganic siloxane, silica sol-gel and organic binders, were examined. The experiments were divided into three topics: degradation of an organic binder, photocatalytic decomposition of formaldehyde, and a volatile organic compound (VOC) mixture consisting of five different indoor air VOCs. All tests were carried out in an environmental test chamber under dynamic conditions. The test results indicate that many indoor pollutants are generated under normal- and UVA-light. Typical compounds formed include formaldehyde, acetone, acetaldehyde, etc. A clear decrease of formaldehyde or the VOC mixture concentration was not observed. All possibly generated compounds could not be collected or analyzed in this research project, but the measurements show that photocatalytic reactions do not generate only carbon dioxide and water. Photocatalytic decomposition of indoor air impurities can, however

  14. Bibliography for the Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  15. Indoor air - assessment: Methods of analysis for environmental carcinogens

    International Nuclear Information System (INIS)

    Peterson, M.R.; Naugle, D.F.; Berry, M.A.

    1990-06-01

    The monograph describes, in a general way, published sampling procedures and analytical approaches for known and suspected carcinogens. The primary focus is upon carcinogens found in indoor air, although the methods described are applicable to other media or environments. In cases where there are no published methods for a particular pollutant in indoor air, methods developed for the workplace and for ambient air are included since they should be adaptable to indoor air. Known and suspected carcinogens have been grouped into six categories for the purposes of this and related work. The categories are radon, asbestos, organic compounds, inorganic species, particles, and non-ionizing radiation. Some methods of assessing exposure that are not specific to any particular pollutant category are covered in a separate section. The report is the fifth in a series of EPA/Environmental Criteria and Assessment Office Monographs

  16. Indoor air quality in energy efficient buildings. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Berge, Magnar

    2012-07-01

    There is currently a major focus on measures to reduce global warming. Several international studies show that the energy efficiency of buildings is the easiest and most cost-effective climate action. Passive houses are characterized of that the buildings are more airtight, have more insulation and has balanced mechanical ventilation with heat recovery. This report discusses about this one-sided focus on energy conservation, and if {sup c}hange{sup }in building methods can have a negative impact on indoor air quality and people's health. (Author)

  17. Modeling indoor air pollution

    National Research Council Canada - National Science Library

    Pepper, D. W; Carrington, David B

    2009-01-01

    ... and ventilation from the more popular textbooks and monographs. We wish to especially acknowledge Dr. Xiuling Wang, who diligently converted many of our old FORTRAN codes into MATLAB files, and also developed the COMSOL example files. Also we thank Ms. Kathryn Nelson who developed the website for the book and indoor air quality computer codes. We are grateful to ...

  18. Public administration, residential weatherization, and indoor air quality: a selected bibliography. [67 references to indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    White, A.G.

    1983-01-01

    Indoor air pollution caused by weatherization materials and reduced air exchange is a new problem created by efforts to reduce energy consumption. The 67 references in this bibliography address the health effects of low-level pollutants and the legal aspects of government policies which encourage citizens to tighten their homes. (DCK)

  19. Indoor air quality : Tools for schools action kits for Canadian schools

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Few people realize that indoor air pollution can contribute to health effects like asthma. Several agencies, notably the United States Environmental Protection Agency (EPA), have indicated that levels of indoor pollutants can be significantly higher than those found outside. As such, poor indoor air quality (IAQ) could impact the health of students and staff, as well as the educational process and costs. Many factors can influence IAQ, including building materials, furnishings, cleaning agents, pesticides, printing and copying devices, and more. Reduction in IAQ can also result from tighter buildings and reduced ventilation. This kit was developed by Health Canada in collaboration with the Indoor Air Quality Working Group of the Federal-Provincial-Territorial Committee on Environmental and Occupational Health (CEOH) to provide school officials with the tools to prevent, identify, assess, and address most indoor air problems while minimizing cost and involvement. It was suggested that trained professionals should perform the limited and well-defined set of operations and maintenance activities described in the kit.

  20. Indoor air pollution caused by geothermal gases

    International Nuclear Information System (INIS)

    Durand, Michael

    2006-01-01

    This paper discusses the little-known but potentially serious indoor air quality problems that may occur where buildings are constructed on geothermal ground. The main problems are related to seepage of carbon dioxide, hydrogen sulphide, radon and other gases from soil cavities directly into indoor air through perforations in the structure. These gases present a health hazard, and hydrogen sulphide, which is particularly corrosive, may cause problems electrical and electronic systems. Counter-measures are not always effective, so developments in such areas should only be undertaken with a clear understanding of site-specific issues and their possible solutions. (author)

  1. Indoor Air Quality and Thermal Comfort in School Buildings

    Science.gov (United States)

    Juhásová Šenitková, Ingrid

    2017-12-01

    This paper presents results to thermal comfort and environment quality questions in 21 school building rooms. Results show that about 80% of the occupants expressed satisfaction with their thermal comfort in only 11% of the buildings surveyed. Air quality scores were somewhat higher, with 26% of buildings having 80% or occupant satisfaction. With respect to thermal comfort and air quality performance goals set out by standards, most buildings appear to be falling far short. Occupant surveys offer a means to systematically measure this performance, and also to provide diagnostic information for building designers and operators. The odours from building materials as well as human odours were studied by field measurement. The odour intensity and indoor air acceptability were assessed by a sensory panel. The concentrations of total volatile organic compounds and carbon dioxide were measured. The odours from occupancy and building materials were studied under different air change rate. The case study of indoor air acceptability concerning to indoor odours and its effect on perceived air quality are also presented in this paper.

  2. Reducing indoor residential exposures to outdoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Matson, Nance E.

    2003-07-01

    The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts that typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.

  3. Indoor air quality in the 21st century: search for excellence

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    as elements behind a new philosophy of excellence: 1) better indoor air quality increases productivity and decreases SBS symptoms; 2) unnecessary indoor pollution sources should be avoided; 3) the air should be served cool and dry to the occupants; 4) "personalized air", i.e. a small amount of clean air...... are rather low, allowing a substantial group of people to become dissatisfied and to be adversely affected. A paradigm shift from rather mediocre to excellent indoor environments is foreseen in the 21st century. Based on existing information and on new research results, five principles are suggested...

  4. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Wel, L. van; Beckmann, G.; Anzion, R.B.M.

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two

  5. Chemical Characterization of the Indoor Air Quality of a University Hospital : Penetration of Outdoor Air Pollutants

    NARCIS (Netherlands)

    Scheepers, Paul T J; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B M

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two

  6. [European community guidelines and standards in indoor air quality: what proposals for Italy].

    Science.gov (United States)

    Settimo, Gaetano; D'Alessandro, Daniela

    2014-01-01

    Indoor air quality is an issue on which to focus because of the increasing number of exposed population and in view of the strong public feeling on this issue. This paper reports the rules of EU and several European countries about indoor air quality, focusing on the initiatives performed in Italy to respond to WHO recommendations. Several EU countries have introduced in their legislation rules relating to indoor air quality. At the moment, in Italy, a reference rule has not been issued. For this reason, up to date main informations concerning some guidelines or reference values in indoor air, to be used for a first comparison, are those obtained by the scientific literature, or by the guidelines issued by other European countries or, for analogy, by other standard values such as limit or reference values regarding outdoor air. Even the EU, while reaffirming the priority of energy efficiency measures, recommends healthier indoor environments and the development of a specific European strategy on the issue of indoor air quality. The National Study Group on indoor pollution of the Italian National Health Institute (ISS), is working for the development of shared technical and scientific documents, in order to provide greater uniformity of actions at national level, waiting for a legal framework for indoor air quality, in the light of the indication already produced by the WHO.

  7. Dynamic behavior of semivolatile organic compounds in indoor air

    Energy Technology Data Exchange (ETDEWEB)

    Loy, Michael David Van [Univ. of California, Berkeley, CA (United States)

    1998-12-09

    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release of reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.

  8. Indoor air quality of houses located in the urban environment of Agra, India.

    Science.gov (United States)

    Taneja, Ajay; Saini, Renuka; Masih, Amit

    2008-10-01

    Increased concern over the adverse health effects of air pollution has highlighted the need for air-pollution measurements, especially in urban areas, where many sources of air pollutants are normally monitored outdoors as part of obligations under the National Air Quality Strategies. Very little is known about air pollution indoors. In fact, the largest exposure to health-damaging indoor pollution probably occurs in the developing world, not in households, schools, and offices of developed countries where most research and control efforts have been focused to date. As a result much of the health impacts from air pollution worldwide seem to occur among the poorest and most vulnerable populations. The authors in their earlier studies have confirmed the importance of ambient air in determining the quality of air indoors. In this study an observation of air quality indoors and outdoors of domestic homes located in an urban environment from October 2004 to December 2005 in Agra, north central India, is performed. The purpose of this study was to characterize the indoor/outdoor (I/O) relationship of airborne pollutants and recognize their probable source in all three seasons, that is, winter, summer, and rainy season. Concentrations of SO(2), NO(2), CO(2), Cl(2), H(2)S, NH(3), RSPM, and PAH were monitored simultaneously and I/O ratios were calculated. In order to investigate the effect of seasonality on indoor and ambient air quality, winter to summer and winter to monsoon average ratios were calculated. It is apparent that there is a general pattern of increasing levels from monsoon to summer to winter, and similarly from outdoor to indoor air. Regressions analysis had been done to further investigate the influence of outdoor air-pollutant concentrations on indoor concentrations. The most probable categories of sources for these pollutants have been identified by using principal-component analysis. Indoor air pollution is a complex function of energy housing and

  9. Assement on level of indoor air quality at kindergartens in Ampang ...

    African Journals Online (AJOL)

    This study identify the air pollutant that occurs in the kindergartens, to measure the level of indoor air quality and also to analyze the association between indoor air quality patterns with respiratory health symptoms. Three kindergartens were selected based on types of building (single house, terraced 2 floors and refurbished ...

  10. Lead and cadmium in indoor air and the urban environment

    International Nuclear Information System (INIS)

    Komarnicki, Guenter J.K.

    2005-01-01

    The present study was conducted to find potential terrestrial biomonitors for heavy metals in indoor air in an urban environment. TSP, PM 10 , and PM 2.5 were collected in three retirement facilities in the urban area of Vienna. In addition, particulate matter and soil, vegetation, and isopods (Porcellio scaber L.) were collected in the adjacent garden areas. Aerosols were sampled with a low-volume air sampler. The sampled materials were wet ashed and total lead and cadmium contents were determined. Water-soluble heavy metal concentrations were measured in aqueous extracts from air exposed filters, soil, and vegetation. Lead and cadmium were analyzed by graphite furnace AAS. Lead contents in the vegetation were inferred from water-soluble lead in soils. Lead in isopods generally reflected the contents in vegetation. Cadmium in plants probably derived from soil solutions as well as from atmospheric input. Isopods reflected the total cadmium contents in soils. Particulate matter was dominated by PM 2.5 , both with respect to mass concentrations and to heavy metal contents. The indoor aerosol was found to be influenced by human activity, indoor sources, and outdoor particles. Relationships between indoor airborne heavy metals and the contents in vegetation (lead and cadmium: positive) and isopods (lead: negative) were identified to have the potential for biomonitoring indoor air quality. - Urban vegetation and isopods are potential indicators for indoor aerial heavy metals

  11. Indoor air quality handbook: for designers, builders, and users of energy efficient residences

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this handbook is to assist designers, builders, and users of energy efficient residences to achieve the goals of energy efficiency and maintenance of high indoor air quality simultaneously. The handbook helps in identifying and controlling potential problems of indoor air quality. It identifies sources and discusses effective ways to decrease concentrations of air contaminants. It focuses on indoor air quality in both single and multifamily energy-efficient residences. Information about commercial structures such as hospitals and office buildings is presented when it also applies to residences. Basic concepts of contaminants and their concentrations, sources and removal mechanisms, contaminant distribution, heat transfer, and air exchange are discussed. The effects of the building system on indoor air quality are examined. The effects of the external environment, building envelope, environmental control systems, interior design, furnishings, and inhabitants on the emission, dispersion, and removal of indoor air contaminants as well as direct and indirect effects of energy-efficient features are discussed. The health effects of specific air contaminants and the health standards developed for them are examined. Available methods for predicting and measuring contaminants and for evaluating human responses are discussed. Methods and equipment available for the control of indoor air pollution once the contaminants have been identified are also evaluated. The potential legal aspects, including regulatory intervention and civil lawsuits, of failure to evaluate and control indoor air pollution are discussed. A list of references, a glossary, and an index are also included

  12. Assessment of the biomass related indoor air pollution in Kwale ...

    African Journals Online (AJOL)

    Background: Indoor air pollution remains an important health problem in some countries. Although research data on this issue is available, routine monitoring in affected areas is limited. The aims of this study were to quantify exposure to biomass- related indoor air pollution; assess the respiratory health of subjects; and ...

  13. Long-term exposure to indoor air pollution and wheezing symptoms in infants

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O.; Hermansen, M.N.; Loland, L.

    2010-01-01

    Long-term exposure to air pollution is suspected to cause recurrent wheeze in infants. The few previous studies have had ambiguous results. The objective of this study was to estimate the impact of measured long-term exposure to indoor air pollution on wheezing symptoms in infants. We monitored......-point 'any symptom-day' (yes/no) and by standard linear regression with the end-point 'number of symptom-days'. The results showed no systematic association between risk for wheezing symptoms and the levels of these air pollutants with various indoor and outdoor sources. In conclusion, we found no evidence...... of an association between long-term exposure to indoor air pollution and wheezing symptoms in infants, suggesting that indoor air pollution is not causally related to the underlying disease. Practical Implications Nitrogen oxides, formaldehyde and fine particles were measured in the air in infants' bedrooms...

  14. Electronic air cleaners and the indoor environment

    International Nuclear Information System (INIS)

    Krafthefer, B.

    1986-01-01

    The growing awareness over the quality of air in the indoor environment is driving the search for effective control methods for the contaminants of concern. Electronic air cleaners can control such pollutants as dust, pollen, tobacco smoke, radon decay products, and other particulates. This paper presents an examination of the various types of electronic air cleaners and their effects on indoor pollutants. It also examines the mechanism for contaminant removal, the relationship of the efficiency to the characteristics of the contaminant, and what type of contaminants can be controlled with the electronic air cleaner, with particular emphasis placed on the removal of radon decay products. From a study on radon product removal in residences, the electronic air cleaner was found to have an efficiency of up to 70%. Not only was there a reduction in the residential working level, but the fluctuations in the working level were also reduced. With this information, they can better understand how to solve the air treatment problem of the inhabited space. 17 references, 8 figures

  15. COMPARISON OF INDOOR AIR QUALITY IN RESTAURANT KITCHENS IN TEHRAN WITH AMBIENT AIR QUALITY

    Directory of Open Access Journals (Sweden)

    M. Ghasemkhani, F. Naseri

    2008-01-01

    Full Text Available The indoor air quality of 131 restaurant kitchens in Tehran was investigated from May to September 2006. Gas stoves use in restaurant kitchens is a major source of indoor combustion, product carbon monoxide and nitrogen dioxide. The study focused on one of the busy zones located in the southwest and central part of the city. Measurements were done for indoor and outdoor air pollutants, carbon monoxide and nitrogen dioxide; ambient temperature and relative humidity were also measured. Result indicated that the mean levels of CO and NO2 in restaurant kitchens were below the recommended limit of 25 and 3ppm, respectively. Correlations between indoor and outdoor air quality were performed consequently. Results of the mean ambient temperature and relative humidity were above the guideline. In this study the mean levels of CO and NO2 gas cooking in restaurant kitchens were found to be lower compared with the similar studies.

  16. Indoor Decontamination Textiles by Photocatalytic Oxidation: A Review

    Directory of Open Access Journals (Sweden)

    Hafeezullah Memon

    2015-01-01

    Full Text Available A large number of researches have been made to make the textile intelligent and smarter; this is achieved by imparting functionality to the textile materials. The indoor environment possesses a variety of pollutants which do not come from the outer environment, but they come from the inner environment itself. Today, the smarter fabrics that may clean the indoor air have been studied by various researchers. The smarter fabrics contain the nanocoating of semiconductor oxides, mostly TiO2; thus the synthesis and application of these nanoparticles on the textile material have been reviewed in this paper. Moreover, there are lots of environmental and health issues regarding nanoparticles that have also been discussed in brief.

  17. Indoor air in school environment and the impact on children’s health

    International Nuclear Information System (INIS)

    Krajcova, D.; Vondrova, D.; Hirosova, K.; Sevcikova, L.

    2014-01-01

    More attention is paid to assessing the quality of not only outdoor but also indoor air. Since children spend large part of their time at schools, several studies are aimed at indoor air monitoring in schools. These studies confirmed association between poor quality of indoor environment and the incidence of asthma and other respiratory diseases of children. The most serious indoor air pollutants includes dust particles, inorganic and volatile organic compounds, components of tobacco smoke, mold and dust mites. Providing healthy school environment should be one of the basic methods to protect and support physical and mental health and development of children. (author)

  18. [Indoor air pollution in southeast Santiago, Chile].

    Science.gov (United States)

    Pino, P; Oyarzún, M; Walter, T; von Baer, D; Romieu, I

    1998-04-01

    Indoor air pollution could play an important role in the susceptibility to respiratory diseases of vulnerable individuals, such as elders and infants. To evaluate indoor air pollution in a low income population of South East Santiago. A domiciliary survey of contaminant sources was carried out in the bouses of a cohort of 522 children less than one year old. Using a case-control design, 121 children consulting for respiratory diseases were considered as cases and 131 healthy infants of the same age and sex were considered as controls. In the houses of both groups, active monitors for particulate matter (PM10) and passive monitors for NO2 were installed. Forty two percent of fathers and 30% of mothers were smokers, and in two thirds of the families there was at least one smoker. Eighty five percent used portable heaters in winter. Of these, 77% used kerosene as fuel. Only 27% had water heating appliances. The rest heated water on the kitchen store or on bonfires. Most kitchen stoves used liquid gas as fuel. Twenty four hour PM10 was 109 +/- 3.2 micrograms/m3. Mean indoor and outdoor NO2 in 24 h was 108 +/- 76.3 and 84 +/- 53.6 micrograms/m3 respectively. Indoor NO2 levels were related to the use of heating devices and smoking. No differences in PM10 and NO2 levels were observed between cases and controls. There is a clear relationship between indoor pollution and contaminating sources. Indoor NO2 levels are higher than outdoors.

  19. Outdoor air dominates burden of disease from indoor exposures

    DEFF Research Database (Denmark)

    Hänninen, O.; Asikainen, A.; Carrer, P.

    2014-01-01

    Both indoor and outdoor sources of air pollution have significant public health impacts in Europe. Based on quantitative modelling of the burden of disease the outdoor sources dominate the impacts by a clear margin.......Both indoor and outdoor sources of air pollution have significant public health impacts in Europe. Based on quantitative modelling of the burden of disease the outdoor sources dominate the impacts by a clear margin....

  20. Air-Sense: indoor environment monitoring evaluation system based on ZigBee network

    Science.gov (United States)

    Huang, Yang; Hu, Liang; Yang, Disheng; Liu, Hengchang

    2017-08-01

    In the modern life, people spend most of their time indoors. However, indoor environmental quality problems have always been affecting people’s social activities. In general, indoor environmental quality is also related to our indoor activities. Since most of the organic irritants and volatile gases are colorless, odorless and too tiny to be seen, because we have been unconsciously overlooked indoor environment quality. Consequently, our body suffer a great health problem. In this work, we propose Air-Sense system which utilizes the platform of ZigBee Network to collect and detect the real-time indoor environment quality. What’s more, Air-Sense system can also provide data analysis, and visualizing the results of the indoor environment to the user.

  1. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  2. What is IAQ? [Indoor Air Quality]; Wat is IAQ? [Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Fanger, P.O. [International Centre for Inoor Environment and Energy, Technical University of Denmark, Lyngby (Denmark)

    2007-07-15

    Indoor air quality (IAQ) is often defined as the extent to which human requirements are met. The air should be fresh and pleasant, not have a negative impact on health, that it not effects productivity. Present ventilation standards and guidelines do not include productivity and only require that the indoor air must be 'acceptable'. With such a modest aim it is not surprising that comprehensive field studies in many countries in buildings in which ventilation standards are met show high percentages of dissatisfied persons and of those suffering from Sick Building Syndrome. Recent studies show that improvement of IAQ by a factor of 2-7 compared with existing standards increases office productivity and school learning significantly, while decreasing the risk of allergic symptoms and asthma in homes. To make indoor air acceptable, even for the most sensitive persons, an improvement of 1-2 orders of magnitude may be required. The paper will discuss the development of new methods that can provide such substantial improvements of IAQ while maintaining or even decreasing ventilation end energy usage. [Dutch] In ruimtes die bestemd zijn voor menselijke bezetting wordt de binnenluchtkwaliteit (indoor Air Quality - IAQ) vaak gedefinieerd als de mate waarin aan menselijke behoeften wordt voldaan. Maar welke behoeften hebben mensen van de binnenlucht? Het is wenselijk dat de lucht wordt ervaren als zuiver en aangenaam. Dit betekent dat de lucht geen negatieve invloed mag hebben op de gezondheid en dat de lucht het werken moet stimuleren. De binnenlucht zou de productiviteit van werknemers en de schoolprestaties van kinderen moeten verhogen. In de huidige normen en richtlijnen voor ventilatie worden deze laatste twee aspecten niet meegenomen, er wordt uitgegaan van de bescheiden eis dat de binnenluchtkwaliteit 'acceptabel' dient te zijn. Dit houdt in dat de meest gevoelige groep personen (doorgaans 20%) de lucht als onacceptabel zal beoordelen en dat de

  3. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    Science.gov (United States)

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  4. Children's exposure to indoor air in urban nurseries-part I: CO2 and comfort assessment

    International Nuclear Information System (INIS)

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-01-01

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO 2 ), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO 2 concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO 2 concentrations found could indicate accumulation of other air pollutants

  5. Links Related to the Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  6. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  7. Reflections on the history of indoor air science, focusing on the last 50 years.

    Science.gov (United States)

    Sundell, J

    2017-07-01

    The scientific articles and Indoor Air conference publications of the indoor air sciences (IAS) during the last 50 years are summarized. In total 7524 presentations, from 79 countries, have been made at Indoor Air conferences held between 1978 (49 presentations) and 2014 (1049 presentations). In the Web of Science, 26 992 articles on indoor air research (with the word "indoor" as a search term) have been found (as of 1 Jan 2016) of which 70% were published during the last 10 years. The modern scientific history started in the 1970s with a question: "did indoor air pose a threat to health as did outdoor air?" Soon it was recognized that indoor air is more important, from a health point of view, than outdoor air. Topics of concern were first radon, environmental tobacco smoke, and lung cancer, followed by volatile organic compounds, formaldehyde and sick building syndrome, house dust-mites, asthma and allergies, Legionnaires disease, and other airborne infections. Later emerged dampness/mold-associated allergies and today's concern with "modern exposures-modern diseases." Ventilation, thermal comfort, indoor air chemistry, semi-volatile organic compounds, building simulation by computational fluid dynamics, and fine particulate matter are common topics today. From their beginning in Denmark and Sweden, then in the USA, the indoor air sciences now show increasing activity in East and Southeast Asia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Heterogeneous photocatalysis applied to indoor building material : towards an improved indoor air quality

    NARCIS (Netherlands)

    Yu, Q.; Ballari, M.; Brouwers, H.J.H.

    2011-01-01

    In the present article, kinetics of the photocatalytic oxidation (PCO) of nitric oxide (NO, as a typical air pollutant) is addressed. An extended Langmuir-Hinshelwood reaction rate model is proposed to describe the PCO of NO under indoor air conditions. The derived model incorporates the influence

  9. A survey of perfluoroalkyl sulfonamides in indoor and outdoor air using passive air samplers

    Energy Technology Data Exchange (ETDEWEB)

    Shoeib, M.; Harner, T. [Meteorological Service of Canada, Environment Canada (Canada); Wilford, B.; Jones, K. [Lancaster Univ. (United Kingdom). Environmental Science; Zhu, J. [Chemistry Research Division, Health Canada, Tunney' s Pasture, Ottawa (Canada)

    2004-09-15

    Perfluorooctane sulfonate (PFOS) has recently emerged as a priority environmental pollutant due to its widespread detection in biological samples from remote regions including the Arctic and the Mid-North Pacific Ocean. Because PFOS is fairly involatile, it is hypothesized that its occurrence in remote regions is the result of atmospheric transport of more volatile precursor compounds such as the perfluoroalkyl sulfonamides (PFASs). PFASs are used in variety of consumer products for water and oil resistance including surface treatments for fabric, upholstery, carpet, paper and leather. In a recent pilot study employing high volume air samples, indoor air concentrations of PFASs were approximately 100 times greater than outdoor levels. This is of significance because people typically spend about 90% of their time indoors 5 and this exposure may serve as an important uptake pathway. Indoor air also serves as a source of PFASs to the outside where PFASs are ultimately transported and distributed throughout the environment. The current study is intended to be a more comprehensive survey of indoor and outdoor air allowing more confident conclusions to be made. Passive air samplers comprised of polyurethane foam (PUF) disks were used. These are quiet, non-intrusive samplers that operate without the aid of a pump or electricity. Air movement delivers chemical to the sampler which has a high retention capacity for persistent organic pollutants (POPs). PUF disks samplers have been previously used successfully to monitor different classes of hydrophobic persistent organic pollutants POPs.

  10. Indoor air quality/air infiltration in selected low-energy houses

    International Nuclear Information System (INIS)

    Shohl Wagner, B.; Phillips, T.J.

    1984-01-01

    Indoor air quality and air infiltration were measured in 16 low-energy California houses. Eleven has gas stoves; all had average infiltration rates of 0.5 h -1 of less, recent construction dates, low natural ventilation, and no mechanical ventilation. HCHO levels in 12 houses and radon-222 and NO 2 levels in all houses were measured using passive monitors. Blower door measurements and local weather data were used to calculate average infiltration rates during the monitoring period. Correlation of pollutant concentrations with infiltration rates and building characteristics indicate that new houses with average heating season infiltration rates less than 0.5 h -1 do not necessarily experience poor indoor air quality, HCHO and radon-222 levels in new houses exceeded the lowest currently proposed standards or guidelines, and much higher levels probably exist elsewhere. Therefore, some strategy for identifying 'problem' houses is needed. We recommend an approach for future research in this area. (Author)

  11. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland.

    Science.gov (United States)

    Meier, Reto; Schindler, Christian; Eeftens, Marloes; Aguilera, Inmaculada; Ducret-Stich, Regina E; Ineichen, Alex; Davey, Mark; Phuleria, Harish C; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino

    2015-09-01

    Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sources of Indoor Air Pollution and Respiratory Health in Preschool Children

    International Nuclear Information System (INIS)

    Leonarte, V.F.; Ballester, F.; Leonarte, V.F.; Ballester, F.; Tenias, J.M.; Tenias, J.M.

    2010-01-01

    We carried out bibliographic searches in Pub Med and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DY work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development.

  13. Sources of Indoor Air Pollution and Respiratory Health in Preschool Children

    Directory of Open Access Journals (Sweden)

    Virginia Fuentes-Leonarte

    2009-01-01

    Full Text Available We carried out bibliographic searches in PubMed and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DYI work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development.

  14. A systematic approach to assessing indoor air quality of long term care facilities

    NARCIS (Netherlands)

    te Kulve, M.; Loomans, M.G.L.C.; Huisman, E.R.C.M.; Kort, H.S.M.

    2018-01-01

    Not much is known about the favourable indoor air quality in long term care facilities (LTCFs), where older adults suffering from dementia live. Older adults, especially those who suffer from dementia, are more sensible to the indoor environment. However, no special requirements for the indoor air

  15. Participant evaluation results for two indoor air quality studies

    International Nuclear Information System (INIS)

    Hawthorne, A.R.; Dudney, C.S.; Cohen, M.A.; Spengler, J.D.

    1987-01-01

    After two surveys for indoor air pollutants (radon and other chemicals) the homeowners were surveyed for their reactions. The results of these participant evaluation surveys, assuming that the participants that responded to the survey were representative, indicate that homeowners will accept a significant level of monitoring activity as part of an indoor air quality field study. Those participants completing surveys overwhelmingly enjoyed being in the studies and would do it again. We believe that the emphasis placed on positive homeowner interactions and efforts made to inform participants throughout our studies were positive factors in this result. There was no substantial differences noted in the responses between the 70-house study, which included a homeowner compensation payment of $100, and the 300-house study, which did not include a compensation payment. These results provide encouragement to conduct future complex, multipollutant indoor air quality studies when they are scientifically sound and cost effective

  16. Ozone and limonene in indoor air: a source of submicron particle exposure.

    Science.gov (United States)

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-12-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to

  17. A groundwater mass flux model for screening the groundwater-to-indoor-air exposure pathway

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, T.; Blanc, P.C. de; Connor, J. [Groundwater Services Inc, Houston, TX (United States)

    2003-07-01

    The potential for human exposure via volatilisation of groundwater contaminants into indoor air has been a focus of increasing concern in recent years. At a small number of sites, elevated indoor vapour concentrations have been measured within buildings overlying shallow groundwater contaminated with chlorinated solvents, causing public concern over the potential for similar problems at other corrective action sites. In addition, use of the screening-levelmodel developed by Johnson and Ettinger (1991) for the groundwater-to-indoor-air exposure pathway has suggested that low microgram per litre (ug/L)-range concentrations of either chlorinated or non-chlorinated volatile organic compounds dissolved in groundwater could result in indoor vapour concentrations in excess of applicable risk-based exposure limits. As an alternative screening tool, this paper presents a groundwater mass flux model for evaluation of transport to indoor air. The mass flux model is intended to serve as a highly conservative screening tool that over-predicts groundwater-to-indoor-air mass flux, yet still provides sufficient sensitivity to identify sites for which the groundwater-to-indoor air exposure pathway is not a concern. (orig.)

  18. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    Science.gov (United States)

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  19. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    Science.gov (United States)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. CARBON ADSORPTION FOR INDOOR AIR CLEANING

    Science.gov (United States)

    The paper discusses the use of carbon adsorption for indoor air cleaning, focusing on the removal of volatile organic compounds (VOCs) using granular activated carbon (GAC). It addresses GAC performance in two directions. Initially, it presents performance measurements for GAC at...

  1. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  2. Indoor air purificaton using heterogeneous photocatalytic oxidation, Part 2: Kinetic study

    NARCIS (Netherlands)

    Yu, Q.; Ballari, M.; Brouwers, H.J.H.

    2010-01-01

    In part I to this article [1], the application of the heterogeneous photocatalytic oxidation (PCO) theory for the indoor air quality improvement was presented. With a modified TiO2 that can be activated by visible light as the photocatalyst coated on a special wall paper, and one typical indoor air

  3. Indoor pollutants emitted by office equipment: A review ofreported data and information needs

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Maddalena, Randy L.; Singer, Brett C.; Hodgson, Alfred T.; McKone, Thomas E.

    2007-02-01

    There is concern that potentially harmful pollutants may be emitted from office equipment. Although office equipment has been a focal point for governmental efforts to promote energy efficiency through programs such as the US EPA's Energy Star, little is known about the relationship between office equipment use and indoor air quality, and information on pollutant emissions is sparse. In this review, we summarize available information on emission rates and/or ambient concentrations of various pollutants that are related to office equipment use. Experimental methods used in the characterization of emissions are briefly described. The office equipment evaluated in this review includes computers (desktops and notebooks), printers (laser, ink-jet and all-in-one machines) and photocopy machines. Reported emission rates of the following pollutant groups are summarized: volatile organic chemicals (VOCs), ozone, particulate matter and several semivolatile organic chemicals (SVOCs). The latter include phthalate esters, brominated flame retardants, organophosphate flame retardants and polycyclic aromatic hydrocarbons (PAHs). We also review studies reporting airborne concentrations in indoor environments where office equipment was present and thought to be a significant contributor to the total pollutant burden (offices, residences, schools, electronics recycling plants). For certain pollutants, such as organophosphate flame retardants, the link between emission by office equipment and indoor air concentrations is relatively well established. However, indoor VOCs, ozone, PAHs and phthalate esters can originate from a variety of sources, and their source apportionment is less straightforward. This literature review identifies substances of toxicological significance, with the purpose of serving as a guide to evaluate their potential importance with respect to human exposures.

  4. Good practices in managing work-related indoor air problems: a psychosocial perspective.

    Science.gov (United States)

    Lahtinen, Marjaana; Huuhtanen, Pekka; Vähämäki, Kari; Kähkönen, Erkki; Mussalo-Rauhamaa, Helena; Reijula, Kari

    2004-07-01

    Indoor air problems at workplaces are often exceedingly complex. Technical questions are interrelated with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the problem solving process are also put to the test. The objective of our study was to analyze the process of managing and solving indoor air problems from a psychosocial perspective. This collective case study was based on data from questionnaires, interviews and various documentary materials. Technical inspections of the buildings and indoor air measurements were also carried out. The following four factors best differentiated successful cases from impeded cases: extensive multiprofessional collaboration and participative action, systematic action and perseverance, investment in information and communication, and process thinking and learning. The study also proposed a theoretical model for the role of the psychosocial work environment in indoor air problems. The expertise related to social and human aspects of problem solving plays a significant role in solving indoor air problems. Failures to properly handle these aspects may lead to resources being wasted and result in a problematic situation becoming stagnant or worse. Copyright 2004 Wiley-Liss, Inc.

  5. Fungal pollution of indoor environments and its management.

    Science.gov (United States)

    Haleem Khan, A A; Mohan Karuppayil, S

    2012-10-01

    Indoor environments play important roles in human health. The health hazards posed by polluted indoor environments include allergy, infections and toxicity. Life style changes have resulted in a shift from open air environments to air tight, energy efficient, environments, in which people spend a substantial portion of their time. Most indoor air pollution comes from the hazardous non biological agents and biological agents. Fungi are ubiquitous in distribution and are a serious threat to public health in indoor environments. In this communication, we have reviewed the current status on biotic indoor air pollution, role of fungi as biological contaminants and their impact on human health.

  6. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Science.gov (United States)

    2010-07-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings as...

  7. THE ASSESSMENT OF MICROBIOLOGICAL INDOOR AIR QUALITY IN BAKERIES

    Directory of Open Access Journals (Sweden)

    Elżbieta Wołejko

    2016-05-01

    Full Text Available The aim of this study was to assess microbiological indoor air quality of selected bakeries located in the region of Podlasie. The microbiological studies were conducted in autumn in 2014 in three selected bakeries. Microbiological air counts were measured by impaction using an air sampler MAS-100 NT. The microbiological air studies, comprised the determination of the total number of psychrophilic and mesophilic bacteria, namely indicator bacteria such as: bacteria of the species Pseudomonas fluorescens, mannitol-positive and mannitol-negative Staphylococc, the total number of bacteria from the Enterobacteriaceae family and fungi found in atmospheric air. The results of the study of indoor air polluted with the analyzed groups of microorganisms differed depending on the type of test air and the location of the manufacturing plant. In the plants, the concentration of mesophilic bacteria and mannitol–positive and mannitol-negative Staphylococcus exceeded the limit values of unpolluted air, according to the Polish Standard recommendations.

  8. Indoor Air Quality Management Program.

    Science.gov (United States)

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history,…

  9. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality

    Directory of Open Access Journals (Sweden)

    Francesco Salamone

    2017-05-01

    Full Text Available The article describes the results of the project “open source smart lamp” aimed at designing and developing a smart object able to manage and control the indoor environmental quality (IEQ of the built environment. A first version of this smart object, built following a do-it-yourself (DIY approach using a microcontroller, an integrated temperature and relative humidity sensor, and techniques of additive manufacturing, allows the adjustment of the indoor thermal comfort quality (ICQ, by interacting directly with the air conditioner. As is well known, the IEQ is a holistic concept including indoor air quality (IAQ, indoor lighting quality (ILQ and acoustic comfort, besides thermal comfort. The upgrade of the smart lamp bridges the gap of the first version of the device providing the possibility of interaction with the air exchange unit and lighting system in order to get an overview of the potential of a nearable device in the management of the IEQ. The upgraded version was tested in a real office equipped with mechanical ventilation and an air conditioning system. This office was occupied by four workers. The experiment is compared with a baseline scenario and the results show how the application of the nearable device effectively optimizes both IAQ and ILQ.

  10. [Bacterial contamination of the indoor air in a transplant unit].

    Science.gov (United States)

    Matoušková, Ivanka; Holý, Ondřej

    2013-12-01

    For one year (August 2010 to July 2011), microbial contamination of the indoor air in the Transplant Unit of the Haemato-Oncology Clinic, Olomouc University Hospital was monitored monthly. Twenty sampling sites were singled out and a total of 240 indoor air samples were collected. An MAS-100 air sampler (Merck, GER) was used, air flow rate of 100 liters per minute, 1 minute. The measured values of indoor air temperature were stable. The relative air humidity ranged from 17% to 68%. The highest average value of microbial air contamination was found in the "staff entry room" (1170 CFU/m3). The lowest microbial air contamination (150-250 CFU/m3) was measured in the patient isolation units. The most frequently isolated bacterial strains were coagulase-negative staphylococci (94.3%), followed by Micrococcus spp. (67%) and Bacillus subtilis (11%). It can be assumed that the -source of these airborne bacterial strains are both patients and medical staff. They are classified as -opportunistic pathogens and as such can cause hospital infections among haemato-oncology patients.

  11. Indoor air quality in hairdressing salons in Taipei.

    Science.gov (United States)

    Chang, C-J; Cheng, S-F; Chang, P-T; Tsai, S-W

    2018-01-01

    To improve indoor air quality and to protect public health, Taiwan has enacted the "Indoor Air Quality Act (IAQ Act)" in 2012. For the general public, the indoor air quality in hair salons is important because it is a popular location that people will often visit for hair treatments. However, only a few exposure assessments regarding air pollutants have previously been performed in hair salons. To assess the air quality of hairdressing environments in Taipei, ten hairdressing salons were included for a walk-through survey in this study. In addition, the airborne concentrations of formaldehyde, volatile organic compounds (VOCs), CO 2 , and phthalate esters were also determined in 5 salons. Charcoal, XAD-2, and OVS-Tenax tubes were used for the air sampling, while the samples were analyzed with gas chromatography/mass spectrometer. It was found that the products used in hair salons contained various chemicals. In fact, from the walk-through survey, a total of 387 different ingredients were found on 129 hair product labels. The hair salons were not well ventilated, with CO 2 levels of 600 to 3576 ppm. The formaldehyde concentrations determined in this study ranged from 12.40 to 1.04 × 10 3  μg m -3 , and the maximum level was above the permissible exposure limit (PEL) of US Occupational Safety and Health Administration (US OSHA). Additionally, 83% of the samples were with levels higher than the standard regulated by Taiwan's IAQ Act. The concentrations of VOCs and phthalate esters were below the occupational exposure limits (OELs), but higher than what was found in general residential environments. The hair products were considered as the major source of air pollutants because significantly higher concentrations were found around the working areas. The number of perming treatments, the number of workers, and the frequency of using formaldehyde releasing products, were found to be associated with the levels of formaldehyde. This study indicates that efforts are

  12. Survey of occupant behaviour, energy use and indoor air quality in Greenlandic dwellings

    DEFF Research Database (Denmark)

    Kotol, Martin

    , they provide their occupants with poor indoor air quality. A questionnaire survey was performed in the town of Sisimiut-Greenland, which with its location and population represents Greenlandic conditions quite well. The aim of the survey was to investigate the energy consumption and indoor air quality...... in arctic dwellings and to study the influence of occupant behaviour of people living in arctic climates on energy consumption and indoor air quality. The results have shown that the average electricity consumption is 20% higher than in DK, ventilation systems are insufficient and that the inhabitants often......In cold arctic regions people usually spend over 70% of their time indoors. The effect of poor indoor air quality on occupants’ health and comfort is therefore considerable. Dwellings in Greenland consume very large amounts of energy (in average over 370 kWh/year per m2) and in addition...

  13. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Avril Challoner

    2015-12-01

    Full Text Available NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM, to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  14. Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Adyati Pradini Yudison

    2015-07-01

    Full Text Available People living near busy roads are potentially exposed to traffic-induced air pollutants. The pollutants may intrude into the indoor environment, causing health risks to the occupants. Prediction of pollutant exposure therefore is of great importance for impact assessment and policy making related to environmentally sustainable transport. This study involved the selection of spatial interpolation methods that can be used for prediction of indoor air quality based on outdoor pollutant mapping without indoor measurement data. The research was undertaken in the densely populated area of Karees, Bandung, Indonesia. The air pollutant NO2 was monitored in this area as a preliminary study. Nitrogen dioxide concentrations were measured by passive diffusion tube. Outdoor NO2 concentrations were measured at 94 locations, consisting of 30 roadside and 64 outdoor locations. Residential indoor NO2 concentrations were measured at 64 locations. To obtain a spatially continuous air quality map, the spatial interpolation methods of inverse distance weighting (IDW and Kriging were applied. Selection of interpolation method was done based on the smallest root mean square error (RMSE and standard deviation (SD. The most appropriate interpolation method for outdoor NO2 concentration mapping was Kriging with an SD value of 5.45 µg/m3 and an RMSE value of 5.45 µg/m3, while for indoor NO2 concentration mapping the IDW was best fitted with an RMSE value of 5.92 µg/m3 and an SD value of 5.92 µg/m3.

  15. Car indoor air pollution - analysis of potential sources

    Directory of Open Access Journals (Sweden)

    Müller Daniel

    2011-12-01

    Full Text Available Abstract The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources. Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future.

  16. Indoor Air Quality in the Metro System in North Taiwan

    Directory of Open Access Journals (Sweden)

    Ying-Yi Chen

    2016-12-01

    Full Text Available Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS in Taiwan, including humidity, temperature, carbon monoxide (CO, carbon dioxide (CO2, formaldehyde (HCHO, total volatile organic compounds (TVOCs, ozone (O3, airborne particulate matter (PM10 and PM2.5, bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA. However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.

  17. Indoor Air Quality in the Metro System in North Taiwan.

    Science.gov (United States)

    Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen

    2016-12-02

    Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO₂), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O₃), airborne particulate matter (PM 10 and PM 2.5 ), bacteria and fungi. Results showed that the CO₂, CO and HCHO levels met the stipulated standards as regulated by Taiwan's Indoor Air Quality Management Act (TIAQMA). However, elevated PM 10 and PM 2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan's Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.

  18. Quantitative assessments of indoor air pollution and the risk of childhood acute leukemia in Shanghai

    International Nuclear Information System (INIS)

    Gao, Yu; Zhang, Yan; Kamijima, Michihiro; Sakai, Kiyoshi; Khalequzzaman, Md; Nakajima, Tamie; Shi, Rong; Wang, Xiaojin; Chen, Didi; Ji, Xiaofan; Han, Kaiyi; Tian, Ying

    2014-01-01

    We investigated the association between indoor air pollutants and childhood acute leukemia (AL). A total of 105 newly diagnosed cases and 105 1:1 gender-, age-, and hospital-matched controls were included. Measurements of indoor pollutants (including nitrogen dioxide (NO 2 ) and 17 types of volatile organic compounds (VOCs)) were taken with diffusive samplers for 64 pairs of cases and controls. Higher concentrations of NO 2 and almost half of VOCs were observed in the cases than in the controls and were associated with the increased risk of childhood AL. The use of synthetic materials for wall decoration and furniture in bedroom was related to the risk of childhood AL. Renovating the house in the last 5 years, changing furniture in the last 5 years, closing the doors and windows overnight in the winter and/or summer, paternal smoking history and outdoor pollutants affected VOC concentrations. Our results support the association between childhood AL and indoor air pollution. - Highlights: • We firstly assessed the effects of indoor air pollution on childhood AL in China. • Indoor air pollutants were assessed by questionnaire and quantitative measurements. • NO 2 and 17 types of VOCs were measured in bedrooms of both cases and controls. • Higher concentrations of indoor air pollutants increased the risk of childhood AL. • Indoor behavioral factors and outdoor pollution might affect indoor air pollution. - Higher concentrations of indoor air pollutants were related to an elevated risk of childhood AL

  19. Assessing indoor air quality in New York City nail salons.

    Science.gov (United States)

    Pavilonis, Brian; Roelofs, Cora; Blair, Carly

    2018-05-01

    Nail salons are an important business and employment sector for recent immigrants offering popular services to a diverse range of customers across the United States. However, due to the nature of nail products and services, salon air can be burdened with a mix of low levels of hazardous airborne contaminants. Surveys of nail technicians have commonly found increased work-related symptoms, such as headaches and respiratory irritation, that are consistent with indoor air quality problems. In an effort to improve indoor air quality in nail salons, the state of New York recently promulgated regulations to require increased outdoor air and "source capture" of contaminants. Existing indoor air quality in New York State salons is unknown. In advance of the full implementation of the rules by 2021, we sought to establish reliable and usable baseline indoor air quality metrics to determine the feasibility and effectiveness of the requirement. In this pilot study, we measured total volatile organic compounds (TVOC) and carbon dioxide (CO 2 ) concentrations in 10 nail salons located in New York City to assess temporal and spatial trends. Within salon contaminant variation was generally minimal, indicating a well-mixed room and similar general exposure despite the task being performed. TVOC and CO 2 concentrations were strongly positively correlated (ρ = 0.81; p air quality for the purposes of compliance with the standard. An almost tenfold increase in TVOC concentration was observed when the American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ANSI/ASHRAE) target CO 2 concentration of 850 ppm was exceeded compared to when this target was met.

  20. A comprehensive air quality investigation at an aquatic centre: Indoor/outdoor comparisons.

    Science.gov (United States)

    Tolis, Evangelos I; Panaras, Giorgos; Bartzis, John G

    2018-06-01

    Air quality and comfort parameters in a naturally ventilated aquatic centre were studied in relation to the outdoor pollution levels. Simultaneous measurements of PM 2.5, as well as of volatile organic compounds, were carried out for the indoor and outdoor environment of the aquatic centre. The chemical analysis of ionic species and trace elements associated with particulate matter was also performed. In addition, automated analyzer for NO 2 and O 3 was used in order to record the indoor and outdoor levels of these pollutants. Analysis of diurnal variation of the pollutants' concentration was applied to the collected data, allowing the identification of potential variation on the sources affecting the indoor air quality. PM 2.5 concentration was almost two times higher indoors than outdoors with average values of 13.96 and 6.78 μg/m 3 , respectively. Concerning the ion fraction of PM 2.5, SO 4 2- and Ca 2+ were the ions with higher concentration indoors with values of 1.06 and 0.93 μg/m 3 , respectively, while the percentage of Cl - to the PM 2.5 fraction of the indoor atmosphere (9%) was too high than outdoor ones (1%). These results showed that indoor air of swimming pool concerning PM 2.5 and ionic species is mainly affected by the chlorination process along with the comfort conditions (high relative humidity) created during the operation of the facility. The common volatile organic compound concentrations at indoor air are generally in higher levels, compared to the outdoor air with p,m-xylene and toluene to be the substances with the higher concentration for indoor and outdoor area, respectively (7.80 and 1.57 μg/m 3 ); nevertheless, values were rather low compared with the findings of other studies. Also, they clearly demonstrate a diurnal variation as a result of poor ventilation during night. As it was expected, chloroform showed the highest concentration compared to the other volatile organic compounds with values ranging from 3.35 to 135.89 μg/m 3

  1. Indoor air quality and infiltration in multifamily naval housing

    International Nuclear Information System (INIS)

    Parker, G.B.; Wilfert, G.L.; Dennis, G.W.

    1984-11-01

    Measurements of indoor air quality and air infiltration were taken in three units of a multifamily housing complex at the Naval Submarine base in Bangor, Washington, over 5 consecutive days during the heating season of 1983. Three dwelling units of identical size constructed in 1978 were monitored, each in a separate two-story four-unit complex. One unit was a downstairs unit and the other two units were upstairs units. Two of the units were occupied by smokers (one downstairs and one upstairs). None of the units had combustion appliances. Pollutants monitored indoors included radon, formaldehyde, carbon monoxide, particulate matter, and nitrogen dioxide. Indoor and outdoor temperature and windspeed were also recorded. Outdoor formaldehyde and nitrogen dioxide were also measured. Air exchange was measured about three times during each 24-h period, using a perfluorocarbon tracer with automatic tracer sampling. The daily average air exchange rate ranged from 0.22 to 0.91 air changes per hour (ACH). Pollutant concentrations were generally low except for particulate matter in the units with smokers, which were two to four times higher than in the unit with nonsmokers. Levels of carbon monoxide were also slightly elevated in one of the units with a smoker compared to the unit with nonsmokers. 5 references, 4 figures, 4 tables

  2. Sample design considerations of indoor air exposure surveys

    International Nuclear Information System (INIS)

    Cox, B.G.; Mage, D.T.; Immerman, F.W.

    1988-01-01

    Concern about the potential for indoor air pollution has prompted recent surveys of radon and NO 2 concentrations in homes and personal exposure studies of volatile organics, carbon monoxide and pesticides, to name a few. The statistical problems in designing sample surveys that measure the physical environment are diverse and more complicated than those encountered in traditional surveys of human attitudes and attributes. This paper addresses issues encountered when designing indoor air quality (IAQ) studies. General statistical concepts related to target population definition, frame creation, and sample selection for area household surveys and telephone surveys are presented. The implications of different measurement approaches are discussed, and response rate considerations are described

  3. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    Energy Technology Data Exchange (ETDEWEB)

    Washington State Energy Code Program

    1992-05-01

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  4. Endocrine disrupting chemicals in indoor and outdoor air

    Science.gov (United States)

    Rudel, Ruthann A.; Perovich, Laura J.

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals - that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  5. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers

    International Nuclear Information System (INIS)

    Lin, Nan; Mu, Xinlin; Wang, Guilian; Ren, Yu'ang; Su, Shu; Li, Zhiwen; Wang, Bin; Tao, Shu

    2017-01-01

    Indoor air pollution is an important environmental factor that contributes to the burden of various diseases. Long-term exposure to ambient air pollution is associated with telomere shortening. However, the association between chronic indoor air pollution from household fuel combustion and leukocyte telomere length has not been studied. In our study, 137 cancer-free non-smokers were recruited. Their exposure levels to indoor air pollution from 1985 to 2014 were assessed using a face-to-face interview questionnaire, and leukocyte telomere length (LTL) was measured using a monochrome multiplex quantitative PCR method. Accumulative exposure to solid fuel usage for cooking was negatively correlated with LTL. The LTL of residents who were exposed to solid fuel combustion for three decades (LTL = 0.70 ± 0.17) was significantly shorter than that of other populations. In addition, education and occupation were related to both exposure to solid fuel and LTL. Sociodemographic factors may play a mediating role in the correlation between leukocyte telomere length and environmental exposure to indoor air pollution. In conclusion, long-term exposure to indoor air pollution may cause LTL dysfunction. - Highlights: • This is the first study to investigate a clear association between indoor air pollution and leukocyte telomere length. • Chronic exposure to household solid fuel combustion and leukocyte telomere length presented a negative correlation. • Shortest leukocyte telomere length belonged to population cooking for longest time. • Education and occupation were remarkably associated with leukocyte telomere length via relating with indoor air pollution. - Long-term exposure to household solid fuel combustion is negatively associated with LTL.

  6. Testing Selected Behaviors to Reduce Indoor Air Pollution Exposure in Young Children

    Science.gov (United States)

    Barnes, B. R.; Mathee, A.; Krieger, L.; Shafritz, L.; Favin, M.; Sherburne, L.

    2004-01-01

    Indoor air pollution is responsible for the deaths and illness of millions of young children in developing countries. This study investigated the acceptability (willingness to try) and feasibility (ability to perform) of four indoor air pollution reduction behaviors (improve stove maintenance practices, child location practices, ventilation…

  7. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants.

    Science.gov (United States)

    Scheepers, Paul T J; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B M

    2017-05-08

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO₂), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO₂ (4.9-17.4 μg/m³) and formaldehyde (2.5-6.4 μg/m³) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m³ (range: 33.1-2450 μg/m³) and was fivefold higher in laboratories (316 μg/m³) compared to offices (57.0 μg/m³). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80-90% efficiency filter ( p engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities.

  8. Publications about Indoor Air Quality in Schools

    Science.gov (United States)

    Publications and resources that relate to indoor air quality in schools, and design tools for schools. These publications cover a wide range of issues, including IAQ management, student performance, asthma, mold and moisture, and radon.

  9. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX)

    DEFF Research Database (Denmark)

    Cochet, C.; Fernandes, E.O.; Jantunen, M.

    ECA-IAQ (European Collaborative Action, Urban Air, Indoor Environment and Human Exposure), 2006. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX), Report No 25. EUR 22503 EN. Luxembourg: Office for Official Publications...... of the European Communities It is now well established that indoor air pollution contributes significantly to the global burden of disease of the population. Therefore, the knowledge of this contribution is essential in view of risk assessment and management. The ECA STRATEX report collates the respective...... information and describes the strategies to determine population exposure to indoor air pollutants. Its major goal is to emphasise the importance of the contribution of indoor air to total air exposure. Taking this contribution into account is a prerequisite for sound risk assessment of air pollution...

  10. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    Science.gov (United States)

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  11. Development of measure methods of radon in indoor air

    International Nuclear Information System (INIS)

    Yaginuma, L.T.; Pela, C.A.; Navas, E.A.; Ghilardi, A.J.P.

    1992-01-01

    The development of some conventional measuring methods, aiming obtain an estimation of radon concentration in air, mainly in indoor air is described, including the charcoal absorption collector, Lucas cell and thermoluminescent dosemeters. (C.G.C)

  12. Children's exposure to indoor air in urban nurseries-part I: CO{sub 2} and comfort assessment

    Energy Technology Data Exchange (ETDEWEB)

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V., E-mail: sofia.sousa@fe.up.pt

    2015-07-15

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO{sub 2}), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO{sub 2} concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO{sub 2} concentrations found could indicate accumulation of other air pollutants.

  13. Improving indoor air quality and thermal comfort in office building by using combination filters

    Science.gov (United States)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  14. A survey and critical review of the literature on indoor air quality, ventilation and health symptoms in schools

    Energy Technology Data Exchange (ETDEWEB)

    Daisey, J.M. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.; Angell, W.J. [Univ. of Minnesota, St. Paul, MN (United States)

    1998-03-01

    A survey and critical review were undertaken of existing published literature and reports on indoor air quality (IAQ), ventilation, and IAQ- and building-related health problems in schools, including California schools. Over 450 relevant publications were obtained and reviewed, including papers published in the archival peer-reviewed scientific literature, proceedings of scientific meetings, government reports, 77 NIOSH Health Hazard Evaluation Reports (HHER) and 70 reports on investigations of problem schools in California. Most of the reviewed literature was for complaint or problem schools. The types of health symptoms reported in schools were very similar to those defined as sick building syndrome (SBS) symptoms, although this may be due, at least in part, to the type of health symptom questionnaires used. Some of the symptoms, e.g., wheezing, are indicative of asthma. In the studies in which complaint and noncomplaint buildings or areas were compared, complaint buildings generally had higher rates of health symptoms.

  15. The effects of an energy efficiency retrofit on indoor air quality.

    Science.gov (United States)

    Frey, S E; Destaillats, H; Cohn, S; Ahrentzen, S; Fraser, M P

    2015-04-01

    To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low-income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long-term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long-term follow-up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. An indoor air quality assessment for vulnerable populations exposed to volcanic vog from Kilauea Volcano.

    Science.gov (United States)

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Longo, Anthony A; Harris, Merylin; Bibilone, Renwick

    2010-01-01

    The Ka'u District of Hawaii is exposed to sulfurous air pollution called vog from the ongoing eruption of Kilauea Volcano. Increased volcanic activity in 2008 prompted an indoor air quality assessment of the district's hospital and schools. All indoor sulfur dioxide concentrations were above the World Health Organization's average 24-hour recommendation. Indoor penetration ratios were up to 94% of ambient levels and dependent upon building construction or the use of air-conditioning. Health-promotion efforts for vulnerable populations at the hospital and schools are under way to improve indoor air quality and respond to those affected by vog exposure.

  17. The diffusion and impact of clean indoor air laws.

    Science.gov (United States)

    Eriksen, Michael P; Cerak, Rebecca L

    2008-01-01

    Over the past quarter century, primarily as a result of scientific discovery, citizen advocacy, and legislative action, comprehensive clean indoor air laws have spread rapidly throughout the world. Laws that establish completely smoke-free indoor environments have many relative advantages including being low cost, safe, effective, and easy to implement. The diffusion of these laws has been associated with a dramatic and rapid reduction in population levels of serum cotinine among nonsmokers and has also contributed to a reduction in overall cigarette consumption among smokers, with no adverse economic impact, except to the tobacco industry. Currently, nearly half of the U.S. population lives in jurisdictions with some combination of completely smoke-free workplaces, restaurants, or bars. The diffusion of clean indoor air laws is spreading rapidly throughout the world, stimulated by the first global health treaty, the Framework Convention on Tobacco Control.

  18. Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences

    Directory of Open Access Journals (Sweden)

    Mireille Guay

    2010-08-01

    Full Text Available Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants’ activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants’ activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants.

  19. CONCRETE BLOCKS' ADVERSE EFFECTS ON INDOOR AIR AND RECOMMENDED SOLUTIONS

    Science.gov (United States)

    Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants. An easy approach to avoiding these pollutants is to select a less–air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a fa...

  20. Radon in indoor air. Health risk, measurement methods and remedial measures

    International Nuclear Information System (INIS)

    Strand, T.

    1996-02-01

    Radon in indoor air is the main source of ionizing radiation in Norway. The booklet contains a presentation of radon sources, measurement methods, indoor radon concentrations, action levels, health risk and remedial measures

  1. Ventilation, indoor air quality, and health in homes undergoing weatherization.

    Science.gov (United States)

    Francisco, P W; Jacobs, D E; Targos, L; Dixon, S L; Breysse, J; Rose, W; Cali, S

    2017-03-01

    Ventilation standards, health, and indoor air quality have not been adequately examined for residential weatherization. This randomized trial showed how ASHRAE 62-1989 (n=39 houses) and ASHRAE 62.2-2010 (n=42 houses) influenced ventilation rates, moisture balance, indoor air quality, and self-reported physical and mental health outcomes. Average total airflow was nearly twice as high for ASHRAE 62.2-2010 (79 vs. 39 cfm). Volatile organic compounds, formaldehyde and carbon dioxide were all significantly reduced for the newer standard and first-floor radon was marginally lower, but for the older standard, only formaldehyde significantly decreased. Humidity in the ASHRAE 62.2-2010 group was only about half that of the ASHRAE 62-1989 group using the moisture balance metric. Radon was higher in the basement but lower on the first floor for ASHRAE 62.2-2010. Children in each group had fewer headaches, eczema, and skin allergies after weatherization and adults had improvements in psychological distress. Indoor air quality and health improve when weatherization is accompanied by an ASHRAE residential ventilation standard, and the 2010 ASHRAE standard has greater improvements in certain outcomes compared to the 1989 standard. Weatherization, home repair, and energy conservation projects should use the newer ASHRAE standard to improve indoor air quality and health. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. A review of air exchange rate models for air pollution exposure assessments.

    Science.gov (United States)

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  3. A real-time monitoring and assessment method for calculation of total amounts of indoor air pollutants emitted in subway stations.

    Science.gov (United States)

    Oh, TaeSeok; Kim, MinJeong; Lim, JungJin; Kang, OnYu; Shetty, K Vidya; SankaraRao, B; Yoo, ChangKyoo; Park, Jae Hyung; Kim, Jeong Tai

    2012-05-01

    Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in

  4. [Measurement of Chemical Compounds in Indoor and Outdoor Air in Chiba City Using Diffusive Sampling Devices].

    Science.gov (United States)

    Sakamoto, Hironari; Uchiyama, Shigehisa; Kihara, Akiko; Tsutake, Toyoshige; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-01-01

    Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 μg m(-3) in summer and 1,100 μg m(-3) in winter in indoor air. p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.

  5. A novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor humidity control

    International Nuclear Information System (INIS)

    Yan, Huaxia; Deng, Shiming; Chan, Ming-yin

    2016-01-01

    Highlights: • A novel capacity controller for TEAC systems for improved indoor humidity control is developed. • The novel controller was developed by integrating two previous control algorithms. • Experimental controllability tests were carried out. • Improved control over indoor humidity levels and higher energy efficiency can be achieved. - Abstract: Using a multi-evaporator air conditioning (MEAC) system to correctly control indoor air temperatures only in a multi-room application is already a challenging and difficult task, let alone the control of both indoor air temperature and humidity. This is because in an MEAC system, a number of indoor units are connected to a common condensing unit. Hence, the interferences among operation parameters of different indoor units would make the desired control of an MEAC system hard to realize. Limited capacity control algorithms for MEAC systems have been developed, with most of them focusing only on the control of indoor air temperature, and no previous studies involving control of indoor air humidity using MEAC systems can be identified. In this paper, the development of a novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor air humidity control is reported. The novel controller was developed by integrating two previous control algorithms for a dual-evaporator air conditioning system for temperature control and for a single-evaporator air conditioning system for improved indoor humidity control. Experimental controllability tests were carried out and the controllability test results showed that, with the novel controller, improved control over indoor humidity levels and better energy efficiency for a TEAC system could be obtained as compared to the traditional On–Off controllers extensively used by MEAC systems.

  6. Indoor air and allergic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, G.; Rudolph, R.; Muckelmann, R.

    1982-01-01

    Allergies may be the source of a variety of clinical symptoms. With regard to indoor air, however, the subject will be limited to inhalative allergies. These are diseases which are caused and supported by allergens entering the human organism via the respiratory pathway. The fundamentals of the origin of inhalative allergies are briefly discussed as well as the antigen-antibody reaction and the differentiation between different allergic reactions (Types I and II). In addition, the importance of repetitive infections of the upper respiratory tract for the occurrence of allergies of the respiratory system is pointed out. The most common allergies develop at the mucosae of the nose (allergic rhinitis) and of the bronchiale (allergic asthma bronchiale). Their symptomatology is discussed. Out of the allergologically interesting components of indoor air the following are to be considered primarily: house dust, components of house dust (house dust mite, trogoderma angustum, tenebrio molitor), epithelia of animals, animal feeds, mildew and occupational substances. Unspecific irritants (chemico-physical irritations) which are not acting as allergens, have to be clearly separated from these most frequent allergens. As a possibility of treatment for the therapeutist and the patient, there is the allergen prophylaxis, i.e. an extensive sanitation of the patient's environment including elimination of the allergens and, in addition, an amelioration of the quality of the air with regard to unspecific irritants. To conclude, some socio-medical aspects of respiratory diseases are discussed.

  7. Very volatile organic compounds: an understudied class of indoor air pollutants.

    Science.gov (United States)

    Salthammer, T

    2016-02-01

    Very volatile organic compounds (VVOCs), as categorized by the WHO, are an important subgroup of indoor pollutants and cover a wide spectrum of chemical substances. Some VVOCs are components of products commonly used indoors, some result from chemical reactions and some are reactive precursors of secondary products. Nevertheless, there is still no clear and internationally accepted definition of VVOCs. Current approaches are based on the boiling point, and the saturation vapor pressure or refer to analytical procedures. A significant problem is that many airborne VVOCs cannot be routinely analyzed by the usually applied technique of sampling on Tenax TA® followed by thermal desorption GC/MS or by DNPH-sampling/HPLC/UV. Some VVOCs are therefore often neglected in indoor-related studies. However, VVOCs are of high significance for indoor air quality assessment and there is need for their broader consideration in measurement campaigns and material emission testing. © 2014 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  8. Indoor ionizing radiation

    International Nuclear Information System (INIS)

    Ericson, S.O.; Lindvall, T.; Maansson, L-G.

    1986-01-01

    Radiation in indoor air is discussed in the perspective of the effective dose equivalents from other sources of radiation. Estimates of effective doses equivalents from indoor radon and its contribution to lung cancer incidence are reviewed. Swedish experiences with cost effective remedial actions are presented. The authors present optimal strategies for screening measurements and remedial actions in cost-benefit perspective. (author.)

  9. Text Version of the Indoor Air Quality House Tour

    Science.gov (United States)

    Get a quick glimpse of some of the most important ways to protect the air in your home by touring the Indoor Air Quality (IAQ) House. Room-by-room, you'll learn about the key pollutants and how to address them.

  10. Indoor Air Quality of Residential Building Before and After Renovation

    Science.gov (United States)

    Sánka, Imrich; Földváry, Veronika

    2017-06-01

    This study investigates the impact of energy renovation on the indoor air quality of an apartment building during the heating season. The study was performed in one residential building before and after its renovation. An evaluation of the indoor air quality was performed using objective measurements and a subjective survey. The concentration of CO2 was measured in the bedrooms, and a sampling of the total volatile compounds (TVOC) was performed in the living rooms of the selected apartments. Higher concentrations of CO2 and TVOC were observed in the residential building after its renovation. The concentrations of CO2, and TVOC in some of the cases exceeded the recommended maximum limits, especially after implementing energy-saving measures on the building. The average air exchange rate was visibly higher before the renovation of the building. The current study indicates that large-scale renovations may reduce the quality of an indoor environment in many apartments, especially in the winter season.

  11. Indoor air pollution in slum neighbourhoods of Addis Ababa, Ethiopia

    Science.gov (United States)

    Sanbata, Habtamu; Asfaw, Araya; Kumie, Abera

    2014-06-01

    An estimated 95% of the population of Ethiopia uses traditional biomass fuels, such as wood, dung, charcoal, or crop residues, to meet household energy needs. As a result of the harmful smoke emitted from the combustion of biomass fuels, indoor air pollution is responsible for more than 50,000 deaths annually and causes nearly 5% of the burden of disease in Ethiopia. Very limited research on indoor air pollution and its health impacts exists in Ethiopia. This study was, therefore, undertaken to assess the magnitude of indoor air pollution from household fuel use in Addis Ababa, the capital city of Ethiopia. During January and February, 2012, the concentration of fine particulate matter (PM2.5) in 59 households was measured using the University of California at Berkeley Particle Monitor (UCB PM). The raw data was analysed using Statistical Package of Social Science (SPSS version 20.0) software to determine variance between groups and descriptive statistics. The geometric mean of 24-h indoor PM2.5 concentration is approximately 818 μg m-3 (Standard deviation (SD = 3.61)). The highest 24-h geometric mean of PM2.5 concentration observed were 1134 μg m-3 (SD = 3.36), 637 μg m-3 (SD = 4.44), and 335 μg m-3 (SD = 2.51), respectively, in households using predominantly solid fuel, kerosene, and clean fuel. Although 24-h mean PM2.5 concentration between fuel types differed statistically (P 0.05). The study revealed indoor air pollution is a major environmental and health hazard from home using biomass fuel in Addis Ababa. The use of clean fuels and efficient cooking stoves is recommended.

  12. Flood Cleanup to Protect Indoor Air Quality

    Science.gov (United States)

    During a flood cleanup, the indoor air quality in your home or office may appear to be the least of your problems. However, failure to remove contaminated materials and to reduce moisture and humidity can present serious long-term health risks.

  13. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers.

    Science.gov (United States)

    Lin, Nan; Mu, Xinlin; Wang, Guilian; Ren, Yu'ang; Su, Shu; Li, Zhiwen; Wang, Bin; Tao, Shu

    2017-08-01

    Indoor air pollution is an important environmental factor that contributes to the burden of various diseases. Long-term exposure to ambient air pollution is associated with telomere shortening. However, the association between chronic indoor air pollution from household fuel combustion and leukocyte telomere length has not been studied. In our study, 137 cancer-free non-smokers were recruited. Their exposure levels to indoor air pollution from 1985 to 2014 were assessed using a face-to-face interview questionnaire, and leukocyte telomere length (LTL) was measured using a monochrome multiplex quantitative PCR method. Accumulative exposure to solid fuel usage for cooking was negatively correlated with LTL. The LTL of residents who were exposed to solid fuel combustion for three decades (LTL = 0.70 ± 0.17) was significantly shorter than that of other populations. In addition, education and occupation were related to both exposure to solid fuel and LTL. Sociodemographic factors may play a mediating role in the correlation between leukocyte telomere length and environmental exposure to indoor air pollution. In conclusion, long-term exposure to indoor air pollution may cause LTL dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  15. CDC STATE System Tobacco Legislation - Smokefree Indoor Air

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air. The...

  16. Energy impact of indoor environmental policy for air-conditioned offices of Hong Kong

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.; Shi, K.L.

    2008-01-01

    Air-conditioned office buildings are one of the biggest energy consumers of electricity in developed cities in the subtropical climate regions. A good energy policy for the indoor environment should respond to both the needs of energy conservation and the needs for a desirable indoor healthy environment with a reduction in carbon dioxide (CO 2 ) generation. This study evaluates energy implications and the corresponding CO 2 generation of some indoor environmental policies for air-conditioned office buildings in the subtropical climate. In particular, the thermal energy consumption in an air-conditioned office building was evaluated by the heat gains through the building fabric, the transport of outdoor fresh air for ventilation, and the heat generated by the occupant and equipment in the space. With the Monte-Carlo sampling technique and the parameters from the existing office building stocks of Hong Kong, the energy consumption profiles of air-conditioned office buildings in Hong Kong were evaluated. Energy consumption profiles were simulated for certain indoor environmental quality (IEQ) policies on indoor air temperature and CO 2 concentration settings in the offices, with other building parameters remaining unchanged. The impact assessment and the regression models described in this study may be useful for evaluation of energy performances of IEQ policies. They will also be useful for the promotion of energy-saving measures in air-conditioned office buildings in Hong Kong. This study presented a useful source of references for policymakers, building professionals and end users to quantify the energy and environmental impacts due to an IEQ policy for air-conditioned office buildings

  17. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances

    International Nuclear Information System (INIS)

    Pornnumpa, C.; Tokonami, S.; Sorimachi, A.; Kranrod, C.

    2015-01-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. (authors)

  18. Indoor air pollution produced by man (carbon dioxide, odors)

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, H U

    1982-01-01

    Man contributes to indoor air pollution by the release of heat, humidity, carbon dioxide, particles, micro-organisms and body odours. The rise in temperature and the concentrations of the different pollutants depend on the number of persons in a room, the utilization of the room and the activities of the persons. Current parameters for the evaluation of man-made pollution in indoor air are carbon monoxide and odours. Experiments have been carried out in a test chamber under controlled conditions in order to determine the relations between carbon monoxide and odours, since these are two current parameters for the evaluation of man-made pollution in indoor air. In these experiments the variables were the number of persons in the room, the activity of the persons and the ventilation rate. For the measurement of odours a special method has been developed in which the undiluted air is tested by a test panel and compared with air containing two different pyridine concentrations. A significant relationship has been observed between the odour intensity and the carbon dioxide content of the air, and the correlation did not depend on the number of persons and the ventilation rate. At ventilation rates of 12 to 15 m3 per person and hour the carbon dioxide concentration was below 0.15% and the odour intensity was characterized as being only little annoying. Higher ventilation rates are necessary during physical activity and in rooms with tobacco smoke. The minimum ventilation rates as deduced from the laboratory experiments are compared to known standards.

  19. Sources of indoor air contamination on the ground floor of a high-rise commercial building

    International Nuclear Information System (INIS)

    Nayebzadeh, A.; Cragg-Elkouh, S.; Rancy, R.; Dufresne, A.

    1999-01-01

    Indoor air quality is a subject of growing concern in the developed world. Many sources of indoor air contamination in commercial and office buildings are recognised and have been investigated. In addition to the usual internal sources of air contaminants, other external sources from attached facilities can find their way into the building. This report presents the results of an indoor air quality survey in a high-rise office building which demonstrated an obvious seasonal change in regard to the concentrations of carbon dioxide (CO 2 ), nitric oxide (NO) and nitrogen dioxide (NO 2 ). Furthermore, a complementary survey in the same building was carried out to identify the relevant sources of air contamination in the building and the results indicated that an attached train station and the nearby street traffic had a significant impact on indoor air quality. (author)

  20. Human perception, productivity and symptoms related to indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P

    1998-08-01

    Three objectives of the present study are formulated: (1) to investigate whether total sensory pollution load on the air in space can be estimated by adding sensory pollution loads from the individual pollution sources; (2) to develop alternative reference exposures which can be used to calibrate sensory evaluations of the air quality indoors made by trained subjects; and (3) to investigate whether decreasing the pollution loads on the air indoors is an effective measure for improving the perceived air quality, reducing the prevalence of health symptoms and increasing people`s productivity. Limited data exist on the addition of families of sensory pollution, sources, i.e., building materials, people and tobacco smoke (research was mainly performed on building materials), and that no field study on addition has been carried out previously. Consequently, laboratory and field experiments on the addition of families of sensory pollution sources were undertaken. Reducing the sensory pollution load on the air indoors proved to be an effective and energy-efficient measure to improve the perceived quality of air, to lower the prevalence of symptoms and to improve productivity. Suggestions for future experiments are made including, i.a., using other sub-populations of subjects stratified for age, sensitivity and type of work, other pollution sources, as well as the independent measures design and repeated exposures to the same environmental conditions. (EG) 209 refs.

  1. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... by the exposures. The results may indicate an association between polluted indoor air and subclinical inflammation.Measurement of nitric oxide in exhaled air is a possible objective marker of subclinical inflammation in healthy adults....... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...

  2. CDC STATE System Tobacco Legislation - Smokefree Indoor Air

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2017. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air....

  3. Uptake of chemicals from indoor air: Pathways and health effects

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2016-01-01

    Building occupants are exposed to manufactured chemicals. Exposure in the indoor environment can occur via non-dietary ingestion (e.g. indoor dust), inhalation and dermal absorption including dermal uptake directly from air. The extent of dermal uptake from air has been previously studied...... for volatile organic compounds (VOC). Not much is however known about its role for semivolatile organics (SVOC) and therefore this exposure pathway is often neglected in exposure assessments. Dermal uptake received attention with regards to contact transfer from contaminated surfaces. Recent modeling efforts...... intake from inhalation. Further experiments have been conducted with nicotine and the results are similar. Some of the SVOCs present indoors may have adverse health effects or are categorized as potential endocrine-disrupting compounds. It has been suggested that the health effects of a chemical may...

  4. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    Directory of Open Access Journals (Sweden)

    Paul T. J. Scheepers

    2017-05-01

    Full Text Available For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ. The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC, acrolein, formaldehyde, nitrogen dioxide (NO2, respirable particulate matter (PM-4.0 and PM-2.5 and their respective benz(apyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO2 (4.9–17.4 μg/m3 and formaldehyde (2.5–6.4 μg/m3 were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m3 (range: 33.1–2450 μg/m3 and was fivefold higher in laboratories (316 μg/m3 compared to offices (57.0 μg/m3. PM-4.0 and benzo(apyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80–90% efficiency filter (p < 0.01. No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities.

  5. Indoor Air Pollution and Health Risks among Rural Dwellers in ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Ethiopian Journal of Environmental Studies and Management Vol.3 No.2 2010 ... occurrence of air pollution related health problems among the rural dwellers, one ... Key words: Indoor environment, air quality, rural health, fuel-wood.

  6. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses.

    Science.gov (United States)

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur M; Kwon, Jaymin; Meng, Qing Yu; Zhang, Lin; Harrington, Robert; Liu, Weili; Reff, Adam; Lee, Jong Hoon; Alimokhtari, Shahnaz; Mohan, Kishan; Shendell, Derek; Jones, Jennifer; Farrar, L; Maberti, Slivia; Fan, Tina

    2005-11-01

    This study on the relationships of indoor, outdoor, and personal air (RIOPA) was undertaken to collect data for use in evaluating the contribution of outdoor sources of air toxics and particulate matter (PM) to personal exposure. The study was not designed to obtain a population-based sample, but rather to provide matched indoor, outdoor, and personal concentrations in homes that varied in their proximity to outdoor pollution sources and had a wide range of air exchange rates (AERs). This design allowed examination of relations among indoor, outdoor, and personal concentrations of air toxics and PM across a wide range of environmental conditions; the resulting data set obtained for a wide range of environmental pollutants and AERs can be used to evaluate exposure models. Approximately 100 households with residents who do not smoke participated in each of three cities in distinct locations expected to have different climates and housing characteristics: Elizabeth, New Jersey; Houston, Texas; and Los Angeles County, California. Questionnaires were administered to characterize homes, neighborhoods, and personal activities that might affect exposures. The concentrations of a suite of volatile organic compounds (VOCs) and carbonyl compounds, as well as the fraction of airborne particulate matter with a mass median aerodynamic diameter personal air samples were collected simultaneously. During the same 48-hour period, the AER (exchanges/hr; x hr(-1)) was determined in each home, and carbonyl compounds were measured inside vehicle cabins driven by a subset of the participants. In most of the homes, measurements were made twice, during two different seasons, to obtain a wide distribution of AERs. This report presents in detail the data collection methods, quality control measures, and initial analyses of data distributions and relations among indoor, outdoor, and personal concentrations. The results show that indoor sources dominated personal and indoor air concentrations

  7. [Impact of air fresheners and deodorizers on the indoor total volatile organic compounds].

    Science.gov (United States)

    Jinno, Hideto; Tanaka-Kagawa, Toshiko; Obama, Tomoko; Miyagawa, Makoto; Yoshikawa, Jun; Komatsu, Kazuhiro; Tokunaga, Hiroshi

    2007-01-01

    Indoor air quality is a growing health concern because of the increased incidence of the building-related illness, such as sick-building syndrome and multiple chemical sensitivity/idiopathic environmental intolerance. In order to effectively reduce the unnecessary chemical exposure in the indoor environment, it would be important to quantitatively compare the emissions from many types of sources. Besides the chemical emissions from the building materials, daily use of household products may contribute at significant levels to the indoor volatile organic compounds (VOCs). In this study, we investigated the emission rate of VOCs and carbonyl compounds for 30 air fresheners and deodorizers by the standard small chamber test method (JIS A 1901). The total VOC (TVOC) emission rates of these household products ranged from the undetectable level (fragrances in the products account for the major part of the TVOC emissions. Based on the emission rates, the impacts on the indoor TVOC were estimated by the simple model with a volume of 17.4 m3 and a ventilation frequency of 0.5 times/h. The mean of the TVOC increment for the indoor air fresheners was 170 microg/m3, accounting for 40% of the current provisional target value, 400 microg/m3. These results suggest that daily use of household products can significantly influence the indoor air quality.

  8. Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong

    Science.gov (United States)

    Lee, Shun-Cheng; Guo, Hai; Li, Wai-Ming; Chan, Lo-Yin

    Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO 2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO 2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM 10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM 10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.

  9. Meteorological factors influencing on the radon concentrations in indoor and outdoor airs

    International Nuclear Information System (INIS)

    Kojima, Hiroshi

    1989-01-01

    Factors influencing radon concentrations in indoor and outdoor airs are discussed. A balance between source and loss is required in determining the radon concentration. Source refers to as the outdoor and indoor exhalation rate from the ground and the building materials. Loss is caused by turbulent diffusion outdoors and ventilation indoors. A significant factor influencing the exhalation rate of indoor and outdoor radon may be the change in atmospheric pressure. A drop of pressure feeds the high concentration air under the ground or building materials into the open air, and contributes to the increased exhalation rate. The exhalation rate of radon closely depends on the moisture content of the ground or building materials. Up to a certain level of moisture, the radon exhalation increases with increasing moisture content because the emanation power increases by a recoil effect of a fluid present in the internal pores of the materials. Beyond a certain level of moisture, the exhalation decreases rapidly because the pores are filled with water. Radon exhalated from the ground is spread out by turbulent diffusion. The turbulent diffusion may be related to wind velocity and the lapse rate of temperature. There is a remakable difference between indoor and outdoor radon concentrations. The ventilation rate of the house exerted a great effect upon the indoor radon concentration. The ventilation rate is influenced by meteorological factors together with human activities. Of such factors, wind velocity and temperature gradient between indoor and outdoor airs may be the most significant. The correlation coefficients between RaA or radon and some meteorological factors were calculated on the data from the long term measurements on radon and its decay products in and out of a house under normal living conditions. The changes in atmospheric pressure and wind velocity are found to be a significant factor in the variation of concentration of these nuclides. (N.K.)

  10. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  11. Improving the indoor air quality by using a surface emissions trap

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.

  12. Relationships between socioeconomic and lifestyle factors and indoor air quality in French dwellings.

    Science.gov (United States)

    Brown, Terry; Dassonville, Claire; Derbez, Mickael; Ramalho, Olivier; Kirchner, Severine; Crump, Derrick; Mandin, Corinne

    2015-07-01

    To date, few studies have analyzed the relationships between socioeconomic status (SES) and indoor air quality (IAQ). The aim of this study was to examine the relationships between socioeconomic and other factors and indoor air pollutant levels in French homes. The indoor air concentrations of thirty chemical, biological and physical parameters were measured over one week in a sample of 567 dwellings representative of the French housing stock between September 2003 and December 2005. Information on SES (household structure, educational attainment, income, and occupation), building characteristics, and occupants' habits and activities (smoking, cooking, cleaning, etc.) were collected through administered questionnaires. Separate stepwise linear regression models were fitted to log-transformed concentrations on SES and other factors. Logistic regression was performed on fungal contamination data. Households with lower income were more likely to have higher indoor concentrations of formaldehyde, but lower perchloroethylene indoor concentrations. Formaldehyde indoor concentrations were also associated with newly built buildings. Smoking was associated with increasing acetaldehyde and PM2.5 levels and the risk of a positive fungal contamination index. BTEX levels were also associated with occupant density and having an attached garage. The major predictors for fungal contamination were dampness and absolute humidity. These results, obtained from a large sample of dwellings, show for the first time in France the relationships between SES factors and indoor air pollutants, and believe they should be considered alongside occupant activities and building characteristics when study IAQ in homes. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  13. California's program: Indoor air problems aren't amenable to regulation

    International Nuclear Information System (INIS)

    Wesolowski, J.

    1993-01-01

    In 1982, California's legislature established an Indoor Air Quality Program (CIAQP) in the Department of Health Services to carry out research on the nature and extent of the indoor air problem (excluding industrial worksites), to find appropriate mitigation measures, and to promote and coordinate the efforts of other state agencies. Since indoor air problems usually are not amenable to regulatory solutions, regulatory authority was not included in the mandate. The program conducts research into a wide range of contaminants--radon, asbestos, formaldehyde, carbon monoxide, volatile organic compounds, environmental tobacco smoke (ETS), as well as into biological aerosols that cause such diseases as Legionnaires disease, tuberculosis, allergies, and asthma. Studies are also carried out to better understand the Sick Building Syndrome. The research includes field surveys to determine the exposure of the population to specific contaminants and experiments in the laboratory to develop protocols for reducing exposures. The research emphasizes measurement of exposure--concentration multiplied by the time a person is exposed--as opposed to measurement of concentration only

  14. Investigation of Indoor Air Quality in Houses of Macedonia

    Directory of Open Access Journals (Sweden)

    Silvia Vilčeková

    2017-01-01

    Full Text Available People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC, particulate matters (PM and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m3 to 2610 μg/m3. Recommended value (200 μg/m3 for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM2.5 (particular matter with diameter less than 2.5 μm and PM10 (diameter less than 10 μm are determined to be from 16.80 μg/m3 to 30.70 μg/m3 and from 38.30 μg/m3 to 74.60 μg/m3 individually. Mean values of sound pressure level ranged from 29.8 dB(A to 50.6 dB(A. Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system and data from measurements (Temperature, Relative humidity, TVOC, PM2.5 and PM10 were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM2.5. Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke.

  15. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Wargocki, Pawel; Skorek-Osikowska, A.

    2010-01-01

    The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas......, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor...... Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h(-1), 2.5 h(-1) and 6 h(-1), in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate...

  16. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    Science.gov (United States)

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Indoor Air Quality Tools for Schools Action Kit

    Science.gov (United States)

    The IAQ Tools for Schools Action Kit provides schools with information on how to carry out a practical plan to improve indoor air problems at little- or no-cost using straightforward activities and in-house staff.

  18. Indoor air quality study of forty east Tennessee homes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.; Hingerty, B.E.; Schuresko, D.D.; Parzyck, D.C.; Womack, D.R.; Morris, S.A.; Westley, R.R.; White, D.A.

    1984-12-01

    Over a one-year period, measurements of indoor air pollutants (CO/sub x/, NO/sub x/, formaldehyde, volatile organics, particulates, and radon) were made in 40 homes in East Tennessee. The houses were of various ages with different types of insulation and heating. Over one-half of the houses exceeded the ASHRAE indoor ceiling guideline of 0.1 ppM for formaldehyde on at least one occasion. Over the duration of the study, older houses averaged 0.04 ppM of formaldehyde while houses less than 5 years old averaged 0.08 ppM (P < 0.01). The highest concentration of formaldehyde measured was 0.4 ppM in a new home. Diurnal and seasonal fluctuations in levels of formaldehyde in some homes were as much as twofold and tenfold, respectively. The highest levels of formaldehyde were usually recorded during summer months. The concentration in indoor air of various organics was at least tenfold higher than in outdoor air. Carbon monoxide and nitrgen oxides were usually <2 and <0.02 ppM, respectively, except when gas stoves or kerosene space heaters were operating, or when a car was running in the garage. In 30% of the houses, the annual indoor guideline for radon, 4 pCi/L, was exceeded. The mean radon level in houses built on the ridgelines was 4.4 pCi/L, while houses located in the valleys had a mean level of 1.7 pCi/L (P < 0.01). The factor having the most impact on infiltration was operation of the central duct fan of the heating, ventilation, and air conditioning system. The mean rate of air exchange increased from 0.39 to 0.74 h/sup -1/ when the duct fan was operated (measurements prior to December 1982). This report presents the study design and implementation, describes the monitoring protocols, and provides a complete set of the data collected during the project. 25 references, 29 figures, 42 tables.

  19. Assessment of indoor air quality in office buildings across Europe - The OFFICAIR study.

    Science.gov (United States)

    Mandin, Corinne; Trantallidi, Marilena; Cattaneo, Andrea; Canha, Nuno; Mihucz, Victor G; Szigeti, Tamás; Mabilia, Rosanna; Perreca, Erica; Spinazzè, Andrea; Fossati, Serena; De Kluizenaar, Yvonne; Cornelissen, Eric; Sakellaris, Ioannis; Saraga, Dikaia; Hänninen, Otto; De Oliveira Fernandes, Eduardo; Ventura, Gabriela; Wolkoff, Peder; Carrer, Paolo; Bartzis, John

    2017-02-01

    The European project OFFICAIR aimed to broaden the existing knowledge regarding indoor air quality (IAQ) in modern office buildings, i.e., recently built or refurbished buildings. Thirty-seven office buildings participated in the summer campaign (2012), and thirty-five participated in the winter campaign (2012-2013). Four rooms were investigated per building. The target pollutants were twelve volatile organic compounds, seven aldehydes, ozone, nitrogen dioxide and particulate matter with aerodynamic diameter indoor air concentrations of formaldehyde and ozone did not exceed their respective WHO air quality guidelines, and those of acrolein, α-pinene, and d-limonene were lower than their estimated thresholds for irritative and respiratory effects. PM 2.5 indoor concentrations were higher than the 24-h and annual WHO ambient air quality guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Humidification and perceived indoor air quality in the office environment.

    Science.gov (United States)

    Reinikainen, L M; Aunela-Tapola, L; Jaakkola, J J

    1997-01-01

    OBJECTIVE: To evaluate the effect of humidification on the odour, acceptability, and stuffiness of indoor air. METHODS: In a six period cross over trial at the Pasila Office Center, Helsinki, the air of two wings of the building in turn were ventilated with air of 30%-40% humidity. A third wing served as a non-humidified control area. The quality of indoor air was assessed weekly by a panel containing 18 to 23 members. The intraindividual differences in the ratings for odour, stuffiness, and acceptability between humidified and non-humidified wings were used to assess the effect of humidification. The roles of sex, current smoking, and age as potential effect modifiers were assessed by comparing the mean intraindividual differences in ratings between the groups. RESULTS: Humidified air was found to be more odorous and stuffy (paired t test P = 0.0001) and less acceptable than the non-humidified air (McNemar's test P humidification decreases the perceived air quality. This effect is strongest in women and young subjects. PMID:9196454

  1. Investigation of indoor air quality at residential homes in Hong Kong - case study

    International Nuclear Information System (INIS)

    Shun Cheng Lee; Waiming Li; Chiohang Ao

    2002-01-01

    Indoor air quality (IAQ) has been a matter of public concern in Hong Kong. Recently, the Hong Kong Government has recognized the potential risk and problems related to indoor air pollution, and it is striving to establish IAQ objectives for different types of indoor environments. This study attempts to provide more information about the present IAQ of local resident flats. Air pollutants measured in this study included carbon dioxide (CO 2 ), respirable suspended particulate matter (PM 10 ), formaldehyde (HCHO), volatile organic compounds (VOCs) and airborne bacteria. The results of this study indicate that the 8-h average concentrations of CO 2 and PM 10 in the domestic kitchens investigated were 14% and 67% higher than those measured in the living rooms. The indoor air pollution caused by PM 10 was more serious in domestic kitchens than in living rooms as almost all of the kitchens investigated had higher indoor levels of PM 10 . The majority of the domestic living rooms and kitchens studied had average concentrations of airborne bacteria higher than 500CFU/m 3 . The mean total bacteria count recorded in kitchens was greater than that obtained in living rooms by 23%. In homes where occupants smoke, the negative impact of benzene, toluene and m,p-xylene on the IAQ was greatly enhanced. The use of liquefied petroleum gas (LPG) stove has more significant impact on indoor VOCs than the use of cooking stoves with natural gas as cooking fuel. (Author)

  2. Improving indoor air quality for poor families: a controlled experiment in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, S. (World Bank. Research-DECRG/Ru, Washington DC (United States)); Wheeler, D. (Center for Global Development, Washington DC (United States)); Huq, M. (Development Policy Group, Dhaka (Bangladesh)); Khaliquzzaman, M. (World Bank, Dhaka (Bangladesh))

    2009-02-15

    The World Health Organization's 2004 Global and Regional Burden of Disease Report estimates that acute respiratory infections from indoor air pollution (pollution from burning wood, animal dung, and other bio-fuels) kill a million children annually in developing countries, inflicting a particularly heavy toll on poor families in South Asia and Africa. This paper reports on an experiment that studied the use of different fuels in conjunction with different combinations of construction materials, space configurations, cooking locations, and household ventilation practices (use of doors and windows) as potentially-important determinants of indoor air pollution. Results from controlled experiments in Bangladesh were analyzed to test whether changes in these determinants can have significant effects on indoor air pollution. Analysis of the data shows, for example, that pollution from the cooking area is transported into living spaces rapidly and completely. Furthermore, it is important to factor in the interaction between outdoor and indoor air pollution. Hence, the optimal cooking location should take 'seasonality' in account. Among fuels, seasonal conditions seem to affect the relative severity of pollution from wood, dung, and other biomass fuels. However, there is no ambiguity about their collective impact. All are far dirtier than clean (LPG and Kerosene) fuels. The analysis concludes that if cooking with clean fuels is not possible, then building the kitchen with permeable construction material and providing proper ventilation in cooking areas will yield a better indoor health environment. (au)

  3. HOUSEHOLD CHARACTERISTICS AND POTENTIAL INDOOR AIR POLLUTION ISSUES IN RURAL INDONESIAN COMMUNITIES USING FUELWOOD ENERGY

    Directory of Open Access Journals (Sweden)

    Haryono Setiyo Huboyo

    2016-03-01

    Full Text Available Two rural communities using fuel wood energy in mountainous and coastal areas of Java island in Indonesia have been surveyed to know their household characteristics and the related potential indoor air pollution issues. By random sampling, we characterized fuel wood users only. The fuel wood use was mainly due to economic reason since some of the users were categorized as low-income families. Communities in the mountainous area were exposed to higher risk of indoor air pollution than those in coastal area due to their house characteristics and behavior during cooking. Both communities, however, were aware of indoor air pollution issues and indicated the sources. They also prioritized the factors to be controlled, which they perceived as the main cause of indoor air pollution problem.

  4. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  5. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  6. Indoor air radon

    International Nuclear Information System (INIS)

    Cothern, C.R.

    1990-01-01

    This review concerns primarily the health effects that result from indoor air exposure to radon gas and its progeny. Radon enters homes mainly from the soil through cracks in the foundation and other holes to the geologic deposits beneath these structures. Once inside the home the gas decays (half-life 3.8 d) and the ionized atoms adsorb to dust particles and are inhaled. These particles lodge in the lung and can cause lung cancer. The introduction to this review gives some background properties of radon and its progeny that are important to understanding this public health problem as well as a discussion of the units used to describe its concentrations. The data describing the health effects of inhaled radon and its progeny come both from epidemiological and animal studies. The estimates of risk from these two data bases are consistent within a factor of two. The epidemiological studies are primarily for hard rock miners, although some data exist for environmental exposures. The most complete studies are those of the US, Canadian, and Czechoslovakian uranium miners. Although all studies have some deficiencies, those of major importance include uranium miners in Saskatchewan, Canada, Swedish iron miners, and Newfoundland fluorspar miners. These six studies provide varying degrees of detail in the form of dose-response curves. Other epidemiological studies that do not provide quantitative dose-response information, but are useful in describing the health effects, include coal, iron ore and tin miners in the UK, iron ore miners in the Grangesburg and Kiruna, Sweden, metal miners in the US, Navajo uranium miners in the US, Norwegian niobian and magnitite miners, South African gold and uranium miners, French uranium miners, zinc-lead miners in Sweden and a variety of small studies of environmental exposure. An analysis of the epidemiological studies reveals a variety of interpretation problem areas.172 references

  7. Do indoor environments influence asthma and asthma-related symptoms among adults in homes? A review of the literature

    Directory of Open Access Journals (Sweden)

    Yu Jie

    2011-09-01

    Full Text Available This review summarizes the results of epidemiological studies focusing on the detrimental effects of home environmental factors on asthma morbidity in adults. We reviewed the literature on indoor air quality (IAQ, physical and sociodemographic factors, and asthma morbidity in homes, and identified commonly reported asthma, allergic, and respiratory symptoms involving the home environment. Reported IAQ and asthma morbidity data strongly indicated positive associations between indoor air pollution and adverse health effects in most studies. Indoor factors most consistently associated with asthma and asthma-related symptoms in adults included fuel combustion, mold growth, and environmental tobacco smoke. Environmental exposure may increase an adult’s risk of developing asthma and also may increase the risk of asthma exacerbations. Evaluation of present IAQ levels, exposure characteristics, and the role of exposure to these factors in relation to asthma morbidity is important for improving our understanding, identifying the burden, and for developing and implementing interventions aimed at reducing asthma morbidity.

  8. Measurement of Indoor Air Quality by Means of a Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Brohus, Henrik

    When a person is located in a contaminant field with significant gradients the contaminant distribution is modified locally due to the entrainment and transport of room air in the human convective boundary layer as well as due to the effect of the person acting as an obstacle to the flow field, etc....... The local modification of the concentration distribution may affect the personal exposure significantly and, thus, the indoor air quality actually experienced. In this paper measurements of indoor air quality by means of a Breathing Thermal Manikin (BTM) are presented....

  9. Characterization of Micrococcus strains isolated from indoor air.

    Science.gov (United States)

    Kooken, Jennifer M; Fox, Karen F; Fox, Alvin

    2012-02-01

    The characterization of microbes, such as opportunists and pathogens (e.g., methicillin resistant Staphylococcus aureus [MRSA]), in indoor air is important for understanding disease transmission from person-to-person. Common genera found in the human skin microbiome include Micrococcus and Staphylococcus, but there only a limited number of tests to differentiate these genera and/or species. Both genera are believed to be released into indoor air from the shedding of human skin and are morphologically difficult to distinguish. In the current work, after the extraction of proteins from micrococci and the separation of these proteins on one dimensional electrophoretic gels, tryptic peptides were analyzed by MALDI TOF MS and the mass profiles compared with those of a reference strain (ATCC 4698). The results confirmed that all strains were consistent in identity with Micrococcus luteus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Endotoxins in indoor air and settled dust in primary schools in a subtropical climate.

    Science.gov (United States)

    Salonen, Heidi; Duchaine, Caroline; Létourneau, Valérie; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2013-09-03

    Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins, and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the "baseline" range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (EU/m(3) and EU/m(2), respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations.

  11. Investigation of Indoor Air Quality and the Identification of Influential Factors at Primary Schools in the North of China

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2017-07-01

    Full Text Available Over 70% of a pupil’s school life is spent inside a classroom, and indoor air quality has a significant impact on students’ attendance and learning potential. Therefore, the indoor air quality in primary school buildings is highly important. This empirical study investigates the indoor air quality in four naturally ventilated schools in China, with a focus on four parameters: PM2.5, PM10, CO2, and temperature. The correlations between the indoor air quality and the ambient air pollution, building defects, and occupants’ activities have been identified and discussed. The results indicate that building defects and occupants’ activities have a significant impact on indoor air quality. Buildings with better air tightness have a relatively smaller ratio of indoor particulate matter (PM concentrations to outdoor PM concentrations when unoccupied. During occupied periods, the indoor/outdoor (I/O ratio could be larger than 1 due to internal students’ activities. The indoor air temperature in winter is mainly determined by occupants’ activities and the adiabatic ability of a building’s fabrics. CO2 can easily exceed 1000 ppm on average due to the closing of windows and doors to keep the inside air warmer in winter. It is concluded that improving air tightness might be a way of reducing outdoor air pollutants’ penetration in naturally ventilated school buildings. Mechanical ventilation with air purification could be also an option on severely polluted days.

  12. Observations on persistent organic pollutants in indoor and outdoor air using passive polyurethane foam samplers

    Science.gov (United States)

    Bohlin, Pernilla; Jones, Kevin C.; Tovalin, Horacio; Strandberg, Bo

    Air quality data of persistent organic pollutants (POPs) indoors and outdoors are sparse or lacking in several parts of the world, often hampered by the cost and inconvenience of active sampling techniques. Cheap and easy passive air sampling techniques are therefore helpful for reconnaissance surveys. As a part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) project in Mexico City Metropolitan Area in 2006, a range of POPs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs)) were analyzed in polyurethane foam (PUF) disks used as passive samplers in indoor and outdoor air. Results were compared to those from samplers deployed simultaneously in Gothenburg (Sweden) and Lancaster (United Kingdom). Using sampling rates suggested in the literature, the sums of 13 PAHs in the different sites were estimated to be 6.1-180 ng m -3, with phenanthrene as the predominant compound. Indoor PAH levels tended to be higher in Gothenburg and outdoor levels higher in Mexico City. The sum of PCBs ranged 59-2100 ng m -3, and seemed to be highest indoors in Gothenburg and Lancaster. PBDE levels (sum of seven) ranged 0.68-620 ng m -3, with the highest levels found in some indoor locations. OCPs (i.e. DDTs, HCHs, and chlordanes) were widely dispersed both outdoors and indoors at all three studied areas. In Gothenburg all POPs tended to be higher indoors than outdoors, while indoor and outdoor levels in Mexico City were similar. This could be due to the influence of indoor and outdoor sources, air exchange rates, and lifestyle factors. The study demonstrates how passive samplers can provide quick and cheap reconnaissance data simultaneously at many locations which can shed light on sources and other factors influencing POP levels in air, especially for the gaseous fractions.

  13. Indoor air quality in a multifamily apartment building before and after energy renovation

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Földváry, Veronika; Langer, Sarka

    2016-01-01

    Buildings are responsible for a substantial portion of global energy consumption. Most of the multifamily residential buildings in central Europe built in the 20th century do not satisfy the current requirements on energy efficiency. Nationwide remedial measures are taken to improve the energy ef...... exchange rates and acceptable and healthy IAQ. Without these considerations, energy reconstruction can adversely affect the quality of the indoor environment....... efficiency of these buildings and reduce their energy consumption. Since the impact of these measures on the indoor air quality is rarely considered, they often compromise indoor air quality due to decreased ventilation and infiltration rate. We compared the indoor air quality in a multifamily apartment...... building in Slovakia before and after energy renovation, during two subsequent winters. Measurements of temperature, relative humidity, concentrations of CO2, formaldehyde, NO2, and volatile organic compounds were performed during one week in January 2015 in 20 apartments in one multifamily building...

  14. Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barrios, Marcella [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parthasarathy, Srinandini [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sidheswaran, Meera [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Katerina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    California's building efficiency standards (Title 24) mandate minimum prescribed ventilation rates (VRs) for commercial buildings. Title 24 standards currently include a prescriptive procedure similar to ASHRAE’s prescriptive “ventilation rate procedure”, but does not include an alternative procedure, akin to ASHRAE’s non-prescriptive “indoor air quality procedure” (IAQP). The IAQP determines minimum VRs based on objectively and subjectively evaluated indoor air quality (IAQ). The first primary goal of this study was to determine, in a set of California retail stores, the adequacy of Title 24 VRs and observed current measured VRs in providing the level of IAQ specified through an IAQP process, The second primary goal was to evaluate whether several VRs implemented experimentally in a big box store would achieve adequate IAQ, assessed objectively and subjectively. For the first goal, a list of contaminants of concern (CoCs) and reference exposure levels (RELs) were selected for evaluating IAQ. Ventilation rates and indoor and outdoor CoC concentrations were measured in 13 stores, including one “big box” store. Mass balance models were employed to calculate indoor contaminant source strengths for CoCs in each store. Using these source strengths and typical outdoor air contaminant concentrations, mass balance models were again used to calculate for each store the “IAQP” VR that would maintain indoor CoC concentrations below selected RELs. These IAQP VRs were compared to the observed VRs and to the Title 24- prescribed VRs. For the second goal, a VR intervention study was performed in the big box store to determine how objectively assessed indoor contaminant levels and subjectively assessed IAQ varied with VR. The three intervention study VRs included an approximation of the store’s current VR [0.24 air changes per hour (ACH)], the Title 24-prescribed VR [0.69 ACH], and the calculated IAQPbased VR [1.51 ACH]). Calculations of IAQP-based VRs

  15. Impacts Of Passive Removal Materials On Indoor Air Quality

    DEFF Research Database (Denmark)

    Darling, Erin; Cros, Clement; Wargocki, Pawel

    2011-01-01

    Indoor air quality (IAQ) was determined in the presence of eight combinations of building materials with and without ozone. Air samples were collected in twin 30 m3 chambers to assess the C5 to C10 aldehyde content of the air while a panel of 18 to 23 human subjects assessed air quality using...... a continuous acceptability scale. Materials were either new carpet that was aired out for three weeks, clay plaster applied to gypsum wallboard that was aired out for up to one month, both materials, or neither. Perceived Air Quality (PAQ) assessed by the panel was most acceptable and concentrations...

  16. CDC STATE System Tobacco Legislation - Smokefree Indoor Air Summary

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air. The...

  17. Indoor air pollution and respiratory health of children in the developing world.

    Science.gov (United States)

    Nandasena, Sumal; Wickremasinghe, Ananda Rajitha; Sathiakumar, Nalini

    2013-05-08

    Indoor air pollution (IAP) is a key contributor to the global burden of disease mainly in developing countries. The use of solid fuel for cooking and heating is the main source of IAP in developing countries, accounting for an estimated 3.5 million deaths and 4.5% of Disability-Adjusted Life Years in 2010. Other sources of IAP include indoor smoking, infiltration of pollutants from outdoor sources and substances emitted from an array of human utilities and biological materials. Children are among the most vulnerable groups for adverse effects of IAP. The respiratory system is a primary target of air pollutants resulting in a wide range of acute and chronic effects. The spectrum of respiratory adverse effects ranges from mild subclinical changes and mild symptoms to life threatening conditions and even death. However, IAP is a modifiable risk factor having potential mitigating interventions. Possible interventions range from simple behavior change to structural changes and from shifting of unclean cooking fuel to clean cooking fuel. Shifting from use of solid fuel to clean fuel invariably reduces household air pollution in developing countries, but such a change is challenging. This review aims to summarize the available information on IAP exposure during childhood and its effects on respiratory health in developing countries. It specifically discusses the common sources of IAP, susceptibility of children to air pollution, mechanisms of action, common respiratory conditions, preventive and mitigating strategies.

  18. [Hygienic relevance of devices for indoor air treatment].

    Science.gov (United States)

    Wegner, J

    1982-01-01

    Shortcomings regarding design, construction, operation (including emissions), maintenance/repair and control of buildings with rooms for the accommodation of persons may be the reason to install air conditioning devices. According to manufacturers' data, such devices may be applied for various purposes, e.g. the creation of a defined air temperature or humidity, an increase of the supply of outdoor air, the cleaning and deodorization of indoor air or the alteration of the so-called electric climate of a room. The hygienic health evaluation of the different types of air conditioning devices should establish whether --there are aspects of health necessitating alterations of the microclimate of a room; --such alterations could be brought about in a more economic way by purely constructional or individual measures; --the function of individual apparatuses could be accomplished in a better way by replacing them by a larger device serving several rooms; --the operation of such devices may produce adverse health effects such as nuisance by noise, formation of undesirable gases (ozone), danger owing to non-adherence to electric safety rules; --there will be no damage to rooms and furniture, e.g. by water droplets. A look at a number of commercially available devices shows that they are generally dispensable. There are, however, special rare cases where the use of such devices may result in an improvement of the quality of indoor environments.

  19. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality.

    Science.gov (United States)

    Park, Seonghyun; Seo, Janghoo

    2016-04-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index.

  20. Plants Clean Air and Water for Indoor Environments

    Science.gov (United States)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  1. CDC STATE System Tobacco Legislation - Smokefree Indoor Air Summary

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2017. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air....

  2. Radon concentration as an indicator of the indoor air quality: development of an efficient measurement method

    International Nuclear Information System (INIS)

    Roessler, F.A.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Energy conservation regulation could lead to a reduction of the air exchange rate and also a degradation of the indoor air quality. Present methods for the estimating the indoor air quality can only be implemented with limitations. This paper presents a method that allows the estimation of the indoor air quality under normal conditions by using natural radon as an indicator. With mathematical models, the progression of the air exchange rate is estimated by using the radon concentration. Furthermore, the progression of individual air pollutants is estimated. Through series of experiments in a measurement chamber, the modelling could be verified. (author)

  3. Changes to indoor air quality as a result of relocating families from slums to public housing

    Science.gov (United States)

    Burgos, Soledad; Ruiz, Pablo; Koifman, Rosalina

    2013-05-01

    One largely unstudied benefit of relocating families from slums to public housing is the potential improvement in indoor air quality (IAQ). We compared families that moved from slums to public housing with those that remained living in slums in Santiago, Chile in terms of fine particulate matter (PM2.5) as main indicator of change. A cross-sectional study of 98 relocated families and 71 still living in slums was carried out, obtaining indoor and outdoor samples by a Personal Environmental Monitor. Home characteristics, including indoor air pollution sources were collected through questionnaires. Multivariate regression models included the intervention (public housing or slum), indoor pollution sources, outdoor PM2.5 and family characteristics as predictors. Indoor PM2.5 concentrations were higher in slums (77.8 μg m-3 [SD = 35.7 μg m-3]) than in public housing (55.7 μg m-3 [SD = 34.6 μg m-3], p slum houses. The multivariate analysis showed that housing intervention significantly decreased indoor PM2.5 (10.4 μg m-3) after adjusting by the other predictors. Outdoor PM2.5 was the main predictor of indoor PM2.5. Other significant factors were water heating fuels and indoor smoking. Having infants 1-23 months was associated with a lowering of indoor PM2.5. Our results suggest that a public housing program that moves families from slums to public housing improves indoor air quality directly and also indirectly through air pollution sources.

  4. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    Science.gov (United States)

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

  5. Indoor air quality in a restaurant kitchen using margarine for deep-frying.

    Science.gov (United States)

    Sofuoglu, Sait C; Toprak, Melis; Inal, Fikret; Cimrin, Arif H

    2015-10-01

    Indoor air quality has a great impact on human health. Cooking, in particular frying, is one of the most important sources of indoor air pollution. Indoor air CO, CO2, particulate matter (PM), and volatile organic compound (VOC) concentrations, including aldehydes, were measured in the kitchen of a small establishment where a special deep-frying margarine was used. The objective was to assess occupational exposure concentrations for cooks of such restaurants. While individual VOC and PM2.5 concentrations were measured before, during, and after frying events using active sampling, TVOC, PM10, CO, CO2, temperature, and relative humidity were continuously monitored through the whole period. VOC and aldehyde concentrations did not increase to considerable levels with deep-frying compared to the background and public indoor environment levels, whereas PM10 increased significantly (1.85 to 6.6 folds). The average PM2.5 concentration of the whole period ranged between 76 and 249 μg/m(3). Hence, considerable PM exposures could occur during deep-frying with the special margarine, which might be sufficiently high to cause health effects on cooks considering their chronic occupational exposures.

  6. Indoor air quality in urban and rural kindergartens: short-term studies in Silesia, Poland.

    Science.gov (United States)

    Błaszczyk, Ewa; Rogula-Kozłowska, Wioletta; Klejnowski, Krzysztof; Kubiesa, Piotr; Fulara, Izabela; Mielżyńska-Švach, Danuta

    2017-01-01

    More than 80% of people living in urban areas who monitor air pollution are exposed to air quality levels that exceed limits defined by the World Health Organization (WHO). Although all regions of the world are affected, populations in low-income cities are the most impacted. According to average annual levels of fine particulate matter (PM2.5, ambient particles with aerodynamic diameter of 2.5 μm or less) presented in the urban air quality database issued by WHO in 2016, as many as 33 Polish cities are among the 50 most polluted cities in the European Union (EU), with Silesian cities topping the list. The aim of this study was to characterize the indoor air quality in Silesian kindergartens based on the concentrations of gaseous compounds (SO 2 , NO 2 ), PM2.5, and the sum of 15 PM2.5-bound polycyclic aromatic hydrocarbons (PAHs), including PM2.5-bound benzo(a)pyrene (BaP), as well as the mutagenic activity of PM2.5 organic extracts in Salmonella assay (strains: TA98, YG1024). The assessment of the indoor air quality was performed taking into consideration the pollution of the atmospheric air (outdoor). I/O ratios (indoor/outdoor concentration) for each investigated parameter were also calculated. Twenty-four-hour samples of PM2.5, SO 2 , and NO 2 were collected during spring in two sites in southern Poland (Silesia), representing urban and rural areas. Indoor samples were taken in naturally ventilated kindergartens. At the same time, in the vicinity of the kindergarten buildings, the collection of outdoor samples of PM2.5, SO 2 , and NO 2 was carried out. The content of BaP and the sum of 15 studied PAHs was determined in each 24-h sample of PM2.5 (indoor and outdoor). In the urban site, statistically lower concentrations of SO 2 and NO 2 were detected indoors compared to outdoors, whereas in the rural site, such a relationship was observed only for NO 2 . No statistically significant differences in the concentrations of PM2.5, PM2.5-bound BaP, and Σ15 PAHs

  7. [Global air monitoring study: a multi-country comparison of levels of indoor air pollution in different workplaces results from Tunisia].

    Science.gov (United States)

    Higbee, Cheryl; Travers, Mark; Hyland, Andrew; Cummings, K Michael; Dresler, Carolyn

    2007-09-01

    In 1986, a report of the U.S. Surgeon General concluded that second hand smoke is a cause of disease in healthy non smokers. Subsequent many nations including Tunisia implement smoke-free worksite regulations. The aim of our study is to test air quality in indoor ambient air venues in Tunisia. A TSI SidePak AM510 Personal Aerosol Monitor was used to sample, record the levels of respirable suspended particles (RSP) in the air and to assess the real-time concentration of particles less than 2.5 microm in micrograms per cubic meter, or PM2.5. Thirty three venues were sampled in Tunis. The venues were selected to get a broad range of size, location and type of venue. Venues included restaurants and cafés, bars, bus stations, hospitals, offices, and universities. The mean level of indoor air pollution was 296 microg/m3 ranged from 11 microg/m3 to 1,499 microg/m3. The level of indoor air pollution was 85% lower in venues that were smoke-free compared to venues where smoking was observed (ppollution were found in hospitals, offices and universities (52 microg/m3) and the highest level was found in a bar (1,499 micro/m3). Hospitality venues allowing indoor air smoking in Tunisia are significantly more polluted than both indoor smoke-free sites and outdoor air in Tunisia. This study demonstrates that workers and patrons are exposed to harmful levels of a known carcinogen and toxin. Policies that prohibit smoking in public worksites dramatically reduce second hand smoke exposure and improve worker and patron health.

  8. Sources and perceptions of indoor and ambient air pollution in rural Alaska.

    Science.gov (United States)

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-08-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.

  9. Airborne particle sizes and sources found in indoor air. Rept. for Sep 89-Feb 90

    International Nuclear Information System (INIS)

    Owen, M.K.; Ensor, D.S.; Sparks, L.E.

    1990-02-01

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. The information, presented in a summary figure, has been gathered for use in designing test methodologies for air cleaners and other mitigation approaches and to aid in the selection of air cleaners. (NOTE: As concern about indoor air quality has grown, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. Particle diameters must be known to predict dose or soiling and to determine efficient mitigation techniques.)

  10. Effect of using low-polluting building materials and increasing ventilation on perceived indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Zuczek, P. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The potential of improving perceived air quality indoors was quantified when low-polluting materials are used and when building ventilation is increased. This was done by studying the relationships between ventilation rate and the perceived indoor air quality. A sensory panel assessed the air quality in test rooms ventilated with realistic outdoor air supply rates, where combinations of high- and low-polluting wall, floor and ceiling materials were set up. These materials were ranked as high- and low-polluting using sensory assessments of air quality in small-scale glass chambers, where they were tested individually. Substituting materials ranked as high-polluting with materials ranked as lower-polluting improved the perceived air quality in the test rooms. This improvement was greater than what was achieved by a realistic increase of the ventilation rate in the test rooms. Thus reducing pollution emitted from building materials that affects the perceived air quality has a considerable potential of limiting the energy for ventilation without compromising indoor air quality. (au)

  11. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  12. Microbiological assessment of indoor air quality at different hospital sites.

    Science.gov (United States)

    Cabo Verde, Sandra; Almeida, Susana Marta; Matos, João; Guerreiro, Duarte; Meneses, Marcia; Faria, Tiago; Botelho, Daniel; Santos, Mateus; Viegas, Carla

    2015-09-01

    Poor hospital indoor air quality (IAQ) may lead to hospital-acquired infections, sick hospital syndrome and various occupational hazards. Air-control measures are crucial for reducing dissemination of airborne biological particles in hospitals. The objective of this study was to perform a survey of bioaerosol quality in different sites in a Portuguese Hospital, namely the operating theater (OT), the emergency service (ES) and the surgical ward (SW). Aerobic mesophilic bacterial counts (BCs) and fungal load (FL) were assessed by impaction directly onto tryptic soy agar and malt extract agar supplemented with antibiotic chloramphenicol (0.05%) plates, respectively using a MAS-100 air sampler. The ES revealed the highest airborne microbial concentrations (BC range 240-736 CFU/m(3) CFU/m(3); FL range 27-933 CFU/m(3)), exceeding, at several sampling sites, conformity criteria defined in national legislation [6]. Bacterial concentrations in the SW (BC range 99-495 CFU/m(3)) and the OT (BC range 12-170 CFU/m(3)) were under recommended criteria. While fungal levels were below 1 CFU/m(3) in the OT, in the SW (range 1-32 CFU/m(3)), there existed a site with fungal indoor concentrations higher than those detected outdoors. Airborne Gram-positive cocci were the most frequent phenotype (88%) detected from the measured bacterial population in all indoor environments. Staphylococcus (51%) and Micrococcus (37%) were dominant among the bacterial genera identified in the present study. Concerning indoor fungal characterization, the prevalent genera were Penicillium (41%) and Aspergillus (24%). Regular monitoring is essential for assessing air control efficiency and for detecting irregular introduction of airborne particles via clothing of visitors and medical staff or carriage by personal and medical materials. Furthermore, microbiological survey data should be used to clearly define specific air quality guidelines for controlled environments in hospital settings. Copyright

  13. Indoor Environment Program

    International Nuclear Information System (INIS)

    Daisey, J.M.

    1993-06-01

    This paper reports progress during the year 1992 in the Indoor Environment Program in the Energy and Environment Division of Lawrence Berkeley Laboratory. Studies in the following areas are reported: energy performance and ventilation in buildings; physical and chemical characterization of indoor air pollutants; indoor radon; indoor air quality; exposure to indoor air pollutants and risk analysis. Pollutants of particular interest include: radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions including environmental tobacco smoke, carbon monoxide, and nitrogen oxides

  14. Fabrication of Simple Indoor Air Haze Purifier using Domestic Discarded Substances and Its Haze Removal Performance

    Science.gov (United States)

    Wang, Zhou; Cao, Haoshu; Zhao, Shuang

    2018-01-01

    Based on the concept of circular economy, discarded plastic bottles stuffed with discarded cotton, clothing and sofa cushion were used as pre-filter to remove big particles (dust and coal dust) in air and 4 L tap water in discarded plastic bottle was worked as an absorbing medium to dissolve the water soluble ions in air (SO4 2-, NO3-, NH4+, Cl- and Ca2+). Moreover, the internet control design was used in this homemade indoor air haze purifier to achieve the performance of remote control and intelligent management. The experimental results showed that this indoor air haze purifier can effectively reduce the level of indoor air haze and the air quality after 20 minutes treatment is higher than that of two commercial well-known air haze purifier

  15. Moulds and indoor air quality - a man-made problem

    International Nuclear Information System (INIS)

    Langvad, Finn

    2002-01-01

    In the 1970s and 1980s, many house owners in Norway, in order to save energy, insulated their houses by injecting torn-up mineral wool into the entire cavity of the wall. This made the house warmer to live in, but it also created serious condensation problems followed by rot and mould. The extensive use of gypsum boards is also alarming. If gypsum becomes really wet because of a water leakage, it becomes a ticking bomb from the micro-biologic point of view as it provides growth conditions for some of the most dangerous indoor mould fungi known, the Stachybotrys chart arum. The article discusses the danger of this fungus and surveys some of the ways that mould affect human health. There is at present no definition of a normal number of fungus spores per unit volume of air. But the following principles can be taken as guidelines: (1) The concentration of spores indoor must be lower than outdoors. Otherwise extra spores have been generated in the house. (2) The species composition of the air must be approximately the same indoors and outdoors

  16. Critique of the use of deposition velocity in modeling indoor air quality

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Weschler, C.J.

    1993-01-01

    Among the potential fates of indoor air pollutants are a variety of physical and chemical interactions with indoor surfaces. In deterministic mathematical models of indoor air quality, these interactions are usually represented as a first-order loss process, with the loss rate coefficient given as the product of the surface-to-volume ratio of the room times a deposition velocity. In this paper, the validity of this representation of surface-loss mechanisms is critically evaluated. From a theoretical perspective, the idea of a deposition velocity is consistent with the following representation of an indoor air environment. Pollutants are well-mixed throughout a core region which is separated from room surfaces by boundary layers. Pollutants migrate through the boundary layers by a combination of diffusion (random motion resulting from collisions with surrounding gas molecules), advection (transport by net motion of the fluid), and, in some cases, other transport mechanisms. The rate of pollutant loss to a surface is governed by a combination of the rate of transport through the boundary layer and the rate of reaction at the surface. The deposition velocity expresses the pollutant flux density (mass or moles deposited per area per time) to the surface divided by the pollutant concentration in the core region. This concept has substantial value to the extent that the flux density is proportional to core concentration. Published results from experimental and modeling studies of fine particles, radon decay products, ozone, and nitrogen oxides are used as illustrations of both the strengths and weaknesses of deposition velocity as a parameter to indicate the rate of indoor air pollutant loss on surfaces. 66 refs., 5 tabs

  17. A pilot study of indoor air quality in screen golf courses.

    Science.gov (United States)

    Goung, Sun-Ju Nam; Yang, Jinho; Kim, Yoon Shin; Lee, Cheol Min

    2015-05-01

    The aims of this study were to provide basic data for determining policies on air quality for multi-user facilities, including the legal enrollment of the indoor air quality regulation as designated by the Ministry of Environment, and to establish control plans. To this end, concentrations of ten pollutants (PM10, carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), radon (Rn), oxone (O3), total bacteria counts (TBC), and asbestos) in addition to nicotine, a smoking index material used to determine the impact of smoking on the air quality, were investigated in indoor game rooms and lobbies of 64 screen golf courses. The average concentration of none of the ten pollutants in the game rooms and lobbies of screen golf courses was found to exceed the limit set by the law. There were, however, pollutant concentrations exceeding limits in some screen golf courses, in order to establish a control plan for the indoor air quality of screen golf courses, a study on the emission sources of each pollutant was conducted. The major emission sources were found to be facility users' activities such as smoking and the use of combustion appliances, building materials, and finishing materials.

  18. Introduction to the risk assessment workshop on indoor air quality

    International Nuclear Information System (INIS)

    Oezkaynak, H.; Spengler, J.D.

    1990-01-01

    Due to the emerging importance of the indoor air-quality problem and associated health risk concerns, on December 6-8, 1988 a three-day workshop on indoor air-quality risk assessment was jointly organized by Harvard University, Energy and Environmental Policy Center, and the Harvard School of Public Health. This introduction briefly summarizes the objectives of the workshop and its agenda. The workshop consisted of presentations and discussions by researchers from academic, government, and private institutions. Among the participants were those who have been involved in the design of major field studies of human exposure, physicians and toxicologists involved in clinical studies, human exposure modelers, and epidemiologists and health risk assessors. The overall objective of the workshop was to examine the critical elements needed to perform risk assessments on major indoor air pollutants. Eight pollutants were chosen for discussion: environmental tobacco smoke, formaldehyde, radon, volatile organic compounds, biologicals, man-made mineral fibers, nitrogen dioxide, and semivolatile organic compounds. Twenty-two papers were presented in the workshop. Eight of these papers are published in this issue of Risk Analysis. Nine of the remaining fourteen will shortly be published in the 'Exposure Assessment Section' issue of the Journal of Toxicology and Industrial Health

  19. Indoor Exposure and Adverse Birth Outcomes Related to Fetal Growth, Miscarriage and Prematurity—A Systematic Review

    Directory of Open Access Journals (Sweden)

    Evridiki Patelarou

    2014-06-01

    Full Text Available The purpose of this review was to summarize existing epidemiological evidence of the association between quantitative estimates of indoor air pollution and all-day personal exposure with adverse birth outcomes including fetal growth, prematurity and miscarriage. We carried out a systematic literature search of MEDLINE and EMBASE databases with the aim of summarizing and evaluating the results of peer-reviewed epidemiological studies undertaken in “westernized” countries that have assessed indoor air pollution and all-day personal exposure with specific quantitative methods. This comprehensive literature search identified 16 independent studies which were deemed relevant for further review and two additional studies were added through searching the reference lists of all included studies. Two reviewers independently and critically appraised all eligible articles using the Critical Appraisal Skills Programme (CASP tool. Of the 18 selected studies, 14 adopted a prospective cohort design, three were case-controls and one was a retrospective cohort study. In terms of pollutants of interest, seven studies assessed exposure to electro-magnetic fields, four studies assessed exposure to polycyclic aromatic hydrocarbons, four studies assessed PM2.5 exposure and three studies assessed benzene, phthalates and noise exposure respectively. Furthermore, 12 studies examined infant growth as the main birth outcome of interest, six examined spontaneous abortion and three studies assessed gestational age at birth and preterm delivery. This survey demonstrates that there is insufficient research on the possible association of indoor exposure and early life effects and that further research is needed.

  20. School Indoor Air Quality Best Management Practices Manual.

    Science.gov (United States)

    Hall, Richard; Ellis, Richard; Hardin, Tim

    This manual, written in response to requirements of the Washington State legislature, focuses on practices which can be undertaken during the siting, design, construction, or renovation of a school, recommends practices to help ensure good indoor air quality during building occupancy, and suggests protocols and useful reference documents for…

  1. A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring

    OpenAIRE

    Mohieddine Benammar; Abderrazak Abdaoui; Sabbir H.M. Ahmad; Farid Touati; Abdullah Kadri

    2018-01-01

    The impact of air quality on health and on life comfort is well established. In many societies, vulnerable elderly and young populations spend most of their time indoors. Therefore, indoor air quality monitoring (IAQM) is of great importance to human health. Engineers and researchers are increasingly focusing their efforts on the design of real-time IAQM systems using wireless sensor networks. This paper presents an end-to-end IAQM system enabling measurement of CO2, CO, SO2, NO2, O3, Cl2, am...

  2. Indoor air pollution from gas cooking and infant neurodevelopment.

    Science.gov (United States)

    Vrijheid, Martine; Martinez, David; Aguilera, Inma; Bustamante, Mariona; Ballester, Ferran; Estarlich, Marisa; Fernandez-Somoano, Ana; Guxens, Mònica; Lertxundi, Nerea; Martinez, M Dolores; Tardon, Adonina; Sunyer, Jordi

    2012-01-01

    Gas cooking is a main source of indoor air pollutants, including nitrogen dioxide and particles. Because concerns are emerging for neurodevelopmental effects of air pollutants, we examined the relationship between indoor gas cooking during pregnancy and infant neurodevelopment. Pregnant mothers were recruited between 2004 and 2008 to a prospective birth cohort study (INfancia y Medio Ambiente) in Spain during the first trimester of pregnancy. Third-trimester questionnaires collected information about the use of gas appliances at home. At age 11 to 22 months, children were assessed for mental development using the Bayley Scales of Infant Development. Linear regression models examined the association of gas cooking and standardized mental development scores (n = 1887 mother-child pairs). Gas cookers were present in 44% of homes. Gas cooking was related to a small decrease in the mental development score compared with use of other cookers (-2.5 points [95% confidence interval = -4.0 to -0.9]) independent of social class, maternal education, and other measured potential confounders. This decrease was strongest in children tested after the age of 14 months (-3.1 points [-5.1 to -1.1]) and when gas cooking was combined with less frequent use of an extractor fan. The negative association with gas cooking was relatively consistent across strata defined by social class, education, and other covariates. This study suggests a small adverse effect of indoor air pollution from gas cookers on the mental development of young children.

  3. Summary of Adsorption/Desorption Experiments for the European Database on Indoor Air Pollution Sources in Buildings

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte; Tirkkonen, T.

    1996-01-01

    Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings.......Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings....

  4. The identification of Volatile Organic Compound's emission sources in indoor air of living spaces, offices and laboratories

    Science.gov (United States)

    Kultys, Beata

    2018-01-01

    Indoor air quality is important because people spend most of their time in closed rooms. If volatile organic compounds (VOCs) are present at elevated concentrations, they may cause a deterioration in human well-being or health. The identification of indoor emission sources is carried out by comparison indoor and outdoor air composition. The aim of the study was to determinate the concentration of VOCs in indoor air, where there was a risk of elevated levels due to the kind of work type carried out or the users complained about the symptoms of a sick building followed by an appropriate interpretation of the results to determine whether the source of the emission in the tested room occurs. The air from residential, office and laboratory was tested in this study. The identification of emission sources was based on comparison of indoor and outdoor VOCs concentration and their correlation coefficients. The concentration of VOCs in all the rooms were higher or at a similar level to that of the air sampled at the same time outside the building. Human activity, in particular repair works and experiments with organic solvents, has the greatest impact on deterioration of air quality.

  5. Indoor air quality in hospitality venues before and after implementation of a clean indoor air law--Western New York, 2003.

    Science.gov (United States)

    2004-11-12

    Secondhand smoke (SHS) contains more than 50 carcinogens. SHS exposure is responsible for an estimated 3,000 lung cancer deaths and more than 35,000 coronary heart disease deaths among never smokers in the United States each year, and for lower respiratory infections, asthma, sudden infant death syndrome, and chronic ear infections among children. Even short-term exposures to SHS, such as those that might be experienced by a patron in a restaurant or bar that allows smoking, can increase the risk of experiencing an acute cardiovascular event. Although population-based data indicate declining SHS exposure in the United States over time, SHS exposure remains a common but preventable public health hazard. Policies requiring smoke-free environments are the most effective method of reducing SHS exposure. Effective July 24, 2003, New York implemented a comprehensive state law requiring almost all indoor workplaces and public places (e.g., restaurants, bars, and other hospitality venues) to be smoke-free. This report describes an assessment of changes in indoor air quality that occurred in 20 hospitality venues in western New York where smoking or indirect SHS exposure from an adjoining room was observed at baseline. The findings indicate that, on average, levels of respirable suspended particles (RSPs), an accepted marker for SHS levels, decreased 84% in these venues after the law took effect. Comprehensive clean indoor air policies can rapidly and effectively reduce SHS exposure in hospitality venues.

  6. Indoor Air Quality Assessment of Elementary Schools in Curitiba, Brazil

    International Nuclear Information System (INIS)

    Godoi, R. H. M.; Avigo, D.; Campos, V. P.; Tavares, T. M.; Marchi, M. R. R. de; Grieken, R. Van; Godoi, A. F. L.

    2009-01-01

    The promotion of good indoor air quality in schools is of particular public concern for two main reasons: (1) school-age children spend at least 30% of their time inside classrooms and (2) indoor air quality in urban areas is substantially influenced by the outdoor pollutants, exposing tenants to potentially toxic substances. Two schools in Curitiba, Brazil, were selected to characterize the gaseous compounds indoor and outdoor of the classrooms. The concentrations of benzene, toluene, ethylbenzene, and the isomers xylenes (BTEX); NO 2 ; SO 2 ; O 3 ; acetic acid (HAc); and formic acid (HFor) were assessed using passive diffusion tubes. BTEX were analyzed by gas chromatography-ion trap mass spectrometry and other collected gasses by ion chromatography. The concentration of NO 2 varied between 9.5 and 23 μg m -3 , whereas SO 2 showed an interval from 0.1 to 4.8 μg m -3 . Within the schools, BTEX concentrations were predominant. Formic and acetic acids inside the classrooms revealed intermediate concentrations of 1.5 μg m -3 and 1.2 μg m -3 , respectively.

  7. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  8. Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise Lotte N; Thomsen, Simon Francis

    2010-01-01

    Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM...... with rhinitis symptoms, atopy and nitric oxide in exhaled air (FeNO) as a measure of airway inflammation....

  9. Some indoor air quality parameters at a government office at Putrajaya, Malaysia

    International Nuclear Information System (INIS)

    Roslenda Hassan; Nor Mariah Adam; Eris Elionddy Supeni

    2009-01-01

    Full text: The Code of Practice on Indoor Air Quality (IAQ) under the Occupational Safety and Health Act (OSHA) 1994 has been drawn up to ensure that employees and other occupants are protected from poor indoor air quality that could adversely affect their health. This paper presents the results of the measurements of indoor air quality and air exchange rate at an office complex in Putrajaya. The experiment was carried out on 28th to 29th April 2008. There are several pertinent of IAQ parameters measured are temperature, relative humidity (RH), particle (d 2 ). Measurement also includes determination of air exchange rate of selected rooms using the carbon dioxide concentration decay technique and use of accu-balance for measurement of airflow rate. The results of the audit were then compared to The Department Of Occupational Safety And Health (DOSH) Code of Practice Standard (2005) and ASHRAE Standard. All the areas in the building has building has experienced very high level of CO 2 with low value of air velocity and air exchange rate. Storeroom shows the highest risk for people to stay long (2550 ppm of CO 2 , 5 ppm of CO, 2.8 ppm of VOCs, 0.316 mg/m 3 of PM10, 81.6 % of RH and 1.8 h -1 of ventilation rates). This consequently will give health affect to the occupants in short term and long term. (author)

  10. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing

  11. Association between Four-Level Categorisation of Indoor Exposure and Perceived Indoor Air Quality

    Directory of Open Access Journals (Sweden)

    Katja Tähtinen

    2018-04-01

    Full Text Available The aim of this study was to develop and test a tool for assessing urgency of indoor air quality (IAQ measures. The condition of the 27 buildings were investigated and results were categorized. Statistical test studied the differences between the categories and the employees’ complaints about their work environment. To study the employees’ experiences of the work premises, a validated indoor air (IA questionnaire was used. This study reveals a multifaceted problem: many factors affecting IAQ may also affect perceived IAQ, making it difficult to separate the impurity sources and ventilation system deficiencies affecting to employee experiences. An examination of the relationship between the categories and perceived IAQ revealed an association between the mould odour perceived by employees and mould detected by the researcher. A weak link was also found between the assessed categories and environmental complaints. However, we cannot make far-reaching conclusions regarding the assessed probability of abnormal IA exposure in the building on the basis of employee experiences. According to the results, categorising tool can partly support the assessment of the urgency for repairs when several factors that affect IAQ are taken into account.

  12. Association between Four-Level Categorisation of Indoor Exposure and Perceived Indoor Air Quality.

    Science.gov (United States)

    Tähtinen, Katja; Lappalainen, Sanna; Karvala, Kirsi; Remes, Jouko; Salonen, Heidi

    2018-04-04

    The aim of this study was to develop and test a tool for assessing urgency of indoor air quality (IAQ) measures. The condition of the 27 buildings were investigated and results were categorized. Statistical test studied the differences between the categories and the employees’ complaints about their work environment. To study the employees’ experiences of the work premises, a validated indoor air (IA) questionnaire was used. This study reveals a multifaceted problem: many factors affecting IAQ may also affect perceived IAQ, making it difficult to separate the impurity sources and ventilation system deficiencies affecting to employee experiences. An examination of the relationship between the categories and perceived IAQ revealed an association between the mould odour perceived by employees and mould detected by the researcher. A weak link was also found between the assessed categories and environmental complaints. However, we cannot make far-reaching conclusions regarding the assessed probability of abnormal IA exposure in the building on the basis of employee experiences. According to the results, categorising tool can partly support the assessment of the urgency for repairs when several factors that affect IAQ are taken into account.

  13. Reducing burden of disease from residential indoor air exposures in Europe (HEALTHVENT project)

    DEFF Research Database (Denmark)

    Asikainen, Arja; Carrer, Paolo; Kephalopoulos, Stylianos

    2016-01-01

    ), approximately 90 % of EU citizens live in areas where the World Health Organization (WHO) guidelines for air quality of particulate matter sized PM2.5) are not met. Since sources of pollution reside in both indoor and outdoor air, selecting the most appropriate ventilation strategy is not a simple...... matter (PM2.5), outdoor bioaerosols, volatile organic compounds (VOC), carbon oxide (CO) radon and dampness was estimated. The analysis was based on scenario comparison, using an outdoor-indoor mass-balance model and varying the ventilation rates. Health effects were estimated with burden of diseases (Bo...... air; and (iii) indoor source control, showed that all three approaches are able to provide substantial reductions in the health risks, varying from approximately 20 % to 44 %, corresponding to 400 000 and 900 000 saved healthy life years in EU-26. PM2.5 caused majority of the health effects in all...

  14. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying; Raja, Suresh; Ferro, Andrea R.; Jaques, Peter A.; Hopke, Philip K. [Clarkson University, 8 Clarkson Avenue, Center for Air Resources Engineering and Science, Potsdam, NY 13699 (United States); Gressani, Cheryl; Wetzel, Larry E. [Air Innovations, Inc, 7000 Performance Drive, North Syracuse, NY 13212 (United States)

    2010-02-15

    Poor indoor air quality has been linked to the exacerbation of asthma symptoms in children. Because people spend most of their time indoors, improving indoor air quality may provide some relief to asthma sufferers. A study was conducted to assess whether operating an air cleaning/ventilating unit (HEPAiRx {sup registered}) in a child's bedroom can improve his/her respiratory health. Thirty children diagnosed with asthma were randomly split into two groups. For the first six weeks, group A had the air cleaning/ventilating unit (HEPAiRx {sup registered}) running in the bedrooms of the participants and group B did not; for the second six weeks, both groups had the cleaners running in the bedrooms; and, for the final six weeks, group A turned the cleaners off and group B kept theirs running. Indoor air quality parameters, including temperature, relative humidity, particulate matter (PM 0.5-10 {mu}m), carbon monoxide, carbon dioxide and total volatile organic compound (TVOC) concentrations, were monitored in each bedroom using an AirAdvice indoor air quality multi-meter. As a measure of pulmonary inflammation, exhaled breath condensate (EBC) was collected every sixth day and analyzed for nitrate and pH. Peak expiratory flow (PEF) was also measured. PM and TVOC concentrations decreased with operation of the HEPAiRx an average of 72% and 59%, respectively. The EBC nitrate concentrations decreased significantly and the EBC pH and PEF values increased significantly with operation of the unit (p < 0.001 when comparing on/off sample means). These results indicate that air cleaning in combination with ventilation can effectively reduce symptoms for asthma sufferers. (author)

  15. A multidisciplinary approach to the air quality and health problems in indoor arenas

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, R.O.; Pennanen, A.S.; Alm, S.; Randell, J.T.; Haelinen, A.I.; Husman, T.; Jantunen, M.J. [National Public Health Inst., Kuopio (Finland). Div. of Environmental Health; Eklund, T. [Technical Research Centre of Finland, Espoo (Finland); Lee, Kiyoung; Spengler, J.D. [Harvard School of Public Health, Boston (United States). Dept. of Environmental Health

    1995-12-31

    Most ice resurfacing machines used in indoor ice arenas have internal combustion engines. They use either propane or petrol as fuel. The main exhaust pollutants are carbon monoxide (CO), nitrogen oxides (NO{sub x}), volatile organic compounds (VOC) and fine particles. In general, propane engines emit more NO{sub x} than petrol engines, but their CO emissions are smaller. The levels of these pollutants in indoor air depend on total amount of emissions volume of arena and effectiveness of ventilation. However, due to large variations in engine emissions the air quality in any single arena cannot be estimated without direct measurements. High levels of CO and nitrogen dioxide (NO{sub 2}) have been measured in indoor ice arenas of North America since 1960`s, and it is only recently that high NO{sub 2} levels have been measured also in Sweden. In health studies, attention has been paid mostly to epidemic acute poisonings among ice hockey players and spectators caused by large concentrations of CO. However, some cases of acute NO{sub 2} poisonings have also been described. The aims of this project are: (1) to examine the air quality in Finnish indoor ice arenas, (2) to study associations between the air quality and the major technical features of the arenas, (3) to assess personal exposures of ice hockey players, spectators and maintenance personnel to CO and NO{sub 2}, (4) to investigate short-term and longer-term health effects of CO and NO{sub 2} exposures on ice hockey players and maintenance personnel, (5) to inform the managers of ice arenas and the health authorities on the current air quality problems and health risks in Finnish indoor ice arenas. (author)

  16. A multidisciplinary approach to the air quality and health problems in indoor arenas

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, R O; Pennanen, A S; Alm, S; Randell, J T; Haelinen, A I; Husman, T; Jantunen, M J [National Public Health Inst., Kuopio (Finland). Div. of Environmental Health; Eklund, T [Technical Research Centre of Finland, Espoo (Finland); Lee, Kiyoung; Spengler, J D [Harvard School of Public Health, Boston (United States). Dept. of Environmental Health

    1996-12-31

    Most ice resurfacing machines used in indoor ice arenas have internal combustion engines. They use either propane or petrol as fuel. The main exhaust pollutants are carbon monoxide (CO), nitrogen oxides (NO{sub x}), volatile organic compounds (VOC) and fine particles. In general, propane engines emit more NO{sub x} than petrol engines, but their CO emissions are smaller. The levels of these pollutants in indoor air depend on total amount of emissions volume of arena and effectiveness of ventilation. However, due to large variations in engine emissions the air quality in any single arena cannot be estimated without direct measurements. High levels of CO and nitrogen dioxide (NO{sub 2}) have been measured in indoor ice arenas of North America since 1960`s, and it is only recently that high NO{sub 2} levels have been measured also in Sweden. In health studies, attention has been paid mostly to epidemic acute poisonings among ice hockey players and spectators caused by large concentrations of CO. However, some cases of acute NO{sub 2} poisonings have also been described. The aims of this project are: (1) to examine the air quality in Finnish indoor ice arenas, (2) to study associations between the air quality and the major technical features of the arenas, (3) to assess personal exposures of ice hockey players, spectators and maintenance personnel to CO and NO{sub 2}, (4) to investigate short-term and longer-term health effects of CO and NO{sub 2} exposures on ice hockey players and maintenance personnel, (5) to inform the managers of ice arenas and the health authorities on the current air quality problems and health risks in Finnish indoor ice arenas. (author)

  17. School Indoor Air Quality Assessment and Program Implementation.

    Science.gov (United States)

    Prill, R.; Blake, D.; Hales, D.

    This paper describes the effectiveness of a three-step indoor air quality (IAQ) program implemented by 156 schools in the states of Washington and Idaho during the 2000-2001 school year. An experienced IAQ/building science specialist conducted walk-through assessments at each school. These assessments documented deficiencies and served as an…

  18. Microbial Air Contamination in Indoor and Outdoor Environment of Pig Farms

    Directory of Open Access Journals (Sweden)

    Silvana Popescu

    2014-05-01

    Full Text Available Ensuring a good air quality in pig farms is important for the health of animals and human workers. The aim of this study was the assessment of the microbiological quality of the air inside the pig houses and outside of these. The study was accomplished in two pig-fattening farms in Cluj County. The microbiological air quality was assessed in the cold and warm season, by determination of the total counts of mesophilic bacteria, staphylococci, streptococci, gram-negative bacteria and fungi. The bacterial and fungal counts varied in the air of the investigated farms. In relation to the season the mean counts of bacteria and fungi were significantly higher (P 0.05 were found between the values of the parameters determined from the indoor air and those obtained outside, from a distance of 5 m from the pig houses. The numbers of the bacteria and fungi in the outdoor air lowered as the distance from the farms increased, the differences being significant at 25 and 50 m (P < 0.05. The results of the study show a high bacterial contamination of the indoor and outdoor air of the pig farms.

  19. Efficiency assessment of indoor environmental policy for air-conditioned offices in Hong Kong

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.

    2009-01-01

    To reduce carbon dioxide (CO 2 ) emissions through thermal energy conservation, air-conditioned offices in the subtropics are recommended to operate within specified ranges of indoor temperature, relative humidity and air velocity. As thermal discomfort leads to productivity loss, some indoor environmental policies for air-conditioned offices in Hong Kong are investigated in this study with relation to thermal energy consumption, CO 2 emissions from electricity use, and productivity loss due to thermal discomfort. Occupant thermal response is specifically considered as an adaptive factor in evaluating the energy consumption and productivity loss. The energy efficiency of an office is determined by the productivity which corresponds to the CO 2 generated. The results found that a policy with little impact on occupant thermal comfort and worker productivity would improve the office efficiency while the one with excessive energy consumption reduction would result in a substantial productivity loss. This study is a useful reference source for evaluating an indoor thermal environmental policy regarding the energy consumption, CO 2 emissions reduction, thermal comfort and productivity loss in air-conditioned offices in subtropical areas.

  20. Variations of radon volume activities in soil and indoor air and their correlation

    International Nuclear Information System (INIS)

    Mojzes, A.

    1998-01-01

    Some manual measurements of volume activity of 222 Rn ai soil air and in indoor air of building together with parallel measurements of some meteorological parameters (temperature, humidity and pressure) of both atmospheric and indoor air were carried out. The measurements were performed in the building of Faculty and in its subsoil which consists of slope loams of the base of SW slopes of granitic Male Karpaty Mountains in the area of confluence of the Vidrica Creek with an arm of the Donau river. The monitoring measurements lasted form more than one and a half year, from January 1977 to August 1998, with the frequency of approximately once a week in each object. The soil air was taken from a permanently set up and sealed pipe from the depth of 0.8 m which was placed approximately 10 m from the building at the open air. All measurements of 222 Rn volume activities were performed with a portable fully automatic scintillation detector based on exchangeable Lucas cells. There were also performed the parallel measurements of some meteorological parameters (temperature, humidity and pressure) of air in each object. The geological basement of building is a source of indoor radon. The volume activities of soil 222 Rn range from about 2 kBq/m 3 to about 20 kBq/m 3 with the average of 9.26 kBq/m 3 and the standard deviation of 2.95 kBq/m 3 . The volume activities of indoor air in basement room were form 150 Bq/m 3 to 225 Bq/m 3 and on the third story they were from 125 Bq/m 3 to 175 Bq/m 3 (approximately). The results of monitoring measurements during 20 months period point out the intensity of interaction of geological substrate with building interior through the values of the volume activity of 222 Rn. Therefore a method of building foundation is one of the most important factors which determines the quantity of radon in indoor air. In the light of quality, the fluctuation of radon presence in the bottom part of the buildings is strongly determined by the variations of

  1. Assessment of the impact of oxidation processes on indoor air pollution using the new time-resolved INCA-Indoor model

    Science.gov (United States)

    Mendez, Maxence; Blond, Nadège; Blondeau, Patrice; Schoemaecker, Coralie; Hauglustaine, Didier A.

    2015-12-01

    INCA-Indoor, a new indoor air quality (IAQ) model, has been developed to simulate the concentrations of volatile organic compounds (VOC) and oxidants considering indoor air specific processes such as: emission, ventilation, surface interactions (sorption, deposition, uptake). Based on the detailed version of SAPRC-07 chemical mechanism, INCA-Indoor is able to analyze the contribution of the production and loss pathways of key chemical species (VOCs, oxidants, radical species). The potential of this model has been tested through three complementary analyses: a comparison with the most detailed IAQ model found in the literature, focusing on oxidant species; realistic scenarios covering a large range of conditions, involving variable OH sources like HONO; and the investigation of alkenes ozonolysis under a large range of indoor conditions that can increase OH and HO2 concentrations. Simulations have been run changing nitrous acid (HONO) concentrations, NOx levels, photolysis rates and ventilation rates, showing that HONO can be the main source of indoor OH. Cleaning events using products containing D-limonene have been simulated at different periods of the day. These scenarios show that HOX concentrations can significantly increase in specific conditions. An assessment of the impact of indoor chemistry on the potential formation of secondary species such as formaldehyde (HCHO) and acetaldehyde (CH3CHO) has been carried out under various room configuration scenarios and a study of the HOx budget for different realistic scenarios has been performed. It has been shown that, under the simulation conditions, formaldehyde can be affected by oxidant concentrations via chemical production which can account for more than 10% of the total production, representing 6.5 ppb/h. On the other hand, acetaldehyde production is affected more by oxidation processes. When the photolysis rates are high, chemical processes are responsible for about 50% of the total production of

  2. Polybrominated diphenyl ethers in indoor air in Kuwait: Implications for human exposure

    Science.gov (United States)

    Gevao, Bondi; Al-Bahloul, Majed; Al-Ghadban, Abdul Nabi; Ali, Lulwa; Al-Omair, Ali; Helaleh, Murad; Al-Matrouk, Khaled; Zafar, Jamal

    Polyurethane foam plug passive samplers were used to concurrently measure air concentrations of polybrominated diphenyl ethers (PBDEs) in 70 indoor environments. PBDEs were detected in all homes and offices investigated with patterns similar to the distribution in the commercial penta technical formulation (Bromkal 70-5DE). The ubiquitous distribution of these compounds in indoor environments may be due to the volatilization of these chemicals from foam (e.g. mattresses, foam padded furniture), electronic equipments (e.g. TVs, printers, computers) and other consumer products to which they are added as flame retardants. Mean ΣPBDEs concentration in air was log-normally distributed and ranged from ˜2-385 pg m -3. Using an inhalation rate of 8 and 20 m 3 day -1 for children and adults respectively, exposure via inhalation is estimated to be 173 and 399 pg day -1 for children and adults respectively. This study supports the growing body of evidence for the ubiquitous presence of these compounds in indoor air and the potential for continuous, low-level exposure both at work and home.

  3. Microbial contamination of dental unit waterlines and effect on quality of indoor air.

    Science.gov (United States)

    Kadaifciler, Duygu Göksay; Cotuk, Aysin

    2014-06-01

    The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study's determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.

  4. Indoor air pollution: Sources and control. July 1988-January 1990 (Citations from the NTIS data base). Report for July 1988-January 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This bibliography contains citations concerning indoor air pollution in residential, commercial, industrial, and institutional buildings. Indoor air quality assessment, health hazard evaluation, and contaminant identification and measurement are discussed. Indoor air pollution control methods and equipment are evaluated. Air quality analyses of energy efficient buildings are presented. Indoor air pollution from radon and asbestos are discussed in other bibliographies. (This updated bibliography contains 75 citations, 16 of which are new entries to the previous edition.)

  5. Test-retest repeatability of child's respiratory symptoms and perceived indoor air quality - comparing self- and parent-administered questionnaires.

    Science.gov (United States)

    Lampi, Jussi; Ung-Lanki, Sari; Santalahti, Päivi; Pekkanen, Juha

    2018-02-09

    Questionnaires can be used to assess perceived indoor air quality and symptoms in schools. Questionnaires for primary school aged children have traditionally been parent-administered, but self-administered questionnaires would be easier to administer and may yield as good, if not better, information. Our aim was to compare the repeatability of self- and parent-administered indoor air questionnaires designed for primary school aged pupils. Indoor air questionnaire with questions on child's symptoms and perceived indoor air quality in schools was sent to parents of pupils aged 7-12 years in two schools and again after two weeks. Slightly modified version of the questionnaire was administered to pupils aged 9-12 years in another two schools and repeated after a week. 351 (52%) parents and 319 pupils (86%) answered both the first and the second questionnaire. Test-retest repeatability was assessed with intra-class correlation (ICC) and Cohen's kappa coefficients (k). Test-retest repeatability was generally between 0.4-0.7 (ICC; k) in both self- and parent-administered questionnaire. In majority of the questions on symptoms and perceived indoor air quality test-retest repeatability was at the same level or slightly better in self-administered compared to parent-administered questionnaire. Agreement of self- and parent administered questionnaires was generally indoor air quality. Children aged 9-12 years can give as, or even more, repeatable information about their respiratory symptoms and perceived indoor air quality than their parents. Therefore, it may be possible to use self-administered questionnaires in future studies also with children.

  6. Indoor air quality in ice skating rinks in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    Indoor air quality in ice skating rinks has become a public concern due to the use of propane- or gasoline-powered ice resurfacers and edgers. In this study, the indoor air quality in three ice rinks with different volumes and resurfacer power sources (propane and gasoline) was monitored during usual operating hours. The measurements included continuous recording of carbon monoxide (CO), carbon dioxide (CO 2 ), total volatile organic compounds (TVOC), particulate matter with a diameter less than 2.5 μm (PM 2.5 ), particulate matter with diameter less than 10 μm (PM 10 ), nitric oxide (NO), nitrogen dioxide (NO 2 ), nitrogen oxide (NO x ), and sulfur dioxide (SO 2 ). The average CO, CO 2 , and TVOC concentrations ranged from 3190 to 6749 μg/m 3 , 851 to 1329 ppm, and 550 to 765 μg/m 3 , respectively. The average NO and NO 2 concentrations ranged from 69 to 1006 μg/m 3 and 58 to 242 μg/m 3 , respectively. The highest CO and TVOC levels were observed in the ice rink which a gasoline-fueled resurfacer was used. The highest NO and NO 2 levels were recorded in the ice rink with propane-fueled ice resurfacers. The air quality parameters of PM 2.5 , PM 10 , and SO 2 were fully acceptable in these ice rinks according to HKIAQO standards. Overall, ice resurfacers with combustion engines cause indoor air pollution in ice rinks in Hong Kong. This conclusion is similar to those of previous studies in Europe and North America

  7. An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room

    Directory of Open Access Journals (Sweden)

    Grant O'Connell

    2015-05-01

    Full Text Available Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality.

  8. An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room.

    Science.gov (United States)

    O'Connell, Grant; Colard, Stéphane; Cahours, Xavier; Pritchard, John D

    2015-05-06

    Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls), polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality.

  9. Contribution of 222Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China

    International Nuclear Information System (INIS)

    Song Gang; Wang Xinming; Chen Diyun; Chen Yongheng

    2011-01-01

    This study investigates the contribution of radon ( 222 Rn)-bearing water to indoor 222 Rn in thermal baths. The 222 Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM 10 and PM 2.5 ) and carbon dioxide (CO 2 ) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m -3 of 222 Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which 222 Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average 222 Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor 222 Rn levels were influenced by the 222 Rn concentrations in the hot spring water and the bathing times. The average 222 Rn transfer coefficients from water to air were 6.2 x 10 -4 -4.1 x 10 -3 . The 24-h average levels of CO 2 and PM 10 in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM 2.5 . Radon and PM 10 levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. - Highlights: → 222 Rn-bearing water is the main contributor to indoor radon in hot spring hotel. → The PM 2.5 and CO 2 are also the main indoor pollutants in the hotel rooms. → Higher radon and PM levels might have significant negative health effects to human. → The radon transfer coefficients are consistent with the published data.

  10. Indoor air quality inspection and analysis system based on gas sensor array

    Science.gov (United States)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  11. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    DEFF Research Database (Denmark)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael

    2012-01-01

    with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total...... inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor...... of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly...

  12. Indoor Levels of Formaldehyde and Other Pollutants and Relationship to Air Exchange Rates and Human Activities

    Science.gov (United States)

    Huangfu, Y.; O'Keeffe, P.; Kirk, M.; Walden, V. P.; Lamb, B. K.; Jobson, B. T.

    2017-12-01

    This paper reports results on an indoor air quality study conducted on six homes in summer and winter, contrasting indoor and outdoor concentrations of O3, CO, CO2, NOx, PM2.5, and selected volatile organic hydrocarbons measured by PTR-MS. Data were collected as 1 minute averages. Air exchange rates of the homes were determined by CO2 tracer release. Smart home sensors, recording human activity level in various places in the home, and window and doors openings, were utilized to better understand the link between human activity and indoor air pollution. From our study, averaged air exchange rates of the homes ranged from 0.2 to 1.2 hour-1 and were greatly affected by the ventilation system type and window and door openings. In general, a negative correlation between air exchange rate and indoor VOCs levels was observed, with large variation of pollutant levels between the homes. For most of the VOCs measured in the house, including formaldehyde and acetaldehyde, summer levels were much higher than winter levels. In some homes formaldehyde levels displayed a time of day variation that was linked to changes in indoor temperature. During a wildfire period in the summer of 2015, outdoor levels of PM2.5, formaldehyde, and benzene dramatically increased, significantly impacting indoor levels due to infiltration. Human activities, such as cooking, can significantly change the levels of most of the compounds measured in the house and the levels can be significantly elevated for short periods of time, with peak levels can be several orders higher compared with typical levels. The data suggest that an outcome of state energy codes that require new homes to be energy efficient, and as a consequence built with lower air exchange rates, will be unacceptable levels of air toxics, notably formaldehyde.

  13. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    OpenAIRE

    Ramlan Nazirah; Nurhalimatul Husna Ahmad Siti; Aminuddin Eeydzah; Abdul Hamid Hazrul; Khalijah Yaman Siti; Halid Abdullah Abd

    2017-01-01

    Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR), E-Sampler and Ozone Meter. Air sampling wa...

  14. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults

    Directory of Open Access Journals (Sweden)

    Peter Wallner

    2015-11-01

    Full Text Available Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity: In the test room with higher levels of air ions (2194/cm3 vs. 1038/cm3 a significantly higher low to high frequency ratio of the electrocardiography (ECG beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed, in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations.

  15. Irritancy and Allergic Responses Induced by Exposure to the Indoor Air Chemical 4-Oxopentanal

    Science.gov (United States)

    Anderson, Stacey E.; Franko, Jennifer; Jackson, Laurel G.; Wells, J. R.; Ham, Jason E.; Meade, B. J.

    2012-01-01

    Over the last two decades, there has been an increasing awareness regarding the potential impact of indoor air pollution on human health. People working in an indoor environment often experience symptoms such as eye, nose, and throat irritation. Investigations into these complaints have ascribed the effects, in part, to compounds emitted from building materials, cleaning/consumer products, and indoor chemistry. One suspect indoor air contaminant that has been identified is the dicarbonyl 4-oxopentanal (4-OPA). 4-OPA is generated through the ozonolysis of squalene and several high-volume production compounds that are commonly found indoors. Following preliminary workplace sampling that identified the presence of 4-OPA, these studies examined the inflammatory and allergic responses to 4-OPA following both dermal and pulmonary exposure using a murine model. 4-OPA was tested in a combined local lymph node assay and identified to be an irritant and sensitizer. A Th1-mediated hypersensitivity response was supported by a positive response in the mouse ear swelling test. Pulmonary exposure to 4-OPA caused a significant elevation in nonspecific airway hyperreactivity, increased numbers of lung-associated lymphocytes and neutrophils, and increased interferon-γ production by lung-associated lymph nodes. These results suggest that both dermal and pulmonary exposure to 4-OPA may elicit irritant and allergic responses and may help to explain some of the adverse health effects associated with poor indoor air quality. PMID:22403157

  16. Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France.

    Science.gov (United States)

    Canha, N; Mandin, C; Ramalho, O; Wyart, G; Ribéron, J; Dassonville, C; Hänninen, O; Almeida, S M; Derbez, M

    2016-06-01

    The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2 ), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non-heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Gender, airborne chemical monitoring, and physical work environment are related to indoor air symptoms among nonindustrial workers in the Klang Valley, Malaysia.

    Science.gov (United States)

    Syazwan, Aizat Ismail; Hafizan, Juahir; Baharudin, Mohd Rafee; Azman, Ahmad Zaid Fattah; Izwyn, Zulkapri; Zulfadhli, Ismail; Syahidatussyakirah, Katis

    2013-01-01

    The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers. A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia. A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH), Malaysia and a previous study (MM040NA questionnaire) pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix. The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust) are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature). Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust level indoors. Exposure to pollutants (total volatile organic compounds, carbon monoxide, and formaldehyde) and physical stressors (air temperature and relative humidity) influence reported symptoms of office workers. These parameters should be focused upon and graded as one of the important elements in the grading procedure when qualitatively evaluating the indoor environment.

  18. IEA Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    with heat recovery systems, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or to make it in a new way demand controlled. However, this must be done such that it has no have adverse effects...... on Indoor Air Quality (IAQ). Annex 68, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy...... performance whilst providing comfortable and healthy indoor environments. New paradigms for demand control of ventilation will be investigated, which consider the pollution loads and occupancy in buildings. The thermal and moisture conditions of such will be considered because of interactions between...

  19. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study

    NARCIS (Netherlands)

    Yu, Q.; Brouwers, H.J.H.

    2009-01-01

    Heterogeneous photocatalytic oxidation (PCO) has shown to be a promising air purifying technology in outdoor conditions using TiO2 as photocatalyst activated with UV light. Also to indoor air quality more and more attention is paid because of the very important role it plays on human health, and it

  20. Providing better indoor environmental quality brings economicbenefits

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Seppanen, Olli

    2007-06-01

    This paper summarizes the current scientific evidence that improved indoor environmental quality can improve work performance and health. The review indicates that work and school work performance is affected by indoor temperature and ventilation rate. Pollutant source removal can sometimes improve work performance. Based on formal statistical analyses of existing research results, quantitative relationships are provided for the linkages of work performance with indoor temperature and outdoor air ventilation rate. The review also indicates that improved health and related financial savings are obtainable from reduced indoor tobacco smoking, prevention and remediation of building dampness, and increased ventilation. Example cost-benefit analyses indicate that many measures to improve indoor temperature control and increase ventilation rates will be highly cost effective, with benefit-cost ratios as high as 80 and annual economic benefits as high as $700 per person.

  1. Review of low-energy construction, air tightness, ventilation strategies and indoor radon: results from Finnish houses and apartments

    International Nuclear Information System (INIS)

    Arvela, H.; Holmgren, O.; Reisbacka, H.; Vinha, J.

    2014-01-01

    Low-energy and passive house construction practices are characterised by increased insulation, high air tightness of the building shell and controlled mechanical ventilation with heat recovery. As a result of the interaction of mechanical ventilation and high air tightness, the pressure difference in a building can be markedly enhanced. This may lead to elevated indoor radon levels. Minor leakages in the foundation can affect the radon concentration, even in the case where such leaks do not markedly reduce the total air tightness. The potential for high pressures to affect indoor radon concentrations markedly increases when the air tightness ACH 50 , i.e. the air change per hour induced by a pressure difference of 50 Pa, is -1 . Pressure differences in Finnish low-rise residential houses having mechanical supply and exhaust ventilation with heat recovery (MSEV) are typically 2-3 Pa, clearly lower than the values of 5-9 Pa in houses with only mechanical exhaust ventilation (MEV). In MSEV houses, radon concentrations are typically 30 % lower than in MEV houses. In new MSEV houses with an ACH50 of 0.6 h -1 , the limit for passive construction, the analytical estimates predict an increase of 100 % in the radon concentration compared with older houses with an ACH50 of 4.0 h -1 . This poses a challenge for efficient radon prevention in new construction. Radon concentrations are typically 30 % lower in houses with two storeys compared with only one storey. The introduction of an MSEV ventilation strategy in typically very airtight apartments has markedly reduced pressure differences and radon concentrations. (authors)

  2. Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an eight-home study

    Science.gov (United States)

    Chuang, Jane C.; Mack, Gregory A.; Kuhlman, Michael R.; Wilson, Nancy K.

    A pilot field study was performed in Columbus, OH, during the winter of 1986/1987. The objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOC) and to measure the concentrations of polycyclic aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in air in selected residences. Eight homes were chosen for sampling on the basis of these characteristics: electric/gas heating system, electric/gas cooking appliances, and the absence/presence of environmental tobacco smoke (ETS). The indoor sampler was equipped with a quartz-fiber filter to collect particles followed by XAD-4 resin to trap SVOC. A PS-1 sampler with a similar sampling module was used outdoors. The indoor air was sampled in the kitchen and living room areas over two consecutive 8-h periods. The outdoor air was sampled concurrently with the indoor samples over a 16-h period. Fifteen PAH, five nitro-PAH, five oxygenated PAH, and three nitrogen heterocyclic compounds were determined in these samples. The most abundant PAH found indoors was naphthalene. The indoor concentrations of PAH derivatives were lower than those of their parent compounds. Average concentrations of all but three target compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) were higher indoors than outdoors. Environmental tobacco smoke was the most significant influence on indoor pollutant levels. Homes with gas heating systems had higher indoor pollutant levels than homes with electric heating systems. However, the true effects of heating and cooking systems were not characterized as accurately as the effects of ETS because of the small sample sizes and the lack of statistical significance for most pollutant differences in the absence of ETS. The concentrations of PAH marker compounds (phenanthrene, fluoranthene, and pyrene) correlated well with the concentrations

  3. Implications of chiral signatures of PCBs in soil, outdoor, and indoor air in the West Midlands conurbation, UK

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidi, A.; Hazrati, S.; Harrad, S. [Birmigham Univ., Birmingham (United Kingdom)

    2005-07-01

    This paper provided additional data related to a study conducted to determine chiral signatures of polychlorinated biphenyl (PCBs) in outdoor air and topsoil from urban, rural and semi-urban locations in the United Kingdom's West Midlands conurbation. The study hypothesized that the ventilation of PCB-contaminated indoor air was a principal source of the racemic PCBs observed in outdoor air. Measurements of chiral signatures of PCBs in indoor air were measured. Chiral signatures of PCB 136 and 149 were expressed in terms of enantiomeric excess. Outdoor air and soil samples were collected from 10 sites located on a southwest to northeast transect of the conurbation at intervals of between 3 and 17 km. Topsoil and air samples were collected on a monthly basis to examine seasonal variability. Passive air samplers were used to provide a time-integrated atmospheric signal over each sampling period. Twenty indoor air samples were collected using PUF disk samplers. All samples were then extracted, purified, and subjected to enantioselective gas chromatography and mass spectrometry (GC-MS) analysis. Results suggested that chiral signatures in outdoor air for all target PCBs were racemic at all locations, and confirmed earlier hypotheses that the ventilation of PCB-contaminated indoor air is the principal source of PCB contamination in the urban atmosphere. It was concluded that actions to reduce PCB stocks remaining in use in indoor environments will result in a significant reduction in atmospheric concentrations. 7 refs., 2 tabs., 1 fig.

  4. Air Pollution in Museum Buildings

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, Morten

    2017-01-01

    This paper reviews the main air pollutants relevant for preservation of cultural heritage objects. Air pollutants may originate from outdoor or indoor sources. Indoor sources include the emission of corrosive vapors from construction materials used for museum display settings. Air pollution may...

  5. Respiratory Effects of Indoor Heat and the Interaction with Air Pollution in Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    McCormack, Meredith C; Belli, Andrew J; Waugh, Darryn; Matsui, Elizabeth C; Peng, Roger D; Williams, D'Ann L; Paulin, Laura; Saha, Anik; Aloe, Charles M; Diette, Gregory B; Breysse, Patrick N; Hansel, Nadia N

    2016-12-01

    There is limited evidence of the effect of exposure to heat on chronic obstructive pulmonary disease (COPD) morbidity, and the interactive effect between indoor heat and air pollution has not been established. To determine the effect of indoor and outdoor heat exposure on COPD morbidity and to determine whether air pollution concentrations modify the effect of temperature. Sixty-nine participants with COPD were enrolled in a longitudinal cohort study, and data from the 601 participant days that occurred during the warm weather season were included in the analysis. Participants completed home environmental monitoring with measurement of temperature, relative humidity, and indoor air pollutants and simultaneous daily assessment of respiratory health with questionnaires and portable spirometry. Participants had moderate to severe COPD and spent the majority of their time indoors. Increases in maximal indoor temperature were associated with worsening of daily Breathlessness, Cough, and Sputum Scale scores and increases in rescue inhaler use. The effect was detected on the same day and lags of 1 and 2 days. The detrimental effect of temperature on these outcomes increased with higher concentrations of indoor fine particulate matter and nitrogen dioxide (P pollution concentrations. For patients with COPD who spend the majority of their time indoors, indoor heat exposure during the warmer months represents a modifiable environmental exposure that may contribute to respiratory morbidity. In the context of climate change, adaptive strategies that include optimization of indoor environmental conditions are needed to protect this high-risk group from the adverse health effects of heat.

  6. The effect of proximity to major roads on indoor air quality in typical Australian dwellings

    Science.gov (United States)

    Lawson, Sarah J.; Galbally, Ian E.; Powell, Jennifer C.; Keywood, Melita D.; Molloy, Suzie B.; Cheng, Min; Selleck, Paul W.

    2011-04-01

    An Indoor Air Quality Study of residential dwellings was carried out in Melbourne, Australia, and a subset of the data was analysed to investigate the effect of proximity to major roads on indoor air quality (IAQ). Seven-day measurements of PM 10, NO 2, benzene, toluene, ethylbenzene and xylenes, along with continuous CO and PM 2.5 measurements were utilised. The measurements were made indoors and outdoors in 27 dwellings; 15 Near Road (300 m from a major road). Dwellings were sampled for one week each in Winter/Spring 2008 and Summer/Autumn 2009, over an eight month period. Analysis of 7-day measurements showed that NO 2 and toluene were elevated at the 5% significance level both indoors and outdoors at Near Road Dwellings compared to Far Road Dwellings. Indoor/Outdoor (I/O) ratios of NO 2 and toluene were not significantly different between Near and Far Road dwellings giving no evidence of any anomalous dominant indoor source for NO 2 and toluene in Near Road dwellings. Indoor NO 2 was significantly correlated to gas stovetop and oven use in both Near and Far Road dwellings. In the absence of gas cooking, indoor NO 2 was elevated in Near Road dwellings relative to Far Road dwellings by approximately 4 ppb and this can be attributed to infiltration of outdoor air. I/O ratios for NO 2 were 2 indicating that indoor sources dominate with minor contribution from outdoors. Hence the relative contribution of roadways to indoor NO 2 is potentially greater than the relative contribution of roadways to indoor toluene. Findings elsewhere suggest that a similar outdoor enhancement of traffic related NO 2 (˜5 ppb) increases risk of lung cancer and childhood asthma ( Brauer et al., 2000; Nyberg et al., 2000). A simple conceptual model indicated spatial and temporal variance in the concentrations was the biggest limitation in detecting roadway influence outside Near Road dwellings for PM 10, PM 2.5 and NO 2 while measurement uncertainty was also important for CO.

  7. Estimating the burden of disease attributable to indoor air pollution ...

    African Journals Online (AJOL)

    Estimating the burden of disease attributable to indoor air pollution from household ... To estimate the burden of respiratory ill health in South African children and adults in ... Mortality and disability-adjusted life years (DALYs) from acute lower ...

  8. Evaluation of the Impact of Indoor Smoking Bans on Air Quality in Australian Licensed Clubs

    Science.gov (United States)

    Davidson, Margaret Elissa

    The quality of indoor air in Australian buildings is unknown due to limited published data. The assessment of indoor air quality (IAQ) in hospitality environments is of special concern because they are frequented by sensitive populations such as the elderly, children, and people with pre-existing health conditions, who may be at risk of developing adverse health reactions if the IAQ is poor. As of 2010, all Australian states and territories have introduced legalisation banning smoking in enclosed public places, including licensed clubs. This project has evaluated the impact of indoor smoking bans on air quality inside and outside of Australian licensed clubs. In doing this it has identified emerging IAQ issues in post smoking ban environments, and documented the airborne concentrations of previously unstudied air contaminants such as particulate matter with a 50% cut-point diameter of 1.0 ?m (PM1.0) and particulate polycyclic aromatic hydrocarbons (PPAH) in the indoor smoking areas of Australian licensed clubs. The study involved collecting approximately 400 hours of air quality data, of which 200 hours was collected before bans and 200 hrs was collected after smoking bans were introduced in licensed clubs located within two local government districts of South Eastern Australia. Clubs 1 to 7 were located in the one district and Clubs 8 to 11 in the other district. Club 4 dropped out following the pre ban monitoring, and the results were omitted from analysis. The air quality parameters measured inside include particulate matter with a 50% cut-point diameter of 2.5 mum (PM2.5), PPAH, carbon monoxide (CO), carbon dioxide mu(CO2), temperature and humidity. The air quality parameters measured outside were PM2.5, CO2, temperature and humidity. Each of the parameters were monitored for 4 hour periods on 4 occasions in each club both before, and after the introduction of indoor smoking bans. Additional monitoring of indoor concentrations of PM1.0, nicotine and PM2

  9. [Indoor air quality in school facilities in Cassino (Italy)].

    Science.gov (United States)

    Langiano, Elisa; Lanni, Liana; Atrei, Patrizia; Ferrara, Maria; La Torre, Giuseppe; Capelli, Giovanni; De Vito, Elisabetta

    2008-01-01

    This study evaluated the indoor air quality of 26 classrooms of secondary schools in the city of Cassino (Italy). Two types of school buildings were assessed: buildings specifically designed as schools, and former dwellings converted to schools. Measurements were taken in both winter and spring months, before students entered the classrooms and while the classrooms were occupied. Lower thermal comfort levels were observed during the winter months; in fact, during the winter, ideal temperature, humidity and air speed parameters were found in only a small percentage of classrooms and students were found to experience thermal discomfort as a result. Air velocity was often found to be inadequate both in winter and spring months and in both types of school buildings evaluated. Illumination levels measured during the winter months with both natural daylight and mixed illumination, were found to be below 200 lux, the minimum recommended level recommended by the ministerial decree 18.12.1975. Noise levels above the maximum level recommended by the ministerial decree 01.03.1991 were also frequently observed. The symptoms most frequently reported by students were headache, difficulties in concentrating, cough, and unusual tiredness. The various discomfort situations observed in both types of school buildings point toward a need for greater attention toward indoor air quality of schools as this can have affect students' attention, concentration, productivity and comfort.

  10. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.

    Science.gov (United States)

    Rösch, Carolin; Wissenbach, Dirk K; von Bergen, Martin; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2015-09-01

    Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.

  11. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  12. Indoor air-assessment: Indoor concentrations of environmental carcinogens

    International Nuclear Information System (INIS)

    Gold, K.W.; Naugle, D.F.; Berry, M.A.

    1991-01-01

    In the report, indoor concentration data are presented for the following general categories of air pollutants: radon-222, environmental tobacco smoke (ETS), asbestos, gas phase organic compounds, formaldehyde, polycyclic aromatic hydrocarbons (PAH), pesticides, and inorganic compounds. These pollutants are either known or suspect carcinogens (i.e., radon-222, asbestos) or more complex mixtures or classes of compounds which contain known or suspect carcinogens. Concentration data for individual carcinogenic compounds in complex mixtures are usually far from complete. The data presented for complex mixtures often include compounds which are not carcinogenic or for which data are insufficient to evaluate carcinogenicity. Their inclusion is justified, however, by the possibility that further work may show them to be carcinogens, cocarcinogens, initiators or promotors, or that they may be employed as markers (e.g., nicotine, acrolein) for the estimation of exposure to complex mixtures

  13. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    Science.gov (United States)

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  14. Improvement of the indoor air quality. An integral approach; Verbetering van de luchtkwaliteit. Een integrale benadering

    Energy Technology Data Exchange (ETDEWEB)

    Bluyssen, Ph. M. [TNO Bouw en Ondergrond, Delft (Netherlands)

    2009-10-15

    There seems to be a discrepancy between current Indoor Air Quality standards and end-users wishes and demands. Indoor air quality can be approached from three points of view: (1) the human, (2) the indoor air of the space and (3) the sources contributing to indoor air pollution. Standards currently in use mainly address the indoor air of the space. Other or additional recommendations and guidelines are required to improve indoor air quality. Even though we do not fully understand the mechanisms behind the physical, chemical, physiological and psychological processes, it is still possible to identify the different ways to be taken: regulatory, political and social (awareness), technical (process and product) and scientific. Besides the fact that there is an urgent need to involve medicine and neuropsychology in research to investigate the mechanisms behind dose-response, health effects and interactions between and with the other factors and parameters of the indoor environment and the human body and mind, a holistic approach is required including the sources, the air and last but not least the human beings (occupants) themselves. This paper mainly focuses on the European situation. [Dutch] Er lijkt een discrepantie te bestaan tussen de huidige richtlijnen voor binnenluchtkwaliteit en de wensen en eisen van eindgebruikers. Binnenluchtkwaliteit kan op drie manieren worden benaderd: vanuit de mens, de binnenlucht in de ruimte en vanuit de bronnen die aan de binnenluchtverontreiniging bijdragen. Huidige richtlijnen adresseren vooral de binnenlucht in een ruimte. Andere of extra aanbevelingen en richtlijnen zijn nodig om de binnenluchtkwaliteit te verbeteren. Ondanks dat we de mechanismen achter de fysieke, chemische, fysiologische en psychologische processen niet volledig begrijpen, is het toch mogelijk, om de verschillende wegen (regelgeving, politiek-sociale (besef/bewustzijn), technisch (proces en product) en wetenschappelijk), die bewandeld kunnen worden uit te

  15. An energy performance assessment for indoor environmental quality (IEQ) acceptance in air-conditioned offices

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.

    2009-01-01

    Maintaining an acceptable indoor environmental quality (IEQ) for air-conditioned office buildings consumes a considerable amount of thermal energy. This study correlates thermal energy consumption with the overall occupant acceptance of IEQ in some air-conditioned offices. An empirical expression of an IEQ index associated with thermal comfort, indoor air quality, aural and visual comfort is used to benchmark the offices. Employing input parameters obtained from the building stocks of Hong Kong, the office portfolios regarding the thermal energy consumption and the IEQ index are determined by Monte Carlo simulations. In particular, an energy-to-acceptance ratio and an energy-to-IEQ improvement ratio are proposed to measure the performance of energy consumption for the IEQ in the air-conditioned offices. The ratios give the thermal energy consumption corresponding to a desirable percentage of IEQ acceptances and to an IEQ upgrade, respectively. The results showed a non-linear increasing trend of annual thermal energy consumption for IEQ improvement at the offices of higher IEQ benchmarks. The thermal energy consumption for visual comfort and indoor air quality would also be significant in these offices. This study provides useful information that incorporates the IEQ in air-conditioned offices into the development of performance evaluation measures for thermal energy consumption.

  16. SOPHIE, a European data base on indoor air pollution sources: Marketing and organisational matters

    NARCIS (Netherlands)

    Bluyssen, P.M.; Oliveira Fernandes, E. de; Molina, J.L.

    1999-01-01

    As an outcome of a former project of the JOULE programme of the European Commission, the Database SOPHIE (Sources of Pollution for a Healthy and Comfortable Indoor Environment) represents an attempt to contribute to an objective, permanent and dynamic documentation of indoor air pollution sources.

  17. Indoor Air Pollution and Risk of Lung Cancer among Chinese Female Non-Smokers

    Science.gov (United States)

    Mu, Lina; Liu, Li; Niu, Rungui; Zhao, Baoxing; Shi, Jianping; Li, Yanli; Scheider, William; Su, Jia; Chang, Shen-Chih; Yu, Shunzhang; Zhang, Zuo-Feng

    2013-01-01

    Purpose To investigate indoor particulate matter (PM) level and various indoor air pollution exposure, and to examine their relationships with risk of lung cancer in an urban Chinese population, with a focus on non-smoking women. Methods We conducted a case-control study in Taiyuan, China, consisting of 399 lung cancer cases and 466 controls, of which 164 cases and 218 controls were female non-smokers. Indoor PM concentrations, including PM1, PM2.5, PM7, PM10 and TSP, were measured using a particle mass monitor. Unconditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals after adjusting for age, education, annual income and smoking. Results Among non-smoking women, lung cancer was strongly associated with multiple sources of indoor air pollution 10 years ago, including heavy exposure to ETS at work (aOR=3.65), high frequency of cooking (aOR=3.30), and solid fuel usage for cooking (aOR=4.08) and heating (aORcoal stove=2.00). Housing characteristics related to poor ventilation, including single-story, less window area, no separate kitchen, no ventilator and rarely having windows open, are associated with lung cancer. Indoor medium PM2.5 concentration was 68ug/m3, and PM10 was 230ug/m3. PM levels in winter are strongly correlated with solid fuel usage for cooking, heating and ventilators. PM1 levels in cases are more than 3-time higher than that in controls. Every 10 ug/m3 increase in PM1 is associated with 45% increased risk of lung cancer. Conclusions Indoor air pollution plays an important role in the development of lung cancer among non-smoking Chinese women. PMID:23314675

  18. THE PRINCIPLES OF MODELING OF DYNAMICS OF IONIC COMPOSITION OF INDOOR AIR

    Directory of Open Access Journals (Sweden)

    О. Запорожець

    2011-02-01

    Full Text Available Ionic composition of indoor air is one of the most significant physical factors of influence on human health. Nowadays research in this field  are continued, and mainly it is directed to  development of equipment for normalization of ionic composition of air and equipment for control of ionic composition of air. At  the same time researches in the field of development of  mathematical apparatus for modeling time and spatial changes of concentrations of air ions are not numerous. In the article authors proposed to use continuity equation for description of dynamics of spreading of air ions indoors. It’s transformed to linear differential equation of order 1 with usage of  simplification and transformation, and for it’s solution was used Bernoulli equation. Solution of equation shows that concentration of air ions increases with approaching  to source, that was  confirmed by experiment. Also in article is proposed to use diffusion coefficient for characterizing of spreading of air ions, it allows to get linear nonhomogenous equation of order 2. In general  results of solution of such equation correlate with experimental data satisfactorily

  19. Guidelines for indoor air hygiene in school buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moriske, Heinz-Joern; Szewzyk, Regine (eds.)

    2008-08-15

    The new guidelines for indoor air hygiene in school buildings are intended as a response to current requirements in school practice. The recommendations aim to help to avoid mistakes in modernising school buildings and to provide hygiene-specific support in planning of new school buildings. The guidelines are laid out as follows: (a) In the general section the targets of the guidelines and the target groups are addressed. The current indoor hygiene situation in German schools is described, followed by the parameters with regard to peripheral issues which will not be dealt with further; (b) Part A deals with the hygiene requirements in the practical running of schools. Besides general requirements for maintenance and operation the important issues of cleaning and ventilation are considered, as well as minor building works; (c) Part B provides an overview of important chemical and biological contaminants in schools; (d) Part C looks at building and air conditioning requirements. The important issues of acoustic requirements is also addressed; (e) Part D shows how to deal practically with problem cases and list case studies with 'typical' procedures; (f) Part E provides a brief overview of existing renovation guidelines.

  20. Guidelines for indoor air hygiene in school buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moriske, Heinz-Joern; Szewzyk, Regine [eds.

    2008-08-15

    The new guidelines for indoor air hygiene in school buildings are intended as a response to current requirements in school practice. The recommendations aim to help to avoid mistakes in modernising school buildings and to provide hygiene-specific support in planning of new school buildings. The guidelines are laid out as follows: (a) In the general section the targets of the guidelines and the target groups are addressed. The current indoor hygiene situation in German schools is described, followed by the parameters with regard to peripheral issues which will not be dealt with further; (b) Part A deals with the hygiene requirements in the practical running of schools. Besides general requirements for maintenance and operation the important issues of cleaning and ventilation are considered, as well as minor building works; (c) Part B provides an overview of important chemical and biological contaminants in schools; (d) Part C looks at building and air conditioning requirements. The important issues of acoustic requirements is also addressed; (e) Part D shows how to deal practically with problem cases and list case studies with 'typical' procedures; (f) Part E provides a brief overview of existing renovation guidelines.

  1. A 14-year longitudinal study of the impact of clean indoor air legislation on state smoking prevalence, USA, 1997-2010.

    Science.gov (United States)

    Becker, Craig M; Lee, Joseph G L; Hudson, Suzanne; Hoover, Jeanne; Civils, Donald

    2017-06-01

    While clean indoor air legislation at the state level is an evidence-based recommendation, only limited evidence exists regarding the impact of clean indoor air policies on state smoking prevalence. Using state smoking prevalence data from 1997 to 2010, a repeated measures observational analysis assessed the association between clean indoor air policies (i.e., workplace, restaurant, and bar) and state smoking prevalence while controlling for state cigarette taxes and year. The impacts from the number of previous years with any clean indoor air policy, the number of policies in effect during the current year, and the number of policies in effect the previous year were analyzed. Findings indicate a smoking prevalence predicted decrease of 0.13 percentage points (p=0.03) for each additional year one or more clean indoor air policies were in effect, a predicted decrease of 0.12 percentage points (p=0.09) for each policy in effect in the current year, and a predicted decrease of 0.22 percentage points (p=0.01) for each policy in effect in the previous year on the subsequent year. Clean indoor air policies show measurable associations with reductions in smoking prevalence within a year of implementation above and beyond taxes and time trends. Further efforts are needed to diffuse clean indoor air policies across states and provinces that have not yet adopted such policies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Association between State Assistance on the Topic of Indoor Air Quality and School District-Level Policies That Promote Indoor Air Quality in Schools

    Science.gov (United States)

    Everett Jones, Sherry; Doroski, Brenda; Glick, Sherry

    2015-01-01

    Nationally representative data from the 2012 School Health Policies and Practices Study examined whether state assistance on indoor air quality (IAQ) was associated with district-level policies and practices related to IAQ and integrated pest management (IPM). Districts in states that provided assistance on IAQ were more likely than districts not…

  3. Indoor Air Quality Analysis Using Deep Learning with Sensor Data

    Directory of Open Access Journals (Sweden)

    Jaehyun Ahn

    2017-10-01

    Full Text Available Indoor air quality analysis is of interest to understand the abnormal atmospheric phenomena and external factors that affect air quality. By recording and analyzing quality measurements, we are able to observe patterns in the measurements and predict the air quality of near future. We designed a microchip made out of sensors that is capable of periodically recording measurements, and proposed a model that estimates atmospheric changes using deep learning. In addition, we developed an efficient algorithm to determine the optimal observation period for accurate air quality prediction. Experimental results with real-world data demonstrate the feasibility of our approach.

  4. [Health evaluation of trichloroethylene in indoor air : communication from the German ad-hoc working group on indoor guidelines of the Indoor Air Hygiene Committee and of the states' supreme health authorities].

    Science.gov (United States)

    2015-07-01

    In the European Hazardous Substances Regulation No 1272/2008 trichloroethylene has been classified as a probable human carcinogen and a suspected mutagen. According to several Committees (German Committee on Hazardous Substances, European Scientific Committee on Occupational Exposure Limits, European Chemicals Agency´s Committee for Risk Assessment (ECHA-RAC)) concentrations of trichloroethylene cytotoxic to renal tubuli may increase the risk to develop renal cancer. At non-cytotoxic concentrations of trichloroethylene a much lower cancer risk may be assumed. Therefore, evaluating the cancer risk to the public following inhalation of trichloroethylene ECHA-RAC has assumed a sublinear exposure-response relationship for carcinogenicity of trichloroethylene. Specifically, ECHA-RAC assessed a cancer risk of 6.4 × 10(- 5) (mg/m(3))(- 1) following life time exposure to trichloroethylene below a NOAEC for renal cytotoxicity of 6 mg trichloroethylene/m(3). Further evaluation yields a life-time risk of 10(- 6) corresponding to 0.02 mg trichloroethylene/m(3). This concentration is well above the reference (e.g. background) concentration of trichloroethylene in indoor air. Consequently the Ad-hoc Working Group on Indoor Guidelines recommends 0.02 mg trichloroethylene/m(3) as a risk-related guideline for indoor air. Measures to reduce exposure are considered inappropriate at concentrations below this guideline.

  5. Outdoor and indoor air quality and cognitive ability in young children.

    Science.gov (United States)

    Midouhas, Emily; Kokosi, Theodora; Flouri, Eirini

    2018-02-01

    This study examined outdoor and indoor air quality at ages 9 months and 3 years and their association with cognitive ability at age 3 in England and Wales. Data from 8198 Millennium Cohort Study children were analysed using multilevel regression. Outdoor air quality was assessed with mean annual estimates of nitrogen dioxide (NO 2 ) levels within a standard small area (ward). Indoor air quality was measured with parent-reports of damp or condensation in the home and exposure to secondhand smoke in the home. Cognitive ability was assessed with the British Ability Scales Naming Vocabulary subscale and the Bracken School Readiness Assessment. In adjusted models, consistent exposure to high levels of NO 2 at age 9 months and age 3 years was associated with lower verbal ability at age 3 years. Damp/condensation and secondhand smoke in the home at either age or at both ages were correlated with lower school readiness at age 3 years. Exposures to damp/condensation at age 3 years or at both ages and secondhand smoke at either age or at both ages were associated with lower verbal ability at age 3 years. Young children's exposures to indoor damp or condensation and secondhand smoke are likely to be detrimental for their cognitive outcomes. However, there do not appear to be any short-term effects of NO 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Microbiological Indoor and Outdoor Air Quality of Two Major ...

    African Journals Online (AJOL)

    Both indoor and outdoor air samples were assessed monthly for the three (3) months in the wet season (June – August, 2010) and dry season (November 2010 - January 2011) using the settled plate methods. The study sites were divided into nine (9) units which include accident and emergency ward, laboratory, male ward ...

  7. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  8. Indoor air quality in the Karns research houses: baseline measurements and impact of indoor environmental parameters on formaldehyde concentrations

    International Nuclear Information System (INIS)

    Matthews, T.G.; Fung, K.W.; Tromberg, B.J.; Hawthorne, A.R.

    1985-12-01

    Baseline indoor air quality measurements, a nine-month radon study, and an environmental parameters study examining the impact of indoor temperature (T) and relative humidity (RH) levels on formaldehyde (CH 2 O) concentrations have been performed in three unoccupied research homes located in Karns, Tennessee. Inter-house comparison measurements of (1) CH 2 O concentration, (2) CH 2 O emission rates from primary CH 2 O emission sources, (3) radon and radon daughter concentrations, and (4) air exchange rates indicate that the three homes are similar. The results of the nine-month radon study indicate indoor concentrations consistently below the EPA recommended level of 4 pCi/L. Evidence was found that crawl-space concentrations may be reduced using heat pump systems whose outdoor units circulate fresh air through the crawl-space. The modeled results of the environmental parameters study indicate approximate fourfold increases in CH 2 O concentrations from 0.07 to 0.27 ppM for seasonal T and RH conditions of 20 0 C, 30% RH and 29 0 C, 80% RH, respectively. Evaluation of these environmental parameters study data with steady-state CH 2 O concentration models developed from laboratory studies of the environmental dependence of CH 2 O emissions from particleboard underlayment indicate good correlations between the laboratory and field studies

  9. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    Science.gov (United States)

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  10. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France).

    Science.gov (United States)

    Oziol, Lucie; Alliot, Fabrice; Botton, Jérémie; Bimbot, Maya; Huteau, Viviane; Levi, Yves; Chevreuil, Marc

    2017-01-01

    The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.

  11. Vehicle emissions and effects on air quality: indoors and outdoors

    International Nuclear Information System (INIS)

    Perry, R.; Gee, I.L.

    1994-01-01

    Vehicle emissions of non-regulated volatile organic compounds (VOCs), such as benzene, can form a major contribution to pollution of the indoor as well as the outdoor environment. Several of these compounds are considered to be a health risk and are important factors in the production of photochemical smog. The introduction of unleaded and particularly 'super unleaded' fuels has significantly increased levels of aromatic compounds in petrol world-wide and has led to changes in fuel composition with respect to olefins and the use of oxygenates. Increased aromatics, olefins and other compounds in fuels used in vehicles not fitted with catalytic converters have shown to increase emissions of benzene, 1,4-budatiene and other VOCs as well as contributing to increases in photochemical smog precursors. Increases in VOC levels in ambient air clearly produce increased indoor air pollution, particularly in naturally ventilated buildings. (author) 6 figs., 5 tabs., 30 refs

  12. Removal of PCB from indoor air and surface materials by introduction of additional sorbing materials

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Lyng, Nadja; Kolarik, Barbara

    2017-01-01

    Alleviation of indoor PCB contamination is extremely expensive because PCB from old primary sources has redistributed to most other surfaces over time. This study investigates the introduction of new removable sorbing materials as a method instantly lowering the concentration of PCB in indoor air...... and slowly decontaminating old surface materials. In three bedrooms of a contaminated apartment respectively new painted gypsum boards, sheets of flexible polyurethane foam and activated carbon fabric were introduced. The PCB concentrations in room air were monitored before the intervention and several times...... during the following 10 months. The PCB concentrations in the old surface materials as well as the new materials were also measured. An immediate reduction of PCB concentration in indoor air, a gradual increase of PCB in new material and as well a gradual reduction in old surface materials were...

  13. A preliminary investigation of indoor air quality in a naturally ventilated house

    International Nuclear Information System (INIS)

    Shahrani, S.; Ahmed, A.Z.; Abdul Rahman, S.

    2006-01-01

    Continuous monitoring of indoor air quality was conducted in a naturally ventilated Malaysian house. CO 2 , CO, temperature and relative air humidity measurements were performed in the bathroom, bedroom, family room, kitchen and living room at 15-minute intervals over a 24-hour monitoring period. The measurement data were supplemented with time activity diaries detailing the occupants time of occupancy in each room, activities undertaken in each room and cooling and/or ventilation techniques used in each room. Indoor air quality was found to be generally satisfactory in all five rooms. However, levels of CO in the family room exceeded the USEPA, WHO and Singapore guidelines. Additionally, levels of relative humidity in the kitchen, living room and family room temperature in all five rooms exceeded the ASHRAE and Singapore guidelines, and suggest the like hood of condensation and mould growth

  14. Microbiological assessment of indoor air of a teaching hospital in Nigeria.

    Science.gov (United States)

    Awosika, S A; Olajubu, F A; Amusa, N A

    2012-06-01

    To investigate the quality of indoor air of different wards and units of Olabisi Onabanjo University Teaching Hospital, Sagamu, to ascertain their contribution to infection rate in the hospital. The microbial quality of indoor air of nine wards/units of Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria was conducted. Sedimentation technique using open Petri-dishes containing different culture media was employed and samplings were done twice daily, one in the morning shortly after cleaning and before influx of people/patients into the wards/units and the other in the evening when a lot of activities would have taken place in these wards. Isolates were identified according to standard methods. Results showed that there was a statistically significant difference (χ(2) = 6.016 7) in the bacteria population of the different sampling time whereas it was not so for fungi population (χ(2) = 0.285 7). Male medical ward (MMW) and male surgical general (MSG) recorded the highest bacterial and fungal growth while the operating theatre (OT) was almost free of microbial burden. The bacteria isolates were Staphylococcus aureus, Klebsiella sp., Bacillus cereus, Bacillus subtilis, Streptococcus pyogenes and Serratia marscences while the fungi isolates included Aspergillus flavus, Penicillium sp., Fusarium sp., Candida albicans and Alternaria sp. Staphylococcus aureus was the predominantly isolated bacterium while Penicillium sp. was the most isolated fungus. Though most of the microbial isolates were potential and or opportunistic pathogens, there was no correlation between the isolates in this study and the surveillance report of nosocomial infection during the period of study, hence the contribution of the indoor air cannot be established. From the reduction noticed in the morning samples, stringent measures such as proper disinfection and regular cleaning, restriction of patient relatives' movement in and out of the wards/units need to be enforced so as to

  15. Indoor air radon concentration in schools in Prizren, Kosovo

    International Nuclear Information System (INIS)

    Bahtijari, M.; Stegnar, P.; Shemsidini, Z.; Kobal, I.; Vaupotic, J.

    2006-01-01

    Indoor air radon ( 222 Rn) concentrations were measured in spring and winter in 30 rooms of 9 elementary schools and 19 rooms of 6 high schools in Prizren, Kosovo, using alpha scintillation cells. Only in three rooms of elementary schools and four rooms of high schools did winter concentrations exceed 400 Bq m -3 . (authors)

  16. Analysis of indoor air quality data from East Tennessee field studies

    International Nuclear Information System (INIS)

    Dudney, C.S.; Hawthorne, A.R.

    1985-08-01

    This report presents the results of follow-up experimental activities and data analyses of an indoor air quality study conducted in 40 East Tennessee homes during 1982-1983. Included are: (1) additional experimental data on radon levels in all homes, repeat measurements in house No. 7 with elevated formaldehyde levels, and energy audit information on the participants' homes; (2) further data analyses, especially of the large formaldehyde data base, to ascertain relationships of pollutant levels vs environmental factors and house characteristics; (3) indoor air quality data base considerations and development of the study data base for distribution on magnetic media for both mainframe and desktop computer use; and (4) identification of design and data collection considerations for future field studies. A bibliography of additional publications related to this effort is also presented

  17. Design of environmentally friendly calcium sulfate-based building materials : towards an improved indoor air quality

    NARCIS (Netherlands)

    Yu, Q.

    2012-01-01

    This thesis addresses the performance based design and development of an environmentally friendly calcium sulfate-based indoor building product towards an improved indoor air quality. Here "environmental friendly" is referred to the environment related subjects including: (1) the selection of raw

  18. Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.

    Science.gov (United States)

    Sundersingh, David; Bearg, David W.

    This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…

  19. Ventilation, good indoor air quality and rational use of energy

    DEFF Research Database (Denmark)

    Clausen, Geo; Fernandes, E. D. O.; DeGids, W.

    2003-01-01

    The aim of this report is to provide information and advice to policy and decission makers, researchers, architects, designers, and manufacturers on strategies for achieving a good balance between good indoor air quality (IAQ) and the rational use of Energy in buildings, available guidelines...

  20. Assessing indoor air quality of school environments: transplanted lichen Pseudovernia furfuracea as a new tool for biomonitoring and bioaccumulation.

    Science.gov (United States)

    Protano, Carmela; Owczarek, Malgorzata; Antonucci, Arianna; Guidotti, Maurizio; Vitali, Matteo

    2017-07-01

    The aim of this research is to evaluate the ability of transplanted lichen Pseudovernia (P). furfuracea to biomonitor and bioaccumulate in urban indoor environments. The elements As, Cd, Cr, Cu, Hg, Ni and Pb and 12 selected polycyclic aromatic hydrocarbons (PAHs) were used to assess P. furfuracea as a biomonitoring tool for the indoor air quality of school environments. To achieve this purpose, lichen samples were exposed for 2 months in the outdoor and indoor environments of five school settings located in urban and rural areas. The results demonstrated that transplanted lichen P. furfuracea is a suitable biomonitoring tool for metals and PAHs in indoor settings and can discriminate between different levels of air pollution related to urbanisation and indoor conditions, such as those characterised by school environments. A transplanted lichen biomonitoring strategy is cost-effective, "green", educational for attending children and less "invasive" than traditional air sampling methods. The feasibility of indoor monitoring by P. furfuracea is a relevant finding and could be a key tool to improve air quality monitoring programmes in school scenarios and thus focus on health prevention interventions for children, who are one of the most susceptible groups in the population.

  1. Effect of Using an Indoor Air Quality Sensor on Perceptions of and Behaviors Toward Air Pollution (Pittsburgh Empowerment Library Study): Online Survey and Interviews.

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Dias, M Beatrice; Taylor, Michael

    2018-03-08

    Air quality affects us all and is a rapidly growing concern in the 21st century. We spend the majority of our lives indoors and can be exposed to a number of pollutants smaller than 2.5 microns (particulate matter, PM 2.5 ) resulting in detrimental health effects. Indoor air quality sensors have the potential to provide people with the information they need to understand their risk and take steps to reduce their exposure. One such sensor is the Speck sensor developed at the Community Robotics, Education and Technology Empowerment Lab at Carnegie Mellon University. This sensor provides users with continuous real-time and historical PM 2.5 information, a Web-based platform where people can track their PM 2.5 levels over time and learn about ways to reduce their exposure, and a venue (blog post) for the user community to exchange information. Little is known about how the use of such monitors affects people's knowledge, attitudes, and behaviors with respect to indoor air pollution. The aim of this study was to assess whether using the sensor changes what people know and do about indoor air pollution. We conducted 2 studies. In the first study, we recruited 276 Pittsburgh residents online and through local branches of the Carnegie Library of Pittsburgh, where the Speck sensor was made available by the researchers in the library catalog. Participants completed a 10- to 15-min survey on air pollution knowledge (its health impact, sources, and mitigation options), perceptions of indoor air quality, confidence in mitigation, current behaviors toward air quality, and personal empowerment and creativity in the spring and summer of 2016. In our second study, we surveyed 26 Pittsburgh residents in summer 2016 who checked out the Speck sensor for 3 weeks on the same measures assessed in the first study, with additional questions about the perception and use of the sensor. Follow-up interviews were conducted with a subset of those who used the Speck sensor. A series of paired t

  2. The mutagenicity of indoor air particles in a residential pilot field study: Application and evaluation of new methodologies

    Science.gov (United States)

    Lewtas, Joellen; Goto, Sumio; Williams, Katherine; Chuang, Jane C.; Petersen, Bruce A.; Wilson, Nancy K.

    The mutagenicity of indoor air paniculate matter has been measured in a pilot field study of homes in Columbus, Ohio during the 1984 winter. The study was conducted in eight all natural-gas homes and two all electric homes. Paniculate matter and semi-volatile organic compounds were collected indoors using a medium volume sampler. A micro-forward mutation bioassay employing Salmonella typhimurium strain TM 677 was used to quantify the mutagenicity in solvent extracts of microgram quantities of indoor air particles. The mutagenicity was quantified in terms of both mutation frequency per mg of organic matter extracted and per cubic meter of air sampled. The combustion source variables explored in this study included woodburning in fireplaces and cigarette smoking. Homes in which cigarette smoking occurred had the highest concentrations of mutagenicity per cubic meter of air. The average indoor air mutagenicity per cubic meter was highly correlated with the number of cigarettes smoked. When the separate sampling periods in each room were compared, the mutagenicity in the kitchen samples was the most highly correlated with the number of cigarettes smoked.

  3. High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke

    International Nuclear Information System (INIS)

    Böhlandt, Antje; Schierl, Rudolf; Diemer, Juergen; Koch, Christoph; Bolte, Gabriele; Kiranoglu, Mandy; Fromme, Hermann; Nowak, Dennis

    2012-01-01

    Background: Environmental tobacco smoke (ETS) is one of the most important sources for indoor air pollution and a substantial threat to human health, but data on the concentrations of the trace metals cerium (Ce) and lanthanum (La) in context with ETS exposure are scarce. Therefore the aim of our study was to quantify Ce and La concentrations in indoor air with high ETS load. Methods: In two subsequent investigations Ce, La and cadmium (Cd) in 3 smokers' (11 samples) and 7 non-smokers' (28 samples) households as well as in 28 hospitality venues in Southern Germany were analysed. Active sampling of indoor air was conducted continuously for seven days in every season in the smokers' and non-smokers' residences, and for 4 h during the main visiting hours in the hospitality venues (restaurants, pubs, and discotheques). Results: In terms of residences median levels of Cd were 0.1 ng/m 3 for non-smokers' and 0.8 ng/m 3 for smokers' households. Median concentrations of Ce were 0.4 ng/m 3 and 9.6 ng/m 3 , and median concentrations of La were 0.2 ng/m 3 and 5.9 ng/m 3 for non-smokers' and for smokers' households, respectively. In the different types of hospitality venues median levels ranged from 2.6 to 9.7 ng/m 3 for Cd, from 18.5 to 50.0 ng/m 3 for Ce and from 10.6 to 23.0 ng/m 3 for La with highest median levels in discotheques. Conclusions: The high concentrations of Ce and La found in ETS enriched indoor air of smokers' households and hospitality venues are an important finding as Ce and La are associated with adverse health effects and data on this issue are scarce. Further research on their toxicological, human and public health consequences is urgently required. - Highlights: ► We quantified cer, lanthanum and cadmium concentrations in indoor air. ► Cer and lanthanum concentrations were high in tobacco smoke enriched locations. ► Both elements can be considered as good markers for indoor air quality.

  4. Indoor Residential Chemical Exposures as Risk Factors for Asthmaand Allergy in Infants and Children: a Review

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, M.J.

    2006-03-01

    Most research into effects of residential indoor air exposures on asthma and allergies has focused on exposures to biologic allergens, moisture and mold, endotoxin, or combustion byproducts. This paper briefly reviews reported findings on associations of asthma or allergy in infants or children with risk factors related to indoor chemical emissions from residential materials or surface coatings. Associations, some strong (e.g., odds ratios up to 13), were reported. The most frequently identified risk factors were formaldehyde, aromatic organic compounds such as toluene and benzene, plastic materials and plasticizers, and recent painting. Exposures and consequent effects from indoor sources may be exacerbated by decreased ventilation. Identified risk factors may be proxies for correlated exposures. Findings suggest the frequent occurrence of important but preventable effects on asthma and allergy in infants and children worldwide from modern residential building materials and coatings.

  5. Acetaldehyde Removal from Indoor Air through Chemical Absorption Using L-Cysteine

    Directory of Open Access Journals (Sweden)

    Miyuki Noguchi

    2010-09-01

    Full Text Available The irreversible removal of acetaldehyde from indoor air via a chemical reaction with amino acids was investigated. To compare effectiveness, five types of amino acid (glycine, L-lysine, L-methionine, L-cysteine, and L-cystine were used as the reactants. First, acetaldehyde-laden air was introduced into aqueous solutions of each amino acid and the removal abilities were compared. Among the five amino acids, L-cysteine solution showed much higher removal efficiency, while the other amino acids solutions didn’t show any significant differences from the removal efficiency of water used as a control. Next, as a test of the removal abilities of acetaldehyde by semi-solid L-cysteine, a gel containing L-cysteine solution was put in a fluororesin bag filled with acetaldehyde gas, and the change of acetaldehyde concentration was measured. The L-cysteine-containing gel removed 80% of the acetaldehyde in the air within 24 hours. The removal ability likely depended on the unique reaction whereby acetaldehyde and L-cysteine rapidly produce 2-methylthiazolidine-4-carboxylic acid. These results suggested that the reaction between acetaldehyde and L-cysteine has possibilities for irreversibly removing toxic acetaldehyde from indoor air.

  6. Indoor Air Quality Tools for Schools Action Kit. Second Edition.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This kit contains materials to assist a school indoor air quality (IAQ) coordinator in conducting a school IAQ program. The kit contains the following: IAQ coordinator's guide; IAQ coordinator forms; IAQ backgrounder; teacher's classroom checklist; administrative staff checklist; health officer/school nurse checklist; ventilation checklist and…

  7. Contribution of {sup 222}Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China

    Energy Technology Data Exchange (ETDEWEB)

    Song Gang, E-mail: songg2005@126.co [School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Xinming [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Diyun; Chen Yongheng [School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006 (China)

    2011-04-15

    This study investigates the contribution of radon ({sup 222}Rn)-bearing water to indoor {sup 222}Rn in thermal baths. The {sup 222}Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM{sub 10} and PM{sub 2.5}) and carbon dioxide (CO{sub 2}) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m{sup -3} of {sup 222}Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which {sup 222}Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average {sup 222}Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor {sup 222}Rn levels were influenced by the {sup 222}Rn concentrations in the hot spring water and the bathing times. The average {sup 222}Rn transfer coefficients from water to air were 6.2 x 10{sup -4}-4.1 x 10{sup -3}. The 24-h average levels of CO{sub 2} and PM{sub 10} in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM{sub 2.5}. Radon and PM{sub 10} levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. - Highlights: {yields} {sup 222}Rn-bearing water is the main contributor to indoor radon in hot spring hotel. {yields} The PM{sub 2.5} and CO{sub 2} are also the main indoor pollutants in the hotel rooms. {yields} Higher radon and PM levels might have significant negative health effects to human. {yields} The radon transfer coefficients are consistent with the published data.

  8. Indoor air pollution caused by wood-burning in Brazilian and Danish dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; da Cruz Tarelho, Luís António

    2013-01-01

    Residential wood-burning is considered by the scientific community as the 4th major cause of deaths in the developing countries due to the indoor air contamination and a cause of regional air pollution in the northern countries. In the first case, wood is being used by low income people that stil...

  9. Improving indoor air quality for poor families: a controlled experiment in Bangladesh.

    Science.gov (United States)

    Dasgupta, S; Wheeler, D; Huq, M; Khaliquzzaman, M

    2009-02-01

    The World Health Organization's 2004 Global and Regional Burden of Disease Report estimates that acute respiratory infections from indoor air pollution (pollution from burning wood, animal dung, and other bio-fuels) kill a million children annually in developing countries, inflicting a particularly heavy toll on poor families in South Asia and Africa. This paper reports on an experiment that studied the use of different fuels in conjunction with different combinations of construction materials, space configurations, cooking locations, and household ventilation practices (use of doors and windows) as potentially-important determinants of indoor air pollution. Results from controlled experiments in Bangladesh were analyzed to test whether changes in these determinants can have significant effects on indoor air pollution. Analysis of the data shows, for example, that pollution from the cooking area is transported into living spaces rapidly and completely. Furthermore, it is important to factor in the interaction between outdoor and indoor air pollution. Hence, the optimal cooking location should take 'seasonality' in account. Among fuels, seasonal conditions seem to affect the relative severity of pollution from wood, dung, and other biomass fuels. However, there is no ambiguity about their collective impact. All are far dirtier than clean (LPG and Kerosene) fuels. The analysis concludes that if cooking with clean fuels is not possible, then building the kitchen with permeable construction material and providing proper ventilation in cooking areas will yield a better indoor health environment. Several village-level measures could significantly reduce IAP exposure in Bangladesh. All would require arrangements and the assert of male heads-of-household: negotiated bulk purchases of higher cost, cleaner fuels; purchase of more fuel-efficient stoves; peripheral location of cooking facilities; building the kitchen with permeable construction material; rotation of women in

  10. Indoor air quality vs. energy use in a beer brewery : assessment of ventilation methods and systems using CFD

    NARCIS (Netherlands)

    van Hooff, T.A.J.; Blocken, B.J.E.

    2015-01-01

    The production in industrial buildings can have a large impact on the indoor air quality. For example, in beer breweries several processes influence the indoor air quality to a large extent, such as the fermentation process, which is accompanied by a strong emission of CO2 gas. Employees working

  11. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran

    Science.gov (United States)

    Hazrati, Sadegh; Rostami, Roohollah; Farjaminezhad, Manoochehr; Fazlzadeh, Mehdi

    2016-05-01

    BTEX concentrations in indoor and outdoor air of 50 homes were studied in Ardabil city and their influencing parameters including; heating system, using gas stove and samovar, tobacco smoking, the floors in which the monitored homes were located, and kitchen plan were considered in the study. Risk assessment analysis was carried out with the obtained concentrations based on EPA IRIS reference doses. BTEX compounds were sampled by charcoal tubes and the samples were analyzed by a GC-FID. Concentrations of benzene (15.18 μg/m3 vs. 8.65 μg/m3), toluene (69.70 μg/m3 vs. 40.56 μg/m3), ethylbenzene (12.07 μg/m3 vs. 4.92 μg/m3) and xylene (48.08 μg/m3 vs. 7.44 μg/m3) in indoor air were significantly (p < 0.05) higher than the levels quantified for outdoor air. The obtained concentrations of benzene were considerably higher than the recommended value of 5 μg/m3 established by Iran environmental protection organization. Among the BTEX compounds, benzene (HQ = 0.51) and xylene (HQ = 0.47) had notable hazard quotient and were the main pollutants responsible for high hazard index in the monitored homes (HI = 1.003). The results showed considerably high cancer risk for lifetime exposure to the indoor (125 × 10-6) and outdoor (71 × 10-6) benzene. Indoor benzene concentrations in homes were significantly influenced by type of heating system, story, and natural gas appliances.

  12. Indoor air quality for poor families: new evidence from Bangladesh

    OpenAIRE

    Dasgupta, Susmita; Huq, Mainul; Khaliquzzaman, M.; Pandey, Kiran; Wheeler, David

    2004-01-01

    Indoor air pollution (IAP) from cooking and heating is estimated to kill a million children annually in developing countries. To promote a better understanding of IAP, the authors investigate the determinants of IAP in Bangladesh using the latest air monitoring technology and a national household survey. The study concludes that IAP is dangerously high for many poor families in Bangladesh. Concentrations of respirable airborne particulates(PM10) 300 ug/m3 or greater are common in the sample, ...

  13. Radon decay product in-door behaviour - parameter, measurement method, and model review

    International Nuclear Information System (INIS)

    Scofield, P.

    1988-01-01

    This report reviews parameters used to characterize indoor radon daughter behavior and concentrations. Certain parameters that affect indoor radon daughter concentrations are described and the values obtained experimentally or theoretically are summarized. Radon daughter measurement methods are reviewed, such as, PAEC, unattached daughters, particle size distributions, and plateout measurement methods. In addition, certain radon pressure driven/diffusion models and indoor radon daughter models are briefly described. (orig.)

  14. Indoor/Outdoor Air Quality Assessment at School near the Steel Plant in Taranto (Italy

    Directory of Open Access Journals (Sweden)

    A. Di Gilio

    2017-01-01

    Full Text Available This study aims to investigate the air quality in primary school placed in district of Taranto (south of Italy, an area of high environmental risk because of closeness between large industrial complex and urban settlement. The chemical characterization of PM2.5 was performed to identify origin of pollutants detected inside school and the comparison between indoor and outdoor levels of PAHs and metals allowed evaluating intrusion of outdoor pollutants or the existence of specific indoor sources. The results showed that the indoor and outdoor levels of PM2.5, BaP, Cd, Ni, As, and Pb never exceeded the target values issued by World Health Organization (WHO. Nevertheless, high metals and PAHs concentrations were detected especially when school were downwind to the steel plant. The I/O ratio showed the impact of outdoor pollutants, especially of industrial markers as Fe, Mn, Zn, and Pb, on indoor air quality. This result was confirmed by values of diagnostic ratio as B(aP/B(gP, IP/(IP + BgP, BaP/Chry, and BaP/(BaP + Chry, which showed range characteristics of coke and coal combustion. However, Ni and As showed I/O ratio of 2.5 and 1.4, respectively, suggesting the presence of indoor sources.

  15. Tobacco smoke particles and indoor air quality (ToPIQ - the protocol of a new study

    Directory of Open Access Journals (Sweden)

    Mueller Daniel

    2011-12-01

    Full Text Available Abstract Environmental tobacco smoke (ETS is a major contributor to indoor air pollution. Since decades it is well documented that ETS can be harmful to human health and causes premature death and disease. In comparison to the huge research on toxicological substances of ETS, less attention was paid on the concentration of indoor ETS-dependent particulate matter (PM. Especially, investigation that focuses on different tobacco products and their concentration of deeply into the airways depositing PM-fractions (PM10, PM2.5 and PM1 must be stated. The tobacco smoke particles and indoor air quality study (ToPIQS will approach this issue by device supported generation of indoor ETS and simultaneously measurements of PM concentration by laser aerosol spectrometry. Primarily, the ToPIQ study will conduct a field research with focus on PM concentration of different tobacco products and within various microenvironments. It is planned to extend the analysis to basic research on influencing factors of ETS-dependent PM concentration.

  16. Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria

    Science.gov (United States)

    Haas, D.; Habib, J.; Luxner, J.; Galler, H.; Zarfel, G.; Schlacher, R.; Friedl, H.; Reinthaler, F. F.

    2014-12-01

    Background concentrations of airborne fungi are indispensable criteria for an assessment of fungal concentrations indoors and in the ambient air. The goal of this study was to define the natural background values of culturable fungal spore concentrations as reference values for the assessment of moldy buildings. The concentrations of culturable fungi were determined outdoors as well as indoors in 185 dwellings without visible mold, obvious moisture problems or musty odor. Samples were collected using the MAS-100® microbiological air sampler. The study shows a characteristic seasonal influence on the background levels of Cladosporium, Penicillium and Aspergillus. Cladosporium sp. had a strong outdoor presence, whereas Aspergillus sp. and Penicillium sp. were typical indoor fungi. For the region of Styria, the median outdoor concentrations are between 100 and 940 cfu/m³ for culturable xerophilic fungi in the course of the year. Indoors, median background levels are between 180 and 420 cfu/m³ for xerophilic fungi. The I/O ratios of the airborne fungal spore concentrations were between 0.2 and 2.0. For the assessment of indoor and outdoor air samples the dominant genera Cladosporium, Penicillium and Aspergillus should receive special consideration.

  17. Indoor air pollution from solid biomass fuels combustion in rural agricultural area of Tibet, China.

    Science.gov (United States)

    Gao, X; Yu, Q; Gu, Q; Chen, Y; Ding, K; Zhu, J; Chen, L

    2009-06-01

    In this study, we are trying to investigate the indoor air pollution and to estimate the residents' pollution exposure reduction of energy altering in rural Tibet. Daily PM(2.5) monitoring was conducted in indoor microenvironments like kitchen, living-room, bedroom, and yard in rural Tibet from December 2006 to March 2007. For kitchen air pollution, impact of two fuel types, methane and solid biomass fuels (SBFs), were compared. Questionnaire survey on the domestic energy pattern and residents' daily activity pattern was performed in Zha-nang County. Daily average PM(2.5) concentrations in kitchen, living-room, bedroom, and yard were 134.91 microg/m(3) (mean, n = 45, 95%CI 84.02, 185.80), 103.61 microg/m(3) (mean, n = 21, 95%CI 85.77, 121.45), 76.13 microg/m(3) (mean, n = 18, 95%CI 57.22, 95.04), and 78.33 microg/m(3) (mean, n = 34, 95%CI 60.00, 96.65) respectively. Using SBFs in kitchen resulted in higher indoor pollution than using methane. PM(2.5) concentrations in kitchen with dung cake, fuel wood and methane use were 117.41 microg/m(3) (mean, n = 18, 95%CI 71.03, 163.79), 271.11 microg/m(3) (mean, n = 12, 95%CI 104.74, 437.48), and 46.96 microg/m(3) (mean, n = 15, 95%CI 28.10, 65.82) respectively. Family income has significant influence on cooking energy choice, while the lack of commercial energy supply affects the energy choice for heating more. The effects of two countermeasures to improve indoor air quality were estimated in this research. One is to replace SBFs by clean energy like methane, the other is to separate the cooking place from other rooms and by applying these countermeasures, residents' exposure to particulate matters would reduce by 25-50% (methane) or 20-30% (separation) compared to the present situation. Indoor air pollution caused by solid biomass fuels is one of the most important burdens of disease in the developing countries, which attracts the attention of environment and public health researchers, as well as policy makers. This paper

  18. Ventilation, indoor air quality, and human health and comfort in dwellings and day-care centers

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R.

    1995-12-31

    The objective of the study was to assess the actual ventilation and indoor air quality in the Finnish building stock (dwellings and day-care centers) with special reference to the existing guideline values. Furthermore, the objective was to evaluate the occurrence of symptoms and perceptions among occupants (adult residents, children, workers) in relation to ventilation system, ventilation rate and dampness. The measurements of ventilation and indoor air quality in the dwellings and day-care centers included ventilation rate, CO{sub 2} concentration, and temperature and humidity. Self- and parent-administered questionnaires were distributed to the occupants inquiring their personal characteristics, occurrence of symptoms of interest, perceived indoor air quality and details of their home and work environments. Airflows and air change rates varied remarkably both in the dwellings and day-care centers. In the majority of the dwellings and day-care centers, the Finnish guideline values of ventilation rates were not achieved. No consistent associations were observed between the magnitude of mechanical ventilation rates and the occurrence of eye, respiratory, skin and general symptoms, that is, symptoms of sick building syndrome (SBS) among the day-care workers. The results indicate that there is much room for improvement in the ventilation and indoor air quality of Finnish dwellings and day-care centers. The control of ventilation, temperature and humidity and the prevention of water damage are important issues on which to concentrate in the future. There is need to improve the quality in all phases of construction: design, installation, adjustment, operation, and maintenance

  19. Ventilation, indoor air quality, and human health and comfort in dwellings and day-care centers

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R

    1996-12-31

    The objective of the study was to assess the actual ventilation and indoor air quality in the Finnish building stock (dwellings and day-care centers) with special reference to the existing guideline values. Furthermore, the objective was to evaluate the occurrence of symptoms and perceptions among occupants (adult residents, children, workers) in relation to ventilation system, ventilation rate and dampness. The measurements of ventilation and indoor air quality in the dwellings and day-care centers included ventilation rate, CO{sub 2} concentration, and temperature and humidity. Self- and parent-administered questionnaires were distributed to the occupants inquiring their personal characteristics, occurrence of symptoms of interest, perceived indoor air quality and details of their home and work environments. Airflows and air change rates varied remarkably both in the dwellings and day-care centers. In the majority of the dwellings and day-care centers, the Finnish guideline values of ventilation rates were not achieved. No consistent associations were observed between the magnitude of mechanical ventilation rates and the occurrence of eye, respiratory, skin and general symptoms, that is, symptoms of sick building syndrome (SBS) among the day-care workers. The results indicate that there is much room for improvement in the ventilation and indoor air quality of Finnish dwellings and day-care centers. The control of ventilation, temperature and humidity and the prevention of water damage are important issues on which to concentrate in the future. There is need to improve the quality in all phases of construction: design, installation, adjustment, operation, and maintenance

  20. [Indoor air studies of mould fungus contamination of homes of selected patients with bronchial asthma (with special regard to evaluation problems)].

    Science.gov (United States)

    Senkpiel, K; Kurowski, V; Ohgke, H

    1996-02-01

    Investigations of indoor air of the homes of seven patients with asthma bronchiale who showed up with positive reactions following intracutaneous application of fungal allergens revealed that their places of residence were contaminated by fungal and bacterial spores. The number of colony forming units of mesophilic fungal spores of the indoor air ranged from 100 to 1000 CFU/m3 and this was much higher than the mould flora of the outdoor air determined simultaneously. The major fungi species found by the indoor investigation were: Penicillium sp. > Aspergillus sp. > Cladosporium sp., Mucor sp., Chrysonilia sp., Verticillium sp. > Geotrichum sp., Trichoderma sp. In two cases Thermoactinomyces species could be detected in the indoor air. The main cause of fungal contamination were moist building materials on room walls, insufficient air ventilation, bad maintenance of the circulating air-machines and insufficient room hygiene (e.g. biological garbage in the kitchen).

  1. Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany.

    Science.gov (United States)

    Oeder, S; Dietrich, S; Weichenmeier, I; Schober, W; Pusch, G; Jörres, R A; Schierl, R; Nowak, D; Fromme, H; Behrendt, H; Buters, J T M

    2012-04-01

    Outdoor particulate matter (PM(10)) is associated with detrimental health effects. However, individual PM(10) exposure occurs mostly indoors. We therefore compared the toxic effects of classroom, outdoor, and residential PM(10). Indoor and outdoor PM(10) was collected from six schools in Munich during teaching hours and in six homes. Particles were analyzed by scanning electron microscopy and X-ray spectroscopy (EDX). Toxicity was evaluated in human primary keratinocytes, lung epithelial cells and after metabolic activation by several human cytochromes P450. We found that PM(10) concentrations during teaching hours were 5.6-times higher than outdoors (117 ± 48 μg/m(3) vs. 21 ± 15 μg/m(3), P particle number), organic (29%, probably originating from human skin), and Ca-carbonate particles (12%, probably originating from paper). Outdoor PM contained more Ca-sulfate particles (38%). Indoor PM at 6 μg/cm(2) (10 μg/ml) caused toxicity in keratinocytes and in cells expressing CYP2B6 and CYP3A4. Toxicity by CYP2B6 was abolished with the reactive oxygen species scavenger N-acetylcysteine. We concluded that outdoor PM(10) and indoor PM(10) from homes were devoid of toxicity. Indoor PM(10) was elevated, chemically different and toxicologically more active than outdoor PM(10). Whether the effects translate into a significant health risk needs to be determined. Until then, we suggest better ventilation as a sensible option. Indoor air PM(10) on an equal weight base is toxicologically more active than outdoor PM(10). In addition, indoor PM(10) concentrations are about six times higher than outdoor air. Thus, ventilation of classrooms with outdoor air will improve air quality and is likely to provide a health benefit. It is also easier than cleaning PM(10) from indoor air, which has proven to be tedious. © 2011 John Wiley & Sons A/S.

  2. Effects of radon in indoor air studied

    International Nuclear Information System (INIS)

    Auvinen, A.

    1994-01-01

    Radon is an odorless, tasteless and colourless radioactive noble gas that enters indoor air from the ground. Radon causes lung cancer. A committee set up to evaluate the health risks of chemical substances has been drafting a report on radon, which will compile the major research findings on the lung cancer risk posed by radon. Animal tests have shown that even small doses of radon can cause lung cancer. Smokers seem to contract radon-induced lung cancer more readily than non-smokers. Because research findings have been conflicting, however, it is not known exactly how high the risk of lung cancer caused by indoor radon exposure really is. Several major research projects are under way to obtain increasingly accurate risk assessments. An on-going European joint project brings together several studies - some already finished, some still being worked on. In this way it will be possible to get more accurate risk assessments than from individual studies. In order to prevent lung cancer, it is important to continue the work of determining and reducing radon connects and to combat smoking. (orig.)

  3. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR

    Science.gov (United States)

    Evaluating fungal contamination indoors is complicated because of the many different sampling methods utilized. In this study, fungal contamination was evaluated using five sampling methods and four matrices for results. The five sampling methods were a 48 hour indoor air sample ...

  4. A Pilot Study to Understand the Variation in Indoor Air Quality in Different Economic Zones of Delhi University

    Science.gov (United States)

    Garg, Abhinav; Ghosh, Chirashree

    Today, one of the most grave environmental health problems being faced by the urban population is the poor air quality one breathes in. To testify the above statement, the recent survey report, World health statistics (WHO, 2012) reflects the fact that childhood mortality ratio from acute respiratory infection is one of the top leading causes of death in developing countries like India. Urban areas have a complex social stratification which ultimately results in forming different urban economic zones. This research attempts to understand the Indoor Air Quality (IAQ) by taking into consideration different lifestyle of occupants inhabiting these economic zones. The Study tries to evaluate the outdoor and indoor air quality by understanding the variation of selected pollutants (SPM, SOx, NOx) for the duration of four months - from October, 2012-January, 2013. For this, three economic zones (EZ) of Delhi University’s North Campus, were selected - Urban Slum (EZ I), Clerical (EZ II) and Faculty residence (EZ III). The statistical study indicates that Urban Slum (EZ I) was the most polluted site reporting maximum concentration of outdoor pollutants, whereas no significant difference in pollution load was observed in EZ II and EZ III. Further, the indoor air quality was evaluated by quantifying the indoor and outdoor pollution concentration ratios that shows EZ III have most inferior indoor air quality, followed by EZ I and EZ II. Moreover, it was also observed that ratio (phenomenon of infiltration) was dominant at the EZ II but was low for the EZ I and EZ III. With the evidence of high Indoor air pollution, the risk of pulmonary diseases and respiratory infections also increases, calling for an urgent requisite for making reforms to improve IAQ. Key words: Urban Area, Slum, IAQ, SOx, NOx, SPM

  5. Gender, airborne chemical monitoring, and physical work environment are related to indoor air symptoms among nonindustrial workers in the Klang Valley, Malaysia

    Directory of Open Access Journals (Sweden)

    Syazwan AI

    2013-03-01

    Full Text Available Aizat Ismail Syazwan,1 Juahir Hafizan,2 Mohd Rafee Baharudin,1 Ahmad Zaid Fattah Azman,1 Zulkapri Izwyn,3 Ismail Zulfadhli,4 Katis Syahidatussyakirah11Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia; 2Department of Environmental Science/Environmental Forensics Research Center (ENFORCE, Universiti Putra Malaysia, Selangor, 3Department of Biosciences and Health Science, Universiti Teknologi Malaysia; 4Faculty of Built Environment, Universiti Teknologi Malaysia, Johor, MalaysiaObjectives: The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers.Design: A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia.Methods: A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH, Malaysia and a previous study (MM040NA questionnaire pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix.Results: The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature. Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust

  6. Science Laboratories and Indoor Air Quality in Schools. Technical Bulletin.

    Science.gov (United States)

    Jacobs, Bruce W.

    Some of the issues surrounding the indoor air quality (IAQ) problems presented by science labs are discussed. Described are possible contaminants in labs, such as chemicals and biological organisms, and ways to lessen accidents arising from these sources are suggested. Some of the factors contributing to comfort, such as temperature levels, are…

  7. Towards the Application of Fuzzy Logic for Developing a Novel Indoor Air Quality Index (FIAQI).

    Science.gov (United States)

    Javid, Allahbakhsh; Hamedian, Amir Abbas; Gharibi, Hamed; Sowlat, Mohammad Hossein

    2016-02-01

    In the past few decades, Indoor Air Pollution (IAP) has become a primary concern to the point. It is increasingly believed to be of equal or greater importance to human health compared to ambient air. However, due to the lack of comprehensive indices for the integrated assessment of indoor air quality (IAQ), we aimed to develop a novel, Fuzzy-Based Indoor Air Quality Index (FIAQI) to bridge the existing gap in this area. We based our index on fuzzy logic, which enables us to overcome the limitations of traditional methods applied to develop environmental quality indices. Fifteen parameters, including the criteria air pollutants, volatile organic compounds, and bioaerosols were included in the FIAQI due mainly to their significant health effects. Weighting factors were assigned to the parameters based on the medical evidence available in the literature on their health effects. The final FIAQI consisted of 108 rules. In order to demonstrate the performance of the index, data were intentionally generated to cover a variety of quality levels. In addition, a sensitivity analysis was conducted to assess the validity of the index. The FIAQI tends to be a comprehensive tool to classify IAQ and produce accurate results. It seems useful and reliable to be considered by authorities to assess IAQ environments.

  8. Energy performance and indoor air quality in modern buildings in Greenland

    DEFF Research Database (Denmark)

    Kotol, Martin; Rode, Carsten; Vahala, Jan

    2015-01-01

    A new dormitory for engineering students "Apisseq" was built in Sisimiut, Greenland in 2010. Its purpose is not only to provide accommodation for students, but thanks to its complex monitoring system, it enables researchers to evaluate the building's energy performance and indoor air quality. Some......, which have negative effects on the energy performance and indoor air quality. The heat demand in 2011 was 26.5% higher than expected. One of the main causes of the extra heat demand is the fact that the ventilation system was over-dimensioned, and although it is running on the lowest fan power...... of the installed technologies are not commonly used in the current Greenlandic building stock. Therefore, evaluation of their performance under local conditions is essential for further use and development. The first year of operation has disclosed some errors made during the design process and construction phase...

  9. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  10. Limitations of ambient air quality standards in evaluating indoor environments

    International Nuclear Information System (INIS)

    Peterson, J.E.

    1992-01-01

    Analysis of the kinds of data used for the derivation of ambient air quality standards (AAQSs) for carbon monoxide and ozone shows that these values are based on the toxicology of the materials and thus are suitable for evaluating potential health effects of indoor environments, especially on the very young, the aged, and the infirm. A similar analysis shows that the AAQSs for suspended particulate matter, nitrogen dioxide, and sulfur dioxide are strictly empirical and that they should not be used for any but their first, intended purpose. The AAQSs for non-methane hydrocarbons are based on photochemical smog production, not injury of any kind, and have no utility for indoor environment evaluation

  11. An energy impact assessment of indoor air quality acceptance for air-conditioned offices

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.; Shi, K.L.; Hui, P.S.

    2008-01-01

    Treatment of fresh air in ventilation systems for the air-conditioning consumes a considerable amount of energy and affects the indoor air quality (IAQ). The ventilation demand is primarily related to the occupant load. In this study, the ventilation demands due to occupant load variations and occupant acceptability were examined against certain IAQ objectives using the mass balance of carbon dioxide (CO 2 ) concentrations in an air-conditioned office. In particular, this study proposed a ventilation model for the consideration of the occupant load variations and occupant acceptability based on the regional survey of typical offices (422 samples) in Hong Kong. The model was applied to evaluate the relative energy performance of different IAQ objectives in ventilation systems for typical office buildings in Hong Kong. The results showed that the energy consumption of a ventilation system would be correlated with the occupant load and acceptability in the air-conditioned office. Indicative CO 2 levels of 800 ppmv, 1000 ppmv and 1200 ppmv corresponding to 83%, 97% and 99.7% survey samples were shown, corresponding to the thermal energy consumptions of 1500 MJ m -2 yr -1 , 960 MJ m -2 yr -1 and 670 MJ m -2 yr -1 , respectively. In regards to the monetary issue, an annual value of HK$ 762 million per year in electrical consumption could be saved in all office buildings in Hong Kong when the indoor target CO 2 concentration is increased from 1000 ppmv to 1200 ppmv. To achieve an excellent IAQ following the existing design standard, i.e. to decrease the CO 2 level from 1000 ppmv to 800 ppmv, 56% additional energy would be consumed, corresponding to an annual value of HK$ 1,419 million, even though the occupant acceptability is only improved from 81% to 86%. The development of the models in this study would be useful for the energy performance evaluation of ventilation systems in air-conditioned offices

  12. Heat and PAHs Emissions in Indoor Kitchen Air and Its Impact on Kidney Dysfunctions among Kitchen Workers in Lucknow, North India.

    Directory of Open Access Journals (Sweden)

    Amarnath Singh

    Full Text Available Indoor air quality and heat exposure have become an important occupational health and safety concern in several workplaces including kitchens of hotels. This study investigated the heat, particulate matter (PM, total volatile organic compounds (TVOCs and polycyclic aromatic hydrocarbons (PAHs emissions in indoor air of commercial kitchen and its association with kidney dysfunctions among kitchen workers. A cross sectional study was conducted on 94 kitchen workers employed at commercial kitchen in Lucknow city, North India. A questionnaire-based survey was conducted to collect the personal and occupational history of the kitchen workers. The urine analysis for specific gravity and microalbuminuria was conducted among the study subjects. Indoor air temperature, humidity, wet/ dry bulb temperature and humidex heat stress was monitored during cooking activities at the kitchen. Particulate matter (PM for 1 and 2.5 microns were monitored in kitchen during working hours using Hazdust. PAHS in indoor air was analysed using UHPLC. Urinary hydroxy-PAHs in kitchen workers were measured using GC/MS-MS. Higher indoor air temperature, relative humidity, PM1 and PM2.5 (p<0.001 was observed in the kitchen due to cooking process. Indoor air PAHs identified are Napthalene, fluorine, acenaphthene, phenanthrene, pyrene, chrysene and indeno [1,2,3-cd pyrene. Concentrations of all PAHs identified in kitchen were above the permissible OSHA norms for indoor air. Specific gravity of urine was significantly higher among the kitchen workers (p<0.001 as compared to the control group. Also, the prevalence of microalbuminuria was higher (p<0.001 among kitchen workers. Urinary PAH metabolites detected among kitchen workers were 1-NAP, 9-HF, 3-HF, 9-PHN and 1-OHP. Continuous heat exposure in kitchens due to cooking can alter kidney functions viz., high specific gravity of urine in kitchen workers. Exposure to PM, VOCs and PAHs in indoor air and presence of urinary PAHs

  13. Impact of human activities on the concentration of indoor air particles in an antarctic research station

    Directory of Open Access Journals (Sweden)

    Erica Coelho Pagel

    Full Text Available Abstract One of the main characteristics of Antarctic buildings is the fact that they are designed mostly with a focus on energy efficiency. Although human activity is a major source of pollution, indoor air quality is not a matter of significant concern during building planning. This study examines the relationship between indoor activities in an Antarctic Research Station and the size distribution of particulate matter. Real-time particle size distribution data is used in conjunction with time-activity data. The activity number ratio is calculated using the mean number of particles found in each size range during each activity divided by the average number of particles found during a period characterized by the absence of human activities. Cooking, the use of cosmetics, waste incineration and exhaust from light vehicles were responsible for significant deterioration of indoor air related to the presence of fine and ultrafine particles. Cleaning, physical exercise and the movement of people were responsible for the emission of coarse particles. This article emphasizes the importance of post-occupancy evaluation of buildings, generating results relevant to the planning and layout of new buildings, especially regarding better indoor air quality.

  14. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Englemann, P. [Fraunhofer Center for Sustainable Energy Systems, Cambridge, MA (United States); Roth, K. [Fraunhofer Center for Sustainable Energy Systems, Cambridge, MA (United States); Tiefenbeck, V. [Fraunhofer Center for Sustainable Energy Systems, Cambridge, MA (United States)

    2013-01-01

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  15. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-01-01

    This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.

  16. A novel complex air supply model for indoor air quality control via the occupant micro-environment demand ventilation

    International Nuclear Information System (INIS)

    Yang, Jie; Zhou, Bo; Jin, Maozhu; Wang, Jun; Xiong, Feng

    2016-01-01

    Protection of indoor air quality and human health can be achieved via ventilation, which has becomes one of the most important tasks for sustainable buildings. This approach also requires highly efficient and energy saving methods for modern building ventilations consisting of a set of parameters of the complex indoor system. Therefore, the advancement in understanding the characteristics of various ventilation methods is highly necessary. This study presents one novel air supply model for the complex occupant micro-environment demand control ventilations, to analyze the efficiency of various ventilation types. This model is established primarily according to the momentum and mass conservations, and goal of occupant micro-environment demand, which is a complex system with the characteristics of diversity and dynamic variation. As for different occupant densities, characteristics of outdoor air supply for controlling gaseous pollutant and three basic features of outdoor airflow supply reaching occupant micro-environment were obtained. This research shows that for various types of occupant density and storey height, the rising and descending rates of the demand outdoor airflow in mixing ventilation are higher than those under displacement ventilation conditions. In addition, since the structure is better designed and sewage flow is more efficient, the mixing ventilation also requires a much higher peak demand outdoor airflow than its counterpart. The increase of storey height will lead to a decline of pollutants in the breathing zone and the demand outdoor airflow. Fluctuations of air flow diffusion caused by the change of occupant density in architectural space, will lead to variations of outdoor airflow reaching occupant micro-environment. Accordingly, it would lead to the different peak values of demand outdoor airflow, and the difference becomes even significant if the occupant density increases. The variations of the air supply and fraction of air reaching the

  17. Relationship of Indoor, Outdoor and Personal Air (RIOPA) study: study design, methods and quality assurance/control results.

    Science.gov (United States)

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur; Alimokhtari, Shahnaz; Kwon, Jaymin; Mohan, Krishnan; Harrington, Robert; Giovanetti, Robert; Cui, William; Afshar, Masoud; Maberti, Silvia; Shendell, Derek

    2005-03-01

    The Relationship of Indoor, Outdoor and Personal Air (RIOPA) Study was undertaken to evaluate the contribution of outdoor sources of air toxics, as defined in the 1990 Clean Air Act Amendments, to indoor concentrations and personal exposures. The concentrations of 18 volatile organic compounds (VOCs), 17 carbonyl compounds, and fine particulate matter mass (PM(2.5)) were measured using 48-h outdoor, indoor and personal air samples collected simultaneously. PM2.5 mass, as well as several component species (elemental carbon, organic carbon, polyaromatic hydrocarbons and elemental analysis) were also measured; only PM(2.5) mass is reported here. Questionnaires were administered to characterize homes, neighborhoods and personal activities that might affect exposures. The air exchange rate was also measured in each home. Homes in close proximity (<0.5 km) to sources of air toxics were preferentially (2:1) selected for sampling. Approximately 100 non-smoking households in each of Elizabeth, NJ, Houston, TX, and Los Angeles, CA were sampled (100, 105, and 105 respectively) with second visits performed at 84, 93, and 81 homes in each city, respectively. VOC samples were collected at all homes, carbonyls at 90% and PM(2.5) at 60% of the homes. Personal samples were collected from nonsmoking adults and a portion of children living in the target homes. This manuscript provides the RIOPA study design and quality control and assurance data. The results from the RIOPA study can potentially provide information on the influence of ambient sources on indoor air concentrations and exposure for many air toxics and will furnish an opportunity to evaluate exposure models for these compounds.

  18. A View Indoors, Indoor Environment Division's e-Article Series

    Science.gov (United States)

    The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.

  19. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors

    NARCIS (Netherlands)

    Solanki, S.C.; Dubey, Swapnil; Tiwari, A.

    2009-01-01

    An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations,

  20. Fine PM measurements: personal and indoor air monitoring.

    Science.gov (United States)

    Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H

    2002-12-01

    This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.

  1. Effectiveness of finish materials and room air-conditioner on the reduction of indoor radon concentration in Hong Kong

    International Nuclear Information System (INIS)

    Ma, A.K.; Man, C.K.; Ho, E.; Pang, S.W.

    1995-01-01

    Four different kinds of finish material were investigated: wallpaper, paint, plaster and tile. When applied to the bare concrete walls of uninhabited rooms in flats of a building under construction, all of them were found to reduce indoor radon concentration. The magnitude of reduction by these finish materials ranged from 20% to 80%. Wallpaper was found to provide the best protection against radon emission from bare concrete walls in a bedroom with a size of 19.3 m 3 . Wallpaper can reduce the indoor radon concentration about twice as much as paint (water-based) or plaster in this investigation. Tile was also found to be a good material against radon emission from concrete walls in a bathroom with a size of 6.3 m 3 . Indoor radon concentration was found to decrease with elevation from the ground level, and was affected strongly by mechanical ventilation. Another 30% to 50% reduction in indoor radon concentration in addition to finish material can be achieved by a room air-conditioner. It was also found that indoor radon concentrations were not affected by turning the fresh air shutter to the 'on' or 'off' position in the room air-conditioner. (author)

  2. On the use of a risk ladder: Linking public perception of risks associated with indoor air with cognitive elements and attitudes toward risk reduction

    Science.gov (United States)

    Moschandreas, D. J.; Chang, P. E.

    In recent years a number of building managers have invested small amounts of money to measure indoor air quality in offices and other non-industrial buildings. Their objective is to reduce the number of occupant complaints, and not necessarily to reduce the risk associated with such complaints. Clearly, reduction of the risk would require greater investment of funds and effort. This paper focuses on individuals and the amount of money they are willing to invest in order to reduce risks associated with indoor air pollution in their home. Psychologists assert that lay judgement of risks are influenced by cognitive biases and attitudes. This study investigates the possibility that cognitive elements and general attitudes influence not only the perceived risk associated with exposures to indoor air pollutants, but also the willingness of individuals to invest in order to reduce the risk. A three-stage study was performed to determine some of the factors that influence public decisions to control the quality of the air inside their home. The study is focused on the design of a risk ladder, and the survey of 400 randomly selected individuals in the Chicago metropolitan area. The survey was designed to determine if demographics, smoking, education, or income influence the desire of individuals to invest in order to reduce indoor air pollution. The following conclusions were reached: (i) public awareness of indoor air pollution is high; (ii) media campaigns on indoor air pollution affect the determination of the specific pollutant the public perceives as important, but do not influence the public's desire to invest larger amounts of money to reduce risks from exposures to air pollutants in the residential environment; (iii) the public is not willing to spend large amounts of money to reduce indoor residential air pollution; (iv) education does not affect the level of awareness regarding indoor air pollution, but it increases the willingness to invest in an effort to reduce

  3. Can a photocatalytic air purifier be used to improve the perceived air quality indoors?

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Wargocki, Pawel

    2010-01-01

    The effect of a photocatalytic air purifier on perceived air quality(PAQ) was examined in rooms polluted by typical sources of indoor pollution.The rooms were ventilated at three different outdoor air supply rates. The air quality was assessed by a sensory panel when the purifier was in operation...... as well as when it was off. Operation of the purifier significantly improved PAQ in the rooms polluted by building materials (used carpet, old linoleum, and old chip-board), and a used ventilation filter as well as a mixture of building materials, used ventilation filter and cathode-ray tube computer...... monitors. The effect cor-responded to approximately doubling the outdoor air supply rate. Operation of the purifier significantly worsened the PAQ in rooms with human bioeffluents, probably due to incomplete oxidation of alcohols which are one of the main pollutants emitted by humans. Present results show...

  4. House-plant placement for indoor air purification and health benefits on asthmatics

    Directory of Open Access Journals (Sweden)

    Ho-Hyun Kim

    2014-10-01

    Full Text Available Objectives Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. Methods The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with indoor plants and went through the latter observation term without any indoor plants. Results The household of continuation showed a continual decrease in the indoor concentrations of volatile organic compounds (VOCs during the entire observation period, but the household of withdrawal performed an increase in the indoor concentrations of VOCs, except formaldehyde and toluene during the latter observation term after the decrease during the former observation term. Peak expiratory flow rate (PEFR increased in the households of continuation with the value of 13.9 L/min in the morning and 20.6 L/ min in the evening, but decreased in the households of withdrawal with the value of -24.7 L/min in the morning and -30.2 L/min in the evening in the first experimental season. All of the households exhibited a decrease in the value of PEFR in the second experimental season. Conclusions Limitations to the generalizability of findings regarding the presence of plants indoors can be seen as a more general expression of such a benefit of human-environment relations.

  5. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.

    Science.gov (United States)

    Song, Gang; Wang, Xinming; Chen, Diyun; Chen, Yongheng

    2011-04-01

    This study investigates the contribution of radon ((222)Rn)-bearing water to indoor (222)Rn in thermal baths. The (222)Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM(10) and PM(2.5)) and carbon dioxide (CO(2)) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m(-3) of (222)Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which (222)Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average (222)Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor (222)Rn levels were influenced by the (222)Rn concentrations in the hot spring water and the bathing times. The average (222)Rn transfer coefficients from water to air were 6.2 × 10(-4)-4.1 × 10(-3). The 24-h average levels of CO(2) and PM(10) in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM(2.5). Radon and PM(10) levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool environments (3–5 years old children)

    International Nuclear Information System (INIS)

    Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2016-01-01

    This work characterizes levels of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of preschool environments, and assesses the respective risks for 3–5-years old children. Eighteen gaseous and particulate (PM_1 and PM_2_._5) PAHs were collected indoors and outdoors during 63 days at preschools in Portugal. Gaseous PAHs accounted for 94–98% of total concentration (Σ_P_A_H_s). PAHs with 5–6 rings were predominantly found in PM_1 (54–74% particulate Σ_P_A_H_s). Lighter PAHs originated mainly from indoor sources whereas congeners with 4–6 rings resulted mostly from outdoor emissions penetration (motor vehicle, fuel burning). Total cancer risks of children were negligible according to USEPA, but exceeded (8–13 times) WHO health-based guideline. Carcinogenic risks due to indoor exposure were higher than for outdoors (4–18 times). - Highlights: • Lighter PAHs originate from indoor sources, 4–6 rings PAHs result from outdoors. • Gaseous PAHs account for the majority of PAH content in indoor air of preschools. • Lifetime lung cancer risk values exceed WHO health-based guideline level of 10"−"5. • Carcinogenic risks due to preschool indoor exposure are higher than for outdoors. - This work fills gap providing information on levels, phase distribution (gas, PM_1, PM_2_._5) and risks of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool settings.

  7. Socio-Economic Consequences of Improved Indoor Air Quality in Danish Primary Schools

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Foldbjerg, Peter; Eriksen, Kurt Emil

    2014-01-01

    are taken into consideration: a) increased PISA score increases productivity; b) increased PISA score reduces the duration of primary education; c) improved indoor air quality reduces absenteeism in teachers. The results show that improved air quality in Danish schools could result in an increase...... in the Gross Domestic Product (GDP) of €173 million per annum, and in the public finances of €37 million per annum...

  8. Significant OH production under surface cleaning and air cleaning conditions: Impact on indoor air quality.

    Science.gov (United States)

    Carslaw, N; Fletcher, L; Heard, D; Ingham, T; Walker, H

    2017-11-01

    We report measurements of hydroxyl (OH) and hydroperoxy (HO 2 ) radicals made by laser-induced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available "air cleaning" device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5×10 5  molecule cm -3 ), whilst that of HO 2 was 1.3×10 7  molecule cm -3 . These concentrations increased to ~4×10 6 and 4×10 8  molecule cm -3 , respectively during desk cleaning. During operation of the air cleaning device, OH and HO 2 concentrations reached ~2×10 7 and ~6×10 8  molecule cm -3 respectively. The potential of these OH concentrations to initiate chemical processing is explored using a detailed chemical model for indoor air (the INDCM). The model can reproduce the measured OH and HO 2 concentrations to within 50% and often within a few % and demonstrates that the resulting secondary chemistry varies with the cleaning activity. Whilst terpene reaction products dominate the product composition following surface cleaning, those from aromatics and other VOCs are much more important during the use of the air cleaning device. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Indoor air quality study of forty east Tennessee homes

    International Nuclear Information System (INIS)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.

    1984-12-01

    Over a one-year period, measurements of indoor air pollutants (CO/sub x/, NO/sub x/, formaldehyde, volatile organics, particulates, and radon) were made in 40 homes in East Tennessee. The houses were of various ages with different types of insulation and heating. Over one-half of the houses exceeded the ASHRAE indoor ceiling guideline of 0.1 ppM for formaldehyde on at least one occasion. Over the duration of the study, older houses averaged 0.04 ppM of formaldehyde while houses less than 5 years old averaged 0.08 ppM (P -1 when the duct fan was operated (measurements prior to December 1982). This report presents the study design and implementation, describes the monitoring protocols, and provides a complete set of the data collected during the project. 25 references, 29 figures, 42 tables

  10. Assessing indoor air quality options: Final environmental impact statement on new energy-efficient home programs: Volume 2

    International Nuclear Information System (INIS)

    1988-03-01

    This report discusses the impact of energy conservation measures on indoor air quality in various size residential buildings. This volume includes appendices on ventilation rates, indoor pollutant levels, health effects, human risk assessment, radon, fiberglass hazards, tobacco smoke, mitigation

  11. An International Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or making it in a new way demand controlled. However, this must be done such that it does not have adverse effects on indoor air quality (IAQ). Annex 68......In order to achieve nearly net zero energy use, both new and energy refurbished existing buildings will in the future need to be still more efficient and optimized. Since such buildings can be expected to be already well insulated, airtight, and have heat recovery systems installed, one of the next......, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy performance whilst providing...

  12. Epizootiological characteristics of viable bacteria and fungi in indoor air from porcine, chicken, or bovine husbandry confinement buildings

    Science.gov (United States)

    Roque, Katharine; Lim, Gyeong-Dong; Jo, Ji-Hoon; Shin, Kyung-Min; Song, Eun-Seob; Gautam, Ravi; Kim, Chang-Yul; Lee, Kyungsuk; Shin, Seungwon; Yoo, Han-Sang; Heo, Yong

    2016-01-01

    Microorganisms found in bioaerosols from animal confinement buildings not only foster the risk of spreading diseases among livestock buildings, but also pose health hazards to farm workers and nearby residents. This study identified the various microorganisms present in the air of swine, chicken, and cattle farms with different kinds of ventilation conditions in Korea. Microbial air samples were collected onto Petri dishes with bacterial or fungal growth media using a cascade impactor. Endotoxin levels in total dust were determined by the limulus amebocyte lysate kinetic QCL method. Prevalent Gram-positive bacteria were Staphylococcus (S.) lentus, S. chromogenes, Bacillus (B.) cereus, B. licheniformis, and Enterococcus faecalis, while the dominant fungi and Gram-negative bacteria were Candida albicans and Sphingomonas paucimobilis, respectively. Considering no significant relationship between the indoor dust endotoxin levels and the isolation of Gram-negative bacteria from the indoor air, monitoring the indoor airborne endotoxin level was found to be also critical for risk assessment on health for animals or workers. The present study confirms the importance of microbiological monitoring and control on animal husbandry indoor air to ensure animal and worker welfare. PMID:27456779

  13. Energy performance and Indoor Air Quality in Modern Buildings in Greenland

    DEFF Research Database (Denmark)

    Kotol, Martin; Rode, Carsten

    2012-01-01

    A new dormitory for engineering students “Apisseq” was built in the town of Sisimiut, Greenland in 2010. Its purpose is not only to provide accommodation for students. Thanks to its complex monitoring system it enables researchers to evaluate the building’s energy performance and indoor air quality...

  14. Indoor air pollution levels in public buildings in Thailand and exposure assessment.

    Science.gov (United States)

    Klinmalee, Aungsiri; Srimongkol, Kasama; Kim Oanh, Nguyen Thi

    2009-09-01

    Levels of pollutants including PM2.5 and PM2.5 composition (black carbon and water soluble ions), SO(2), NO(2), CO, CO(2), and BTEX (benzene, toluene, ethylbenzene, xylene) were monitored for indoor and outdoor air at a university campus and a shopping center, both located in the Northern suburb of Bangkok. Sampling was done during December 2005-February 2006 on both weekdays and weekends. At the university, indoor monitoring was done in two different air conditioned classrooms which shows the I/O ratios for all pollutants to be below 0.5-0.8 during the weekends. However, on weekdays the ratios for CO(2) and most detected BTEX were above 1.0. The concept of classroom occupancy was defined using a function of the student number in a lecture hour and the number of lecture hours per day. Classroom 2, which had a higher occupancy than classroom 1, was characterized by higher concentrations of most pollutants. PM2.5 was an exception and was higher in classroom 1 (37 microg/m(3), weekdays) as compared to classroom 2 (26 microg/m(3), weekdays) which was likely linked to the dust resuspension from the carpeted floor in the former. Monitoring was also done in the shopping mall at three different sites. Indoor pollutants levels and the I/O ratios at the shopping mall were higher than at the university. Levels of all pollutants measured at the car park, except for toluene and CO(2), were the highest. I/O ratios of the pollutants at the mall were above 1.0, which indicates the relatively higher influence of the indoor sources. However, the black carbon content in PM2.5 outdoor is higher than indoor, which suggest the important contribution from outdoor combustion sources such as the traffic. Major sources of outdoor air pollution in the areas were briefly discussed. Exposure modeling was applied using the time activity and measured pollutant concentrations to assess the exposure of different groups of people in the study areas. High exposure to PM2.5, especially for the people

  15. Particulate matter in the indoor air of classrooms—exploratory results from Munich and surrounding area

    Science.gov (United States)

    Fromme, H.; Twardella, D.; Dietrich, S.; Heitmann, D.; Schierl, R.; Liebl, B.; Rüden, H.

    Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms. On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004-2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO 2) and various dust particle fractions (PM 10, PM 2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom. The median indoor CO 2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m -3 (PM 2.5) and 91.5 μg m -3 (PM 10) were observed, in summer PM concentrations were significantly reduced (median PM 2.5=12.7 μg m -3, median PM 10=64.9 μg m -3). PM 2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m -3, median in summer: 20.2 μg m -3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM 2.5 by 1.7 μg m -3 per increase

  16. A structural regression model for relationship between indoor air quality with dissatisfaction of occupants in education environment

    Science.gov (United States)

    Hosseini, Hamid Reza; Yunos, Mohd Yazid Mohd; Ismail, Sumarni; Yaman, Maheran

    2017-12-01

    This paper analysis the effects of indoor air elements on the dissatisfaction of occupants in education of environments. Tries to find the equation model for increasing the comprehension about these affects and optimizes satisfaction of occupants about indoor environment. Subsequently, increase performance of students, lecturers and staffs. As the method, a satisfaction questionnaire (SQ) and measuring environment elements (MEE) was conducted, 143 respondents at five classrooms, four staff rooms and five lectures rooms were considered. Temperature, air velocity and humidity (TVH) were used as independent variables and dissatisfaction as dependent variable. The hypothesis was tested for significant relationship between variables, and analysis was applied. Results found that indoor air quality presents direct effects on dissatisfaction of occupants and indirect effects on performance and the highest effects fallowed by temperature. These results may help to optimize the quality of efficiency and effectiveness in education environments.

  17. Combating the 'Sick Building Syndrome' by Improving Indoor Air Quality

    Directory of Open Access Journals (Sweden)

    Pongchai Nimcharoenwon

    2012-11-01

    Full Text Available Research indicates that many of symptoms attributed to the Sick Building Syndrome in air-conditioned office buildings are a result of considerably reduced negative ions in the internal atmosphere and that replacing the depleted negative ions can improve indoor air quality. This paper describes a method used to develop a formula (DOF-NIL formula for calculating the amount of negative ions to be added to air-conditioned buildings, to improve air quality. The formula enables estimates to be made based on how negative ions in the air are reduced by three main factors namely, Video Display Terminals (VDT; heating, ventilation and air conditioning (HVAC and Building Contents (BC. Calculations for a typical air-conditioned office, are compared with an Air Ion Counter instrument. The results show that the formula, when applied to a typical air-conditioned office, provides an accurate estimate for design purposes. The typical rate of additional negative-ions (ion-generating for a negative ion condition is found to be approximately 12.0 billion ions/hr for at least 4 hour ion-generating.

  18. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, C.W.

    2001-02-22

    In the modern urban setting, most individuals spend about 80% of their time indoors and are therefore exposed to the indoor environment to a much greater extent than to the outdoors (Lebowitz 1992). Concomitant with this increased habitation in urban buildings, there have been numerous reports of adverse health effects related to indoor air quality (IAQ) (sick buildings). Most of these buildings were built in the last two decades and were constructed to be energy-efficient. The quality of air in the indoor environment can be altered by a number of factors: release of volatile compounds from furnishings, floor and wall coverings, and other finishing materials or machinery; inadequate ventilation; poor temperature and humidity control; re-entrainment of outdoor volatile organic compounds (VOCs); and the contamination of the indoor environment by microbes (particularly fungi). Armstrong Laboratory (1992) found that the three most frequent causes of IAQ are (1) inadequate design and/or maintenance of the heating, ventilation, and air-conditioning (HVAC) system, (2) a shortage of fresh air, and (3) lack of humidity control. A similar study by the National Institute for Occupational Safety and Health (NIOSH 1989) recognized inadequate ventilation as the most frequent source of IAQ problems in the work environment (52% of the time). Poor IAQ due to microbial contamination can be the result of the complex interactions of physical, chemical, and biological factors. Harmful fungal populations, once established in the HVAC system or occupied space of a modern building, may episodically produce or intensify what is known as sick building syndrome (SBS) (Cummings and Withers 1998). Indeed, SBS caused by fungi may be more enduring and recalcitrant to treatment than SBS from multiple chemical exposures (Andrae 1988). An understanding of the microbial ecology of the indoor environment is crucial to ultimately resolving many IAQ problems. The incidence of SBS related to multiple

  19. Fungal monitoring of the indoor air of the Museo de La Plata Herbarium, Argentina.

    Science.gov (United States)

    Mallo, Andrea C; Elíades, Lorena A; Nitiu, Daniela S; Saparrat, Mario C N

    Biological agents, such as fungal spores in the air in places where scientific collections are stored, can attack and deteriorate them. The aim of this study was to gather information on the indoor air quality of the Herbarium of Vascular Plants of the Museo de Ciencias Naturales de La Plata, Argentina, in relation to fungal propagules and inert particles. This study was made using a volumetric system and two complementary sampling methods: (1) a non-viable method for direct evaluation, and (2) a viable method by culture for viable fungal propagules. The non-viable method led to ten spore morphotypes being found from related fungal sources. A total of 4401.88spores/m 3 and 32135.18 inert suspended particles/m 3 were recorded. The viable method led to the finding of nine fungal taxa as viable spores that mostly belonged to anamorphic forms of Ascomycota, although the pigmented yeast Rhodotorula F.C. Harrison (Basidiomycota) was also found. A total count of 40,500fungal CFU/m 3 air was estimated for all the sites sampled. Both the non-viable and viable sampling methods were necessary to monitor the bio-aerosol load in the La Plata Herbarium. The indoor air of this institution seems to be reasonably adequate for the conservation of vascular plants due to the low indoor/outdoor index, low concentrations of air spores, and/or lack of indicators of moisture problems. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Indoor Air Quality Tools for Schools Program: Benefits of Improving Air Quality in the School Environment.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    The U.S. Environmental Protection Agency (EPA) developed the Indoor Air Quality Tools for Schools (IAQ TfS) Program to help schools prevent, identify, and resolve their IAQ problems. This publication describes the program and its advantages, explaining that through simple, low-cost measures, schools can: reduce IAQ-related health risks and…

  1. House Owners’ Interests and Actions in Relation to Indoor Temperature, Air Quality and Energy Use

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Andersen, Rune Korsholm; Hansen, Anders Rhiger

    2016-01-01

    in saving energy for the sake of the environment and for their own economy, and quite a lot of households indicate that they know their own energy consumption, though only few follow it closely. Thus being concerned about energy is not necessarily related to an interest in detailed feedback on one’s own......In order to make better and more realistic predictions of energy consumption in dwellings, more knowledge is needed about how individuals and households control the indoor environment. A questionnaire survey was conducted with the objective of studying the interest and actions taken in relation...... to indoor temperature, air quality and energy consumption by Danish house owners living in single-family detached houses with district heating. The house owners state that they are interested in, and concerned about, the indoor temperature and air quality and that it is an important element in caring...

  2. Heat and PAHs Emissions in Indoor Kitchen Air and Its Impact on Kidney Dysfunctions among Kitchen Workers in Lucknow, North India.

    Science.gov (United States)

    Singh, Amarnath; Kamal, Ritul; Mudiam, Mohana Krishna Reddy; Gupta, Manoj Kumar; Satyanarayana, Gubbala Naga Venkata; Bihari, Vipin; Shukla, Nishi; Khan, Altaf Hussain; Kesavachandran, Chandrasekharan Nair

    2016-01-01

    Indoor air quality and heat exposure have become an important occupational health and safety concern in several workplaces including kitchens of hotels. This study investigated the heat, particulate matter (PM), total volatile organic compounds (TVOCs) and polycyclic aromatic hydrocarbons (PAHs) emissions in indoor air of commercial kitchen and its association with kidney dysfunctions among kitchen workers. A cross sectional study was conducted on 94 kitchen workers employed at commercial kitchen in Lucknow city, North India. A questionnaire-based survey was conducted to collect the personal and occupational history of the kitchen workers. The urine analysis for specific gravity and microalbuminuria was conducted among the study subjects. Indoor air temperature, humidity, wet/ dry bulb temperature and humidex heat stress was monitored during cooking activities at the kitchen. Particulate matter (PM) for 1 and 2.5 microns were monitored in kitchen during working hours using Hazdust. PAHS in indoor air was analysed using UHPLC. Urinary hydroxy-PAHs in kitchen workers were measured using GC/MS-MS. Higher indoor air temperature, relative humidity, PM1 and PM2.5 (pworkers (pworkers. Urinary PAH metabolites detected among kitchen workers were 1-NAP, 9-HF, 3-HF, 9-PHN and 1-OHP. Continuous heat exposure in kitchens due to cooking can alter kidney functions viz., high specific gravity of urine in kitchen workers. Exposure to PM, VOCs and PAHs in indoor air and presence of urinary PAHs metabolites may lead to inflammation, which can cause microalbuminuria in kitchen workers, as observed in the present study.

  3. Indoor Air Quality In Maine Schools: Report of the Task Force To Examine the Establishment and Implementation of State Standards for Indoor Air Quality in Maine Schools.

    Science.gov (United States)

    Malcolm, Judith

    Asserting that in Maine and across the nation, school buildings are becoming increasingly plagued with indoor air quality (IAQ) problems which contribute to a variety of illnesses in children and adults, this report from a Maine state legislative task force identifies appropriate policies and identifies actions necessary for the prevention and…

  4. Variation of annual effective dose due to radon level in indoor air in Marwar region of Rajasthan, India

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Asha, E-mail: ashasachdeva78@gmail.com [Department of Applied Science, Ferozepur College of Engineering and Technology, Farozshah, Ferozepur-142052, Punjab (India); Mittal, Sudhir, E-mail: sudhirmittal03@gmail.com [Department of Applied Sciences, Punjab Technical University, Jalandhar-144601, Punjab (India); Mehra, Rohit [Department of Physics, Dr. B.R.Ambedkar National Institute of Technology, Jalandhar-144011 (India)

    2015-08-28

    In the present work, indoor radon and thoron measurements have been carried out from different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India using RAD7, a solid state alpha detector. The radon and thoron concentration in indoor air varies from 8.75 to 61.25 Bq m{sup −3} and 32.7 to 147.2 Bq m{sup −3} with the mean value of 32 and 73 Bq m{sup −3} respectively. The observed indoor radon concentration values are well below the action level recommended by International Commission on Radiological Protection (200-300 Bq m{sup −3}) and Environmental Protection Agency (148 Bq m{sup −3}). The survey reveals that the thoron concentration values in the indoor air are well within the International Commission on Radiological Protection (2005). The calculated total annual effective dose due to radon level in indoor air varies from 0.22 to 1.54 mSv y{sup −1} with the mean value of 0.81 mSv y{sup −1} which is less than even the lower limit of action level 3-10 mSv y{sup −1} recommended by International Commission on Radiological Protection (2005)

  5. Moisture penetration in a chair seat as a response to daily RH variations in the indoor air

    DEFF Research Database (Denmark)

    Svennberg, Kaisa; Claesson, Johan; Hansen, Kurt Kielsgaard

    2005-01-01

    In the indoor environment there are a number of materials with potential to act as moisture buffers including both building materials and furnishing materials. For daily moisture variations in the indoor air furniture with upholstery can play an important role as moisture buffers. Material proper...

  6. Indoor air problems among employees at a hotel in Copenhagen

    DEFF Research Database (Denmark)

    Holst, Gitte Juel; Harboe, Henrik; Sigsgaard, Torben

    The aim of the study was to investigate indoor air related complaints and symptoms among the employees at a hotel in Copenhagen. A technical inspection of the office environment was performed and showed only minor problems with mould spore counts within normal range. Moreover a questionnaire...... reporting these unexpected findings a hotel employee drew our attention to the hotel’s smoking room, a shelter in the basement of the hotel building without ventilation. However, a lot of the hotel staff smoked down there so an ozone generator was installed in order to clean the air. After this meeting...

  7. Dioxin-like PCB in indoor air contaminated with different sources

    Energy Technology Data Exchange (ETDEWEB)

    Heinzow, B.G.J.; Mohr, S.; Ostendorp, G. [Landesamt fuer Gesundheit und Arbeitssicherheit des Landes Schleswig-Holstein, Flintbek (Germany); Kerst, M.; Koerner, W. [Bayerisches Landesamt fuer Umweltschutz, Augsburg (Germany)

    2004-09-15

    Polychlorinated biphenyls (PCB) have been used in public building constructions for various purposes in the 1960s and 1970s, mainly as an additive to concrete, caulking, grout, paints, as a major constitutent of permanent elastic Thiokol rubber sealants and flame retardant coatings of acoustic ceiling tiles. Offgazing of semivolatile PCB from building materials can nowadays still result in considerable house-dust contamination and in indoor air concentrations exceeding 10,000 ng/m{sup 3}. In Germany, PCB levels in indoor air in non-occupational settings have been regulated with a tolerable total PCB concentration of 300 ng /m{sup 3} and an intervention level of 3000 ng/m{sup 3}. Lower re-entry criteria have been proposed by Michaud et al. Technical mixtures of PCB contain dioxin-like non- and mono-ortho substituted PCB congeners and are contaminated with trace amounts of polychlorinated dibenzodioxins (PCDD) and mainly dibenzofurans (PCDF), sharing overlapping toxic effects and physicochemical properties. We report here on levels of dioxinlike PCB measured in buildings with various PCB sources and correlations among PCDD/PCDF and dioxin-like PCB and di-ortho PCB.

  8. Factors affecting the concentration of outdoor particles indoors: Existing data and data needs

    International Nuclear Information System (INIS)

    McKone, T.E.; Thatcher, T.L.; Fisk, W.J.; Sextro, R.G.; Sohn, M.D.; Delp, W.W.; Riley, W.J.

    2002-01-01

    Accurate characterization of particle concentrations indoors is critical to exposure assessments. It is estimated that indoor particle concentrations depend strongly on outdoor concentrations. For health scientists, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this paper, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles indoors. To achieve this goal, we (i) identify and assemble relevant information on how particle behavior during air leakage, HVAC operation, and particle filtration effects indoor particle concentration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful; and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations

  9. Indoor air quality analysis based on Hadoop

    International Nuclear Information System (INIS)

    Tuo, Wang; Liang, Yu; Weihong, Cui; Yunhua, Sun; Song, Tian

    2014-01-01

    The air of the office environment is our research object. The data of temperature, humidity, concentrations of carbon dioxide, carbon monoxide and ammonia are collected peer one to eight seconds by the sensor monitoring system. And all the data are stored in the Hbase database of Hadoop platform. With the help of HBase feature of column-oriented store and versioned (automatically add the time column), the time-series data sets are bulit based on the primary key Row-key and timestamp. The parallel computing programming model MapReduce is used to process millions of data collected by sensors. By analysing the changing trend of parameters' value at different time of the same day and at the same time of various dates, the impact of human factor and other factors on the room microenvironment is achieved according to the liquidity of the office staff. Moreover, the effective way to improve indoor air quality is proposed in the end of this paper

  10. Indoor air quality analysis based on Hadoop

    Science.gov (United States)

    Tuo, Wang; Yunhua, Sun; Song, Tian; Liang, Yu; Weihong, Cui

    2014-03-01

    The air of the office environment is our research object. The data of temperature, humidity, concentrations of carbon dioxide, carbon monoxide and ammonia are collected peer one to eight seconds by the sensor monitoring system. And all the data are stored in the Hbase database of Hadoop platform. With the help of HBase feature of column-oriented store and versioned (automatically add the time column), the time-series data sets are bulit based on the primary key Row-key and timestamp. The parallel computing programming model MapReduce is used to process millions of data collected by sensors. By analysing the changing trend of parameters' value at different time of the same day and at the same time of various dates, the impact of human factor and other factors on the room microenvironment is achieved according to the liquidity of the office staff. Moreover, the effective way to improve indoor air quality is proposed in the end of this paper.

  11. Knowledge of, and Attitudes to, Indoor Air Pollution in Kuwaiti Students, Teachers and University Faculty

    Science.gov (United States)

    Al Khamees, Nedaa A.; Alamari, Hanaa

    2009-01-01

    The concentrations of air pollutants in residences can be many times those in outside air, and many of these pollutants are known to have adverse health consequences. Despite this, there have been very few attempts to delineate knowledge of, and attitudes to, indoor air pollution. This study aimed to establish the knowledge of, and attitudes to,…

  12. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    Directory of Open Access Journals (Sweden)

    Senthaamarai Rogawansamy

    2015-06-01

    Full Text Available Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®, 70% ethanol, vinegar (4.0%-4.2% acetic acid, and a plant-derived compound (tea tree (Melaleuca alternifolia oil tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum, which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%–4.2% acetic acid was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to

  13. An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments.

    Science.gov (United States)

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-06-02

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®), 70% ethanol, vinegar (4.0%-4.2% acetic acid), and a plant-derived compound (tea tree (Melaleuca alternifolia) oil) tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum), which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%-4.2% acetic acid) was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to inhibit the growth

  14. Editorial input for the right price: tobacco industry support for a sheet metal indoor air quality manual.

    Science.gov (United States)

    Campbell, Richard; Balbach, Edith

    2013-01-01

    Following legal action in the 1990s, internal tobacco industry documents became public, allowing unprecedented insight into the industry's relationships with outside organizations. During the 1980s and 1990s, the National Energy Management Institute (NEMI), established by the Sheet Metal Workers International Association and the Sheet Metal and Air Conditioning Contractors' National Association, (SMACNA) received tobacco industry funding to establish an indoor air quality services program. But the arrangement also required NEMI to serve as an advocate for industry efforts to defeat indoor smoking bans by arguing that ventilation was a more appropriate solution to environmental tobacco smoke. Drawing on tobacco industry documents, this paper describes a striking example of the ethical compromises that accompanied NEMI's collaboration with the tobacco industry, highlighting the solicitation of tobacco industry financial support for a SMACNA indoor air quality manual in exchange for sanitizing references to the health impact of environmental tobacco smoke prior to publication.

  15. Integration of a photocatalytic multi-tube reactor for indoor air purification in HVAC systems: a feasibility study.

    Science.gov (United States)

    van Walsem, Jeroen; Roegiers, Jelle; Modde, Bart; Lenaerts, Silvia; Denys, Siegfried

    2018-04-24

    This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.

  16. Per- and polyfluorinated compounds (PFCs) in house dust and indoor air in Catalonia, Spain: implications for human exposure.

    Science.gov (United States)

    Ericson Jogsten, I; Nadal, M; van Bavel, B; Lindström, G; Domingo, J L

    2012-02-01

    A total of 27 per- and polyfluorinated compounds (PFCs) were determined in both house dust (n=10) and indoor air (n=10) from selected homes in Catalonia, Spain. Concentrations were found to be similar or lower than those previously reported for household microenvironments in other countries. Ten PFCs were detected in all house dust samples. The highest mean concentrations corresponded to perfluorodecanoic acid (PFDA) and perfluorononanoic acid (PFNA), 10.7 ng/g (median: 1.5 ng/g) and 10.4 ng/g (median: 5.4 ng/g), respectively, while the 8:2 fluorotelomer alcohol (FTOH) was the dominating neutral PFC at a concentration of 0.41 ng/g (median: 0.35 ng/g). The indoor air was dominated by the FTOHs, especially the 8:2 FTOH at a mean (median) concentration of 51 pg/m(3) (median: 42 pg/m(3)). A limited number of ionic PFCs were also detected in the indoor air samples. Daily intakes of PFCs were estimated for average and worst case scenarios of human exposure from indoor sources. For toddlers, this resulted in average intakes of ∑ionic PFCs of 4.9ng/day (0.33 ng/kg(bw)/day for a 15 kg toddlers) and ∑neutral PFCs of 0.072 ng/day (0.005 ng/kg(bw)/day) from house dust. For adults, the average daily intakes of dust were 3.6 and 0.053 ng/day (0.05 and 0.001 ng/kg(bw)/day for a 70 kg adult) for ∑ionic and ∑neutral PFCs, respectively. The average daily inhalation of ∑neutral PFCs was estimated to be 0.9 and 1.3 ng/day (0.06 and 0.02 ng/kg(bw)/day) for toddlers and adults, respectively. For PFOS, the main ionic PFC detected in indoor air samples, the median intakes (based on those samples where PFOS was detected), resulted in indoor exposures of 0.06 and 0.11 ng/day (0.004 and 0.002 ng/kg(bw)/day) for toddlers and adults, respectively. Based on previous studies on dietary intake and drinking water consumption, both house dust and indoor air contribute significantly less to PFC exposure within this population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Natural gas combustion and indoor air quality in domestic premises; Combustion du gaz naturel et qualite de l'air a l'interieur des habitations

    Energy Technology Data Exchange (ETDEWEB)

    Occhio, L.; Riva, A. [Snam, (Italy); Canci, F.; Scevarolli, V. [Italgas, Torino (Italy)

    2000-07-01

    Indoor air quality depends on many factors; combustion appliances are one of the sources of emissions inside dwellings. Their installation is regulated by UNI-CIG standards which also establish the ventilation and aeration requirements needed to guarantee the safety and healthiness of the environment. In order to critically evaluate the effect on indoor air quality of using gas appliances under different operational regimes and in different types of building, Snam and Italgas have developed a research project in co-operation with Enitecnologie and Turin Polytechnic, even to provide theoretical and experimental support for standardisation activities. The results of the presented research include experimental measurements made in real buildings, mathematical modelling and analysis of Italian and international literature. The results show that use of combustion appliances has little influence on indoor air quality and does not affect people's health. (authors)

  18. Indoor air quality: The hidden side of the indoor environment

    NARCIS (Netherlands)

    Oliveira Fernandes, E. de; Bluyssen, P.M.; Clausen, G.H.

    1996-01-01

    The physical environment can be defined and understood in manv different ways, both from its nature, e.g., thermal, accoustic, etc., or its dimension, e.g., global, local, urban, indoors. The indoor environment is much more than the space or the light effects; it is the result of a complex

  19. Quantitative assessment of bio-aerosols contamination in indoor air of University dormitory rooms.

    Science.gov (United States)

    Hayleeyesus, Samuel Fekadu; Ejeso, Amanuel; Derseh, Fikirte Aklilu

    2015-07-01

    The purpose of this study is to provide insight into how students are exposed to indoor bio-aerosols in the dormitory rooms and to figure out the major possible factors that govern the contamination levels. The Bio-aerosols concentration level of indoor air of thirty dormitory rooms of Jimma University was determined by taking 120 samples. Passive air sampling technique; the settle plate method using open Petri-dishes containing different culture media was employed to collect sample twice daily. The range of bio-aerosols contamination detected in the dormitory rooms was 511-9960 CFU/m(3) for bacterial and 531-6568 CFU/m(3) for fungi. Based on the criteria stated by WHO expert group, from the total 120 samples 95 of the samples were above the recommended level. The statistical analysis showed that, occupancy were significantly affected the concentrations of bacteria that were measured in all dormitory rooms at 6:00 am sampling time (p-value=0.000) and also the concentrations of bacteria that were measured in all dormitory rooms were significantly different to each other (p-value=0.013) as of their significance difference in occupancy (p-value=0.000). Moreover, there were a significant different on the contamination level of bacteria at 6:00 am and 7:00 pm sampling time (p=0.015), whereas there is no significant difference for fungi contamination level for two sampling times (p= 0.674). There is excessive bio-aerosols contaminant in indoor air of dormitory rooms of Jimma University and human occupancy produces a marked concentration increase of bacterial contamination levels and most fungi species present into the rooms air of Jimma University dormitory were not human-borne.

  20. Contribution of 222Rn in domestic water supplies to 222Rn in indoor air in Colorado homes

    International Nuclear Information System (INIS)

    Lawrence, E.P.; Wanty, R.B.; Nyberg, P.

    1992-01-01

    The contribution of 222Rn from domestic water wells to indoor air was investigated in a study of 28 houses near Conifer, CO. Air concentrations determined by alpha-track detectors (ATDs) and continuous radon monitors were compared with the predictions of a single-cell model. In many of the houses, the water supply was shown to contribute significantly to levels of indoor 222Rn. The data from the ATD study were augmented with a continuous monitoring study of a house near Lyons, CO. The well water in that house has the highest known concentration of 222Rn in water yet reported (93 MBq m-3). The temporal pattern in the indoor 222Rn concentration corresponds to water-use records. In general, it is difficult to quantify the proportion of indoor radon attributable to water use. Several lines of evidence suggest that the single-cell model underestimates this proportion. Continuous-monitoring data, although useful, are impractical due to the cost of the equipment. We propose a protocol for 222Rn measurement based on three simultaneous integrating radon detectors that may help estimate the proportion of indoor 222Rn derived from the water supply