WorldWideScience

Sample records for reversible qdca systems

  1. On the design of reversible QDCA systems.

    Energy Technology Data Exchange (ETDEWEB)

    DeBenedictis, Erik P.; Frank, Michael P. (Florida State University, Tallahassee, FL); Ottavi, Marco; Frost-Murphy, Sarah E. (University of Notre Dame, Notre Dame, IN)

    2006-10-01

    This work is the first to describe how to go about designing a reversible QDCA system. The design space is substantial, and there are many questions that a designer needs to answer before beginning to design. This document begins to explicate the tradeoffs and assumptions that need to be made and offers a range of approaches as starting points and examples. This design guide is an effective tool for aiding designers in creating the best quality QDCA implementation for a system.

  2. Chemical reactions in reverse micelle systems

    Science.gov (United States)

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  3. Marburg Virus Reverse Genetics Systems

    Directory of Open Access Journals (Sweden)

    Kristina Maria Schmidt

    2016-06-01

    Full Text Available The highly pathogenic Marburg virus (MARV is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  4. REVERSIBLE VENTILATION SYSTEM FOR ADMINISTRATIVE BUILDINGS

    Directory of Open Access Journals (Sweden)

    Valery Yu. Kravchuk

    2017-01-01

    Full Text Available Abstract. Objectives To consider the possibility of applying the principle of reversing air flows for a centralised ventilation system; to develop a specific scheme for air exchange reversible ventilation, which will take into account the peculiarities of the microclimate of administrative buildings; to select the type of filling of the air-permeable element and justify this choice; to determine the conditions for changing the direction of air movement in the ventilation system and the area of its application; to form a list of equipment necessary for the operation of such a system; to consider the influence of supply and exhaust devices on the heat and humidity regime of claddings. Methods  To achieve this goal, the published thematic material was reviewed and a patent search carried out using Russian and European databases. Data on mathematical modelling of filtration in porous media and experimental results were used. A method for ventilating rooms in administrative building using the reversal of movement of supply and exhaust air streams along the same channels was applied. Results  Schemas for reversible ventilation systems are presented and their modes of operation considered. It is established that the idea of reversing ventilation flows has not yet been applied in the development of centralised ventilation systems. Based on these published materials, it was concluded that the proposed design of supply and exhaust devices can be used in practice. An original air exchange scheme for the ventilation of administrative buildings and design of supply and exhaust devices for this system are proposed. The conditions for changing the operating modes of the system and the scope of its application are determined. Conclusion The use of the proposed ventilation system allows normative air exchange to be provided without using a supply unit during the cold season. This application of airflow reversal allows the potential of natural forces to be used

  5. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  6. Ascorbyl radical disproportionation in reverse micellar systems

    Science.gov (United States)

    Gębicki, J. L.; Szymańska-Owczarek, M.; Pacholczyk-Sienicka, B.; Jankowski, S.

    2018-04-01

    Ascorbyl radical was generated by the pulse radiolysis method and observed with the fast kinetic spectrophotometry within reverse micelles stabilized by AOT in n-heptane or by Igepal CO-520 in cyclohexane at different water to surfactant molar ratio, w0. Rate constants for the disproportionation of the ascorbyl radicals were smaller than those for intermicellar exchange for both type of reverse micelles and slower than those in homogeneous aqueous solutions. However, they increased with increasing w0 for AOT/n-heptane system, while they decreased for Igepal CO-520 system. The absorption spectra of ascorbic acid AOT/n-heptane reverse micellar system showed that the "pH" sensed by this molecule is lower than that in respective homogeneous aqueous solutions. The obtained results were rationalized taking into account three main factors (i) preferential location of ascorbic acid molecules in the interfacial region of the both types of reverse micelles; (ii) postulate that the pH of the interface is lower than that of the water pool of reverse micelles and (iii) different structure of the interface of the reverse micelles made by AOT in n-heptane and those formed by Igepal CO-520 I cyclohexane. Some possible consequences of these findings are discussed.

  7. Time reversal communication system

    Science.gov (United States)

    Candy, James V.; Meyer, Alan W.

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  8. Magnetization reversal modes in fourfold Co nano-wire systems

    International Nuclear Information System (INIS)

    Blachowicz, T; Ehrmann, A

    2015-01-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities. (paper)

  9. Magnetization reversal modes in fourfold Co nano-wire systems

    Science.gov (United States)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  10. Non-reversible evolution of quantum chaotic system. Kinetic description

    International Nuclear Information System (INIS)

    Chotorlishvili, L.; Skrinnikov, V.

    2008-01-01

    It is well known that the appearance of non-reversibility in classical chaotic systems is connected with a local instability of phase trajectories relatively to a small change of initial conditions and parameters of the system. Classical chaotic systems reveal an exponential sensitivity to these changes. This leads to an exponential growth of initial error with time, and as the result after the statistical averaging over this error, the dynamics of the system becomes non-reversible. In spite of this, the question about the origin of non-reversibility in quantum case remains actual. The point is that the classical notion of instability of phase trajectories loses its sense during quantum consideration. The current work is dedicated to the clarification of the origin of non-reversibility in quantum chaotic systems. For this purpose we study a non-stationary dynamics of the chaotic quantum system. By analogy with classical chaos, we consider an influence of a small unavoidable error of the parameter of the system on the non-reversibility of the dynamics. It is shown in the Letter that due to the peculiarity of chaotic quantum systems, the statistical averaging over the small unavoidable error leads to the non-reversible transition from the pure state into the mixed one. The second part of the Letter is dedicated to the kinematic description of the chaotic quantum-mechanical system. Using the formalism of superoperators, a muster kinematic equation for chaotic quantum system was obtained from Liouville equation under a strict mathematical consideration

  11. Reverse innovation: an opportunity for strengthening health systems.

    Science.gov (United States)

    Snowdon, Anne W; Bassi, Harpreet; Scarffe, Andrew D; Smith, Alexander D

    2015-02-07

    Canada, when compared to other OECD countries, ranks poorly with respect to innovation and innovation adoption while struggling with increasing health system costs. As a result of its failure to innovate, the Canadian health system will struggle to meet the needs and demands of both current and future populations. The purpose of this initiative was to explore if a competition-based reverse innovation challenge could mobilize and stimulate current and future leaders to identify and lead potential reverse innovation projects that address health system challenges in Canada. An open call for applications took place over a 4-month period. Applicants were enticed to submit to the competition with a $50,000 prize for the top submission to finance their project. Leaders from a wide cross-section of sectors collectively developed evaluation criteria and graded the submissions. The criteria evaluated: proof of concept, potential value, financial impact, feasibility, and scalability as well as the use of prize money and innovation team. The competition received 12 submissions from across Canada that identified potential reverse innovations from 18 unique geographical locations that were considered developing and/or emerging markets. The various submissions addressed health system challenges relating to education, mobile health, aboriginal health, immigrant health, seniors health and women's health and wellness. Of the original 12 submissions, 5 finalists were chosen and publically profiled, and 1 was chosen to receive the top prize. The results of this initiative demonstrate that a competition that is targeted to reverse innovation does have the potential to mobilize and stimulate leaders to identify reverse innovations that have the potential for system level impact. The competition also provided important insights into the capacity of Canadian students, health care providers, entrepreneurs, and innovators to propose and implement reverse innovation in the context of the

  12. Reverse Ecology: from systems to environments and back.

    Science.gov (United States)

    Levy, Roie; Borenstein, Elhanan

    2012-01-01

    The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.

  13. Plant experience with temporary reverse osmosis makeup water systems

    International Nuclear Information System (INIS)

    Polidoroff, C.

    1986-01-01

    Pacific Gas and Electric (PG and E) Company's Diablo Canyon Power Plant (DCPP), which is located on California's central coast, has access to three sources of raw water: creek water, well water, and seawater. Creek and well water are DCPP's primary sources of raw water; however, because their supply is limited, these sources are supplemented with seawater. The purpose of this paper is to discuss the temporary, rental, reverse osmosis systems used by PG and E to process DCPP's raw water into water suitable for plant makeup. This paper addresses the following issues: the selection of reverse osmosis over alternative water processing technologies; the decision to use vendor-operated temporary, rental, reverse osmosis equipment versus permanent PG and E-owned and -operated equipment; the performance of DCPP's rental reverse osmosis systems; and, the lessons learned from DCPP's reverse osmosis system rental experience that might be useful to other plants considering renting similar equipment

  14. Crystallization features of ternary reversible reciprocal systems

    International Nuclear Information System (INIS)

    Tomashik, V.N.; Shcherbak, L.P.; Fejchuk, P.I.; Grytsiv, V.I.

    2006-01-01

    Some features of the primary crystallization of phases in ternary reversible reciprocal system are considered and discussed. The diagonal join CdTe-GeSe of the CdTe + GeSe = CdSe + GeTe ternary reciprocal system is studied to show that the features in primary and secondary heating and cooling curves in such systems under fully equilibrium conditions are not reproduced upon consecutive heating and cooling sessions, because of the existence of different amounts of the reagents and the reaction products in the mixture; the temperatures of each transformation lie in a range. Those who experimentally investigate other ternary and more complex reversible reciprocal systems should take this fact into account [ru

  15. Nonlinear Time-Reversal in a Wave Chaotic System

    Science.gov (United States)

    Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven

    2012-02-01

    Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)

  16. The mediating effect of sustainability control system on reverse ...

    African Journals Online (AJOL)

    This paper analyses part of the viability of green supply chain management practices created for fisheries industry to implement sustainability control system adoption as mediating on reverse logistics innovation and customer environmental collaboration towards sustainability performance. It examines reverse logistics ...

  17. Reverse electrodialysis : evaluation of suitable electrode systems

    NARCIS (Netherlands)

    Veerman, J.; Saakes, M.; Metz, S. J.; Harmsen, G. J.

    Reverse electrodialysis (RED) is a method for directly extracting electrical energy from salinity gradients, especially from sea and river water. For the commercial implementation of RED, the electrode system is a key component. In this paper, novel electrode systems for RED were compared with

  18. Modelling and Comparative Performance Analysis of a Time-Reversed UWB System

    Directory of Open Access Journals (Sweden)

    Popovski K

    2007-01-01

    Full Text Available The effects of multipath propagation lead to a significant decrease in system performance in most of the proposed ultra-wideband communication systems. A time-reversed system utilises the multipath channel impulse response to decrease receiver complexity, through a prefiltering at the transmitter. This paper discusses the modelling and comparative performance of a UWB system utilising time-reversed communications. System equations are presented, together with a semianalytical formulation on the level of intersymbol interference and multiuser interference. The standardised IEEE 802.15.3a channel model is applied, and the estimated error performance is compared through simulation with the performance of both time-hopped time-reversed and RAKE-based UWB systems.

  19. Batteryless photovoltaic reverse-osmosis desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, M.; Miranda, M.; Gwillim, J.; Rowbottom, A.; Draisey, I.

    2001-07-01

    The aim of this project was to design an efficient cost-effective batteryless photovoltaic-powered seawater reverse-osmosis desalination system, to deliver in the order of 3 m{sup 3} of fresh drinking water per day. The desalination of seawater to produce fresh drinking water is extremely valuable on islands and in coastal regions wherever natural freshwater is scarce. Existing small-scale desalination equipment, suitable for areas of medium and low population density, often requires a copious and constant supply of energy, either electricity or diesel. If supply of these fuels is expensive or insecure, but the area has a good solar resource, the use of photovoltaic power is an attractive option. Existing demonstrations of photovoltaic-powered desalination generally employ lead-acid batteries, which allow the equipment to operate at a constant flow, but are notoriously problematic in practice. The system developed in this project runs at variable flow, enabling it to make efficient use of the naturally varying solar resource, without need of batteries. In a sense, the freshwater tank is providing the energy storage. In this project, we have reviewed the merits of a wide variety of reverse-osmosis system configurations and component options. We have completed extensive in-house testing and characterisation of major hardware components and used the results to construct detailed software models. Using these, we have designed a system that meets the above project aim, and we have predicted its performance in detail. Our designs show that a system costing 23,055 pounds stirling will produce 1424 m{sup 3} of fresh drinking water annually - an average of just over 3.9 m{sup 3}/day. The system has no fuel costs and no batteries. The overall cost of water, including full maintenance, is 2.00 pounds stirling per m{sup 3}. The energy consumption (photovoltaic-electricity) is typically between 3.2 and 3.7 kWh/m{sup 3} depending on the solar irradiance and feed water

  20. Flux dependency of particulate/colloidal fouling in seawater reverse osmosis systems

    KAUST Repository

    Salinas Rodrí guez, S. G.; Kennedy, Maria Dolores; Amy, Gary L.; Schippers, Jan Cornelis

    2012-01-01

    of seawater in reverse osmosis systems; (3) to project the increase in pressure due to cake resistance in reverse osmosis systems. In this research, flat ultrafiltration membranes (100, 50, 30 and 10 kDa) are used in a con- stant flux filtration mode to test

  1. Reverse Algols

    Science.gov (United States)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  2. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  3. Bifurcation of limit cycles for cubic reversible systems

    Directory of Open Access Journals (Sweden)

    Yi Shao

    2014-04-01

    Full Text Available This article is concerned with the bifurcation of limit cycles of a class of cubic reversible system having a center at the origin. We prove that this system has at least four limit cycles produced by the period annulus around the center under cubic perturbations

  4. Reverse Logistics Systems: Persepsi dan Harapan Konsumen

    Directory of Open Access Journals (Sweden)

    Farida Pulansari

    2016-12-01

    Full Text Available Complaint is a signal that indicates important information directly by customers. Complaint will give valuable information to company to plan recovery strategies to maintain customer satisfaction and loyalty. Hence, Electronic Waste (E-waste becomes a hot issue internationally, domestically and locally. There are many kind of regulations, strategy, methods or approach to minimize of E-waste. The goal of this research is design of House of Reverse Logistics (HRL to understanding the customer needs and wants for Reverse Logistics (RL implementation. This research adopted Quality Function Deployment (QFD method to construct the HRL. Differences among them are determination of the customer needs and wants. HRL insert five perspectives i.e. Input, Structure, Process, Output and Social & Organization. In other hand, QFD only inserts consumer perspective. The results showed the highest factors of consumer dissatisfaction comes from: 20% of third-party services mechanism, 10% from collaboration RL system (collection centers, recycling centers, disposal center ,10% comes the standardization of servicing system and 60% of others

  5. Solar Desalination System Model for Sizing of Photovoltaic Reverse Osmosis (PVRO)

    KAUST Repository

    Habib, Abdulelah; Zamani, Vahraz; Kleissl, Jan

    2015-01-01

    loads, are considered as an ON/OFF units to track these solar energy variations. Reverse osmosis units are different in sizes and numbers. Various combinations of reverse osmosis units in size and capacity provide different water desalination system

  6. Solar Desalination System Model for Sizing of Photovoltaic Reverse Osmosis (PVRO)

    KAUST Repository

    Habib, Abdulelah

    2015-06-28

    The focus of this paper is to optimize the solar energy utilization in the water desalination process. Due to variable nature of solar energy, new system design is needed to address this challenge. Here, reverse osmosis units, as the electrical loads, are considered as an ON/OFF units to track these solar energy variations. Reverse osmosis units are different in sizes and numbers. Various combinations of reverse osmosis units in size and capacity provide different water desalination system performances. To assess each scenario of reverse osmosis units, the total capital cost and operation and maintenance (O&M) cost are considered. The implemented optimization algorithm search all of the possible scenarios to find the best solution. This paper deploys the solar irradiance data which is provided from west coast (Red Sea) of Saudi Arabia for model construction and optimization algorithm implementation.

  7. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  8. Reverse engineering for quality systems

    International Nuclear Information System (INIS)

    Nolan, A.J.

    1995-01-01

    When the age of software engineering began, many companies were faced with a problem of how to support the older, pre-software-engineering, programs. The techniques of reverse engineering and re-engineering were developed to bridge the gap between the past and the present. Although reverse engineering can be used for generating missing documentation, it can also be used as a means to demonstrate quality in these older programs. This paper presents, in the form of a case study, how Rolls-Royce and Associates Limited addressed the quality issues of reverse engineering and re-engineering. (author)

  9. Drift reversal capability in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Itoh, K.; Okamura, S.

    2002-10-01

    The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in experiments. (author)

  10. Drift reversal capability in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Itoh, K.; Okamura, S.; Matsuoka, K.; Nakajima, N.; Itoh, S.-I.; Neilson, G.H.; Zarnstorff, M.C.; Rewoldt, G.

    2003-01-01

    The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in experiments. (author)

  11. Environmental costs and reverse logistics: a systemic analysis

    Directory of Open Access Journals (Sweden)

    Paula de Souza

    2013-08-01

    Full Text Available This article aims to analyze the articles most relevant to the themes inherent environmental costs from the perspective of reverse logistics, identifying gaps for these two approaches through systemic analysis. In order to achieve the purpose of this article, the intervention instrument used was ProKnow-C (Knowledge Process Development - Constructivist. The application of this methodology resulted in gross bank of articles, comprising 1225 items obtained from four international databases: Science Direct, ISI Web of Science, Scopus and Wiley Online Library. The raw bank was filtered in relation to redundancy, the alignment of the title and the scientific relevance. The filtering had resulted in a set of 15 articles aligned with two axes of research. The analysis of the selected articles identified the most cited article and the author most cited, concluding that the issue environmental costs associated with reverse logistics is studied by several authors and universities. Moreover, it was found that the keyword most presented in the articles was reverse logistics. The analysis of 1117 references of the 15 articles has shown the most cited articles, as well as the most countrast journals and academic relevance of authors and their selected articles. A systemic analysis of the 15 selected articles showed that the two lines of research are related mainly to issues of environmental sustainability, competitiveness and business efficiency.

  12. Discussion on cleaning and maintenance of YA system reverse osmosis membrane

    International Nuclear Information System (INIS)

    Zhu Yidong

    2012-01-01

    According to the overproof of pollution data of YA system reverse osmosis membrane in extension project, the daily maintenance company is using chemical cleaning on reverse osmosis unit to eliminate the pollution blindly, the fixed prescription, fixed dosage and high frequency of the chemical cleaning. The writer analyzed the cause of the membrane pollution and commended several chemical cleaning methods by the long-period study of the system, and also some suggestion, according to the status of operational site, for the daily maintenance. (author)

  13. [Reverse genetics system of rotaviruses: development and application for analysis of VP4 spike protein].

    Science.gov (United States)

    Komoto, Satoshi

    2013-01-01

    The rotavirus genome is composed of 11 gene segments of double-stranded (ds)RNA. Reverse genetics is the powerful and ideal methodology for the molecular analysis of virus biology, which enables the virus genome to be artificially manipulated. Although reverse genetics systems exist for nearly all major groups of RNA viruses, development of such a system for rotaviruses is more challenging owing in part to the technical complexity of manipulation of their multi-segmented genome. A breakthrough in the field of rotavirus reverse genetics came in 2006, when we established the first reverse genetics system for rotaviruses, which is a partially plasmid-based system that permits replacement of a viral gene segment with the aid of a helper virus. Although this helper virus-driven system is technically limited and gives low levels of recombinant viruses, it allows alteration of the rotavirus genome, thus contributing to our understanding of these medically important viruses. In this review, I describe the development and application of our rotavirus reverse genetics system, and its future perspectives.

  14. Theoretical test of Jarzynski's equality for reversible volume-switching processes of an ideal gas system.

    Science.gov (United States)

    Sung, Jaeyoung

    2007-07-01

    We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.

  15. Tubal Ligation Reversal

    Science.gov (United States)

    ... seal off the fallopian tubes, such as the Essure or Adiana systems, generally aren't reversible. Why ... electrocautery). Some types of sterilization, such as the Essure or Adiana systems, aren't considered reversible. Risks ...

  16. ETV REPORT: EVALUATION OF HYDROMETRICS, INC., HIGH EFFICIENCY REVERSE OSMOSIS (HERO™) INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    Science.gov (United States)

    Hydrometrics, founded in 1979 and located in Helena, MT, manufactures a commercial-ready High Efficiency Reverse Osmosis (HERO™) industrial wastewater treatment system. The system uses a three-stage reverse osmosis process to remove and concentrate metals for recovery while prod...

  17. Enhanced hydrogen production by coupled system of Halobacterium halobium and chloroplast after entrapment within reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Dubey, R.S. [Banaras Hindhu University, Varanasi (India). Dept. of Biochemistry; Pandey, K.D. [Banaras Hindhu University, Varanasi (India). Dept. of Botany

    1999-08-01

    Reverse micelles were used for the enhanced rate of photoproduction of hydrogen using the coupled system of Halobacterium halobium and chloroplasts organelles. Different combinations of organic solvents and surfactants were used for generating reverse micelles. A several fold enhancement in the rate of H{sub 2} production was observed when the coupled system was entrapped within reverse micelles as compared to the aqueous suspension where no detectable H{sub 2} was produced. The coupled system immobilized in reverse micelles formed by sodium lauryl sulfate and carbon tetrachloride yielded maximum rate of H{sub 2} evolution. The optimum temperature for such hydrogen production was 40{sup o}C using light of 520-570 nm wavelength and 100 lux intensity. (author)

  18. Flux dependency of particulate/colloidal fouling in seawater reverse osmosis systems

    KAUST Repository

    Salinas Rodríguez, S. G.

    2012-01-01

    Fouling is the main operational problem in seawater reverse osmosis systems (SWRO). Particulate fouling is traditionally measured through the silt density index (SDI) and through the modified fouling index (MFI). In recent years, ultrafiltration membranes were used successfully at constant flux-MFI-UF-to measure particulate/colloidal fouling potential and tested in sea water applications. Furthermore, constant flux operation allows predicting the rate of fouling in RO systems. The objectives of this study are: (1) to measure the flux effect in MFI-UF with different membranes (100, 30 and 10 kDa) for raw seawater and pre-treated water before reverse osmosis in three different locations; (2) to study the particulate and colloidal fouling potential of seawater in reverse osmosis systems; (3) to project the increase in pressure due to cake resistance in reverse osmosis systems. In this research, flat ultrafiltration membranes (100, 50, 30 and 10 kDa) are used in a con- stant flux filtration mode to test and compare real seawaters from various locations (North and Mediterranean Sea) and from various full scale facilities including different pre-treatments (i.e., ultrafiltration and coagulation + dual media filtration). The operated fluxes range from 350 down to values close to real RO operation, 15l(m2h)-1. After each filtration test, the MFI-UF is calculated to assess the particulate fouling potential. The obtained results showed that: (1) the particulate and colloidal fouling potential is directly proportional to the applied flux during filtration. This proportionality is related to the compression of the cake deposit occurring at high flux values; (2) the higher the flux, the higher the required pressure, the less porous the cake and therefore the higher the specific cake resistance; (3) particulate and colloidal fouling potential of seawater is site specific and is influenced by pre-treatment. © 2012 Desalination Publications. All rights reserved.

  19. Reverse genetics with animal viruses. NSV reverse genetics

    International Nuclear Information System (INIS)

    Mebatsion, T.

    2005-01-01

    New strategies to genetically manipulate the genomes of several important animal pathogens have been established in recent years. This article focuses on the reverse genetics techniques, which enables genetic manipulation of the genomes of non-segmented negative-sense RNA viruses. Recovery of a negative-sense RNA virus entirely from cDNA was first achieved for rabies virus in 1994. Since then, reverse genetic systems have been established for several pathogens of medical and veterinary importance. Based on the reverse genetics technique, it is now possible to design safe and more effective live attenuated vaccines against important viral agents. In addition, genetically tagged recombinant viruses can be designed to facilitate serological differentiation of vaccinated animals from infected animals. The approach of delivering protective immunogens of different pathogens using a single vector was made possible with the introduction of the reverse genetics system, and these novel broad-spectrum vaccine vectors have potential applications in improving animal health in developing countries. (author)

  20. An inexact reverse logistics model for municipal solid waste management systems.

    Science.gov (United States)

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Biomechanical comparison of reverse total shoulder arthroplasty systems in soft tissue-constrained shoulders.

    Science.gov (United States)

    Henninger, Heath B; King, Frank K; Tashjian, Robert Z; Burks, Robert T

    2014-05-01

    Numerous studies have examined the biomechanics of isolated variables in reverse total shoulder arthroplasty. This study directly compared the composite performance of two reverse total shoulder arthroplasty systems; each system was designed around either a medialized or a lateralized glenohumeral center of rotation. Seven pairs of shoulders were tested on a biomechanical simulator. Center of rotation, position of the humerus, passive and active range of motion, and force to abduct the arm were quantified. Native arms were tested, implanted with a Tornier Aequalis or DJO Surgical Reverse Shoulder Prosthesis (RSP), and then retested. Differences from the native state were then documented. Both systems shifted the center of rotation medially and inferiorly relative to native. Medial shifts were greater in the Aequalis implant (P .05). Both reverse total shoulder arthroplasty systems exhibited adduction deficits, but the RSP implant deficit was smaller (P = .046 between implants). Both systems reduced forces to abduct the arm compared with native, although the Aequalis required more force to initiate motion from the resting position (P = .022). Given the differences in system designs and configurations, outcome variables were generally comparable. The RSP implant allowed slightly more adduction, had a more lateralized humeral position, and required less force to initiate elevation. These factors may play roles in limiting scapular notching, improving active external rotation by normalizing the residual rotator cuff length, and limiting excessive stress on the deltoid. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  2. The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system

    International Nuclear Information System (INIS)

    Li, Chengzhi; Llibre, Jaume

    2009-01-01

    We prove that by perturbing the periodic annulus of the quadratic polynomial reversible Lotka–Volterra differential system, inside the class of all quadratic polynomial differential systems we can obtain at most two limit cycles

  3. Inducing sex reversal of the urogenital system of marsupials.

    Science.gov (United States)

    Renfree, Marilyn B; Chew, Keng Yih; Shaw, Geoff

    2014-01-01

    Marsupials differ from eutherian mammals in their reproductive strategy of delivering a highly altricial young after a short gestation. The young, with its undeveloped organ systems completes its development post-natally, usually within a pouch. The young is dependent on milk with a composition that varies through lactation to support its growth and changing needs as it matures over a lengthy period. Gonadal differentiation occurs after birth, providing a unique opportunity to examine the effects of hormonal manipulations on its sexual differentiation of the highly accessible young. In marsupials a difference in the migration of the urinary ducts around the genital ducts from eutherian mammals results in the unique tammar reproductive tract which has three vaginae and two cervices, and two distinctly separate uteri. In the tammar wallaby, a small member of the kangaroo family, we showed that virilisation of the Wolffian duct, prostate and phallus depends on an alternate androgen pathway, which has now been shown to be important for virilisation in humans. Through hormonal manipulations over differing time periods we have achieved sex reversal of both ovaries and testes, germ cells, genital ducts, prostate and phallus. Whilst we understand many of the mechanisms behind sexual differentiation there are still many lessons to be learned from understanding how sex reversal is achieved by using a model such as the tammar wallaby. This will help guide investigations into the major questions of how and why sex determination is achieved in other species. This review discusses the control and development of the marsupial urogenital system, largely drawn from our studies in the tammar wallaby and our ability to manipulate this system to induce sex reversal. Copyright © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  4. Non-Abelian parafermions in time-reversal-invariant interacting helical systems

    Science.gov (United States)

    Orth, Christoph P.; Tiwari, Rakesh P.; Meng, Tobias; Schmidt, Thomas L.

    2015-02-01

    The interplay between bulk spin-orbit coupling and electron-electron interactions produces umklapp scattering in the helical edge states of a two-dimensional topological insulator. If the chemical potential is at the Dirac point, umklapp scattering can open a gap in the edge state spectrum even if the system is time-reversal invariant. We determine the zero-energy bound states at the interfaces between a section of a helical liquid which is gapped out by the superconducting proximity effect and a section gapped out by umklapp scattering. We show that these interfaces pin charges which are multiples of e /2 , giving rise to a Josephson current with 8 π periodicity. Moreover, the bound states, which are protected by time-reversal symmetry, are fourfold degenerate and can be described as Z4 parafermions. We determine their braiding statistics and show how braiding can be implemented in topological insulator systems.

  5. Potential of reversible solid oxide cells as electricity storage system

    OpenAIRE

    Di Giorgio, Paolo; Desideri, Umberto

    2016-01-01

    Electrical energy storage (EES) systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES), and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC) working in both ...

  6. Dual kinetic curves in reversible electrochemical systems.

    Directory of Open Access Journals (Sweden)

    Michael J Hankins

    Full Text Available We introduce dual kinetic chronoamperometry, in which reciprocal relations are established between the kinetic curves of electrochemical reactions that start from symmetrical initial conditions. We have performed numerical and experimental studies in which the kinetic curves of the electron-transfer processes are analyzed for a reversible first order reaction. Experimental tests were done with the ferrocyanide/ferricyanide system in which the concentrations of each component could be measured separately using the platinum disk/gold ring electrode. It is shown that the proper ratio of the transient kinetic curves obtained from cathodic and anodic mass transfer limited regions give thermodynamic time invariances related to the reaction quotient of the bulk concentrations. Therefore, thermodynamic time invariances can be observed at any time using the dual kinetic curves for reversible reactions. The technique provides a unique possibility to extract the non-steady state trajectory starting from one initial condition based only on the equilibrium constant and the trajectory which starts from the symmetrical initial condition. The results could impact battery technology by predicting the concentrations and currents of the underlying non-steady state processes in a wide domain from thermodynamic principles and limited kinetic information.

  7. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    International Nuclear Information System (INIS)

    Naidu, M C A; Nolakha, Dinesh; Saharkar, B S; Kavani, K M; Patel, D R

    2012-01-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of 'Open loop, auto reversing liquid nitrogen based thermal system'. System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  8. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  9. The brief time-reversibility of the local Lyapunov exponents for a small chaotic Hamiltonian system

    International Nuclear Information System (INIS)

    Waldner, Franz; Hoover, William G.; Hoover, Carol G.

    2014-01-01

    Highlights: •We consider the local Lyapunov spectrum for a four-dimensional Hamilton system. •Its stable periodic motion can be reversed for long times. •In the chaotic motion, time reversal occurs only for a short time. •Perturbations will change this short unstable case into a different stable case. •These observations might relate chaos to the Second Law of Thermodynamics. - Abstract: We consider the local (instantaneous) Lyapunov spectrum for a four-dimensional Hamiltonian system. Its stable periodic motion can be reversed for long times. Its unstable chaotic motion, with two symmetric pairs of exponents, cannot. In the latter case reversal occurs for more than a thousand fourth-order Runge–Kutta time steps, followed by a transition to a new set of paired Lyapunov exponents, unrelated to those seen in the forward time direction. The relation of the observed chaotic dynamics to the Second Law of Thermodynamics is discussed

  10. Pengaruh Kepuasan Dan Kepercayaan Terhadap Keputusan Pembelian Ulang Pada Depot Air Minum Tris Water Reverse Osmosis System (Ro)

    OpenAIRE

    Fitria, Ika

    2011-01-01

    Kind of this survey is asociative survey which watch influence of customer satisfaction and trust to re-purchase decision on Depot Air Minum Tris Water Reverse Osmosis System (RO) and test of hypothesis use Multiple Linear Regression Analysist on α=5%. This survey used SPSS 16.00 version for windows. Research population is consumers of Depot Air Minum Tris Water Reverse Osmosis System (RO). Sample was used in this survey from customers of Depot Air Minum Tris Water Reverse Osmosis System (RO)...

  11. [Influence of reverse osmosis concentrate on physicochemical parameters of Sini decoction material system and their relevance].

    Science.gov (United States)

    Jin, Tang-Hui; Zhang, Liu-Hong; Zhu, Hua-Xu; Guo, Li-Wei; Li, Bo; Lu, Ming-Ming

    2014-04-01

    By studying the process of reverse osmosis system for traditional Chinese medicine materials physicochemical parameters affecting the osmotic pressure of its relevance, new compound system reverse osmosis process design methods were explored. Three concentrations materials for high, middle and low were dubbed with Sini decoction as a model drug, and pretreated by 50 thousand relative molecular weight cut-off ultrafiltration membrane. The viscosity, turbidity, conductivity, salinity, TDS, pH value and osmotic pressure of each sample were determined after the reverse osmosis to study the physical and chemical parameters between their respective correlations with the osmotic pressure, and characterized by HPLC chromatograms showing changes before and after the main chemical composition of samples of reverse osmosis. Conductivity-osmotic pressure, salinity-osmotic pressure of the linear correlation coefficient, TDS-osmotic pressure between the three sets of parameters were 0.963 8, 0.932 7, 0.973 7, respectively. Reverse osmosis concentrate and its characteristic spectrum ultrafiltrate HPLC similarity were up to 0. 968 or more, except the low concentrations. There is a significant correlation between the three physicochemical parameters (conductivity, salinity, TDS) and osmotic pressure of each sample system, and there is also significant linear correlation between salinity, conductivity, TDS. The original chemical composition of Sini decoction material concentrate was completely remained after the process of reverse osmosis.

  12. New results for time reversed symplectic dynamic systems and quadratic functionals

    Directory of Open Access Journals (Sweden)

    Roman Simon Hilscher

    2012-05-01

    Full Text Available In this paper, we examine time scale symplectic (or Hamiltonian systems and the associated quadratic functionals which contain a forward shift in the time variable. Such systems and functionals have a close connection to Jacobi systems for calculus of variations and optimal control problems on time scales. Our results, among which we consider the Reid roundabout theorem, generalize the corresponding classical theory for time reversed discrete symplectic systems, as well as they complete the recently developed theory of time scale symplectic systems.

  13. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  14. Towards an investigation on the determinants for effectiveness and efficiency of reverse logistics systems (RLS

    Directory of Open Access Journals (Sweden)

    Francisco Gaudêncio Mendonça Freires

    2014-01-01

    Full Text Available This article deals with the influence of economies of scale and postponement on the efficiency and effectiveness of reverse logistics systems (RLSs. In a global way, it aims to provide an understanding of RLSs to generate knowledge of practical and theoretical character. Starting from a generic model of circular flow of materials, the system studied is positioned between the final consumer and the traditional or direct supply chain. It is a qualitative approach over two case studies carried out in Portugal and Brazil dealing with scraptires. One deals with management system while the other deals with the reverse logistics system. As conclusions, the efficiency of RLSs is aided by economies of scale. Postponement has positive effects on efficiency by increasing the system capacity reducing logistics costs which indirectly leads to economies of scale, having a positive influence on the effectiveness of RLSs. According to what has been stated in this paper, the coordination between the direct and reverse flow is a typical case of a closed circuit.

  15. Reverse atom transfer radical polymerization of methyl methacrylate initiated by AIBN/FeCl3/isophthalic acid system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The reverse ATRP of MMA using AIBN/FeCl3/ isophthalic acid as the initiating system was successfully performed. The new initiating system can be used to synthesize PMMA with high molecular weight and narrow polydis- persity index. The polymerization shows 'living'/controlled characteristics. Compared with other initiating system used in reverse ATRP, the easy availability and non-toxicity of isophthalic acid make it very attractive.

  16. Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil.

    Science.gov (United States)

    Hashizaki, Kaname; Imai, Miko; Yako, Shuhei; Tsusaka, Hitomi; Sakanishi, Yuichi; Saito, Yoshihiro; Fujii, Makiko

    2017-09-01

    We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called "shear-thickening". Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η 0 ) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η 0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.

  17. Random attractors for stochastic lattice reversible Gray-Scott systems with additive noise

    Directory of Open Access Journals (Sweden)

    Hongyan Li

    2015-10-01

    Full Text Available In this article, we prove the existence of a random attractor of the stochastic three-component reversible Gray-Scott system on infinite lattice with additive noise. We use a transformation of addition involved with Ornstein-Uhlenbeck process, for proving the pullback absorbing property and the pullback asymptotic compactness of the reaction diffusion system with cubic nonlinearity.

  18. Effect of reversal of the flow direction on hydrodynamic characteristics and plants cultivated in constructed wetland systems

    Directory of Open Access Journals (Sweden)

    Gheila Corrêa Ferres Baptestini

    2016-01-01

    Full Text Available The objective of the present study was to evaluate the effect of reversal of the flow direction, when used the surface flow as an operating criteria, on hydrodynamic characteristics and plants grown in horizontal subsurface-flow constructed wetland systems (HSF-CWs. For this purpose, six HSF-CWs were used: two non-cultivated (HSF-CWs 1 and 4, two cultivated with Tifton 85 grass (Cynodon spp. (HSF-CWs 2 and 5 and two cultivated with Alternanthera (Alternanthera philoxeroides (HSF-CWs 3 and 6. It was made a reversal in the flow direction of the HSF-CWs 1, 2 and 3. The reversal of the wastewater flow direction was performed when the superficial flow of the wastewater applied (SF reached 50% of the length of the HSF-CWs. There was a single reversal for each system, on different dates. Reversing the flow direction promoted distinction on the dry matter yield of Tifton 85 grass. This was not observed in HSF-CWs cultivated with Alternanthera. The reversal of the wastewater flow direction promoted, in principle, the extinction of the SF advance in the HSF-CWs, but did not prevent its return. Waiting for the SF to reach 50% of the length was not the best criterion for reversing the flow direction.

  19. Splitting of the rate matrix as a definition of time reversal in master equation systems

    International Nuclear Information System (INIS)

    Liu Fei; Le, Hong

    2012-01-01

    Motivated by recent progress in nonequilibrium fluctuation relations, we present a generalized time reversal for stochastic master equation systems with discrete states, which is defined as a splitting of the rate matrix into irreversible and reversible parts. An immediate advantage of this definition is that a variety of fluctuation relations can be attributed to different matrix splittings. Additionally, we find that the accustomed total entropy production formula and conditions of the detailed balance must be modified appropriately to account for the reversible rate part, which was previously ignored. (paper)

  20. Reverse Launch Abort System Parachute Architecture Trade Study

    Science.gov (United States)

    Litton, Daniel K.; O'Keefe, Stephen A.; Winski, Richard G.

    2011-01-01

    This study investigated a potential Launch Abort System (LAS) Concept of Operations and abort parachute architecture. The purpose of the study was to look at the concept of jettisoning the LAS tower forward (Reverse LAS or RLAS) into the free-stream flow rather than after reorienting to a heatshield forward orientation. A hypothesized benefit was that due to the compressed timeline the dynamic pressure at main line stretch would be substantially less. This would enable the entry parachutes to be designed and sized based on entry loading conditions rather than the current stressing case of a Pad Abort. Ultimately, concerns about the highly dynamic reorientation of the CM via parachutes, and the additional requirement of a triple bridle attachment for the RLAS parachute system, overshadowed the potential benefits and ended this effort.

  1. Construction and characterisation of a complete reverse genetics system of dengue virus type 3

    Directory of Open Access Journals (Sweden)

    Jefferson Jose da Silva Santos

    2013-12-01

    Full Text Available Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.

  2. Modus operandi for maximizing energy efficiency and increasing permeate flux of community scale solar powered reverse osmosis systems

    International Nuclear Information System (INIS)

    Vyas, Harsh; Suthar, Krunal; Chauhan, Mehul; Jani, Ruchita; Bapat, Pratap; Patel, Pankaj; Markam, Bhupendra; Maiti, Subarna

    2015-01-01

    Highlights: • Experimental data on energy efficient photovoltaic powered reverse osmosis system. • Synergetic management of electrical, thermal and hydraulic energies. • Use of reflectors, heat exchanger and turgo turbine. - Abstract: Photovoltaic powered reverse osmosis systems can only be made cost effective if they are made highly energy efficient. In this work we describe a protocol to maximize energy efficiency and increase permeate flux in a fully integrated installation of such a system. The improved system consisted of (i) photovoltaic array fitted with suitably positioned and aligned North–South V-trough reflectors to enhance power output from the array; (ii) direct contact heat exchanger fitted on the rear of the photovoltaic modules for active cooling of the same while safeguarding the terminals from short-circuit and corrosion; (iii) use of reverse osmosis feed water as heat exchange medium while taking due care to limit the temperature rise of feed water; (iv) enhancing permeate flux through the rise in feed water temperature; (v) turgo-turbine for conversion of hydraulic energy in reverse osmosis reject water into mechanical energy to provide part of the energy to replace booster pump utilized in the reverse osmosis unit. The V-trough reflectors onto the photovoltaic modules with thermal energy recovery system brought about an increase in power output of 40% and the synergistic effect of (i)–(iv) gave rise to total permeate volume boost of 59%. Integration of (v) resulted in 56% and 26% saving of electrical power when the reverse osmosis plant was operated by battery bank and direct photovoltaic array respectively

  3. Optimization of protein extraction process from jackfruit seed flour by reverse micelle system

    Directory of Open Access Journals (Sweden)

    Maycon Fagundes Teixeira Reis

    2016-06-01

    Full Text Available The extraction of protein from flour of jackfruit seeds by reverse micelles was evaluated. Reverse micelle system was composed of sodium dodecyl sulfate (SDS as surfactant, butanol as solvent, and water. The effects of stirring time, temperature, molar ratio H2O SDS-1, concentration of butanol (mass percentage and flour mass were tested in batch systems. Based on the adjusted linear regression model, only butanol concentration provided optimum extraction conditions (41.16%. Based on the analysis of surface response, the best extraction yield could be obtained at 25°C, stirring time of 120 min, mass of flour of 100 mg, and a ratio H2O SDS-1 of 50. Experimental results showed that a 79.00% extraction yield could be obtained.

  4. On the orthogonalised reverse path method for nonlinear system identification

    Science.gov (United States)

    Muhamad, P.; Sims, N. D.; Worden, K.

    2012-09-01

    The problem of obtaining the underlying linear dynamic compliance matrix in the presence of nonlinearities in a general multi-degree-of-freedom (MDOF) system can be solved using the conditioned reverse path (CRP) method introduced by Richards and Singh (1998 Journal of Sound and Vibration, 213(4): pp. 673-708). The CRP method also provides a means of identifying the coefficients of any nonlinear terms which can be specified a priori in the candidate equations of motion. Although the CRP has proved extremely useful in the context of nonlinear system identification, it has a number of small issues associated with it. One of these issues is the fact that the nonlinear coefficients are actually returned in the form of spectra which need to be averaged over frequency in order to generate parameter estimates. The parameter spectra are typically polluted by artefacts from the identification of the underlying linear system which manifest themselves at the resonance and anti-resonance frequencies. A further problem is associated with the fact that the parameter estimates are extracted in a recursive fashion which leads to an accumulation of errors. The first minor objective of this paper is to suggest ways to alleviate these problems without major modification to the algorithm. The results are demonstrated on numerically-simulated responses from MDOF systems. In the second part of the paper, a more radical suggestion is made, to replace the conditioned spectral analysis (which is the basis of the CRP method) with an alternative time domain decorrelation method. The suggested approach - the orthogonalised reverse path (ORP) method - is illustrated here using data from simulated single-degree-of-freedom (SDOF) and MDOF systems.

  5. Reverse Link CDMA System Capacity Evaluation for Stratospheric Platform Mobile Communications

    Directory of Open Access Journals (Sweden)

    Iskandar Iskandar

    2010-10-01

    Full Text Available We propose an analysis of reverse link CDMA multispot beam stratospheric platforms (SPF in this paper. The SPF is currently proposed as a novel wireless technology for the development of the next generation fixed and mobile communications. The geometry of this technology is different from that of the terrestrial but rather similar to the satellite based cellular system. However, evaluation on the CDMA system capacity of this technology has not been much reported. This paper addresses all possible multiple access interference analyses including the effects of channel fading and shadowing in order to evaluate the system capacity. Single SPF and multiple SPF model are evaluated under perfect power control and imperfect power control. The results indicate that in SPF systems the reverse link CDMA capacity is significantly reduced because of the power control imperfections. Moreover, in multiple SPF model the interference caused by the users in overlapped region is not trivial. We found that because of this problem the capacity is reduced for both speech and real-time data applications compared with the single SPF model even though the assumption of perfect power control can be made. In order to improve the system capacity we proposed two methods, first is to increase the minimum elevation angle definition for each platform and the second is to employ an adaptive antenna.

  6. Reverse Schreinemakers Method for Experimental Analysis of Mixed-Solvent Electrolyte Systems

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    the reverse Schreinemakers (RS) method. The method is based on simple mass balance principles similar to the wet residues method. It allows for accurate determination of the mixed-solvent phase composition even though part of the solvent may precipitate as complexes between solvent and salt. Discrepancies......A method based on Schreinemakers's tie-line theory of 1893 is derived for determining the composition and phase amounts in solubility experiments for multi-solvent electrolyte systems. The method uses the lever rule in reverse compared to Schreinemakers's wet residue method, and is therefore called...... from determining the composition of salt mixtures by pH titration are discussed, and the derived method significantly improves the obtained result from titration. Furthermore, the method reduces the required experimental work needed for analysis of phase composition. The method is applicable to multi...

  7. Photolithography and Fluorescence Correlation Spectroscopy used to examine the rates of exchange in reverse micelle systems

    Science.gov (United States)

    Norris, Zach; Mawson, Cara; Johnson, Kyron; Kessler, Sarah; Rebecca, Anne; Wolf, Nathan; Lim, Michael; Nucci, Nathaniel

    Reverse micelles are molecular complexes that encapsulate a nanoscale pool of water in a surfactant shell dissolved in non-polar solvent. These complexes have a wide range of applications, and in all cases, the degree to which reverse micelles (RM) exchange their contents is relevant for their use. Despite its importance, this aspect of RM behavior is poorly understood. Photolithography is employed here to create micro and nano scale fluidic systems in which mixing rates can be precisely measured using fluorescence correlation spectroscopy (FCS). Micro-channel patterns are etched using reactive ion etching process into a layer of silicon dioxide on crystalline silicon substrates. Solutions containing mixtures of reverse micelles, proteins, and fluorophores are placed into reservoirs in the patterns, while diffusion and exchange between RMs is monitored using a FCS system built from a modified confocal Raman spectrometer. Using this approach, the diffusion and exchange rates for RM systems are measured as a function of the components of the RM mixture. Funding provided by Rowan University.

  8. Initiation and continuation of long-acting reversible contraception in the United States military healthcare system.

    Science.gov (United States)

    Chiles, Daniel P; Roberts, Timothy A; Klein, David A

    2016-09-01

    Long-acting reversible contraception is more effective for pregnancy prevention than shorter-acting contraceptive methods and has the potential to reduce healthcare disparities and costs. However, long-acting reversible contraception is underused in the United States. One population of interest is beneficiaries of the United States military healthcare system who have access to universal healthcare, including no-cost, no-copay contraception with unlimited method switching, and comprise a large, actual use cohort. Efforts to increase long-acting reversible contraception initiation and continuation in this population may improve health outcomes and mitigate the profound consequences of unintended or mistimed pregnancy on readiness and cost to the military. We aimed to determine long-acting reversible contraception initiation and continuation rates among the diverse population with universal healthcare who are enrolled in the US military healthcare system. This study is a retrospective cohort of >1.7 million women, aged 14-40 years, who were enrolled in the US military healthcare system, TRICARE Prime, between October 2009 and September 2014. Individuals were assessed for long-acting reversible contraception initiation and continuation with the use of medical billing records. Method continuation and factors that were associated with early method discontinuation were evaluated with the Kaplan-Meier estimator and Cox proportional hazard models. During the study dates, 188,533 women initiated long-acting reversible contraception. Of these, 74.6% women selected intrauterine contraceptives. Method initiation rates remained relatively stable (41.7-50.1/1000 women/year) for intrauterine methods, although the rate for subdermal implants increased from 6.1-23.0/1000 women/year. In analysis of women who selected intrauterine contraceptives, 61.2% continued their method at 36 months, and 48.8% continued at 60 months. Among women who selected the implant, 32.0% continued their

  9. Tritium systems for the TITAN reversed-field pinch fusion reactor design

    International Nuclear Information System (INIS)

    Martin, R.C.; Sze, D.K.; Bartlit, J.R.; Gierszewski, P.J.

    1987-01-01

    Tritium systems for the TITAN reversed-field pinch (RFP) fusion reactor study have been designed for two blanket concepts. The TITAN-1 design uses a self-cooled liquid-lithium blanket. The TITAN-2 design uses a self-cooled aqueous-solution blanket, with lithium nitrate dissolved in the water for tritium breeding. Tritium inventory, release, and safety margins are within regulatory limits, at acceptable costs. Major issues for TITAN-1 are plasma-driven permeation, the need for a secondary coolant loop, tritium storage requirements, redundancy in the plasma exhaust system, and minimal isotopic distillation of the exhaust. TITAN-1 fuel cleanup, reprocessing, and air detritiation systems are described in detail

  10. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    Science.gov (United States)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  11. A reversible electrolyzer-fuel cell system based on PEM technology

    International Nuclear Information System (INIS)

    Grigoriev, S.A.; Millet, P.; Fateev, V.N.

    2009-01-01

    'Full text': A reversible electrolyzer-fuel cell is an electrochemical system which can be alternatively operated in water electrolysis or H 2 /O 2 (air) fuel cell modes. Whereas proton-exchange membrane (PEM) water electrolysis and PEM fuel cell technologies are individually well-established, it is still a very challenging task to develop efficient reversible systems which can maintain interesting electrochemical performances during a significant number of cycles. Results reported in this communication are related to R and D on bi-functional catalysts, electrocatalytic layers, gas diffusion layers/current collectors and reversible PEM stack design. Electrodes which do not change their redox status when the operation mode of the cell is switched from electrolysis to fuel cell are more specifically considered. In particular, it is shown that, when the anode is composed of Pt-Ir layers (ca. 0.5/0.5 wt. ratio), best electrochemical performances are obtained (for both for water and hydrogen oxidation reactions) when an Ir layer is placed face-to-face with the membrane. Cathodic electrocatalytic layers made of Pt/C were prepared and optimized by adding PTFE to obtain the required hydrophobic-hydrophilic properties for effective oxygen and protons electro-reduction. Gas diffusion electrodes made of porous carbon materials and bi-porous titanium sheets with appropriate water management properties have also been developed. A two-cell stack with 250 cm 2 active area electrodes has been assembled using the optimized components and successfully tested. Results are rather close to those obtained for individual water electrolysis and H 2 /O 2 fuel cells with the same noble metal loadings and similar operating conditions. For instance, at a current density of 0.2 A/cm 2 , typical cell voltages of ca. 1.55 and 0.70 V were respectively obtained during water electrolysis and H 2 /O 2 fuel cell operation, using Nafion-1135 as solid polymer electrolyte and noble metal loadings 2

  12. END-OF-USE PRODUCTS IN REVERSE LOGISTICS

    OpenAIRE

    Marta Starostka-Patyk

    2007-01-01

    Reverse logistics is a very useful tool for enterprises which have to deal with end-of-use products. Forward logistics is not able to manage them, because they show up on the beginning of reverse supply chain. That is the reason for growing importance of reverse flows. Reverse logistics is quite new logistics system. This paper presents the idea of reverse logistics and end-of-use products problems.

  13. A functional language for describing reversible logic

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal

    2012-01-01

    Reversible logic is a computational model where all gates are logically reversible and combined in circuits such that no values are lost or duplicated. This paper presents a novel functional language that is designed to describe only reversible logic circuits. The language includes high....... Reversibility of descriptions is guaranteed with a type system based on linear types. The language is applied to three examples of reversible computations (ALU, linear cosine transformation, and binary adder). The paper also outlines a design flow that ensures garbage- free translation to reversible logic...... circuits. The flow relies on a reversible combinator language as an intermediate language....

  14. Reversal of dopamine system dysfunction in response to high-fat diet.

    Science.gov (United States)

    Carlin, Jesselea; Hill-Smith, Tiffany E; Lucki, Irwin; Reyes, Teresa M

    2013-12-01

    To test whether high-fat diet (HFD) decreases dopaminergic tone in reward regions of the brain and evaluate whether these changes reverse after removal of the HFD. Male and female mice were fed a 60% HFD for 12 weeks. An additional group was evaluated 4 weeks after removal of the HFD. These groups were compared with control fed, age-matched controls. Sucrose and saccharin preference was measured along with mRNA expression of dopamine (DA)-related genes by Real Time-quantitative PCR (RT-qPCR). DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. DNA methylation of the dopamine transporter (DAT) promoter was measured by methylated DNA immunoprecipitation and RT-qPCR. After chronic HFD, sucrose preference was reduced, and then normalized after removal of the HFD. Decreased expression of DA genes, decreased DA content and alterations in DAT promoter methylation, was observed. Importantly, response to HFD and the persistence of changes depended on sex and brain region. These data identify diminished DA tone after early-life chronic HFD with a complex pattern of reversal and persistence that varies by both sex and brain region. Central nervous system changes that did not reverse after HFD withdrawal may contribute to the difficulty in maintaining weight-loss after diet intervention. Copyright © 2013 The Obesity Society.

  15. Optimized reversible binary-coded decimal adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    Abstract Babu and Chowdhury [H.M.H. Babu, A.R. Chowdhury, Design of a compact reversible binary coded decimal adder circuit, Journal of Systems Architecture 52 (5) (2006) 272-282] recently proposed, in this journal, a reversible adder for binary-coded decimals. This paper corrects and optimizes...... their design. The optimized 1-decimal BCD full-adder, a 13 × 13 reversible logic circuit, is faster, and has lower circuit cost and less garbage bits. It can be used to build a fast reversible m-decimal BCD full-adder that has a delay of only m + 17 low-power reversible CMOS gates. For a 32-decimal (128-bit....... Keywords: Reversible logic circuit; Full-adder; Half-adder; Parallel adder; Binary-coded decimal; Application of reversible logic synthesis...

  16. Methodological approaches to conducting pilot and proof tests on reverse-osmosis systems: Results of comparative studies

    Science.gov (United States)

    Panteleev, A. A.; Bobinkin, V. V.; Larionov, S. Yu.; Ryabchikov, B. E.; Smirnov, V. B.; Shapovalov, D. A.

    2017-10-01

    When designing large-scale water-treatment plants based on reverse-osmosis systems, it is proposed to conduct experimental-industrial or pilot tests for validated simulation of the operation of the equipment. It is shown that such tests allow establishing efficient operating conditions and characteristics of the plant under design. It is proposed to conduct pilot tests of the reverse-osmosis systems on pilot membrane plants (PMPs) and test membrane plants (TMPs). The results of a comparative experimental study of pilot and test membrane plants are exemplified by simulating the operating parameters of the membrane elements of an industrial plant. It is concluded that the reliability of the data obtained on the TMP may not be sufficient to design industrial water-treatment plants, while the PMPs are capable of providing reliable data that can be used for full-scale simulation of the operation of industrial reverse-osmosis systems. The test membrane plants allow simulation of the operating conditions of individual industrial plant systems; therefore, potential areas of their application are shown. A method for numerical calculation and experimental determination of the true selectivity and the salt passage are proposed. An expression has been derived that describes the functional dependence between the observed and true salt passage. The results of the experiments conducted on a test membrane plant to determine the true value of the salt passage of a reverse-osmosis membrane are exemplified by magnesium sulfate solution at different initial operating parameters. It is shown that the initial content of a particular solution component has a significant effect on the change in the true salt passage of the membrane.

  17. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    Science.gov (United States)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  18. Structural study of the AOT reverse micellar system. Influence of attractive interactions induced by the solubilisation of native and modified proteins

    International Nuclear Information System (INIS)

    Cassin, Guillaume

    1994-01-01

    This research thesis reports the study of the influence of intra-micellar attractions on the thermodynamic behaviour of reverse micellar systems, as well as of the effects induced by the solubilisation of natives or modified proteins. The author proposes a model to explain the decrease of attractions between droplets when the volume fraction occupied by reverse micelles increases. This model which highlights the importance of depletion forces between reverse micelles, allows the building up of a theoretical relationship between the bonding parameter and the volume fraction of reverse micelles. In order to understand the appearance of an attractive term related to the solubilisation of native cytochrome-c in these systems, this protein has been chemically modified. The author highlights the role of the charge born by a micellar probe on the thermodynamic behaviour of micro-emulsions. Then, the author applies the model of dimerizing adhesive spheres to reverse micellar systems containing native cytochrome-c. He shows that theoretical predictions of this model are in agreement with obtained experimental results [fr

  19. Reverse logistics system and recycling potential at a landfill: A case study from Kampala City

    International Nuclear Information System (INIS)

    Kinobe, J.R.; Gebresenbet, G.; Niwagaba, C.B.; Vinnerås, B.

    2015-01-01

    Highlights: • Quantifies the different waste streams delivered at the landfill. • Evaluates the amount of potential waste products that enters into the reverse cycle. • Drawing out the reverse logistics activities from Kampala City to Kiteezi landfill. • Identify the storage, collection and transportation mechanisms of products to the various destinations; and finally. • The study suggests efficient measures to improve reverse logistics system. - Abstract: The rapid growing population and high urbanisation rates in Sub-Saharan Africa has caused enormous pressure on collection services of the generated waste in the urban areas. This has put a burden on landfilling, which is the major waste disposal method. Waste reduction, re-use and recycling opportunities exist but are not fully utilized. The common items that are re-used and re-cycled are plastics, paper, aluminum, glass, steel, cardboard, and yard waste. This paper develops an overview of reverse logistics at Kiteezi landfill, the only officially recognised waste disposal facility for Kampala City. The paper analyses, in details the collection, re-processing, re-distribution and final markets of these products into a reversed supply chain network. Only 14% of the products at Kiteezi landfill are channeled into the reverse chain while 63% could be included in the distribution chain but are left out and disposed of while the remaining 23% is buried. This is because of the low processing power available, lack of market value, lack of knowledge and limited value addition activities to the products. This paper proposes possible strategies of efficient and effective reverse logistics development, applicable to Kampala City and other similar cities

  20. Reverse logistics system and recycling potential at a landfill: A case study from Kampala City

    Energy Technology Data Exchange (ETDEWEB)

    Kinobe, J.R., E-mail: joel.kinobe@slu.se [Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 7032, SE-750 07 Uppsala (Sweden); Department of Civil and Environmental Engineering, Makerere University College of Engineering, Design, Art and Technology (CEDAT), P.O. Box 7062, Kampala (Uganda); Gebresenbet, G. [Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 7032, SE-750 07 Uppsala (Sweden); Niwagaba, C.B. [Department of Civil and Environmental Engineering, Makerere University College of Engineering, Design, Art and Technology (CEDAT), P.O. Box 7062, Kampala (Uganda); Vinnerås, B. [Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 7032, SE-750 07 Uppsala (Sweden)

    2015-08-15

    Highlights: • Quantifies the different waste streams delivered at the landfill. • Evaluates the amount of potential waste products that enters into the reverse cycle. • Drawing out the reverse logistics activities from Kampala City to Kiteezi landfill. • Identify the storage, collection and transportation mechanisms of products to the various destinations; and finally. • The study suggests efficient measures to improve reverse logistics system. - Abstract: The rapid growing population and high urbanisation rates in Sub-Saharan Africa has caused enormous pressure on collection services of the generated waste in the urban areas. This has put a burden on landfilling, which is the major waste disposal method. Waste reduction, re-use and recycling opportunities exist but are not fully utilized. The common items that are re-used and re-cycled are plastics, paper, aluminum, glass, steel, cardboard, and yard waste. This paper develops an overview of reverse logistics at Kiteezi landfill, the only officially recognised waste disposal facility for Kampala City. The paper analyses, in details the collection, re-processing, re-distribution and final markets of these products into a reversed supply chain network. Only 14% of the products at Kiteezi landfill are channeled into the reverse chain while 63% could be included in the distribution chain but are left out and disposed of while the remaining 23% is buried. This is because of the low processing power available, lack of market value, lack of knowledge and limited value addition activities to the products. This paper proposes possible strategies of efficient and effective reverse logistics development, applicable to Kampala City and other similar cities.

  1. Reverse genetics of avian metapneumoviruses

    Science.gov (United States)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  2. Data-acquisition system of the reversed field pinch device REPUTE-1

    International Nuclear Information System (INIS)

    Tsuzuki, N.; Aoki, H.; Shinohara, H.; Toyama, H.; Morikawa, J.

    1988-01-01

    The new, compact data-acquisition system of the reversed field pinch device, REPUTE-1, is reported. Its distinctive feature is high flexibility and easy handling. The interface between the computer and measurement devices is CAMAC. The computer and the CAMAC devices are connected to a CAMAC byte serial highway that transmits setup parameters and acquisition data. The computer carries out setup of CAMAC devices and data acquisition automatically by use of CAMAC parameters and the acquisition data base. The maintenance tools for the data base are also provided. The computer system, which consists of a ''TOSBAC DS-600,'' has been in operation for REPUTE-1 since 1985

  3. Internet-based dimensional verification system for reverse engineering processes

    International Nuclear Information System (INIS)

    Song, In Ho; Kim, Kyung Don; Chung, Sung Chong

    2008-01-01

    This paper proposes a design methodology for a Web-based collaborative system applicable to reverse engineering processes in a distributed environment. By using the developed system, design reviewers of new products are able to confirm geometric shapes, inspect dimensional information of products through measured point data, and exchange views with other design reviewers on the Web. In addition, it is applicable to verifying accuracy of production processes by manufacturing engineers. Functional requirements for designing this Web-based dimensional verification system are described in this paper. ActiveX-server architecture and OpenGL plug-in methods using ActiveX controls realize the proposed system. In the developed system, visualization and dimensional inspection of the measured point data are done directly on the Web: conversion of the point data into a CAD file or a VRML form is unnecessary. Dimensional verification results and design modification ideas are uploaded to markups and/or XML files during collaboration processes. Collaborators review the markup results created by others to produce a good design result on the Web. The use of XML files allows information sharing on the Web to be independent of the platform of the developed system. It is possible to diversify the information sharing capability among design collaborators. Validity and effectiveness of the developed system has been confirmed by case studies

  4. Internet-based dimensional verification system for reverse engineering processes

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Ho [Ajou University, Suwon (Korea, Republic of); Kim, Kyung Don [Small Business Corporation, Suwon (Korea, Republic of); Chung, Sung Chong [Hanyang University, Seoul (Korea, Republic of)

    2008-07-15

    This paper proposes a design methodology for a Web-based collaborative system applicable to reverse engineering processes in a distributed environment. By using the developed system, design reviewers of new products are able to confirm geometric shapes, inspect dimensional information of products through measured point data, and exchange views with other design reviewers on the Web. In addition, it is applicable to verifying accuracy of production processes by manufacturing engineers. Functional requirements for designing this Web-based dimensional verification system are described in this paper. ActiveX-server architecture and OpenGL plug-in methods using ActiveX controls realize the proposed system. In the developed system, visualization and dimensional inspection of the measured point data are done directly on the Web: conversion of the point data into a CAD file or a VRML form is unnecessary. Dimensional verification results and design modification ideas are uploaded to markups and/or XML files during collaboration processes. Collaborators review the markup results created by others to produce a good design result on the Web. The use of XML files allows information sharing on the Web to be independent of the platform of the developed system. It is possible to diversify the information sharing capability among design collaborators. Validity and effectiveness of the developed system has been confirmed by case studies

  5. Sex reversal in vertebrates

    OpenAIRE

    2016-01-01

    This special topic issue of Sexual Development gives an overview of sex reversal in vertebrates, from fishes naturally changing their sex, to rodents escaping the mammalian SRY-determining system. It offers eight up-to-date reviews on specific subjects in sex reversal, considering fishes, amphibians, reptiles, birds, marsupials, and placental mammals, including humans. The broad scope of represented animals makes this ideal for students and researchers, especially those interested in the...

  6. Implementation on Electronic Circuits and RTR Pragmatical Adaptive Synchronization: Time-Reversed Uncertain Dynamical Systems' Analysis and Applications

    Directory of Open Access Journals (Sweden)

    Shih-Yu Li

    2013-01-01

    Full Text Available We expose the chaotic attractors of time-reversed nonlinear system, further implement its behavior on electronic circuit, and apply the pragmatical asymptotically stability theory to strictly prove that the adaptive synchronization of given master and slave systems with uncertain parameters can be achieved. In this paper, the variety chaotic motions of time-reversed Lorentz system are investigated through Lyapunov exponents, phase portraits, and bifurcation diagrams. For further applying the complex signal in secure communication and file encryption, we construct the circuit to show the similar chaotic signal of time-reversed Lorentz system. In addition, pragmatical asymptotically stability theorem and an assumption of equal probability for ergodic initial conditions (Ge et al., 1999, Ge and Yu, 2000, and Matsushima, 1972 are proposed to strictly prove that adaptive control can be accomplished successfully. The current scheme of adaptive control—by traditional Lyapunov stability theorem and Barbalat lemma, which are used to prove the error vector—approaches zero, as time approaches infinity. However, the core question—why the estimated or given parameters also approach to the uncertain parameters—remains without answer. By the new stability theory, those estimated parameters can be proved approaching the uncertain values strictly, and the simulation results are shown in this paper.

  7. Reversible flowchart languages and the structured reversible program theorem

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    Many irreversible computation models have reversible counterparts, but these are poorly understood at present. We introduce reversible flowcharts with an assertion operator and show that any reversible flowchart can be simulated by a structured reversible flowchart using only three control flow...... operators. Reversible flowcharts are r- Turing-complete, meaning that they can simuluate reversible Turing machines without garbage data. We also demonstrate the injectivization of classical flowcharts into reversible flowcharts. The reversible flowchart computation model provides a theoretical...

  8. Darboux integrability and rational reversibility in cubic systems with two invariant straight lines

    Directory of Open Access Journals (Sweden)

    Dumitru Cozma

    2013-01-01

    Full Text Available We find conditions for a singular point O(0,0 of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0,0 is proved by using the method of Darboux integrability and the rational reversibility.

  9. Coefficient of reversibility and two particular cases of deterministic many body systems

    International Nuclear Information System (INIS)

    Grossu, Ioan Valeriu; Besliu, Calin; Jipa, Alexandru

    2004-01-01

    We discuss the importance of a new measure of chaos in study of nonlinear dynamic systems, the - coefficient of reversibility-. This is defined as the probability of returning in the same point of phasic space. Is very interesting to compare this coefficient with other measures like fractal dimension or Liapunov exponent. We have also studied two very interesting many body systems, both having any number of particles but a deterministic evolution. One system is composed by n particles initially at rest, having the same mass and interacting through harmonic bi-particle forces, other is composed by two types of particles (with mass m 1 and mass m 2 ) initially at rest and interacting too through harmonic bi-particle forces

  10. Parkinson’s disease managing reversible neurodegeneration

    Science.gov (United States)

    Hinz, Marty; Stein, Alvin; Cole, Ted; McDougall, Beth; Westaway, Mark

    2016-01-01

    Traditionally, the Parkinson’s disease (PD) symptom course has been classified as an irreversible progressive neurodegenerative disease. This paper documents 29 PD and treatment-induced systemic depletion etiologies which cause and/or exacerbate the seven novel primary relative nutritional deficiencies associated with PD. These reversible relative nutritional deficiencies (RNDs) may facilitate and accelerate irreversible progressive neurodegeneration, while other reversible RNDs may induce previously undocumented reversible pseudo-neurodegeneration that is hiding in plain sight since the symptoms are identical to the symptoms being experienced by the PD patient. Documented herein is a novel nutritional approach for reversible processes management which may slow or halt irreversible progressive neurodegenerative disease and correct reversible RNDs whose symptoms are identical to the patient’s PD symptoms. PMID:27103805

  11. Toroidal magnetic field system for a 2-MA reversed-field pinch experiment

    International Nuclear Information System (INIS)

    Melton, J.G.; Linton, T.W.

    1983-01-01

    The engineering design of the toroidal magnetic field (TF) system for a 2-MA Reversed-Field Pinch experiment (ZT-H) is described. ZT-H is designed with major radius 2.15 meters, minor radius 0.40 meters, and a peak toroidal magnetic field of 0.85 Tesla. The requirement for highly uniform fields, with spatial ripple <0.2% leads to a design with 72 equally spaced circular TF coils, located at minor radius 0.6 meters, carrying a maximum current of 9.0 MA. The coils are driven by a 12-MJ capacitor bank which is allowed to ring in order to aid the reversal of magnetic field. A stress analysis is presented, based upon calculated hoop tension, centering force, and overturning moment, treating these as a combination of static loads and considering that the periodic nature of the loading causes little amplification. The load transfer of forces and moments is considered as a stress distribution resisted by the coils, support structures, wedges, and the structural shell

  12. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermonuclear reactor is described. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals

  13. Plasma-liquid system with reverse vortex flow of 'tornado' type (TORNADO-LE)

    International Nuclear Information System (INIS)

    Nedybalyuk, O.A.; Chernyak, V.Ya.; Olszewski, S.V.

    2010-01-01

    The results of experimental investigations of the plasma in plasma-liquid system with reverse vortex flow of 'tornado' type are presented. Volt-ampere characteristic of discharge in the current range from 200 to 400 mA were measured. Emission spectra of plasma in range from 200 to 1100 nm were measured. Excitation temperatures (electronic T e * , vibrational T v * and rotational T r * ) were obtained. Emission spectra of hydroxyl OH were calculated.

  14. Antiproton Production beam and Reverse Injection System

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, G.

    1981-08-16

    The objectives of this project are two fold: (1) To extract high energy protons from the Main Ring (MR) and target them to produce antiprotons which are subsequently captured in the existing Booster accelerator; and (2) to provide a channel for injecting either protons or antiprotons into the MR from the booster in a direction opposite to that of the normal proton acceleration as colliding beams can be created. The present design, therefore, is in support of two separate larger projects, viz., the collisions of protons in the Tevatron (normal circulation direction) with 'reverse injected' protons in the MR, and the collision of normal direction protons with reverse injected antiprotons either in the MR or in the Tevatron. Figure 1 shows the layout of the project area. It spans the shortest distance between possible injection/ejection points in the existing accelerator structures, hence minimizing costs. The tunnel will lie underground at the level of the MR and booster.

  15. Magnetization reversal and domain correlation for a non-collinear and out-of-plane exchange-coupled system

    International Nuclear Information System (INIS)

    Paul, Amitesh; Paul, N; Mattauch, Stefan

    2011-01-01

    We have investigated the impact of out-of-plane ferromagnetic (FM) anisotropy (which can be coincident with the direction of unidirectional anisotropy), where antiferromagnetic (AF) anisotropy is along the film plane. This provides a platform for non-collinear exchange coupling in an archetypal exchange coupled system in an unconventional way. We probe the in-plane magnetization by the depth-sensitive vector magnetometry technique. The experimental findings reveal a magnetization reversal (i) that is symmetric for both the branches of the hysteresis loop, (ii) that is characterized by vertically correlated domains associated with a strong transverse component of magnetization and (iii) that remains untrained (suppression of trained state) with field cycling. This scenario has been compared with in-plane magnetization reversal for a conventional in-plane unidirectional anisotropic case in the same system that shows usual asymmetric reversal and training for vertically uncorrelated domains. We explain the above observations for the out-of-plane case in terms of inhomogeneous magnetic states due to competing perpendicular anisotropies that result in non-collinear FM-AF coupling. This study provides direct evidence for the vertical correlation of domains mediated by out-of-plane exchange coupling.

  16. Polyaniline/silver nanocomposites synthesized via UV-Vis-Assisted aniline polymerization with a reversed micellar microemulsion system

    NARCIS (Netherlands)

    Li, Z.; Li, Y.; Lin, W.; Zheng, F.; Laven, J.

    Polyaniline (PANI)/silver (Ag) nanocomposites were successfully synthesized within a sodium dodecyl sulfate reverse micro-emulsion system and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet spectrometry, thermogravimetric analysis, scanning electron

  17. Reverse Revenue Sharing Contract versus Two-Part Tariff Contract under a Closed-Loop Supply Chain System

    Directory of Open Access Journals (Sweden)

    Zunya Shi

    2016-01-01

    Full Text Available The importance of remanufacturing has been recognized in research and practice. The integrated system, combining the forward and reverse activities of supply chains, is called closed-loop supply chain (CLSC system. By coordination in the CLSC system, players will get economic improvement. This paper studies different coordination performances of two types of contracts, two-part tariff (TTC and reverse revenue sharing contract (RRSC, in a closed-loop system. Through mathematical analysis based on Stackelberg Game Theory, we find that it is easy for manufacturer to improve more profits and retailer’s collection effects by adjusting the ratio of transfer collection price through RRSC, and we also give the function to calculate the best ratio of transfer collection price, which may be a valuable reference for the decision maker in practice. Besides, our results also suggest that although the profits of the coordinated CLSC system are always higher than the contradictory scenario, the RRSC is more favorable to the manufacturer than to the retailer, as results show that the manufacturer will share more profits from the system through RRSC. Therefore, RRSC has attracted the manufacturers more to closing the supply chain for economic consideration.

  18. Left cardiac chambers reverse remodeling after percutaneous mitral valve repair with the MitraClip system.

    Science.gov (United States)

    Scandura, Salvatore; Ussia, Gian Paolo; Capranzano, Piera; Caggegi, Anna; Sarkar, Kunal; Cammalleri, Valeria; Mangiafico, Sarah; Chiarandà, Marta; Immè, Sebastiano; Di Pasqua, Fabio; Pistritto, Anna Maria; Millan, Giovanni; Tamburino, Corrado

    2012-10-01

    Successful mitral valve surgical repair, decreasing volume overload, has been shown to provide reverse left ventricular (LV) and/or left atrial remodeling in most patients. Percutaneous mitral valve repair with the MitraClip system (Abbott, Abbott Park, IL) has been associated with favorable clinical outcomes in patients with mitral regurgitation at high risk of surgery. However, specific data on left cardiac chambers reverse remodeling after such procedures are limited. This was a prospective observational study of consecutive patients at high risk of surgery, with moderate-to-severe or severe mitral regurgitation undergoing MitraClip system implantation. Follow-up echocardiography was performed at 6 months. The evaluated parameters were the LV end-diastolic and end-systolic volume indexes, LV sphericity index, LV ejection fraction, and left atrial volume index. Reverse LV remodeling was defined as a decrease of 10% in the LV end-diastolic volume index. The study population included 44 patients: 14 with degenerative and 30 with functional mitral regurgitation. At 6 months of follow-up, significant reductions in the median and interquartile range of the sphericity index (from 0.57 [interquartile range 0.54-0.62] to 0.54 [interquartile range 0.50-0.58]; P interquartile range 63.0-102.2] to 60.7 mL/m(2) [50.8-84.4]; P interquartile range 28.2-70.5] to 28.9 mL/m(2) [interquartile range 22.2-55.8]; P interquartile range 30.0-55.0%] to 46.0% [interquartile range 35.0-58.0%]; P < .001) from baseline to 6 months. Minor differences in the left atrial volume index were observed. Reverse remodeling, according to the specified definition, was observed in 77.3% of the patients. The present study reports positive LV reshape effects after mitral valve repair with the MitraClip system, showing significant improvements in LV size and function. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  19. Managing Reverse Logistics or Reversing Logistics Management?

    OpenAIRE

    Brito, Marisa

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse logistics. The thesis brings insights on reverse logistics decision-making and it lays down theoretical principles for reverse logistics as a research field.In particular it puts together a framework ...

  20. Chemical-looping combustion in a reverse-flow fixed bed reactor

    International Nuclear Information System (INIS)

    Han, Lu; Bollas, George M.

    2016-01-01

    A reverse-flow fixed bed reactor concept for CLC (chemical-looping combustion) is explored. The limitations of conventional fixed bed reactors, as applied to CLC, are overcome by reversing the gas flow direction periodically to enhance the mixing characteristics of the bed, thus improving oxygen carrier utilization and energy efficiency with respect to power generation. The reverse-flow reactor is simulated by a dusty-gas model and compared with an equivalent fixed bed reactor without flow reversal. Dynamic optimization is used to calculate conditions at which each reactor operates at maximum energy efficiency. Several cases studies illustrate the benefits of reverse-flow operation for the CLC with CuO and NiO oxygen carriers and methane and syngas fuels. The results show that periodic reversal of the flow during reduction improves the contact between the fuel and unconverted oxygen carrier, enabling the system to suppress unwanted catalytic reactions and axial temperature and conversion gradients. The operational scheme presented reduces the fluctuations of temperature during oxidation and increases the high-temperature heat produced by the process. CLC in a reverse-flow reactor has the potential to achieve higher energy efficiency than conventional fixed bed CLC reactors, when integrated with a downstream gas turbine of a combined cycle power plant. - Highlights: • Reverse-flow fixed bed CLC reactors for combined cycle power systems. • Dynamic optimization tunes operation of batch and transient CLC systems. • The reverse-flow CLC system provides stable turbine-ready gas stream. • Reverse-flow CLC fixed bed reactor has superior CO 2 capture and thermal efficiency.

  1. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  2. Long-acting reversible hormonal contraception | Dahan-Farkas ...

    African Journals Online (AJOL)

    Long-acting reversible hormonal contraceptives are effective methods of birth control that provide contraception for an extended period without requiring user action. Long-acting reversible hormonal contraceptives include progesterone only injectables, subdermal implants and the levonorgestrel intrauterine system.

  3. Effect of the scale inhibitor on ion content in reverse osmosis system for seawater desalination

    Science.gov (United States)

    Gao, Yuhua; Liu, Zhenfa; Zhang, Lihui; Li, Haihua

    2017-09-01

    A scale inhibitor was synthesized from polysuccinimide with 2-aminoethanesulfonic acid and aspartic acid. The effect of scale inhibitor on ion content in reverse osmosis system for seawater desalination was studied. The results showed that the ion content of permeate water is lower with the scale inhibitor added in RO system for seawater desalination than without scale inhibitor. On the contrary, the ion content of concentrate water is higher when with scale inhibitor in RO system.

  4. Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis

    Science.gov (United States)

    Kochunni, Sarun Kumar; Chowdhury, Kanchan

    2017-02-01

    LNG boil-off gas (BOG) reliquefaction systems in LNG carrier ships uses refrigeration devices which are based on reverse Brayton, Claude, Kapitza (modified Claude) or Cascade cycles. Some of these refrigeration devices use nitrogen as the refrigerants and hence nitrogen storage vessels or nitrogen generators needs to be installed in LNG carrier ships which consume space and add weight to the carrier. In the present work, a new configuration based on Kapitza liquefaction cycle which uses BOG itself as working fluid is proposed and has been compared with Reverse Brayton Cycle (RBC) on sizes of heat exchangers and compressor operating parameters. Exergy analysis is done after simulating at steady state with Aspen Hysys 8.6® and the comparison between RBC and Kapitza may help designers to choose reliquefaction system with appropriate process parameters and sizes of equipment. With comparable exergetic efficiency as that of an RBC, a Kaptiza system needs only BOG compressor without any need of nitrogen gas.

  5. Recovery of uranium by a reverse osmosis process

    International Nuclear Information System (INIS)

    Cleary, J.G.; Stana, R.R.

    1980-01-01

    A method for concentrating and recovering uranium material from an aqueous solution, comprises passing a feed solution containing uranium through at least one reverse osmosis membrane system to concentrate the uranium, and then flushing the concentrated uranium solution with water in a reverse osmosis membrane system to further concentrate the uranium

  6. A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination

    NARCIS (Netherlands)

    van Beurden, Steven J; Berends, Alinda J; Krämer-Kühl, Annika; Spekreijse, Dieuwertje; Chénard, Gilles; Philipp, Hans-Christian; Mundt, Egbert; Rottier, Peter J M; Verheije, M Hélène

    2017-01-01

    BACKGROUND: Avian coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens that causes severe economic losses in the poultry industry worldwide. Major advances in the study of the molecular biology of IBV have resulted from the development of reverse genetics systems for

  7. On the graph and systems analysis of reversible chemical reaction networks with mass action kinetics

    NARCIS (Netherlands)

    Rao, Shodhan; Jayawardhana, Bayu; Schaft, Arjan van der

    2012-01-01

    Motivated by the recent progresses on the interplay between the graph theory and systems theory, we revisit the analysis of reversible chemical reaction networks described by mass action kinetics by reformulating it using the graph knowledge of the underlying networks. Based on this formulation, we

  8. Reversible deep disposal

    International Nuclear Information System (INIS)

    2009-10-01

    This presentation, given by the national agency of radioactive waste management (ANDRA) at the meeting of October 8, 2009 of the high committee for the nuclear safety transparency and information (HCTISN), describes the concept of deep reversible disposal for high level/long living radioactive wastes, as considered by the ANDRA in the framework of the program law of June 28, 2006 about the sustainable management of radioactive materials and wastes. The document presents the social and political reasons of reversibility, the technical means considered (containers, disposal cavities, monitoring system, test facilities and industrial prototypes), the decisional process (progressive development and blocked off of the facility, public information and debate). (J.S.)

  9. Kinetic Line Voronoi Operations and Their Reversibility

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Gold, Christopher

    2010-01-01

    In Geographic Information Systems the reversibility of map update operations has not been explored yet. In this paper we are using the Voronoi based Quad-edge data structure to define reversible map update operations. The reversibility of the map operations has been formalised at the lowest level...... mechanisms and dynamic map visualisations. In order to use the reversibility within the kinetic Voronoi diagram of points and open oriented line segments, we need to assure that reversing the map commands will produce exactly the changes in the map equivalent to the previous map states. To prove...... that reversing the map update operations produces the exact reverse changes, we show an isomorphism between the set of complex operations on the kinetic Voronoi diagram of points and open oriented line segments and the sets of numbers of new / deleted Voronoi regions induced by these operations, and its...

  10. Influence of reverse bias on the LEDs properties used as photo-detectors in VLC systems

    Science.gov (United States)

    Kowalczyk, Marcin; Siuzdak, Jerzy

    2015-09-01

    Continuous increasing share of light emitting diodes (LEDs) in a lighting market, which we observe during the last couple years, opens new possibilities. Especially, when we talk about practical realization the concept of visible light communications (VLC), which gains on popularity recently. The VLC concept presupposes utilization of illumination systems for a purpose of data transmission. It means, the emitters, in this case the LEDs, will not of a light source only, but also the data transmitters. Currently, most of the conducted researches in this area is concentrated on achievement of effective transmission methods. It means a transmission only in one direction. This is not enough, when we talk about the fully functional transmission system. Ensuring of feedback transmission channel is a necessary also. One of the ideas, which was postulated by authors of this article, is using for this purpose the LEDs in a double role. A utilization of LEDs as photo-detectors requires a reverse polarization, in contrast to a forward bias, which has a place when they work as light emitters. Ensuring of proper polarization get significant meaning. The article presents the investigations results on the influence of reverse bias on photo-receiving properties of LEDs used as light detectors. The conducted research proved that an improvement of sensitivity and bandwidth parameters are possible by application of appropriate value of the reverse voltage in a receiver.

  11. Posterior Reversible Encephalopathy (PRES)

    International Nuclear Information System (INIS)

    Moron E, Fanny E; Diaz Marchan, Pedro

    2005-01-01

    The Posterior Reversible Encephalopathy Syndrome (PRES) is a clinical Syndrome composed of cephalea, alteration in vision and convulsions, usually observed in patients with sudden elevation of arterial pressure. The imagenologic evidence shows reversible vasogenic brain edema without stroke. Its location is predominantly posterior; it affects the cortex and the subcortical white matter of the occipital, parietal and temporal lobes. The treatment with antihypertensive drugs and the removing of immunosupressor medication are generally associated with complete neurological recovery; this is reflected also in the images which return to their basal condition. The untreated hypertension, on the other side, can result in a progressive defect of the autoregulation system of the central nervous system with cerebral hemorrhage, irreversible brain stroke, coma and death

  12. Boiler feedwater treatment using reverse osmosis at Suncor OSG

    International Nuclear Information System (INIS)

    Brown, T.

    1997-01-01

    The installation of a new 1000 cu m/hr reverse osmosis water treatment system for boiler feedwater at a Suncor plant was discussed. The selection process began in 1993 when Suncor identified a need to increase its boiler feedwater capacity. The company reviewed many options available to increase the treated water capacity. These included: contracting the supply of treated water, adding additional capacity, replacing the entire plant, reverse osmosis, and demineralization. The eventual decision was to build a new 1000 cu m/hr reverse osmosis water treatment plant with the following key components: a Degremont Infilco Ultra Pulsator Clarifier and a Glegg Water Conditioning multimedia filter, Amberpack softeners and reverse osmosis arrays. The reverse osmosis plant was environmentally favourable over an equivalent demineralization plant. A technical comparison was provided between demineralization and reverse osmosis. The system has proven to be successful and economical in meeting the plants needs. 5 figs

  13. Research and development of utilization system of photovoltaic power generation. R and D of stand-alone system (desalination system for remote island-reverse osmosis)

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    This system is an independent system which utilizes DC power obtained by a solar cell for the power source for a sea water desalination plant. The system is constructed of 2 series of a reverse osmosis membrane module system by which the power storage requirement in the battery is minimized by storing in the form of water instead. Effective battery capacity is 46.2 KWH which corresponds to the operation of 0.7 days. Hoso-jima in the central part of the Seto Inland Sea is estimated as the plant location and satisfies the conditions of this verification test. It is being examined to use the solar cells of single and poly crystal types as they have been often practically used to a considerable extent, because the test plant is going to be used as a commercial plant after the test operation is completed. Nominal capacity of 0.55 m/sup 2//h was set for the reverse osmosis sea water desalination unit on the basis of 4.5 m/sup 2//d (a daily average for the agricultural water required for 1,000 m/sup 2/ hydroponic area). Annual average water production is roughly 5.3 m/sup 2//d. (2 figs, 1 tab)

  14. Reverse Logistics

    OpenAIRE

    Kulikova, Olga

    2016-01-01

    This thesis was focused on the analysis of the concept of reverse logistics and actual reverse processes which are implemented in mining industry and finding solutions for the optimization of reverse logistics in this sphere. The objective of this paper was the assessment of the development of reverse logistics in mining industry on the example of potash production. The theoretical part was based on reverse logistics and mining waste related literature and provided foundations for further...

  15. Development of planar SOE/SOFC reversible cell

    International Nuclear Information System (INIS)

    Kusunoki, A.; Matsubara, H.; Kikuoka, Y.; Yanagi, C.; Kugimiya, K.; Yoshino, M.; Tokura, M.; Watanabe, K.; Ueda, S.; Sumi, M.; Miyamoto, H.; Tokunaga, S.

    1993-01-01

    A new energy storage system using SOE/SOFC (solid oxide electrolysis-solid oxide fuel cells) reversible cells is presented, where a unit cell works as a fuel cell during a period of high electric power demand and alternately works as an electrolysis cell during a period of low power demand. A planar cell configuration is used which allows for a compact and low cost energy storage and load leveling system for power stations. Tests were performed to verify the reversibility of the planar cell, at 1000 deg C, with YSZ (Yttria stabilized zirconia) as the solid electrolyte, to improve the cell performance by reducing the overvoltage in electrolysis, and to obtain fundamental characteristics of a reversible cell. 3 figs

  16. Generic transmission zeros in time-reversal symmetric single channel transport through quasi-1d systems

    International Nuclear Information System (INIS)

    Lee, H. W.

    1999-01-01

    Wh study phase coherent transport in a single channel system using the scattering matrix approach. It is show that the Friedel sum rule and the time-reversal symmetry result in the generic appearance of transmission zeros in quasi-1d systems. The transmission zeros naturally lead to abrupt phase changes (without any intrinsic energy scale) and in-phase resonances, thus providing insights to recent experiments on phase coherent transport through a quantum dot

  17. On some contrast reversals in SEM: Application to metal/insulator systems

    International Nuclear Information System (INIS)

    Cazaux, Jacques

    2008-01-01

    Contrast changes of SEM images with experimental conditions (beam energy, angle of detection, etc.) are analyzed by combining physical arguments based on secondary electron emission (SEE) to instrumental arguments involving detection. Possible occurrences of contrast reversals are explored to illustrate these changes in a striking manner. Deduced from SEE yield data, simulated SEM images show a material contrast reversal for a Pt/quartz specimen, a result partly supported by real images of a Cr/quartz integrated circuit. A shift of reversal energy with the detector's position is deduced from a difference in secondary electrons (SE) angular distributions between metals and insulators. Similarly, changes of topographic contrast with detection conditions, specimen composition and angle of tilt are investigated and a possible contrast reversal is again indicated. Finally, it is shown how charging contrast deduced from the expected evolution of SEE yield during irradiation is amplified by in-lens detection: a point illustrated by a contrast reversal of images of SiC particles. The main application concerns a proper interpretation of SEM images that is essential in the investigation of devices obtained from lithographic processes. The discussion on material contrast outlines the difficulty in generalizing the present analysis based on published data and experimental strategies based on implementing specific attachments in the SEM or on biasing the specimen holder are suggested.

  18. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery.

    Science.gov (United States)

    Valladares Linares, R; Li, Z; Yangali-Quintanilla, V; Ghaffour, N; Amy, G; Leiknes, T; Vrouwenvelder, J S

    2016-01-01

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis - low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor - reverse osmosis - advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m(3) d(-1) of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m(3) produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  19. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia.

    Directory of Open Access Journals (Sweden)

    Junie P Warrington

    Full Text Available Whole brain radiation therapy (WBRT is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40-50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia or 21% oxygen (normoxia for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored.

  20. Ultrasmall magnetic field-effect and sign reversal in transistors based on donor/acceptor systems

    Directory of Open Access Journals (Sweden)

    Thomas Reichert

    2017-05-01

    Full Text Available We present magnetoresistive organic field-effect transistors featuring ultrasmall magnetic field-effects as well as a sign reversal. The employed material systems are coevaporated thin films with different compositions consisting of the electron donor 2,2',7,7'-tetrakis-(N,N-di-p-methylphenylamino-9,9'-spirobifluorene (Spiro-TTB and the electron acceptor 1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile (HAT-CN. Intermolecular charge transfer between Spiro-TTB and HAT-CN results in a high intrinsic charge carrier density in the coevaporated films. This enhances the probability of bipolaron formation, which is the process responsible for magnetoresistance effects in our system. Thereby even ultrasmall magnetic fields as low as 0.7 mT can influence the resistance of the charge transport channel. Moreover, the magnetoresistance is drastically influenced by the drain voltage, resulting in a sign reversal. An average B0 value of ≈2.1 mT is obtained for all mixing compositions, indicating that only one specific quasiparticle is responsible for the magnetoresistance effects. All magnetoresistance effects can be thoroughly clarified within the framework of the bipolaron model.

  1. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  2. Microscopic reversibility and the information contained in the composition vector

    CERN Document Server

    Luetich, J J

    2001-01-01

    The microscopic level of observation is the level where every (hypothetical) transformation is reversible. As during reversible processes no composition information is generated by the system, when transforming composition variables, microscopic reversibility is the other side of the coin. This paper is the fourth member of a tetralogy conceived to give insight into the concept of microscopic reversibility.

  3. Monoamines stimulate sex reversal in the saddleback wrasse.

    Science.gov (United States)

    Larson, Earl T; Norris, David O; Gordon Grau, E; Summers, Cliff H

    2003-02-15

    Monoamine neurotransmitters (norepinephrine, dopamine, and serotonin) play an important role in reproduction and sexual behavior throughout the vertebrates. They are the first endogenous chemical signals in the regulation of the hypothalamo-pituitary-gonadal (HPG) axis. In teleosts with behavioral sex determination, much is known about behavioral cues that induce sex reversal. The cues are social, processed via the visual system and depend on the ratio of females to males in the population. The mechanisms by which these external behavioral cues are converted to an internal chemical regulatory process are largely unknown. The protogynous Hawaiian saddleback wrasse, Thalassoma duperrey, was used to investigate the biological pathway mediating the conversion of a social cue into neuroendocrine events regulating sex reversal. Because monoamines play an important role in the regulation of the HPG axis, they were selected as likely candidates for such a conversion. To determine if monoamines could affect sex reversal, drugs affecting monoamines were used in an attempt to either induce sex reversal under non-permissive conditions, or prevent sex reversal under permissive conditions. Increasing norepinephrine or blocking dopamine or serotonin lead to sex reversal in experimental animals under non-permissive conditions. Increasing serotonin blocked sex reversal under permissive conditions, while blocking dopamine or norepinephrine retarded the process. The results presented here demonstrate that monoamines contribute significantly to the control sex reversal. Norepinephrine stimulates initiation and completion of gonadal sex of reversal as well as color change perhaps directly via its effects on the HPG axis. Dopamine exercises inhibitory action on the initiation of sex reversal while 5-HT inhibits both initiation and completion of sex reversal. The serotonergic system appears to be an integral part of the pathway mediating the conversion of a social cue into a

  4. Potential of Reversible Solid Oxide Cells as Electricity Storage System

    Directory of Open Access Journals (Sweden)

    Paolo Di Giorgio

    2016-08-01

    Full Text Available Electrical energy storage (EES systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES, and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC working in both fuel cell and electrolysis modes could be a cost effective and highly efficient EES, but are not yet ready for the market. In fact, using the system in fuel cell mode produces high temperature heat that can be recovered during electrolysis, when a heat source is necessary. Before ReSOCs can be used as EES systems, many problems have to be solved. This paper presents a new ReSOC concept, where the thermal energy produced during fuel cell mode is stored as sensible or latent heat, respectively, in a high density and high specific heat material and in a phase change material (PCM and used during electrolysis operation. The study of two different storage concepts is performed using a lumped parameters ReSOC stack model coupled with a suitable balance of plant. The optimal roundtrip efficiency calculated for both of the configurations studied is not far from 70% and results from a trade-off between the stack roundtrip efficiency and the energy consumed by the auxiliary power systems.

  5. Reverse osmosis based water treatment and purification systems for nuclear power installations

    International Nuclear Information System (INIS)

    Epimakhov, V.N.; Olejnik, M.S.; Moskvin, L.N.

    2004-01-01

    Experiments on the realization and service of specialized water treatment and purification plants based on the principle of reverse osmosis filtration of water at the NPU benches of the A.P. Aleksandrov Scientific Research Technological Institute (SRTI) are analyzed. Membrane-sorption unit including module of micro-, ultrafiltration, reverse osmosis and ion exchange with productivity to 0.5 m 3 /h is developed and operated at SRTI. It is demonstrated that reverse osmosis purification of manufacturing water significantly improves service conditions of NPU and decreases salinity [ru

  6. Research on the application of the internet of things in reverse logistics information management

    Directory of Open Access Journals (Sweden)

    Yuexia Gu

    2013-09-01

    Full Text Available Objective: Combined the current situation with the development trend of reverse logistics, the article focus on the research of Internet of Things application in the reverse logistics information management, starts with the study of reverse logistics information system, and describes the system structure and system process in applying Internet of Things in reverse logistics information management, finally brings forward the constraints like management and economic ones in applying the technology to the system. Research methods: By analyzing the current situation of reverse logistics information system, utilizing literature research methods to put forward characters of reverse logistics information system, and expanding the previous studies on Internet information transmission, we gradually establish the reverse logistics management information system on the basis of the application of Internet of Things. Research Results: Through applying the Internet of Things in the reverse logistics system, we can build a complete close-loop logistics system by linking both extreme ends of positive and negative logistics. Besides, the system will be engaged in data mining in backflow prediction data and re-processing data at regular and irregular intervals. Moreover, advice will be provided to design, purchase, manufacturing and customer service departments for their reference so as to promote respective business. Research Application and Limits: This paper focuses on how the enterprise should apply the Internet of Things technology in reverse logistics, and how to build this system in detail and what the flow planning is made. This thesis is only limited to the analysis of constraints impeding the development of the reverse logistics MIS, including management constraints, economic constraints, hardware technology, data security and rights management constraints. Detailed solutions to address these problems will be put forward in the further research.

  7. Reversibility and the structure of the local state space

    International Nuclear Information System (INIS)

    Al-Safi, Sabri W; Richens, Jonathan

    2015-01-01

    The richness of quantum theory’s reversible dynamics is one of its unique operational characteristics, with recent results suggesting deep links between the theory’s reversible dynamics, its local state space and the degree of non-locality it permits. We explore the delicate interplay between these features, demonstrating that reversibility places strong constraints on both the local and global state space. Firstly, we show that all reversible dynamics are trivial (composed of local transformations and permutations of subsytems) in maximally non-local theories whose local state spaces satisfy a dichotomy criterion; this applies to a range of operational models that have previously been studied, such as d-dimensional ‘hyperballs’ and almost all regular polytope systems. By separately deriving a similar result for odd-sided polygons, we show that classical systems are the only regular polytope state spaces whose maximally non-local composites allow for non-trivial reversible dynamics. Secondly, we show that non-trivial reversible dynamics do exist in maximally non-local theories whose state spaces are reducible into two or more smaller spaces. We conjecture that this is a necessary condition for the existence of such dynamics, but that reversible entanglement generation remains impossible even in this scenario. (paper)

  8. Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery

    KAUST Repository

    Valladares Linares, Rodrigo

    2015-10-19

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis – low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor – reverse osmosis – advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m3 d−1 of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m3 produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  9. Research on the Environmental Performance Evaluation of Electronic Waste Reverse Logistics Enterprise

    Science.gov (United States)

    Yang, Yu-Xiang; Chen, Fei-Yang; Tong, Tong

    According to the characteristic of e-waste reverse logistics, environmental performance evaluation system of electronic waste reverse logistics enterprise is proposed. We use fuzzy analytic hierarchy process method to evaluate the system. In addition, this paper analyzes the enterprise X, as an example, to discuss the evaluation method. It's important to point out attributes and indexes which should be strengthen during the process of ewaste reverse logistics and provide guidance suggestions to domestic e-waste reverse logistics enterprises.

  10. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  11. The cyclicity of a class of quadratic reversible system of genus one

    International Nuclear Information System (INIS)

    Shao Yi; Zhao Yulin

    2011-01-01

    Highlights: → We prove Conjecture 1 in Ref. Gautier et al. under certain conditions. → We apply the zero isocline of the Riccati equation to study the behavior of ω(h) in Section . → We present a method to find the number of zeros of I''(h) in Section . - Abstract: In this paper, we investigate the bifurcations of limit cycles in a class of planar quadratic reversible system of genus one x . =y+4x 2 ,y . =-x(1-8/3 y) under quadratic perturbations. It is proved that the cyclicity of the period annulus is equal to two.

  12. Reference counting for reversible languages

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2014-01-01

    inverses: Freeing a block of memory is done by running the allocation procedure backwards. Axelsen and Glück use this heap manager to sketch implementation of a simple reversible functional language where pattern matching a constructor is the inverse of construction, so pattern-matching implies......Modern programming languages and operating systems use heap memory that allows allocation and deallocation of memory to be decoupled, so they don't follow a stack discipline. Axelsen and Glück have presented a reversible heap manager where allocation and deallocation are each other's logical...

  13. Zero field reversal probability in thermally assisted magnetization reversal

    Science.gov (United States)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  14. The behavioural consequences of sex reversal in dragons

    Science.gov (United States)

    Li, Hong; Holleley, Clare E.; Elphick, Melanie; Georges, Arthur

    2016-01-01

    Sex differences in morphology, physiology, and behaviour are caused by sex-linked genes, as well as by circulating sex-steroid levels. Thus, a shift from genotypic to environmental sex determination may create an organism that exhibits a mixture of male-like and female-like traits. We studied a lizard species (Central Bearded Dragon, Pogona vitticeps), in which the high-temperature incubation of eggs transforms genetically male individuals into functional females. Although they are reproductively female, sex-reversed dragons (individuals with ZZ genotype reversed to female phenotype) resemble genetic males rather than females in morphology (relative tail length), general behaviour (boldness and activity level), and thermoregulatory tactics. Indeed, sex-reversed ‘females’ are more male-like in some behavioural traits than are genetic males. This novel phenotype may impose strong selection on the frequency of sex reversal within natural populations, facilitating rapid shifts in sex-determining systems. A single period of high incubation temperatures (generating thermally induced sex reversal) can produce functionally female individuals with male-like (or novel) traits that enhance individual fitness, allowing the new temperature-dependent sex-determining system to rapidly replace the previous genetically based one.

  15. Unilever chooses a reverse osmosis system to improve efficiency and save energy

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2006-11-15

    Rising energy prices have created new energy efficiency practices at Unilever's plant in Rexdale, Ontario. In order to meet an aggressive goal of reducing energy consumption by at least 6 per cent per year, the plant's energy team has implemented and documented 120 projects since 1999, saving more than $4.2 million in energy costs while eliminating 23,000 tonnes of greenhouse gases (GHGs). The team recently consulted with GE Water and Process Technologies to investigate efficiency measures for their steam plant operations. After analyzing the cost of purchasing and treating water used to produce the 218 million pounds of steam that the plant uses each year, GE recommended a reverse osmosis (RO) system to replace the water softeners and chloride anion de-alkalizers that treated the municipal water used throughout the plant. RO is a mechanical process involving the reversal of flow through a semi-permeable membrane from a high salinity solution to a high purity stream on the opposite side of the membrane. Pressure is used as the driving force for the separation. A turnkey system was installed at the plant in 2005, which also recycles process water captured throughout the plant for use as boiler make-up. The RO feed water allows the boilers to operate at 100 feedwater cycles instead of 10, dramatically increasing energy efficiency. By converting to the RO system, the plant is now consuming 13 million gallons less of municipal water and 8 per cent less natural gas, for a total savings of $68,000 and $299,000 respectively per year. The plant is also saving $11,700 in boiler chemicals and $22,000 in commodity softening chemicals. The RO system has also qualified the Rexdale plant for a $50,000 incentive grant from the City of Toronto for decreased water consumption. It was concluded that while the project has provided financial benefit to Unilever, the company is equally proud of the environmental benefits of the system, which both reduces chemical use and the

  16. Rotational stability of a long field-reversed configuration

    International Nuclear Information System (INIS)

    Barnes, D. C.; Steinhauer, L. C.

    2014-01-01

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone

  17. Rotational stability of a long field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, D. C., E-mail: coronadocon@msn.com; Steinhauer, L. C. [Tri Alpha Energy, Rancho Santa Margarita, California 92688 (United States)

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  18. Reverse Osmosis

    Indian Academy of Sciences (India)

    many applications, one of which is desalination of seawater. The inaugural Nobel Prize in Chemistry was awarded in 1901 to van 't Hoff for his seminal work in this area. The present article explains the principle of osmosis and reverse osmosis. Osmosis and Reverse Osmosis. As the name suggests, reverse osmosis is the ...

  19. Tandem mirror and field-reversed mirror experiments

    Energy Technology Data Exchange (ETDEWEB)

    Coensgen, F.H.; Simonen, T.C.; Turner, W.C.

    1979-08-21

    This paper is largely devoted to tandem mirror and field-reversed mirror experiments at the Lawrence Livermore Laboratory (LLL), and briefly summarizes results of experiments in which field-reversal has been achieved. In the tandem experiment, high-energy, high-density plasmas (nearly identical to 2XIIB plasmas) are located at each end of a solenoid where plasma ions are electrostatically confined by the high positive poentials arising in the end plug plasma. End plug ions are magnetically confined, and electrons are electrostatically confined by the overall positive potential of the system. The field-reversed mirror reactor consists of several small field-reversed mirror plasmas linked together for economic reasons. In the LLL Beta II experiment, generation of a field-reversed plasma ring will be investigated using a high-energy plasma gun with a transverse radial magnetic field. This plasma will be further heated and sustained by injection of intense, high-energy neutral beams.

  20. Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Yichen Hu

    2016-04-01

    Full Text Available Various polymeric nanoparticles (NPs with optimal size, tumor-targeting functionalization, or microenvironment sensitive characteristics have been designed to solve several limitations of conventional chemotherapy. Nano-sized polymeric drug carrier systems have remarkably great advantages in drug delivery and cancer therapy, which are still plagued with severe deficiencies, especially insufficient cellular uptake. Recently, surface charge of medical NPs has been demonstrated to play an important role in cellular uptake. NPs with positive charge show higher affinity to anionic cell membranes such that with more efficient cellular internalization, but otherwise cause severe aggregation and fast clearance in circulation. Thus, surface charge-reversal NPs, specifically activated at the tumor site, have shown to elegantly resolve the enhanced cellular uptake in cancer cells vs. non-specific protein adsorption dilemma. Herein, this review mainly focuses on the effect of tumor-site activated surface charge reversal NPs on tumor treatment, including the activated mechanisms and various applications in suppressing cancer cells, killing cancer stem cell and overcoming multidrug resistance, with the emphasis on recent research in these fields. With the comprehensive and in-depth understanding of the activated surface charge reversal NPs, this approach might arouse great interest of scientific research on enhanced efficient polymeric nano-carriers in cancer therapy.

  1. Systemic Thrombolysis in Acute Ischemic Stroke after Dabigatran Etexilate Reversal with Idarucizumab—A Case Report

    DEFF Research Database (Denmark)

    Tireli, Derya; He, Jun; Nordling, Mette Maria

    2017-01-01

    Introduction Idarucizumab is a reversal agent for dabigatran etexilate. By reversing the anticoagulating effect of dabigatran etexilate with idarucizumab (Praxbind), patients presenting with an acute ischemic stroke can now be eligible for thrombolysis. Patient We describe our experience with ida......Introduction Idarucizumab is a reversal agent for dabigatran etexilate. By reversing the anticoagulating effect of dabigatran etexilate with idarucizumab (Praxbind), patients presenting with an acute ischemic stroke can now be eligible for thrombolysis. Patient We describe our experience...... of embolic stroke in patients with atrial fibrillation. Dabigatran etexilate is an oral thrombin inhibitor that can be reversed by idarucizumab. Idarucizumab, a monoclonal antibody fragment, directly binds dabigatran etexilate and neutralizes its activity. Conclusion Reversal of dabigatran etexilate using...

  2. DIC-CAM recipe for reverse engineering

    Science.gov (United States)

    Romero-Carrillo, P.; Lopez-Alba, E.; Dorado, R.; Diaz-Garrido, F. A.

    2012-04-01

    Reverse engineering (RE) tries to model and manufacture an object from measurements one of a reference object. Modern optical measurement systems and computer aided engineering software have improved reverse engineering procedures. We detail the main RE steps from 3D digitalization by Digital Image Correlation to manufacturing. The previous description is complemented with an application example, which portrays the performance of RE. The differences between original and manufactured objects are less than 2 mm (close to the tool radius).

  3. [Optimization and assessment of a reverse hybridization system for the detection of HBV drug-resistant mutations].

    Science.gov (United States)

    Liu, Yan-chen; Huang, Ai-long; Hu, Yuan; Hu, Jie-li; Lai, Guo-qi; Zhang, Wen-lu

    2011-12-01

    To establish a detection method for HBV drug-resistant mutations related to lamivudine, adefovir and entecavir by optimization and assessment of reverse hybridization system. 26 degenerated probes covering 10 drug-resistant hotspots of 3 drugs were synthesized and immobilized on the same positively charged nylon membrane. PCR products labeled with digoxigenin were hybridized with corresponding probes. To improve the sensitivity and specificity, 4 reaction steps of reverse hybridization were optimized including the number of labeled digoxigenin, the energy intensity of UV cross-linking, hybridization and stringency wash conditions. To prove the feasibility, the specificity, sensitivity and accuracy of this system were assessed respectively. Sensitive and specific results are obtained by the optimization of the following 4 reaction steps: the primers labeled with 3 digoxigenin, energy intensity of UV cross-linking for 1500 x 0.1 mJ/cm², hybridization at 42 degrees C and stringency wash with 0.5 x SSC and 0.1% SDS solution at 44 degrees C for 30 min. In the assessment of system, the majority of probes have high specificity. The quantity of PCR product with a concentration of 10 ng/μl or above can be detected by this method. The concordant rate between reverse hybridization and direct sequencing is 93.9% in the clinical sample test. Though the specificity of several probes needs to be improved further, it is a simple, rapid and sensitive method which can detect HBV resistant mutations related to lamivudine, adefovir and entecavir simultaneously. Due to the short distance between 180 and 181, likewise 202 and 204, the sequence of the same probe covers two codon positions, and hybridization will be interfered by each other. To avoid such interference, the possible solution is that probes are designed by arranging and combining various forms of two near codons.

  4. Parkinson’s disease managing reversible neurodegeneration

    Directory of Open Access Journals (Sweden)

    Hinz M

    2016-04-01

    Full Text Available Marty Hinz,1 Alvin Stein,2 Ted Cole,3 Beth McDougall,4 Mark Westaway5 1Clinical Research, NeuroResearch Clinics, Inc., Cape Coral, FL, 2Stein Orthopedic Associates, Plantation, FL, 3Cole Center for Healing, Cincinnati, OH, 4CLEARCenter of Health, Mill Valley, CA, USA; 5Four Pillars Health, Brendale, QLD, Australia Abstract: Traditionally, the Parkinson’s disease (PD symptom course has been classified as an irreversible progressive neurodegenerative disease. This paper documents 29 PD and treatment-induced systemic depletion etiologies which cause and/or exacerbate the seven novel primary relative nutritional deficiencies associated with PD. These reversible relative nutritional deficiencies (RNDs may facilitate and accelerate irreversible progressive neurodegeneration, while other reversible RNDs may induce previously undocumented reversible pseudo-neurodegeneration that is hiding in plain sight since the symptoms are identical to the symptoms being experienced by the PD patient. Documented herein is a novel nutritional approach for reversible processes management which may slow or halt irreversible progressive neurodegenerative disease and correct reversible RNDs whose symptoms are identical to the patient’s PD symptoms. Keywords: Parkinson’s disease, L-dopa, carbidopa, B6, neurodegeneration

  5. Performance analysis of an acoustic time reversal system in dynamic and random oceanic environments

    Science.gov (United States)

    Khosla, Sunny Rajendra

    This dissertation provides a theoretical framework along with specific performance predictions for an acoustic time reversal system in shallow oceanic environments. Acoustic time-reversal is a robust means of retrofocusing acoustic energy, in both time and space, to the original sound-source location without any information about the acoustic environment in which it is deployed. The effect of three performance limiting oceanic complexities addressed, include (i)ambient noise field, (ii)reflection and volume scattering from a deterministic soliton internal wave traveling on the thermocline between two water masses, and (iii)volume scattering from a random superposition of linear internal waves convecting a gradient in the sound speed profile. The performance analysis establishes acoustic time reversal to be a promising technology for a two-way communication system in an oceanic medium. For an omni-directional noisy environment a general formulation for the probability of retrofocusing is developed that includes the effect of the medium, accounts for the system hardware and the acoustic parameters. Monte-Carlo simulations in both, a free-space environment and a shallow-ocean sound-channel environment compare well with theory. A 41 element TRA spanning a shallow water depth of 60 m is predicted to return a 70% focal probability at -15 dB SNR for a source to array range of 6 km. Preliminary research with broadband signals suggest that they should outperform narrowband response in both free space and sound channel environments. The impact of the nonlinear solitary waves is addressed using a two-path Green's function to treat the presence of a flat thermocline, and the single scattering Born approximation to address scattering from the soliton internal wave. It is predicted that a stationary soliton located along ray turning paths between the source and the TRA can lead to both enhanced and degraded focal performance. Based on extension of previous research in wave

  6. Reverse ray tracing for transformation optics.

    Science.gov (United States)

    Hu, Chia-Yu; Lin, Chun-Hung

    2015-06-29

    Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.

  7. Rotating Reverse-Osmosis for Water Purification

    Science.gov (United States)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  8. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.

    Science.gov (United States)

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander

    2017-09-19

    The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O 2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O 2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the

  9. Managing Reverse Logistics or Reversing Logistics Management?

    NARCIS (Netherlands)

    M.P. de Brito (Marisa)

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse

  10. Reverse Osmosis Optimization

    Energy Technology Data Exchange (ETDEWEB)

    McMordie Stoughton, Kate; Duan, Xiaoli; Wendel, Emily M.

    2013-08-26

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). ¬The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.¬

  11. Reverse Osmosis Optimization

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.

  12. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    Energy Technology Data Exchange (ETDEWEB)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the first year of the project ''Modified Reverse Osmosis System for Treatment of Produced Waters.'' This research project has two objectives. The first objective is to test the use of clay membranes in the treatment of produced waters by reverse osmosis. The second objective is to test the ability of a system patented by the New Mexico Tech Research Foundation to remove salts from reverse osmosis waste streams as a solid. We performed 12 experiments using clay membranes in cross-flow experimental cells. We found that, due to dispersion in the porous frit used adjacent to the membrane, the concentration polarization layer seems to be completely (or nearly completely) destroyed at low flow rates. This observation suggests that clay membranes used with porous frit material many reach optimum rejection rates at lower pumping rates than required for use with synthetic membranes. The solute rejection efficiency decreases with increasing solution concentration. For the membranes and experiments reported here, the rejection efficiency ranged from 71% with 0.01 M NaCl solution down to 12% with 2.3 M NaCl solution. More compacted clay membranes will have higher rejection capabilities. The clay membranes used in our experiments were relatively thick (approximately 0.5 mm). The active layer of most synthetic membranes is only 0.04 {micro}m (0.00004 mm), approximately 1250 times thinner than the clay membranes used in these experiments. Yet clay membranes as thin as 12 {micro}m have been constructed (Fritz and Eady, 1985). Since Darcy's law states that the flow through a material of constant permeability is inversely proportional to it's the material's thickness, then, based on these experimental observations, a very thin clay membrane would be expected to have much higher flow rates than the ones used in these experiments. Future experiments will focus on testing very thin clay membranes. The

  13. Thermodynamic advantages of nuclear desalination through reverse osmosis

    International Nuclear Information System (INIS)

    Bhattacharyya, K.P.; Prabhakar, S.; Tewari, P.K.

    2009-01-01

    Seawater Reverse Osmosis (SWRO) integrated with nuclear power station has significant thermodynamic advantages since it can utilize the waste heat available in the condenser cooling circuit and electrical power from the nuclear power plant with provision for using grid power in case of exigencies and shared infrastructure. Coupling of RO plants to the reactor is simple and straightforward and power loss due to RO unit, resulting in the loss of load, does not impact reactor turbine. Product water contamination probability is also very less since it has in-built mechanical barrier. Preheat reverse osmosis desalination has many thermodynamic advantages and studies have indicated improved performance characteristics thereby leading to savings in operational cost. The significant advantages include the operational flexibility of the desalination systems even while power plant is non-operational and non-requirement of safety systems for resource utilization. This paper brings out a comprehensive assessment of reverse osmosis process as a stand-alone nuclear desalination system. (author)

  14. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system

    Science.gov (United States)

    Sempels, Wouter; de Dier, Raf; Mizuno, Hideaki; Hofkens, Johan; Vermant, Jan

    2013-04-01

    The deposition of material at the edge of evaporating droplets, known as the ‘coffee ring effect’, is caused by a radially outward capillary flow. This phenomenon is common to a wide array of systems including colloidal and bacterial systems. The role of surfactants in counteracting these coffee ring depositions is related to the occurrence of local vortices known as Marangoni eddies. Here we show that these swirling flows are universal, and not only lead to a uniform deposition of colloids but also occur in living bacterial systems. Experiments on Pseudomonas aeruginosa suggest that the auto-production of biosurfactants has an essential role in creating a homogeneous deposition of the bacteria upon drying. Moreover, at biologically relevant conditions, intricate time-dependent flows are observed in addition to the vortex regime, which are also effective in reversing the coffee ring effect at even lower surfactant concentrations.

  15. ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS

    Directory of Open Access Journals (Sweden)

    LEE V. C.-C.

    2017-02-01

    Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.

  16. Membrane morphology and topology for fouling control in Reverse Osmosis filtration systems

    Science.gov (United States)

    Ling, Bowen; Battiato, Ilenia

    2017-11-01

    Reverse Osmosis Membrane (ROM) filtration systems are widely utilized in waste-water recovery, seawater desalination, landfill water treatment, etc. During filtration, the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. Design and optimization of ROM filtration systems aim at reducing membrane fouling by studying the coupling between membrane structure, local flow field and foulant adsorption patterns. Yet, current studies focus exclusively on oversimplified steady-state models that ignore any dynamic coupling between fluid flow and transport through the membrane. In this work, we develop a customized solver (SUMembraneFoam) under OpenFOAM to solve the transient equations. The simulation results not only predict macroscopic quantities (e.g. permeate flux, pressure drop, etc.) but also show an excellent agreement with the fouling patterns observed in experiments. It is observed that foulant deposition is strongly controlled by the local shear stress on the membrane, and channel morphology or membrane topology can be modified to control the shear stress distribution and reduce fouling. Finally, we identify optimal regimes for design.

  17. Reverse logistics system planning for recycling computers hardware: A case study

    Science.gov (United States)

    Januri, Siti Sarah; Zulkipli, Faridah; Zahari, Siti Meriam; Shamsuri, Siti Hajar

    2014-09-01

    This paper describes modeling and simulation of reverse logistics networks for collection of used computers in one of the company in Selangor. The study focuses on design of reverse logistics network for used computers recycling operation. Simulation modeling, presented in this work allows the user to analyze the future performance of the network and to understand the complex relationship between the parties involved. The findings from the simulation suggest that the model calculates processing time and resource utilization in a predictable manner. In this study, the simulation model was developed by using Arena simulation package.

  18. Electrochemical transformation of trichloroethylene in aqueous solution by electrode polarity reversal.

    Science.gov (United States)

    Rajic, Ljiljana; Fallahpour, Noushin; Yuan, Songhu; Alshawabkeh, Akram N

    2014-12-15

    Electrode polarity reversal is evaluated for electrochemical transformation of trichloroethylene (TCE) in aqueous solution using flow-through reactors with mixed metal oxide electrodes and Pd catalyst. The study tests the hypothesis that optimizing electrode polarity reversal will generate H2O2 in Pd presence in the system. The effect of polarity reversal frequency, duration of the polarity reversal intervals, current intensity and TCE concentration on TCE removal rate and removal mechanism were evaluated. TCE removal efficiencies under 6 cycles h(-1) were similar in the presence of Pd catalyst (50.3%) and without Pd catalyst (49.8%), indicating that Pd has limited impact on TCE degradation under these conditions. The overall removal efficacies after 60 min treatment under polarity reversal frequencies of 6, 10, 15, 30 and 90 cycles h(-1) were 50.3%, 56.3%, 69.3%, 34.7% and 23.4%, respectively. Increasing the frequency of polarity reversal increases TCE removal as long as sufficient charge is produced during each cycle for the reaction at the electrode. Electrode polarity reversal shifts oxidation/reduction and reduction/oxidation sequences in the system. The optimized polarity reversal frequency (15 cycles h(-1) at 60 mA) enables two reaction zones formation where reduction/oxidation occurs at each electrode surface. Published by Elsevier Ltd.

  19. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2017-03-01

    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  20. Artificial Self-Sufficient P450 in Reversed Micelles

    Directory of Open Access Journals (Sweden)

    Teruyuki Nagamune

    2010-04-01

    Full Text Available Cytochrome P450s are heme-containing monooxygenases that require electron transfer proteins for their catalytic activities. They prefer hydrophobic compounds as substrates and it is, therefore, desirable to perform their reactions in non-aqueous media. Reversed micelles can stably encapsulate proteins in nano-scaled water pools in organic solvents. However, in the reversed micellar system, when multiple proteins are involved in a reaction they can be separated into different micelles and it is then difficult to transfer electrons between proteins. We show here that an artificial self-sufficient cytochrome P450, which is an enzymatically crosslinked fusion protein composed of P450 and electron transfer proteins, showed micelle-size dependent catalytic activity in a reversed micellar system. Furthermore, the presence of thermostable alcohol dehydrogenase promoted the P450-catalyzed reaction due to cofactor regeneration.

  1. Quasi-invariant modified Sobolev norms for semi linear reversible PDEs

    International Nuclear Information System (INIS)

    Faou, Erwan; Grébert, Benoît

    2010-01-01

    We consider a general class of infinite dimensional reversible differential systems. Assuming a nonresonance condition on linear frequencies, we construct for such systems almost invariant pseudo-norms that are close to Sobolev-like norms. This allows us to prove that if the Sobolev norm of index s of the initial data z 0 is sufficiently small (of order ε) then the Sobolev norm of the solution is bounded by 2ε over a very long time interval (of order ε −r with r arbitrary). It turns out that this theorem applies to a large class of reversible semi-linear partial differential equations (PDEs) including the nonlinear Schrödinger (NLS) equation on the d-dimensional torus. We also apply our method to a system of coupled NLS equations which is reversible but not Hamiltonian. We also note that for the same class of reversible systems we can prove a Birkhoff normal form theorem, which in turn implies the same bounds on the Sobolev norms. Nevertheless the techniques that we use to prove the existence of quasi-invariant pseudo-norms are much more simple and direct

  2. Automatic Error Recovery in Robot Assembly Operations Using Reverse Execution

    DEFF Research Database (Denmark)

    Laursen, Johan Sund; Schultz, Ulrik Pagh; Ellekilde, Lars-Peter

    2015-01-01

    , in particular for small-batch productions. As an alternative, we propose a system for automatically handling certain classes of errors instead of preventing them. Specifically, we show that many operations can be automatically reversed. Errors can be handled through automatic reverse execution of the control...... program to a safe point, from which forward execution can be resumed. This paper describes the principles behind automatic reversal of robotic assembly operations, and experimentally demonstrates the use of a domain-specific language that supports automatic error handling through reverse execution. Our...

  3. Treatment of low-level radioactive waste liquid by reverse osmosis

    International Nuclear Information System (INIS)

    Buckley, L.P.; Sen Gupta, S.K.; Slade, J.A.

    1995-01-01

    The processing of low-level radioactive waste (LLRW) liquids that result from operation of nuclear power plants with reverse osmosis systems is not common practice. A demonstration facility is operating at Chalk River Laboratories (of Atomic Energy of Canada Limited), processing much of the LLRW liquids generated at the site from a multitude of radioactive facilities, ranging from isotope production through decontamination operations and including chemical laboratory drains. The reverse osmosis system comprises two treatment steps--spiral wound reverse osmosis followed by tubular reverse osmosis--to achieve an average volume reduction factor of 30:1 and a removal efficiency in excess of 99% for most radioactive and chemical species. The separation allows the clean effluent to be discharged without further treatment. The concentrated waste stream of 3 wt% total solids is further processed to generate a solid product. The typical lifetimes of the membranes have been nearly 4000 hours, and replacement was required based on increased pressure drops and irreversible loss of permeate flux. Four years of operating experience with the reverse osmosis system, to demonstrate its practicality and to observe and record its efficiency, maintenance requirements and effectiveness, have proven it to be viable for volume reduction and concentration of LLRW liquids generated from nuclear-power-plant operations

  4. Compressibility Effects in the Dynamics of the Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2008-01-01

    We study the reversed-field pinch through the numerical solution of the compressible magnetohydrodynamic equations. Two cases are investigated: In the first case the pressure is derived from an adiabatic condition, and in the second case the pressure equation includes heating terms due to resistivity and viscosity. In the adiabatic case a single helicity state is observed, and the reversed-field pinch configuration is formed for short time intervals and is finally lost. In the nonadiabatic case the system reaches a multiple helicity state, and the reversal parameter remains negative for a longer time. The results show the importance of compressibility in determining the large scale dynamics of the system

  5. Sanitization of an Automatic Reverse-Osmosis Watering System: Removal of a Clinically Significant Biofilm

    Science.gov (United States)

    Molk, Denise M; Karr-May, Charlene L; Trang, Elaine D; Sanders, George E

    2013-01-01

    During environmental monitoring of our institution's rodent watering systems, one vivarium was found to have high bacterial loads in the reverse-osmosis (RO) automatic water system. These findings prompted evaluation of the entire RO water production and distribution system. Investigation revealed insufficient rack and RO system sanitization, leading to heavy biofilm accumulation within the system. Approximately 2 wk after discovery in the water system, one of the bacterial organisms isolated in the water supply, Sphingomonas paucimobilis, was isolated from a peritoneal abscess of a severely immunodeficient B6.Cg-Slc11a1r Rag1tm1Mom/Cwi mouse housed in the same vivarium, suggesting that rodents drinking from this system were being exposed randomly to fragments of biofilm. Plans were developed to sanitize the entire system. Hypercholorination was used first, followed by treatment with a combination of peracetic acid and hydrogen peroxide. Between system sanitizations, a low-level chlorine infusion was added to the system as a biocide. Heterotrophic plate counts and bacterial isolation were performed on water samples obtained before and after sanitization procedures. We here discuss the process of identifying and correcting this important water-quality issue. PMID:23562105

  6. Integrated Wireless Monitoring and Control System in Reverse Osmosis Membrane Desalination Plants

    Directory of Open Access Journals (Sweden)

    Al Haji Ahmad

    2015-01-01

    Full Text Available The operational processes of the Reverse Osmosis (RO membrane desalination plants require continuous monitoring through the constant attendance of operators to ensure proper productivity and minimize downtime and prevent membrane failure. Therefore, the plant must be equipped with a control system that monitors and controls the operational variables. Monitoring and controlling the affecting parameters are critical to the evaluation of the performance of the desalination plant, which will help the operator find and resolve problems immediately. Therefore, this paper was aimed at developing an RO unit by utilizing a wireless sensor network (WSN system. Hence, an RO pilot plant with a feed capacity of 1.2 m3/h was utilized, commissioned, and tested in Kuwait to assess and verify the performance of the integrated WSN in RO membrane desalination system. The investigated system allowed the operators to remotely monitor the operational process of the RO system. The operational data were smoothly recorded and monitored. Furthermore, the technical problems were immediately determined, which reduced the time and effort in rectifying the technical problems relevant to the RO performance. The manpower requirements of such treatment system were dramatically reduced by about 50%. Based on a comparison between manual and wireless monitoring operational processes, the availability of the integrated RO unit with a wireless monitoring was increased by 10%

  7. The presumed central nervous system effects of rocuronium in a neonate and its reversal with sugammadex.

    Science.gov (United States)

    Langley, Ross J; McFadzean, Jillian; McCormack, Jon

    2016-01-01

    We describe a 2-day-old male infant who received rocuronium as part of general anesthesia for a tracheal esophageal fistula repair. Postoperatively, he had prolonged central and peripheral neuromuscular blockade despite cessation of the rocuronium infusion several hours previously. This case discusses the presumed central nervous system effects of rocuronium in a neonate and its effective reversal with sugammadex. © 2015 John Wiley & Sons Ltd.

  8. Reversible Lithium Neurotoxicity: Review of the Literature

    Science.gov (United States)

    Netto, Ivan

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. Data Sources: A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. Study Selection: A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. Data Extraction: The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Data Synthesis: Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Conclusions: Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate

  9. Reversible lithium neurotoxicity: review of the literatur.

    Science.gov (United States)

    Netto, Ivan; Phutane, Vivek H

    2012-01-01

    Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate preventive measures. This recognition will help in early diagnosis and prompt treatment of

  10. Time in Science: Reversibility vs. Irreversibility

    Science.gov (United States)

    Pomeau, Yves

    To discuss properly the question of irreversibility one needs to make a careful distinction between reversibility of the equations of motion and the choice of the initial conditions. This is also relevant for the rather confuse philosophy of the wave packet reduction in quantum mechanics. The explanation of this reduction requires also to make precise assumptions on what initial data are accessible in our world. Finally I discuss how a given (and long) time record can be shown in an objective way to record an irreversible or reversible process. Or: can a direction of time be derived from its analysis? This leads quite naturally to examine if there is a possible spontaneous breaking of the time reversal symmetry in many body systems, a symmetry breaking that would be put in evidence objectively by looking at certain specific time correlations.

  11. A Dynamic Pricing Reverse Auction-Based Resource Allocation Mechanism in Cloud Workflow Systems

    Directory of Open Access Journals (Sweden)

    Xuejun Li

    2016-01-01

    Full Text Available Market-oriented reverse auction is an efficient and cost-effective method for resource allocation in cloud workflow systems since it can dynamically allocate resources depending on the supply-demand relationship of the cloud market. However, during the auction the price of cloud resource is usually fixed, and the current resource allocation mechanisms cannot adapt to the changeable market properly which results in the low efficiency of resource utilization. To address such a problem, a dynamic pricing reverse auction-based resource allocation mechanism is proposed. During the auction, resource providers can change prices according to the trading situation so that our novel mechanism can increase the chances of making a deal and improve efficiency of resource utilization. In addition, resource providers can improve their competitiveness in the market by lowering prices, and thus users can obtain cheaper resources in shorter time which would decrease monetary cost and completion time for workflow execution. Experiments with different situations and problem sizes are conducted for dynamic pricing-based allocation mechanism (DPAM on resource utilization and the measurement of Time⁎Cost (TC. The results show that our DPAM can outperform its representative in resource utilization, monetary cost, and completion time and also obtain the optimal price reduction rates.

  12. In situ synthesis of Prussian blue nanoparticles within a biocompatible reverse micellar system for in vivo Cs"+ uptake

    International Nuclear Information System (INIS)

    Lavaud, Cyril; Kajdan, Marilyn; Long, Jerome; Larionova, Joulia; Guari, Yannick; Compte, Elsa; Maurel, Jean-Claude; Him, Josephine Lai Kee; Bron, Patrick; Oliviero, Erwan

    2017-01-01

    A new highly stable Prussian blue reverse micellar system comprising ultra-small Prussian blue nanoparticles in Aonyss (Peceolt, b-sitosterol, lecithin, ethanol and water) acts as an in vivo Cs"+ uptake agent presenting higher efficiency compared to commercially available Prussian blue treatment with a significant dose effect. (authors)

  13. Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.

    Science.gov (United States)

    Phuc, Bui Duc Hong; You, Sam-Sang; Choi, Hyeung-Six; Jeong, Seok-Kwon

    2017-11-01

      In this study, robust control synthesis has been applied to a reverse osmosis desalination plant whose product water flow and salinity are chosen as two controlled variables. The reverse osmosis process has been selected to study since it typically uses less energy than thermal distillation. The aim of the robust design is to overcome the limitation of classical controllers in dealing with large parametric uncertainties, external disturbances, sensor noises, and unmodeled process dynamics. The analyzed desalination process is modeled as a multi-input multi-output (MIMO) system with varying parameters. The control system is decoupled using a feed forward decoupling method to reduce the interactions between control channels. Both nominal and perturbed reverse osmosis systems have been analyzed using structured singular values for their stabilities and performances. Simulation results show that the system responses meet all the control requirements against various uncertainties. Finally the reduced order controller provides excellent robust performance, with achieving decoupling, disturbance attenuation, and noise rejection. It can help to reduce the membrane cleanings, increase the robustness against uncertainties, and lower the energy consumption for process monitoring.

  14. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.

    Science.gov (United States)

    Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming

    2016-12-12

    A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.

  15. Slowly switching between environments facilitates reverse evolution in small populations

    Science.gov (United States)

    Tan, Longzhi; Gore, Jeff

    2011-03-01

    The rate at which a physical process occurs usually changes the behavior of a system. In thermodynamics, the reversibility of a process generally increases when it occurs at an infinitely slow rate. In biological evolution, adaptations to a new environment may be reversed by evolution in the ancestral environment. Such fluctuating environments are ubiquitous in nature, although how the rate of switching affects reverse evolution is unknown. Here we use a computational approach to quantify evolutionary reversibility as a function of the rate of switching between two environments. For small population sizes, which travel on landscapes as random walkers, we find that both genotypic and phenotypic reverse evolution increase at slow switching rates. However, slow switching of environments decreases evolutionary reversibility for a greedy walker, corresponding to large populations (extensive clonal interference). We conclude that the impact of the switching rate for biological evolution is more complicated than other common physical processes, and that a quantitative approach may yield significant insight into reverse evolution.

  16. Reversible Carnot cycle outside a black hole

    International Nuclear Information System (INIS)

    Xi-Hao, Deng; Si-Jie, Gao

    2009-01-01

    A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T 1 and a black hole with Hawking temperature T H . By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1 – T H /T 1 . Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible. (general)

  17. Performance of Reverse-Link Synchronous DS-CDMA System on a Frequency-Selective Multipath Fading Channel with Imperfect Power Control

    Directory of Open Access Journals (Sweden)

    Duk Kyung Kim

    2002-08-01

    Full Text Available We analyze the performance for reverse-link synchronous DS-CDMA system in a frequency-selective Rayleigh fading channel with an imperfect power control scheme. The performance degradation due to power control error (PCE, which is approximated by a log-normally distributed random variable, is estimated as a function of the standard deviation of the PCE. In addition, we investigate the impacts of the multipath intensity profile (MIP shape and the number of resolvable paths on the performance. Finally, the coded bit error performance is evaluated in order to estimate the system capacity. Comparing with the conventional CDMA system, we show an achievable gain of from 59% to 23% for reverse-link synchronous transmission technique (RLSTT in the presence of imperfect power control over asynchronous transmission for BER=10−6. As well, the effect of tradeoff between orthogonality and diversity can be seen according to the number of multipaths, and the tendency is kept even in the presence of PCE. We conclude that the capacity can be further improved via the RLSTT, because the DS-CDMA system is very sensitive to power control imperfections.

  18. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system-Towards sustainable drinking water production.

    Science.gov (United States)

    Schmidt, Stefan-André; Gukelberger, Ephraim; Hermann, Mario; Fiedler, Florian; Großmann, Benjamin; Hoinkis, Jan; Ghosh, Ashok; Chatterjee, Debashis; Bundschuh, Jochen

    2016-11-15

    Arsenic contamination of groundwater is posing a serious challenge to drinking water supplies on a global scale. In India and Bangladesh, arsenic has caused the most serious public health issue in the world for nearly two decades. The aim of this work was to study an arsenic removal system based on reverse osmosis at pilot scale treating two different water sources from two different locations in the State of Bihar, India. For this purpose two villages, Bind Toli and Ramnagar in the Patna District were selected, both located very close to the river Ganga. The trials were conducted with aerated and non-aerated groundwater. It is the first time that the arsenic removal efficiency for aerated and non-aerated groundwater by reverse osmosis technology in combination with an energy-saving recovery system have been studied. As the principle of reverse osmosis requires a relatively high pressure, its energy demand is naturally high. By using an energy recovery system, this demand can be lowered, leading to an energy demand per liter permeate of 3-4Wh/L only. Due to high iron levels in the groundwater and as a consequence the precipitation of ferric (hydr)oxides, it was necessary to develop a granular media filter for the trials under aeration in order to protect the membrane from clogging. Two different materials, first locally available sand, and second commercially available anthracite were tested in the granular media filter. For the trials with aerated groundwater, total arsenic removal efficiency at both locations was around 99% and the arsenic concentration in permeate was in compliance with the WHO and National Indian Standard of 10μg/L. However, trials under anoxic conditions with non-aerated groundwater could not comply with this standard. Additionally a possible safe discharge of the reverse osmosis concentrate into an abandoned well was studied. It was observed that re-injection of reject water underground may offer a safe disposal option. However, long

  19. MORE: mixed optimization for reverse engineering--an application to modeling biological networks response via sparse systems of nonlinear differential equations.

    Science.gov (United States)

    Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas

    2012-01-01

    Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.

  20. Sex Reversal and Analyses of Possible Involvement of Sex Steroids in Scallop Gonadal Development in Newly Established Organ-Culture Systems.

    Science.gov (United States)

    Otani, Ayano; Nakajima, Tadaaki; Okumura, Tomomi; Fujii, Shiro; Tomooka, Yasuhiro

    2017-04-01

    Many molluscs perform sex reversal, and sex hormones may be involved in the process. In adult scallops, Patinopecten yessoensis, gonadotropin releasing hormone and 17β-estradiol (E 2 ) are involved in male sexual maturation, however, little is known about the effects of E 2 and testosterone (T) on the gonadal differentiation in young scallops. In the present study, scallop gonadal development was analyzed to determine the sex reversal stage in Funka bay, and effects of E 2 and T were examined. In Funka bay, almost all scallops were male at month 12. Scallops equipped with ambiguous gonads were 61.1% at month 16 and disappeared at month 18. Therefore, sex reversal in Funka bay occurs at around month 16. For establishment of organ culture systems for bivalves, Manila clam gonads were cultured in 15% L-15 medium diluted with HBSS containing 10% KSR on agarose gel at 10°C, and the gonads survived for 14 days. Scallop gonads were also able to be cultured in 30% L15 medium diluted with ASW containing 10% KSR on agarose gel for seven days. At mature stage, Foxl2 and Tesk were predominantly expressed in ovary and testis, respectively. When scallop gonads at sex reversal stage were organ-cultured, sex steroid treatment decreased Tesk expression in the majority of scallop gonads at sex reversal stage. However, no obvious change in Foxl2 and Tesk expression was detected in mature gonads in response to either E 2 or T in culture, suggesting sex steroid treatment might affect gonadal development at sex reversal stage.

  1. Reversibility windows in selenide-based chalcogenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Hyla, M.; Boyko, V.; Golovchak, R.

    2008-01-01

    A simple route for the estimation of the reversibility windows in the sense of non-ageing ability is developed for chalcogenide glasses obeying '8-N' rule at the example of As-Se, Ge-Se and Ge-As-Se glass systems. The low limit of their reversibility windows is determined at the average coordination number Z=2.4 in full agreement with rigidity percolation theory, while the upper limit is shown to be related to the glass preparation conditions and samples prehistory

  2. Reversibility windows in selenide-based chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42200 (Poland); Hyla, M. [Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42200 (Poland); Boyko, V. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine); Lviv National Polytechnic University, 12, Bandera Street, Lviv, UA 79013 (Ukraine); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine)], E-mail: golovchak@novas.lviv.ua

    2008-10-01

    A simple route for the estimation of the reversibility windows in the sense of non-ageing ability is developed for chalcogenide glasses obeying '8-N' rule at the example of As-Se, Ge-Se and Ge-As-Se glass systems. The low limit of their reversibility windows is determined at the average coordination number Z=2.4 in full agreement with rigidity percolation theory, while the upper limit is shown to be related to the glass preparation conditions and samples prehistory.

  3. Thermally reversible rubber-toughened thermoset networks via Diels-Alder chemistry

    NARCIS (Netherlands)

    Araya-Hermosilla, R.; Fortunato, G.; Pucci, A.; Raffa, P.; Polgar, L.; Broekhuis, A. A.; Pourhossein, P.; Lima, G. M. R.; Beljaars, M.; Picchioni, F.

    In this work we present a reversible and toughened thermoset system based on the covalent incorporation of a furane functionalized ethylene-propylene rubber (EPM-Fu) into a thermoset furane functionalized polyketone (PK-Fu) via Diels-Alder (DA) reversible cross-linking with bismaleimide (b-MA).

  4. Information criteria for quantifying loss of reversibility in parallelized KMC

    Energy Technology Data Exchange (ETDEWEB)

    Gourgoulias, Konstantinos, E-mail: gourgoul@math.umass.edu; Katsoulakis, Markos A., E-mail: markos@math.umass.edu; Rey-Bellet, Luc, E-mail: luc@math.umass.edu

    2017-01-01

    Parallel Kinetic Monte Carlo (KMC) is a potent tool to simulate stochastic particle systems efficiently. However, despite literature on quantifying domain decomposition errors of the particle system for this class of algorithms in the short and in the long time regime, no study yet explores and quantifies the loss of time-reversibility in Parallel KMC. Inspired by concepts from non-equilibrium statistical mechanics, we propose the entropy production per unit time, or entropy production rate, given in terms of an observable and a corresponding estimator, as a metric that quantifies the loss of reversibility. Typically, this is a quantity that cannot be computed explicitly for Parallel KMC, which is why we develop a posteriori estimators that have good scaling properties with respect to the size of the system. Through these estimators, we can connect the different parameters of the scheme, such as the communication time step of the parallelization, the choice of the domain decomposition, and the computational schedule, with its performance in controlling the loss of reversibility. From this point of view, the entropy production rate can be seen both as an information criterion to compare the reversibility of different parallel schemes and as a tool to diagnose reversibility issues with a particular scheme. As a demonstration, we use Sandia Lab's SPPARKS software to compare different parallelization schemes and different domain (lattice) decompositions.

  5. Diffusion properties of active particles with directional reversal

    International Nuclear Information System (INIS)

    Großmann, R; Bär, M; Peruani, F

    2016-01-01

    The diffusion properties of self-propelled particles which move at constant speed and, in addition, reverse their direction of motion repeatedly are investigated. The internal dynamics of particles triggering these reversal processes is modeled by a stochastic clock. The velocity correlation function as well as the mean squared displacement is investigated and, furthermore, a general expression for the diffusion coefficient for self-propelled particles with directional reversal is derived. Our analysis reveals the existence of an optimal, finite rotational noise amplitude which maximizes the diffusion coefficient. We comment on the relevance of these results with regard to biological systems and suggest further experiments in this context. (paper)

  6. Virtual-reality displaying of workpiece by reverse modeling

    International Nuclear Information System (INIS)

    Wu Huimin; Zhang Li; Chen Zhiqiang; Zhao Ziran

    2006-01-01

    The authors first propose a suit of CT data processing system: virtual-reality-based testing of workpiece by Reverse Modeling. For reverse modeling module, the authors propose two solutions: integrating Medical CT Modeling software and using VTK library to develop independently. Then, the authors analyze the required functions and characteristics of CT-based Reverse Modeling module, and the key technologies for developing. For virtual-reality module, the authors study characteristics of CT data and the needs of CT users, and describe the required functions and key techniques as for virtual reality displaying module. The authors still analyze the problems and prospective of development. (authors)

  7. Isotope reversals in hydrocarbon gases of natural shale systems and well head production data

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U.; Schloemer, S.; Stiller, E. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Marquardt, D. [Rijksuniversiteit Utrecht (Netherlands)

    2013-08-01

    Relationships between gas geochemical signatures and the thermal maturity of source rocks containing aquatic organic matter are based on on pyrolysis experiments and have been successfully used in conventional hydrocarbon exploration since long. We demonstrate how these models can be applied to the evaluation of unconventional shale resources. For this purpose hydrocarbon gases have been extracted from low and high mature source rocks (type II kerogens) using laboratory desorption techniques. We determined the molecular composition of the gases as well as the carbon isotope ratios of methane to propane. In the extracted gases we observe an increase of {sup 13}C content in methane with increasing dry gas ratio (C1/{Sigma}C1-6). The carbon isotope ratios of ethane and propane initially increase with increasing dryness but start to become isotopically lighter above a dry gas ratio of 0.8. We show that oil-to-gas cracking explains the observed gas geochemical data, and that mixing between gases from different processes is a key factor to describe natural hydrocarbon systems of shales. However, data from published case studies using well head gases which show 'isotope roll-over' effects indicate that the isotopic reversal observed in well head samples deviate from those observed in natural shale systems in a fundamental way. We show that isotope reversals related to well head gases are best explained by an additional isotope fractionation effect induced through hydraulic fracturing and gas migration from the shale to the well head. Although, this induced isotope fractionation is an artifact which obscures isotopic information of natural systems to a large extend, we suggest a simple classification scheme which allows distinguishing between hot and cool spot areas using well head or mud line gas data. (orig.)

  8. Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure

    Science.gov (United States)

    Heron, J. T.; Trassin, M.; Ashraf, K.; Gajek, M.; He, Q.; Yang, S. Y.; Nikonov, D. E.; Chu, Y.-H.; Salahuddin, S.; Ramesh, R.

    2011-11-01

    A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated by the multiferroic. Such electric-field control of a magnetoelectric device demonstrates an avenue for next-generation, low-energy consumption spintronics.

  9. 48 CFR 52.215-15 - Pension adjustments and asset reversions.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Pension adjustments and... Clauses 52.215-15 Pension adjustments and asset reversions. As prescribed in 15.408(g), insert the following clause: Pension Adjustments and Asset Reversions (OCT 2010) (a) The Contractor shall promptly...

  10. The neural basis of reversal learning: An updated perspective

    Science.gov (United States)

    Izquierdo, Alicia; Brigman, Jonathan L.; Radke, Anna K.; Rudebeck, Peter H.; Holmes, Andrew

    2016-01-01

    Reversal learning paradigms are among the most widely used tests of cognitive flexibility and have been used as assays, across species, for altered cognitive processes in a host of neuropsychiatric conditions. Based on recent studies in humans, non-human primates, and rodents, the notion that reversal learning tasks primarily measure response inhibition, has been revised. In this review, we describe how cognitive flexibility is measured by reversal learning and discuss new definitions of the construct validity of the task that are serving as an heuristic to guide future research in this field. We also provide an update on the available evidence implicating certain cortical and subcortical brain regions in the mediation of reversal learning, and an overview of the principle neurotransmitter systems involved. PMID:26979052

  11. Energy drift in reversible time integration

    International Nuclear Information System (INIS)

    McLachlan, R I; Perlmutter, M

    2004-01-01

    Energy drift is commonly observed in reversible integrations of systems of molecular dynamics. We show that this drift can be modelled as a diffusion and that the typical energy error after time T is O(√T). (letter to the editor)

  12. Localization of Reversion-Induced LIM Protein (RIL) in the Rat Central Nervous System

    International Nuclear Information System (INIS)

    Iida, Yuko; Matsuzaki, Toshiyuki; Morishima, Tetsuro; Sasano, Hiroshi; Asai, Kiyofumi; Sobue, Kazuya; Takata, Kuniaki

    2009-01-01

    Reversion-induced LIM protein (RIL) is a member of the ALP (actinin-associated LIM protein) subfamily of the PDZ/LIM protein family. RIL serves as an adaptor protein and seems to regulate cytoskeletons. Immunoblotting suggested that RIL is concentrated in the astrocytes in the central nervous system. We then examined the expression and localization of RIL in the rat central nervous system and compared it with that of water channel aquaporin 4 (AQP4). RIL was concentrated in the cells of ependyma lining the ventricles in the brain and the central canal in the spinal cord. In most parts of the central nervous system, RIL was expressed in the astrocytes that expressed AQP4. Double-labeling studies showed that RIL was concentrated in the cytoplasm of astrocytes where glial fibrillary acidic protein was enriched as well as in the AQP4-enriched regions such as the endfeet or glia limitans. RIL was also present in some neurons such as Purkinje cells in the cerebellum and some neurons in the brain stem. Differential expression of RIL suggests that it may be involved in the regulation of the central nervous system

  13. Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions

    Science.gov (United States)

    Wendel, C. H.; Kazempoor, P.; Braun, R. J.

    2015-02-01

    Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.

  14. Power Generation from Concentration Gradient by Reverse Electrodialysis in Dense Silica Membranes for Microfluidic and Nanofluidic Systems

    Directory of Open Access Journals (Sweden)

    Sang Woo Lee

    2016-01-01

    Full Text Available In this study, we investigate power generation by reverse electrodialysis in a dense silica membrane that is between two NaCl solutions with various combinations of concentrations. Each silica membrane is fabricated by depositing a silica layer on a porous alumina substrate via chemical vapor deposition. The measured potential-current (V-I characteristics of the silica membrane are used to obtain the transference number, diffusion potential, and electrical resistance. We develop empirical correlations for the transference number and the area-specific resistance, and present the results of power generation by reverse electrodialysis using the fabricated silica membranes. The highest measured power density is 0.98 mW/m2. In addition, we develop a contour map of the power density as a function of NaCl concentrations on the basis of the empirical correlations. The contour map shows that a power output density of 1.2 mW/m2 is achievable with the use of silica membranes and is sufficient to drive nanofluidic and microfluidic systems. The dense silica membrane has the potential for use in micro power generators in nanofluidic and microfluidic systems.

  15. Exact solutions of sl-boson system in U(2l + 1) reversible O(2l + 2) transitional region

    CERN Document Server

    Zhang Xin

    2002-01-01

    Exact eigen-energies and the corresponding wavefunctions of the interacting sl-boson system in U(2l + 1) reversible O(2l +2) transitional region are obtained by using an algebraic Bethe Ansatz with the infinite dimensional Lie algebraic technique. Numerical algorithm for solving the Bethe Ansatz equations by using mathematical package is also outlined

  16. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  17. Non-equilibrium reversible dynamics of work production in four-spin system in a magnetic field

    Directory of Open Access Journals (Sweden)

    E.A. Ivanchenko

    2011-06-01

    Full Text Available A closed system of the equations for the local Bloch vectors and spin correlation functions is obtained by decomplexification of the Liouville-von Neumann equation for 4 magnetic particles with the exchange interaction that takes place in an arbitrary time-dependent external magnetic field. The analytical and numerical analysis of the quantum thermodynamic variables is carried out depending on separable mixed initial state and the magnetic field modulation. Under unitary evolution, non-equilibrium reversible dynamics of power production in the finite environment is investigated.

  18. Analysis of a Wave-Powered, Reverse-Osmosis System and its Economic Availability in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jenne, Dale S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    A wave energy converter (WEC) system has the potential to convert the wave energy resource directly into the high-pressure flow that is needed by the desalination system to permeate saltwater through the reverse-osmosis membrane to generate clean water. In this study, a wave-to-water numerical model was developed to investigate the potential use of a wave-powered desalination system (WPDS) for water production in the United States. The model was developed by coupling a time-domain radiation-and-diffraction-method-based numerical tool (WEC-Sim) for predicting the hydrodynamic performance of WECs with a solution-diffusion model that was used to simulate the reverse-osmosis process. To evaluate the feasibility of the WPDS, the wave-to-water numerical model was applied to simulate a desalination system that used an oscillating surge WEC device to pump seawater through the system. The annual water production was estimated based on the wave resource at a reference site on the coast of northern California to investigate the potential cost of water in that area, where the cost of water and electricity is high compared to other regions. In the scenario evaluated, for a 100-unit utility-scale array, the estimated levelized cost of energy for these WECs is about 3-6 times the U.S.'s current, unsubsidized electricity rates. However, with clean water as an end product and by directly producing pressurized water with WECs, rather than electricity as an intermediary, it is presently only 12% greater than typical water cost in California. This study suggests that a WEC array that produces water may be a viable, near-term solution to the nation's water supply, and the niche application of the WPDS may also provide developers with new opportunities to further develop technologies that benefit both the electric and drinking water markets.

  19. Reversibility of female sterilization.

    Science.gov (United States)

    Siegler, A M; Hulka, J; Peretz, A

    1985-04-01

    The discussion considers the current status of reversibility of sterilization in the US and describes clinical and experimental efforts for developing techniques designed for reversibility. It focuses on regret following sterilization, reversal potential of current sterilization techniques, patient selection, current reversal techniques, results of sterilization procedures, experimental approaches to reversal of current techniques of sterilization, and sterilization procedures devised for reversibility, in humans and in animals. Request is the 1st stage of reversal, but a request for sterilization reversal (SR) does not always mean regret for a decision made at the time. Frequently it is a wish to restore fertility because life circumstances have changed after a sterilization that was ppropriate at the time it was performed. Schwyhart and Kutner reviewed 22 studies published between 1949-69 in which they found that the percentage of patients regretting the procedure ranged from 1.3-15%. Requests for reversal remain low in most countries, but if sterilization becomes a more popular method of contraception, requests will also increase. The ideal operation considered as a reversaible method of sterilization should include an easy, reliable outpatient method of tubal occlusion with miniml risk or patient discomfort that subsequently could be reversed without the need for a major surgical intervention. Endoscopic methods have progressed toward the 1st objective. A recent search of the literature uncovered few series of SR of more than 50 cases. The 767 operations found were analyzed with regard to pregnancy outcome. The precent of live births varied from 74-78.8%, and the occurance of tubal pregnancies ranged from 1.7-6.5%. All of the confounding variables in patient selection and small numbers of reported procedures preclude any conclusion about the different techniques or the number of operations that give a surgeon a level of expertise. Few authors classify their

  20. A model for 'reverse innovation' in health care.

    Science.gov (United States)

    Depasse, Jacqueline W; Lee, Patrick T

    2013-08-30

    'Reverse innovation,' a principle well established in the business world, describes the flow of ideas from emerging to more developed economies. There is strong and growing interest in applying this concept to health care, yet there is currently no framework for describing the stages of reverse innovation or identifying opportunities to accelerate the development process. This paper combines the business concept of reverse innovation with diffusion of innovation theory to propose a model for reverse innovation as a way to innovate in health care. Our model includes the following steps: (1) identifying a problem common to lower- and higher-income countries; (2) innovation and spread in the low-income country (LIC); (3) crossover to the higher-income country (HIC); and (4) innovation and spread in the HIC. The crucial populations in this pathway, drawing from diffusion of innovation theory, are LIC innovators, LIC early adopters, and HIC innovators. We illustrate the model with three examples of current reverse innovations. We then propose four sets of specific actions that forward-looking policymakers, entrepreneurs, health system leaders, and researchers may take to accelerate the movement of promising solutions through the reverse innovation pipeline: (1) identify high-priority problems shared by HICs and LICs; (2) create slack for change, especially for LIC innovators, LIC early adopters, and HIC innovators; (3) create spannable social distances between LIC early adopters and HIC innovators; and (4) measure reverse innovation activity globally.

  1. Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex.

    Science.gov (United States)

    Li, Kai; Xiang, Yu; Wang, Xiaoyan; Li, Ji; Hu, Rongrong; Tong, Aijun; Tang, Ben Zhong

    2014-01-29

    Photochromic molecules are widely applied in chemistry, physics, biology, and materials science. Although a few photochromic systems have been developed before, their applications are still limited by complicated synthesis, low fatigue resistance, or incomplete light conversion. Rhodamine is a class of dyes with excellent optical properties including long-wavelength absorption, large absorption coefficient, and high photostability in its ring-open form. It is an ideal chromophore for the development of new photochromic systems. However, known photochromic rhodamine derivatives, such as amides, exhibit only millisecond lifetimes in their colored ring-open forms, making their application very limited and difficult. In this work, rhodamine B salicylaldehyde hydrazone metal complex was found to undergo intramolecular ring-open reactions upon UV irradiation, which led to a distinct color and fluorescence change both in solution and in solid matrix. The complex showed good fatigue resistance for the reversible photochromism and long lifetime for the ring-open state. Interestingly, the thermal bleaching rate was tunable by using different metal ions, temperatures, solvents, and chemical substitutions. It was proposed that UV light promoted isomerization of the rhodamine B derivative from enol-form to keto-form, which induced ring-opening of the rhodamine spirolactam in the complex to generate color. The photochromic system was successfully applied for photoprinting and UV strength measurement in the solid state. As compared to other reported photochromic molecules, the system in this study has its advantages of facile synthesis and tunable thermal bleaching rate, and also provides new insights into the development of photochromic materials based on metal complex and spirolactam-containing dyes.

  2. Constraining the reversing and non-reversing modes of the geodynamo. New insights from magnetostratigraphy.

    Science.gov (United States)

    Gallet, Y.; Pavlov, V.; Shatsillo, A.; Hulot, G.

    2015-12-01

    Constraining the evolution in the geomagnetic reversal frequency over hundreds of million years is not a trivial matter. Beyond the fact that there are long periods without reversals, known as superchrons, and periods with many reversals, the way the reversal frequency changes through time during reversing periods is still debated. A smooth evolution or a succession of stationary segments have both been suggested to account for the geomagnetic polarity time scale since the Middle-Late Jurassic. Sudden changes from a reversing mode to a non-reversing mode of the geodynamo may also well have happened, the switch between the two modes having then possibly been controlled by the thermal conditions at the core-mantle boundary. There is, nevertheless, a growing set of magnetostratigraphic data, which could help decipher a proper interpretation of the reversal history, in particular in the early Paleozoic and even during the Precambrian. Although yielding a fragmentary record, these data reveal the occurrence of both additional superchrons and periods characterized by extremely high, not to say extraordinary, magnetic reversal frequencies. In this talk, we will present a synthesis of these data, mainly obtained from Siberia, and discuss their implication for the magnetic reversal behavior over the past billion years.

  3. Performance characteristics of plane-wall venturi-like reverse flow diverters

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1982-01-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems

  4. Analysis of a Combined Antenna Arrays and Reverse-Link Synchronous DS-CDMA System over Multipath Rician Fading Channels

    Directory of Open Access Journals (Sweden)

    Kim Yong-Seok

    2005-01-01

    Full Text Available We present the BER analysis of antenna array (AA receiver in reverse-link asynchronous multipath Rician channels and analyze the performance of an improved AA system which applies a reverse-link synchronous transmission technique (RLSTT in order to effectively make a better estimation of covariance matrices at a beamformer-RAKE receiver. In this work, we provide a comprehensive analysis of user capacity which reflects several important factors such as the ratio of the specular component power to the Rayleigh fading power, the shape of multipath intensity profile, and the number of antennas. Theoretical analysis demonstrates that for the case of a strong specular path's power or for a high decay factor, the employment of RLSTT along with AA has the potential of improving the achievable capacity by an order of magnitude.

  5. Sizing of a wind-hydro system using a reversible hydraulic facility with seawater. A case study in the Canary Islands

    International Nuclear Information System (INIS)

    Portero, Ulises; Velázquez, Sergio; Carta, José A.

    2015-01-01

    Highlights: • A model of a wind-hydro system is developed associated to a specific demand. • A particular case on islands with a weak electrical system is simulated. • A reversible seawater-based pumped-hydro system associated to a wind farm is sized. • The economic benefit of the resulting wind-hydro system is calculated. - Abstract: While the climatic conditions of the Canary Islands (Spain) are highly favourable for wind and solar energy exploitation, the low freshwater reserves are a problem when considering the implementation of hydro-based systems. For this reason, the pumped hydro storage (PHS) systems that have been proposed on the islands and which aim to exploit the available freshwater include an additional seawater desalination process. Given this drawback, this paper proposes an original alternative: a reversible PHS facility which directly uses seawater with the system in this case located on the coast of Gran Canaria island. This facility would be used to manage and better integrate the energy generated by a wind farm into a weak insular electrical system. An analysis is also undertaken of the economic benefits the proposed wind-hydro system would entail for the island’s electrical system. As a result of the incorporation of the hydraulic unit, the contribution of the wind-hydro system in satisfying electricity demand is 29% higher than if a wind-only system is used. The electrical energy generation cost of the wind-hydro system amounts to 95.34 €/MW h, entailing an annual saving for the electrical system of 7.68 M€/year.

  6. BRIEF COMMUNICATIONS: Compensation of phase distortions in a single-transit wavefront-reversal system with a degenerate four-photon interaction

    Science.gov (United States)

    Barashkov, M. S.; Matveev, I. N.; Petnikova, V. M.; Umnov, A. F.; Ustinov, N. D.; Shuvalov, Vladimir V.

    1982-11-01

    A proposal is made for a system designed to compensate phase distortions in a wavefront-reversal system in which some part of the signal radiation is deflected to pass through a spatial frequency filter and then acts as the pump; the remainder of such radiation acts as the signal. It is shown that a suitable selection of the pass band of the filter can ensure compensation of large-scale phase inhomogeneities in the system and can enable reconstruction of a small-scale structure of an object.

  7. Evaluation of chromatographic conditions in reversed phase liquid chromatography-mass spectrometry systems for fingerprinting of polar and amphiphilic plant metabolites

    DEFF Research Database (Denmark)

    Nielsen, Nikoline Juul; Tomasi, Giorgio; Christensen, Jan H.

    2016-01-01

    Metabolic fingerprinting is a relatively young scientific discipline requiring robust, yet flexible and fit-for-purpose analytical methods. Here, we introduce a simple approach to select reversed phase LC systems with electrospray MS detection for fingerprinting of polar and amphiphilic plant met...

  8. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1

    OpenAIRE

    Wu, Yuanming; Wang, Wengang; Díez-Sampedro, Ana; Richerson, George B.

    2007-01-01

    GABA transporters play an important but poorly understood role in neuronal inhibition. They can reverse, but this is widely thought to occur only under pathological conditions. Here we use a heterologous expression system to show that the reversal potential of GAT-1 under physiologically relevant conditions is near the normal resting potential of neurons, and that reversal can occur rapidly enough to release GABA during simulated action potentials. We then use paired recordings from cultured ...

  9. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    Science.gov (United States)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  11. Nocturnal reverse flow in water-in-glass evacuated tube solar water heaters

    International Nuclear Information System (INIS)

    Tang, Runsheng; Yang, Yuqin

    2014-01-01

    Highlights: • Performance of water-in-glass evacuated tube solar water heaters (SWH) at night was studied. • Experimental measurements showed that reverse flow occurred in SWHs at night. • Reverse flow in SWHs was very high but the heat loss due to reverse flow was very low. • Reverse flow seemed not sensitive to atmospheric clearness but sensitive to collector tilt-angle. - Abstract: In this work, the thermal performance of water-in-glass evacuated tube solar water heaters (SWH) at nights was experimentally investigated. Measurements at nights showed that the water temperature in solar tubes was always lower than that in the water tank but higher than the ambient air temperature and T exp , the temperature of water inside tubes predicted in the case of the water in tubes being naturally cooled without reverse flow. This signified that the reverse flow in the system occurred at nights, making the water in solar tubes higher than T exp . It is found that the reverse flow rate in the SWH, estimated based on temperature measurements of water in solar tubes, seemed not sensitive to the atmospheric clearness but sensitive to the collector tilt-angle, the larger the tilt-angle of the collector, the higher the reverse flow rate. Experimental results also showed that, the reverse flow in the SWH was much higher as compared to that in a thermosyphonic domestic solar water heater with flat-plate collectors, but the heat loss from collectors to the air due to reverse flow in SWHs was very small and only took about 8–10% of total heat loss of systems

  12. Geological storage of radioactive wastes: governance and practical implementation of the reversibility concept

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    This document comments the different issues associated with the concept of reversibility in the case of geological disposal of radioactive wastes: adopted approach for investigations on the practical implementation of reversibility, decision and assessment process related to the practical implementation of reversibility, role of local actors in decision and monitoring process on a middle and long term, control and vigilance during the reversibility period, memory preservation and its inter-generational transmission, modalities of financing reversibility and the radioactive waste management system, development of a citizen ability and expertise sharing, and perspectives

  13. A digital matched filter for reverse time chaos.

    Science.gov (United States)

    Bailey, J Phillip; Beal, Aubrey N; Dean, Robert N; Hamilton, Michael C

    2016-07-01

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.

  14. Modelamento of osmosis system reverse set in motion by a photovoltaic generator; Modelamento de sistema de osmose reversa acionado por um gerador fotovoltaico

    Energy Technology Data Exchange (ETDEWEB)

    Fraidenraich, N.; Vilela, O. C.; Lima, G. A.

    2008-07-01

    A theoretical model to study the operational conditions of Reverse Osmosis systems (RO) is presented. The model is applied to simulate the behavior of a Photovoltaic-Powered Reverse Osmosis System (PV-RO) monitored with sensors for measuring water flow, salinity, pressure voltage and current of operation. the system is powered by a PV generator with peak power of 0.81 kW. The interface of the PV generator and the motor-pump is a frequency converter, programmed to maintain the array working at a fixed voltage, chosen within the region of the maximum power. Considering the relation given by the load curve (pressure vs. feed flow rate) the permeated flow rate was determined theoretically for a given membrane length. The deviation between calculated and experimental results is smaller than 14.5%. The model can be used to determine parameters important in the sizing of those systems. (Author)

  15. Research on the influencing factors of reverse logistics carbon footprint under sustainable development.

    Science.gov (United States)

    Sun, Qiang

    2017-10-01

    With the concerns of ecological and circular economy along with sustainable development, reverse logistics has attracted the attention of enterprise. How to achieve sustainable development of reverse logistics has important practical significance of enhancing low carbon competitiveness. In this paper, the system boundary of reverse logistics carbon footprint is presented. Following the measurement of reverse logistics carbon footprint and reverse logistics carbon capacity is provided. The influencing factors of reverse logistics carbon footprint are classified into five parts such as intensity of reverse logistics, energy structure, energy efficiency, reverse logistics output, and product remanufacturing rate. The quantitative research methodology using ADF test, Johansen co-integration test, and impulse response is utilized to interpret the relationship between reverse logistics carbon footprint and the influencing factors more accurately. This research finds that energy efficiency, energy structure, and product remanufacturing rate are more capable of inhibiting reverse logistics carbon footprint. The statistical approaches will help practitioners in this field to structure their reverse logistics activities and also help academics in developing better decision models to reduce reverse logistics carbon footprint.

  16. Reverse logistics - a framework

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); R. Dekker (Rommert)

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of

  17. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  18. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    Energy Technology Data Exchange (ETDEWEB)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments

  19. Reversible thermal transition in GrpE, the nucleotide exchange factor of the DnaK heat-shock system.

    Science.gov (United States)

    Grimshaw, J P; Jelesarov, I; Schönfeld, H J; Christen, P

    2001-03-02

    DnaK, a Hsp70 acting in concert with its co-chaperones DnaJ and GrpE, is essential for Escherichia coli to survive environmental stress, including exposure to elevated temperatures. Here we explored the influence of temperature on the structure of the individual components and the functional properties of the chaperone system. GrpE undergoes extensive but fully reversible conformational changes in the physiologically relevant temperature range (transition midpoint at approximately 48 degrees C), as observed with both circular dichroism measurements and differential scanning calorimetry, whereas no thermal transitions occur in DnaK and DnaJ between 15 degrees C and 48 degrees C. The conformational changes in GrpE appear to be important in controlling the interconversion of T-state DnaK (ATP-liganded, low affinity for polypeptide substrates) and R-state DnaK (ADP-liganded, high affinity for polypeptide substrates). The rate of the T --> R conversion of DnaK due to DnaJ-triggered ATP hydrolysis follows an Arrhenius temperature dependence. In contrast, the rate of the R --> T conversion due to GrpE-catalyzed ADP/ATP exchange increases progressively less with increasing temperature and even decreases at temperatures above approximately 40 degrees C, indicating a temperature-dependent reversible inactivation of GrpE. At heat-shock temperatures, the reversible structural changes of GrpE thus shift DnaK toward its high-affinity R state.

  20. [Determination of glycyrrhizinic acid in biotransformation system by reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Li, Hui; Lu, Dingqiang; Liu, Weimin

    2004-05-01

    A method for determining glycyrrhizinic acid in the biotransformation system by reversed-phase high performance liquid chromatography (RP-HPLC) was developed. The HPLC conditions were as follows: Hypersil C18 column (4.6 mm i.d. x 250 mm, 5 microm) with a mixture of methanol-water-acetic acid (70:30:1, v/v) as the mobile phase; flow rate at 1.0 mL/min; and UV detection at 254 nm. The linear range of glycyrrhizinic acid was 0.2-20 microg. The recoveries were 98%-103% with relative standard deviations between 0.16% and 1.58% (n = 3). The method is simple, rapid and accurate for determining glycyrrhizinic acid.

  1. Time-reversal symmetry breaking in quantum billiards

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Florian

    2009-01-26

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  2. Time-reversal symmetry breaking in quantum billiards

    International Nuclear Information System (INIS)

    Schaefer, Florian

    2009-01-01

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  3. Hybrid membrane system for desalination and wastewater treatment: Integrating forward osmosis and low pressure reverse osmosis

    OpenAIRE

    Valladares Linares, R.

    2014-01-01

    Since more than 97% of the water in the world is seawater, desalination technologies have the potential to solve the fresh water crisis. The most used desalination technology nowadays is seawater reverse osmosis (SWRO), where a membrane is used as a physical barrier to separate the salts from the water, using high hydraulic pressure as the driving force. However, the use of high hydraulic pressure imposes a high cost on operation of these systems, in addition to the known persistent fouling p...

  4. Adiabatic process reversibility: microscopic and macroscopic views

    International Nuclear Information System (INIS)

    Anacleto, Joaquim; Pereira, Mario G

    2009-01-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r≥1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values. (letters and comments)

  5. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium activity in its 3rd year (Research and development of reverse engineering system for local craftwork articles); 1999 nendo chiiki kogeihin muke reverse engineering system no kenkyu kaihatsu seika hokokusho. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The effort concerns Ryukyu craftwork articles. Reverse engineering used to be regarded as a technique of imitation or duplication but today it is drawing attention as a concept of positively utilizing the directionality of information flow in the integrated environment. In the development of a reverse information system, novel designs are created by utilizing a 3-dimensional data base, a high-efficiency fabrication technology for metal patterns for the press-molding of glass is established incorporating some fabrication diagnosing techniques, and a system is constructed under which fabrication accuracy is evaluated and difference data are fed back. In the development of technologies for metal pattern cutting and surface reforming, a metal pattern fabrication technology for molding glass, low in cost and high in performance, is systematized, which enables short delivery. In the diversification of glass products, Ryukyu patterns are collected and Ryukyu glass products are tentatively manufactured by press-molding, and a good result is achieved. In the field of total system technology, basic technologies for an advanced and integrated common production base are established. A virtual reality assisted designing system is developed, under which the designer feels force on the finger tips when preparing a shape for a 3-dimensional structure. (NEDO)

  6. Reversing Control of a Car with a Trailer Using the Driver Assistance System

    Directory of Open Access Journals (Sweden)

    Jae Il Roh

    2011-06-01

    Full Text Available Passive trailer systems provide a variety of advantages in delivery and transportation applications. The transportation capacity of the truck with multiple trailers can be increased in proportion to the number of trailers. The cost of the car with trailers is much lower than the cost of multiple cars. However, the major drawback of the trailer system is that the control problem is difficult. We concentrate on the motion control problem of ʺpushingʺ trailers because pushing is much more difficult than ʺpullingʺ. In this paper, it is shown how the car with passive trailers can be easily controlled by the use of the proposed driver assist system and the motion control scheme. Since the keypad is the only additional device for the driver assist system, the proposed scheme can be implemented with the conventional trucks without many hardware modifications. The manual control strategy of pushing is established. The kinematic design of the passive trailer is adopted from the prior work (Park and Chung, 2004. The kinematic configuration design of the car with trailers is proposed for pushing control. The usefulness of the proposed scheme is experimentally verified with the small scale car with trailer system for the car parking problem. The parking control requires forward and reverse motion in narrow environment. It is shown that even beginners can easily control the pushing motion with the proposed scheme.

  7. Reversing Control of a Car with a Trailer Using the Driver Assistance System

    Directory of Open Access Journals (Sweden)

    Jae Roh

    2011-06-01

    Full Text Available Passive trailer systems provide a variety of advantages in delivery and transportation applications. The transportation capacity of the truck with multiple trailers can be increased in proportion to the number of trailers. The cost of the car with trailers is much lower than the cost of multiple cars. However, the major drawback of the trailer system is that the control problem is difficult. We concentrate on the motion control problem of “pushing” trailers because pushing is much more difficult than “pulling”. In this paper, it is shown how the car with passive trailers can be easily controlled by the use of the proposed driver assist system and the motion control scheme. Since the keypad is the only additional device for the driver assist system, the proposed scheme can be implemented with the conventional trucks without many hardware modifications. The manual control strategy of pushing is established. The kinematic design of the passive trailer is adopted from the prior work (Park and Chung, 2004. The kinematic configuration design of the car with trailers is proposed for pushing control. The usefulness of the proposed scheme is experimentally verified with the small scale car with trailer system for the car parking problem. The parking control requires forward and reverse motion in narrow environment. It is shown that even beginners can easily control the pushing motion with the proposed scheme.

  8. A reversed-field theta-pinch plasma machine

    International Nuclear Information System (INIS)

    Yasojima, Yoshiyuki; Ueda, Yoshihiro; Sasao, Hiroyuki; Ueno, Noboru; Tanaka, Toshihide

    1984-01-01

    Mitsubishi Electric has constructed a reversed-field theta-pinch machine at its Central Research Laboratory and initiated a series of plasma diagnostics and control studies for development of nuclear-fusion technology. Although the device has a linear configuration, a stable high-temperature, high-density toroidal plasma can be generated. The article describes the overall structure, vacuum system, power-supply system, and diagnostics and control system of the plasma machine. (author)

  9. 49 CFR 230.89 - Reverse gear.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse gear...

  10. Economic Evaluation of a Hybrid Desalination System Combining Forward and Reverse Osmosis

    Science.gov (United States)

    Choi, Yongjun; Cho, Hyeongrak; Shin, Yonghyun; Jang, Yongsun; Lee, Sangho

    2015-01-01

    This study seeks to evaluate the performance and economic feasibility of the forward osmosis (FO)–reverse osmosis (RO) hybrid process; to propose a guideline by which this hybrid process might be more price-competitive in the field. A solution-diffusion model modified with film theory was applied to analyze the effects of concentration polarization, water, and salt transport coefficient on flux, recovery, seawater concentration, and treated wastewater of the FO process of an FO-RO hybrid system. A simple cost model was applied to analyze the effects of flux; recovery of the FO process; energy; and membrane cost on the FO-RO hybrid process. The simulation results showed that the water transport coefficient and internal concentration polarization resistance are very important factors that affect performance in the FO process; however; the effect of the salt transport coefficient does not seem to be large. It was also found that the flux and recovery of the FO process, the FO membrane, and the electricity cost are very important factors that influence the water cost of an FO-RO hybrid system. This hybrid system can be price-competitive with RO systems when its recovery rate is very high, the flux and the membrane cost of the FO are similar to those of the RO, and the electricity cost is expensive. The most important thing in commercializing the FO process is enhancing performance (e.g.; flux and the recovery of FO membranes). PMID:26729176

  11. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    Science.gov (United States)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  12. Reversible Communicating Processes

    Directory of Open Access Journals (Sweden)

    Geoffrey Brown

    2016-02-01

    Full Text Available Reversible distributed programs have the ability to abort unproductive computation paths and backtrack, while unwinding communication that occurred in the aborted paths. While it is natural to assume that reversibility implies full state recovery (as with traditional roll-back recovery protocols, an interesting alternative is to separate backtracking from local state recovery. For example, such a model could be used to create complex transactions out of nested compensable transactions where a programmer-supplied compensation defines the work required to "unwind" a transaction. Reversible distributed computing has received considerable theoretical attention, but little reduction to practice; the few published implementations of languages supporting reversibility depend upon a high degree of central control. The objective of this paper is to demonstrate that a practical reversible distributed language can be efficiently implemented in a fully distributed manner. We discuss such a language, supporting CSP-style synchronous communication, embedded in Scala. While this language provided the motivation for the work described in this paper, our focus is upon the distributed implementation. In particular, we demonstrate that a "high-level" semantic model can be implemented using a simple point-to-point protocol.

  13. Fatal atypical reversible posterior leukoencephalopathy syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Golombeck Stefanie Kristin

    2013-01-01

    Full Text Available Abstract Introduction Reversible posterior leukoencephalopathy syndrome – a reversible subacute global encephalopathy clinically presenting with headache, altered mental status, visual symptoms such as hemianopsia or cortical blindness, motor symptoms, and focal or generalized seizures – is characterized by a subcortical vasogenic edema symmetrically affecting posterior brain regions. Complete reversibility of both clinical signs and magnetic resonance imaging lesions is regarded as a defining feature of reversible posterior leukoencephalopathy syndrome. Reversible posterior leukoencephalopathy syndrome is almost exclusively seen in the setting of a predisposing clinical condition, such as pre-eclampsia, systemic infections, sepsis and shock, certain autoimmune diseases, various malignancies and cytotoxic chemotherapy, transplantation and concomitant immunosuppression (especially with calcineurin inhibitors as well as episodes of abrupt hypertension. We describe for the first time clinical, radiological and histological findings in a case of reversible posterior leukoencephalopathy syndrome with an irreversible and fatal outcome occurring in the absence of any of the known predisposing clinical conditions except for a hypertensive episode. Case presentation A 58-year-old Caucasian woman presented with a two-week history of subacute and progressive occipital headache, blurred vision and imbalance of gait and with no evidence for raised arterial blood pressure during the two weeks previous to admission. Her past medical history was unremarkable except for controlled arterial hypertension. Cerebral magnetic resonance imaging demonstrated cortical and subcortical lesions with combined vasogenic and cytotoxic edema atypical for both venous congestion and arterial infarction. Routine laboratory and cerebrospinal fluid parameters were normal. The diagnosis of reversible posterior leukoencephalopathy syndrome was established. Within hours after

  14. Reversal mechanisms and interactions in magnetic systems: coercivity versus switching field and thermally assisted demagnetization

    Directory of Open Access Journals (Sweden)

    Cebollada, F.

    2005-06-01

    Full Text Available In this paper we present a comparative analysis of the magnetic interactions and reversal mechanisms of two different systems: NdFeB-type alloys with grain sizes in the single domain range and Fe-SiO2 nanocomposites with Fe concentrations above and below the percolation threshold. We evidence that the use of the coercivity as the main parameter to analyse them might be misleading due to the convolution of both reversible and irreversible magnetization variations. We show that the switching field and thermally assisted demagnetization allow a better understanding of these mechanisms since they involve just irreversible magnetization changes. Specifically, the experimental analysis of the coercivity adquisition process for the NdFeB-type system suggests that the magnetization reversal is nucleated at the spin misalignments present due to intergranular exchange interactions. On the other hand, the study of the magnetic viscosity and of the isothermal remanent magnetization (IRM and direct field demagnetization (DCD remanence curves indicates that the dipolar interactions are responsible for the propagation of the switching started at individual particles.

    En este artículo presentamos un análisis comparativo de la influencia de la microestructura a través de las interacciones magnéticas en los mecanismos de inversión de la magnetización en dos sistemas diferentes: aleaciones tipo NdFeB con tamaños de grano en el rango de monodominio y nanocompuestos de Fe-SiO2 con concentraciones de Fe tanto por encima como por debajo del umbral de percolación. Ponemos de manifiesto que el uso del campo coercitivo como parámetro de análisis puede llevar a equívocos debido a la coexistencia de variaciones reversibles e irreversibles de la magnetización. También mostramos que el campo de conmutación y la desimanación térmicamente asistida permiten una mejor comprensión de dichos mecanismos ya que reflejan exclusivamente cambios irreversibles de

  15. Time Reversal UWB Communication System: A Novel Modulation Scheme with Experimental Validation

    Directory of Open Access Journals (Sweden)

    Khaleghi A

    2010-01-01

    Full Text Available A new modulation scheme is proposed for a time reversal (TR ultra wide-band (UWB communication system. The new modulation scheme uses the binary pulse amplitude modulation (BPAM and adds a new level of modulation to increase the data rate of a TR UWB communication system. Multiple data bits can be transmitted simultaneously with a cost of little added interference. Bit error rate (BER performance and the maximum achievable data rate of the new modulation scheme are theoretically analyzed. Two separate measurement campaigns are carried out to analyze the proposed modulation scheme. In the first campaign, the frequency responses of a typical indoor channel are measured and the performance is studied by the simulations using the measured frequency responses. Theoretical and the simulative performances are in strong agreement with each other. Furthermore, the BER performance of the proposed modulation scheme is compared with the performance of existing modulation schemes. It is shown that the proposed modulation scheme outperforms QAM and PAM for in an AWGN channel. In the second campaign, an experimental validation of the proposed modulation scheme is done. It is shown that the performances with the two measurement campaigns are in good agreement.

  16. RPPAML/RIMS: a metadata format and an information management system for reverse phase protein arrays.

    Science.gov (United States)

    Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S

    2008-12-22

    Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1,000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.

  17. RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Directory of Open Access Journals (Sweden)

    Hennessy Bryan T

    2008-12-01

    Full Text Available Abstract Background Reverse Phase Protein Arrays (RPPA are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML. RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.

  18. C*-algebras associated with reversible extensions of logistic maps

    International Nuclear Information System (INIS)

    Kwaśniewski, Bartosz K

    2012-01-01

    The construction of reversible extensions of dynamical systems presented in a previous paper by the author and A.V. Lebedev is enhanced, so that it applies to arbitrary mappings (not necessarily with open range). It is based on calculating the maximal ideal space of C*-algebras that extends endomorphisms to partial automorphisms via partial isometric representations, and involves a new set of 'parameters' (the role of parameters is played by chosen sets or ideals). As model examples, we give a thorough description of reversible extensions of logistic maps and a classification of systems associated with compression of unitaries generating homeomorphisms of the circle. Bibliography: 34 titles.

  19. C*-algebras associated with reversible extensions of logistic maps

    Science.gov (United States)

    Kwaśniewski, Bartosz K.

    2012-10-01

    The construction of reversible extensions of dynamical systems presented in a previous paper by the author and A.V. Lebedev is enhanced, so that it applies to arbitrary mappings (not necessarily with open range). It is based on calculating the maximal ideal space of C*-algebras that extends endomorphisms to partial automorphisms via partial isometric representations, and involves a new set of 'parameters' (the role of parameters is played by chosen sets or ideals). As model examples, we give a thorough description of reversible extensions of logistic maps and a classification of systems associated with compression of unitaries generating homeomorphisms of the circle. Bibliography: 34 titles.

  20. Analysis of a Wave-Powered, Reverse-Osmosis System and Its Economic Availability in the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jenne, Dale S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    A wave energy converter (WEC) system has the potential to convert the wave energy resource directly into the high-pressure flow that is needed by the desalination system to permeate saltwater through the reverse-osmosis membrane to generate clean water. In this study, a wave-to-water numerical model was developed to investigate the potential use of a wave-powered desalination system (WPDS) for water production in the United States. The model was developed by coupling a time-domain radiation-and-diffraction-method-based numerical tool (WEC-Sim) for predicting the hydrodynamic performance of WECs with a solution-diffusion model that was used to simulate the reverse-osmosis process. To evaluate the feasibility of the WPDS, the wave-to-water numerical model was applied to simulate a desalination system that used an oscillating surge WEC device to pump seawater through the system. The annual water production was estimated based on the wave resource at a reference site on the coast of northern California to investigate the potential cost of water in that area, where the cost of water and electricity is high compared to other regions. In the scenario evaluated, for a 100-unit utility-scale electricity-producing array, the estimated levelized cost of energy for these WECs is about 3-6 times the U.S.'s current, unsubsidized electricity rates. However, with clean water as an end product and by directly producing pressurized water with WECs, rather than electricity as an intermediary, it is presently only 12 percent greater than typical water cost in California. This study suggests that a WEC array that produces water may be a viable, near-term solution to the nation's water supply, and the niche application of the WPDS may also provide developers with new opportunities to further develop technologies that benefit both the electric and drinking water markets.

  1. Performance evaluation of reverse logistics: A case of LPG agency

    Directory of Open Access Journals (Sweden)

    Kottala Sri Yogi

    2015-12-01

    Full Text Available Majority of the manufacturing companies are incorporating the practice of reverse logistics in their value chain. In manufacturing processes, the concept of reverse logistics plays a vital role in enhancing the company’s profit margin for sustainable business growth. For every company, there is a need of performance measurement system to be established as successful business tool. However to predict better results, how smartly the inputs for the transformation or business process are being effectively and efficiently used has to be analyzed. Drawing attention to the growing popularity in adapting the best practices of reverse logistics among different manufacturing industries, this paper aims to build a methodology in order to measure the performance of liquefied petroleum gas (LPG agencies. To do so, it has undertaken the Asian emerging market-India as a case study and improved the understanding of performance measurement in reverse logistics to refilling LPG cylinders. Further, it has suggested a framework affecting the implementation of reverse logistics activities and its network.

  2. Studies of the effects of TiCl3 in LiBH4/CaH2/TiCl3 reversible hydrogen storage system

    International Nuclear Information System (INIS)

    Liu Dongan; Yang Jun; Ni Jun; Drews, Andy

    2012-01-01

    Highlights: ► We systematically studied the effects of TiCl 3 in LiBH 4 /CaH 2 /TiCl 3 hydrogen storage system. ► It is found that adding 0.25 TiCl 3 produces fully reversible hydrogen absorption and desorption and a lower desorption temperature. ► LiCl experiences four different states, i.e. “formed-solid solution-molten solution-precipitation”, in the whole desorption process of the system. ► The incorporation of LiCl into LiBH 4 forms more viscous molten LiBH 4 ·LiCl, leading to fast kinetics. ► The precipitation and re-incorporation of LiCl into LiBH 4 lead to a fully reversible complex hydrogen storage system. - Abstract: In the present study, the effects of TiCl 3 on desorption kinetics, absorption/desorption reversibility, and related phase transformation processes in LiBH 4 /CaH 2 /TiCl 3 hydrogen storage system was studied systematically by varying its concentration (x = 0, 0.05, 0.15 and 0.25). The results show that LiCl forms during ball milling of 6LiBH 4 /CaH 2 /xTiCl 3 and that as temperature increases, o-LiBH 4 transforms into h-LiBH 4 , into which LiCl incorporates, forming solid solution of LiBH 4 ·LiCl, which melts above 280 °C. Molten LiBH 4 ·LiCl is more viscous than molten LiBH 4 , preventing the clustering of LiBH 4 and the accompanied agglomeration of CaH 2 , and thus preserving the nano-sized phase arrangement formed during ball milling. Above 350 °C, the molten solution LiBH 4 ·LiCl further reacts with CaH 2 , precipitating LiCl. The main hydrogen desorption reaction is between molten LiBH 4 ·LiCl and CaH 2 and not between molten LiBH 4 and CaH 2 . This alters the hydrogen reaction thermodynamics and lowers the hydrogen desorption temperature. In addition, the solid–liquid nano-sized phase arrangement in the nano-composites improves the hydrogen reaction kinetics. The reversible incorporation/precipitation of LiCl at the hydrogen reaction temperature and during temperature cycling makes the 6LiBH 4 /CaH 2 /0.25TiCl 3

  3. CONCEPTUAL ISSUES REGARDING REVERSE LOGISTICS

    Directory of Open Access Journals (Sweden)

    Ioana Olariu

    2013-12-01

    Full Text Available As the power of consumers is growing, the product return for customer service and customer retention has become a common practice in the competitive market, which propels the recent practice of reverse logistics in companies. Many firms attracted by the value available in the flow, have proactively participated in handling returned products at the end of their usefulness or from other parts of the product life cycle. Reverse logistics is the flow and management of products, packaging, components and information from the point of consumption to the point of origin. It is a collection of practices similar to those of supply chain management, but in the opposite direction, from downstream to upstream. It involves activities such as reuse, repair, remanufacture, refurbish, reclaim and recycle. For the conventional forward logistics systems, the flow starts upstream as raw materials, later as manufactured parts and components to be assembled and continues downstream to reach customers as final products to be disposed once they reach their economic or useful lives. In reverse logistics, the disposed products are pushed upstream to be repaired, remanufactured, refurbished, and disassembled into components to be reused or as raw material to be recycled for later use.

  4. Remote Whispering Applying Time Reversal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-16

    The purpose of this project was to explore the use of time reversal technologies as a means for communication to a targeted individual or location. The idea is to have the privacy of whispering in one’s ear, but to do this remotely from loudspeakers not located near the target. Applications of this work include communicating with hostages and survivors in rescue operations, communicating imaging and operational conditions in deep drilling operations, monitoring storage of spent nuclear fuel in storage casks without wires, or clandestine activities requiring signaling between specific points. This technology provides a solution in any application where wires and radio communications are not possible or not desired. It also may be configured to self calibrate on a regular basis to adjust for changing conditions. These communications allow two people to converse with one another in real time, converse in an inaudible frequency range or medium (i.e. using ultrasonic frequencies and/or sending vibrations through a structure), or send information for a system to interpret (even allowing remote control of a system using sound). The time reversal process allows one to focus energy to a specific location in space and to send a clean transmission of a selected signal only to that location. In order for the time reversal process to work, a calibration signal must be obtained. This signal may be obtained experimentally using an impulsive sound, a known chirp signal, or other known signals. It may also be determined from a numerical model of a known environment in which the focusing is desired or from passive listening over time to ambient noise.

  5. The Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  6. Homopolar machine for reversible energy storage and transfer systems

    Science.gov (United States)

    Stillwagon, Roy E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  7. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1981-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine

  8. Variable Cycle Intake for Reverse Core Engine

    Science.gov (United States)

    Suciu, Gabriel L (Inventor); Chandler, Jesse M (Inventor); Staubach, Joseph B (Inventor)

    2016-01-01

    A gas generator for a reverse core engine propulsion system has a variable cycle intake for the gas generator, which variable cycle intake includes a duct system. The duct system is configured for being selectively disposed in a first position and a second position, wherein free stream air is fed to the gas generator when in the first position, and fan stream air is fed to the gas generator when in the second position.

  9. Reverse Less Invasive Stabilization System (LISS) Plating for Proximal Femur Fractures in Poliomyelitis Survivors: A Report of Two Cases.

    Science.gov (United States)

    Yao, Chen; Jin, Dongxu; Zhang, Changqing

    2017-11-15

    BACKGROUND Poliomyelitis is a neuromuscular disease which causes muscle atrophy, skeletal deformities, and disabilities. Treatment of hip fractures on polio-affect limbs is unique and difficult, since routine fixation methods like nailing may not be suitable due to abnormal skeletal structures. CASE REPORT We report one femoral neck fracture and one subtrochanteric fracture in polio survivors successfully treated with reverse less invasive stabilization system (LISS) plating technique. Both fractures were on polio-affected limbs with significant skeletal deformities and low bone density. A contralateral femoral LISS plate was applied upside down to the proximal femur as an internal fixator after indirect or direct reduction. Both patients had uneventful bone union and good functional recovery. CONCLUSIONS Reverse LISS plating is a safe and effective technique to treat hip fractures with skeletal deformities caused by poliomyelitis.

  10. Control and reversal of biofilm episode in a nuclear power plant main condenser system

    International Nuclear Information System (INIS)

    Terry, J.P.; Schultz, G.; Ewens, S.

    1996-01-01

    This paper documents a biofilm episode in the main condenser of the Callaway Generating Station. The problem was reversed by the use of oxidizing biocide and a wetting/penetrating agent, along with pH adjustments and other measures. All of the factors leading up to the problem are discussed in detail as are the measures taken to reverse the problem. The most difficult aspect of the problem was identifying the onset of biofilm buildup. The existing background noise in the back pressure and fouling factor data obscured the early stages of the problem and delayed detection and treatment. Alternative monitoring techniques are discussed and the treatment and reversal of the problem are completely documented. The rationale for differentiating between biofouling and deposition caused by inorganic precipitation are discussed

  11. Reverse Transcription Polymerase Chain Reaction-based System for Simultaneous Detection of Multiple Lily-infecting Viruses

    Directory of Open Access Journals (Sweden)

    Ji Yeon Kwon

    2013-09-01

    Full Text Available A detection system based on a multiplex reverse transcription (RT polymerase chain reaction (PCR was developed to simultaneously identify multiple viruses in the lily plant. The most common viruses infecting lily plants are the cucumber mosaic virus (CMV, lily mottle virus (LMoV, lily symptomless virus (LSV. Leaf samples were collected at lily-cultivation facilities located in the Kangwon province of Korea and used to evaluate the detection system. Simplex and multiplex RT-PCR were performed using virus-specific primers to detect single-or mixed viral infections in lily plants. Our results demonstrate the selective detection of 3 different viruses (CMV, LMoV and LSV by using specific primers as well as the potential of simultaneously detecting 2 or 3 different viruses in lily plants with mixed infections. Three sets of primers for each target virus, and one set of internal control primers were used to evaluate the detection system for efficiency, reliability, and reproducibility.

  12. Genetic dissection of behavioral flexibility: reversal learning in mice.

    Science.gov (United States)

    Laughlin, Rick E; Grant, Tara L; Williams, Robert W; Jentsch, J David

    2011-06-01

    Behavioral inflexibility is a feature of schizophrenia, attention-deficit/hyperactivity disorder, and behavior addictions that likely results from heritable deficits in the inhibitory control over behavior. Here, we investigate the genetic basis of individual differences in flexibility, measured using an operant reversal learning task. We quantified discrimination acquisition and subsequent reversal learning in a cohort of 51 BXD strains of mice (2-5 mice/strain, n = 176) for which we have matched data on sequence, gene expression in key central nervous system regions, and neuroreceptor levels. Strain variation in trials to criterion on acquisition and reversal was high, with moderate heritability (∼.3). Acquisition and reversal learning phenotypes did not covary at the strain level, suggesting that these traits are effectively under independent genetic control. Reversal performance did covary with dopamine D2 receptor levels in the ventral midbrain, consistent with a similar observed relationship between impulsivity and D2 receptors in humans. Reversal, but not acquisition, is linked to a locus on mouse chromosome 10 with a peak likelihood ratio statistic at 86.2 megabase (p work demonstrates the clear trait independence between, and genetic control of, discrimination acquisition and reversal and illustrates how globally coherent data sets for a single panel of highly related strains can be interrogated and integrated to uncover genetic sources and molecular and neuropharmacological candidates of complex behavioral traits relevant to human psychopathology. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Application of reverse engineering in the medical industry.

    Science.gov (United States)

    Kaleev, A. A.; Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.

    2017-09-01

    The purpose of this research is to develop on the basis of existing analogs new design of ophthalmologic microsurgical tweezers by using reverse engineering techniques. Virtual model was obtained by using a three-dimensional scanning system Solutionix Rexcan 450 MP. Geomagic Studio program was used to remove defects and inaccuracies of the obtained parametric model. A prototype of the finished model was made on the installation of laser stereolithography Projet 6000. Total time of the creation was 16 hours from the reverse engineering procedure to 3D-printing of the prototype.

  14. Intractable problems in reversible cellular automata

    International Nuclear Information System (INIS)

    Vatan, F.

    1988-01-01

    The billiard ball model, a classical mechanical system in which all parameters are real variables, can perform all digital computations. An eight-state, 11-neighbor reversible cellular automaton (an entirely discrete system in which all parameters are integer variables) can simulate this model. One of the natural problems for this system is to determine the shape of a container so that they initial specific distribution of gas molecules eventually leads to a predetermined distribution. This problem if PSPACE-complete. Related intractable and decidable problems are discussed as well

  15. Legal and Regulatory Barriers to Reverse Innovation.

    Science.gov (United States)

    Rowthorn, Virginia; Plum, Alexander J; Zervos, John

    Reverse innovation, or the importation of new, affordable, and efficacious models to high-income countries from the developing world, has emerged as a way to improve the health care system in the United States. Reverse innovation has been identified as a key emerging trend in global health systems in part because low-resourced settings are particularly good laboratories for low-cost/high-impact innovations that are developed out of necessity. A difficult question receiving scant attention is that of legal and regulatory barriers. The objective of this paper is to understand and elucidate the legal barriers faced by innovators bringing health interventions to the United States. Semistructured qualitative interviews were conducted with 9 key informants who have directly participated in the introduction of global health care approaches to the United States health system. A purposive sampling scheme was employed to identify participants. Phone interviews were conducted over one week in July 2016 with each participant and lasted an average of 35 minutes each. Purely legal barriers included questions surrounding tort liability, standard of care, and concerns around patient-administered self-care. Regulatory burdens included issues of international medical licensure, reimbursement, and task shifting and scope of work challenges among nonprofessionals (e.g. community health workers). Finally, perceived (i.e. not realized or experienced) legal and regulatory barriers to innovative modalities served as disincentives to bringing products or services developed outside of the United States to the United States market. Conflicting interests within the health care system, safety concerns, and little value placed on low-cost interventions inhibit innovation. Legal and regulatory barriers rank among, and contribute to, an anti-innovation atmosphere in healthcare for domestic and reverse innovators alike. Reverse innovation should be fostered through the thoughtful development of

  16. Balancing Technologies for Reverse Supply Chain with Modularity as Strategy for Competitiveness

    DEFF Research Database (Denmark)

    Vettorato, Giovanna; Hsuan, Juliana

    In this paper we review applications, case studies, models and techniques proposed for the design and optimization of reverse logistics systems according to the principle of modularity. Based on these studies we give an overview of scientific literature that describes and discusses cases of reverse...

  17. The response of dense dry granular material to the shear reversal

    Science.gov (United States)

    Zhang, Jie; Ren, Jie; Farhadi, Somayeh; Behringer, Robert

    2008-11-01

    We have performed two dimensional granular experiments under pure shear using bidisperse photo-elastic disks. Starting from a stress free state, a square box filled with granular particles is subject to shear. The forward shears involved various number of steps, leading to maximum strains between 0.1 and 0.3. The area is kept constant during the shear. The network of force chains gradually built up as the strain increased, leading to increased pressure and shear stress. Reverse shear was then applied to the system. Depending on the initial packing fraction and the strain at which the shear is reversed, the force chain network built prior to the shear reversal may be destroyed completely or partially destroyed. Following the force chain weakening, when the reserve shear is continuously applied to the system, there is a force chain strengthening. Following each change of the system, contact forces of individual disks were measured by applying an inverse algorithm. We also kept track of the displacement and angle of rotation of every particle from frame to frame. We present the results for the structure failure and reconstruction during shear reversals. We also present data for stresses, contact force distributions and other statistical measures.

  18. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2 - x LiF (0 ≤ x ≤ 2) binary system

    Science.gov (United States)

    Takeda, Nanami; Hoshino, Satoshi; Xie, Lixin; Chen, Shuo; Ikeuchi, Issei; Natsui, Ryuichi; Nakura, Kensuke; Yabuuchi, Naoaki

    2017-11-01

    A binary system of LiMoO2 - x LiF (0 ≤ x ≤ 2), Li1+xMoO2Fx, is systematically studied as potential positive electrode materials for rechargeable Li batteries. Single phase and nanosized samples on this binary system are successfully prepared by using a mechanical milling route. Crystal structures and Li storage properties on the binary system are also examined. Li2MoO2F (x = 1), which is classified as a cation-/anion-disordered rocksalt-type structure and is a thermodynamically metastable phase, delivers a large reversible capacity of over 300 mAh g-1 in Li cells with good reversibility. Highly reversible Li storage is realized for Li2MoO2F consisting of nanosized particles based on Mo3+/Mo5+ two-electron redox as evidenced by ex-situ X-ray absorption spectroscopy coupled with ex-situ X-ray diffractometry. Moreover, the presence of the most electronegative element in the framework structure effectively increases the electrode potential of Mo redox through an inductive effect. From these results, potential of nanosized lithium molybdenum oxyfluorides for high-capacity positive electrode materials of rechargeable Li batteries are discussed.

  19. Muscular activation during reverse and non-reverse chewing cycles in unilateral posterior crossbite.

    Science.gov (United States)

    Piancino, Maria Grazia; Farina, Dario; Talpone, Francesca; Merlo, Andrea; Bracco, Pietro

    2009-04-01

    The aim of this study was to characterize the kinematics and masseter muscle activation in unilateral posterior crossbite. Eighty-two children (8.6 +/- 1.3 yr of age) with unilateral posterior crossbite and 12 children (8.9 +/- 0.6 yr of age) with normal occlusion were selected for the study. Electromyography (EMG) and kinematics were concurrently recorded during mastication of a soft bolus and a hard bolus. The percentage of reverse cycles in the group of patients was 59.0 +/- 33.1% (soft bolus) and 69.7 +/- 29.7% (hard bolus) when chewing on the crossbite side. When chewing on the non-affected side, the number of reverse cycles was 16.7 +/- 24.5% (soft bolus) and 16.7 +/- 22.3% (hard bolus). The reverse cycles on the crossbite side were narrower with respect to the cycles on the non-affected side. Although both types of cycles in patients resulted in lower EMG activity of the masseter of the crossbite side than of the contralateral masseter, the activity of the non-affected side was larger for reverse than for non-reverse cycles. It was concluded that when chewing on the crossbite side, the masseter activity is reduced on the mastication side (crossbite) and is unaltered (non-reverse cycles) or increased (reverse) on the non-affected side.

  20. Time reversal technique for gas leakage detection.

    Science.gov (United States)

    Maksimov, A O; Polovinka, Yu A

    2015-04-01

    The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise.

  1. Majorana bound states in two-channel time-reversal-symmetric nanowire systems

    DEFF Research Database (Denmark)

    Gaidamauskas, Erikas; Paaske, Jens; Flensberg, Karsten

    2014-01-01

    We consider time-reversal-symmetric two-channel semiconducting quantum wires proximity coupled to a conventional s-wave superconductor. We analyze the requirements for a non-trivial topological phase, and find that necessary conditions are 1) the determinant of the pairing matrix in channel space...

  2. The Causes of Preference Reversal.

    OpenAIRE

    Tversky, Amos; Slovic, Paul; Kahneman, Daniel

    1990-01-01

    Observed preference reversal cannot be adequately explained by violations of independence, the reduction axiom, or transitivity. The primary cause of preference reversal is the failure of procedure invariance, especially the overpricing of low-probability, high-payoff bets. This result violates regret theory and generalized (nonindependent) utility models. Preference reversal and a new reversal involving time preferences are explained by scale compatibility, which implies that payoffs are wei...

  3. Testing of a benchscale Reverse Osmosis/Coupled Transport system for treating contaminated groundwater

    International Nuclear Information System (INIS)

    Hodgson, K.M.; Lunsford, T.R.; Panjabi, G.

    1994-01-01

    The Reverse Osmosis/Coupled Transport process is a innovative means of removing radionuclides from contaminated groundwater at the Hanford Site. Specifically, groundwater in the 200 West Area of the Hanford Site has been contaminated with uranium, technetium, and nitrate. Investigations are proceeding to determine the most cost effective method to remove these contaminants. The process described in this paper combines three different membrane technologies (reverse osmosis, coupled transport, and nanofiltration to purify the groundwater while extracting and concentrating uranium, technetium, and nitrate into separate solutions. This separation allows for the future use of the radionuclides, if needed, and reduces the amount of waste that will need to be disposed of. This process has the potential to concentrate the contaminants into solutions with volumes in a ratio of 1/10,000 of the feed volume. This compares to traditional volume reductions of 10 to 100 for ion exchange and stand-alone reverse osmosis. The successful demonstration of this technology could result in significant savings in the overall cost of decontaminating the groundwater

  4. Multi-objective optimization of a pressurized solid oxide fuel cell – gas turbine hybrid system integrated with seawater reverse osmosis

    International Nuclear Information System (INIS)

    Eveloy, Valerie; Rodgers, Peter; Al Alili, Ali

    2017-01-01

    To improve the capacity and efficiency of distributed power and fresh water generation in coastal industrial facilities affected by regional water scarcity, a natural gas-fueled, pressurized solid oxide fuel cell-gas turbine (SOFC-GT) hybrid is integrated with a bottoming organic Rankine cycle (ORC) and seawater reverse osmosis (RO) desalination plant. This power and water co-generation system is optimized in terms of two objectives, maximum exergy efficiency and minimum cost rate, using a genetic algorithm. The exergetic and economic performance of three solutions representing maximum exergy efficiency, minimum cost rate, and a compromise between efficiency and cost rate, are compared. When imposing a water production requirement (reference case), the selected compromise multi-objective optimization solution delivers a net power output of 2.4 MWe and 636 m"3/day of permeate, at a co-generation exergy efficiency and cost rate of 71.3% and 0.0256 USD/s, respectively. The system payback time is estimated to be less than six years for typical economic parameters, but would become unprofitable in the most unfavorable economic scenario considered. Overall, the results indicate the thermodynamic and economic benefits of reverse osmosis over thermal desalination processes for integration with high-efficiency power generation systems in coastal regions impacted by domestic gas shortages and water scarcity. - Highlights: • Integration of a pressurized SOFC-GT hybrid system with a reverse osmosis unit. • Multi-objective, exergetic and economic optimization using a genetic algorithm. • Optimum solution delivers 2.4 MWe and 636 m"3/day of desalinated water. • Overall exergy efficiency and cost rate of 71.3% and 0.0256 USD/s, respectively. • System payback time estimated at less than six years for typical economic conditions.

  5. New Dynamic Library of Reverse Osmosis Plants with Fault Simulation

    International Nuclear Information System (INIS)

    Luis, Palacin; Fernando, Tadeo; Cesar, de Prada; Elfil, Hamza

    2009-01-01

    This paper presents an update of a dynamic library of reverse osmosis plants (ROSIM). This library has been developed in order to be used for optimization, simulation, controller testing or fault detection strategies and a simple fault tolerant control is tested. ROSIM is based in a set of components representing the different units of a typical reverse osmosis plant (as sand filters, cartridge filters, exchanger energy recoveries, pumps, membranes, storage tanks, control systems, valves, etc.). Different types of fouling (calcium carbonate, iron hydroxide, biofouling) have been added and the mathematical model of the reverse osmosis membranes, proposed in the original library, has been improved.

  6. Reversible heat pump and heat recovery; Pac reversible et recuperation de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, M.

    1998-10-01

    The development of a tights making up workshop with controlled atmosphere in the Bresson and Rande factory (Vigan, Gard, France) has led to a revision and to an upgrading of the power installation of the factory. The 198 knitting machines require an ambient air with a 23 {+-} 2 deg. C temperature and a 65% {+-} 3% humidity level. Cold and hot water production for the supply of the air treatment plant is ensured by a reversible heat pump with a heat recovery system for the limitation of power needs. (J.S.)

  7. Cluster observation of plasma flow reversal in the magnetotail during a substorm

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-08-01

    Full Text Available We investigate in detail a reversal of plasma flow from tailward to earthward detected by Cluster at the downstream distance of ~19 RE in the midnight sector of the magnetotail on 22 August 2001. This flow reversal was accompanied by a sign reversal of the Bz component and occurred during the late substorm expansion phase as revealed by simultaneous global view of auroral activity from IMAGE. We examine the associated Hall current system signature, current density, electric field, Lorentz force, and current dissipation/dynamo term, the last two parameters being new features that have not been studied previously for plasma flow reversals. It is found that (1 there was no clear quadrupole Hall current system signature organized by the flow reversal time, (2 the x-component of the Lorentz force did not change sign while the other two did, (3 the timing sequence of flow reversal from the Cluster configuration did not match tailward motion of a single plasma flow source, (4 the electric field was occasionally dawnward, producing a dynamo effect, and (5 the electric field was occasionally larger at the high-latitude plasma sheet than near the neutral sheet. These observations are consistent with the current disruption model for substorms in which these disturbances are due to shifting dominance of multiple current disruption sites and turbulence at the observing location.

  8. Learning course adjustments during arm movements with reversed sensitivity derivatives

    Directory of Open Access Journals (Sweden)

    Tweed Douglas B

    2010-11-01

    Full Text Available Abstract Background To learn, a motor system needs to know its sensitivity derivatives, which quantify how its neural commands affect motor error. But are these derivatives themselves learned, or are they known solely innately? Here we test a recent theory that the brain's estimates of sensitivity derivatives are revisable based on sensory feedback. In its simplest form, the theory says that each control system has a single, adjustable estimate of its sensitivity derivatives which affects all aspects of its task, e.g. if you learn to reach to mirror-reversed targets then your revised estimate should reverse not only your initial aiming but also your online course adjustments when the target jumps in mid-movement. Methods Human subjects bent a joystick to move a cursor to a target on a computer screen, but the cursor's motion was reversed relative to the joystick's. The target jumped once during each movement. Subjects had up to 4000 trials to practice aiming and responding to target jumps. Results All subjects learned to reverse both initial aiming and course adjustments. Conclusions Our study confirms that sensitivity derivatives can be relearned. It is consistent with the idea of a single, all-purpose estimate of those derivatives; and it suggests that the estimate is a function of context, as one would expect given that the true sensitivity derivatives may vary with the state of the controlled system, the target, and the motor commands.

  9. Reverse osmosis separation of radium from dilute aqueous solutions

    International Nuclear Information System (INIS)

    Subramanian, K.S.; Sastri, V.S.

    1980-01-01

    Porous cellulose acetate membranes obtained from Osmonics Inc. were characterized in terms of pure water permeability constant, solute transport parameter, and mass transfer coefficient with aqueous sodium chloride solution as the reference system. Reverse osmosis separation behavior of radium-226 as nitrate, chloride, and sulfate salts was studied. Reverse osmosis method of removing radium-226 from aqueous solutions has been compared with other methods, and it has been shown to be one of the best methods for alleviating radium contamination problems

  10. Separation of mixtures of organic substance using reverse osmosis membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Shoji; Nakao, Shin' ichi; Tanimura, Shinobu

    1987-12-25

    With the arrival of energy crisis, attention has been concentrated on the production of alcohol by means of biomass conversion. Energy-saving concentration method was searched to replace a distillation method as a method of concentrating dilute alcohols, for which a reverse osmosis method was proposed; experimental results have been reported accordingly. One result is that the osmotic pressure method has a limitation of difficulty to exceed more than 15% concentration. For this, the reverse osmosis was reviewed and it was found that wider concentration range should be examined for the area where the reverse osmosis was not experimented. Fils employed were a polyamide film of Nitto Denko Co. and an acrylonitrile film of sumitomo Chemical Co.. The result revealed that alcohol could be concentrated up to rather high concentration in alcohol-water system; even in a non-aqueous system, separation with high selective permeability was possible by the proper selection of film materials. (4 figs, 2 refs)

  11. Treatment of simulated plutonium-containing wastewater by ultrafiltration-reverse osmosis technology

    International Nuclear Information System (INIS)

    Xiong Zhonghua; Fan Xianhua; Luo Deli; Wang Tuo; Chen Qi

    2008-01-01

    Ultrafiltration and reverse osmosis were employed for the treatment of low level radioactive water containing plutonium. The system consists of ultrafiltration module with hollow fibre membrane and reverse osmosis module with spiral membrane. The decontamination efficiency and volume concentration ratio affected by technical parameters were explored in the experiment. The results show that the decontamination efficiency achieves 99.94% and the volume concentration ratio achieves 12.5 at pH=10 for solution fed into the membrane separation system. This technology will be applied in radioactive waste minimization as a new treatment method. (authors)

  12. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-10-15

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.

  13. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    International Nuclear Information System (INIS)

    Albariño, César G.; Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-01-01

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies

  14. Reversible posterior leukoencephalopathy syndrome secondary to systemic-onset juvenile idiopathic arthritis: A case report and review of the literature.

    Science.gov (United States)

    Zhang, Pingping; Li, Xiaofeng; Li, Yating; Wang, Jing; Zeng, Huasong; Zeng, Xiaofeng

    2015-01-01

    Reversible posterior leukoencephalopathy syndrome (RPLS) is a clinical syndrome based on changes in clinical imaging, and it has been reported to mainly occur in adults. However, it has been recently discovered that RPLS is also prevalent in infant patients, particularly in those using glucocorticoids, immunosuppressant medications and cytotoxic drugs. The current study presents a 5-year-old male with a previous diagnosis of systemic-onset juvenile idiopathic arthritis (SoJIA) and macrophage-activation syndrome who developed posterior reversible encephalopathy syndrome during treatment with glucocorticoids, disease-modifying antirheumatic drugs and biological agent (etanercept) therapy. After ~5 days of treatment, the patient made a complete clinical recovery; the magnetic resonance imaging reviewed 2 weeks later showed that the previous hyper-intensity signal had disappeared and the multiple lesions in the brain had been completely absorbed. The case report shows that, conforming to recent literature, SoJIA in infants should be considered a risk factor for developing RPLS. The clinical manifestations of the disease are multiple, but usually reversible, and the patients mostly have a good prognosis. Rapid diagnosis and treatment is essential as early treatment may prevent progression to irreversible brain damage. By increasing the awareness of RPLS, the patient care may improve and further insight may be gained.

  15. Time-reversed lasing in the terahertz range and its preliminary study in sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yun, E-mail: shenyunoptics@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Huaqing [Department of Physics, Nanchang University, Nanchang 330031 (China); Deng, Xiaohua [Institute of Space Science and Technology, Nanchang University, Nanchang 330031 (China); Wang, Guoping [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-02-05

    Time-reversed lasing in a uniform slab and a grating structure are investigated in the terahertz range. The results show that both the uniform slab and grating can support terahertz time-reversed lasing. Nevertheless, due to the tunable effective refractive index, the grating structure can not only exhibit time-reversed lasing more effectively and flexibly than a uniform slab, but also can realize significant absorption in a broader operating frequency range. Furthermore, applications of terahertz time-reversed lasing for novel concentration/thickness sensors are preliminarily studied in a single-channel coherent perfect absorber system. - Highlights: • Time-reversed lasing are investigated in the terahertz range. • The grating structure exhibit time-reversed lasing more effectively and flexibly than a uniform slab. • THz time-reversed lasing for novel concentration/thickness sensors are studied.

  16. Novel Robust Optimization and Power Allocation of Time Reversal-MIMO-UWB Systems in an Imperfect CSI

    Directory of Open Access Journals (Sweden)

    Sajjad Alizadeh

    2013-03-01

    Full Text Available Time Reversal (TR technique is an attractive solution for a scenario where the transmission system employs low complexity receivers with multiple antennas at both transmitter and receiver sides. The TR technique can be combined with a high data rate MIMO-UWB system as TR-MIMO-UWB system. In spite of TR's good performance in MIMO-UWB systems, it suffers from performance degradation in an imperfect Channel State Information (CSI case. In this paper, at first a robust TR pre-filter is designed together with a MMSE equalizer in TR-MIMO-UWB system where is robust against channel imperfection conditions. We show that the robust pre-filter optimization technique, considerably improves the BER performance of TR-MIMO-UWB system in imperfect CSI, where temporal focusing of the TR technique is kept, especially for high SNR values. Then, in order to improve the system performance more than ever, a power loading scheme is developed by minimizing the average symbol error rate in an imperfect CSI. Numerical and simulation results are presented to confirm the performance advantage attained by the proposed robust optimization and power loading in an imperfect CSI scenario.

  17. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.

    2014-09-02

    Waste acid streams produced at industrial sites are often co-located with large sources of waste heat (e.g., industrial exhaust gases, cooling water, and heated equipment). Reverse electrodialysis (RED) systems can be used to generate electrical power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen production, while capturing energy from excess waste heat. The rate of acid neutralization was dependent on stack flow rate and increased 50× (from 0.06 ± 0.04 to 3.0 ± 0.32 pH units min -1 m-2 membrane), as the flow rate increased 6× (from 100 to 600 mL min-1). Acid neutralization primarily took place due to ammonium electromigration (37 ± 4%) and proton diffusion (60 ± 5%). The use of a synthetic waste acid stream as a catholyte (pH ≈ 2) also increased hydrogen production rates by 65% (from 5.3 ± 0.5 to 8.7 ± 0.1 m3 H2 m-3 catholyte day -1) compared to an AmB electrolyte (pH ≈ 8.5). These findings highlight the potential use of dissimilar electrolytes (e.g., basic anolyte and acidic catholyte) for enhanced power and hydrogen production in RED stacks. © 2014 American Chemical Society.

  18. Research on Linux Trusted Boot Method Based on Reverse Integrity Verification

    Directory of Open Access Journals (Sweden)

    Chenlin Huang

    2016-01-01

    Full Text Available Trusted computing aims to build a trusted computing environment for information systems with the help of secure hardware TPM, which has been proved to be an effective way against network security threats. However, the TPM chips are not yet widely deployed in most computing devices so far, thus limiting the applied scope of trusted computing technology. To solve the problem of lacking trusted hardware in existing computing platform, an alternative security hardware USBKey is introduced in this paper to simulate the basic functions of TPM and a new reverse USBKey-based integrity verification model is proposed to implement the reverse integrity verification of the operating system boot process, which can achieve the effect of trusted boot of the operating system in end systems without TPMs. A Linux operating system booting method based on reverse integrity verification is designed and implemented in this paper, with which the integrity of data and executable files in the operating system are verified and protected during the trusted boot process phase by phase. It implements the trusted boot of operation system without TPM and supports remote attestation of the platform. Enhanced by our method, the flexibility of the trusted computing technology is greatly improved and it is possible for trusted computing to be applied in large-scale computing environment.

  19. Reversible thyristor converters of brushless synchronous compensators

    Directory of Open Access Journals (Sweden)

    А.М.Galynovskiy

    2013-12-01

    Full Text Available Behavior of models of three-phase-to-single-phase rotary reversible thyristor converters of brushless synchronous compensators in a circuit simulation system is analyzed. It is shown that combined control mode of opposite-connected thyristors may result in the exciter armature winding short circuits both at the thyristor feed-forward and lagging current delay angles. It must be taken into consideration when developing brushless compensator excitation systems.

  20. Planning the location of facilities to implement a reverse logistic system of post-consumer packaging using a location mathematical model.

    Science.gov (United States)

    Couto, Maria Claudia Lima; Lange, Liséte Celina; Rosa, Rodrigo de Alvarenga; Couto, Paula Rogeria Lima

    2017-12-01

    The implementation of reverse logistics systems (RLS) for post-consumer products provides environmental and economic benefits, since it increases recycling potential. However, RLS implantation and consolidation still face problems. The main shortcomings are the high costs and the low expectation of broad implementation worldwide. This paper presents two mathematical models to decide the number and the location of screening centers (SCs) and valorization centers (VCs) to implement reverse logistics of post-consumer packages, defining the optimum territorial arrangements (OTAs), allowing the inclusion of small and medium size municipalities. The paper aims to fill a gap in the literature on RLS location facilities that not only aim at revenue optimization, but also the participation of the population, the involvement of pickers and the service universalization. The results showed that implementation of VCs can lead to revenue/cost ratio higher than 100%. The results of this study can supply companies and government agencies with a global view on the parameters that influence RLS sustainability and help them make decisions about the location of these facilities and the best reverse flows with the social inclusion of pickers and serving the population of small and medium-sized municipalities.

  1. Reverse logistics policy – differences between conservative and innovative reverse logistics management

    Directory of Open Access Journals (Sweden)

    Alena Klapalová

    2013-01-01

    Full Text Available One of the of the key barriers that hampers effective and efficient management of reverse flows detected within a number of empirical surveys and case studies focused on reverse logistics and/or return management is business (organisational policy, specifically lack of policy, deficiency in existing policy or inferior policy. Despite this fact, there is a gap in literature which would show some evidence from practice that innovative reverse logistics policy both can pay off and is associated with certain aspects of reverse logistics management. Such proof can have several implications. It can support the call for better understanding and more research of the linkages of reverse logistics with other corporate functions, promote the acceptation of strategic character of reverse logistics and stress the role of RL policy within the rest of overall corporate management.The aim of this paper is to contribute and to enrich the existing body of knowledge concerning the above-mentioned gap through presentation of survey results that was realized in 2012 among managers of 244 Czech firms. The results demonstrate the statistically significant association between the innovativeness of RL policy and profitability of firms, quality of RL planning, perception of RL importance, level of RL knowledge and perception of product innovation importance for firms’ competitiveness and frequency of product innovation. They also reveal statistically significant differences between firms with conservative and innovative RL policy and the perceived existence of some barriers to manage RL.

  2. Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, J. R.

    2003-01-01

    It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.

  3. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors

  4. r-Universal reversible logic gates

    International Nuclear Information System (INIS)

    Vos, A de; Storme, L

    2004-01-01

    Reversible logic plays a fundamental role both in ultra-low power electronics and in quantum computing. It is therefore important to know which reversible logic gates can be used as building block for the reversible implementation of an arbitrary boolean function and which cannot

  5. Quantum reverse hypercontractivity

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, Toby [Department of Computer Science, University College London, London, United Kingdom and Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, Cambridge (United Kingdom); Kastoryano, Michael [NBIA, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Montanaro, Ashley [School of Mathematics, University of Bristol, Bristol (United Kingdom); Temme, Kristan [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We develop reverse versions of hypercontractive inequalities for quantum channels. By generalizing classical techniques, we prove a reverse hypercontractive inequality for tensor products of qubit depolarizing channels. We apply this to obtain a rapid mixing result for depolarizing noise applied to large subspaces and to prove bounds on a quantum generalization of non-interactive correlation distillation.

  6. Introduction to reversible computing

    CERN Document Server

    Perumalla, Kalyan S

    2013-01-01

    Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever

  7. Describing and optimizing reversible logic using a functional language

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal

    2012-01-01

    the recognisable inversion combinator f^(-1), which defines the inverse function of f using an efficient semantics. It is important to ensure that all circuits descriptions are reversible, and furthermore we must require this to be done statically. This is en- sured by the type system, which also allows...... the description of arbitrary sized circuits. The combination of the functional language and the restricted reversible model results in many arithmetic laws, which provide more possibilities for term rewriting and, thus, the opportunity for good optimisation....

  8. Field-reversal experiments in the mirror fusion test facility (MFTF)

    International Nuclear Information System (INIS)

    Shearer, J.W.; Condit, W.C.

    1977-01-01

    Detailed consideration of several aspects of a field-reversal experiment was begun in the Mirror Fusion Test Facility (MFTF): Model calculations have provided some plausible parameters for a field-reversed deuterium plasma in the MFTF, and a buildup calculation indicates that the MFTF neutral-beam system is marginally sufficient to achieve field reversal by neutral injection alone. However, the many uncertainties indicate the need for further research and development on alternate buildup methods. A discussion of experimental objectives is presented and important diagnostics are listed. The range of parameter space accessible with the MFTF magnet design is explored, and we find that with proper aiming of the neutral beams, meaningful experiments can be performed to advance toward these objectives. Finally, it is pointed out that if we achieve enhanced n tau confinement by means of field reversal, then quasi-steady-state operation of MFTF is conceivable

  9. Returnable containers: an example of reverse logistics

    NARCIS (Netherlands)

    L.G. Kroon (Leo); G.M.C. Vrijens

    1996-01-01

    textabstractConsiders the application of returnable containers as an example of reverse logistics. A returnable container is a type of secondary packaging that can be used several times in the same form, in contrast with traditional cardboard boxes. For this equipment to be used, a system for the

  10. A Study on Reverse Logistics

    OpenAIRE

    Reddy, Dhananjaya

    2011-01-01

    In the competitive world of manufacturing, companies are often searching for new ways to improve their process, customer satisfaction and stay ahead in the game with their competitors. Reverse logistics has been considered a strategy to bring these things to life for the past decade or so. This thesis work tries to shed some light on the basics of reverse logistics and how reverse logistics can be used as a management strategy. This paper points out the fundamentals of reverse logistics and l...

  11. Malware analysis and reverse engineering

    OpenAIRE

    Šváb, Martin

    2014-01-01

    Focus of this thesis is reverse engineering in information technology closely linked with the malware analysis. It explains fundamentals of IA-32 processors architecture and basics of operating system Microsoft Windows. Main part of this thesis is dedicated to the malware analysis, including description of creating a tool for simplification of static part of the analysis. In Conclusion various approaches to the malware analysis, which were described in previous part of the thesis, are practic...

  12. A Predictive Approach to Network Reverse-Engineering

    Science.gov (United States)

    Wiggins, Chris

    2005-03-01

    A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.

  13. Cross flow filtration for radwaste applications reverse osmosis demonstration case studies

    International Nuclear Information System (INIS)

    Malkmus, D.

    1995-01-01

    Today's radwaste economic and regulatory scenarios signify the importance in the improvement of operational practices to reduce generator liabilities. This action is largely due to the rising cost dealing with burial sites and the imposed waste volume restriction. To control the economical burdens associated with waste burial and to comply with stricter environmental regulations, NPP's are attempting to modify their radwaste system(s) design and operating philosophy by placing a major emphasis on waste volume reduction and processing techniques. The utilization of reverse osmosis technology as a means for treatment of process and wastewater streams in the nuclear power industry has been investigated for many years. This paper will outline reverse osmosis theory and highlight performance data for process and waste stream purification applications. Case studies performed at 5 nuclear plants have been outlined. The demonstrations were performed on a widely variety of process stream for both a PWR and BWR application. The data provided by the pilot systems, the equipment design, and the economical impact a reverse osmosis unit will have on producing treated (high purity) are as follows

  14. Stainless austenitic steels strengthened due to reversible phase transformations and by ageing

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Kositsyna, I.I.; Ozhiganov, A.V.

    1981-01-01

    The effect of the reversible phase transformations, consisting in the conduction of the direct and reverse martensite transformations and aging, during which the intermetallide γ'-phase of the composition Ni 3 Ti is formed, on the streng-thening of alloys in the Fe-Cr-Ni-Ti system is considered. Stainless austenitic steels Kh12N12T3 and Kh12N14T3, which acquire high mechanical properties: σsub(0.2)=685-785 MPa, σsub(B)=1275 MPa, delta >= 20%, as a result of reversible phase transformations and aging, are suggested. After the reversible phase transformations and ageing the steels possess a high resistance to γ-α-transformation during cold treatment [ru

  15. Identification of cysteine proteases and screening of cysteine protease inhibitors in biological samples by a two-dimensional gel system of zymography and reverse zymography.

    Science.gov (United States)

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-11-18

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the first-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic acid (TCA) fixation. Protease activity in the 2D-gel was visualized as transparent spots where gelatin substrate was digested after commassie brilliant blue (CBB) staining. Some of the transparent spots from the skin mucus extract of rainbow trout were determined to be a cysteine protease through use of E-64 or CA-074. In the reverse zymography technique, the gel was incubated with papain solution at 37 degrees C for 18 h. Cysteine protease inhibitors from broad bean seeds were detected as clear blue spots after CBB staining. The amino (N-) terminal sequences of four papain inhibitor spots thus detected were demonstrated to be identical to that of favin beta chain, a broad bean lectin. Taken together, our system can be considered to be an efficient technique for discovering and characterizing new proteases and protease inhibitors in biological samples. This is the first report describing a 2D-gel system of zymography and reverse zymography.

  16. Stochastic disk dynamo as a model of reversals of the Earth's magnetic field

    International Nuclear Information System (INIS)

    Ito, H.M.

    1988-01-01

    A stochastic model is given of a system composed of N similar disk dynamos interacting with one another. The time evolution of the system is governed by a master equation of the class introduced by van Kampen as relevant to stochastic macrosystems. In the model, reversals of the Earth's magnetic field are regarded as large deviations caused by a small random force of O(N/sup -1/2/) from one of the field polarities to the other. Reversal processes are studied by simulation, which shows that the model explains well the activities of the paleomagnetic field inclusive of statistical laws of the reversal sequence and the intensity distribution. Comparison are made between the model and dynamical disk dynamo models

  17. Applications of the solvation parameter model in reversed-phase liquid chromatography.

    Science.gov (United States)

    Poole, Colin F; Lenca, Nicole

    2017-02-24

    The solvation parameter model is widely used to provide insight into the retention mechanism in reversed-phase liquid chromatography, for column characterization, and in the development of surrogate chromatographic models for biopartitioning processes. The properties of the separation system are described by five system constants representing all possible intermolecular interactions for neutral molecules. The general model can be extended to include ions and enantiomers by adding new descriptors to encode the specific properties of these compounds. System maps provide a comprehensive overview of the separation system as a function of mobile phase composition and/or temperature for method development. The solvation parameter model has been applied to gradient elution separations but here theory and practice suggest a cautious approach since the interpretation of system and compound properties derived from its use are approximate. A growing application of the solvation parameter model in reversed-phase liquid chromatography is the screening of surrogate chromatographic systems for estimating biopartitioning properties. Throughout the discussion of the above topics success as well as known and likely deficiencies of the solvation parameter model are described with an emphasis on the role of the heterogeneous properties of the interphase region on the interpretation and understanding of the general retention mechanism in reversed-phase liquid chromatography for porous chemically bonded sorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Reversibility in an Earth System model in response to CO2 concentration changes

    International Nuclear Information System (INIS)

    Boucher, O; Halloran, P R; Burke, E J; Doutriaux-Boucher, M; Jones, C D; Lowe, J; Ringer, M A; Robertson, E; Wu, P

    2012-01-01

    We use the HadGEM2-ES Earth System model to examine the degree of reversibility of a wide range of components of the Earth System under idealized climate change scenarios where the atmospheric CO 2 concentration is gradually increased to four times the pre-industrial level and then reduced at a similar rate from several points along this trajectory. While some modelled quantities respond almost immediately to the atmospheric CO 2 concentrations, others exhibit a time lag relative to the change in CO 2 . Most quantities also exhibit a lag relative to the global-mean surface temperature change, which can be described as a hysteresis behaviour. The most surprising responses are from low-level clouds and ocean stratification in the Southern Ocean, which both exhibit hysteresis on timescales longer than expected. We see no evidence of critical thresholds in these simulations, although some of the hysteresis phenomena become more apparent above 2 × CO 2 or 3 × CO 2 . Our findings have implications for the parametrization of climate impacts in integrated assessment and simple climate models and for future climate studies of geoengineering scenarios. (letter)

  19. Constraints on a parity-even/time-reversal-odd interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2000-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement, one of the results of the CPLEAR experiment. What is the situation then with regard to time-reversal-invariance non-conservation in systems other than the neutral kaon system? Two classes of tests of time-reversal-invariance need to be distinguished: the first one deals with parity violating (P-odd)/time-reversal-invariance non-conserving (T-odd) interactions, while the second one deals with P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron. This in turn provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is 10 -4 times the weak interaction strength. Limits on a P-even/T-odd interaction are much less stringent. The better constraint stems also from the measurement of the electric dipole moment of the neutron. Of all the other tests, measurements of charge-symmetry breaking in neutron-proton elastic scattering provide the next better constraint. The latter experiments were performed at TRIUMF (at 477 and 347 MeV) and at IUCF (at 183 MeV). Weak decay experiments (the transverse polarization of the muon in K + →π 0 μ + ν μ and the transverse polarization of the positrons in polarized muon decay) have the potential to provide comparable or possibly better constraints

  20. Cluster observation of plasma flow reversal in the magnetotail during a substorm

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-08-01

    Full Text Available We investigate in detail a reversal of plasma flow from tailward to earthward detected by Cluster at the downstream distance of ~19 RE in the midnight sector of the magnetotail on 22 August 2001. This flow reversal was accompanied by a sign reversal of the Bz component and occurred during the late substorm expansion phase as revealed by simultaneous global view of auroral activity from IMAGE. We examine the associated Hall current system signature, current density, electric field, Lorentz force, and current dissipation/dynamo term, the last two parameters being new features that have not been studied previously for plasma flow reversals. It is found that (1 there was no clear quadrupole Hall current system signature organized by the flow reversal time, (2 the x-component of the Lorentz force did not change sign while the other two did, (3 the timing sequence of flow reversal from the Cluster configuration did not match tailward motion of a single plasma flow source, (4 the electric field was occasionally dawnward, producing a dynamo effect, and (5 the electric field was occasionally larger at the high-latitude plasma sheet than near the neutral sheet. These observations are consistent with the current disruption model for substorms in which these disturbances are due to shifting dominance of multiple current disruption sites and turbulence at the observing location.

  1. A novel image encryption algorithm using chaos and reversible cellular automata

    Science.gov (United States)

    Wang, Xingyuan; Luan, Dapeng

    2013-11-01

    In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.

  2. The mesolimbic system participates in the naltrexone-induced reversal of sexual exhaustion: opposite effects of intra-VTA naltrexone administration on copulation of sexually experienced and sexually exhausted male rats.

    Science.gov (United States)

    Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2013-11-01

    Male rats allowed to copulate until reaching sexual exhaustion exhibit a long-lasting sexual behavior inhibition (around 72 h) that can be reversed by systemic opioid receptor antagonist administration. Copulation activates the mesolimbic dopaminergic system (MLS) and promotes endogenous opioid release. In addition, endogenous opioids, acting at the ventral tegmental area (VTA), modulate the activity of the MLS. We hypothesized that endogenous opioids participate in the sexual exhaustion phenomenon by interacting with VTA opioid receptors and consequently, its reversal by opioid antagonists could be exerted at those receptors. In this study we determined the effects of intra-VTA infusion of different doses of the non-specific opioid receptor antagonist naltrexone (0.1-1.0 μg/rat) on the already established sexual behavior inhibition of sexually exhausted male rats. To elucidate the possible involvement of VTA δ-opioid receptors in the naltrexone-mediated reversal of sexual exhaustion, the effects of different doses of the selective δ-opioid receptor antagonist, naltrindole (0.03-1.0 μg/rat) were also tested. Results showed that intra-VTA injection of 0.3 μg naltrexone reversed the sexual inhibition of sexually exhausted rats, evidenced by an increased percentage of animals capable of showing two successive ejaculations. Intra-VTA infused naltrindole did not reverse sexual exhaustion at any dose. It is concluded that the MLS is involved in the reversal of sexual exhaustion induced by systemic naltrexone, and that μ-, but not δ-opioid receptors participate in this effect. Intra-VTA naltrexone infusion to sexually experienced male rats had an inhibitory effect on sexual activity. The opposite effects of intra-VTA naltrexone on male rat sexual behavior expression of sexually experienced and sexually exhausted rats is discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The use of TiO2 nanoparticles to reduce refrigerator ir-reversibility

    International Nuclear Information System (INIS)

    Padmanabhan, Venkataramana Murthy V.; Palanisamy, Senthilkumar

    2012-01-01

    Highlights: ► COP of hydrocarbons mixture VCRSs increases less when compared to R134a. ► Compressor ir-reversibility of VCRSs decreases by 33% (R134a), 14% (R436A and R436B). ► Total ir-reversibility of selected VCRSs decreases. ► Exergy efficiency of R134a is exceptionally low at lower reference temperature. ► Exergy efficiency of selected VCRSs increases. - Abstract: The ir-reversibility at the process of a vapour-compression refrigeration system (VCRS) with nanoparticles in the working fluid was investigated experimentally. Mineral oil (MO) with 0.1 g L −1 TiO 2 nanoparticles mixture were used as the lubricant instead of Polyol-ester (POE) oil in the R134a, R436A (R290/R600a-56/44-wt.%) and R436B (R290/R600a-52/48-wt.%)VCRSs. The VCRS ir-reversibility at the process with the nanoparticles was investigated using second law of thermodynamics. The results indicate that R134a, R436A and R436B and MO with TiO 2 nanoparticles work normally and safely in the VCRS. The VCRSs total ir-reversibility (529, 588 and 570 W) at different process was better than the R134a, R436A and R436B and POE oil system (777, 697 and 683 W). The same tests with Al 2 O 3 nanoparticles showed that the different nanoparticles properties have little effect on the VCRS ir-reversibility. Thus, TiO 2 nanoparticles can be used in VCRS with reciprocating compressor to considerably reduce ir-reversibility at the process.

  4. Model of reversible vesicular transport with exclusion

    International Nuclear Information System (INIS)

    Bressloff, Paul C; Karamched, Bhargav R

    2016-01-01

    A major question in neurobiology concerns the mechanics behind the motor-driven transport and delivery of vesicles to synaptic targets along the axon of a neuron. Experimental evidence suggests that the distribution of vesicles along the axon is relatively uniform and that vesicular delivery to synapses is reversible. A recent modeling study has made explicit the crucial role that reversibility in vesicular delivery to synapses plays in achieving uniformity in vesicle distribution, so called synaptic democracy (Bressloff et al 2015 Phys. Rev. Lett. 114 168101). In this paper we generalize the previous model by accounting for exclusion effects (hard-core repulsion) that may occur between molecular motor-cargo complexes (particles) moving along the same microtubule track. The resulting model takes the form of an exclusion process with four internal states, which distinguish between motile and stationary particles, and whether or not a particle is carrying vesicles. By applying a mean field approximation and an adiabatic approximation we reduce the system of ODEs describing the evolution of occupation numbers of the sites on a 1D lattice to a system of hydrodynamic equations in the continuum limit. We find that reversibility in vesicular delivery allows for synaptic democracy even in the presence of exclusion effects, although exclusion does exacerbate nonuniform distributions of vesicles in an axon when compared with a model without exclusion. We also uncover the relationship between our model and other models of exclusion processes with internal states. (paper)

  5. A photoactivated artificial muscle model unit: reversible, photoinduced sliding of nanosheets.

    Science.gov (United States)

    Nabetani, Yu; Takamura, Hazuki; Hayasaka, Yuika; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo

    2011-11-02

    A novel photoactivated artificial muscle model unit is reported. Here we show that organic/inorganic hybrid nanosheets reversibly slide horizontally on a giant scale and the interlayer spaces in the layered hybrid structure shrink and expand vertically by photoirradiation. The sliding movement of the system on a giant scale is the first example of an artificial muscle model unit having much similarity with that in natural muscle fibrils. In particular, our layered hybrid molecular system exhibits a macroscopic morphological change on a giant scale (~1500 nm) relative to the molecular size of ~1 nm by means of a reversible sliding mechanism.

  6. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin

    Science.gov (United States)

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-08-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to manipulate water content. Hydration properties are probed using the water-sensitive fluorescence from Hb bound pyranine and covalently attached Badan. Protein dynamics are probed through ligand recombination traces derived from photodissociated carbonmonoxy hemoglobin on a log scale that exposes the potential role of both α and β solvent fluctuations in modulating protein dynamics. The results open the possibility of probing hydration level phenomena in this system using a combination of NMR and optical probes.

  7. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems.

    Directory of Open Access Journals (Sweden)

    Julia K Bialek

    Full Text Available CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs, act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR, for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.

  8. What do reversible programs compute?

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Glück, Robert

    2011-01-01

    Reversible computing is the study of computation models that exhibit both forward and backward determinism. Understanding the fundamental properties of such models is not only relevant for reversible programming, but has also been found important in other fields, e.g., bidirectional model...... transformation, program transformations such as inversion, and general static prediction of program properties. Historically, work on reversible computing has focussed on reversible simulations of irreversible computations. Here, we take the viewpoint that the property of reversibility itself should...... are not strictly classically universal, but that they support another notion of universality; we call this RTM-universality. Thus, even though the RTMs are sub-universal in the classical sense, they are powerful enough as to include a self-interpreter. Lifting this to other computation models, we propose r...

  9. Fundamentals of reversible flowchart languages

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2016-01-01

    Abstract This paper presents the fundamentals of reversible flowcharts. They are intended to naturally represent the structure and control flow of reversible (imperative) programming languages in a simple computation model, in the same way classical flowcharts do for conventional languages......, structured reversible flowcharts are as expressive as unstructured ones, as shown by a reversible version of the classic Structured Program Theorem. We illustrate how reversible flowcharts can be concretized with two example programming languages, complete with syntax and semantics: a low-level unstructured...... language and a high-level structured language. We introduce concrete tools such as program inverters and translators for both languages, which follow the structure suggested by the flowchart model. To further illustrate the different concepts and tools brought together in this paper, we present two major...

  10. Cessations and reversals of the large-scale circulation in turbulent thermal convection.

    Science.gov (United States)

    Xi, Heng-Dong; Xia, Ke-Qing

    2007-06-01

    We present an experimental study of cessations and reversals of the large-scale circulation (LSC) in turbulent thermal convection in a cylindrical cell of aspect ratio (Gamma) 1/2 . It is found that cessations and reversals of the LSC occur in Gamma = 1/2 geometry an order-of-magnitude more frequently than they do in Gamma=1 cells, and that after a cessation the LSC is most likely to restart in the opposite direction, i.e., reversals of the LSC are the most probable cessation events. This contrasts sharply to the finding in Gamma=1 geometry and implies that cessations in the two geometries are governed by different dynamics. It is found that the occurrence of reversals is a Poisson process and that a stronger rebound of the flow strength after a reversal or cessation leads to a longer period of stability of the LSC. Several properties of reversals and cessations in this system are found to be statistically similar to those of geomagnetic reversals. A direct measurement of the velocity field reveals that a cessation corresponds to a momentary decoherence of the LSC.

  11. Reversing the irreversible: From limit cycles to emergent time symmetry

    Science.gov (United States)

    Cortês, Marina; Smolin, Lee

    2018-01-01

    In 1979 Penrose hypothesized that the arrows of time are explained by the hypothesis that the fundamental laws are time irreversible [R. Penrose, in General Relativity: An Einstein Centenary Survey (1979)]. That is, our reversible laws, such as the standard model and general relativity are effective, and emerge from an underlying fundamental theory which is time irreversible. In [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007; 90, 044035 (2014), 10.1103/PhysRevD.90.044035; 93, 084039 (2016), 10.1103/PhysRevD.93.084039] we put forward a research program aiming at realizing just this. The aim is to find a fundamental description of physics above the Planck scale, based on irreversible laws, from which will emerge the apparently reversible dynamics we observe on intermediate scales. Here we continue that program and note that a class of discrete dynamical systems are known to exhibit this very property: they have an underlying discrete irreversible evolution, but in the long term exhibit the properties of a time reversible system, in the form of limit cycles. We connect this to our original model proposal in [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007], and show that the behaviors obtained there can be explained in terms of the same phenomenon: the attraction of the system to a basin of limit cycles, where the dynamics appears to be time reversible. Further than that, we show that our original models exhibit the very same feature: the emergence of quasiparticle excitations obtained in the earlier work in the space-time description is an expression of the system's convergence to limit cycles when seen in the causal set description.

  12. Domino model for geomagnetic field reversals.

    Science.gov (United States)

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M

    2013-01-01

    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.

  13. Electrolysis-assisted mitigation of reverse solute flux in a three-chamber forward osmosis system.

    Science.gov (United States)

    Zou, Shiqiang; He, Zhen

    2017-05-15

    Forward osmosis (FO) has been widely studied for desalination or water recovery from wastewater, and one of its key challenges for practical applications is reverse solute flux (RSF). RSF can cause loss of draw solutes, salinity build-up and undesired contamination at the feed side. In this study, in-situ electrolysis was employed to mitigate RSF in a three-chamber FO system ("e-FO") with Na 2 SO 4 as a draw solute and deionized (DI) water as a feed. Operation parameters including applied voltage, membrane orientation and initial draw concentrations were systematically investigated to optimize the e-FO performance and reduce RSF. Applying a voltage of 1.5 V achieved a RSF of 6.78 ± 0.55 mmol m -2  h -1 and a specific RSF of 0.138 ± 0.011 g L -1 in the FO mode and with 1 M Na 2 SO 4 as the draw, rendering ∼57% reduction of solute leakage compared to the control without the applied voltage. The reduced RSF should be attributed to constrained ion migration induced by the coactions of electric dragging force (≥1.5 V) and high solute rejection of the FO membrane. Reducing the intensity of the solution recirculation from 60 to 10 mL min -1 significantly reduced specific energy consumption of the e-FO system from 0.693 ± 0.127 to 0.022 ± 0.004 kWh m -3 extracted water or from 1.103 ± 0.059 to 0.044 ± 0.002 kWh kg -1 reduced reversed solute. These results have demonstrated that the electrolysis-assisted RSF mitigation could be an energy-efficient method for controlling RSF towards sustainable FO applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Magnetic reversals from planetary dynamo waves

    DEFF Research Database (Denmark)

    Sheyko, Andrey; Finlay, Chris; Jackson, Andrew

    2016-01-01

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes ...... to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.......A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes...... place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines...

  15. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    Science.gov (United States)

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  16. Logistics Management: New trends in the Reverse Logistics

    Science.gov (United States)

    Antonyová, A.; Antony, P.; Soewito, B.

    2016-04-01

    Present level and quality of the environment are directly dependent on our access to natural resources, as well as their sustainability. In particular production activities and phenomena associated with it have a direct impact on the future of our planet. Recycling process, which in large enterprises often becomes an important and integral part of the production program, is usually in small and medium-sized enterprises problematic. We can specify a few factors, which have direct impact on the development and successful application of the effective reverse logistics system. Find the ways to economically acceptable model of reverse logistics, focusing on converting waste materials for renewable energy, is the task in progress.

  17. Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.

    Science.gov (United States)

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Mi, Zetian; Li, Chao-Jun

    2015-06-24

    Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.

  18. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves.

    Science.gov (United States)

    Moruno-Dávila, M A; Garrido-del Solo, C; García-Moreno, M; Havsteen, B H; Garcia-Sevilla, F; Garcia-Cánovas, F; Varón, R

    2001-02-01

    The use of suicide substrates remains a very important and useful method in enzymology for studying enzyme mechanisms and designing potential drugs. Suicide substrates act as modified substrates for the target enzymes and bind to the active site. Therefore the presence of a competitive reversible inhibitor decreases the rate of substrate-induced inactivation and protects the enzyme from this inactivation. This lowering on the inactivation rate has evident physiological advantages, since it allows the easy acquisition of experimental data and facilitates kinetic data analysis by providing another variable (inhibitor concentration). However despite the importance of the simultaneous action of a suicide substrate and a competitive reversible inhibition, to date no corresponding kinetic analysis has been carried out. Therefore we present a general kinetic analysis of a Michaelis-Menten reaction mechanism with double inhibition caused by both, a suicide substrate and a competitive reversible inhibitor. We assume rapid equilibrium of the reversible reaction steps involved, while the time course equations for the reaction product have been derived with the assumption of a limiting enzyme. The goodness of the analytical solutions has been tested by comparison with the simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested. In conclusion, we present a complete kinetic analysis of an enzyme reaction mechanism as described above in an attempt to fill a gap in the theoretical treatment of this type of system.

  19. Geometrical error calibration in reflective surface testing based on reverse Hartmann test

    Science.gov (United States)

    Gong, Zhidong; Wang, Daodang; Xu, Ping; Wang, Chao; Liang, Rongguang; Kong, Ming; Zhao, Jun; Mo, Linhai; Mo, Shuhui

    2017-08-01

    In the fringe-illumination deflectometry based on reverse-Hartmann-test configuration, ray tracing of the modeled testing system is performed to reconstruct the test surface error. Careful calibration of system geometry is required to achieve high testing accuracy. To realize the high-precision surface testing with reverse Hartmann test, a computer-aided geometrical error calibration method is proposed. The aberrations corresponding to various geometrical errors are studied. With the aberration weights for various geometrical errors, the computer-aided optimization of system geometry with iterative ray tracing is carried out to calibration the geometrical error, and the accuracy in the order of subnanometer is achieved.

  20. Reverse logistics system and recycling potential at a landfill: A case study from Kampala City.

    Science.gov (United States)

    Kinobe, J R; Gebresenbet, G; Niwagaba, C B; Vinnerås, B

    2015-08-01

    The rapid growing population and high urbanisation rates in Sub-Saharan Africa has caused enormous pressure on collection services of the generated waste in the urban areas. This has put a burden on landfilling, which is the major waste disposal method. Waste reduction, re-use and recycling opportunities exist but are not fully utilized. The common items that are re-used and re-cycled are plastics, paper, aluminum, glass, steel, cardboard, and yard waste. This paper develops an overview of reverse logistics at Kiteezi landfill, the only officially recognised waste disposal facility for Kampala City. The paper analyses, in details the collection, re-processing, re-distribution and final markets of these products into a reversed supply chain network. Only 14% of the products at Kiteezi landfill are channeled into the reverse chain while 63% could be included in the distribution chain but are left out and disposed of while the remaining 23% is buried. This is because of the low processing power available, lack of market value, lack of knowledge and limited value addition activities to the products. This paper proposes possible strategies of efficient and effective reverse logistics development, applicable to Kampala City and other similar cities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration.

    Science.gov (United States)

    Din, Fakhar Ud; Choi, Ju Yeon; Kim, Dong Wuk; Mustapha, Omer; Kim, Dong Shik; Thapa, Raj Kumar; Ku, Sae Kwang; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2017-11-01

    Intravenously administered for the treatment of rectum cancer, irinotecan produces severe side effects due to very high plasma concentrations. A novel irinotecan-encapsulated double reverse thermosensitive nanocarrier system (DRTN) for rectal administration was developed as an alternative. The DRTN was fabricated by dispersing the thermosensitive irinotecan-encapsulated solid lipid nanoparticles (SLN) in the thermosensitive poloxamer solution. Its gel properties, pharmacokinetics, morphology, anticancer activity and immunohistopathology were assessed after its rectal administration to rats and tumor-bearing mice. In the DRTN, the solid form of the SLN and the liquid form of the poloxamer solution persisted at 25 °C; the former melted to liquid, and the latter altered to gel at 36.5 °C. The DRTN was easily administered to the anus, gelling rapidly and strongly after rectal administration. Compared to the conventional hydrogel and intravenously administered solution, it retarded dissolution and initial plasma concentration. The DRTN gave sustained release and nearly constant plasma concentrations of irinotecan at 1-3 h in rats, resulting in improved anticancer activity. It induced no damage to the rat rectum and no body weight loss in tumor-bearing mice. Thus, this irinotecan-encapsulated DRTN associated with a reduced burst effect, lack of toxicity and excellent antitumor efficacy would be strongly recommended as a rectal pharmaceutical product alternative to commercial intravenous injection in the treatment of rectum and colon cancer.

  2. Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis

    International Nuclear Information System (INIS)

    Alexander, E.L.; Firestein, G.S.; Weiss, J.L.; Heuser, R.R.; Leitl, G.; Wagner, H.N. Jr.; Brinker, J.A.; Ciuffo, A.A.; Becker, L.C.

    1986-01-01

    The effects of peripheral cold exposure on myocardial perfusion and function were studied in 13 patients with scleroderma without clinically evident myocardial disease. Ten patients had at least one transient, cold-induced, myocardial perfusion defect visualized by thallium-201 scintigraphy, and 12 had reversible, cold-induced, segmental left ventricular hypokinesis by two-dimensional echocardiography. The 10 patients with transient perfusion defects all had anatomically corresponding ventricular wall motion abnormalities. No one in either of two control groups (9 normal volunteers and 7 patients with chest pain and normal coronary arteriograms) had cold-induced abnormalities. This study is the first to show the simultaneous occurrence of cold-induced abnormalities in myocardial perfusion and function in patients with scleroderma. The results suggest that cold exposure in such patients may elicit transient reflex coronary vasoconstriction resulting in reversible myocardial ischemia and dysfunction. Chronic recurrent episodes of coronary spasm may lead to focal myocardial fibrosis

  3. Buffer layer annealing effects on the magnetization reversal process in Pd/Co/Pd systems

    International Nuclear Information System (INIS)

    Fassatoui, A.; Belhi, R.; Vogel, J.; Abdelmoula, K.

    2016-01-01

    We have investigated the effect of annealing the buffer layer on the magnetization reversal behavior in Pd/Co/Pd thin films using magneto-optical Kerr microscopy. It was found that annealing the buffer layer at 150 °C for 1 h decreases the coercivity and increases the saturation magnetization and the effective magnetic anisotropy constant. This study also shows that the annealing induces a change of the magnetization reversal from a mixed nucleation and domain wall propagation process to one dominated by domain wall propagation. This result demonstrates that the main effect of annealing the buffer layer is to decrease the domain wall pinning in the Co layer, favoring the domain wall propagation mode. - Highlights: • The buffer layer surface morphology changes upon annealing of the buffer layer. • The coercivity decreases while the saturation magnetization and the effective anisotropy increase with the annealing of the buffer layer. • The reversal process changes from a mixed nucleation and domain wall propagation process to one dominated by domain wall propagation when annealing the buffer layer.

  4. Geomagnetic Reversals during the Phanerozoic.

    Science.gov (United States)

    McElhinny, M W

    1971-04-09

    An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency.

  5. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States); Zidan, Ragaiy, E-mail: ragaiy.zidan@srnl.doe.gov [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States)

    2013-12-15

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C{sub 60} from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na{sub 6}C{sub 60} or Li{sub 6}C{sub 60}. Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H{sub 2} while the lithium doped material can reversibly store 5.0 wt.% H{sub 2} through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  6. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    International Nuclear Information System (INIS)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent; Zidan, Ragaiy

    2013-01-01

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C 60 from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na 6 C 60 or Li 6 C 60 . Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H 2 while the lithium doped material can reversibly store 5.0 wt.% H 2 through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  7. Resveratrol reverses morphine-induced neuroinflammation in morphine-tolerant rats by reversal HDAC1 expression

    Directory of Open Access Journals (Sweden)

    Ru-Yin Tsai

    2016-06-01

    Conclusion: Resveratrol restores the antinociceptive effect of morphine by reversing morphine infusion-induced spinal cord neuroinflammation and increase in TNFR1 expression. The reversal of the morphine-induced increase in TNFR1 expression by resveratrol is partially due to reversal of the morphine infusion-induced increase in HDAC1 expression. Resveratrol pretreatment can be used as an adjuvant in clinical pain management for patients who need long-term morphine treatment or with neuropathic pain.

  8. Reversible posterior leukoencephalopathy syndrome secondary to systemic-onset juvenile idiopathic arthritis: A case report and review of the literature

    OpenAIRE

    ZHANG, PINGPING; LI, XIAOFENG; LI, YATING; WANG, JING; ZENG, HUASONG; ZENG, XIAOFENG

    2014-01-01

    Reversible posterior leukoencephalopathy syndrome (RPLS) is a clinical syndrome based on changes in clinical imaging, and it has been reported to mainly occur in adults. However, it has been recently discovered that RPLS is also prevalent in infant patients, particularly in those using glucocorticoids, immunosuppressant medications and cytotoxic drugs. The current study presents a 5-year-old male with a previous diagnosis of systemic-onset juvenile idiopathic arthritis (SoJIA) and macrophage-...

  9. Risperidone reverses the spatial object recognition impairment and hippocampal BDNF-TrkB signalling system alterations induced by acute MK-801 treatment

    Science.gov (United States)

    Chen, Guangdong; Lin, Xiaodong; Li, Gongying; Jiang, Diego; Lib, Zhiruo; Jiang, Ronghuan; Zhuo, Chuanjun

    2017-01-01

    The aim of the present study was to investigate the effects of a commonly-used atypical antipsychotic, risperidone, on alterations in spatial learning and in the hippocampal brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signalling system caused by acute dizocilpine maleate (MK-801) treatment. In experiment 1, adult male Sprague-Dawley rats subjected to acute treatment of either low-dose MK801 (0.1 mg/kg) or normal saline (vehicle) were tested for spatial object recognition and hippocampal expression levels of BDNF, TrkB and the phophorylation of TrkB (p-TrkB). We found that compared to the vehicle, MK-801 treatment impaired spatial object recognition of animals and downregulated the expression levels of p-TrkB. In experiment 2, MK-801- or vehicle-treated animals were further injected with risperidone (0.1 mg/kg) or vehicle before behavioural testing and sacrifice. Of note, we found that risperidone successfully reversed the deleterious effects of MK-801 on spatial object recognition and upregulated the hippocampal BDNF-TrkB signalling system. Collectively, the findings suggest that cognitive deficits from acute N-methyl-D-aspartate receptor blockade may be associated with the hypofunction of hippocampal BDNF-TrkB signalling system and that risperidone was able to reverse these alterations. PMID:28451387

  10. Designing Nanoscale Counter Using Reversible Gate Based on Quantum-Dot Cellular Automata

    Science.gov (United States)

    Moharrami, Elham; Navimipour, Nima Jafari

    2018-04-01

    Some new technologies such as Quantum-dot Cellular Automata (QCA) is suggested to solve the physical limits of the Complementary Metal-Oxide Semiconductor (CMOS) technology. The QCA as one of the novel technologies at nanoscale has potential applications in future computers. This technology has some advantages such as minimal size, high speed, low latency, and low power consumption. As a result, it is used for creating all varieties of memory. Counter circuits as one of the important circuits in the digital systems are composed of some latches, which are connected to each other in series and actually they count input pulses in the circuit. On the other hand, the reversible computations are very important because of their ability in reducing energy in nanometer circuits. Improving the energy efficiency, increasing the speed of nanometer circuits, increasing the portability of system, making smaller components of the circuit in a nuclear size and reducing the power consumption are considered as the usage of reversible logic. Therefore, this paper aims to design a two-bit reversible counter that is optimized on the basis of QCA using an improved reversible gate. The proposed reversible structure of 2-bit counter can be increased to 3-bit, 4-bit and more. The advantages of the proposed design have been shown using QCADesigner in terms of the delay in comparison with previous circuits.

  11. Numerical investigation on the energetic performances of conventional and pellet aftertreatment systems in flow-through and reverse-flow designs

    Directory of Open Access Journals (Sweden)

    Morrone Pietropaolo

    2011-01-01

    Full Text Available The aim of the paper is the analysis of the energetic performances of structured and pelletized aftertreatment systems in flow-through and reverse-flow designs (passive and active flow control respectively for diesel internal combustion engines. To this purpose, the influence of the engine operating conditions on the system performances has been investigated adopting a one-dimensional time-dependent model. Specifically, the thermal behaviour and the fuel saving capability of several arrangements have been characterized. The analysis has shown that the active emission control system with pelletized design guarantees higher heat retention capability. Furthermore, the numerical model has revealed the significant influence of the solid and exhaust gas temperature on the energy efficiency of the aftertreatment systems and the large effect of exhaust mass flow rate and unburned hydrocarbons concentration.

  12. Laser heating of field-reversed configurations

    International Nuclear Information System (INIS)

    Carson, R.S.; Vlases, G.C.

    1983-01-01

    The experimental facility is a 21-cm-long solenoid with a 5.5-cm bore. The 4-cm ID quartz tube is filled with slowly flowing H 2 to 0.5-3.0 torr. Fields up to 6.5 T in 3.7 μsec are produced, with reverse-bias fields up -1.9 T. Preionization is by 40kA axial discharge 4.5 μsec before field-reversal is begun. The CO 2 laser used produces 300 to 400 J in 2 μsec, in an annular beam that can be defocused for preheating the outer edges of the plasma, or focused tightly for central-column heating and beam propagation during formation. The focusing system includes a return mirror for multiple passing of the laser energy. Diagnostics include compensated, diamagnetic flux loops, internal field probes, cross-tube and axial interferometers, fast photography, and spectroscopy

  13. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-05-21

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  14. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Burlakov, Victor M.; Besong, Tabot M.D.; Joshi, Chakra Prasad; AbdulHalim, L; Black, David; Whetten, Robert; Goriely, Alain; Bakr, Osman

    2015-01-01

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  15. Do high school chemistry examinations inhibit deeper level understanding of dynamic reversible chemical reactions?

    Science.gov (United States)

    Wheeldon, R.; Atkinson, R.; Dawes, A.; Levinson, R.

    2012-07-01

    Background and purpose : Chemistry examinations can favour the deployment of algorithmic procedures like Le Chatelier's Principle (LCP) rather than reasoning using chemical principles. This study investigated the explanatory resources which high school students use to answer equilibrium problems and whether the marks given for examination answers require students to use approaches beyond direct application of LCP. Sample : The questionnaire was administered to 162 students studying their first year of advanced chemistry (age 16/17) in three high achieving London high schools. Design and methods : The students' explanations of reversible chemical systems were inductively coded to identify the explanatory approaches used and interviews with 13 students were used to check for consistency. AS level examination questions on reversible reactions were analysed to identify the types of explanations sought and the students' performance in these examinations was compared to questionnaire answers. Results : 19% of students used a holistic explanatory approach: when the rates of forward and reverse reactions are correctly described, recognising their simultaneous and mutually dependent nature. 36% used a mirrored reactions approach when the connected nature of the forward and reverse reactions is identified, but not their mutual dependency. 42% failed to recognize the interdependence of forward and reverse reactions (reactions not connected approach). Only 4% of marks for AS examination questions on reversible chemical systems asked for responses which went beyond either direct application of LCP or recall of equilibrium knowledge. 37% of students attained an A grade in their AS national examinations. Conclusions : Examinations favour the application of LCP making it possible to obtain the highest grade with little understanding of reversible chemical systems beyond a direct application of this algorithm. Therefore students' understanding may be attenuated so that they are

  16. Principles of a reversible programming language

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    The principles of reversible programming languages are explicated and illustrated with reference to the design of a high-level imperative language, Janus. The fundamental properties for such languages include backward as well as forward determinism and reversible updates of data. The unique design...... languages, and demonstrate this for Janus. We show the practicality of the language by implementation of a reversible fast Fourier transform. Our results indicate that the reversible programming paradigm has fundamental properties that are relevant to many different areas of computer science....... features of the language include explicit post-condition assertions, direct access to an inverse semantics and the possibility of clean (i.e., garbage-free) computation of injective functions. We suggest the clean simulation of reversible Turing machines as a criterion for computing strength of reversible...

  17. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    International Nuclear Information System (INIS)

    Shamsuddin Ilias

    2005-01-01

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal

  18. Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy

    Science.gov (United States)

    van der Heyden, M. J.; Diks, C.; Pijn, J. P. M.; Velis, D. N.

    1996-02-01

    Intracranial electroencephalograms from patients suffering from mesial temporal lobe epilepsy were tested for time reversibility. If the recorded time series is irreversible, the input of the recording system cannot be a realisation of a linear Gaussian random process. We confirmed experimentally that the measurement equipment did not introduce irreversibility in the recorded output when the input was a realisation of a linear Gaussian random process. In general, the non-seizure recordings are reversible, whereas the seizure recordings are irreversible. These results suggest that time reversibility is a useful property for the characterisation of human intracranial EEG recordings in mesial temporal lobe epilepsy.

  19. ‘Picking People to Hate’: Reversible reversals in stand-up comedy

    DEFF Research Database (Denmark)

    Keisalo, Marianna Päivikki

    2017-01-01

    Generally speaking, ritual reversals mean switching to the opposite of what is considered ‘the normal order’. Such reversals can occur, for example, in terms of social hierarchies in rites of passage, in action in carnival, or in the framing of action as ritual or performance. For comedic figures...... cultural grounds and show how the study of comedic performance can offer insights into the semiotics of performance more broadly....

  20. Periodicity and Immortality in Reversible Computing

    OpenAIRE

    Kari , Jarkko; Ollinger , Nicolas

    2008-01-01

    Additional material available on the web at http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/; We investigate the decidability of the periodicity and the immortality problems in three models of reversible computation: reversible counter machines, reversible Turing machines and reversible one-dimensional cellular automata. Immortality and periodicity are properties that describe the behavior of the model starting from arbitrary initial configurations: immortality is the property of having at le...

  1. Reversals and collisions optimize protein exchange in bacterial swarms

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy; Christley, Scott; Shrout, Joshua D.; Aranson, Igor S.; Alber, Mark

    2017-03-01

    Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as amechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthus optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.

  2. An alternative design concept in reverse osmosis desalination

    International Nuclear Information System (INIS)

    Boeddeker, K.W.; Hilgendorff, W.; Kaschemekat, J.

    1976-01-01

    A highly adaptable plate system for reverse osmosis and ultrafiltration with easily accessible flat membranes is introduced, employing a straight-channel construction of plastic components, designed to tolerate comparatively bold operations conditions at the calculated expense of membrane service life. Pilot installations are illustrated. (orig.) [de

  3. Coagulation and ultrafiltration in seawater reverse osmosis pretreatment

    NARCIS (Netherlands)

    Tabatabai, S.A.A.

    2014-01-01

    Seawater desalination is a globally expanding coastal industry with an installed capacity of over 80 million m3/day. Algal blooms pose a challenge to the operation of seawater reverse osmosis (SWRO) membranes and pre-treatment systems due to high concentrations of algal cells and algal organic

  4. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    International Nuclear Information System (INIS)

    Mirus, K.A.

    1998-06-01

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses

  5. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Mirus, Kevin A. [Univ. of Wisconsin, Madison, WI (United States)

    1998-01-01

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  6. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    Science.gov (United States)

    Mirus, Kevin Andrew

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Rossler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high- dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  7. How decision reversibility affects motivation.

    Science.gov (United States)

    Bullens, Lottie; van Harreveld, Frenk; Förster, Jens; Higgins, Tory E

    2014-04-01

    The present research examined how decision reversibility can affect motivation. On the basis of extant findings, it was suggested that 1 way it could affect motivation would be to strengthen different regulatory foci, with reversible decision making, compared to irreversible decision making, strengthening prevention-related motivation relatively more than promotion-related motivation. If so, then decision reversibility should have effects associated with the relative differences between prevention and promotion motivation. In 5 studies, we manipulated the reversibility of a decision and used different indicators of regulatory focus motivation to test these predictions. Specifically, Study 1 tested for differences in participants' preference for approach versus avoidance strategies toward a desired end state. In Study 2, we used speed and accuracy performance as indicators of participants' regulatory motivation, and in Study 3, we measured global versus local reaction time performance. In Study 4, we approached the research question in a different way, making use of the value-from-fit hypothesis (Higgins, 2000, 2002). We tested whether a fit between chronic regulatory focus and focus induced by the reversibility of the decision increased participants' subjective positive feelings about the decision outcome. Finally, in Study 5, we tested whether regulatory motivation, induced by decision reversibility, also influenced participants' preference in specific product features. The results generally support our hypothesis showing that, compared to irreversible decisions, reversible decisions strengthen a prevention focus more than a promotion focus. Implications for research on decision making are discussed.

  8. A new reversible Mg3Ag–H2 system for hydrogen storage

    International Nuclear Information System (INIS)

    Si, T.Z.; Zhang, J.B.; Liu, D.M.; Zhang, Q.A.

    2013-01-01

    Highlights: •Mg 3 Ag compound with high-purity was prepared by hydrogen metallurgy. •Mg 3 Ag is first employed for reversible hydrogen storage with altered thermodynamics. •The enhanced cyclic stability is due to the prevention of MgH 2 sintering by MgAg. -- Abstract: For the first time, the compound Mg 3 Ag was employed as a medium for hydrogen storage. It has been demonstrated that the hydriding/dehydriding process of Mg 3 Ag is reversible through the reaction Mg 3 Ag + 2H 2 ↔ 2MgH 2 + MgAg with obtaining altered thermodynamics. An enhanced cycling stability is also achieved by the capacity retention of 95% after 30 cycles, much higher than 70% for the pure Mg sample, which can be explained that the agglomeration and sintering of the resulting MgH 2 are efficiently prevented by the formation of hard and brittle MgAg phase upon multi-cycling

  9. Crossover driven by time-reversal symmetry breaking in quantum chaos

    International Nuclear Information System (INIS)

    Taniguchi, N.; Hashimoto, A.; Simons, B.D.; Altshuler, B.L.

    1994-01-01

    Parametric correlations of the energy spectra of quantum chaotic systems are presented in the presence of time-reversal symmetry-breaking perturbations. The spectra disperse as a function of two external perturbations, one of which preserves time-reversal symmetry, while the other violates it. Exact analytical expressions for the parametric two-point autocorrelation function of the density of states are derived in the crossover region by means of the supermatrix method. For the orthogonal-unitary crossover, the velocity distribution is determined and shown to deviate from Gaussian. (orig.)

  10. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok-Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-10-15

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  11. Coding/decoding and reversibility of droplet trains in microfluidic networks.

    Science.gov (United States)

    Fuerstman, Michael J; Garstecki, Piotr; Whitesides, George M

    2007-02-09

    Droplets of one liquid suspended in a second, immiscible liquid move through a microfluidic device in which a channel splits into two branches that reconnect downstream. The droplets choose a path based on the number of droplets that occupy each branch. The interaction among droplets in the channels results in complex sequences of path selection. The linearity of the flow through the microchannels, however, ensures that the behavior of the system can be reversed. This reversibility makes it possible to encrypt and decrypt signals coded in the intervals between droplets. The encoding/decoding device is a functional microfluidic system that requires droplets to navigate a network in a precise manner without the use of valves, switches, or other means of external control.

  12. Poly(NIPAM-co-MPS-grafted multimodal porous silica nanoparticles as reverse thermoresponsive drug delivery system

    Directory of Open Access Journals (Sweden)

    Sushilkumar A. Jadhav

    2017-05-01

    Full Text Available Hybrid drug delivery systems (DDS have been prepared by grafting poly(NIPAM-co-MPS chains on multimodal porous silica nanoparticles having an inner mesoporous structure and an outer thin layer of micropores. The hybrid thermoresponsive DDS were fully characterized and loaded with a model drug. The in vitro drug release tests are carried out at below and above the lower critical solution temperature (LCST of the copolymer. The results have revealed that due to the presence of small diameter (~1.3 nm micropores at the periphery of the particles, the collapsed globules of the thermoresponsive copolymer above its LCST hinders the complete release of the drug which resulted in a reverse thermoresponsive drug release profile by the hybrid DDS.

  13. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  14. Computer-aided dental prostheses construction using reverse engineering.

    Science.gov (United States)

    Solaberrieta, E; Minguez, R; Barrenetxea, L; Sierra, E; Etxaniz, O

    2014-01-01

    The implementation of computer-aided design/computer-aided manufacturing (CAD/CAM) systems with virtual articulators, which take into account the kinematics, constitutes a breakthrough in the construction of customised dental prostheses. This paper presents a multidisciplinary protocol involving CAM techniques to produce dental prostheses. This protocol includes a step-by-step procedure using innovative reverse engineering technologies to transform completely virtual design processes into customised prostheses. A special emphasis is placed on a novel method that permits a virtual location of the models. The complete workflow includes the optical scanning of the patient, the use of reverse engineering software and, if necessary, the use of rapid prototyping to produce CAD temporary prostheses.

  15. Reversible logic gates based on enzyme-biocatalyzed reactions and realized in flow cells: a modular approach.

    Science.gov (United States)

    Fratto, Brian E; Katz, Evgeny

    2015-05-18

    Reversible logic gates, such as the double Feynman gate, Toffoli gate and Peres gate, with 3-input/3-output channels are realized using reactions biocatalyzed with enzymes and performed in flow systems. The flow devices are constructed using a modular approach, where each flow cell is modified with one enzyme that biocatalyzes one chemical reaction. The multi-step processes mimicking the reversible logic gates are organized by combining the biocatalytic cells in different networks. This work emphasizes logical but not physical reversibility of the constructed systems. Their advantages and disadvantages are discussed and potential use in biosensing systems, rather than in computing devices, is suggested. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rapid and reversible epigenome editing by endogenous chromatin regulators.

    Science.gov (United States)

    Braun, Simon M G; Kirkland, Jacob G; Chory, Emma J; Husmann, Dylan; Calarco, Joseph P; Crabtree, Gerald R

    2017-09-15

    Understanding the causal link between epigenetic marks and gene regulation remains a central question in chromatin biology. To edit the epigenome we developed the FIRE-Cas9 system for rapid and reversible recruitment of endogenous chromatin regulators to specific genomic loci. We enhanced the dCas9-MS2 anchor for genome targeting with Fkbp/Frb dimerizing fusion proteins to allow chemical-induced proximity of a desired chromatin regulator. We find that mSWI/SNF (BAF) complex recruitment is sufficient to oppose Polycomb within minutes, leading to activation of bivalent gene transcription in mouse embryonic stem cells. Furthermore, Hp1/Suv39h1 heterochromatin complex recruitment to active promoters deposits H3K9me3 domains, resulting in gene silencing that can be reversed upon washout of the chemical dimerizer. This inducible recruitment strategy provides precise kinetic information to model epigenetic memory and plasticity. It is broadly applicable to mechanistic studies of chromatin in mammalian cells and is particularly suited to the analysis of endogenous multi-subunit chromatin regulator complexes.Understanding the link between epigenetic marks and gene regulation requires the development of new tools to directly manipulate chromatin. Here the authors demonstrate a Cas9-based system to recruit chromatin remodelers to loci of interest, allowing rapid, reversible manipulation of epigenetic states.

  17. Garbage collection for reversible functional languages

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2015-01-01

    Reversible languages are programming languages where all programs can run both forwards and backwards. Reversible functional languages have been proposed that use symmetric pattern matching and data construction. To be reversible, these languages require linearity: Every variable must be used...

  18. REVERSE CHARGE AND THE CASH FLOW OF THE PUBLIC BUDGETS IN THE CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Kohoutková Růžena

    2015-12-01

    Full Text Available Reverse charge is currently used as a measure against VAT carousel fraud. Its extension to all goods and services is discussed among the tax policy makers at the national and EU level. Opponents of general reverse-charge argue that this method of VAT collection would completely change the nature of the VAT system. One of the practical drawbacks of reverse charge is the negative impact on the cash flow of the public budgets. This article quantifies the average monthly financing available to the State thanks to delayed repayments of input tax to VAT payers under the normal VAT system. This amount equals to almost 53 billion CZK and represents the negative impact of the general reverse charge on the cash flow of the public budgets. A change in the deadline for remitting VAT or introducing VAT advances to be paid prior to the final tax payment would reduce the negative influence on public finances.

  19. Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics

    International Nuclear Information System (INIS)

    Holian, B.L.; Hoover, W.G.; Posch, H.A.

    1987-01-01

    We show that Nosromane-bar mechanics provides a link between computer simulations of nonequilibrium processes and real-world experiments. Reversible Nose-bar equations of motion, when used to constrain non- equilibrium boundary regions, generate stable dissipative behavior within an adjoining bulk sample governed by Newton's equations of motion. Thus, irreversible behavior consistent with the second law of thermodynamics arises from completely reversible microscopic motion. Loschmidt's reversibility paradox is surmounted by this Nose-bar-Newton system, because the steady-state nonequilibrium probability density in the many-body phase space is confined to a zero-volume attractor

  20. Reversal of subtidal dune asymmetries caused by seasonally reversing wind-driven currents in Torres Strait, northeastern Australia

    Science.gov (United States)

    Harris, Peter T.

    1991-07-01

    Large subtidal sand dunes (sandwaves) located in Adolphus Channel, Torres Strait, have been observed to reverse their asymmetric orientation between September-February. This has been attributed to a reversal in wind-driven currents, which flow westward during the SE trade season (April-November) and eastwards during the NW monsoon season [December-March: HARRIS (1989) Continental Shelf Research, 9, 981-1002]. Observations in September 1988 and February 1989 from another area of dunes in Torres Strait corroborate this asymmetry reversal pattern. The results indicate that such reversals may be common in Torres Strait and in other areas where subtidal bedforms are subject to modification by superimposed, seasonally reversing, wind-driven currents.

  1. Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis

    International Nuclear Information System (INIS)

    Sharqawy, Mostafa H.; Zubair, Syed M.; Lienhard, John H.

    2011-01-01

    A second law analysis of a reverse osmosis desalination plant is carried out using reliable seawater exergy formulation instead of a common model in literature that represents seawater as an ideal mixture of liquid water and solid sodium chloride. The analysis is performed using reverse osmosis desalination plant data and compared with results previously published using the ideal mixture model. It is demonstrated that the previous model has serious shortcomings, particularly with regard to calculation of the seawater flow exergy, the minimum work of separation, and the second law efficiency. The most up-to-date thermodynamic properties of seawater, as needed to conduct an exergy analysis, are given as correlations in this paper. From this new analysis, it is found that the studied reverse osmosis desalination plant has very low second law efficiency (<2%) even when using the available energy recovery systems. Therefore, an energy recovery system is proposed using the (PRO) pressure retarded osmotic method. The proposed alternative design has a second law efficiency of 20%, and the input power is reduced by 38% relative to original reverse osmosis system. -- Highlights: ► A previously proposed model for the calculation of seawater flow exergy gives incorrect values. ► Reverse osmosis desalination plants have very low second law efficiency (<2%) even when using the available energy recovery systems. ► A PRO energy recovery device increases the RO plant’s second law efficiency to 20% and reduces the input power.

  2. The treatment of river water by reverse osmosis

    International Nuclear Information System (INIS)

    Ray, N.J.; Jenkins, M.A.; Coates, A.

    1977-01-01

    The suitability of rod, spirally would and hollow fibre reverse osmosis systems has been assessed for the treatment of River Trent water to produce water of boiler feed quality. Particular attention has been paid to the effects of the suspended solids level of the influent water supply on operating and cleaning regimes. The best performance was given by the rod-type membranes which could be used with relatively dirty water if suitable chemical and/or physical cleaning techniques were applied. However, even this system, requires some form of clarification of the raw supply, and this affects capital and overall running costs. The hollow fibre membrane, which cannot be readily cleaned required an excessively clean water supply to avoid rapid and irreversible loss of output and is unlikely to have full-scale application on this, or similar, water. The spirally wound membranes, whilst not so susceptible to suspended solids as the hollow fibre system, did not tolerate dirty water, and required the raw water to be clarified to a level that is unlikely to be continuously guaranteed. In its current stage of development reverse osmosis is unlikely to give a cost advantage over the main cation/anion exchange stage of present water treatment plant, even for the treatment of waters relatively high in dissolved salts (500 mg kg -1 ). Moreover, conventional pretreatment and final mixed ion-exchange beds would still be required to produce water of boiler feed quality. Reverse osmosis does, however, remove organic species and non reactive silicon; its selection is likely to be dictated by such requirements or where space is at a premium e.g. extensions to existing water treatment plants. (orig.) [de

  3. Formation of field reversed configurations in a slow, multi-turn coil system: Appendix B

    International Nuclear Information System (INIS)

    Slough, J.T.; Hoffman, A.L.

    1987-01-01

    A previous field-reversed theta pinch, TRX-1, has been modified by replacing the single turn main compression coil with an array of three-turn coils. Field reversed configurations (FRCs) have been formed at relatively low values of azimuthal electric field, where ohmic dissipation and axial compressive heating are substituted for the radial shock heating which is dominant in high voltage theta pinches. The longer magnetic field risetime has allowed various controls to be applied to the formation timing, so that the axial implosion can be made to coincide with the peak of the applied magnetic field. This 'programmed formation' control results in maximum plasma heating, and minimizes the formation dynamics

  4. MAC-sparing effect of nitrous oxide in sevoflurane anesthetized sheep and its reversal with systemic atipamezole administration

    Science.gov (United States)

    Scanu, Antonio; Melosu, Valentino; Careddu, Giovanni Mario; Sotgiu, Giovanni

    2018-01-01

    Introduction Nitrous oxide (N2O) is an anesthetic gas with antinociceptive properties and reduces the minimum alveolar concentration (MAC) for volatile anesthetic agents, potentially through mechanisms involving central alpha2-adrenoceptors. We hypothesized that 70% N2O in the inspired gas will significantly reduce the MAC of sevoflurane (MACSEVO) in sheep, and that this effect can be reversed by systemic atipamezole. Materials and methods Animals were initially anesthetized with SEVO in oxygen (O2) and exposed to an electrical current as supramaximal noxious stimulus in order to determine MACSEVO (in duplicates). Thereafter, 70% N2O was added to the inspired gas and the MAC re-determined in the presence of N2O (MACSN). A subgroup of sheep were anesthetized a second time with SEVO/N2O for re-determination of MACSN, after which atipamezole (0.2 mg kg-1, IV) was administered for MACSNA determinations. Sheep were anesthetized a third time, initially with only SEVO/O2 to re-determine MACSEVO, after which atipamezole (0.2 mg kg-1, IV) was administered for determination of MACSA. Results MACSEVO was 2.7 (0.3)% [mean (standard deviation)]. Addition of N2O resulted in a 37% reduction of MACSEVO to MACSN of 1.7 (0.2)% (p <0.0001). Atipamezole reversed this effect, producing a MACSNA of 3.1 (0.7)%, which did not differ from MACSEVO (p = 0.12). MACSEVO did not differ from MACSA (p = 0.69). Cardiorespiratory variables were not different among experimental groups except a lower ETCO2 in animals exposed to SEVO/N2O. Conclusions N2O produces significant MACSEVO-reduction in sheep; this effect is completely reversed by IV atipamezole confirming the involvement of alpha2-adrenoreceptors in the MAC-sparing action of N2O. PMID:29315308

  5. Reversible optical transcription of supramolecular chirality into molecular chirality

    NARCIS (Netherlands)

    Jong, Jaap J.D. de; Lucas, Linda N.; Kellogg, Richard M.; Esch, Jan H. van; Feringa, Bernard

    2004-01-01

    In nature, key molecular processes such as communication, replication, and enzyme catalysis all rely on a delicate balance between molecular and supramolecular chirality. Here we report the design, synthesis, and operation of a reversible, photoresponsive, self-assembling molecular system in which

  6. A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems

    Science.gov (United States)

    Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.

    2016-01-01

    Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.

  7. Magnetic reversals from planetary dynamo waves.

    Science.gov (United States)

    Sheyko, Andrey; Finlay, Christopher C; Jackson, Andrew

    2016-11-24

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines by columnar convection. Here we present an example of another class of reversing-geodynamo model, which operates in a regime of comparatively low viscosity and high magnetic diffusivity. This class does not fit into the paradigm of reversal regimes that are dictated by the value of the local Rossby number (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.

  8. Multiple reversal olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  9. Reversibility: An Engineer's Point of View

    Energy Technology Data Exchange (ETDEWEB)

    Berest, Pierre [LMS, ecole Polytechnique (France)

    2012-07-01

    Reversibility is the most consistent option in a democratic country. However reversibility may also have several drawbacks which must be identified and mitigated. Reversibility of a geological repository is a relatively new idea in France. The 1991 law dedicated to nuclear waste management considered reversibility as a possible option. Fifteen years later, the 2006 law mandated that a deep repository must be reversible and that the exact content of this notion should be defined by a new law to be discussed by the Parliament in 2015. Reversibility was not a concern put forward by engineers. It clearly originated from a societal demand sponsored and formulated by the Parliament. Since 1991, the exact meaning of this mandate progressively became more precise. In the early days, reversibility meant the technical and financial capability to retrieve the wastes from the repository, at least for some period of time after being emplaced. Progressively, a broader definition, suggested by Andra, was accepted: reversibility also means that a disposal facility should be operated in such a way that a stepwise decision-making process is possible. At each step, society must be able to decide to proceed to the next step, to pause or to reverse a step. Several benefits can be expected from a reversible repository. Some technical safety concerns may be only recognised after waste emplacement. Radioactive wastes may become a resource whose recoverability is desirable. Regulations may change, alternative waste treatment or better disposal techniques may be developed, or the need to modify a component of the facility may arise. Looking back at how chemical or domestic wastes were managed some 50 years ago easily underscores that it is not unreasonable to hope for significant advances in the future. For scientists and engineers, reversibility proves to have several other merits. To design and build a good repository, time is needed. The operator of a mine or of an oil field knows that

  10. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    Science.gov (United States)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  11. Study of the validity of a combined potential model using the Hybrid Reverse Monte Carlo method in Fluoride glass system

    Directory of Open Access Journals (Sweden)

    M. Kotbi

    2013-03-01

    Full Text Available The choice of appropriate interaction models is among the major disadvantages of conventional methods such as Molecular Dynamics (MD and Monte Carlo (MC simulations. On the other hand, the so-called Reverse Monte Carlo (RMC method, based on experimental data, can be applied without any interatomic and/or intermolecular interactions. The RMC results are accompanied by artificial satellite peaks. To remedy this problem, we use an extension of the RMC algorithm, which introduces an energy penalty term into the acceptance criteria. This method is referred to as the Hybrid Reverse Monte Carlo (HRMC method. The idea of this paper is to test the validity of a combined potential model of coulomb and Lennard-Jones in a Fluoride glass system BaMnMF7 (M = Fe,V using HRMC method. The results show a good agreement between experimental and calculated characteristics, as well as a meaningful improvement in partial pair distribution functions (PDFs. We suggest that this model should be used in calculating the structural properties and in describing the average correlations between components of fluoride glass or a similar system. We also suggest that HRMC could be useful as a tool for testing the interaction potential models, as well as for conventional applications.

  12. Reversible and non-reversible enlargement of cerebral spinal fluid spaces in anorexia nervosa

    International Nuclear Information System (INIS)

    Artmann, H.; Grau, H.; Adelmann, M.; Schleiffer, R.

    1985-01-01

    Brain CT studies of 35 patients with anoxia nervosa confirmed the observations of other authors: cerebral dystrophic changes correlate with weight loss and the reversibility of these changes also correlates with the normalization of body weight. Other corroborated facts are: the most numerous and most pronounced enlargements are of the cortical sulci and the interhemispheric fissure, moderate widening affects the ventricles and the rarest and most insignificant changes are those of the cerebellum. The reversibility of the changes showed a parallel to the extent of the changes themselves and to the duration of improvement of the body weight. The reversibility of the enlargement of the cortical sulci and of the distances between the frontal horns of the lateral ventricles was more often significant than that of the abnormal measurements of the cella media. This difference is based on minimal early acquired brain damage which occurs in 60% of our patients. This high incidence of early acquired minimal brain disease in patients with anorexia nervosa is here discussed as a nonspecific predisposing factor. Although there is no exact explanation of the etiology of the reversible enlargement of cerenral spinal fluid (CSF) spaces in anorexia nervosa, the changes resemble those in alcoholics. The mechanisms of brain changes in alcoholism, as shown experimentally, seem to us to throw light on the probable mechanism of reversible dystrophic brain changes in anorexia nervosa. (orig.)

  13. Reversible and non-reversible enlargement of cerebral spinal fluid spaces in anorexia nervosa

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, H.; Grau, H.; Adelmann, M.; Schleiffer, R.

    1985-07-01

    Brain CT studies of 35 patients with anoxia nervosa confirmed the observations of other authors: cerebral dystrophic changes correlate with weight loss and the reversibility of these changes also correlates with the normalization of body weight. Other corroborated facts are: the most numerous and most pronounced enlargements are of the cortical sulci and the interhemispheric fissure, moderate widening affects the ventricles and the rarest and most insignificant changes are those of the cerebellum. The reversibility of the changes showed a parallel to the extent of the changes themselves and to the duration of improvement of the body weight. The reversibility of the enlargement of the cortical sulci and of the distances between the frontal horns of the lateral ventricles was more often significant than that of the abnormal measurements of the cella media. This difference is based on minimal early acquired brain damage which occurs in 60% of our patients. This high incidence of early acquired minimal brain disease in patients with anorexia nervosa is here discussed as a nonspecific predisposing factor. Although there is no exact explanation of the etiology of the reversible enlargement of cerenral spinal fluid (CSF) spaces in anorexia nervosa, the changes resemble those in alcoholics. The mechanisms of brain changes in alcoholism, as shown experimentally, seem to us to throw light on the probable mechanism of reversible dystrophic brain changes in anorexia nervosa.

  14. Reversal agents in anaesthesia and critical care

    Directory of Open Access Journals (Sweden)

    Nibedita Pani

    2015-01-01

    Full Text Available Despite the advent of short and ultra-short acting drugs, an in-depth knowledge of the reversal agents used is a necessity for any anaesthesiologist. Reversal agents are defined as any drug used to reverse the effects of anaesthetics, narcotics or potentially toxic agents. The controversy on the routine reversal of neuromuscular blockade still exists. The advent of newer reversal agents like sugammadex have made the use of steroidal neuromuscular blockers like rocuronium feasible in rapid sequence induction situations. We made a review of the older reversal agents and those still under investigation for drugs that are regularly used in our anaesthesia practice.

  15. The misconception of mean-reversion

    International Nuclear Information System (INIS)

    Eliazar, Iddo I; Cohen, Morrel H

    2012-01-01

    The notion of random motion in a potential well is elemental in the physical sciences and beyond. Quantitatively, this notion is described by reverting diffusions—asymptotically stationary diffusion processes which are simultaneously (i) driven toward a reversion level by a deterministic force, and (ii) perturbed off the reversion level by a random white noise. The archetypal example of reverting diffusions is the Ornstein–Uhlenbeck process, which is mean-reverting. In this paper we analyze reverting diffusions and establish that: (i) if the magnitude of the perturbing noise is constant then the diffusion's stationary density is unimodal and the diffusion is mode-reverting; (ii) if the magnitude of the perturbing noise is non-constant then, in general, neither is the diffusion's stationary density unimodal, nor is the diffusion mode-reverting. In the latter case we further establish a result asserting when unimodality and mode-reversion do hold. In particular, we demonstrate that the notion of mean-reversion, which is fundamental in economics and finance, is a misconception—as mean-reversion is an exception rather than the norm. (fast track communication)

  16. Reversible photocontrol of molecular assemblies of metal complex containing azo-amphiphiles

    International Nuclear Information System (INIS)

    Einaga, Yasuaki; Mikami, Rie; Akitsu, Takashiro; Li, Guangming

    2005-01-01

    Photo-controllable molecular systems, [M(en) 2 ][Pt(en) 2 Cl 2 ](1) 4 (M 2+ =Pt 2+ , Pd 2+ and en=ethylenediamine), have been designed by the self-assembly of chloride-bridged platinum/palladium complexes and photochromic amphiphiles of the azobenzene derivative, 4-[4-(N-methyl-N-n-dodecylamino)phenylazo]benzene sulfonic acid (designated as compound 1). Reversible structural changes caused by cis-trans photoisomerization of azo groups in compound 1 were observed by alternating illumination of UV and visible light. Visible illumination resulted in the formation of the plate-like structures, whereas UV illumination resulted in fragmentation of the assembling structures. Reversible changes were observed in the electronic states of the chloride-bridged platinum/palladium complexes; the plate-like structures exhibited charge transfer absorption of chloride-bridged platinum complexes and delocalized Pt(II)/Pt(IV) states, while the fragments of the separated complexes exhibited no charge transfer bands. As a consequence, we have discovered that the reversible structural changes in this system could be controlled by photoillumination

  17. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.

    Science.gov (United States)

    Silas, Sukrit; Makarova, Kira S; Shmakov, Sergey; Páez-Espino, David; Mohr, Georg; Liu, Yi; Davison, Michelle; Roux, Simon; Krishnamurthy, Siddharth R; Fu, Becky Xu Hua; Hansen, Loren L; Wang, David; Sullivan, Matthew B; Millard, Andrew; Clokie, Martha R; Bhaya, Devaki; Lambowitz, Alan M; Kyrpides, Nikos C; Koonin, Eugene V; Fire, Andrew Z

    2017-07-11

    Cas1 integrase is the key enzyme of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas adaptation module that mediates acquisition of spacers derived from foreign DNA by CRISPR arrays. In diverse bacteria, the cas1 gene is fused (or adjacent) to a gene encoding a reverse transcriptase (RT) related to group II intron RTs. An RT-Cas1 fusion protein has been recently shown to enable acquisition of CRISPR spacers from RNA. Phylogenetic analysis of the CRISPR-associated RTs demonstrates monophyly of the RT-Cas1 fusion, and coevolution of the RT and Cas1 domains. Nearly all such RTs are present within type III CRISPR-Cas loci, but their phylogeny does not parallel the CRISPR-Cas type classification, indicating that RT-Cas1 is an autonomous functional module that is disseminated by horizontal gene transfer and can function with diverse type III systems. To compare the sequence pools sampled by RT-Cas1-associated and RT-lacking CRISPR-Cas systems, we obtained samples of a commercially grown cyanobacterium- Arthrospira platensis Sequencing of the CRISPR arrays uncovered a highly diverse population of spacers. Spacer diversity was particularly striking for the RT-Cas1-containing type III-B system, where no saturation was evident even with millions of sequences analyzed. In contrast, analysis of the RT-lacking type III-D system yielded a highly diverse pool but reached a point where fewer novel spacers were recovered as sequencing depth was increased. Matches could be identified for a small fraction of the non-RT-Cas1-associated spacers, and for only a single RT-Cas1-associated spacer. Thus, the principal source(s) of the spacers, particularly the hypervariable spacer repertoire of the RT-associated arrays, remains unknown. IMPORTANCE While the majority of CRISPR-Cas immune systems adapt to foreign genetic elements by capturing segments of invasive DNA, some systems carry reverse transcriptases (RTs) that enable adaptation to RNA molecules. From

  18. Transport properties of mixed metallic salts through reverse osmosis membrane

    International Nuclear Information System (INIS)

    Koyama, Akio; Nishimaki, Kenzo

    1991-01-01

    Applicability of reverse osmosis to the treatment of radioactive liquid waste was investigated. In previous papers, we showed the ability of reverse osmosis to decontaminate liquid waste which contains ionic radionuclides with chloride ion. When sulfate ion coexists with chloride, logarithms of DFs of one cation are approximately expressed by a linear function of logarithms of SO 4 2- /Cl - ratio. In this paper, we investigate the relation between DFs and concentrations of coexisting ions in multicomponent cation/anion system. As a result of this study, DFs of cations change more seriously with coexisting anions composition than with cations. In the case of anion, these influences are the reverse. Logarithms of DFs of cations and anions are expressed by linear equation with the two variables, logarithmic concentration ratio of univalent/divalent cations and logarithmic concentration ratio of SO 4 2- /Cl - . (author)

  19. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young's modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young's modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  20. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  1. Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture.

    Science.gov (United States)

    Komoto, Satoshi; Kanai, Yuta; Fukuda, Saori; Kugita, Masanori; Kawagishi, Takahiro; Ito, Naoto; Sugiyama, Makoto; Matsuura, Yoshiharu; Kobayashi, Takeshi; Taniguchi, Koki

    2017-11-01

    The use of overlapping open reading frames (ORFs) to synthesize more than one unique protein from a single mRNA has been described for several viruses. Segment 11 of the rotavirus genome encodes two nonstructural proteins, NSP5 and NSP6. The NSP6 ORF is present in the vast majority of rotavirus strains, and therefore the NSP6 protein would be expected to have a function in viral replication. However, there is no direct evidence of its function or requirement in the viral replication cycle yet. Here, taking advantage of a recently established plasmid-only-based reverse genetics system that allows rescue of recombinant rotaviruses entirely from cloned cDNAs, we generated NSP6-deficient viruses to directly address its significance in the viral replication cycle. Viable recombinant NSP6-deficient viruses could be engineered. Single-step growth curves and plaque formation of the NSP6-deficient viruses confirmed that NSP6 expression is of limited significance for RVA replication in cell culture, although the NSP6 protein seemed to promote efficient virus growth. IMPORTANCE Rotavirus is one of the most important pathogens of severe diarrhea in young children worldwide. The rotavirus genome, consisting of 11 segments of double-stranded RNA, encodes six structural proteins (VP1 to VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). Although specific functions have been ascribed to each of the 12 viral proteins, the role of NSP6 in the viral replication cycle remains unknown. In this study, we demonstrated that the NSP6 protein is not essential for viral replication in cell culture by using a recently developed plasmid-only-based reverse genetics system. This reverse genetics approach will be successfully applied to answer questions of great interest regarding the roles of rotaviral proteins in replication and pathogenicity, which can hardly be addressed by conventional approaches. Copyright © 2017 American Society for Microbiology.

  2. Design aspects of reverse osmosis plants for rad waste treatment

    International Nuclear Information System (INIS)

    Prabhakar, S.; Panicker, S.T.; Misra, B.M.

    1993-01-01

    The potential of reverse osmosis process has been well established in the nuclear waste treatment. The nuclear wastes are characterised by chemically insignificant levels of radioactive nuclides and small amounts (a few hundred ppm) of inactive ionic species. The basic design objectives in these systems aim at higher volume reduction factors, i.e. corresponding to recovery factor of more than 0.9 and a decontamination factor of at least 10, i.e. corresponding to a solute rejection of more than 90%. In this paper, the salient aspects of the design of a reverse osmosis system for radioactive waste treatment is discussed in the light of the operating experience of an experimental plant based on plate module configuration and utilizing cellulose acetate membranes prepared in our laboratory. (author). 3 refs., 5 figs., 2 tabs

  3. Reversible machine code and its abstract processor architecture

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Glück, Robert; Yokoyama, Tetsuo

    2007-01-01

    A reversible abstract machine architecture and its reversible machine code are presented and formalized. For machine code to be reversible, both the underlying control logic and each instruction must be reversible. A general class of machine instruction sets was proven to be reversible, building...

  4. Changes in the components and biotoxicity of dissolved organic matter in a municipal wastewater reclamation reverse osmosis system.

    Science.gov (United States)

    Sun, Ying-Xue; Hu, Hong-Ying; Shi, Chun-Zhen; Yang, Zhe; Tang, Fang

    2016-09-01

    The characteristics of dissolved organic matter (DOM) and the biotoxicity of these components were investigated in a municipal wastewater reclamation reverse osmosis (mWRRO) system with a microfiltration (MF) pretreatment unit. The MF pretreatment step had little effect on the levels of dissolved organic carbon (DOC) in the secondary effluent, but the addition of chlorine before MF promoted the formation of organics with anti-estrogenic activity. The distribution of excitation emission matrix (EEM) fluorescence constituents exhibited obvious discrepancies between the secondary effluent and the reverse osmosis (RO) concentrate. Using size exclusion chromatography, DOM with low molecular weights of approximately 1.2 and 0.98 kDa was newly formed during the mWRRO. The normalized genotoxicity and anti-estrogenic activity of the RO concentrate were 32.1 ± 10.2 μg4-NQO/mgDOC and 0.36 ± 0.08 mgTAM/mgDOC, respectively, and these values were clearly higher than those of the secondary effluent and MF permeate. The florescence volume of Regions I and II in the EEM spectrum could be suggested as a surrogate for assessing the genotoxicity and anti-estrogenic activity of the RO concentrate.

  5. Mutual learning and reverse innovation–where next?

    Science.gov (United States)

    2014-01-01

    There is a clear and evident need for mutual learning in global health systems. It is increasingly recognized that innovation needs to be sourced globally and that we need to think in terms of co-development as ideas are developed and spread from richer to poorer countries and vice versa. The Globalization and Health journal’s ongoing thematic series, “Reverse innovation in global health systems: learning from low-income countries” illustrates how mutual learning and ideas about so-called "reverse innovation" or "frugal innovation" are being developed and utilized by researchers and practitioners around the world. The knowledge emerging from the series is already catalyzing change and challenging the status quo in global health. The path to truly “global innovation flow”, although not fully established, is now well under way. Mobilization of knowledge and resources through continuous communication and awareness raising can help sustain this movement. Global health learning laboratories, where partners can support each other in generating and sharing lessons, have the potential to construct solutions for the world. At the heart of this dialogue is a focus on creating practical local solutions and, simultaneously, drawing out the lessons for the whole world. PMID:24673828

  6. Mutual learning and reverse innovation--where next?

    Science.gov (United States)

    Crisp, Nigel

    2014-03-28

    There is a clear and evident need for mutual learning in global health systems. It is increasingly recognized that innovation needs to be sourced globally and that we need to think in terms of co-development as ideas are developed and spread from richer to poorer countries and vice versa. The Globalization and Health journal's ongoing thematic series, "Reverse innovation in global health systems: learning from low-income countries" illustrates how mutual learning and ideas about so-called "reverse innovation" or "frugal innovation" are being developed and utilized by researchers and practitioners around the world. The knowledge emerging from the series is already catalyzing change and challenging the status quo in global health. The path to truly "global innovation flow", although not fully established, is now well under way. Mobilization of knowledge and resources through continuous communication and awareness raising can help sustain this movement. Global health learning laboratories, where partners can support each other in generating and sharing lessons, have the potential to construct solutions for the world. At the heart of this dialogue is a focus on creating practical local solutions and, simultaneously, drawing out the lessons for the whole world.

  7. Development of zero conditioning procedure for coal reverse flotation

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Patil; J.S. Laskowski [University of British Columbia, Vancouver, BC (Canada). Mining Engineering Department

    2008-04-15

    The zero conditioning method was developed to facilitate the flotation of gangue minerals in the reverse coal flotation process. Batch and continuous methods were developed to maintain the zero conditioning principle during reverse flotation. Batch zero conditioning was achieved by adding the required amount of DTAB in one step, as soon as the air was introduced into the system. The continuous zero conditioning method involves uninterrupted addition of DTAB through a specially built sparger in the form of aerosol during the flotation experiment. This produces active bubbles that carry collector. The addition of DTAB in the form of aerosol during reverse flotation proved to be better in reducing the ash of a sub-bituminous (LS-26) coal from 34.7% to 22.9% with a froth product (gangue) yield of 36.8% without any depressant. In the presence of coal depressant (dextrin, 0.5 kg/t), the ash content of LS-26 coal was reduced from 34.7% to 16.5% at a clean coal yield of 55%, whereas the conventional (forward) flotation with fuel oil provided a clean coal containing 16.5% ash with only 29.2% yield. These results prove that flotation of gangue minerals is very much improved by maintaining zero conditioning time conditions in a coal reverse flotation process.

  8. A Typology of Reverse Innovation

    DEFF Research Database (Denmark)

    von Zedtwitz, Max; Corsi, Simone; Søberg, Peder Veng

    2015-01-01

    secondary market introduction, this study expands the espoused definition of reverse innovation beyond its market-introduction focus with reversals in the flow of innovation in the ideation and product development phases. Recognizing that each phase can take place in different geographical locations...... taking place in an emerging country. This analytical framework allows recasting of current research at the intersection between innovation and international business. Of the 10 reverse innovation flows, six are new and have not been covered in the literature to date. The study addresses questions......’s portfolio of global innovation competence and capability. The implications for management are concerned with internal and external resistance to reverse innovation. Most significantly, while greater recognition and power of innovation in formerly subordinate organizational units is inconvenient to some...

  9. Sex Reversal in Reptiles: Reproductive Oddity or Powerful Driver of Evolutionary Change?

    Science.gov (United States)

    Holleley, Clare E; Sarre, Stephen D; O'Meally, Denis; Georges, Arthur

    2016-01-01

    Is sex a product of genes, the environment, or both? In this review, we describe the diversity of sex-determining mechanisms in reptiles, with a focus on systems that display gene-environment interactions. We summarise the field and laboratory-based evidence for the occurrence of environmental sex reversal in reptiles and ask whether this is a widespread evolutionary mechanism affecting the evolution of sex chromosomes and speciation in vertebrates. Sex determination systems exist across a continuum of genetic and environmental influences, blurring the lines between what was once considered a strict dichotomy between genetic sex determination and temperature-dependent sex determination. Across this spectrum, we identify the potential for sex reversal in species with clearly differentiated heteromorphic sex chromosomes (Pogona vitticeps, Bassiana duperreyi, Eremias multiocellata, Gekko japonicus), weakly differentiated homomorphic sex chromosomes (Niveoscincus ocellatus), and species with only a weak heritable predisposition for sex (Emys orbicularis, Trachemys scripta). We argue that sex reversal is widespread in reptiles (Testudines, Lacertidae, Agamidae, Scincidae, Gekkonidae) and has the potential to have an impact on individual fitness, resulting in reproductively, morphologically, and behaviourally unique phenotypes. Sex reversal is likely to be a powerful evolutionary force responsible for generating and maintaining lability and diversity in reptile sex-determining modes. © 2016 S. Karger AG, Basel.

  10. Elements of a Reversible Object-Oriented Language

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Axelsen, Holger Bock

    2016-01-01

    This paper presents initial ideas for the design and implementation of a reversible object-oriented language based on extending Janus with object-oriented concepts such as classes that encapsulate behavior and state, inheritance, virtual dispatching, as well as constructors. We show that virtual...... dispatching is a reversible decision mechanism easily translatable to a standard reversible programming model such as Janus, and we argue that reversible management of state can be accomplished using reversible constructors. The language is implemented in terms of translation to standard Janus programs....

  11. Predictor-based multivariable closed-loop system identification of the EXTRAP T2R reversed field pinch external plasma response

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, K Erik J; Brunsell, Per R; Drake, James R [Fusion Plasma Physics, School of Electrical Engineering, Royal Institute of Technology (KTH Stockholm), Sweden (Association EURATOM-VR) (Sweden); Rojas, Cristian R; Hjalmarsson, Haakan, E-mail: erik.olofsson@ee.kth.se [Automatic Control, School of Electrical Engineering, KTH Stockholm (Sweden)

    2011-08-15

    The usage of computationally feasible overparametrized and nonregularized system identification signal processing methods is assessed for automated determination of the full reversed-field pinch external plasma response spectrum for the experiment EXTRAP T2R. No assumptions on the geometry of eigenmodes are imposed. The attempted approach consists of high-order autoregressive exogenous estimation followed by Markov block coefficient construction and Hankel matrix singular value decomposition. It is seen that the obtained 'black-box' state-space models indeed can be compared with the commonplace ideal magnetohydrodynamics (MHD) resistive thin-shell model in cylindrical geometry. It is possible to directly map the most unstable autodetected empirical system pole to the corresponding theoretical resistive shell MHD eigenmode.

  12. Predictor-based multivariable closed-loop system identification of the EXTRAP T2R reversed field pinch external plasma response

    Science.gov (United States)

    Olofsson, K. Erik J.; Brunsell, Per R.; Rojas, Cristian R.; Drake, James R.; Hjalmarsson, Håkan

    2011-08-01

    The usage of computationally feasible overparametrized and nonregularized system identification signal processing methods is assessed for automated determination of the full reversed-field pinch external plasma response spectrum for the experiment EXTRAP T2R. No assumptions on the geometry of eigenmodes are imposed. The attempted approach consists of high-order autoregressive exogenous estimation followed by Markov block coefficient construction and Hankel matrix singular value decomposition. It is seen that the obtained 'black-box' state-space models indeed can be compared with the commonplace ideal magnetohydrodynamics (MHD) resistive thin-shell model in cylindrical geometry. It is possible to directly map the most unstable autodetected empirical system pole to the corresponding theoretical resistive shell MHD eigenmode.

  13. [Conseqquences of dorso-ventral and anterior-posterior reversion of early neurula lateral mesoblast on development of urogenital system in common toad, Bufo bufo. (Amphibia anura)].

    Science.gov (United States)

    Hakim, J; Gipouloux, J D

    1975-10-27

    At early neurula stage of the toad, cranio-caudal and dorso-ventral reversal of lateral mesoblast is performed. The genito-urinary system is therefore missing after this intervention. The three following factors of the formation of this system anlage are anlyzed: lateral mesoderm competence, stimulative activites of dorso-caudal endoblast on the one hand, of chordo-mesoderm on the other hand.

  14. Characterization of lipase in reversed micelles formulated by Cibacron Blue F-3GA modified Span 85

    DEFF Research Database (Denmark)

    Zhang, Dong Hao; Guo, Zheng; Sun, Yan

    2007-01-01

    Sorbitan trioleate (Span 85) modified by Cibacron Blue F-3GA (CB) was prepared and used as an affinity surfactant to formulate a reversed micellar system for Candida rugosa lipase (CRL) solubilization. The system was characterized and evaluated by employing CRL-catalyzed hydrolysis of olive oil...... of the encapsulated lipase remained unchanged, but the apparent activity was significantly higher than that of the native enzyme in bulk solution. Kinetic studies indicated that the encapsulated lipase in the reversed micelles of CB-formulated Span 85 followed the Michaelis-Menten equation. The Michaelis constant...... was found to decrease with increasing surfactant concentration, suggesting an increase of the enzyme affinity for the substrate. Stability of the lipase in the reversed micelles was negatively correlated to W0. Introduction Reversed micelles are nanometer-scale transparent aggregates of water and surfactant...

  15. Ion-pairing reversed-phased chromatography/mass spectrometry of heparin

    DEFF Research Database (Denmark)

    Henriksen, Jens; Roepstorff, Peter; Ringborg, Lene H.

    2006-01-01

    not well characterised. In order to further characterise such mixtures, two on-line ion-pairing reverse-phased chromatography electrospray ionisation (ESI) mass spectrometry methods have been developed. One of the systems allows the determination of more than 200 components in a medium molecular weight...

  16. Reverse-mode PSLC multi-plane optical see-through display for AR applications.

    Science.gov (United States)

    Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-05

    In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

  17. Atrioventricular Pacemaker Lead Reversal

    Directory of Open Access Journals (Sweden)

    Mehmet K Aktas, MD

    2007-01-01

    Full Text Available During cardiac surgery temporary epicardial atrial and ventricular leads are placed in case cardiac pacing is required postoperatively. We present the first reported series of patients with reversal of atrioventricular electrodes in the temporary pacemaker without any consequent deleterious hemodynamic effect. We review the electrocardiographic findings and discuss the findings that lead to the discovery of atrioventricular lead reversal.

  18. Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system

    NARCIS (Netherlands)

    Post, J.W.; Hamelers, H.V.M.; Buisman, C.J.N.

    2009-01-01

    Reverse electrodialysis is a membrane-based technique for production of sustainable electricity from controlled mixing of a diluted electrolyte solution (e.g., river water) and a concentrated electrolyte solution (e.g., sea water). Reverse electrodialysis has been investigated with pure sodium

  19. Reversal modes in asymmetric Ni nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, B.; Pereira, A. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2012-11-15

    We have investigated the evolution of the magnetization reversal mechanism in asymmetric Ni nanowires as a function of their geometry. Circular nanowires are found to reverse their magnetization by the propagation of a vortex domain wall, while in very asymmetric nanowires the reversal is driven by the propagation of a transverse domain wall. The effect of shape asymmetry of the wire on coercivity and remanence is also studied. Angular dependence of the remanence and coercivity is also addressed. Tailoring the magnetization reversal mechanism in asymmetric nanowires can be useful for magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls. Finally, an alternative method to detect the presence of magnetic drops is proposed. - Highlights: Black-Right-Pointing-Pointer Asymmetry strongly modifies the magnetic behavior of a wire. Black-Right-Pointing-Pointer Very asymmetric nanowires reverse their magnetization by a transverse domain wall. Black-Right-Pointing-Pointer An alternative method to detect the presence of magnetic drops is proposed. Black-Right-Pointing-Pointer Tailoring the reversal mode in asymmetric nanowires can be useful for potential applications.

  20. Introduction to time reversal theory

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Theory and reaction mechanisms relevant to time reversal invariance are reviewed. Consequences of time reversal invariance are presented under the headings of CP tests, electromagnetic moments, weak emissions or absorptions, and scattering reactions. 8 refs., 4 figs

  1. RECYCLING NICKEL ELECTROPLATING RINSE WATERS BY LOW TEMPERATURE EVAPORATION AND REVERSE OSMOSIS

    Science.gov (United States)

    Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperat...

  2. The reversible air-conditioning: economical and ecological asset recognized by the public authorities; La climatisation reversible electrique: des atouts economiques et ecologiques reconnus par les pouvoirs publics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The reversible air-conditioning allows at once the heating and the cooling of the building. This system is very powerful from an energetic and an environmental point of view. Moreover the government proposes financial assistance to the system implementation with a fiscal amortization. (A.L.B.)

  3. Nocturnal Reversed Flows Above Parallel Ridges in Perdigão, Portugal

    Science.gov (United States)

    Krishnamurthy, R.; Fernando, H. J.; Leo, L. S.; Vassallo, D.; Hocut, C. M.; Creegan, E.; Rodriguez, C. V.; Palma, J. L.

    2017-12-01

    Prediction of topographically forced or induced wind events is extremely important for dispersion modeling and wind energy studies in complex terrain. To improve the current understanding of micro-scale processes over complex terrain, a large-scale field experiment was conducted in Perdigão, Portugal from May 1st, 2017 to June 15th, 2017. Measurements over a periodic valley were performed using 52 meteorological met-masts, 30 Doppler Lidars (scanning & vertical profilers), 2 tethered lifting systems and other remote sensing instruments (Sodar-rass, wind profilers & radiometer), and radiosondes were released every 6 hours over the period of study. The observations showed several cases of flow reversals confined to a thin layer of 70 - 100 m above the ridge under stably stratified conditions. These flow reversals were mostly observed during the lee wave formation over the periodic valley. It was observed that the flow reversal occurs predominantly under two atmospheric conditions: a) presence of large recirculation zones on the lee side of the hill causing a pressure gradient between the lee-side floor and the mountain ridge, and b) local change in the horizontal pressure gradient due to differential heating rates of the neighboring valley atmospheres. Microscale flow simulations could capture these observed flow reversals. Based on the network of tower instruments and remote sensing devices, the development, structure and occurrences of the flow reversals are being analyzed and quantified. Since these flow reversals are observed within the rotor swept area of modern wind turbines, they would drastically increase the fatigue loads on wind turbine blades. This presentation will include reversed flow observations from several synchronized scanning Doppler Lidars and meteorological towers and a theoretical framework for reverse flow over parallel valleys.

  4. Vasectomy reversal: a clinical update

    Directory of Open Access Journals (Sweden)

    Abhishek P Patel

    2016-01-01

    Full Text Available Vasectomy is a safe and effective method of contraception used by 42-60 million men worldwide. Approximately 3%-6% of men opt for a vasectomy reversal due to the death of a child or divorce and remarriage, change in financial situation, desire for more children within the same marriage, or to alleviate the dreaded postvasectomy pain syndrome. Unlike vasectomy, vasectomy reversal is a much more technically challenging procedure that is performed only by a minority of urologists and places a larger financial strain on the patient since it is usually not covered by insurance. Interest in this procedure has increased since the operating microscope became available in the 1970s, which consequently led to improved patency and pregnancy rates following the procedure. In this clinical update, we discuss patient evaluation, variables that may influence reversal success rates, factors to consider in choosing to perform vasovasostomy versus vasoepididymostomy, and the usefulness of vasectomy reversal to alleviate postvasectomy pain syndrome. We also review the use of robotics for vasectomy reversal and other novel techniques and instrumentation that have emerged in recent years to aid in the success of this surgery.

  5. Effect of Reverse Bias Stress on Leakage Currents and Breakdown Voltages of Solid Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2011-01-01

    The majority of solid tantalum capacitors are produced by high-temperature sintering of a fine tantalum powder around a tantalum wire followed by electrolytic anodization that forms a thin amorphous Ta2O5 dielectric layer and pyrolysis of manganese nitrite on the oxide to create a conductive manganese dioxide electrode. A contact to tantalum wire is used as anode terminal and to the manganese layer as a cathode terminal of the device. This process results in formation of an asymmetric Ta -- Ta2O5 -- MnO2 capacitor that has different characteristics at forward (positive bias applied to tantalum) and reverse (positive bias applied to manganese cathode) voltages. Reverse bias currents might be several orders of magnitude larger than forward leakage currents so I-V characteristics of tantalum capacitors resemble characteristics of semiconductor rectifiers. Asymmetric I-V characteristics of Ta -- anodic Ta2O5 systems have been observed at different top electrode materials including metals, electrolytes, conductive polymers, and manganese oxide thus indicating that this phenomenon is likely related to the specifics of the Ta -- Ta2O5 interface. There have been multiple attempts to explain rectifying characteristics of capacitors employing anodic tantalum pentoxide dielectrics. A brief review of works related to reverse bias (RB) behavior of tantalum capacitors shows that the mechanism of conduction in Ta -- Ta2O5 systems is still not clear and more testing and analysis is necessary to understand the processes involved. If tantalum capacitors behave just as rectifiers, then the assessment of the safe reverse bias operating conditions would be a relatively simple task. Unfortunately, these parts can degrade with time under reverse bias significantly, and this further complicates analysis of the I-V characteristics and establishing safe operating areas of the parts. On other hand, time dependence of reverse currents might provide additional information for investigation of

  6. Reverse-hybrid robotic mesorectal excision for rectal cancer.

    Science.gov (United States)

    Park, In Ja; You, Y Nancy; Schlette, Erika; Nguyen, Sa; Skibber, John M; Rodriguez-Bigas, Miguel A; Chang, George J

    2012-02-01

    The robotic system offers potential technical advantages over laparoscopy for total mesorectal excision with radical lymphadenectomy for rectal cancer. However, the requirement for fixed docking limits its utility when the working volume is large or patient repositioning is required. The purpose of this study was to evaluate short-term outcomes associated with a novel setup to perform total mesorectal excision and radical lymphadenectomy for rectal cancer by the use of a "reverse" hybrid robotic-laparoscopic approach. This is a prospective consecutive cohort observational study of patients who underwent robotic rectal cancer resection from January 2009 to March 2011. During the study period, a technique of reverse-hybrid robotic-laparoscopic rectal resection with radical lymphadenectomy was developed. This technique involves reversal of the operative sequence with lymphovascular and rectal dissection to precede proximal colonic mobilization. This technique evolved from a conventional-hybrid resection with laparoscopic vascular control, colonic mobilization, and robotic pelvic dissection. Perioperative and short-term oncologic outcomes were analyzed. Thirty patients underwent reverse-hybrid resection. Median tumor location was 5 cm (interquartile range 3-9) from the anal verge. Median BMI was 27.6 (interquartile range 25.0-32.1 kg/m). Twenty (66.7%) received neoadjuvant chemoradiation. There were no conversions. Median blood loss was 100 mL (interquartile range 75-200). Total operation time was a median 369 (interquartile range 306-410) minutes. Median docking time was 6 (interquartile range 5-8) minutes, and console time was 98 (interquartile range 88-140) minutes. Resection was R0 in all patients; no patients had an incomplete mesorectal resection. Six patients (20%) underwent extended lymph node dissection or en bloc resection. Reverse-hybrid robotic surgery for rectal cancer maximizes the therapeutic applicability of the robotic and conventional laparoscopic

  7. Reversible deep storage: reversibility options for storage in deep geological formations

    International Nuclear Information System (INIS)

    2009-01-01

    This report describes the definition approach to reversibility conditions, presents the main characteristics of high-activity and intermediate-activity long-lived wastes, describes the storage in deep geological formations (safety functions, general description of the storage centre), discusses the design options for the different types of wastes (container, storage module, handling processes, phenomenological analysis, monitoring arrangements) and the decision process in support reversibility (steering of the storage process, progressive development and step-by-step closing), and reports and discusses the researches concerning the memory of the storage site

  8. Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal.

    Science.gov (United States)

    Chen, Yunjie; Roux, Benoît

    2014-09-21

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  9. Efficient hybrid non-equilibrium molecular dynamics - Monte Carlo simulations with symmetric momentum reversal

    Science.gov (United States)

    Chen, Yunjie; Roux, Benoît

    2014-09-01

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  10. Status of time reversal invariance

    International Nuclear Information System (INIS)

    Henley, E.M.

    1989-01-01

    Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed. 30 refs., 2 figs., 1 tab

  11. DRINKING WATER FROM DESALINATION OF SEAWATER: OPTIMIZATION OF REVERSE OSMOSIS SYSTEM OPERATING PARAMETERS

    Directory of Open Access Journals (Sweden)

    MARWAN M. SHAMEL

    2006-12-01

    Full Text Available This paper reports on the use of pilot scale membrane separation system coupled with another pilot scale plate heat exchanger to investigate the possibilities of sweetening seawater from Telok Kalong Beach, Terengganu, Malaysia. Reverse osmosis (RO membrane of a surface area of 0.5 m2 was used during the experimental runs. Experiments were conducted at different transmembrane pressures (TMP ranged from 40 to 55 bars, operation temperature ranged from 35 to 45oC, feed concentration (TDS ranged from 34900 to 52500 ppm and cross flow velocities ranged from 1.4 to 2.1 m/s. The result show that the flux values increased linearly with TMP as well as sodium ion rejection. Permeate flux values increased proportionally with the temperature and the later effect was more significant at high pressures. The temperature changing has also influenced the rejection of sodium ion. The minerals content especially NaCl and total dissolved solid (TDS in the drinking water produced in this research are conforming to the standards of World Health Organization (WHO.

  12. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    International Nuclear Information System (INIS)

    Zhou, Zhengkun; Jiang, Feihong; Lee, Tung-Ching; Yue, Tianli

    2013-01-01

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe 3 O 4 nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe 3 O 4 magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe 3 O 4 nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe 3 O 4 /chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability

  13. Quantum vertex model for reversible classical computing.

    Science.gov (United States)

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  14. Underwater Time Service and Synchronization Based on Time Reversal Technique

    Science.gov (United States)

    Lu, Hao; Wang, Hai-bin; Aissa-El-Bey, Abdeldjalil; Pyndiah, Ramesh

    2010-09-01

    Real time service and synchronization are very important to many underwater systems. But the time service and synchronization in existence cannot work well due to the multi-path propagation and random phase fluctuation of signals in the ocean channel. The time reversal mirror technique can realize energy concentration through self-matching of the ocean channel and has very good spatial and temporal focusing properties. Based on the TRM technique, we present the Time Reversal Mirror Real Time service and synchronization (TRMRT) method which can bypass the processing of multi-path on the server side and reduce multi-path contamination on the client side. So TRMRT can improve the accuracy of time service. Furthermore, as an efficient and precise method of time service, TRMRT could be widely used in underwater exploration activities and underwater navigation and positioning systems.

  15. Initial reversed-field pinch experiments on ZT-40 and recent advances in RFP theory

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1980-01-01

    The ZT-40 reversed-field pinch (RFP) has been operated in several modes: (1) without reversed toroidal field, (2) with self reversal, and (3) with aided reversal. An analytic ohmic heating and ignition model both confirm and provide guidance for transport codes. Nondissipative formation schemes have been analyzed and ideal MHD stable evolution and burn scenarios have been found. Particle and fluid simulations have produced qualitative agreement with respect to the nonlinear behavior of m = 0 resistive g-modes. Helical ohmic reversed field states are produced by a 2-D dynamical simulation, and nonlinear analytic work describes the final state. A fast resistive MHD code for linear stability has clarified the relations between several kinds of resistive instabilities. Ballooning modes and g-modes in systems with arbitrary magnetic shear including resistivity and viscosity, have been studied in a unified treatment with growth rate vs wavenumber showing the existence of important cutoffs

  16. A spectroscopic system for time- and space-resolved studies of impurities on the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Sallander, J.

    1998-06-01

    The radial distribution of impurity line emission in the EXTRAP-T2 reversed field pinch (RFP) is studied with a five viewing chord, absolutely calibrated, spectrometer system. The light is analyzed with a single 0.5 m grating spectrometer. Different parts of the entrance slit are used for different channels. This arrangement makes it possible to use the system over a wide wavelength range, from 2500 to 6500 Å, without having to recalibrate the relative sensitivity for the different channels. The rather short plasma pulses of 10-15 ms require a high time resolution. The use of photomultiplier tubes provides a time resolution of 10 μs which is limited by the transient recorders used. The result is a robust, low-cost system that produces reliable measurements of the radial dependence of emission from a wide range of impurity ions.

  17. Functional behavior and reproduction in androgenic sex reversed zebrafish (Danio rerio).

    Science.gov (United States)

    Larsen, Mia G; Baatrup, Erik

    2010-08-01

    Endocrine-disrupting chemicals released into natural watercourses may cause biased sex ratios by sex reversal in fish populations. The present study investigated the androgenic sex reversal of zebrafish (Danio rerio) exposed to the androgenic compound 17beta-trenbolone (TB) and whether sex-changed females would revert to the female phenotype after cessation of TB exposure. 17beta-Trenbolone is a metabolite of trenbolone acetate, an anabolic steroid used as a growth promoter in beef cattle. 17beta-Trenbolone in runoff from cattle feedlots may reach concentrations that affect fish sexual development. Zebrafish were exposed to a concentration of 20 ng/L TB in a flow-through system for five months from egg until sexual maturity. This resulted in an all-male population. It was further found that all these phenotypic males displayed normal male courtship behavior and were able to reproduce successfully, implying that the sex reversal was complete and functional. None of the phenotypic males developed into females after six months in clean water, demonstrating that androgenic sex reversal of zebrafish is irreversible. Copyright 2010 SETAC

  18. Towards a reversible functional language

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2012-01-01

    /equality operator also simplifies inverse computation and program inversion. We discuss the advantages of a reversible functional language using example programs, including run-length encoding. Program inversion is seen to be as lightweight as for imperative reversible languages and realized by recursive descent...

  19. How decision reversibility affects motivation

    NARCIS (Netherlands)

    Bullens, L.; van Harreveld, F.; Förster, J.; Higgins, T.E.

    2014-01-01

    The present research examined how decision reversibility can affect motivation. On the basis of extant findings, it was suggested that 1 way it could affect motivation would be to strengthen different regulatory foci, with reversible decision making, compared to irreversible decision making,

  20. Reversible networks in supramolecular polymers

    NARCIS (Netherlands)

    Havermans - van Beek, D.J.M.

    2007-01-01

    Non–covalent interactions between low molecular weight polymers form the basis of supramolecular polymers. The material properties of such polymers are determined by the strength and lifetime of the non–covalent reversible interactions. Due to the reversibility of the interactions between the low

  1. Reversible one-dimensional cellular automata with one of the two Welch indices equal to 1 and full shifts

    International Nuclear Information System (INIS)

    Mora, Juan Carlos Seck Tuoh; Hernandez, Manuel Gonzalez; Vergara, Sergio V Chapa

    2003-01-01

    Reversible cellular automata are invertible discrete dynamical systems which have been widely studied both for analysing interesting theoretical questions and for obtaining relevant practical applications, for instance, simulating invertible natural systems or implementing data coding devices. An important problem in the theory of reversible automata is to know how the local behaviour which is not invertible is able to yield a reversible global one. In this sense, symbolic dynamics plays an important role for obtaining an adequate representation of a reversible cellular automaton. In this paper we prove the equivalence between a reversible automaton where the ancestors only differ at one side (technically with one of the two Welch indices equal to 1) and a full shift. We represent any reversible automaton by a de Bruijn diagram, and we characterize the way in which the diagram produces an evolution formed by undefined repetitions of two states. By means of amalgamations, we prove that there is always a way of transforming a de Bruijn diagram into the full shift. Finally, we provide an example illustrating the previous results

  2. Reversible one-dimensional cellular automata with one of the two Welch indices equal to 1 and full shifts

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Juan Carlos Seck Tuoh [Centro de Investigacion Avanzada en Ingenieria Industrial, Universidad Autonoma del Estado de Hidalgo, Carr Pachuca-Tulancingo Km 4.5, 42020 Pachuca (Mexico); Hernandez, Manuel Gonzalez [Centro de Investigacion Avanzada en Ingenieria Industrial, Universidad Autonoma del Estado de Hidalgo, Carr Pachuca-Tulancingo Km 4.5, 42020 Pachuca (Mexico); Vergara, Sergio V Chapa [Depto de Ingenieria Electrica, Seccion Computacion, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av IPN 2508, Col San Pedro Zacatenco, 07300 DF (Mexico)

    2003-07-25

    Reversible cellular automata are invertible discrete dynamical systems which have been widely studied both for analysing interesting theoretical questions and for obtaining relevant practical applications, for instance, simulating invertible natural systems or implementing data coding devices. An important problem in the theory of reversible automata is to know how the local behaviour which is not invertible is able to yield a reversible global one. In this sense, symbolic dynamics plays an important role for obtaining an adequate representation of a reversible cellular automaton. In this paper we prove the equivalence between a reversible automaton where the ancestors only differ at one side (technically with one of the two Welch indices equal to 1) and a full shift. We represent any reversible automaton by a de Bruijn diagram, and we characterize the way in which the diagram produces an evolution formed by undefined repetitions of two states. By means of amalgamations, we prove that there is always a way of transforming a de Bruijn diagram into the full shift. Finally, we provide an example illustrating the previous results.

  3. Irradiation effects on properties of reverse osmosis membrane based on cross-linked aromatic polyamide

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Yanagi, Tadashi; Uemura, Tadahiro.

    1994-01-01

    In order to develop a membrane suitable for reverse osmotic condensation of radioactive liquid wastes, a new cross-linked aromatic polyamide composite reverse osmosis membrane (ROM) was irradiated in water or in wet system, and its mechanical and some thermal properties, and the separation performance for inorganic salt were investigated. A membrane was degraded by irradiation more severely in wet system than in dry system, probably due to the reaction with OH-radicals. In the separation performance for NaCl, the salt rejection of the membrane was kept over 88% until irradiation reached 2MGy, maintaining about 90% of its original water flux. (author)

  4. Time Reversal of Arbitrary Photonic Temporal Modes via Nonlinear Optical Frequency Conversion

    OpenAIRE

    Raymer, Michael G; Reddy, Dileep V; van Enk, Steven J; McKinstrie, Colin J

    2017-01-01

    Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is blind reversal of a photon's temporal wave-packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. This scheme allows for quantum operations such as a...

  5. SandBlaster: Reversing the Apple Sandbox

    OpenAIRE

    Deaconescu, Răzvan; Deshotels, Luke; Bucicoiu, Mihai; Enck, William; Davi, Lucas; Sadeghi, Ahmad-Reza

    2016-01-01

    In order to limit the damage of malware on Mac OS X and iOS, Apple uses sandboxing, a kernel-level security layer that provides tight constraints for system calls. Particularly used for Apple iOS, sandboxing prevents apps from executing potentially dangerous actions, by defining rules in a sandbox profile. Investigating Apple's built-in sandbox profiles is difficult as they are compiled and stored in binary format. We present SandBlaster, a software bundle that is able to reverse/decompile Ap...

  6. Robust and Reversible Audio Watermarking by Modifying Statistical Features in Time Domain

    Directory of Open Access Journals (Sweden)

    Shijun Xiang

    2017-01-01

    Full Text Available Robust and reversible watermarking is a potential technique in many sensitive applications, such as lossless audio or medical image systems. This paper presents a novel robust reversible audio watermarking method by modifying the statistic features in time domain in the way that the histogram of these statistical values is shifted for data hiding. Firstly, the original audio is divided into nonoverlapped equal-sized frames. In each frame, the use of three samples as a group generates a prediction error and a statistical feature value is calculated as the sum of all the prediction errors in the frame. The watermark bits are embedded into the frames by shifting the histogram of the statistical features. The watermark is reversible and robust to common signal processing operations. Experimental results have shown that the proposed method not only is reversible but also achieves satisfactory robustness to MP3 compression of 64 kbps and additive Gaussian noise of 35 dB.

  7. LC-H-1 NMR used for determination of the elution order of S-naproxen glucuronide isomers in two isocratic reversed-phase LC-systems

    DEFF Research Database (Denmark)

    Mortensen, R. W.; Corcoran, O.; Cornett, Claus

    2001-01-01

    . In both systems the elution order for the 2-, 3- and 4-O-acyl isomers corresponded with previously published results for 2-, 3-, and 4-fluorobenzoic acid glucuronide isomers determined by reversed phase HPLC-H-1 NMR [U.G. Sidelmann, S.H. Hansen, C. Gavaghan, A.W. Nicholls, H.A.J. Carless, J.C. Lindon, I...

  8. Enzymatic reactions in reversed micelles

    NARCIS (Netherlands)

    Hilhorst, M.H.

    1984-01-01

    It has been recognised that enzymes in reversed micelles have potential for application in chemical synthesis. Before these expectations will be realised many problems must be overcome. This thesis deals with some of them.
    In Chapter 1 the present knowledge about reversed micelles and

  9. Reversible arithmetic logic unit for quantum arithmetic

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert; Axelsen, Holger Bock

    2010-01-01

    This communication presents the complete design of a reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The presented ALU is garbage free and uses reversible updates to combine the standard reversible arithmetic...... and logical operations in one unit. Combined with a suitable control unit, the ALU permits the construction of an r-Turing complete computing device. The garbage-free ALU developed in this communication requires only 6n elementary reversible gates for five basic arithmetic-logical operations on two n......-bit operands and does not use ancillae. This remarkable low resource consumption was achieved by generalizing the V-shape design first introduced for quantum ripple-carry adders and nesting multiple V-shapes in a novel integrated design. This communication shows that the realization of an efficient reversible...

  10. Field reversal in mirror machines

    International Nuclear Information System (INIS)

    Pearlstein, L.D.; Anderson, D.V.; Boozer, A.H.

    1978-01-01

    This report discusses some of the physics issues anticipated in field-reversed mirrors. The effect of current cancellation due to electrons is described. An estimate is made of the required impurity level to maintain a field-reversed configuration. The SUPERLAYER code is used to simulate the high-β 2XIIB results, and favorable comparisons require inclusion of quasilinear RF turbulence. Impact of a quadrupole field on field-line closure and resonant transport is discussed. A simple self-consistent model of ion currents is presented. Conditions for stability of field-reversed configurations to E x B driven rotations are determined

  11. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems

    KAUST Repository

    Hatzell, Marta C.; Ivanov, Ivan; D. Cusick, Roland; Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m-3. However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ∼1.5× to 118 W h m-3. Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m-3 or ∼1/3 of that produced through direct hydrogen generation.

  12. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems.

    Science.gov (United States)

    Hatzell, Marta C; Ivanov, Ivan; Cusick, Roland D; Zhu, Xiuping; Logan, Bruce E

    2014-01-28

    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m(-3). However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ~1.5× to 118 W h m(-3). Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m(-3) or ~1/3 of that produced through direct hydrogen generation.

  13. Sex Reversal in Birds.

    Science.gov (United States)

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  14. Reverse engineering of RFID devices

    NARCIS (Netherlands)

    Bokslag, W.

    2015-01-01

    This paper discusses the relevance and potential impact of both RFID and reverse engineering of RFID technology, followed by a discussion of common protocols and internals of RFID technology. The focus of the paper is on providing an overview of the different approaches to reverse engineering RFID

  15. The reverse effects of random perturbation on discrete systems for single and multiple population models

    International Nuclear Information System (INIS)

    Kang, Li; Tang, Sanyi

    2016-01-01

    Highlights: • The discrete single species and multiple species models with random perturbation are proposed. • The complex dynamics and interesting bifurcation behavior have been investigated. • The reverse effects of random perturbation on discrete systems have been discussed and revealed. • The main results can be applied for pest control and resources management. - Abstract: The natural species are likely to present several interesting and complex phenomena under random perturbations, which have been confirmed by simple mathematical models. The important questions are: how the random perturbations influence the dynamics of the discrete population models with multiple steady states or multiple species interactions? and is there any different effects for single species and multiple species models with random perturbation? To address those interesting questions, we have proposed the discrete single species model with two stable equilibria and the host-parasitoid model with Holling type functional response functions to address how the random perturbation affects the dynamics. The main results indicate that the random perturbation does not change the number of blurred orbits of the single species model with two stable steady states compared with results for the classical Ricker model with same random perturbation, but it can strength the stability. However, extensive numerical investigations depict that the random perturbation does not influence the complexities of the host-parasitoid models compared with the results for the models without perturbation, while it does increase the period of periodic orbits doubly. All those confirm that the random perturbation has a reverse effect on the dynamics of the discrete single and multiple population models, which could be applied in reality including pest control and resources management.

  16. Extreme reversed sexual dichromatism in a bird without sex role reversal.

    Science.gov (United States)

    Heinsohn, Robert; Legge, Sarah; Endler, John A

    2005-07-22

    Brilliant plumage is typical of male birds, reflecting differential enhancement of male traits when females are the limiting sex. Brighter females are thought to evolve exclusively in response to sex role reversal. The striking reversed plumage dichromatism of Eclectus roratus parrots does not fit this pattern. We quantify plumage color in this species and show that very different selection pressures are acting on males and females. Male plumage reflects a compromise between the conflicting requirements for camouflage from predators while foraging and conspicuousness during display. Females are liberated from the need for camouflage but compete for rare nest hollows.

  17. Economic impact of reversion

    International Nuclear Information System (INIS)

    2005-01-01

    Estimations of the Norwegian hydropower production and various reversion models' market value have been made. The value of the Norwegian hydropower production until 01.01.2007 is estimated to about Nok 289 billion after taxes, or about 2,42 Nok/kWh medium production, given an expected future electricity price of around 0,25 Nok/kWh and a discount rate at 6,5 percent in nominal terms after taxes. The estimate is slightly above the level of prices for Norwegian hydropower plants in the last 8-10 years. The value of reversion in private plants which today have a limited licence time is estimated to Nok 5,5 billion. The value of reversion in public-owned Norwegian hydropower plants are about Nok 21 billion with a 60 year licence period from 01.01.2007, and about 12 billion for 75 years (ml)

  18. Constraints of a parity-conserving/time-reversal-non-conserving interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2002-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with time-reversal-invariance-non-conserving (T-odd)/parity violating (P-odd) interactions, while the second one deals with T-odd/P-even interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a T-odd/P-odd interaction follow from measurements of the electric dipole moment of the neutron ( -26 e.cm [95% C.L.]). It provides a limit on a T-odd/P-odd pion-nucleon coupling constant which is less than 10 -4 times the weak interaction strength. Experimental limits on a T-odd/P-even interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges, it can be shown that only charged ρ-meson exchange and A 1 -meson exchange can lead to a T-odd/P-even interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). All other experiments, like detailed balance experiments, polarization - analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order to magnitude less sensitive. Is there room for further experimentation?

  19. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety

    Directory of Open Access Journals (Sweden)

    Zutao Zhang

    2016-06-01

    Full Text Available Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.

  20. Sorption properties and reversibility of Ti(IV) and Nb(V)-fluoride doped-Ca(BH4)2-MgH2 system

    International Nuclear Information System (INIS)

    Bonatto Minella, Christian; Garroni, Sebastiano; Pistidda, Claudio; Baró, Maria Dolors; Gutfleisch, Oliver; Klassen, Thomas; Dornheim, Martin

    2015-01-01

    Highlights: • Faster desorption reaction for doped materials vs. the pure composite system. • Kinetic improvement concerning re-hydrogenation reaction showed by the addition of NbF 5 . • Full characterization of the de-hydrogenation reaction pathway by means of both SR-PXD and 11 B{ 1 H} MAS-NMR. • Study of the evolution of the chemical state of the additives upon both milling and sorption reactions. - Abstract: In the last decade, alkaline and alkaline earth metal tetrahydroborates have been the focuses of the research due to their high gravimetric and volumetric hydrogen densities. Among them, Ca(BH 4 ) 2 and the Ca(BH 4 ) 2 + MgH 2 reactive hydride composites (RHC), were calculated to have the ideal thermodynamic properties which fall within the optimal range for mobile applications. In this study, the addition of NbF 5 or TiF 4 to the Ca(BH 4 ) 2 + MgH 2 reactive hydride composite system was attempted aiming to obtain a full reversible system with the simultaneous suppression of CaB 12 H 12 . Structural characterization of the specimens was performed by means of in-situ Synchrotron Radiation Powder X-ray diffraction (SR-PXD) and 11 B{ 1 H} Solid State Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR). The evolution of the chemical state of the Nb- and Ti-based additives was monitored by X-ray Absorption Near Edge Structure (XANES). The addition of NbF 5 or TiF 4 to the Ca(BH 4 ) 2 + MgH 2 system have not suppressed completely the formation of CaB 12 H 12 and only a slight improvement concerning the reversible reaction was displayed just in the case of Nb-doped composite material

  1. Reverse-symmetry waveguides: Theory and fabrication

    DEFF Research Database (Denmark)

    Horvath, R.; Lindvold, Lars René; Larsen, N.B.

    2002-01-01

    We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractive...... index of the waveguide substrate less than the refractive index of the medium covering the waveguiding film (n(water) = 1.33). This is opposed to the conventional waveguide geometry, where the substrate is usually glass or polymers with refractive indices of approximate to1.5. The reverse configuration...... are combined with air-grooved polymer supports to form freestanding single-material polymer waveguides of reverse symmetry capable of guiding light....

  2. Design of a novel quantum reversible ternary up-counter

    Science.gov (United States)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  3. Sex Ratio Bias Leads to the Evolution of Sex Role Reversal in Honey Locust Beetles.

    Science.gov (United States)

    Fritzsche, Karoline; Booksmythe, Isobel; Arnqvist, Göran

    2016-09-26

    The reversal of conventional sex roles was enigmatic to Darwin, who suggested that it may evolve when sex ratios are female biased [1]. Here we present direct evidence confirming Darwin's hypothesis. We investigated mating system evolution in a sex-role-reversed beetle (Megabruchidius dorsalis) using experimental evolution under manipulated sex ratios and food regimes. In female-biased populations, where reproductive competition among females was intensified, females evolved to be more attractive and the sex roles became more reversed. Interestingly, female-specific mating behavior evolved more rapidly than male-specific mating behavior. We show that sexual selection due to reproductive competition can be strong in females and can target much the same traits as in males of species with conventional mating systems. Our study highlights two central points: the role of ecology in directing sexual selection and the role that females play in mating system evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Inspection Mechanism and Experimental Study of Prestressed Reverse Tension Method under PC Beam Bridge Anchorage

    Science.gov (United States)

    Peng, Zhang

    2018-03-01

    the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.

  5. Kinematic reversal schemes for the geomagnetic dipole.

    Science.gov (United States)

    Levy, E. H.

    1972-01-01

    Fluctuations in the distribution of cyclonic convective cells, in the earth's core, can reverse the sign of the geomagnetic field. Two kinematic reversal schemes are discussed. In the first scheme, a field maintained by cyclones concentrated at low latitude is reversed by a burst of cyclones at high latitude. Conversely, in the second scheme, a field maintained predominantly by cyclones in high latitudes is reversed by a fluctuation consisting of a burst of cyclonic convection at low latitude. The precise fluid motions which produce the geomagnetic field are not known. However, it appears that, whatever the details are, a fluctuation in the distribution of cyclonic cells over latitude can cause a geomagnetic reversal.

  6. Reversed stereo depth and motion direction with anti-correlated stimuli.

    Science.gov (United States)

    Read, J C; Eagle, R A

    2000-01-01

    We used anti-correlated stimuli to compare the correspondence problem in stereo and motion. Subjects performed a two-interval forced-choice disparity/motion direction discrimination task for different displacements. For anti-correlated 1d band-pass noise, we found weak reversed depth and motion. With 2d anti-correlated stimuli, stereo performance was impaired, but the perception of reversed motion was enhanced. We can explain the main features of our data in terms of channels tuned to different spatial frequencies and orientation. We suggest that a key difference between the solution of the correspondence problem by the motion and stereo systems concerns the integration of information at different orientations.

  7. Quantum Vertex Model for Reversible Classical Computing

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng

    We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.

  8. Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2

    International Nuclear Information System (INIS)

    Anderson, D.V.; Auerbach, S.P.; Berk, H.L.

    1980-01-01

    Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented

  9. Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2

    International Nuclear Information System (INIS)

    Anderson, D.V.; Auerbach, S.P.; Berk, H.L.

    1980-01-01

    Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are dramatically improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented

  10. Relationship between thermodynamic driving force and one-way fluxes in reversible processes.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    Full Text Available Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and reverse fluxes and free energy for any chemical process operating in a steady state. This relationship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state in dilute solution, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship.

  11. Studies of the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} reversible hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongan [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Yang Jun, E-mail: jyang27@ford.com [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Ni Jun [Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Drews, Andy [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We systematically studied the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system. Black-Right-Pointing-Pointer It is found that adding 0.25 TiCl{sub 3} produces fully reversible hydrogen absorption and desorption and a lower desorption temperature. Black-Right-Pointing-Pointer LiCl experiences four different states, i.e. 'formed-solid solution-molten solution-precipitation', in the whole desorption process of the system. Black-Right-Pointing-Pointer The incorporation of LiCl into LiBH{sub 4} forms more viscous molten LiBH{sub 4}{center_dot}LiCl, leading to fast kinetics. Black-Right-Pointing-Pointer The precipitation and re-incorporation of LiCl into LiBH{sub 4} lead to a fully reversible complex hydrogen storage system. - Abstract: In the present study, the effects of TiCl{sub 3} on desorption kinetics, absorption/desorption reversibility, and related phase transformation processes in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system was studied systematically by varying its concentration (x = 0, 0.05, 0.15 and 0.25). The results show that LiCl forms during ball milling of 6LiBH{sub 4}/CaH{sub 2}/xTiCl{sub 3} and that as temperature increases, o-LiBH{sub 4} transforms into h-LiBH{sub 4}, into which LiCl incorporates, forming solid solution of LiBH{sub 4}{center_dot}LiCl, which melts above 280 Degree-Sign C. Molten LiBH{sub 4}{center_dot}LiCl is more viscous than molten LiBH{sub 4}, preventing the clustering of LiBH{sub 4} and the accompanied agglomeration of CaH{sub 2}, and thus preserving the nano-sized phase arrangement formed during ball milling. Above 350 Degree-Sign C, the molten solution LiBH{sub 4}{center_dot}LiCl further reacts with CaH{sub 2}, precipitating LiCl. The main hydrogen desorption reaction is between molten LiBH{sub 4}{center_dot}LiCl and CaH{sub 2} and not between molten LiBH{sub 4} and CaH{sub 2}. This alters the hydrogen reaction thermodynamics and

  12. Securing Biometric Images using Reversible Watermarking

    OpenAIRE

    Thampi, Sabu M.; Jacob, Ann Jisma

    2011-01-01

    Biometric security is a fast growing area. Protecting biometric data is very important since it can be misused by attackers. In order to increase security of biometric data there are different methods in which watermarking is widely accepted. A more acceptable, new important development in this area is reversible watermarking in which the original image can be completely restored and the watermark can be retrieved. But reversible watermarking in biometrics is an understudied area. Reversible ...

  13. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  14. Statistics of resonances and time reversal reconstruction in aluminum acoustic chaotic cavities

    NARCIS (Netherlands)

    Antoniuk, O.; Sprik, R.

    2010-01-01

    The statistical properties of wave propagation in classical chaotic systems are of fundamental interest in physics and are the basis for diagnostic tools in materials science. The statistical properties depend in particular also on the presence of time reversal invariance in the system, which can be

  15. A new digitized reverse correction method for hypoid gears based on a one-dimensional probe

    Science.gov (United States)

    Li, Tianxing; Li, Jubo; Deng, Xiaozhong; Yang, Jianjun; Li, Genggeng; Ma, Wensuo

    2017-12-01

    In order to improve the tooth surface geometric accuracy and transmission quality of hypoid gears, a new digitized reverse correction method is proposed based on the measurement data from a one-dimensional probe. The minimization of tooth surface geometrical deviations is realized from the perspective of mathematical analysis and reverse engineering. Combining the analysis of complex tooth surface generation principles and the measurement mechanism of one-dimensional probes, the mathematical relationship between the theoretical designed tooth surface, the actual machined tooth surface and the deviation tooth surface is established, the mapping relation between machine-tool settings and tooth surface deviations is derived, and the essential connection between the accurate calculation of tooth surface deviations and the reverse correction method of machine-tool settings is revealed. Furthermore, a reverse correction model of machine-tool settings is built, a reverse correction strategy is planned, and the minimization of tooth surface deviations is achieved by means of the method of numerical iterative reverse solution. On this basis, a digitized reverse correction system for hypoid gears is developed by the organic combination of numerical control generation, accurate measurement, computer numerical processing, and digitized correction. Finally, the correctness and practicability of the digitized reverse correction method are proved through a reverse correction experiment. The experimental results show that the tooth surface geometric deviations meet the engineering requirements after two trial cuts and one correction.

  16. Neural network classifications and correlation analysis of EEG and MEG activity accompanying spontaneous reversals of the Necker cube.

    Science.gov (United States)

    Gaetz, M; Weinberg, H; Rzempoluck, E; Jantzen, K J

    1998-04-01

    It has recently been suggested that reentrant connections are essential in systems that process complex information [A. Damasio, H. Damasio, Cortical systems for the retrieval of concrete knowledge: the convergence zone framework, in: C. Koch, J.L. Davis (Eds.), Large Scale Neuronal Theories of the Brain, The MIT Press, Cambridge, 1995, pp. 61-74; G. Edelman, The Remembered Present, Basic Books, New York, 1989; M.I. Posner, M. Rothbart, Constructing neuronal theories of mind, in: C. Koch, J.L. Davis (Eds.), Large Scale Neuronal Theories of the Brain, The MIT Press, Cambridge, 1995, pp. 183-199; C. von der Malsburg, W. Schneider, A neuronal cocktail party processor, Biol. Cybem., 54 (1986) 29-40]. Reentry is not feedback, but parallel signalling in the time domain between spatially distributed maps, similar to a process of correlation between distributed systems. Accordingly, it was expected that during spontaneous reversals of the Necker cube, complex patterns of correlations between distributed systems would be present in the cortex. The present study included EEG (n=4) and MEG recordings (n=5). Two experimental questions were posed: (1) Can distributed cortical patterns present during perceptual reversals be classified differently using a generalised regression neural network (GRNN) compared to processing of a two-dimensional figure? (2) Does correlated cortical activity increase significantly during perception of a Necker cube reversal? One-second duration single trials of EEG and MEG data were analysed using the GRNN. Electrode/sensor pairings based on cortico-cortical connections were selected to assess correlated activity in each condition. The GRNN significantly classified single trials recorded during Necker cube reversals as different from single trials recorded during perception of a two-dimensional figure for both EEG and MEG. In addition, correlated cortical activity increased significantly in the Necker cube reversal condition for EEG and MEG compared

  17. Penerapan Reverse Engineering Dalam Penentuan Pola Interaksi Sequence Diagram Pada Sampel Aplikasi Android

    Directory of Open Access Journals (Sweden)

    Vierdy Sulfianto Rahmadani

    2015-04-01

    Full Text Available The purpose of this research is to apply the application of reverse engineering to determine interaction patterns of the Sequence diagram that can be used by system analysts as a template for designing UML sequence diagrams. Sample applications from android are used as dataset for reverse engineering and pattern identification. The first step is collecting application datasets. The next stage is identifying the features and applications activity, reverse engineering to obtain a sequence diagram model, and then synthesize all of the models into an interaction pattern of sequence diagram. The final step is to test the patterns by implementing it in an application development case stud. The evaluation results concludes that interaction patterns of sequence diagram designs obtained in reverse engineering steps is able to be implemented in software development that contained similar features with the obtained features in this research.

  18. Restorative glass: reversible, discreet restoration using structural glass components

    Directory of Open Access Journals (Sweden)

    Faidra Oikonomopoulou

    2017-12-01

    Full Text Available The application of structural glass as the principal material in restoration and conservation practices is a distinguishable, yet discreet approach. The transparency of glass allows the simultaneous perception of the monument at both its original and present condition, preserving its historical and aesthetical integrity. Concurrently, the material’s unique mechanical properties enable the structural consolidation of the monument. As a proof of concept, the restoration of Lichtenberg Castle is proposed. Solid cast glass units are suggested to complete the missing parts, in respect to the existing construction technique and aesthetics of the original masonry. Aiming for a reversible system, the glass units are interlocking, ensuring the overall stability without necessitating permanent, adhesive connections. This results in an elegant and reversible intervention.

  19. Reversal permanent charge and reversal potential: case studies via classical Poisson–Nernst–Planck models

    International Nuclear Information System (INIS)

    Eisenberg, Bob; Liu, Weishi; Xu, Hongguo

    2015-01-01

    In this work, we are interested in effects of a simple profile of permanent charges on ionic flows. We determine when a permanent charge produces current reversal. We adopt the classical Poisson–Nernst–Planck (PNP) models of ionic flows for this study. The starting point of our analysis is the recently developed geometric singular perturbation approach for PNP models. Under the setting in the paper for case studies, we are able to identify a single governing equation for the existence and the value of the permanent charge for a current reversal. A number of interesting features are established. The related topic on reversal potential can be viewed as a dual problem and is briefly examined in this work too. (paper)

  20. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengkun; Jiang, Feihong [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China); Lee, Tung-Ching, E-mail: lee@aesop.rutgers.edu [Department of Food Science, Rutgers, the State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901 (United States); Yue, Tianli, E-mail: yuetl305@nwsuaf.edu.cn [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-25

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe{sub 3}O{sub 4} nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe{sub 3}O{sub 4} magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe{sub 3}O{sub 4} nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe{sub 3}O{sub 4}/chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability.

  1. THEORETICAL FRAMES FOR DESIGNING REVERSE LOGISTICS PROCESSES

    OpenAIRE

    Janusz K. Grabara; Sebastian Kot

    2009-01-01

    Logistics processes of return flow became more and more important in present business practice. Because of better customer satisfaction, environmental and financial aspects many enterprises deal with reverse logistics performance. The paper is a literature review focused on the design principles of reverse logistics processes Keywords: reverse logistics, designing.

  2. Reversal of target-specific oral anticoagulants

    Science.gov (United States)

    Siegal, D.M.; Cuker, Adam

    2014-01-01

    Target-specific oral anticoagulants (TSOACs) provide safe and effective anticoagulation for the prevention and treatment of thrombosis in a variety of clinical settings by interfering with the activity of thrombin (dabigatran) or factor Xa (rivaroxaban, apixaban, edoxaban, betrixaban). Although TSOACs have practical advantages over vitamin K antagonists (VKAs), there are currently no antidotes to reverse their anticoagulant effect. Herein we summarize the available evidence for TSOAC reversal using nonspecific and specific reversal agents. We discuss important limitations of existing evidence, which is derived from studies in human volunteers, animal models and in vitro experiments. Studies evaluating the safety and efficacy of reversal agents on clinical outcomes such as bleeding and mortality in patients with TSOAC-associated bleeding are needed. PMID:24880102

  3. Optical reversible programmable Boolean logic unit.

    Science.gov (United States)

    Chattopadhyay, Tanay

    2012-07-20

    Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.

  4. Reversible Operation of Solid Oxide Cells for Sustainable Fuel Production and Solar/Wind Load-Balancing

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Villarreal, D.; Mýrdal, Jón Steinar Garðarsson

    2016-01-01

    with focus onfundamentals or applications of bi-directional operation. This presentation will highlight ourrecent developments in applying reversible SOCs (RSOCs) for renewable energy storagewith respect to cell and stack testing, cell and system design, and techno-economicanalysis.At the cell level, long...... exceeds the wind power supply.At the system level, techno-economic analyses and system designs for different scalesand applications have been realized. A simulation of an RSOC system that uses real-worldtime-series market prices for electricity and natural gas in Denmark to decide when tooperate...... in electrolysis mode (buying electricity and selling methane) or fuel-cell mode(buying gas and selling electricity) shows the advantage of a reversible system and thechanging operating profile as the fraction of wind power supply grows. Finally, we discussthe potential for systems with novel chemistries...

  5. The Development of a Renewable-Energy-Driven Reverse Osmosis System for Water Desalination and Aquaculture Production

    Institute of Scientific and Technical Information of China (English)

    Clark C K Liu

    2013-01-01

    Water and energy are closely linked natural resources-the transportation, treatment, and distribution of water depends on low-cost energy;while power generation requires large volumes of water. Seawater desalination is a mature technology for increasing freshwater supply, but it is essentially a trade of energy for freshwater and is not a viable solution for regions where both water and energy are in short supply. This paper discusses the development and application of a renewable-energy-driven reverse osmosis (RO) system for water desalination and the treatment and reuse of aquaculture wastewater. The system consists of (1) a wind-driven pumping subsystem, (2) a pressure-driven RO membrane desalination subsystem, and (3) a solar-driven feedback control module. The results of the pilot experiments indicated that the system, operated under wind speeds of 3 m s-1 or higher, can be used for brackish water desalination by reducing the salinity of feedwater with total dissolved solids (TDS) of over 3 000 mg L-1 to product water or permeate with a TDS of 200 mg L-1 or less. Results of the pilot experiments also indicated that the system can remove up to 97%of the nitrogenous wastes from the fish pond effluent and can recover and reuse up to 56%of the freshwater supply for fish pond operation.

  6. Extraction of cobalt ion using reverse-micelle of F-AOT in liquid/supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ko, M. S.; Jin, Y. W.; Kim, J. R.; Park, K. H.; Kim, H. D.; Kim, H. W. [Kyunghee Univ., Youngin (Korea, Republic of)

    2002-05-01

    A green decontamination method using CO{sub 2} as an environmentally benign solvent has been studied for removal of contaminant in the nuclear power plant. We developed a decontamination technique using CO{sub 2} for removal of contamination in working dresses. Owing to the low solubilizing, A reverse micelle system was developed. Fluorinated AOT was synthesized and used as surfactants forming reverse-micelle with water. Cobalt was extracted by dissolution into reverse-micelle in liquid CO{sub 2}. If this decontamination technique is applied to nuclear industry, the secondary waste during decontamination will be reverentially reduced. Negligibly small amount of water is a net waste, while the surfactants and solvent CO{sub 2} are recovered and reused in the system.

  7. Hidden Randomness between Fitness Landscapes Limits Reverse Evolution

    Science.gov (United States)

    Tan, Longzhi; Serene, Stephen; Xiao Chao, Hui; Gore, Jeff

    2012-02-01

    Natural populations must constantly adapt to the ever-changing environment. A fundamental question in evolutionary biology is whether adaptations can be reversed by returning the population to its ancestral environment. Traditionally, reverse evolution is defined as restoring an ancestral phenotype (physical characteristics such as body size), and the classic Dollo's Law has hypothesized the impossibility of reversing complex adaptations. However, this ``law'' remains ambiguous unless reverse evolution can be studied at the level of genotypes (the underlying genome sequence). We measured the fitness landscapes of a bacterial antibiotic-resistance gene and analyzed the reversibility of evolution as a global, statistical feature of the landscapes. In both experiments and simulations, we find that an adaptation's reversibility declines as the number of mutations it involves increases, suggesting a probabilistic form of Dollo's Law at the molecular level. We also show computationally that slowly switching between environments facilitates reverse evolution in small populations, where clonal interference is negligible or moderate. This is an analogy to thermodynamics, where the reversibility of a physical process is maximized when conditions are modified infinitely slowly.

  8. Reverse logistics in the construction industry.

    Science.gov (United States)

    Hosseini, M Reza; Rameezdeen, Raufdeen; Chileshe, Nicholas; Lehmann, Steffen

    2015-06-01

    Reverse logistics in construction refers to the movement of products and materials from salvaged buildings to a new construction site. While there is a plethora of studies looking at various aspects of the reverse logistics chain, there is no systematic review of literature on this important subject as applied to the construction industry. Therefore, the objective of this study is to integrate the fragmented body of knowledge on reverse logistics in construction, with the aim of promoting the concept among industry stakeholders and the wider construction community. Through a qualitative meta-analysis, the study synthesises the findings of previous studies and presents some actions needed by industry stakeholders to promote this concept within the real-life context. First, the trend of research and terminology related with reverse logistics is introduced. Second, it unearths the main advantages and barriers of reverse logistics in construction while providing some suggestions to harness the advantages and mitigate these barriers. Finally, it provides a future research direction based on the review. © The Author(s) 2015.

  9. Prefix reversals on binary and ternary strings

    NARCIS (Netherlands)

    Hurkens, C.A.J.; Iersel, van L.J.J.; Keijsper, J.C.M.; Kelk, S.M.; Stougie, L.; Tromp, J.T.

    2007-01-01

    Given a permutation $\\pi$, the application of prefix reversal $f^{(i)}$ to $\\pi$ reverses the order of the first $i$ elements of $\\pi$. The problem of sorting by prefix reversals (also known as pancake flipping), made famous by Gates and Papadimitriou (Discrete Math., 27 (1979), pp. 47–57), asks for

  10. Reversal of laryngotracheal separation in paediatric patients.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    OBJECTIVE: Laryngotracheal separation (LTS) is an effective and reliable definitive treatment for intractable aspiration. A major advantage of this treatment for intractable aspiration is its\\' potential reversibility. Should the underlying disorder improve, a reversal of the procedure may be attempted. This has been successfully achieved in the adult population. To our knowledge, no previous cases have been reported of successful reversal of LTS in children. METHODS: A retrospective review from 2003 to 2010 identified four cases of intractable aspiration treated with LTS in our department. Two of these patients displayed objective evidence of sufficient recovery of their underlying aspiration to consider reversal. Patient selection for reversal was dependent upon successful oral intake for 9 months along with videofluoroscopic evidence of normal or minimally impaired swallow. RESULTS: Two children who were successfully treated for intractable aspiration with LTS demonstrated objective evidence of recovery sufficient to attempt reversal. Both children underwent successful surgical reversal of LTS using a cricotracheal resection with end-to-end anastamosis, similar to that used in treatment of subglottic stenosis. Both children can now tolerate oral diet and their speech and language development is in line with their overall developmental level. CONCLUSIONS: Laryngotracheal separation is an effective and reliable definitive treatment for intractable aspiration facilitating protection of the airway and allowing safe swallowing with unimpeded respiration, but with the major drawback of loss of phonation. To our knowledge, we document the first two cases of successful LTS reversal in children.

  11. Combining or Separating Forward and Reverse Logistics

    DEFF Research Database (Denmark)

    Herbert-Hansen, Zaza Nadja Lee; Larsen, Samuel; Nielsen, Anders

    2018-01-01

    Purpose – While forward logistics handles and manages the flow of goods downstream in the supply chain from suppliers to customers, reverse logistics (RL) manages the flow of returned goods upstream. A firm can combine reverse logistics with forward logistics, keep the flows separated, or choose......-research addresses intra-RL issues while the relationship between forward and reverse logistics is under-researched. This paper contributes to RL-theory by identifying the contextual factors that determine the most advantageous relationship between forward and reverse logistics, and proposes a novel decision making...

  12. Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems

    DEFF Research Database (Denmark)

    Marpani, Fauziah Binti; Pinelo, Manuel; Meyer, Anne S.

    2017-01-01

    A designed biocatalytic cascade system based on reverse enzymatic catalysis by formate dehydrogenase (EC 1.2.1.2), formaldehyde dehydrogenase (EC 1.2.1.46), and alcohol dehydrogenase (EC 1.1.1.1) can convert carbon dioxide (CO2) to methanol (CH3OH) via formation of formic acid (CHOOH......) and formaldehyde (CHOH) during equimolar cofactor oxidation of NADH to NAD+. This reaction is appealing because it represents a double gain: (1) reduction of CO2 and (2) an alternative to fossil fuel based production of CH3OH. The present review evaluates the efficiency of different immobilized enzyme systems...

  13. Parameter dependence of resonant spin torque magnetization reversal

    International Nuclear Information System (INIS)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H.W.

    2012-01-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  14. Parameter dependence of resonant spin torque magnetization reversal

    Science.gov (United States)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H. W.

    2012-04-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  15. 21 CFR 177.2550 - Reverse osmosis membranes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Reverse osmosis membranes. 177.2550 Section 177... Components of Articles Intended for Repeated Use § 177.2550 Reverse osmosis membranes. Substances identified in paragraph (a) of this section may be safely used as reverse osmosis membranes intended for use in...

  16. Prefix reversals on binary and ternary strings

    NARCIS (Netherlands)

    Hurkens, C.A.J.; van Iersel, L.J.J.; Keijsper, J.C.M.; Kelk, S.M.; Stougie, L.; Tromp, J.T.

    2007-01-01

    Given a permutation $\\pi$, the application of prefix reversal $f^{(i)}$ to $\\pi$ reverses the order of the first $i$ elements of $\\pi$. The problem of sorting by prefix reversals (also known as pancake flipping), made famous by Gates and Papadimitriou (Discrete Math., 27 (1979), pp. 47–57), asks

  17. New applications of the H-reversal trajectory using solar sails

    International Nuclear Information System (INIS)

    Zeng Xiangyuan; Baoyin Hexi; Li Junfeng; Gong Shengping

    2011-01-01

    Advanced solar sailing has been an increasingly attractive propulsion system for highly non-Keplerian orbits. Three new applications of the orbital angular momentum reversal (H-reversal) trajectories using solar sails are presented: space observation, heliocentric orbit transfer and collision orbits with asteroids. A theoretical proof for the existence of double H-reversal trajectories (referred to as 'H2RTs') is given, and the characteristics of the H2RTs are introduced before a discussion of the mission applications. A new family of H2RTs was obtained using a 3D dynamic model of the two-body frame. In a time-optimal control model, the minimum period H2RTs both inside and outside the ecliptic plane were examined using an ideal solar sail. Due to the quasi-heliostationary property at its two symmetrical aphelia, the H2RTs were deemed suitable for space observation. For the second application, the heliocentric transfer orbit was able to function as the time-optimal H-reversal trajectory, since its perihelion velocity is a circular or elliptic velocity. Such a transfer orbit can place the sailcraft into a clockwise orbit in the ecliptic plane, with a high inclination or displacement above or below the Sun. The third application of the H-reversal trajectory was simulated impacting an asteroid passing near Earth in a head-on collision. The collision point can be designed through selecting different perihelia or different launch windows. Sample orbits of each application were presented through numerical simulation. The results can serve as a reference for theoretical research and engineering design.

  18. Compact-Toroid fusion reactor based on the field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-03-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CTOR) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  19. Reverse innovation in maternal health.

    Science.gov (United States)

    Firoz, Tabassum; Makanga, Prestige Tatenda; Nathan, Hannah L; Payne, Beth; Magee, Laura A

    2017-09-01

    Reverse innovation, defined as the flow of ideas from low- to high-income settings, is gaining traction in healthcare. With an increasing focus on value, investing in low-cost but effective and innovative solutions can be of mutual benefit to both high- and low-income countries. Reverse innovation has a role in addressing maternal health challenges in high-income countries by harnessing these innovative solutions for vulnerable populations especially in rural and remote regions. In this paper, we present three examples of 'reverse innovation' for maternal health: a low-cost, easy-to-use blood pressure device (CRADLE), a diagnostic algorithm (mini PIERS) and accompanying mobile app (PIERS on the Move), and a novel method for mapping maternal outcomes (MOM).

  20. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  1. Epigenetic modification and inheritance in sexual reversal of fish.

    Science.gov (United States)

    Shao, Changwei; Li, Qiye; Chen, Songlin; Zhang, Pei; Lian, Jinmin; Hu, Qiaomu; Sun, Bing; Jin, Lijun; Liu, Shanshan; Wang, Zongji; Zhao, Hongmei; Jin, Zonghui; Liang, Zhuo; Li, Yangzhen; Zheng, Qiumei; Zhang, Yong; Wang, Jun; Zhang, Guojie

    2014-04-01

    Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model-a marine fish that has both ZW chromosomal GSD and temperature-dependent ESD-we investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish.

  2. Reversible Photochemical Control of Singlet Oxygen Generation Using Diarylethene Photochromic Switches

    NARCIS (Netherlands)

    Hou, Lili; Zhang, Xiaoyan; Pijper, Thomas C.; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    Reversible noninvasive control over the generation of singlet oxygen is demonstrated in a bicomponent system comprising a diarylethene photochromic switch and a porphyrin photosensitizer by selective irradiation at distinct wavelengths. The efficient generation of singlet oxygen by the

  3. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert L. Lee; Junghan Dong

    2004-06-03

    This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to

  4. Stability of the field-reversed mirror

    International Nuclear Information System (INIS)

    Morse, E.C.

    1979-01-01

    The stability of a field reversed mirror plasma configuration is studied with an energy principle derived from the Vlasov equation. Because of finite orbit effects, the stability properties of a field-reversed mirror are different from the stability properties of similar magnetohydrodynamic equilibria. The Vlasov energy principle developed here is applied to a computer simulation of an axisymmetric field-reversed mirror state. It has been possible to prove that the l = 0 modes, called tearing modes, satisfy a sufficient condition for stability. Precessional modes, with l = 1, 2, are found to be unstable at low growth rate. This suggests possible turbulent behavior (Bohm confinement) in the experimental devices aiming at field reversal. Techniques for suppressing these instabilities are outlined, and the applicability of the Vlasov energy principle to more complicated equilibrium models is shown

  5. Study on reverse flow characteristics under natural circulation in inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Duan Jun; Zhou Tao; Zhang Lei; Hong Dexun; Liu Ping

    2013-01-01

    Natural circulation is important for application in the nuclear power industry. Aiming at the steam generator of AP1000 pressurized water reactor loop, the mathematical model was established to analysis the reverse flow of single-phase water in the inverted U-tubes of a steam generator in a natural circulation system. The length distribution and the mass flow rates in both tubes with normal and reverse flow were determined respectively. The research results show that the reverse flow may result in sharp decrease of gravity pressure head, circulation mass flow rate and heat release rate of natural circulation. It has adverse influence on natural circulation. (authors)

  6. Current reversal in a continuously periodic system driven by an additive noise and a multiplicative noise

    International Nuclear Information System (INIS)

    Wang Canjun; Chen Shibo; Mei Dongcheng

    2006-01-01

    We study the noise-induce transport and current reversal of Brownian particles in a continuously periodic potential driven by cross correlation between a multiplicative white noise and an additive white noise. We find that directed motion of the Brownian particles can be induced by the correlation between the additive noise and the multiplicative noise. The current reversal and the direction of the current is controlled by the values of the intensity (λ) of the correlated noises and a dimensionless parameter R (R=α/D, D is the intensity of multiplicative noise and α is the intensity of additive noise)

  7. Reverse Kinematic Analysis and Uncertainty Analysis of the Space Shuttle AFT Propulsion System (APS) POD Lifting Fixture

    Science.gov (United States)

    Brink, Jeffrey S.

    2005-01-01

    The space shuttle Aft Propulsion System (APS) pod requires precision alignment to be installed onto the orbiter deck. The Ground Support Equipment (GSE) used to perform this task cannot be manipulated along a single Cartesian axis without causing motion along the other Cartesian axes. As a result, manipulations required to achieve a desired motion are not intuitive. My study calculated the joint angles required to align the APS pod, using reverse kinematic analysis techniques. Knowledge of these joint angles will allow the ground support team to align the APS pod more safely and efficiently. An uncertainty analysis was also performed to estimate the accuracy associated with this approach and to determine whether any inexpensive modifications can be made to further improve accuracy.

  8. 基于社会-生态系统的沙漠化逆转过程脆弱性评价指标体系%An evaluation index system of vulnerability of the desertification reversion process based on the socio-ecological systems theory

    Institute of Scientific and Technical Information of China (English)

    王娅; 周立华; 魏轩

    2018-01-01

    Sandy desertification is one of the most severe ecological and environmental problems worldwide.Desertification reversion,as the reverse process of desertification expansion,has some instability and vulnerability due to disturbances by numerous socio-ecological factors.We call this phenomenon vulnerability of the desertification reversion process,and define it as the possibility and tendency of a reversion trend decline or reversal.Socio-ecological systems theory is a new form of ecological systems research.Based on this theory,we selected the driving-pressure-status-impact-response (DPSIR) framework and a typical reversed desertification area in Yanchi County as the study area.In this area,human activities have obviously interfered with natural processes and the expansion and reversal of desertification contrast sharply.We constructed an evaluation index system to assess the vulnerability of the desertification reversion process.This system includes four levels,five groups,and forty-one concrete indexes,including a moisture index,an ecological govemance index,and sandy proportion.Finally,we explore the logical causality between drivers,pressure,status,impact,response,meanwhile discuss the quantitative calculation method of vulnerability.The objective of this study was to scientifically assess the vulnerability of the desertification reversion process,and to provide support and a scientific basis to make decisions,manage,and regulate the desertification problem in the pastoral transitional zone.%土地沙漠化是当今世界最为严峻的生态环境问题之一.沙漠化逆转作为其反向转化过程,存在一定的脆弱性和不稳定性,即沙漠化逆转趋势减弱或反向发展的倾向.社会-生态系统理念是当今世界生态系统分析的新思路,从该视角界定沙漠化逆转过程的脆弱性概念,选取Driving-Pressure-Status-Impact-Response (DPSIR

  9. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal. Final Report

    International Nuclear Information System (INIS)

    Shamsuddin Ilias

    2005-01-01

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  10. Dexamethasone Does Not Inhibit Sugammadex Reversal After Rocuronium-Induced Neuromuscular Block.

    Science.gov (United States)

    Buonanno, Pasquale; Laiola, Anna; Palumbo, Chiara; Spinelli, Gianmario; Servillo, Giuseppe; Di Minno, Raffaele Maria; Cafiero, Tullio; Di Iorio, Carlo

    2016-06-01

    Sugammadex is a relatively new molecule that reverses neuromuscular block induced by rocuronium. The particular structure of sugammadex traps the cyclopentanoperhydrophenanthrene ring of rocuronium in its hydrophobic cavity. Dexamethasone shares the same steroidal structure with rocuronium. Studies in vitro have demonstrated that dexamethasone interacts with sugammadex, reducing its efficacy. In this study, we investigated the clinical relevance of this interaction and its influence on neuromuscular reversal. In this retrospective case-control study, we analyzed data from 45 patients divided into 3 groups: dexamethasone after induction group (15 patients) treated with 8 mg dexamethasone as an antiemetic drug shortly after induction of anesthesia; dexamethasone before reversal group (15 patients) treated with dexamethasone just before sugammadex injection; and control group (15 patients) treated with 8 mg ondansetron. All groups received 0.6 mg/kg rocuronium at induction, 0.15 mg/kg rocuronium at train-of-four ratio (TOF) 2 for neuromuscular relaxation, and 2 mg/kg sugammadex for reversal at the end of the procedure at TOF2. Neuromuscular relaxation was monitored with a TOF-Watch® system. The control group had a recovery time of 154 ± 54 seconds (mean ± SD), the dexamethasone after induction group 134 ± 55 seconds, and the dexamethasone before reversal group 131 ± 68 seconds. The differences among groups were not statistically significant (P = 0.5141). Our results show that the use of dexamethasone as an antiemetic drug for the prevention of postoperative nausea and vomiting does not interfere with reversal of neuromuscular blockade with sugammadex in patients undergoing elective surgery with general anesthesia in contrast to in vitro studies that support this hypothesis.

  11. On flow reversals in Rayleigh-Bénard convection

    International Nuclear Information System (INIS)

    Chandra, Mani; Verma, Mahendra K

    2011-01-01

    The dynamics of flow reversals are studied numerically using Fourier mode analysis. Our analysis shows that the Fourier modes represent the large-scale flows accurately. We observe that during the reversals, the amplitude of one of the large-scale modes vanishes, while another mode rises sharply, very similar to the cessation-led reversals observed earlier in experiments and numerical simulations. The Fourier coefficients of the RBC equations obey certain symmetries properties, which dictates which modes change sign in flow reversals. Based on our simulation results and symmetry properties of the Fourier modes, we provide a qualitative explanation for the flow reversals.

  12. Clean translation of an imperative reversible programming language

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock

    2011-01-01

    We describe the translation techniques used for the code generation in a compiler from the high-level reversible imperative programming language Janus to the low-level reversible assembly language PISA. Our translation is both semantics preserving (correct), in that target programs compute exactly...... the same functions as their source programs (cleanly, with no extraneous garbage output), and efficient, in that target programs conserve the complexities of source programs. In particular, target programs only require a constant amount of temporary garbage space. The given translation methods are generic......, and should be applicable to any (imperative) reversible source language described with reversible flowcharts and reversible updates. To our knowledge, this is the first compiler between reversible languages where the source and target languages were independently developed; the first exhibiting both...

  13. AN OVERVIEW ON RETAIL REVERSE LOGISTICS

    Directory of Open Access Journals (Sweden)

    Ioana Olariu

    2014-07-01

    Full Text Available This article is a theoretical approach on retail reverse logistics. Environmental concern and the current marketing strategy have spurred retailers to implement strategies to facilitate product returns from end customers. Reverse logistics, indicating the process of this return flow, encompasses such activities as the movement of returned products, facilities to accommodate returned items, and overall remedy process for returned items. The retail industry, under great competitive pressure, has used return policies as a competitive weapon. Grocery retailers were the first to begin to focus serious attention on the problem of returns and to develop reverse logistics innovations. Grocery retailers first developed innovations such as reclamation centers. Reclamation centers, in turn, led to the establishment of centralized return centers. Centralizing returns has led to significant benefits for most firms that have implemented them. Over the last several years, retailers have consolidated. Now, more than ever, reverse logistics is seen as being important. This reverse distribution activity can be crucial to the survival of companies, because the permanent goodwill of the company is at stake. Businesses succeed because they respond to both external and internal changes and adjust in an effective manner to remain competitive.

  14. Tips of the dual-lumen microcatheter-facilitated reverse wire technique in percutaneous coronary interventions for markedly angulated bifurcated lesions.

    Science.gov (United States)

    Nomura, Tetsuya; Kikai, Masakazu; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Sugimoto, Takeshi; Keira, Natsuya; Tatsumi, Tetsuya

    2018-04-01

    In practical settings of percutaneous coronary intervention (PCI), we sometimes encounter difficulty in introducing a guidewire (GW) to the markedly angulated side branch (SB), and the reverse wire technique is considered as a last resort to overcome such a situation. We analyzed 12 cases that underwent PCI with dual-lumen microcatheter-facilitated reverse wire technique between January 2013 and July 2016. We retrospectively investigated the lesion's characteristics and the details of the PCI procedures, and discussed tips about the use of this technique. The SB that exhibits both a smaller take-off angle and a larger carina angle is considered to be the most suitable candidate for this technique. The first step of this technique involves the delivery of the reverse wire system to the target bifurcation. However, most cases exhibit significant stenosis proximal to the bifurcation, which often hampers the delivery of the reverse wire system. Because the sharply curved reverse wire system is easier to pass the stenosis as compared to the roundly curved system, we recommend a sharp curve should be adopted for this technique. On the other hand, it is sure that device delivery is much easier on the GW with a round curve as compared to that with a sharp curve. Therefore, it is important to modify the details of this procedure on a case-by-case basis according to the lesion's characteristics.

  15. Reversal Learning in Humans and Gerbils: Dynamic Control Network Facilitates Learning.

    Science.gov (United States)

    Jarvers, Christian; Brosch, Tobias; Brechmann, André; Woldeit, Marie L; Schulz, Andreas L; Ohl, Frank W; Lommerzheim, Marcel; Neumann, Heiko

    2016-01-01

    Biologically plausible modeling of behavioral reinforcement learning tasks has seen great improvements over the past decades. Less work has been dedicated to tasks involving contingency reversals, i.e., tasks in which the original behavioral goal is reversed one or multiple times. The ability to adjust to such reversals is a key element of behavioral flexibility. Here, we investigate the neural mechanisms underlying contingency-reversal tasks. We first conduct experiments with humans and gerbils to demonstrate memory effects, including multiple reversals in which subjects (humans and animals) show a faster learning rate when a previously learned contingency re-appears. Motivated by recurrent mechanisms of learning and memory for object categories, we propose a network architecture which involves reinforcement learning to steer an orienting system that monitors the success in reward acquisition. We suggest that a model sensory system provides feature representations which are further processed by category-related subnetworks which constitute a neural analog of expert networks. Categories are selected dynamically in a competitive field and predict the expected reward. Learning occurs in sequentialized phases to selectively focus the weight adaptation to synapses in the hierarchical network and modulate their weight changes by a global modulator signal. The orienting subsystem itself learns to bias the competition in the presence of continuous monotonic reward accumulation. In case of sudden changes in the discrepancy of predicted and acquired reward the activated motor category can be switched. We suggest that this subsystem is composed of a hierarchically organized network of dis-inhibitory mechanisms, dubbed a dynamic control network (DCN), which resembles components of the basal ganglia. The DCN selectively activates an expert network, corresponding to the current behavioral strategy. The trace of the accumulated reward is monitored such that large sudden

  16. Parallelization of Reversible Ripple-carry Adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Axelsen, Holger Bock

    2009-01-01

    The design of fast arithmetic logic circuits is an important research topic for reversible and quantum computing. A special challenge in this setting is the computation of standard arithmetical functions without the generation of \\emph{garbage}. Here, we present a novel parallelization scheme...... wherein $m$ parallel $k$-bit reversible ripple-carry adders are combined to form a reversible $mk$-bit \\emph{ripple-block carry adder} with logic depth $\\mathcal{O}(m+k)$ for a \\emph{minimal} logic depth $\\mathcal{O}(\\sqrt{mk})$, thus improving on the $mk$-bit ripple-carry adder logic depth $\\mathcal...

  17. Time reversibility in the quantum frame

    Energy Technology Data Exchange (ETDEWEB)

    Masot-Conde, Fátima [Escuela Superior Ingenieros, Dpt. Física Aplicada III, Universidad de Sevilla Isla Mágica, 41092- Sevilla (Spain)

    2014-12-04

    Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.

  18. Kinetics and reversibility of radiocaesium solid/liquid partitioning in sediments

    International Nuclear Information System (INIS)

    Comans, R.N.J.

    1998-01-01

    The kinetics and reversibility of radiocaesium solid/liquid partitioning in sediments have been reviewed and interpreted in terms of a mechanistic framework. This framework is based on the premise that radiocaesium is almost exclusively and highly-selectively bound to the frayed particle edges of illitic clay minerals in the sediments. Several processes with distinctly different rates can be distinguished in radiocaesium sorption to sediments. 2- and 3-box kinetic models can describe both the overall solid/liquid partitioning in sediments and the reversible (exchangeable) and irreversible (nonexchangeable or 'fixed') fractions of radiocaesium in sediments over time scales relevant for natural aquatic systems. The obtained rate parameters indicate that reversible partitioning of radiocaesium dominates over the first few days following a contamination event, whereas irreversible kinetics becomes important over time scales of weeks to months. The slow process, which reduces the exchangeability of sediment-bound radiocaesium over time, is believed to result from a migration of radiocaesium from exchangeable sites on the frayed edges of illite towards less-exchangeable interlayer sites. Long-term extraction of radiocaesium from historically contaminated sediments has given evidence for a reverse (remobilization) process with a half-life of the order of tens of years. These findings suggest that the long-term exchangeability of radiocaesium in sediments may be higher than the few % which is generally assumed. (orig.)

  19. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  20. Reversal of hepatorenal syndrome type 1 with terlipressin plus albumin vs. placebo plus albumin in a pooled analysis of the OT-0401 and REVERSE randomised clinical studies.

    Science.gov (United States)

    Sanyal, A J; Boyer, T D; Frederick, R T; Wong, F; Rossaro, L; Araya, V; Vargas, H E; Reddy, K R; Pappas, S C; Teuber, P; Escalante, S; Jamil, K

    2017-06-01

    The goal of hepatorenal syndrome type 1 (HRS-1) treatment is to improve renal function. Terlipressin, a synthetic vasopressin analogue, is a systemic vasoconstrictor used for the treatment of HRS-1, where it is available. To compare the efficacy of terlipressin plus albumin vs. placebo plus albumin in patients with HRS-1. Pooled patient-level data from two large phase 3, randomised, placebo-controlled studies were analysed for HRS reversal [serum creatinine (SCr) value ≤133 μmol/L], 90-day survival, need for renal replacement therapy and predictors of HRS reversal. Patients received intravenous terlipressin 1-2 mg every 6 hours plus albumin or placebo plus albumin up to 14 days. The pooled analysis comprised 308 patients (terlipressin: n = 153; placebo: n = 155). HRS reversal was significantly more frequent with terlipressin vs. placebo (27% vs. 14%; P = 0.004). Terlipressin was associated with a more significant improvement in renal function from baseline until end of treatment, with a mean between-group difference in SCr concentration of -53.0 μmol/L (P albumin resulted in a significantly higher rate of HRS reversal vs. albumin alone in patients with HRS-1. Terlipressin treatment is associated with improved renal function. (ClinicalTrials.gov identifier: OT-0401, NCT00089570; REVERSE, NCT01143246). © 2017 The Authors. Alimentary Pharmacology and Therapeutics published by John Wiley & Sons Ltd.