Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating
MA Ji; SONG Jing; LIU Yong-Gang; RUAN Sheng-Ping; XUAN Li
2005-01-01
@@ We demonstrate the "reversed-mode" polymer-stabilized liquid crystal device. The incidence light goes through the film without the applied voltage and is diffracted with it. Because of relatively high liquid crystal percentage of 94%, the operating voltage of the device is less than 20 V. We explain this phenomenon using the molecularorientation model and the refractive index profile. The device can be used as display, optical switch, optical modulator and especially optical cross-connect deflector.
Ramanujam, P.S.; Holme, NCR; Berg, RH
1999-01-01
A Two-dimensional holographic memory for archival storage is described. Assuming a coherent transfer function, an A4 page can be stored at high resolution in an area of 1 mm(2). Recently developed side-chain liquid crystalline azobenzene polyesters are found to be suitable media for holographic...... storage. They exhibit high resolution, high diffraction efficiency, have long storage life, are fully erasable and are mechanically stable....
Reversal mechanism in perpendicular media with columnar structure
Wielinga, T.; Lodder, J.C.
1986-01-01
A contribution is given to the discussion concerning the nature of the magnetization reversal process in sputtered CoCr recording media with columnar morphology. The paper is restricted to the additional effects on the total perpendicular anisotropy by studying the columnar shape anisotropy and the
Political Socialization and Mass Media Use: A Reverse Causality Model.
Tan, Alexis S.
A reverse causality model treating mass media use for public affairs information as a result rather than as a cause of political behavior was tested utilizing surveys of 190 Mexican-American, 176 black, and 225 white adults. The criterion variable used in each sample was frequency of television and newspaper use for public affairs information. The…
Magnetization reversal dynamics in antiferromagnetically coupled magnetic recording media
Schabes, Manfred
2002-03-01
Antiferromagnetically coupled (AFC) media have been shown to provide an important extension of longitudinal magnetic data storage at high bit densities.[1,2] In this work we report the results of micromagnetic calculations to examine the magnetization reversal mechanism in two-layer AFC media as a function of bottom layer thickness and interfacial exchange coupling. It is shown that the magnetization reversal in the top and bottom layers can proceed at rather different time scales, if the interfacial energy density is small or the bottom layer thickness is large. In this case the reversal of the bottom layer may involve spin wave like oscillations that require time periods for damping that are large compared to the reversal time of the top layer. Detailed solutions of the Landau-Lifshitz-Langevin[2] equations are discussed to study these novel oscillatory excitations in AFC media at a temperature of 350 K. [1] E.E. Fullerton et al., Appl. Phys. Lett., vol.77, (2000),3806. [2] M.E. Schabes et al., IEEE Trans. Mag. MAG-37, (2001), 1432.
Peculiarities of the exposure of actinic radiation on polymeric holographic recording media
Manukhin, B. G.; Andreeva, N. V.; Andreeva, O. V.
2016-08-01
The results of experiments that allow to evaluate changes of optical parameters of polymeric recording medium with diffusional amplification occurring during recording of information are presented. It is shown that phase characteristics of the sample compared to its initial state are observed during recording of information and in the post-exposure period, i.e. in a stable condition of the finished element. Quantitative estimates which can be used for planning conditions of holographic experiment during creating highly selective holographic optical elements (HOE) with given parameters are obtained.
Holographic 3D imaging through diffuse media by compressive sampling of the mutual intensity
Falldorf, Claas; Klein, Thorsten; Agour, Mostafa; Bergmann, Ralf B.
2017-05-01
We present a method for holographic imaging through a volume scattering material, which is based on selfreference and light with good spatial but limited temporal coherence. In contrast to existing techniques, we do not require a separate reference wave, thus our approach provides great advantages towards the flexibility of the measurement system. The main applications are remote sensing and investigation of moving objects through gaseous streams, bubbles or foggy water for example. Furthermore, due to the common path nature, the system is also insensitive to mechanical disturbances. The measurement result is a complex amplitude which is comparable to a phase shifted digital hologramm and therefore allows 3D imaging, numerical refocusing and quantitative phase contrast imaging. As an example of application, we present measurements of the quantitative phase contrast of the epidermis of an onion through a volume scattering material.
Epoxy-photopolymer composites: thick recording media for holographic data storage
Trentler, Timothy J.; Boyd, Joel E.; Colvin, Vicki L.
2001-06-01
Archival data-storage based on holographic methods requires high performance recording materials. Here, we describe an epoxy-photopolymer composite material which is sensitive to visible light and can be fabricated as thick films. These materials are prepared by combining photopolymerizable vinyl monomers with a liquid epoxy resin and an amine hardener. As the epoxy cures at room temperature, a solid matrix is formed which surrounds the unreacted photopolymer. These vinyl monomers are subsequently photopolymerized during hologram recording. Typically the material consists of a low index matrix, composed of diethylenetriamine and 1,4- butanediol diglycidyl ether, and a high index photopolymer mixture of N-vinylcarbazole and N-vinyl-2-pyrrolidinone. Because the polymers can be prepared in thick formats, narrow angular bandwidth holograms with high diffraction efficiency can be recorded. A dynamic range up to 13 has been measured in these materials.
Self-adaptive focusing by time reversal through interface between different media
WEI Wei; WANG Chenghao
2000-01-01
The time reversal is an unique self-adaptive focusing technique important to ultrasonic imaging. In this paper, the principle and the analytic expression of the ultrasound field in the realization of time reversal during the presence of an interface between two media are presented. Experimental results of time reversal are given and found to agree with theoretical ones.
Forsati, Rana; Valipour Ebrahimi, Sara; Navi, Keivan; Mohajerani, Ezeddin; Jashnsaz, Hossein
2013-02-01
Increasing demand for power reduction in computer systems has led to new trends in computations and computer design including reversible computing. Its main aim is to eliminate power dissipation in logical elements but can have some other advantages such as data security and error prevention. Because of interesting properties of reversible computing, implementing computing devices with reversible manner is the only way to make the reversible computing a reality. In recent years, reversible logic has turned out to be a promising computing paradigm having application in CMOS, nanotechnology, quantum computing and optical computing. In this paper, we propose and realize a novel implementation of Toffoli gate in all-optical domain. We have explained its principle of operations and described an actual experimental implementation. The all-optical reversible gate presented in this paper will be useful in different applications such as arithmetic and logical operations in the domain of reversible logic-based computing.
Time Reversal in Subwavelength-Scaled Resonant Media: Beating the Diffraction Limit
Fabrice Lemoult
2011-01-01
Full Text Available Time reversal is a physical concept that can focus waves both spatially and temporally regardless of the complexity of the propagation medium. Time reversal mirrors have been demonstrated first in acoustics, then with electromagnetic waves, and are being intensively studied in many fields ranging from underwater communications to sensing. In this paper, we will review the principles of time reversal and in particular its ability to focus waves in complex media. We will show that this focusing effect depends on the complexity of the propagation medium rather than on the time reversal mirror itself. A modal approach will be utilized to explain the physical mechanism underlying the concept. A particular focus will be given on the possibility to break the diffraction barrier from the far field using time reversal. We will show that finite size media made out of coupled subwavelength resonators support modes which can radiate efficiently in the far field spatial information of the near field of a source. We will show through various examples that such a process, due to reversibility, permits to beat the diffraction limit using far field time reversal, and especially that this result occurs owing to the broadband inherent nature of time reversal.
Least-squares reverse time migration in elastic media
Ren, Zhiming; Liu, Yang; Sen, Mrinal K.
2017-02-01
Elastic reverse time migration (RTM) can yield accurate subsurface information (e.g. PP and PS reflectivity) by imaging the multicomponent seismic data. However, the existing RTM methods are still insufficient to provide satisfactory results because of the finite recording aperture, limited bandwidth and imperfect illumination. Besides, the P- and S-wave separation and the polarity reversal correction are indispensable in conventional elastic RTM. Here, we propose an iterative elastic least-squares RTM (LSRTM) method, in which the imaging accuracy is improved gradually with iteration. We first use the Born approximation to formulate the elastic de-migration operator, and employ the Lagrange multiplier method to derive the adjoint equations and gradients with respect to reflectivity. Then, an efficient inversion workflow (only four forward computations needed in each iteration) is introduced to update the reflectivity. Synthetic and field data examples reveal that the proposed LSRTM method can obtain higher-quality images than the conventional elastic RTM. We also analyse the influence of model parametrizations and misfit functions in elastic LSRTM. We observe that Lamé parameters, velocity and impedance parametrizations have similar and plausible migration results when the structures of different models are correlated. For an uncorrelated subsurface model, velocity and impedance parametrizations produce fewer artefacts caused by parameter crosstalk than the Lamé coefficient parametrization. Correlation- and convolution-type misfit functions are effective when amplitude errors are involved and the source wavelet is unknown, respectively. Finally, we discuss the dependence of elastic LSRTM on migration velocities and its antinoise ability. Imaging results determine that the new elastic LSRTM method performs well as long as the low-frequency components of migration velocities are correct. The quality of images of elastic LSRTM degrades with increasing noise.
Eric P. S. Baumer; Shion Guha; Emily Quan; David Mimno; Gay, Geri K.
2015-01-01
This article examines social media reversion, when a user intentionally ceases using a social media site but then later resumes use of the site. We analyze a convenience sample of survey data from people who volunteered to stay off Facebook for 99 days but, in some cases, returned before that time. We conduct three separate analyses to triangulate on the phenomenon of reversion: simple quantitative predictors of reversion, factor analysis of adjectives used by respondents to describe their ex...
Sutcliffe, Paul M.
Skyrmions are topological solitons that describe baryons within a nonlinear theory of pions. In holographic QCD, baryons correspond to topological solitons in a bulk theory with an extra spatial dimension: thus the three-dimensional Skyrmion lifts to a four-dimensional holographic Skyrmion in the bulk. We begin this review with a description of the simplest example of this correspondence, where the holographic Skyrmion is exactly the self-dual Yang-Mills instanton in flat space. This places an old result of Atiyah and Manton within a holographic framework and reveals that the associated Skyrme model extends the nonlinear pion theory to include an infinite tower of vector mesons, with specific couplings for a BPS theory. We then describe the more complicated curved space version that arises from the string theory construction of Sakai and Sugimoto. The basic concepts remain the same but the technical difficulty increases as the holographic Skyrmion is a curved space version of the Yang-Mills instanton, so self-duality and integrability are lost. Finally, we turn to a low-dimensional analogue of holographic Skyrmions, where aspects such as multi-baryons and finite baryon density are amenable to both numerical computation and an approximate analytic treatment.
NRMC - A GPU code for N-Reverse Monte Carlo modeling of fluids in confined media
Sánchez-Gil, Vicente; Noya, Eva G.; Lomba, Enrique
2017-08-01
NRMC is a parallel code for performing N-Reverse Monte Carlo modeling of fluids in confined media [V. Sánchez-Gil, E.G. Noya, E. Lomba, J. Chem. Phys. 140 (2014) 024504]. This method is an extension of the usual Reverse Monte Carlo method to obtain structural models of confined fluids compatible with experimental diffraction patterns, specifically designed to overcome the problem of slow diffusion that can appear under conditions of tight confinement. Most of the computational time in N-Reverse Monte Carlo modeling is spent in the evaluation of the structure factor for each trial configuration, a calculation that can be easily parallelized. Implementation of the structure factor evaluation in NVIDIA® CUDA so that the code can be run on GPUs leads to a speed up of up to two orders of magnitude.
Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media
Pestana, Reynam C
2012-04-24
In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |ε- δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media. © 2012 Sinopec Geophysical Research Institute.
Vorticity in holographic fluids
Caldarelli, Marco M; Petkou, Anastasios C; Petropoulos, P Marios; Pozzoli, Valentina; Siampos, Konstadinos
2012-01-01
In view of the recent interest in reproducing holographically various properties of conformal fluids, we review the issue of vorticity in the context of AdS/CFT. Three-dimensional fluids with vorticity require four-dimensional bulk geometries with either angular momentum or nut charge, whose boundary geometries fall into the Papapetrou--Randers class. The boundary fluids emerge in stationary non-dissipative kinematic configurations, which can be cyclonic or vortex flows, evolving in compact or non-compact supports. A rich network of Einstein's solutions arises, naturally connected with three-dimensional Bianchi spaces. We use Fefferman--Graham expansion to handle holographic data from the bulk and discuss the alternative for reversing the process and reconstruct the exact bulk geometries.
Aref'eva, Irina
2016-01-01
There are successful applications of the holographic AdS/CFT correspondence to high energy and condensed matter physics. We apply the holographic approach to photosynthesis that is an important example of nontrivial quantum phenomena relevant for life which is being studied in the emerging field of quantum biology. Light harvesting complexes of photosynthetic organisms are many-body quantum systems, in which quantum coherence has recently been experimentally shown to survive for relatively long time scales even at the physiological temperature despite the decohering effects of their environments. We use the holographic approach to evaluate the time dependence of entanglement entropy and quantum mutual information in the Fenna-Matthews-Olson (FMO) protein-pigment complex in green sulfur bacteria during the transfer of an excitation from a chlorosome antenna to a reaction center. It is demonstrated that the time evolution of the mutual information simulating the Lindblad master equation in some cases can be obt...
Halyo, E
2004-01-01
Using the de Sitter/CFT correspondence we describe a scenario of holographic inflation which is driven by a three dimensional boundary field theory. We find that inflationary constraints severely restrict the $\\beta$--function, the anomalous dimensions and the value of the $C$--function of the boundary theory. The scenario has model independent predictions such as $\\epsilon<< \\eta$, $n_T<0.04$, $P_{tensor}/P_{scalar}<0.08$ and $H<10^{14} GeV$. We consider some simple boundary theories and find that they do not lead to inflation. Thus, building an acceptable holographic inflation model remains a challenge. We also describe holographic quintessence and find that it closely resembles a cosmological constant.
Odhner, Jefferson E.
2016-07-01
Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.
Decoupled equations for reverse time migration in tilted transversely isotropic media
Zhan, Ge
2012-03-01
Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.
Fast binarized time-reversed adapted-perturbation (b-TRAP) optical focusing inside scattering media
Ma, Cheng; Liu, Yan; Wang, Lihong V
2015-01-01
Light scattering inhibits high-resolution optical imaging, manipulation and therapy deep inside biological tissue by preventing focusing. To form deep foci, wavefront-shaping and time-reversal techniques that break the optical diffusion limit have been developed. For in vivo applications, such focusing must provide high gain, high speed, and a large number of spatial modes. However, none of the previous techniques meet these requirements simultaneously. Here, we overcome this challenge by rapidly measuring the perturbed optical field within a single camera exposure followed by adaptively time-reversing the phase-binarized perturbation. Consequently, a phase-conjugated wavefront is synthesized within a millisecond, two orders of magnitude shorter than the digitally achieved record. We demonstrated real-time focusing in dynamic scattering media, and extended laser speckle contrast imaging to new depths. The unprecedented combination of fast response, high gain, and large mode count makes this work a major strid...
Elasticity-induced force reversal between active spinning particles in dense passive media.
Aragones, J L; Steimel, J P; Alexander-Katz, A
2016-04-26
The self-organization of active particles is governed by their dynamic effective interactions. Such interactions are controlled by the medium in which such active agents reside. Here we study the interactions between active agents in a dense non-active medium. Our system consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or non-active, particles. We demonstrate that the presence of the passive monolayer alters markedly the properties of the system and results in a reversal of the forces between active spinning particles from repulsive to attractive. The origin of such reversal is due to the coupling between the active stresses and elasticity of the system. This discovery provides a mechanism for the interaction between active agents in complex and structured media, opening up opportunities to tune the interaction range and directionality via the mechanical properties of the medium.
Ruan, Haowen; Yang, Changhuei
2015-01-01
Focusing light inside scattering media in a freely addressable fashion is challenging, as the wavefront of the scattered light is highly disordered. Recently developed ultrasound-guided wavefront shaping methods are addressing this challenge, albeit with relatively low modulation efficiency and resolution limitations. In this paper, we present a new technique, time-reversed ultrasound microbubble encoded (TRUME) optical focusing, which is able to focus light with improved efficiency and sub-ultrasound wavelength resolution. This method ultrasonically destructs microbubbles, and measures the wavefront change to compute and render a suitable time-reversed wavefront solution for focusing. We demonstrate that the TRUME technique can create an optical focus at the site of bubble destruction with a size of ~2 microns. Due to the nonlinear pressure-to-destruction response, the TRUME technique can break the addressable focus resolution barrier imposed by the ultrasound focus. We experimentally demonstrate a 2-fold ad...
Holographic Optical Data Storage
Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)
2000-01-01
Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising
Holographic charge density waves
Donos, Aristomenis
2013-01-01
We show that strongly coupled holographic matter at finite charge density can exhibit charge density wave phases which spontaneously break translation invariance while preserving time-reversal and parity invariance. We show that such phases are possible within Einstein-Maxwell-dilaton theory in general spacetime dimensions. We also discuss related spatially modulated phases when there is an additional coupling to a second vector field, possibly with non-zero mass. We discuss how these constructions, and others, should be associated with novel spatially modulated ground states.
Holographic charge density waves
Donos, Aristomenis; Gauntlett, Jerome P.
2013-06-01
We show that strongly coupled holographic matter at finite charge density can exhibit charge density wave phases which spontaneously break translation invariance while preserving time-reversal and parity invariance. We show that such phases are possible within Einstein-Maxwell-dilaton theory in general spacetime dimensions. We also discuss related spatially modulated phases when there is an additional coupling to a second vector field, possibly with nonzero mass. We discuss how these constructions, and others, should be associated with novel spatially modulated ground states.
Anninos, Dionysios; Denef, Frederik; Peeters, Lucas
2013-01-01
We establish the existence of stable and metastable stationary black hole bound states at finite temperature and chemical potentials in global and planar four-dimensional asymptotically anti-de Sitter space. We determine a number of features of their holographic duals and argue they represent structural glasses. We map out their thermodynamic landscape in the probe approximation, and show their relaxation dynamics exhibits logarithmic aging, with aging rates determined by the distribution of barriers.
Palais, Joseph C.; Miller, Mark E.
1996-09-01
A unique method for the construction and display of a 3D holographic movie is developed. An animated film is produced by rotating a 3D object in steps between successive holographic exposures. Strip holograms were made on 70-mm AGFA 8E75 Holotest roll film. Each hologram was about 11-mm high and 55-mm high and 55-mm wide. The object was rotated 2 deg between successive exposures. A complete cycle of the object motion was recorded on 180 holograms using the lensless Fourier transform construction. The ends of the developed film were spliced together to produce a continuous loop. Although the film moves continuously on playback and there is not shutter, there is no flicker or image displacement because of the Fourier transform hologram construction, as predicted by the theoretical analysis. The movie can be viewed for an unlimited time because the object motion is cyclical and the film is continuous. The film is wide enough such that comfortable viewing with both eyes is possible, enhancing the 3D effect. Viewers can stand comfortably away from the film since no viewing slit or aperture is necessary. Several people can simultaneously view the movie.
Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations
Zhan, Ge
2012-12-01
Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the
Reusable holographic velocimetry system based on polarization multiplexing in Bacteriorhodopsin
Koek, W.D.; Chan, V.S.S.; Ooms, T.A.; Bhattacharya, N.; Westerweel, J.; Braat, J.J.M.
2005-01-01
We present a novel holographic particle image velocimetry (HPIV) system using a reversible holographic material as the recording medium. In HPIV the three-dimensional flow field throughout a volume is detected by adding small tracer particles to a normally transparent medium. By recording the
Eric P. S. Baumer
2015-11-01
Full Text Available This article examines social media reversion, when a user intentionally ceases using a social media site but then later resumes use of the site. We analyze a convenience sample of survey data from people who volunteered to stay off Facebook for 99 days but, in some cases, returned before that time. We conduct three separate analyses to triangulate on the phenomenon of reversion: simple quantitative predictors of reversion, factor analysis of adjectives used by respondents to describe their experiences of not using Facebook, and statistical topic analysis of free-text responses. Significant factors predicting either increased or decreased likelihood of reversion include, among others, prior use of Facebook, experiences associated with perceived addiction, issues of social boundary negotiation such as privacy and surveillance, use of other social media, and friends’ reactions to non-use. These findings contribute to the growing literature on technology non-use by demonstrating how social media users negotiate, both with each other and with themselves, among types and degrees of use and non-use.
Latorre, Jose I
2015-01-01
There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.
Takeuchi, Shingo
2013-01-01
We propose a holographic model of the SQUID (Superconducting QUantum Interference Device) composed of two Josephson junctions connected each other in a circle with the magnetic flux penetrating the circuit of the SQUID and the supercurrents flowing in both Josephson junction. The gravity in this paper is the Einstein-Maxwell-complex scalar field model on the four-dimensional Anti-de Sitter Schwarzschild black brane geometry in which one space direction is compactified into a circle, and we arrange the profile of the coefficient of the time component of the gauge field having the role for the chemical potential of the cooper pair. The magnetic flux is involved by the rewriting of the surface integral of the magnetic field to the contour integral of the gauge field.
Ma, Cheng; Liu, Yan; Wang, Lihong V
2014-01-01
The ability to steer light propagation inside scattering media has long been sought-after due to its potential widespread applications. To form optical foci inside scattering media, the only feasible strategy is to guide photons by using either implanted or virtual guide stars. However, all of these guide stars must be introduced extrinsically, either invasively or by physical contact, limiting the scope of their application. Here, we focus light inside scattering media by employing intrinsic dynamics as guide stars. By time-reversing the perturbed component of the scattered light adaptively, we concentrate light to the origin of the perturbation, where the permittivity varied spontaneously. We demonstrate dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media, without invasiveness and physical contact. Anticipated applications include all-weather optical communication with airplanes or satellites, tracking vehicles in thick fogs, and imaging and ph...
Zhang, Jingfei; ZHANG Xin; Liu, Hongya
2007-01-01
We propose in this Letter a holographic model of tachyon dark energy. A connection between the tachyon scalar-field and the holographic dark energy is established, and accordingly, the potential of the holographic tachyon field is constructed. We show that the holographic evolution of the universe with $c\\geqslant 1$ can be described completely by the resulting tachyon model in a certain way.
Holographic Special Relativity
Wise, Derek K
2013-01-01
We reinterpret special relativity, or more precisely its de Sitter deformation, in terms of 3d conformal geometry, as opposed to (3+1)d spacetime geometry. An inertial observer, usually described by a geodesic in spacetime, becomes instead a choice of ways to reverse the conformal compactification of a Euclidean vector space up to scale. The observer's "current time," usually given by a point along the geodesic, corresponds to the choice of scale in the decompactification. We also show how arbitrary conformal 3-geometries give rise to "observer space geometries," as defined in recent work, from which spacetime can be reconstructed under certain integrability conditions. We conjecture a relationship between this kind of "holographic relativity" and the "shape dynamics" proposal of Barbour and collaborators, in which conformal space takes the place of spacetime in general relativity. We also briefly survey related pictures of observer space, including the AdS analog and a representation related to twistor theor...
Holographic entropy production
Tian, Yu; Wu, Xiao-Ning; Zhang, Hongbao
2014-10-01
The suspicion that gravity is holographic has been supported mainly by a variety of specific examples from string theory. In this paper, we propose that such a holography can actually be observed in the context of Einstein's gravity and at least a class of generalized gravitational theories, based on a definite holographic principle where neither is the bulk space-time required to be asymptotically AdS nor the boundary to be located at conformal infinity, echoing Wilson's formulation of quantum field theory. After showing the general equilibrium thermodynamics from the corresponding holographic dictionary, in particular, we provide a rather general proof of the equality between the entropy production on the boundary and the increase of black hole entropy in the bulk, which can be regarded as strong support to this holographic principle. The entropy production in the familiar holographic superconductors/superfluids is investigated as an important example, where the role played by the holographic renormalization is explained.
Holographic Entropy Production
Tian, Yu; Zhang, Hong-Bao
2014-01-01
The suspicion that gravity is holographic has been supported mainly by a variety of specific examples from string theory. In this paper, we propose that such a holography can actually be observed in the context of Einstein's gravity and at least a class of generalized gravitational theories, based on a definite holographic principle where neither is the bulk space-time required to be asymptotically AdS nor the boundary to be located at conformal infinity, echoing Wilson's formulation of quantum field theory. After showing the general equilibrium thermodynamics from the corresponding holographic dictionary, in particular, we provide a rather general proof of the equality between the entropy production on the boundary and the increase of black hole entropy in the bulk, which can be regarded as strong support to this holographic principle. The entropy production in the familiar holographic superconductors/superfluids is investigated as an important example, where the role played by the holographic renormalizatio...
Ma, Cheng; Xu, Xiao; Wang, Lihong V.
2016-03-01
Focusing light deep inside scattering media plays a key role in such biomedical applications as high resolution optical imaging, control, and therapy. In recent years, wavefront shaping technologies have come a long way in controlling light propagation in complex media. A prominent example is time-reversed ultrasonically encoded (TRUE) focusing, which allows noninvasive introduction of "guide stars" inside biological tissue to guide light focusing. By measuring the optical wavefront emanating from an ultrasound focus created at the target location, TRUE determines the desired wavefront non-iteratively, and achieves focusing at the target position via a subsequent optical time reversal. Compared to digital counterparts that employ slow electronic spatial light modulators and cameras, analog TRUE focusing relies on nonlinear photorefractive crystals that inherently accommodate more spatial modes and eliminate the troublesome alignment and data transfer required by digital approaches. However, analog TRUE focusing suffers from its small gain, defined as the energy or power ratio between the focusing and probing beams in the focal volume. Here, by implementing a modified analog TRUE focusing scheme that squeezes the duration of the time-reversed photon packet below the carrier-recombination-limited hologram decay time of the crystal, we demonstrated a photon flux amplification much greater than unity at a preset focal voxel in between two scattering layers. Although the energy gain was still below unity, the unprecedented power gain will nevertheless benefit new biomedical applications.
Liquid crystals for holographic optical data storage
Matharu, Avtar; Jeeva, S.; Ramanujam, P.S.
2007-01-01
A tutorial review is presented to inform and inspire the reader to develop and integrate strong scientific links between liquid crystals and holographic data storage, from a materials scientist's viewpoint. The principle of holographic data storage as a means of providing a solution...... to the information storage demands of the 21st century is detailed. Holography is a small subset of the much larger field of optical data storage and similarly, the diversity of materials used for optical data storage is enormous. The theory of polarisation holography which produces holograms of constant intensity......, is discussed. Polymeric liquid crystals play an important role in the development of materials for holographic storage and photoresponsive materials based on azobenzene are targeted for discussion due to their ease of photo- reversion between trans- and cis- states. Although the final polymer may not be liquid...
Reversing the direction of space and inverse Doppler effect in positive refraction index media
Sun, Fei; He, Sailing
2017-01-01
A negative refractive index medium, in which all spatial coordinates are reversed (i.e. a left-hand triplet is formed) by a spatial folding transformation, can create many novel electromagnetic phenomena, e.g. backward wave propagation, and inversed Doppler effect (IDE). In this study, we use coordinate rotation transformation to reverse only two spatial coordinates (e.g. x‧ and y‧), while keeping z‧ unchanged. In this case, some novel phenomena, e.g. radiation-direction-reversing illusions and IDE, can be achieved in a free space region wrapped by the proposed shell without any negative refractive index medium, which is easier for experimental realization and future applications.
Nicotri, Stefano
2009-01-01
A holographic description of scalar mesons is presented, in which two- and three-point functions are holographically reconstructed. Mass spectrum, decay constants, eigenfunctions and the coupling of the scalar states with two pseu- doscalars are found. A comparison of the results with current phenomenology is discussed.
Holographic Quantum Entanglement Negativity
Chaturvedi, Pankaj; Sengupta, Gautam
2016-01-01
We propose a holographic prescription to compute the entanglement negativity for conformal field theories at finite temperatures which exactly reproduces the entanglement negativity for (1+1)- dimensional conformal field theories at finite temperatures dual to (2+1)- dimensional bulk Euclidean BTZ black holes. We observe that the holographic entanglement negativity captures the distillable pure quantum entanglement and is related to the holographic mutual information. The application of our prescription to higher dimensional conformal field theories at finite temperatures within a $AdS_{d+1}/CFT_{d}$ scenario involving dual bulk $AdS$-Schwarzschild black holes is discussed to elucidate the universality of our conjecture.
Time reversal of continuous-wave, monochromatic signals in elastic media
Anderson, Brian E [Los Alamos National Laboratory; Guyer, Robert A [Los Alamos National Laboratory; Ulrich, Timothy J [Los Alamos National Laboratory; Johnson, Paul A [Los Alamos National Laboratory
2009-01-01
Experimental observations of spatial focusing of continuous-wave, steady-state elastic waves in a reverberant elastic cavity using time reversal are reported here. Spatially localized focusing is achieved when multiple channels are employed, while a single channel does not yield such focusing. The amplitude of the energy at the focal location increases as the square of the number of channels used, while the amplitude elsewhere in the medium increases proportionally with the number of channels used. The observation is important in the context of imaging in solid laboratory samples as well as problems involving continuous-wave signals in Earth.
Haque, S Shajidul
2016-01-01
We propose a simple and generic holographic $c$-function that is defined purely from geometry by using the non-affine expansion for null congruences. We examined the proposal for BPS black solutions in $\\mathcal{N}=2$ gauged supergravity that interpolate between two different dimensional AdS spacetimes and also for domain wall solutions. Moreover, we commented on the relation of this geometric proposal with the one from the holographic entanglement entropy.
Ferrera, Isabel; Mas, Jordi; Taberna, Elisenda; Sanz, Joan; Sánchez, Olga
2015-01-01
The diversity of the bacterial community developed in different stages of two reverse osmosis (RO) water reclamation demonstration plants designed in a wastewater treatment plant (WWTP) in Tarragona (Spain) was characterized by applying 454-pyrosequencing of the 16S rRNA gene. The plants were fed by secondary treated effluent to a conventional pretreatment train prior to the two-pass RO system. Plants differed in the material used in the filtration process, which was sand in one demonstration plant and Scandinavian schists in the second plant. The results showed the presence of a highly diverse and complex community in the biofilms, mainly composed of members of the Betaproteobacteria and Bacteroidetes in all stages, with the presence of some typical wastewater bacteria, suggesting a feed water origin. Community similarities analyses revealed that samples clustered according to filter type, highlighting the critical influence of the biological supporting medium in biofilm community structure.
Quantum-Holographic Informational Consciousness
Francisco Di Biase
2009-01-01
The author propose a quantum-informational holographic model of brain-consciousness-universe interactions based in the holonomic neural networks of Karl Pribram, in the holographic quantum theory...
Drawing Lines with Light in Holographic Space
Chang, Yin-Ren; Richardson, Martin
2013-02-01
This paper explores the dynamic and expressive possibilities of holographic art through a comparison of art history and technical media such as photography, film and holographic technologies. Examples of modern art and creative expression of time and motions are examined using the early 20th century art movement, Cubism, where subjects are portrayed to be seen simultaneously from different angles. Folding space is represented as subject matter as it can depict space from multiple points of time. The paper also investigates the way holographic art has explored time and space. The lenticular lens-based media reveal a more subjective poetic art in the form of the lyrical images and messages as spectators pass through time, or walk along with the piece of work through an interactive process. It is argued that photographic practice is another example of artistic representation in the form of aesthetic medium of time movement and as such shares a common ground with other dynamic expression that require time based interaction.
Bales, R.C.; Hinkle, S.R.; Kroeger, T.W.; Stocking, K.; Gerba, C.P.
1991-01-01
In a series of seven column experiments, attachment of the bacteriophage PRD-1 and MS-2 to silica beads at pH's 5.0-5.5 was at least partially reversible; however, release of attached phage was slow and breakthrough curves exhibited significant tailing. Rate coefficients for attachment and detachment were on the order of 10-4 and 10-6-10-4 s-1, respectively. Corresponding time scales were hours for attachment and days for detachment. The sticking efficiency (??) for phage attachment was near 0.01. The rate of phage release was enhanced by raising pH and introducing surface-active chemical species, illustrating the importance of chemical perturbations in promoting biocolloid transport. In a series of batch experiments, MS-2 adsorbed strongly to a hydrophobic surface, octadecyltrichlorosilane-bonded silica, at both pH's 5 and 7. Adsorption to the unbonded silica at pH 5 was linear, but was 2.5 (with Ca2+) to 0.25% (without Ca2+) of that to the bonded surface. Neither MS-2 nor PRD-1 adsorbed to unbonded silica at pH 7. Hydrophobic effects appear to be important for adsorption of even relatively hydrophilic biocolloids. ?? 1991 American Chemical Society.
Holographic dynamics from multiscale entanglement renormalization ansatz
Chua, Victor; Passias, Vasilios; Tiwari, Apoorv; Ryu, Shinsei
2017-05-01
The multiscale entanglement renormalization ansatz (MERA) is a tensor network based variational ansatz that is capable of capturing many of the key physical properties of strongly correlated ground states such as criticality and topological order. MERA also shares many deep relationships with the AdS/CFT (gauge-gravity) correspondence by realizing a UV complete holographic duality within the tensor networks framework. Motivated by this, we have repurposed the MERA tensor network as an analysis tool to study the real-time evolution of the 1D transverse Ising model in its low-energy excited state sector. We performed this analysis by allowing the ancilla qubits of the MERA tensor network to acquire quantum fluctuations, which yields a unitary transform between the physical (boundary) and ancilla qubit (bulk) Hilbert spaces. This then defines a reversible quantum circuit, which is used as a "holographic transform" to study excited states and their real-time dynamics from the point of the bulk ancillae. In the gapped paramagnetic phase of the transverse field Ising model, we demonstrate the holographic duality between excited states induced by single spin-flips (Ising "magnons") acting on the ground state and single ancilla qubit spin flips. The single ancillae qubit excitation is shown to be stable in the bulk under real-time evolution and hence defines a stable holographic quasiparticle, which we have named the "hologron." Their bulk 2D Hamiltonian, energy spectrum, and dynamics within the MERA network are studied numerically. The "dictionary" between the bulk and boundary is determined and realizes many features of the holographic correspondence in a non-CFT limit of the boundary theory. As an added spin-off, this dictionary together with the extension to multihologron sectors gives us a systematic way to construct quantitatively accurate low-energy effective Hamiltonians.
Khitun, Alexander; Kozhevnikov, Alexander; Gertz, Frederick; Filimonov, Yuri
2015-03-01
Collective oscillation of spins in magnetic lattice known as spin waves (magnons) possess relatively long coherence length at room temperature, which makes it possible to build sub-micrometer scale holographic devices similar to the devices developed in optics. In this work, we present a prototype 2-bit magnonic holographic memory. The memory consists of the double-cross waveguide structure made of Y3Fe2(FeO4)3 with magnets placed on the top of waveguide junctions. Information is encoded in the orientation of the magnets, while the read-out is accomplished by the spin waves generated by the micro-antennas placed on the edges of the waveguides. The interference pattern produced by multiple spin waves makes it possible to build a unique holographic image of the magnetic structure and recognize the state of the each magnet. The development of magnonic holographic devices opens a new horizon for building scalable holographic devices compatible with conventional electronic devices. This work was supported in part by the FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA and by the National Science Foundation under the NEB2020 Grant ECCS-1124714.
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Talbot, Michael
1991-01-01
'There is evidence to suggest that our world and everything in it - from snowflakes to maple trees to falling stars and spinning electrons - are only ghostly images, projections from a level of reality literally beyond both space and time.' This is the astonishing idea behind the holographic theory of the universe, pioneered by two eminent thinkers: physicist David Bohm, a former protege of Albert Einstein, and quantum physicist Karl Pribram. The holographic theory of the universe encompasses consciousness and reality as we know them, but can also explain such hitherto unexplained phenomena as telepathy, out-of-body experiences and even miraculous healing. In this remarkable book, Michael Talbot reveals the extraordinary depth and power of the holographic theory of the universe, illustrating how it makes sense of the entire range of experiences within our universe - and in other universes beyond our own.
Wang, Shuang; Li, Miao
2016-01-01
We review the paradigm of holographic dark energy (HDE), which arises from a theoretical attempt of applying the holographic principle (HP) to the dark energy (DE) problem. Making use of the HP and the dimensional analysis, we derive the general formula of the energy density of HDE. Then, we describe the properties of HDE model, in which the future event horizon is chosen as the characteristic length scale. We also introduce the theoretical explorations and the observational constraints for this model. Next, in the framework of HDE, we discuss various topics, such as spatial curvature, neutrino, instability of perturbation, time-varying gravitational constant, inflation, black hole and big rip singularity. In addition, from both the theoretical and the observational aspects, we introduce the interacting holographic dark energy scenario, where the interaction between dark matter and HDE is taken into account. Furthermore, we discuss the HDE scenario in various modified gravity (MG) theories, such as Brans-Dick...
Holographic Entanglement Entropy
Rangamani, Mukund
2016-01-01
We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a preliminary draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application o...
Phenomenology of Holographic Quenches
da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2015-10-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
The Volume Holographic Optical Storage Potential in Azobenzene Containing Polymers
Hvilsted, Søren; Sanchez, Carlos; Alcalá, Rafael
2009-01-01
Volume holographic data storage is one of the most promising techniques to improve both the storage capacity of devices and the transfer data rate. Among the materials proposed as storage data media, azobenzene containing polymers have received much attention. Some of their properties seem to be ...
Brehm, Enrico M
2016-01-01
In this work, we introduce classical holographic codes. These can be understood as concatenated probabilistic codes and can be represented as networks uniformly covering hyperbolic space. In particular, classical holographic codes can be interpreted as maps from bulk degrees of freedom to boundary degrees of freedom. Interestingly, they are shown to exhibit features similar to those expected from the AdS/CFT correspondence. Among these are a version of the Ryu-Takayanagi formula and intriguing properties regarding bulk reconstruction and boundary representations of bulk operations. We discuss the relation of our findings with expectations from AdS/CFT and, in particular, with recent results from quantum error correction.
Holographic microrheology of biofilms
Chiong Cheong, Fook; Duarte, Simone; Grier, David
2008-03-01
We present microrheological measurements of polymeric matrices, including the extra-cellular polysaccharide gel synthesized by the dental pathogen S. mutans. As part of this study, we introduce the use of precision three-dimensional particle tracking based on video holographic microscopy. This technique offers nanometer-scale resolution at video rates, thereby providing detailed information on the gels' complex viscoelastic moduli, including insights into their heterogeneity. The particular application to dental biofilms complements previous studies based on macroscopic rheology, and demonstrates the utility of holographic microrheology for soft-matter physics and biomedical research.
Mondal, A.
2010-03-01
In this paper, we study the uncertainty quantification in inverse problems for flows in heterogeneous porous media. Reversible jump Markov chain Monte Carlo algorithms (MCMC) are used for hierarchical modeling of channelized permeability fields. Within each channel, the permeability is assumed to have a lognormal distribution. Uncertainty quantification in history matching is carried out hierarchically by constructing geologic facies boundaries as well as permeability fields within each facies using dynamic data such as production data. The search with Metropolis-Hastings algorithm results in very low acceptance rate, and consequently, the computations are CPU demanding. To speed-up the computations, we use a two-stage MCMC that utilizes upscaled models to screen the proposals. In our numerical results, we assume that the channels intersect the wells and the intersection locations are known. Our results show that the proposed algorithms are capable of capturing the channel boundaries and describe the permeability variations within the channels using dynamic production history at the wells. © 2009 Elsevier Ltd. All rights reserved.
Holographic analysis of photopolymers
Sullivan, Amy C.; Alim, Marvin D.; Glugla, David J.; McLeod, Robert R.
2017-05-01
Two-beam holographic exposure and subsequent monitoring of the time-dependent first-order Bragg diffraction is a common method for investigating the refractive index response of holographic photopolymers for a range of input writing conditions. The experimental set up is straightforward, and Kogelnik's well-known coupled wave theory (CWT)[1] can be used to separate measurements of the change in index of refraction (Δn) and the thickness of transmission and reflection holograms. However, CWT assumes that the hologram is written and read out with a plane wave and that the hologram is uniform in both the transverse and depth dimensions, assumptions that are rarely valid in practical holographic testing. The effect of deviations from these assumptions on the measured thickness and Δn become more pronounced for over-modulated exposures. As commercial and research polymers reach refractive index modulations on the order of 10-2, even relatively thin (refractive index in a material system. We use this analysis to study a model high Δn two-stage photopolymer holographic material using both transmission and reflection holograms.
Holographic renormalization and supersymmetry
Genolini, Pietro Benetti; Cassani, Davide; Martelli, Dario; Sparks, James
2017-02-01
Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N = 2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.
Heterodyned holographic spectroscopy
Douglas, NG
1997-01-01
In holographic spectroscopy an image of an interference pattern is projected onto a detector and transformed back to the input spectrum. The general characteristics are similar to those of Fourier transform spectroscopy, but the spectrum is obtained without scanning. In the heterodyned arrangement o
A Holographic Bound for D3-Brane
Momeni, Davood; Bahamonde, Sebastian; Myrzakul, Aizhan; Myrzakulov, Ratbay
2016-01-01
In this paper, we will calculate the holographic entanglement entropy, holographic complexity, and fidelity susceptibility for a D3-brane. It will be demonstrated that for a D3-brane the holographic complexity is always greater than or equal to than the fidelity susceptibility. Furthermore, we will also demonstrate that the holographic complexity is related to the holographic entanglement entropy for this system. Thus, we will obtain a holographic bound involving holographic complexity, holographic entanglement entropy and fidelity susceptibility of a D3-brane.
Peptide oligomers for holographic data storage
Berg, Rolf Henrik; Hvilsted, Søren; Ramanujam, P.S.
1996-01-01
SEVERAL classes of organic materials (such as photoanisotropic liquid-crystalline polymers(1-4) and photorefractive polymers(5-7)) are being investigated for the development of media for optical data storage. Here we describe a new family of organic materials-peptide oligomers containing azobenzene...... chromophores-which appear particularly promising for erasable holographic data storage applications. The rationale for our approach is to use the structural properties of peptide-like molecules to impose orientational order on the chromophores, and thereby optimize the optical properties of the resulting...
Shrinkage measurement for holographic recording materials
Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Navarro Fuster, V.; Neipp, C.; Ortuño, M.; Beléndez, A.; Pascual, I.
2017-05-01
There is an increasing demand for new holographic recording materials. One of them are photopolymers, which are becoming a classic media in this field. Their versatility is well known and new possibilities are being created by including new components, such as nanoparticles or dispersed liquid crystal molecules in classical formulations, making them interesting for additional applications in which the thin film preparation and the structural modification have a fundamental importance. Prior to obtaining a wide commercialization of displays based on photopolymers, one of the key aspects is to achieve a complete characterization of them. In this sense, one of the main parameters to estimate and control is the shrinkage of these materials. The volume variations change the angular response of the hologram in two aspects, the angular selectivity and the maximum diffraction efficiency. One criteria for the recording material to be used in a holographic data storage application is the shrinkage, maximum of 0.5%. Along this work, we compare two different methods to measure the holographic recording material shrinkage. The first one is measuring the angle of propagation for both diffracted orders +/-1 when slanted gratings are recorded, so that an accurate value of the grating vector can be calculated. The second one is based on interference measurements at zero spatial frequency limit. We calculate the shrinkage for three different photopolymers: a polyvinyl alcohol acrylamide (PVA/AA) based photopolymer, one of the greenest photopolymers whose patent belongs to the Alicante University called Biophotopol and on the last place a holographic-dispersed liquid crystal photopolymer (H-PDLC).
Future of photorefractive based holographic 3D display
Blanche, P.-A.; Bablumian, A.; Voorakaranam, R.; Christenson, C.; Lemieux, D.; Thomas, J.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N.
2010-02-01
The very first demonstration of our refreshable holographic display based on photorefractive polymer was published in Nature early 20081. Based on the unique properties of a new organic photorefractive material and the holographic stereography technique, this display addressed a gap between large static holograms printed in permanent media (photopolymers) and small real time holographic systems like the MIT holovideo. Applications range from medical imaging to refreshable maps and advertisement. Here we are presenting several technical solutions for improving the performance parameters of the initial display from an optical point of view. Full color holograms can be generated thanks to angular multiplexing, the recording time can be reduced from minutes to seconds with a pulsed laser, and full parallax hologram can be recorded in a reasonable time thanks to parallel writing. We also discuss the future of such a display and the possibility of video rate.
Phases of holographic d-wave superconductor
Krikun, Alexander
2015-01-01
We study different phases in the holographic model of d-wave superconductor. These are described by solutions to the classical equations of motion found in different ansatze. Apart from the known homogeneous d-wave superconducting phase we find three new solutions. Two of them represent two distinct families of the spatially modulated solutions, which realize the charge density wave phases in the dual theory. The third one is the new homogeneous phase with nonzero anapole moment. These phases are relevant to the physics of cuprate high-Tc superconductor in pseudogap region. While the d-wave phase preserves translation, parity and time reversal symmetry, the striped phases break translations spontaneously. Parity and time-reversal are preserved when combined with discrete half-periodic shift of the wave. In anapole phase translation symmetry is preserved, but parity and time reversal are spontaneously broken. All of the considered solutions brake the global $U(1)$. Thermodynamical treatment shows that in the s...
Intelligent holographic databases
Barbastathis, George
Memory is a key component of intelligence. In the human brain, physical structure and functionality jointly provide diverse memory modalities at multiple time scales. How could we engineer artificial memories with similar faculties? In this thesis, we attack both hardware and algorithmic aspects of this problem. A good part is devoted to holographic memory architectures, because they meet high capacity and parallelism requirements. We develop and fully characterize shift multiplexing, a novel storage method that simplifies disk head design for holographic disks. We develop and optimize the design of compact refreshable holographic random access memories, showing several ways that 1 Tbit can be stored holographically in volume less than 1 m3, with surface density more than 20 times higher than conventional silicon DRAM integrated circuits. To address the issue of photorefractive volatility, we further develop the two-lambda (dual wavelength) method for shift multiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000 multiplexed fixed holograms. Finally, we propose a noise model and an information theoretic metric to optimize the imaging system of a holographic memory, in terms of storage density and error rate. Motivated by the problem of interfacing sensors and memories to a complex system with limited computational resources, we construct a computer game of Desert Survival, built as a high-dimensional non-stationary virtual environment in a competitive setting. The efficacy of episodic learning, implemented as a reinforced Nearest Neighbor scheme, and the probability of winning against a control opponent improve significantly by concentrating the algorithmic effort to the virtual desert neighborhood that emerges as most significant at any time. The generalized computational model combines the autonomous neural network and von Neumann paradigms through a compact, dynamic central representation, which contains the most salient features
Holographic data storage: science fiction or science fact?
Anderson, Ken; Ayres, Mark; Askham, Fred; Sissom, Brad
2014-09-01
To compete in the archive and backup industries, holographic data storage must be highly competitive in four critical areas: total cost of ownership (TCO), cost/TB, capacity/footprint, and transfer rate. New holographic technology advancements by Akonia Holographics have enabled the potential for ultra-high capacity holographic storage devices that are capable of world record bit densities of over 2-4Tbit/in2, up to 200MB/s transfer rates, and media costs less than $10/TB in the next few years. Additional advantages include more than a 3x lower TCO than LTO, a 3.5x decrease in volumetric footprint, 30ms random access times, and 50 year archive life. At these bit densities, 4.5 Petabytes of uncompressed user data could be stored in a 19" rack system. A demonstration platform based on these new advances has been designed and built by Akonia to progressively demonstrate bit densities of 2Tb/in2, 4Tb/in2, and 8Tb/in2 over the next year. Keywords: holographic
Deriving covariant holographic entanglement
Dong, Xi; Lewkowycz, Aitor; Rangamani, Mukund
2016-11-01
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Deriving covariant holographic entanglement
Dong, Xi; Rangamani, Mukund
2016-01-01
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Renyi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Liu, Hongpeng; Yu, Dan; Zhou, Ke; Mao, Dongyao; Liu, Langbo; Wang, Hui; Wang, Weibo; Song, Qinggong
2016-12-10
Temperature-induced diffraction spectrum responses of holographic gratings are characterized for exploring the temperature-sensing capability of a holographic sensor. Linear blue shift of peak wavelength and linear diffraction reduction are observed. It provides quantitative expressions for sensing applications. Inorganic nanoparticles are dispersed into the binder to improve sensing properties. Obvious improvement of sensing parameters, including wavelength shift and diffraction change, is confirmed. The sensitivity, response rate, and linear response region of holographic sensors are determined to evaluate sensing capacity. Influence of relative humidity on holographic sensing response is discussed. Expansion of humidity range provides a probability for extending the range of wavelength shift. Finally, the temperature response reversibility of a holographic sensor is evaluated. These experimental results can expand the practical application field of holographic sensing strategy and accelerate the development of holographic sensors.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.
Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K
2015-01-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.
2015-11-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Luminet, Jean-Pierre
2016-01-01
I give a critical review of the holographic hypothesis, which posits that a universe with gravity can be described by a quantum field theory in fewer dimensions. I first recall how the idea originated from considerations on black hole thermodynamics and the so-called information paradox that arises when Hawking radiation is taken into account. String Quantum Gravity tried to solve the puzzle using the AdS/CFT correspondence, according to which a black hole in a 5-D anti-de Sitter space is like a flat 4-D field of particles and radiation. Although such an interesting holographic property, also called gauge/gravity duality, has never been proved rigorously, it has impulsed a number of research programs in fields as diverse as nuclear physics, condensed matter physics, general relativity and cosmology. I finally discuss the pros and cons of the holographic conjecture, and emphasizes the key role played by black holes for understanding quantum gravity and possible dualities between distant fields of theoretical p...
Holographic entanglement entropy
Rangamani, Mukund
2017-01-01
This book provides a comprehensive overview of developments in the field of holographic entanglement entropy. Within the context of the AdS/CFT correspondence, it is shown how quantum entanglement is computed by the area of certain extremal surfaces. The general lessons one can learn from this connection are drawn out for quantum field theories, many-body physics, and quantum gravity. An overview of the necessary background material is provided together with a flavor of the exciting open questions that are currently being discussed. The book is divided into four main parts. In the first part, the concept of entanglement, and methods for computing it, in quantum field theories is reviewed. In the second part, an overview of the AdS/CFT correspondence is given and the holographic entanglement entropy prescription is explained. In the third part, the time-dependence of entanglement entropy in out-of-equilibrium systems, and applications to many body physics are explored using holographic methods. The last part f...
Holographic predictions for cosmological 3-point functions
Bzowski, A.; McFadden, P.; Skenderis, K.
2012-01-01
We present the holographic predictions for cosmological 3-point correlators, involving both scalar and tensor modes, for a universe which started in a non-geometric holographic phase. Holographic formulae relate the cosmological 3-point functions to stress tensor correlation functions of a holograph
Laser addressed holographic memory system
Gange, R. A.; Wagle, E. M.; Steinmetz, C. C.
1973-01-01
Holographic recall and storage system uses red-lipid microcrystalline wax as storage medium. When laser beam strikes wax, its energy heats point of incidence enough to pass wax through transition temperature. Holograph image can then be written or erased in softened wax.
Latest developments of dynamic holographic three-dimensional display%动态全息三维显示研究最新进展∗
曾超; 高洪跃; 刘吉成; 于瀛洁; 姚秋香; 刘攀; 郑华东; 曾震湘
2015-01-01
Holographic three-dimensional (3D) display is a true 3D display technique, which can provide realistic image of a real object or a scene because holography has the ability to reconstruct both the intensity and phase information, i.e., the wave front of the object or scene. Therefore, it could allow the observers to perceive the light as it is scattered by the real object itself without any special eyewear, which is quite different from other 3D display techniques, such as stereoscopic displays and volumetric 3D displays. In this paper, the achievements and developments of the latest new holographic 3D displays are presented. Holographic 3D displays can be divided into static holographic 3D displays and dynamic holographic 3D displays. Here, we briefly introduce the principle of holographic 3D display technique and static holographic 3D displays, and focus on dynamic holographic 3D displays. Large-size, high-resolution and color static holographic 3D displays have already been successfully fabricated and applied in some areas, such as holographic 3D maps and holographic 3D images. However, dynamic holographic 3D displays based on both optical materials and spatial light modulators (SLMs) are still under research, which is a challenge to their applications. Some holographic researchers study the holographic 3D displays based on the SLMs for large-size and large view angle display, but it is diﬃcult to realize them because of limitations of SLMs and there still needs much effort to solve these problems in SLMs. Other holographic researchers work on dynamic holographic materials, such as inorganic crystals, photorefractive polymer, photochromic material etc. The response time and diffraction eﬃciency are key factors to these materials. Compared with other holographic media, liquid crystals with super-fast response time (about 1 ms) have been reported, which makes it possible to realize video refresh-rate holographic displays. The achievements of dynamic holography
A holographic bound for D3-brane
Momeni, Davood; Myrzakul, Aizhan; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Eurasian National University, Department of General Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom)
2017-06-15
In this paper, we will regularize the holographic entanglement entropy, holographic complexity and fidelity susceptibility for a configuration of D3-branes. We will also study the regularization of the holographic complexity from the action for a configuration of D3-branes. It will be demonstrated that for a spherical shell of D3-branes the regularized holographic complexity is always greater than or equal to the regularized fidelity susceptibility. Furthermore, we will also demonstrate that the regularized holographic complexity is related to the regularized holographic entanglement entropy for this system. Thus, we will obtain a holographic bound involving regularized holographic complexity, regularized holographic entanglement entropy and regularized fidelity susceptibility of a configuration of D3-brane. We will also discuss a bound for regularized holographic complexity from action, for a D3-brane configuration. (orig.)
Holographic interference filters
Diehl, Damon W.
Holographic mirrors have wavelength-selection properties and thus qualify as a class of interference filters. Two theoretical methods for analyzing such structures are developed. The first method uses Hill's matrix method to yield closed-forms solutions in terms of the Floquet-Bloch waves within a periodic structure. A process is developed for implementing this solution method on a computer, using sparse-matrix memory allocation, numerical root-finding algorithms, and inverse-iteration techniques. It is demonstrated that Hill's matrix method is valid for the analysis of finite and multi-periodic problems. The second method of theoretical analysis is a transfer-matrix technique, which is herein termed thin-film decomposition. It is shown that the two methods of solution yield results that differ by, at worst, a fraction of a percent. Using both calculation techniques, a number of example problems are explored. Of key importance is the construction of a set of curves that are useful for the design and characterization of holographic interference filters. In addition to the theoretical development, methods are presented for the fabrication of holographic interference filters using DuPont HRF-800X001 photopolymer. Central to the exposure system is a frequency-stabilized, tunable dye laser. The types of filters fabricated include single-tone reflection filters, two types of multitone reflection filters, and reflection filters for infrared wavelengths. These filters feature index profiles that are not easily attainable through other fabrication methods. As a supplement to the body of the dissertation, the computer algorithms developed to implement Hill's matrix method and thin-film decomposition are also included as an appendix. Further appendices provide more information on Floquet's theorem and Hill's matrix method. A final appendix presents a design for an infrared laser spectrophotometer.
Triple Encrypted Holographic Storage and Digital Holographic System
ZHU Yi-Chao; ZHANG Jia-Sen; GONG Qi-Huang
2008-01-01
We propose a triple encrypted holographic memory containing a digital holographic system. The original image is encrypted using double random phase encryption and stored in a LiNbO3:Fe crystal with shift-multiplexing. Both the reference beams of the memory and the digital holographic system are random phase encoded. We theoretically and experimentally demonstrate the encryption and decryption of multiple images and the results show high quality and good fault tolerance. The total key length of this system is larger than 4.7×1033.
Holographic Magnetisation Density Waves
Donos, Aristomenis
2016-01-01
We numerically construct asymptotically $AdS$ black brane solutions of $D=4$ Einstein theory coupled to a scalar and two $U(1)$ gauge fields. The solutions are holographically dual to $d=3$ CFTs in a constant external magnetic field along one of the $U(1)$'s. Below a critical temperature the system's magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.
Holographic effective field theories
Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)
2016-06-28
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Explaining Holographic Dark Energy
Shan Gao
2013-10-01
Full Text Available The possible holographic origin of dark energy is investigated. The main existing explanations, namely the UV/IR connection argument of Cohen et al., Thomas’ bulk holography argument, and Ng’s spacetime foam argument, are shown to be not wholly satisfactory. A new explanation is then proposed based on the ideas of Thomas and Ng. It is suggested that dark energy originates from the quantum fluctuations of spacetime limited by the event horizon of the universe. Several potential problems of the explanation are also discussed.
Holographic quantum computing.
Tordrup, Karl; Negretti, Antonio; Mølmer, Klaus
2008-07-25
We propose to use a single mesoscopic ensemble of trapped polar molecules for quantum computing. A "holographic quantum register" with hundreds of qubits is encoded in collective excitations with definite spatial phase variations. Each phase pattern is uniquely addressed by optical Raman processes with classical optical fields, while one- and two-qubit gates and qubit readout are accomplished by transferring the qubit states to a stripline microwave cavity field and a Cooper pair box where controllable two-level unitary dynamics and detection is governed by classical microwave fields.
Geller, Michael; Telem, Ofri
2015-05-15
We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.
A wideband sensitive holographic photopolymer
Mingju Huang; Sulian Wang; Airong Wang; Qiaoxia Gong; Fuxi Gan
2005-01-01
A novel wideband sensitive dry holographic photopolymer sensitized by rose bengal (RB) and methylene blue (MB) is fabricated, the holographic storage characteristics of which are investigated under different exposure wavelengths. The result shows that the sensitive spectral band exceeds 200 nm in visible light range, the maximum diffraction efficiency under different exposure wavelengths is more than 40% and decreases with the decrease of exposure wavelength, the exposure sensitivity is not change with the exposure wavelength.This photopolymer is appropriate for wavelength multiplexing or multi-wavelength recording in digital holographic storage.
Introduction to Holographic Superconductor Models
Cai, Rong-Gen; Li, Li-Fang; Yang, Run-Qiu
2015-01-01
In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.
Hopwood, Anthony I.
1991-10-01
This paper discusses a new type of holographic overlay, FLASHPRINT, which may be used in both security and packaging applications. Unlike the more common embossed holograms currently used, FLASHPRINT leads to reduced set-up costs and offers a simpler process. This reduces the long lead times characteristic of the existing technology and requires the customer to provide only two-dimensional artwork. The overlay material contains a covert 2-D image. The image may be switched on or off by simply tilting the overlay in a light source. The overlay is replayed in the 'on' position to reveal the encoded security message as a highly saturated gold colored image. This effect is operable for a wide range of lighting conditions and viewing geometries. In the 'off' position the overlay is substantially transparent. These features make the visual effect of the overlay attractive to incorporate into product design. They may be laminated over complex printed artwork such as labels and security passes without masking the printed message. When switched 'on' the image appears both sharp and more than seven times brighter than white paper. The image remains sharp and clear even in less favorable lighting conditions. Although the technique offers a low set-up cost for the customer, through its simplicity, it remains as technically demanding and difficult to counterfeit as any holographic process.
The traveltime holographic principle
Huang, Y.
2014-11-06
Fermat\\'s interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat\\'s interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region\\'s boundary.
Cryogenic holographic distortion testing
Michel, David G.
1994-06-01
Hughes cryogenic holographic test facility allows for the rapid characterization of optical components and mechanical structures at elevated and reduced temperatures. The facility consists of a 1.6 meter diameter thermal vacuum chamber, vibration isolated experiment test platform, and a holographic camera assembly. Temperatures as low as 12 Kelvin and as high as 350 Kelvin have been demonstrated. Complex aspheric mirrors are tested without the need for auxiliary null lenses and may be tested in either the polished or unpolished state. Structural elements such as optical benches, solar array panels, and spacecraft antennas have been tested. Types of materials tested include beryllium, silicon carbide, aluminum, graphite epoxy, silicon/aluminum matrix material and injection molded plastics. Sizes have ranged from 7 cm X 15 cm to 825 cm X 1125 cm and have weighed as little as 0.2 Kg and as much as 130 Kg. Surface figure changes as little as (lambda) /10 peak-to-valley ((lambda) equals .514 micrometers ) are routinely measured.
Generalized Semi-Holographic Universe
Li, Hui; Zhang, Yi
2012-01-01
We study the semi-holographic idea in context of decaying dark components. The energy flow between dark energy and the compensating dark matter is thermodynamically generalized to involve a particle number variable dark component with non-zero chemical potential. It's found that, unlike the original semi-holographic model, no cosmological constant is needed for a dynamical evolution of the universe. A transient phantom phase appears while a non-trivial dark energy-dark matter scaling solution keeps at late time, which evades the big-rip and helps to resolve the coincidence problem. For reasonable parameters, the deceleration parameter is well consistent with current observations. The original semi-holographic model is extended and it also suggests that the concordance model may be reconstructed from the semi-holographic idea.
Adventures in Holographic Dimer Models
Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Karch, Andreas; /Washington U., Seattle; Yaida, Sho; /Stanford U., Phys. Dept.
2011-08-12
We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.
Code properties from holographic geometries
Pastawski, Fernando
2016-01-01
Almheiri, Dong, and Harlow [hep-th/1411.7041] proposed a highly illuminating connection between the AdS/CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes which admit a holographic interpretation. We introduce a new quantity called `price', which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit `uberholography', meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for q...
Hyperspectral holographic Fourier-microscopy
Kalenkov, G S [Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation); Kalenkov, S G [Moscow State University of Mechanical Engineering, Moscow (Russian Federation); Shtan' ko, A E [Moscow State University of Technology ' Stankin' , Moscow (Russian Federation)
2015-04-30
A detailed theory of the method of holographic recording of hyperspectral wave fields is developed. New experimentally obtained hyperspectral holographic images of microscopic objects are presented. The possibilities of the method are demonstrated experimentally using the examples of urgent microscopy problems: speckle noise suppression, obtaining hyperspectral image of a microscopic object, as well as synthesis of a colour image and obtaining an optical profile of a phase object. (holography)
Segmented holographic spectrum splitting concentrator
Ayala, Silvana P.; Vorndran, Shelby; Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.
2016-09-01
This paper presents a segmented parabolic concentrator employing holographic spectral filters that provide focusing and spectral bandwidth separation capability to the system. Strips of low band gap silicon photovoltaic (PV) cells are formed into a parabolic surface as shown by Holman et. al. [1]. The surface of the PV segments is covered with holographic elements formed in dichromated gelatin. The holographic elements are designed to transmit longer wavelengths to silicon cells, and to reflect short wavelength light towards a secondary collector where high-bandgap PV cells are mounted. The system can be optimized for different combinations of diffuse and direct solar illumination conditions for particular geographical locations by controlling the concentration ratio and filtering properties of the holographic elements. In addition, the reflectivity of the back contact of the silicon cells is used to increase the optical path length and light trapping. This potentially allows the use of thin film silicon for the low bandgap PV cell material. The optical design combines the focusing properties of the parabolic concentrator and the holographic element to control the concentration ratio and uniformity of the spectral distribution at the high bandgap cell location. The presentation concludes with a comparison of different spectrum splitting holographic filter materials for this application.
Holographic Dynamics from Multiscale Entanglement Renormalization Ansatz
Chua, Victor; Tiwari, Apoorv; Ryu, Shinsei
2016-01-01
The Multiscale Entanglement Renormalization Ansatz (MERA) is a tensor network based variational ansatz that is capable of capturing many of the key physical properties of strongly correlated ground states such as criticality and topological order. MERA also shares many deep relationships with the AdS/CFT (gauge-gravity) correspondence by realizing a UV complete holographic duality within the tensor networks framework. Motivated by this, we have re-purposed the MERA tensor network as an analysis tool to study the real-time evolution of the 1D transverse Ising model in its low energy excited state sector. We performed this analysis by allowing the ancilla qubits of the MERA tensor network to acquire quantum fluctuations, which yields a unitary transform between the physical (boundary) and ancilla qubit (bulk) Hilbert spaces. This then defines a reversible quantum circuit which is used as a `holographic transform' to study excited states and their real-time dynamics from the point of the bulk ancillae. In the ga...
Taylor, Marika
2016-01-01
The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension $3/2 < \\Delta < 5/2$. Therefore the strongest version of the F theorem is in general violated.
Losing Forward Momentum Holographically
Balasubramanian, Koushik
2013-01-01
We present a numerical scheme for solving Einstein's Equations in the presence of a negative cosmological constant and an event horizon with planar topology. Our scheme allows for the introduction of a particular metric source at the conformal boundary. Such a spacetime has a dual holographic description in terms of a strongly interacting quantum field theory at nonzero temperature. By introducing a sinusoidal static metric source that breaks translation invariance, we study momentum relaxation in the field theory. In the long wavelength limit, our results are consistent with the fluid-gravity correspondence and relativistic hydrodynamics. In the small amplitude limit, our results are consistent with the memory function prediction for the momentum relaxation rate. Our numerical scheme allows us to study momentum relaxation outside these two limits as well.
Brünner, Frederic; Rebhan, Anton
2014-01-01
We announce new results on glueball decay rates in the Sakai-Sugimoto model, a realization of holographic QCD from first principles that has only one coupling constant and an overall mass scale as free parameters. We extend a previous investigation by Hashimoto, Tan, and Terashima who have considered the lowest scalar glueball which arises from a somewhat exotic polarization of supergravity modes and whose mass is uncomfortably small in comparison with lattice results. On the other hand, the scalar glueball dual to the dilaton turns out to have a mass of about twice the mass of the rho meson (1487 MeV), very close to the scalar meson $f_0(1500)$ that is frequently interpreted as predominantly glue. Calculating the decay rate into two pions we find a surprisingly good agreement with experimental data for the $f_0(1500)$. We have also obtained decay widths for tensor and excited scalar glueballs, indicating universal narrowness.
Engineering holographic phase diagrams
Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long
2016-10-01
By introducing interacting scalar fields, we tried to engineer physically motivated holographic phase diagrams which may be interesting in the context of various known condensed matter systems. We introduce an additional scalar field in the bulk which provides a tunable parameter in the boundary theory. By exploiting the way the tuning parameter changes the effective masses of the bulk interacting scalar fields, desired phase diagrams can be engineered for the boundary order parameters dual to those scalar fields. We give a few examples of generating phase diagrams with phase boundaries which are strikingly similar to the known quantum phases at low temperature such as the superconducting phases. However, the important difference is that all the phases we have discussed are characterized by neutral order parameters. At the end, we discuss if there exists any emerging scaling symmetry associated with a quantum critical point hidden under the dome in this phase diagram.
Comments on Holographic Complexity
Carmi, Dean; Rath, Pratik
2016-01-01
We study two recent conjectures for holographic complexity: the complexity=action conjecture and the complexity=volume conjecture. In particular, we examine the structure of the UV divergences appearing in these quantities, and show that the coefficients can be written as local integrals of geometric quantities in the boundary. We also consider extending these conjectures to evaluate the complexity of the mixed state produced by reducing the pure global state to a specific subregion of the boundary time slice. The UV divergences in this subregion complexity have a similar geometric structure, but there are also new divergences associated with the geometry of the surface enclosing the boundary region of interest. We discuss possible implications arising from the geometric nature of these UV divergences.
Covariant holographic entanglement negativity
Chaturvedi, Pankaj; Sengupta, Gautam
2016-01-01
We conjecture a holographic prescription for the covariant entanglement negativity of $d$-dimensional conformal field theories dual to non static bulk $AdS_{d+1}$ gravitational configurations in the framework of the $AdS/CFT$ correspondence. Application of our conjecture to a $AdS_3/CFT_2$ scenario involving bulk rotating BTZ black holes exactly reproduces the entanglement negativity of the corresponding $(1+1)$ dimensional conformal field theories and precisely captures the distillable quantum entanglement. Interestingly our conjecture for the scenario involving dual bulk extremal rotating BTZ black holes also accurately leads to the entanglement negativity for the chiral half of the corresponding $(1+1)$ dimensional conformal field theory at zero temperature.
Johnson, Clifford V
2014-01-01
It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.
Dissecting holographic conductivities
Davison, Richard A
2015-01-01
The DC thermoelectric conductivities of holographic systems in which translational symmetry is broken can be efficiently computed in terms of the near-horizon data of the dual black hole. By calculating the frequency dependent conductivities to the first subleading order in the momentum relaxation rate, we give a physical explanation for these conductivities in the simplest such example, in the limit of slow momentum relaxation. Specifically, we decompose each conductivity into the sum of a coherent contribution due to momentum relaxation and an incoherent contribution, due to intrinsic current relaxation. This decomposition is different from those previously proposed, and is consistent with the known hydrodynamic properties in the translationally invariant limit. This is the first step towards constructing a consistent theory of charged hydrodynamics with slow momentum relaxation.
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2017-04-01
Holographic models provide unique laboratories to investigate nonlinear physics of transport in inhomogeneous systems. We provide a detailed account of both dc and ac conductivities in a defect conformal field theory with spontaneous stripe order. The spatial symmetry is broken at large chemical potential, and the resulting ground state is a combination of a spin and charge density wave. An infinitesimal applied electric field across the stripes will cause the stripes to slide over the underlying density of smeared impurities, a phenomenon which can be associated with the Goldstone mode for the spontaneously broken translation symmetry. We show that the presence of a spatially modulated background magnetization current thwarts the expression of some dc conductivities in terms of horizon data.
Andersen, G.
For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be achieved in an extremely compact and lightweight package making it perfectly suited to applications such as UAV surveillance imagery and free space optical communications systems. Lastly, since the correction is made on a modal basis instead of zonal, it is virtually
3D holographic printer: fast printing approach.
Morozov, Alexander V; Putilin, Andrey N; Kopenkin, Sergey S; Borodin, Yuriy P; Druzhin, Vladislav V; Dubynin, Sergey E; Dubinin, German B
2014-02-10
This article describes the general operation principles of devices for synthesized holographic images such as holographic printers. Special emphasis is placed on the printing speed. In addition, various methods to increase the printing process are described and compared.
Holographic Waveguided See-Through Display Project
National Aeronautics and Space Administration — To address the NASA need for lightweight, space suit-mounted displays, Luminit proposes a novel Holographic Waveguided See-Through Display. Our proposed Holographic...
Holographic Fluids with Vorticity and Analogue Gravity
Leigh, Robert G; Petropoulos, P Marios
2012-01-01
We study holographic three-dimensional fluids with vorticity in local equilibrium and discuss their relevance to analogue gravity systems. The Fefferman-Graham expansion leads to the fluid's description in terms of a comoving and rotating Papapetrou-Randers frame. A suitable Lorentz transformation brings the fluid to the non-inertial Zermelo frame, which clarifies its interpretation as moving media for light/sound propagation. We apply our general results to the Lorentzian Kerr-AdS_4 and Taub-NUT-AdS_4 geometries that describe fluids in cyclonic and vortex flows respectively. In the latter case we associate the appearance of closed timelike curves to analogue optical horizons. In addition, we derive the classical rotational Hall viscosity of three-dimensional fluids with vorticity. Our formula remarkably resembles the corresponding result in magnetized plasmas.
Fourier holographic display for augmented reality using holographic optical element
Li, Gang; Lee, Dukho; Jeong, Youngmo; Lee, Byoungho
2016-03-01
A method for realizing a three-dimensional see-through augmented reality in Fourier holographic display is proposed. A holographic optical element (HOE) with the function of Fourier lens is adopted in the system. The Fourier hologram configuration causes the real scene located behind the lens to be distorted. In the proposed method, since the HOE is transparent and it functions as the lens just for Bragg matched condition, there is not any distortion when people observe the real scene through the lens HOE (LHOE). Furthermore, two optical characteristics of the recording material are measured for confirming the feasibility of using LHOE in the proposed see-through augmented reality holographic display. The results are verified experimentally.
Loop Quantum Gravity, Exact Holographic Mapping, and Holographic Entanglement Entropy
Han, Muxin
2016-01-01
The relation between Loop Quantum Gravity (LQG) and tensor network is explored from the perspectives of bulk-boundary duality and holographic entanglement entropy. We find that the LQG spin-network states in a space $\\Sigma$ with boundary $\\partial\\Sigma$ is an exact holographic mapping similar to the proposal in arXiv:1309.6282. The tensor network, understood as the boundary quantum state, is the output of the exact holographic mapping emerging from a coarse graining procedure of spin-networks. Furthermore, when a region $A$ and its complement $\\bar{A}$ are specified on the boundary $\\partial\\Sigma$, we show that the boundary entanglement entropy $S(A)$ of the emergent tensor network satisfies the Ryu-Takayanagi formula in the semiclassical regime, i.e. $S(A)$ is proportional to the minimal area of the bulk surface attached to the boundary of $A$ in $\\partial\\Sigma$.
A holographic perspective on Gubser-Mitra conjecture
Buchel, A
2005-01-01
We point out an elementary thermodynamics fact that whenever the specific heat of a system is negative, the speed of sound in such a media is imaginary. The latter observation presents a proof of Gubser-Mitra conjecture on the relation between dynamical and thermodynamic instabilities for gravitational backgrounds with a translationary invariant horizon, provided such geometries can be interpreted as holographic duals to finite temperature gauge theories. It further identifies a tachyonic mode of the Gubser-Mitra instability (the lowest quasinormal mode of the corresponding horizon geometry) as a holographic dual to a sound wave in a dual gauge theory. As a specific example, we study sound wave propagation in Little String Theory (LST) compactified on a two-sphere. We find that at high energies (for temperatures close to the LST Hagedorn temperature) the speed of sound is purely imaginary. This implies that the lowest quasinormal mode of the finite temperature Maldacena-Nunez background is tachyonic.
Holographic Duality in Condensed Matter Physics
Zaanen, Jan; Liu, Yan; Sun, Ya-Wen; Schalm, Koenraad
2015-11-01
Preface; 1. Introduction; 2. Condensed matter: the charted territory; 3. Condensed matter: the challenges; 4. Large N field theories for holography and condensed matter; 5. The AdS/CFT correspondence as computational device: the dictionary; 6. Finite temperature magic: black holes and holographic thermodynamics; 7. Holographic hydrodynamics; 8. Finite density: the Reissner-Nordström black hole and strange metals; 9. Holographic photoemission and the RN metal: the fermions as probes; 10. Holographic superconductivity; 11. Holographic Fermi liquids; 12. Breaking translational invariance; 13. AdS/CMT from the top down; 14. Outlook: holography and quantum matter; References; Index.
Chiral Edge Currents in a Holographic Josephson Junction
Rozali, Moshe
2013-01-01
We discuss the Josephson effect and the appearance of dissipationless edge currents in a holographic Josephson junction configuration involving a chiral, time-reversal breaking, superconductor in 2+1 dimensions. Such a superconductor is expected to be topological, thereby supporting topologically protected gapless Majorana-Weyl edge modes. Such modes manifest themselves in chiral dissipationless edge currents, which we exhibit and investigate in the context of our construction. The physics of the Josephson current itself, though expected to be unconventional in some non-equilibrium settings, is shown to be conventional in our setup which takes place in thermal equilibrium. We comment on various ways in which the expected Majorana nature of the edge excitations, and relatedly the unconventional nature of topological Josephson junctions, can be verified in the holographic context.
Full Color Holographic Endoscopy
Osanlou, A.; Bjelkhagen, H.; Mirlis, E.; Crosby, P.; Shore, A.; Henderson, P.; Napier, P.
2013-02-01
The ability to produce color holograms from the human tissue represents a major medical advance, specifically in the areas of diagnosis and teaching. This has been achieved at Glyndwr University. In corporation with partners at Gooch & Housego, Moor Instruments, Vivid Components and peninsula medical school, Exeter, UK, for the first time, we have produced full color holograms of human cell samples in which the cell boundary and the nuclei inside the cells could be clearly focused at different depths - something impossible with a two-dimensional photographic image. This was the main objective set by the peninsula medical school at Exeter, UK. Achieving this objective means that clinically useful images essentially indistinguishable from the object human cells could be routinely recorded. This could potentially be done at the tip of a holo-endoscopic probe inside the body. Optimised recording exposure and development processes for the holograms were defined for bulk exposures. This included the optimisation of in-house recording emulsions for coating evaluation onto polymer substrates (rather than glass plates), a key step for large volume commercial exploitation. At Glyndwr University, we also developed a new version of our in-house holographic (world-leading resolution) emulsion.
Holographic films from carotenoid pigments
Toxqui-López, S.; Lecona-Sánchez, J. F.; Santacruz-Vázquez, C.; Olivares-Pérez, A.; Fuentes-Tapia, I.
2014-02-01
Carotenoids pigments presents in pineapple can be more than just natural dyes, which is one of the applications that now at day gives the chemical industry. In this research shown that can be used in implementing of holographic recording Films. Therefore we describe the technique how to obtain this kind of pigments trough spay drying of natural pineapple juice, which are then dissolved with water in a proportion of 0.1g to 1mL. The obtained sample is poured into glass substrates using the gravity method, after a drying of 24 hours in laboratory normal conditions the films are ready. The films are characterized by recording transmission holographic gratings (LSR 445 NL 445 nm) and measuring the diffraction efficiency holographic parameter. This recording material has good diffraction efficiency and environmental stability.
Holographic Pomeron: Saturation and DIS
Stoffers, Alexander
2012-01-01
We briefly review the approach to dipole-dipole scattering in holographic QCD developed in ARXIV:1202.0831. The Pomeron is modeled by exchanging closed strings between the dipoles and yields Regge behavior for the elastic amplitude. We calculate curvature corrections to this amplitude in both a conformal and confining background, identifying the holographic direction with the virtuality of the dipoles. The it wee-dipole density is related to the string tachyon diffusion in both virtuality and the transverse directions. We give an explicit derivation of the dipole saturation momentum both in the conformal and confining metric. Our holographic result for the dipole-dipole cross section and the it wee-dipole density in the conformal limit are shown to be identical in form to the BFKL pomeron result when the non-critical string transverse dimension is $D_\\perp=3$. The total dipole-dipole cross section is compared to DIS data from HERA.
Gauge invariance and holographic renormalization
Keun-Young Kim
2015-10-01
Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.
Toward a Holographic Theory for General Spacetimes
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J
2016-01-01
We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct sum and "spacetime equals entanglement" structure. The former preserves a naive relationship b...
Holographic Multi-Band Superconductor
Huang, Ching-Yu; Maity, Debaprasad
2011-01-01
We propose a gravity dual for the holographic superconductor with multi-band carriers. Moreover, the currents of these carriers are unified under a global non-Abelian symmetry, which is dual to the bulk non-Abelian gauge symmetry. We study the phase diagram of our model, and find it qualitatively agrees with the one for the realistic 2-band superconductor, such as MgB2. We also evaluate the holographic conductivities and find the expected mean-field like behaviors in some cases. However, for a wide range of the parameter space, we also find the non-mean-field like behavior with negative conductivities.
DHMI: dynamic holographic microscopy interface
He, Xuefei; Zheng, Yujie; Lee, Woei Ming
2016-12-01
Digital holographic microscopy (DHM) is a powerful in-vitro biological imaging tool. In this paper, we report a fully automated off-axis digital holographic microscopy system completed with a graphical user interface in the Matlab environment. The interface primarily includes Fourier domain processing, phase reconstruction, aberration compensation and autofocusing. A variety of imaging operations such as region of interest selection, de-noising mode (filtering and averaging), low frame rate imaging for immediate reconstruction and high frame rate imaging routine ( 27 fps) are implemented to facilitate ease of use.
Holographic Conductivity in Disordered Systems
Ryu, Shinsei; Ugajin, Tomonori
2011-01-01
The main purpose of this paper is to holographically study the behavior of conductivity in 2+1 dimensional disordered systems. We analyze probe D-brane systems in AdS/CFT with random closed string and open string background fields. We give a prescription of calculating the DC conductivity holographically in disordered systems. In particular, we find an analytical formula of the conductivity in the presence of codimension one randomness. We also systematically study the AC conductivity in various probe brane setups without disorder and find analogues of Mott insulators.
Holographic superconductors without translational symmetry
Zeng, Hua Bi
2014-01-01
A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite DC conductivity, the AC conductivity has Drude behavior at low frequency followed by a power law-fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.
Shen, Chongyang; Zhang, Mengjia; Zhang, Shuzhen; Wang, Zhan; Zhang, Hongyan; Li, Baoguo; Huang, Yuanfang
2015-06-15
This study systematically investigated influence of surface roughness and surface chemical heterogeneity on attachment and detachment of nC60 nanoparticles in saturated porous media by conducting laboratory column experiments. Sand and glass beads were employed as a model collectors to represent a different surface roughness. The two collectors were treated by washing with only deionized water or by using acids to extensively remove chemical heterogeneities. Results show that both attachment and detachment were more in the acid-treated sand than those in the acid-treated glass beads. The greater attachment and detachment were attributed to the reason that sand surfaces have much more nanoscale asperities, which facilitates particle attachment atop of them at primary minima and subsequent detachment upon reduction of ionic strength. No detachment was observed if the water-washed collectors were employed, demonstrating that the couple of chemical heterogeneity with nanoscale roughness causes irreversible attachment in primary minima. Whereas existing studies frequently represented surface rough asperities as regular geometries (e.g., hemisphere, cone, pillar) for estimating influence of surface roughness on Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies, our theoretical calculations indicate that the assumptions could underestimate both attachment and detachment because these geometries cannot account for surface curvature effects.
Waite, Marilynn R. F.; Pfefferkorn, E. R.
1970-01-01
Incubation of Sindbis virus-infected cultures in medium with an ionic strength of 0.105 reduced the virus yield more than 99%. This inhibition was rapidly reversed by exposing the cultures to normal medium: within 20 min the previously inhibited cultures had released as much infectious virus as normal controls had produced during hours of incubation. The following intracellular processes were essentially normal in inhibited, infected monolayers: protein and phospholipid synthesis, the synthesis of infectious viral ribonucleic acid and its incorporation into nucleocapsids, and viral modification of the cell membrane. Accelerated virus production was detected within 20 sec after exposure of inhibited cultures to normal medium. It required an ionic strength greater than 0.145, a pH above 6.7, and a temperature above 21 C. It was not dependent on osmotic pressure, de novo protein synthesis, or a functional energy metabolism. Virus release also occurred in sonic-treated materials of inhibited cells under the same conditions as in living cells. Potential applications of the inhibition to concentration of virus stocks or to obtaining virus in nonphysiological solutions are noted. Preliminary studies with Semiliki Forest virus, Newcastle disease virus, and vesicular stomatitis virus suggest that this phenomenon may be limited to arboviruses. PMID:4315161
Azerrad, Sara P; Gur-Reznik, Shirra; Heller-Grossman, Lilly; Dosoretz, Carlos G
2014-10-01
Among the main restrictions for the implementation of advanced oxidation processes (AOPs) for removal of micropollutants present in reverse osmosis (RO) brines of secondary effluents account the quenching performed by background organic and inorganic constituents. Natural organic matter (NOM) and soluble microbial products (SMP) are the main effluent organic matter constituents. The inorganic fraction is largely constituted by chlorides and bicarbonate alkalinity with sodium and calcium as main counterions. The quenching influence of these components, separately and their mixture, in the transformation of model compounds by UVA/TiO2 was studied applying synthetic brines solutions mimicking 2-fold concentrated RO secondary effluents brines. The results were validated using fresh RO brines. Diatrizoate (DTZ) and iopromide (IOPr) were used as model compound. They have been found to exhibit relative high resistance to oxidation process and therefore represent good markers for AOPs techniques. Under the conditions applied, oxidization of DTZ in the background of RO brines was strongly affected by quenching effects. The major contribution to quenching resulted from organic matter (≈70%) followed by bicarbonate alkalinity (≈30%). NOM displayed higher quenching than SMP in spite of its relative lower concentration. Multivalent cations, i.e., Ca(+2), were found to decrease effectiveness of the technique due to agglomeration of the catalyst. However this influence was lowered in presence of NOM. Different patterns of transformation were found for each model compound in which a delayed deiodination was observed for iopromide whereas diatrizoate oxidation paralleled deiodination.
Synfograms: a new generation of holographic applications
Meulien Öhlmann, Odile; Öhlmann, Dietmar; Zacharovas, Stanislovas J.
2008-04-01
The new synthetic Four-dimensional printing technique (Syn4D) Synfogram is introducing time (animation) into spatial configuration of the imprinted three-dimensional shapes. While lenticular solutions offer 2 to 9 stereoscopic images Syn4D offers large format, full colors true 3D visualization printing of 300 to 2500 frames imprinted as holographic dots. This past 2 years Syn4D high-resolution displays proved to be extremely efficient for museums presentation, engineering design, automobile prototyping, and advertising virtual presentation as well as, for portrait and fashion applications. The main advantages of syn4D is that it offers a very easy way of using a variety of digital media, like most of 3D Modelling programs, 3D scan system, video sequences, digital photography, tomography as well as the Syn4D camera track system for life recording of spatial scenes changing in time. The use of digital holographic printer in conjunction with Syn4D image acquiring and processing devices separates printing and imaging creation in such a way that makes four-dimensional printing similar to a conventional digital photography processes where imaging and printing are usually separated in space and time. Besides making content easy to prepare, Syn4D has also developed new display and lighting solutions for trade show, museum, POP, merchandising, etc. The introduction of Synfograms is opening new applications for real life and virtual 4D displays. In this paper we will analyse the 3D market, the properties of the Synfograms and specific applications, the problems we encounter, solutions we find, discuss about customers demand and need for new product development.
Holographic microscopy in low coherence
Chmelík, Radim; Petráček, Jiří; Slabá, Michala; Kollárová, Věra; Slabý, Tomáš; Čolláková, Jana; Komrska, Jiří; Dostál, Zbyněk.; Veselý, Pavel
2016-03-01
Low coherence of the illumination substantially improves the quality of holographic and quantitative phase imaging (QPI) by elimination of the coherence noise and various artefacts and by improving the lateral resolution compared to the coherent holographic microscopy. Attributes of coherence-controlled holographic microscope (CCHM) designed and built as an off-axis holographic system allowing QPI within the range from complete coherent to incoherent illumination confirmed these expected advantages. Low coherence illumination also furnishes the coherence gating which constraints imaging of some spatial frequencies of an object axially thus forming an optical section in the wide sense. In this way the depth discrimination capability of the microscope is introduced at the price of restricting the axial interval of possible numerical refocusing. We describe theoretically these effects for the whole range of illumination coherence. We also show that the axial refocusing constraints can be overcome using advanced mode of imaging based on mutual lateral shift of reference and object image fields in CCHM. Lowering the spatial coherence of illumination means increasing its numerical aperture. We study how this change of the illumination geometry influences 3D objects QPI and especially the interpretation of live cells QPI in terms of the dry mass density measurement. In this way a strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data including a chance of time-lapse watching of live cells even in optically turbid milieu.
Lecture Notes on Holographic Renormalization
Skenderis, K
2002-01-01
We review the formalism of holographic renormalization. We start by discussing mathematical results on asymptotically anti-de Sitter spacetimes. We then outline the general method of holographic renormalization. The method is illustrated by working all details in a simple example: a massive scalar field on anti-de Sitter spacetime. The discussion includes the derivation of the on-shell renormalized action, of holographic Ward identities, anomalies and RG equations, and the computation of renormalized one-, two- and four-point functions. We then discuss the application of the method to holographic RG flows. We also show that the results of the near-boundary analysis of asymptotically AdS spacetimes can be analytically continued to apply to asymptotically de Sitter spacetimes. In particular, it is shown that the Brown-York stress energy tensor of de Sitter spacetime is equal, up to a dimension dependent sign, to the Brown-York stress energy tensor of an associated AdS spacetime.
Holographic complexity and spacetime singularities
Barbón, José L.F. [Instituto de Física Teórica IFT UAM/CSIC,C/ Nicolás Cabrera 13, Campus Universidad Autónoma de Madrid,Madrid 28049 (Spain); Rabinovici, Eliezer [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)
2016-01-15
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Picosecond Holographic-Grating Spectroscopy
Duppen, K.
1987-01-01
Interfering light waves produce an optical interference pattern in any medium that interacts with light. This modulation of some physical parameter of the system acts as a classical holographic grating for optical radiation. When such a grating is produced through interaction of pulsed light waves w
Holographic dark-energy models
Del Campo, Sergio; Fabris, Júlio. C.; Herrera, Ramón; Zimdahl, Winfried
2011-06-01
Different holographic dark-energy models are studied from a unifying point of view. We compare models for which the Hubble scale, the future event horizon or a quantity proportional to the Ricci scale are taken as the infrared cutoff length. We demonstrate that the mere definition of the holographic dark-energy density generally implies an interaction with the dark-matter component. We discuss the relation between the equation-of-state parameter and the energy density ratio of both components for each of the choices, as well as the possibility of noninteracting and scaling solutions. Parameter estimations for all three cutoff options are performed with the help of a Bayesian statistical analysis, using data from supernovae type Ia and the history of the Hubble parameter. The ΛCDM model is the clear winner of the analysis. According to the Bayesian information criterion (BIC), all holographic models should be considered as ruled out, since the difference ΔBIC to the corresponding ΛCDM value is >10. According to the Akaike information criterion (AIC), however, we find ΔAIC<2 for models with Hubble-scale and Ricci-scale cutoffs, indicating, that they may still be competitive. As we show for the example of the Ricci-scale case, also the use of certain priors, reducing the number of free parameters to that of the ΛCDM model, may result in a competitive holographic model.
Range Compressed Holographic Aperture Ladar
2017-06-01
digital holography, laser, active imaging, remote sensing, laser imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 8...slow speed tunable lasers, while relaxing the need to precisely track the transceiver or target motion. In the following section we describe a scenario...contrast targets. As shown in Figure 28, augmenting holographic ladar with range compression relaxes the dependence of image reconstruction on
Code Properties from Holographic Geometries
Pastawski, Fernando; Preskill, John
2017-04-01
Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015) 163., 10.1007/JHEP04(2015)163] proposed a highly illuminating connection between the AdS /CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.
Code Properties from Holographic Geometries
Fernando Pastawski
2017-05-01
Full Text Available Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015 163.JHEPFG1029-847910.1007/JHEP04(2015163] proposed a highly illuminating connection between the AdS/CFT holographic correspondence and operator algebra quantum error correction (OAQEC. Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.
Unbalanced holographic superconductors and spintronics
Bigazzi, F.; Cotrone, A.L.; Musso, D.; Pinzani Fokeeva, N.; Seminara, D.
2012-01-01
We present a minimal holographic model for s-wave superconductivity with unbalanced Fermi mixtures, in 2 + 1 dimensions at strong coupling. The breaking of a U(1)A “charge” symmetry is driven by a non-trivial profile for a charged scalar field in a charged asymptotically AdS4 black hole. The chemica
Nagaya, Kohta; Hata, Eiji; Tomita, Yasuo
2016-09-01
We report on an experimental investigation of nanoparticle-concentration and thiol-to-ene stoichiometric ratio dependences of symbol error rates (SERs) and signal-to-noise ratios (SNRs) of digital data pages recorded at a wavelength of 532 nm in thiol-ene based nanoparticle-polymer composite (NPC) films by using a coaxial holographic digital data storage method. We show that SERs and SNRs at the optimized material condition can be lower than 1 × 10-4 and higher than 10, respectively, without error correction coding. These results show the usefulness of thiol-ene based NPCs as coaxial holographic data storage media.
Liu, Yan; Ma, Cheng; Shen, Yuecheng; Wang, Lihong V.
2016-03-01
Optical focusing plays a central role in biomedical optical imaging, manipulation, and therapy. However, in scattering media, direct optical focusing becomes infeasible beyond ~10 mean free paths. To break this limit, time-reversed ultrasonically encoded (TRUE) optical focusing phase-conjugates ultrasonically tagged diffuse light back to the ultrasonic focus, thus forming a focus deep inside scattering media. In previous works, the speed of wavefront measurement was limited by the low frame rate of the camera used to record the four images required for phase-shifting holography. Moreover, most of the bits of a pixel value were used to represent an informationless background caused by the large amount of untagged light, increasing the amount of data to transfer and necessitating the use of costly high-resolution analog-to-digital converters (ADCs). Here, we developed a digital TRUE focusing system based on a lock-in camera (300×300 pixels), in which each pixel performs analog lock-in detection on chip. Since only the information of the signal, not that of the background, is digitized, the lock-in camera reduces the amount of data to transfer, and enables the use of cheap low-resolution ADCs. Using this lock-in camera, we were able to measure the wavefront of ultrasonically tagged light in less than 0.3 ms, and to achieve TRUE focusing in between two ground glass diffusers. Even when the signal-to-background ratio dropped to 6.32×10^-4, a phase sensitivity as low as 0.51 rad could still be realized, which is more than enough for digital optical phase conjugation.
Holographic microscopy for in situ studies of microorganism motility
Nadeau, J.; Hu, S.; Jericho, S.; Lindensmith, C.
2011-12-01
Robust technologies for the detection and identification of microorganisms at low concentrations in complex liquid media are needed for numerous applications: environmental and medical microbiology, food safety, and for the search for microbial life elsewhere in the Solar System. The best current method for microbial enumeration is specific labeling with fluorescent dyes followed by high-resolution light microscopy. However, fluorescent techniques are difficult to use in situ in extreme environments (such as the Arctic and Antarctic or the open ocean) due to the fragility of the instruments and their high power demands. In addition, light microscopic techniques rarely provide insight into microbial motility behaviors. Tracking single cells would provide important insight into the physics of micron-scale motility as well as into key microbial phenomena such as surface attachment and invasiveness. An alternative to traditional light microscopy that is attracting increasing attention is holographic microscopy. Holographic microscopy works by illuminating the object of interest with coherent light from a laser. The light reflected from (or transmitted through) the object is then combined with a coherent reference beam to create an interference pattern that contains the phase and intensity information required to reconstruct a three dimensional image of the object. The interference pattern is recorded on a high resolution detector and can be used to computationally reconstruct a 3D image of the object. The lateral resolution of the image depends upon the wavelength of the light used, the laser power, camera quality, and external noise sources (vibration, stray light, and so forth). Although the principle is simple, technological barriers have prevented wider use of holographic microscopy. Laser sources and CCD cameras with the appropriate properties have only very recently become affordable. In addition, holographic microscopy leads to large data sets that are
Holographic kinetic k-essence model
Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl
2009-08-31
We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)
Holographic complexity in gauge/string superconductors
Davood Momeni
2016-05-01
Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T
Holographic entanglement entropy in imbalanced superconductors
Dutta, Arghya
2014-01-01
We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductor. It is found that HEE for this imbalanced system decreases with the increase of imbalance in chemical potentials. Also for an arbitrary mismatch between two chemical potentials, below the critical temperature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-Nordstrom black hole phase. This suggests entanglement entropy to be a useful physical probe for understanding the imbalanced holographic superconductors.
Holographic entanglement entropy in general holographic superconductor models
Peng, Yan
2014-01-01
We study the entanglement entropy of general holographic dual models both in AdS soliton and AdS black hole backgrounds with full backreaction. We find that the entanglement entropy is a good probe to explore the properties of the holographic superconductors and provides richer physics in the phase transition. We obtain the effects of the scalar mass, model parameter and backreaction on the entropy, and argue that the jump of the entanglement entropy may be a quite general feature for the first order phase transition. In strong contrast to the insulator/superconductor system, we note that the backreaction coupled with the scalar mass can not be used to trigger the first order phase transition if the model parameter is below its bottom bound in the metal/superconductor system.
Holographic QCD: Past, Present, and Future
Kim, Youngman; Tsukioka, Takuya
2012-01-01
At the dawn of a new theoretical tool based on AdS/CFT for non-perturbative aspects of quantum chromodynamics, we give an interim review on the the new tool, holographic QCD, with some of its accomplishment. We try to give an A-to-Z picture of the holographic QCD, from string theory to a few selected top-down holographic QCD models with one or two physical applications in each model. We may not attempt to collect diverse results from various holographic QCD model studies.
Holographic Two-Photon Induced Photopolymerization
Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...
Understanding strongly coupling magnetism from holographic duality
Cai, Rong-Gen
2016-01-01
The unusual magnetic materials are significant in both science and technology. However, because of the strongly correlated effects, it is difficult to understand their novel properties from theoretical aspects. Holographic duality offers a new approach to understanding such systems from gravity side. This paper will give a brief review of our recent works on the applications of holographic duality in understanding unusual magnetic materials. Some quantitative compare between holographic results and experimental data will be shown and some predictions from holographic duality models will be discussed.
Holographic three-dimensional telepresence using large-area photorefractive polymer.
Blanche, P-A; Bablumian, A; Voorakaranam, R; Christenson, C; Lin, W; Gu, T; Flores, D; Wang, P; Hsieh, W-Y; Kathaperumal, M; Rachwal, B; Siddiqui, O; Thomas, J; Norwood, R A; Yamamoto, M; Peyghambarian, N
2010-11-04
Holography is a technique that is used to display objects or scenes in three dimensions. Such three-dimensional (3D) images, or holograms, can be seen with the unassisted eye and are very similar to how humans see the actual environment surrounding them. The concept of 3D telepresence, a real-time dynamic hologram depicting a scene occurring in a different location, has attracted considerable public interest since it was depicted in the original Star Wars film in 1977. However, the lack of sufficient computational power to produce realistic computer-generated holograms and the absence of large-area and dynamically updatable holographic recording media have prevented realization of the concept. Here we use a holographic stereographic technique and a photorefractive polymer material as the recording medium to demonstrate a holographic display that can refresh images every two seconds. A 50 Hz nanosecond pulsed laser is used to write the holographic pixels. Multicoloured holographic 3D images are produced by using angular multiplexing, and the full parallax display employs spatial multiplexing. 3D telepresence is demonstrated by taking multiple images from one location and transmitting the information via Ethernet to another location where the hologram is printed with the quasi-real-time dynamic 3D display. Further improvements could bring applications in telemedicine, prototyping, advertising, updatable 3D maps and entertainment.
Stealths on Anisotropic Holographic Backgrounds
Ayón-Beato, Eloy; Juárez-Aubry, María Montserrat
2015-01-01
In this paper, we are interested in exploring the existence of stealth configurations on anisotropic backgrounds playing a prominent role in the non-relativistic version of the gauge/gravity correspondence. By stealth configuration, we mean a nontrivial scalar field nonminimally coupled to gravity whose energy-momentum tensor evaluated on the anisotropic background vanishes identically. In the case of a Lifshitz spacetime with a nontrivial dynamical exponent z, we spotlight the role played by the anisotropy to establish the holographic character of the stealth configurations, i.e. the scalar field is shown to only depend on the radial holographic direction. This configuration which turns out to be massless and without integration constants is possible for a unique value of the nonminimal coupling parameter. Then, using a simple conformal argument, we map this configuration into a stealth solution defined on the so-called hyperscaling violation metric which is conformally related to the Lifshitz spacetime. Thi...
Holographic Fabry-Perot spectrometer.
Martínez-Matos, O; Rodrigo, José A; Vaveliuk, P; Calvo, M L
2011-02-15
We propose a spectrum analyzer based on the properties of a hologram recorded with the field transmitted by a Fabry-Perot etalon. The spectral response of this holographic Fabry-Perot spectrometer (HFPS) is analytically investigated in the paraxial approximation and compared with a conventional Fabry-Perot etalon of similar characteristics. We demonstrate that the resolving power is twice increased and the free spectral range (FSR) is reduced to one-half. The proposed spectrometer could improve the operational performance of the etalon because it can exhibit high efficiency and it would be insensible to environmental conditions such as temperature and vibrations. Our analysis also extends to another variant of the HFPS based on holographic multiplexing of the transmitted field of a Fabry-Perot etalon. This device increases the FSR, keeping the same HFPS performance.
Holographic Quenches with a Gap
da Silva, Emilia; Mas, Javier; Serantes, Alexandre
2016-01-01
In order to holographically model quenches with a gapped final hamiltonian, we consider a gravity-scalar theory in anti-de Sitter space with an infrared hard wall. We allow a time dependent profile for the scalar field at the wall. This induces an energy exchange between bulk and wall and generates an oscillating scalar pulse. We argue that such backgrounds are the counterpart of quantum revivals in the dual field theory. We perform a qualitative comparison with the quench dynamics of the massive Schwinger model, which has been recently analyzed using tensor network techniques. Agreement is found provided the width of the oscillating scalar pulse is inversely linked to the energy density communicated by the quench. We propose this to be a general feature of holographic quenches.
Holographic Mott-like insulator
Ling, Yi; Wu, Jian-Pin
2015-01-01
In this paper we show that a gravity dual model with Q-lattice structure can provide a holographic description of a Mott-like insulator, which is an extension of our previous work in arXiv:1507.02514. We construct the bulk geometry with two gauge fields and introduce a coupling between the lattice and the Maxwell field. It turns out that an insulating ground state with hard gap as well as vanishing DC conductivity can be achieved in the zero temperature limit, which can be viewed as a substantial progress towards the holographic construction of Mott-like insulator. The non-Drude behavior in optical conductivity is also discussed.
Holographic Chern-Simons Defects
Fujita, Mitsutoshi; Meyer, Rene; Sugimoto, Shigeki
2016-01-01
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7-branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for two-dimensional QCD.
Fabrication Technique of Holographic Sight
LIN Ling; LIU Shou; ZHANG Xiang-su
2005-01-01
There are several types of sights used for small arms. All of them have advantages and disadvantages. A new type of sight-holographic sight-is introduced in the paper, with the emphasis on the fabrication technique of the hologram which is the most important part in the sight. A Gaussian dot and a reticle pattern are recorded in the hologram. When illuminated by a laser diode, the virtual images of the dot and the reticle pattern for aiming are observed through the hologram. Compared with other sights, the holographic sight provides quicker, more accurate and covert aiming at moving targets, particularly in close quarter combat situations. It significantly improves the capability of small arms used in close quarter fighting in all weathers.
Holographic Mutual Information is Monogamous
Hayden, Patrick; Maloney, Alexander
2013-01-01
We identify a special information-theoretic property of quantum field theories with holographic duals: the mutual informations among arbitrary disjoint spatial regions A,B,C obey the inequality I(A:BC) >= I(A:B)+I(A:C), provided entanglement entropies are given by the Ryu-Takayanagi formula. Inequalities of this type are known as monogamy relations and are characteristic of measures of quantum entanglement. This suggests that correlations in holographic theories arise primarily from entanglement rather than classical correlations. We also show that the Ryu-Takayanagi formula is consistent with all known general inequalities obeyed by the entanglement entropy, including an infinite set recently discovered by Cadney, Linden, and Winter; this constitutes strong evidence in favour of its validity.
Holographic mutual information is monogamous
Hayden, Patrick; Headrick, Matthew; Maloney, Alexander
2013-02-01
We identify a special information-theoretic property of quantum field theories with holographic duals: the mutual informations among arbitrary disjoint spatial regions A, B, C obey the inequality I(A∶B∪C)≥I(A∶B)+I(A∶C), provided entanglement entropies are given by the Ryu-Takayanagi formula. Inequalities of this type are known as monogamy relations and are characteristic of measures of quantum entanglement. This suggests that correlations in holographic theories arise primarily from entanglement rather than classical correlations. We also show that the Ryu-Takayanagi formula is consistent with all known general inequalities obeyed by the entanglement entropy, including an infinite set recently discovered by Cadney et al.; this constitutes strong evidence in favor of its validity.
Holographic quenches with a gap
da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2016-06-01
In order to holographically model quenches with a gapped final hamiltonian, we consider a gravity-scalar theory in anti-de Sitter space with an infrared hard wall. We allow a time dependent profile for the scalar field at the wall. This induces an energy exchange between bulk and wall and generates an oscillating scalar pulse. We argue that such backgrounds are the counterpart of quantum revivals in the dual field theory. We perform a qualitative comparison with the quench dynamics of the massive Schwinger model, which has been recently analyzed using tensor network techniques. Agreement is found provided the width of the oscillating scalar pulse is inversely linked to the energy density communicated by the quench. We propose this to be a general feature of holographic quenches.
Electromagnetically Induced Quantum Holographic Imaging
Qiu, Tian-Hui; Xie, Min; Ma, Hong-Yang; Zheng, Chun-Hong; Chen, Li-Bo
2016-05-01
We study the quantum holographic imaging of one-dimensional electromagnetically induced grating created by a strong standing wave in an atomic medium. Entangled photon pairs, generated in a spontaneous parametric down-conversion process, are employed as the imaging light to realize coincidence recording. By theoretical analysis and numerical simulation, we find that both the amplitude and phase information of the object can be imaged with the characteristic of imaging nonlocally and of arbitrarily controllable image variation in size.
Holographic multiverse and conformal invariance
Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain); Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, 212 College Ave., Medford, MA 02155 (United States)
2009-11-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.
Generalized Superconductors and Holographic Optics
Mahapatra, Subhash; Sarkar, Tapobrata
2013-01-01
We study generalized holographic s-wave superconductors in four dimensional R-charged black hole backgrounds, in the probe limit. We first establish the superconducting nature of the boundary theory, and then study its optical properties. Numerical analysis indicates that a negative index of refraction appears at low frequencies in the theory, for certain temperature ranges, for specific values of the charge parameter. The corresponding cut-off values for these are numerically established in several cases.
Holographic superconductors with Weyl corrections
Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay
2016-10-01
A quick review on the analytical aspects of holographic superconductors (HSCs) with Weyl corrections has been presented. Mainly, we focus on matching method and variational approaches. Different types of such HSC have been investigated — s-wave, p-wave and Stúckelberg ones. We also review the fundamental construction of a p-wave type, in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.
Holographic renormalization in teleparallel gravity
Krssak, Martin [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)
2017-01-15
We consider the problem of IR divergences of the action in the covariant formulation of teleparallel gravity in asymptotically Minkowski spacetimes. We show that divergences are caused by inertial effects and can be removed by adding an appropriate surface term, leading to the renormalized action. This process can be viewed as a teleparallel analog of holographic renormalization. Moreover, we explore the variational problem in teleparallel gravity and explain how the variation with respect to the spin connection should be performed. (orig.)
Constructive use of holographic projections
Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Institut fuer Theoretische Physik der FU, Berlin (Germany)
2008-07-01
Revisiting the old problem of existence of interacting models of QFT with new conceptual ideas and mathematical tools, one arrives at a novel view about the nature of QFT. The recent success of algebraic methods in establishing the existence of factorizing models suggests new directions for a more intrinsic constructive approach beyond Lagrangian quantization. Holographic projection simplifies certain properties of the bulk theory and hence is a promising new tool for these new attempts. (author)
Holographic interferometry in construction analysis
Hartikainen, T.
1995-12-31
In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)
Towards Holographic Quantum Energy Teleportation
Giataganas, Dimitrios; Liu, Pei-Hua
2016-01-01
We propose a protocol of quantum energy teleportation (QET) for holographic conformal field theory (CFT) in 3-dimensional anti-de Sitter space with or without black hole. A generic QET protocol contains two steps: (i) Alice injects the energy into ground state by performing local measurement; (ii) the distant Bob extracts energy by performing local operation according to Alice's measurement outcome. In our holographic protocol, we mimic the step (i) by local projection of an interval of CFT ground state into an excited state described by Banados geometry. For the step (ii) we adopt the surface/state duality to evaluate the energy extraction by local deformation of UV surface as the holographic dual of Bob's local unitary operations. Our results show that this protocol always gains energy extraction. Moreover, the ratio of Bob's extraction energy density to the energy density of the excited state after Alice's local projection is a positive semi-definite and bounded function of the UV surface deformation profi...
Monitoring by holographic radar systems
Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco
2013-04-01
Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to
Holographic preamplifier for a quantum amplifier
Zemskov, K.I.; Kazarian, M.A.; Orlova, N.G.; Liuksiutov, S.F.; Odulov, S.G.
1988-08-01
Successive amplification of a weak optical signal was realized experimentally in holographic and quantum amplifiers. The signal was a coherent one with an intensity less than the actual noise of the copper-vapor active medium; the technique involved the use of a coherent holographic preamplifier based on a lithium niobate/sodium photorefractive crystal. 8 references.
The surface density of holographic entropy
Kiselev, V V
2010-01-01
On the basis of postulates for the holographic description of gravity and the introduction of entropic force in E. Verlinde's article [arXiv:1001.0785], for static sources we derive the universal law: the entropy of a holographic screen is equal to quarter of its area in the Planck system of units.
The holographic screen at low temperatures
Kiselev, V V
2010-01-01
A permissible spectrum of transverse vibrations for the holographic screen modifies both a distribution of thermal energy over bits at low temperatures and the law of gravitation at small accelerations of free fall in agreement with observations of flat rotation curves in spiral galaxies. This modification relates holographic screen parameters in de Sitter space-time with the Milgrom acceleration in MOND.
Imaging characteristics of a volume holographic lens
Yang, Jing; Jiang, Zhu-qing; Xu, Zhi-qiang; Liu, Shao-jie; Sun, Ya-jun; Tao, Shi-quan
2009-07-01
A volume holographic grating lens can reconstruct the three-dimensional information by conducting multiple optical slicing of an object based on Bragg selectivity of the volume holographic grating. In this paper, we employ the point-spread function of volume holographic imaging system to theoretically analyze its imaging resolution. In the experiments, the volume holographic gratings are made with a spherical reference (SR) and a planar reference (PR), respectively, and used as volume holographic imaging lens in our imaging system. The longitudinal and lateral defocusing characteristics of volume holographic lens with SR and with PR are investigated experimentally by displacing the interested objects from original reference location, respectively. The effects of the parameters of the volume holographic lens on the longitudinal and lateral resolution are also discussed. The experimental results show that increasing the size of the volume holographic lens can improve the depth resolution, and in particular, it has greater influence on SR VHI. The lateral selectivity of SR VHI is more sensitive than that of PR VHI, and the Bragg degenerate diffraction of PR VHI on the y axis is obviously observed.
Ultra-High Capacity Holographic Memories
2007-11-02
Momtahan, G. H. Cadena , and A. Adibi, "Sensitivity variation in two-center holographic recording," submitted to Op’tics Letters. 7. H. Pishro-Nik and F...34 Optics in the Southeast Meeting, Huntsville, AL, October 2002. 6. 0. Momtahan, G. H. Cadena , and A. Adibi, "Stabilized Two-Center Holographic
High density collinear holographic data storage system (Conference Presentation)
Tan, Xiaodi; Horimai, Hideyoshi; Arai, Ryo; Ikeda, Junichi; Inoue, Mitsuteru; Lin, Xiao; Xu, Ke; Liu, Jinpeng; Huang, Yong
2016-09-01
Collinear holography has been good candidate for a volumetric recording technology of holographic data storage system (HDSS), because of there are not only large storage capacities, high transfer rates, but also the unique configuration, in which the information and reference beams are modulated co-axially by the same spatial light modulator, as a new read/write method for HDSS are very promising. The optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography using phase modulated page data format.
Holographic Complexity for Time-Dependent Backgrounds
Momeni, Davood; Bahamonde, Sebastian; Myrzakulov, Ratbay
2016-01-01
In this paper, we will analyse the holographic complexity for time-dependent asymptotically $AdS$ geometries. We will first use a covariant zero mean curvature slicing of the time-dependent bulk geometries, and then use this co-dimension one spacelike slice of the bulk spacetime to define a co-dimension two minimal surface. The time-dependent holographic complexity will be defined using the volume enclosed by this minimal surface. This time-dependent holographic complexity will reduce to the usual holographic complexity for static geometries. We will analyse the time-dependence as a perturbation of the asymptotically $AdS$ geometries. Thus, we will obtain time-dependent asymptotically $AdS$ geometries, and we will calculate the holographic complexity for such a time-dependent geometries.
New recording materials for the holographic industry
Jurbergs, David; Bruder, Friedrich-Karl; Deuber, Francois; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Rölle, Thomas; Weiser, Marc-Stephan; Volkov, Andy
2009-02-01
This paper describes a new class of recording materials for volume holographic applications suitable to meet commercial manufacturing needs. These next-generation holographic photopolymers have the ability to satisfy the unmet demand for color and depth tuning that is only possible with volume holograms. Unlike earlier holographic photopolymers, these new materials offer the advantages of no chemical or thermal processing combined with low shrinkage and detuning. Furthermore, these materials exhibit high transparency, a high resolution of more than 5000 lines/mm and are environmentally robust. Bayer MaterialScience plans to commercialize these materials, which combine excellent holographic characteristics with compatibility to mass-production processes. In this paper, we will briefly discuss the potential markets and applications for a new photopolymer, describe the attributes of this new class of photopolymers, relate their ease of use in holographic recording, and discuss potential applications of such materials..
A practical approach to the Hamilton-Jacobi formulation of holographic renormalization
Elvang, Henriette; Hadjiantonis, Marios
2016-06-01
We revisit the subject of holographic renormalization for asymptotically AdS spacetimes. For many applications of holography, one has to handle the divergences associated with the on-shell gravitational action. The brute force approach uses the Fefferman- Graham (FG) expansion near the AdS boundary to identify the divergences, but subsequent reversal of the expansion is needed to construct the infinite counterterms. While in principle straightforward, the method is cumbersome and application/reversal of FG is formally unsatisfactory. Various authors have proposed an alternative method based on the Hamilton-Jacobi equation. However, this approach may appear to be abstract, difficult to implement, and in some cases limited in applicability. In this paper, we clarify the Hamilton-Jacobi formulation of holographic renormalization and present a simple algorithm for its implementation to extract cleanly the infinite counterterms. While the derivation of the method relies on the Hamiltonian formulation of general relativity, the actual application of our algorithm does not. The work applies to any D-dimensional holographic dual with asymptotic AdS boundary, Euclidean or Lorentzian, and arbitrary slicing. We illustrate the method in several examples, including the FGPW model, a holographic model of 3d ABJM theory, and cases with marginal scalars such as a dilaton-axion system.
A practical approach to the Hamilton-Jacobi formulation of holographic renormalization
Elvang, Henriette; Hadjiantonis, Marios [Department of Physics and Michigan Center for Theoretical Physics, University of Michigan,450 Church Str., Ann Arbor MI 48109 (United States)
2016-06-08
We revisit the subject of holographic renormalization for asymptotically AdS spacetimes. For many applications of holography, one has to handle the divergences associated with the on-shell gravitational action. The brute force approach uses the Fefferman-Graham (FG) expansion near the AdS boundary to identify the divergences, but subsequent reversal of the expansion is needed to construct the infinite counterterms. While in principle straightforward, the method is cumbersome and application/reversal of FG is formally unsatisfactory. Various authors have proposed an alternative method based on the Hamilton-Jacobi equation. However, this approach may appear to be abstract, difficult to implement, and in some cases limited in applicability. In this paper, we clarify the Hamilton-Jacobi formulation of holographic renormalization and present a simple algorithm for its implementation to extract cleanly the infinite counterterms. While the derivation of the method relies on the Hamiltonian formulation of general relativity, the actual application of our algorithm does not. The work applies to any D-dimensional holographic dual with asymptotic AdS boundary, Euclidean or Lorentzian, and arbitrary slicing. We illustrate the method in several examples, including the FGPW model, a holographic model of 3d ABJM theory, and cases with marginal scalars such as a dilaton-axion system.
Holographic superconductors with hyperscaling violation
Fan, ZhongYing
2013-01-01
We investigate holographic superconductors in asympototically geometries with hyperscaling violation. The mass of the scalar field decouples from the UV dimension of the dual scalar operator and can be chosen as negative as we want, without disturbing the Breitenlohner-Freedman bound. We first numerically find that the scalar condenses below a critical temperature and a gap opens in the real part of the conductivity, indicating the onset of superconductivity. We further analytically explore the effects of the hyperscaling violation on the superconducting transition temperature. We find that the critical temperature increases with the increasing of hyperscaling violation.
The holographic supersymmetric Casimir energy
Genolini, Pietro Benetti; Martelli, Dario; Sparks, James
2016-01-01
We consider a general class of asymptotically locally AdS_5 solutions of minimal gauged supergravity, that are dual to superconformal field theories on curved backgrounds S^1 x M_3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S^1 x R^4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory BPS relation between charges.
Holographic Complexity Equals Bulk Action?
Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying
2016-05-01
We conjecture that the quantum complexity of a holographic state is dual to the action of a certain spacetime region that we call a Wheeler-DeWitt patch. We illustrate and test the conjecture in the context of neutral, charged, and rotating black holes in anti-de Sitter spacetime, as well as black holes perturbed with static shells and with shock waves. This conjecture evolved from a previous conjecture that complexity is dual to spatial volume, but appears to be a major improvement over the original. In light of our results, we discuss the hypothesis that black holes are the fastest computers in nature.
Theta angle in holographic QCD
Jarvinen, Matti
2016-01-01
V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the theta-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, N_f/N_c, and theta, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.
Holographic d-wave superconductors
Kim, Keun-Young
2013-01-01
We construct top down models for holographic d-wave superfluids in which the order parameter is a charged spin two field in the bulk. Close to the transition temperature the condensed phase can be captured by a charged spin two field in an R-charged black hole background (downstairs picture) or equivalently by specific graviton perturbations of a spinning black brane (upstairs picture). We analyse the necessary conditions on the mass and the charge of the spin two field for a condensed phase to exist and we discuss the competition of the d-wave phase with other phases such as s-wave superfluids.
Holographic s+p Superconductors
Amado, Irene; Jimenez-Alba, Amadeo; Melgar, Luis; Landea, Ignacio Salazar
2014-01-01
We study the phase diagram of a holographic model realizing a U(2) global symmetry on the boundary and show that at low temperature a phase with both scalar s and vector p condensates exists. This is the s+p-wave phase where the global U(2) symmetry and also the spatial rotational symmetry are spontaneously broken. By studying the free energy we show that this phase is preferred when it exists. We also consider unbalanced configurations where a second chemical potential is turned on. They present a rich phase diagram characterized by the competition and coexistence of the s and p order parameters.
The holographic supersymmetric Casimir energy
Benetti Genolini, Pietro; Cassani, Davide; Martelli, Dario; Sparks, James
2017-01-01
We consider a general class of asymptotically locally AdS5 solutions of minimal gauged supergravity, which are dual to superconformal field theories on curved backgrounds S1×M3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S1×R4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory supersymmetric relation between charges.
Generalized superconductors and holographic optics
Mahapatra, Subhash; Phukon, Prabwal; Sarkar, Tapobrata [Department of Physics, Indian Institute of Technology,Kanpur 208016 (India)
2014-01-24
We study generalized holographic s-wave superconductors in four dimensional R-charged black hole and Lifshitz black hole backgrounds, in the probe limit. We first establish the superconducting nature of the boundary theories, and then study their optical properties. Numerical analysis indicates that a negative Depine-Lakhtakia index may appear at low frequencies in the theory dual to the R-charged black hole, for certain temperature ranges, for specific values of the charge parameter. The corresponding cut-off values for these are numerically established in several cases. Such effects are seen to be absent in the Lifshitz background where this index is always positive.
Holographic Thermalization with Weyl Corrections
Dey, Anshuman; Sarkar, Tapobrata
2015-01-01
We consider holographic thermalization in the presence of a Weyl correction in five dimensional AdS space. We numerically analyze the time dependence of the two point correlation functions and the expectation values of rectangular Wilson loops in the boundary field theory. The subtle interplay between the Weyl coupling constant and the chemical potential is studied in detail. An outcome of our analysis is the appearance of a swallow tail behaviour in the thermalization curve, and we give evidence that this might indicate distinct physical situations relating to different length scales in the problem.
Semi-holographic model revisited
Cárdenas, Víctor H; Magaña, Juan
2013-01-01
In a recent work Zhang, Li and Noh [Phys. Lett. B {\\bf 694}, 177 (2010)]proposed a model for dark energy assuming this component strictly obeys the holographic principle. They performed a dynamical system analysis, finding a scaling solution which is helpful to solve the coincidence problem. However they need explicitly a cosmological constant. In this paper we derive an explicit analytical solution, without $\\Lambda$, that shows agreement with the Supernovae data. However this solution is not physical because violate all the energy conditions.
A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage
Jinxin Guo
2012-01-01
Full Text Available Photopolymers are very interesting as optically sensitive recording media due to the fact that they are inexpensive, self-processing materials with the ability to capture low-loss, high-fidelity volume recordings of 3D illuminating patterns. We have prepared this paper in part in order to enable the recognition of outstanding issues, which limit in particular the data storage capacity in holographic data storage media. In an attempt to further develop the data storage capacity and quality of the information stored, that is, the material sensitivity and resolution, a deeper understanding of such materials in order to improve them has become ever more crucial. In this paper a brief review of the optimisation of photopolymer materials for holographic data storage (HDS applications is described. The key contributions of each work examined and many of the suggestions made for the improvement of the different photopolymer material discussed are presented.
Moving through a multiplex holographic scene
Mrongovius, Martina
2013-02-01
This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.
Holographic entanglement entropy on generic time slices
Kusuki, Yuya; Takayanagi, Tadashi; Umemoto, Koji
2017-06-01
We study the holographic entanglement entropy and mutual information for Lorentz boosted subsystems. In holographic CFTs at zero and finite temperature, we find that the mutual information gets divergent in a universal way when the end points of two subsystems are light-like separated. In Lifshitz and hyperscaling violating geometries dual to non-relativistic theories, we show that the holographic entanglement entropy is not well-defined for Lorentz boosted subsystems in general. This strongly suggests that in non-relativistic theories, we cannot make a real space factorization of the Hilbert space on a generic time slice except the constant time slice, as opposed to relativistic field theories.
Order parameter fluctuations in the holographic superconductor
Plantz, N. W. M.; Stoof, H. T. C.; Vandoren, S.
2017-03-01
We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, following an introduction to the concept of intrinsic dynamics and its implementation within holographic models, we compute the intrinsic spectral functions of the order parameter in both the normal and the superconducting phase, using a fully backreacted bulk geometry. We also present a vector-like large-N version of the Ginzburg–Landau model that accurately describes our long-wavelength results in both phases. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC–BCS crossover.
LDA optical setup using holographic imaging configuration
Ghosh, Abhijit; Nirala, A. K.
2015-11-01
This paper describes one of the possible ways for improving fringe quality at LDA measuring volume using a holographic imaging configuration consisting of a single hololens. For its comparative study with a conventional imaging configuration, a complete characterization of fringes formed at the measurement volume by both the configuration is presented. Results indicate the qualitative as well as quantitative improvement of the fringes formed at measurement volume by the holographic imaging configuration. Hence it is concluded that use of holographic imaging configuration for making LDA optical setup is a better choice than the conventional one.
Baryon Transition in Holographic QCD
Li, Siwen
2015-01-01
We propose a mechanism of holographic baryon transition in the Sakai-Sugimoto (SS) model: baryons in this model can jump to different states under the mediated effect of gravitons (or glueballs by holography). We consider a time-dependent gravitational perturbation from M5-brane solution of D=11 supergravity and by employing the relations between 11D M-theory and IIA string theory, we get its 10 dimensional counterpart in the SS model. Such a perturbation is received by the D4-branes wrapped on the $S^{4}$ part of the 10D background, namely the baryon vertex. Technically, baryons in the SS model are described by BPST instanton ansatz and their dynamics can be analyzed using the quantum mechanical system in the instanton's moduli space. In this way, different baryonic states are marked by quantum numbers of moduli space quantum mechanics. By holographic spirit, the gravitational perturbation enters the Hamiltonian as a time-dependent perturbation and it is this time-dependent perturbative Hamiltonian produces ...
Bit threads and holographic entanglement
Freedman, Michael
2016-01-01
The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner...
Holographic duals of Boundary CFTs
Chiodaroli, Marco; Gutperle, Michael
2012-01-01
New families of regular half-BPS solutions to 6-dimensional Type 4b supergravity with $m$ tensor multiplets are constructed exactly. Their space-time consists of $AdS_2 \\times S^2$ warped over a Riemann surface with an arbitrary number of boundary components, and arbitrary genus. The solutions have an arbitrary number of asymptotic $AdS_3 \\times S^3$ regions. In addition to strictly single-valued solutions to the supergravity equations whose scalars live in the coset $SO(5,m)/SO(5)\\times SO(m)$, we also construct stringy solutions whose scalar fields are single-valued up to transformations under the $U$-duality group $SO(5,m;\\bZ)$, and live in the coset $SO(5,m;\\bZ)\\backslash SO(5,m)/SO(5)\\times SO(m)$. We argue that these Type 4b solutions are holographically dual to general classes of interface and boundary CFTs arising at the juncture of the end-points of 1+1-dimensional bulk CFTs. We evaluate their corresponding holographic entanglement and boundary entropy, and discuss their brane interpretation. We conj...
Exploring holographic Composite Higgs models
Croon, Djuna; Huber, Stephan J; Sanz, Veronica
2015-01-01
Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM5, to understand how far naive 4D predictions are from their 5D duals. Interestingly, we find that the usual hierarchy among the vector-like quarks is not generic, hence ameliorating the tuning issue. We also find that lowering the hierarchy of scales in the 5D picture allows for heavier top partners, while keeping the mass of the Higgs boson at its observed value. In the 4D dual this corresponds to increasing the number of colours N. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM5 with a small hierarchy of scales may not in ten...
Unbalanced Holographic Superconductors and Spintronics
Bigazzi, Francesco; Musso, Daniele; Fokeeva, Natalia Pinzani; Seminara, Domenico
2011-01-01
We present a minimal holographic model for s-wave superconductivity with unbalanced Fermi mixtures, in 2+1 dimensions at strong coupling. The breaking of a U(1)_A "charge" symmetry is driven by a non-trivial profile for a charged scalar field in a charged asymptotically AdS_4 black hole. The chemical potential imbalance is implemented by turning on the temporal component of a U(1)_B "spin" field under which the scalar field is uncharged. We study the phase diagram of the model and comment on the eventual (non) occurrence of LOFF-like inhomogeneous superconducting phases. Moreover, we study "charge" and "spin" transport, implementing a holographic realization (and a generalization thereof to superconducting setups) of Mott's two-current model which provides the theoretical basis of modern spintronics. Finally we comment on possible string or M-theory embeddings of our model and its higher dimensional generalizations, within consistent Kaluza-Klein truncations and brane-anti brane setups.
Bit Threads and Holographic Entanglement
Freedman, Michael; Headrick, Matthew
2016-11-01
The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.
A Practical Approach to the Hamilton-Jacobi Formulation of Holographic Renormalization
Elvang, Henriette
2016-01-01
We revisit the subject of holographic renormalization for asymptotically AdS spacetimes. For many applications of holography, one has to handle the divergences associated with the on-shell gravitational action. The brute force approach uses the Fefferman-Graham (FG) expansion near the AdS boundary to identify the divergences, but subsequent reversal of the expansion is needed to construct the infinite counterterms. While in principle straightforward, the method is cumbersome and application/reversal of FG is formally unsatisfactory. Various authors have proposed an alternative method based on the Hamilton-Jacobi equation. However, this approach may appear to be abstract, difficult to implement, and in some cases limited in applicability. In this paper, we clarify the Hamilton-Jacobi formulation of holographic renormalization and present a simple algorithm for its implementation to extract cleanly the infinite counterterms. While the derivation of the method relies on the Hamiltonian formulation of general rel...
Randall-Sundrum vs. Holographic Braneworld
Bilic, Neven
2016-01-01
A mapping between two braneworld cosmologies -- Randall-Sundrum and holographic -- is explicitly constructed. The cosmologies are governed by the appropriate modified Friedman equations. A relationship between the corresponding Hubble rates is established.
G-corrected holographic dark energy model
Malekjani, M
2013-01-01
Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant,$G$, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of $G$, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of $G$. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of $G$- corrected deceleration parameter for holographic dark energy model and show that the dependency of $G$ on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for $G$- corrected holographic model and show that this model has a shorter distance from the observational point in $s-r$ plane compare with original holographic dark energy model.
Hybrid holographic non-destructive test system
Kurtz, R. L. (Inventor)
1978-01-01
An automatic hybrid holographic non-destructive testing (HNDT) method and system capable of detecting flaws or debonds contained within certain materials are described. This system incorporates the techniques of optical holography, acoustical/optical holography and holographic correlation in determining the structural integrity of a test object. An automatic processing system including a detector and automatic data processor is used in conjunction with the three holographic techniques for correlating and interpreting the information supplied by the non-destructive systems. The automatic system also includes a sensor which directly translates an optical data format produced by the holographic techniques into electrical signals and then transmits this information to a digital computer for indicating the structural properties of the test object. The computer interprets the data gathered and determines whether further testing is necessary as well as the format of this new testing procedure.
Some applications of holographic interferometry in biomechanics
Ebbeni, Jean P. L.
1992-03-01
Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.
Holographic tachyon model of dark energy
Setare, M.R.
2007-01-01
In this paper we consider a correspondence between the holographic dark energy density and tachyon energy density in FRW universe. Then we reconstruct the potential and the dynamics of the tachyon field which describe tachyon cosmology.
Strongly interacting matter from holographic QCD model
Chen, Yidian; Huang, Mei
2016-01-01
We introduce the 5-dimension dynamical holographic QCD model, which is constructed in the graviton-dilaton-scalar framework with the dilaton background field $\\Phi$ and the scalar field $X$ responsible for the gluodynamics and chiral dynamics, respectively. We review our results on the hadron spectra including the glueball and light meson spectra, QCD phase transitions and transport properties in the framework of the dynamical holographic QCD model.
Soft wall model for a holographic superconductor
Afonin, S.S.; Pusenkov, I.V. [Saint Petersburg State University, St.Petersburg (Russian Federation)
2016-06-15
We consider the soft wall holographic approach for description of the high-T{sub c} superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological and does not describe the superconducting phase transition. On the other hand, technically it is simpler and has more freedom for fitting the conductivity properties of the real high-T{sub c} materials in the superconducting phase. Some examples of emerging models are analyzed. (orig.)
Soft wall model for a holographic superconductor
Afonin, S S
2015-01-01
We apply the soft wall holographic model from hadron physics to a description of the high-$T_c$ superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological. On the other hand, it is much simpler and has more freedom for fitting the conductivity properties of the real high-$T_c$ materials. We demonstrate some examples of emerging models and discuss a possible origin of the approach.
Image Resolution of a Holographic System
1981-07-01
transfer function and linear systems theory to optical systems. This has also been applied to holographic image analysis (Refs. l I and 12). The...view point, the linear systems theory is applied in correlating the intensity distribution of a known point or line radiation source with the intensity...function of a holographic system, (2) a discussion of linear systems theory to allow a thorough description of a method for obtaining the line
Holographic Combiners for Head-Up Displays
1977-10-01
AFAL-TR-77 -110 S HOLOGRAPHIC COMBINERS FOR HEAD-UP DISPLAYS S Radar and Optics Division Environmental Research Institute of Michigan P.O. Box 8618...to 200. SECURITY CLASSIFICATION OF THIS PAGE(RWihen Data Entered) FOREWORD This report was prepared by the Radar and Optics Division of the...with fringes parallel to the surface......31 Figure 13. Raytrace through the F-4 HUD with a holographic combiner
Tunability of Nonuniform Reflection Holographic Filter
Shanhong You(游善红); Xinwan Li(李新碗); Jianhong Wu(吴建宏); Zongmin Yin(殷宗敏); Minxue Tang(唐敏学)
2003-01-01
The tunability of nonuniform reflection holographic filter is investigated theoretically and experimentally. It is shown that the reflection holographic filter has not only high optical density and narrow bandwidth, but also good tunability. The coupled wave theoretical model for uniform medium is compared with the model for nonuniform medium. It is identified that the coincidence of the theoretical results of the nonuniform model with the experimental results are better than that of the uniform model.
Holographic quenches and anomalous transport
Ammon, Martin; Jimenez-Alba, Amadeo; Macedo, Rodrigo P; Melgar, Luis
2016-01-01
We study the response of the chiral magnetic effect due to continuous quenches induced by time dependent electric fields within holography. Concretely, we consider a holographic model with dual chiral anomaly and compute the electric current parallel to a constant, homogeneous magnetic field and a time dependent electric field in the probe approximation. We explicitly solve the PDEs by means of pseudospectral methods in spatial and time directions and study the transition to an universal "fast" quench response. Moreover, we compute the amplitudes, i.e.,~residues of the quasi normal modes, by solving the (ODE) Laplace transformed equations. We investigate the possibility of considering the asymptotic growth rate of the amplitudes as a well defined notion of initial time scale for linearized systems. Finally, we highlight the existence of Landau level resonances in the electrical conductivity parallel to a magnetic field at finite frequency and show explicitly that these only appear in presence of the anomaly. ...
Defect CFTs and holographic multiverse
Fiol, Bartomeu, E-mail: bfiol@ub.edu [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain)
2010-07-01
We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS{sub 4} × S{sup 7}, and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory.
Excited Baryons in Holographic QCD
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-11-08
The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.
MOND cosmology from holographic principle
Zhang, Hongsheng
2011-01-01
We derive the MOND cosmology which is uniquely corresponding to the original MOND in galaxies via holographic approach of gravity. It inherits the key merit of MOND, that is, it reduces the byronic matter and mysterious non-byronic dark matter (dark matter for short) in the standard cosmology into byronic matter only. For the first time we derive the critical parameter in MOND, i.e., the transition acceleration $a_c$ on cosmological scale. We thus solve the long-standing coincidence problem $a_c\\sim cH_{0}$. More interestingly, a term like age-graphic dark energy emerges naturally. In the frame of this MOND cosmology, we only need byronic matter to describe both dark matter and dark energy in standard cosmology.
Holographic Renormalization in Dense Medium
Chanyong Park
2014-01-01
describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space.
Soft Pomeron in Holographic QCD
Ballon-Bayona, Alfonso; Costa, Miguel S; Djurić, Marko
2016-01-01
We study the graviton Regge trajectory in Holographic QCD as a model for high energy scattering processes dominated by soft pomeron exchange. This is done by considering spin J fields from the closed string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the scattering domain of negative Maldelstam variable t. The model leads to approximately linear Regge trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV$^{-2}$ for the slope of the soft pomeron. The intercept of the secondary pomeron trajectory is in the same region of the subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be taken into account.
On Effective Holographic Mott Insulators
Baggioli, Matteo
2016-01-01
We present a class of holographic models that behave effectively as prototypes of Mott insulators, materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers), which appears as a sharp manifestation of `traffic-jam'-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the amount of disorder in a specific way. These models imply a c...
Holographic Cosmology from BIonic Solutions
Sepehri, Alireza; Setare, Mohammad Reza; Ali, Ahmed Farag
2015-01-01
In this paper, we will use a BIonic solution for analysing the holographic cosmology. A BIonic solution is a configuration of a D-brane and an anti-D-brane connected by a wormhole. A BIonic configuration can form due to a transition of fundamental black strings. After the BIon has formed, the wormhole in the BIon will act act as a channel for the energy to flow into the D3-brane. This will increase the degrees of freedom of the D3-brane causing inflation. The inflation will end when the wormhole gets annihilated. However, as the distance between the D3-brane and the anti-D3-brane reduces, tachyonic states get created. These tachyonic states will lead to the formation of a new wormhole. This new wormhole will again increasing the degrees of freedom on the D3-brane causing late time acceleration.
Holographic Software for Quantum Networks
Jaffe, Arthur; Wozniakowski, Alex
2016-01-01
We introduce diagrammatic protocols and holographic software for quantum information. We give a dictionary to translate between diagrammatic protocols and the usual algebraic protocols. In particular we describe the intuitive diagrammatic protocol for teleportation. We introduce the string Fourier transform $\\mathfrak{F}_{s}$ in quantum information, which gives a topological quantum computer. We explain why the string Fourier transform maps the zero particle state to the multiple-qudit resource state, which maximizes the entanglement entropy. We give a protocol to construct this $n$-qudit resource state $|Max \\rangle$, which uses minimal cost. We study Pauli $X,Y,Z$ matrices, and their relation with diagrammatic protocols. This work provides bridges between the new theory of planar para algebras and quantum information, especially in questions involving communication in quantum networks.
Holographic memory module with ultra-high capacity and throughput
Vladimir A. Markov, Ph.D.
2000-06-04
High capacity, high transfer rate, random access memory systems are needed to archive and distribute the tremendous volume of digital information being generated, for example, the human genome mapping and online libraries. The development of multi-gigabit per second networks underscores the need for next-generation archival memory systems. During Phase I we conducted the theoretical analysis and accomplished experimental tests that validated the key aspects of the ultra-high density holographic data storage module with high transfer rate. We also inspected the secure nature of the encoding method and estimated the performance of full-scale system. Two basic architectures were considered, allowing for reversible compact solid-state configuration with limited capacity, and very large capacity write once read many memory system.
Universality of Holographic Phase Transitions and Holographic Quantum Liquids
Benincasa, Paolo
2009-01-01
We explore the phase structure for defect theories in full generality using the gauge/gravity correspondence. On the gravity side, the systems are constructed by introducing M (probe) D(p+4-2k)-branes in a background generated by N Dp-branes to obtain a codimension-k intersection. The dual gauge theory is a U(N) Supersymmetric Yang-Mills theory on a (1+p-k)-dimensional defect with both adjoint and fundamental degrees of freedom. We focus on the phase structure in the chemical potential versus temperature plane. We observe the existence of two universality classes for holographic gauge theories, which are identified by the order of the phase transition in the interior of the chemical potential/temperature plane. Specifically, all the sensible systems with no defect show a third order phase transition. Gauge theories on a defect with (p-1)-spatial directions are instead characterised by a second order phase transition. One can therefore state that the order of this phase transition is intimately related to the ...
Associative data search in phase-encoded volume holographic storage systems
Berger, G.; Dietz, M.; Brauckmann, N.; Denz, C.
2008-08-01
We present a technique that enables true associative data search in phase-encoded volume holographic storage systems. The technique overcomes crucial shortcomings related to the only two methods proposed for associative searches in phase-encoded systems so far. An additional interferometric readout during content addressing is utilized to ascertain the cross-correlations between an input information and all data pages that are recorded by superposition in one location of the storage media. We present experimental investigations and thoroughly discuss the reliability of the technique. Under realistic conditions the inevitable normalization procedure, used to determine absolute correlation values, as well as the probability of small correlation values crucially affect the capabilities of associative search in phase-encoded holographic storage systems.
Berberova, N.; Daskalova, D.; Strijkova, V.; Kostadinova, D.; Nazarova, D.; Nedelchev, L.; Stoykova, E.; Marinova, V.; Chi, C. H.; Lin, S. H.
2017-02-01
Recently, a birefringence enhancement effect was observed in azopolymers doped with various nanoparticles. The paper presents comparison between the parameters of polarization holographic gratings recorded in a pure azopolymer PAZO (Poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]) and in a hybrid PAZO-based organic/inorganic material with incorporated ZnO nanoparticles of size less than 50 nm. Laser emitting at 491 nm is used for the holographic recording. Along with the anisotropic grating in the volume of the media, surface relief is also formed. Gratings with different spatial frequencies are obtained by varying the recording angle. The time dependence of the diffraction efficiency is probed at 635 nm and the height of the relief gratings is determined by AFM. Our results indicate that both the diffraction efficiency and the height of the surface relief for the hybrid samples are enhanced with respect to the pure azopolymer films.
Ott, Daniel B; Divliansky, Ivan B; Segall, Marc A; Glebov, Leonid B
2014-02-20
Volume Bragg gratings serve an important role in laser development as devices that are able to manipulate both the wavelength and angular spectrum of light. A common method for producing gratings is holographic recording of a two collimated beam interference pattern in a photosensitive material. This process requires stability of the recording system at a level of a fraction of the recording wavelength. A new method for measuring and stabilizing the phase of the recording beams is presented that is extremely flexible and simple to integrate into an existing holographic recording setup and independent of the type of recording media. It is shown that the presented method increases visibility of an interference pattern and for photo-thermo-refractive glass enables enhancement of the spatial refractive index modulation. The use of this technique allows for longer recording times that can lead to the use of expanded recording beams for large aperture gratings.
N.S. Mazhari
2017-03-01
Full Text Available The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.
Mazhari, N S; Bahamonde, Sebastian; Faizal, Mir; Myrzakulov, Ratbay
2016-01-01
The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution and a solution with cylindrically symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not any such dependence.
Rewritable three-dimensional holographic data storage via optical forces
Yetisen, Ali K.; Montelongo, Yunuen; Butt, Haider
2016-08-01
The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurable slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.
Rewritable three-dimensional holographic data storage via optical forces
Yetisen, Ali K., E-mail: ayetisen@mgh.harvard.edu [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139 (United States); Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Montelongo, Yunuen [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Butt, Haider [Nanotechnology Laboratory, School of Engineering Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom)
2016-08-08
The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurable slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.
On effective holographic Mott insulators
Baggioli, Matteo; Pujolàs, Oriol
2016-12-01
We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of `traffic-jam'-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.
Holographic Entropy and Calabi's Diastasis
D'Hoker, Eric
2014-01-01
The entanglement entropy for interfaces and junctions of two-dimensional CFTs is evaluated on holographically dual half-BPS solutions to six-dimensional Type 4b supergravity with m anti-symmetric tensor supermultiplets. It is shown that the moduli space for an N-junction solution projects to N points in the Kaehler manifold SO(2,m)/( SO(2) x SO(m)). For N=2 the interface entropy is expressed in terms of the central charge and Calabi's diastasis function on SO(2,m)/(SO(2) x SO(m)), thereby lending support from holography to a proposal of Bachas, Brunner, Douglas, and Rastelli. For N=3, the entanglement entropy for a 3-junction decomposes into a sum of diastasis functions between pairs, weighed by combinations of the three central charges, provided the flux charges are all parallel to one another or, more generally, provided the space of flux charges is orthogonal to the space of unattracted scalars. Under similar assumptions for N>3, the entanglement entropy for the N-junction solves a variational problem whos...
A Holographic Quantum Hall Ferromagnet
Kristjansen, C; Semenoff, G W
2013-01-01
A detailed numerical study of a recent proposal for exotic states of the D3-probe D5 brane system with charge density and an external magnetic field is presented. The state has a large number of coincident D5 branes blowing up to a D7 brane in the presence of the worldvolume electric and magnetic fields which are necessary to construct the holographic state. Numerical solutions have shown that these states can compete with the the previously known chiral symmetry breaking and maximally symmetric phases of the D3-D5 system. Moreover, at integer filling fractions, they are incompressible with integer quantized Hall conductivities. In the dual superconformal defect field theory, these solutions correspond to states which break the chiral and global flavor symmetries spontaneously. The region of the temperature-density plane where the D7 brane has lower energy than the other known D5 brane solutions is identified. A hypothesis for the structure of states with filling fraction and Hall conductivity greater than on...
Holographic confinement in inhomogeneous backgrounds
Marolf, Donald; Wien, Jason
2016-08-01
As noted by Witten, compactifying a d-dimensional holographic CFT on an S 1 gives a class of ( d - 1)-dimensional confining theories with gravity duals. The proto-typical bulk solution dual to the ground state is a double Wick rotation of the AdS d+1 Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the S 1, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for 3 ≤ d ≤ 8 using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for d ≤ 6 but repelled by gradients for d ≥ 7, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attracted to regions where the eigenvalues of the Hessian are large and positive in directions orthogonal to the tube, and iv) for d > 3, inhomogeneities act to raise the total energy of the confining vacuum above its zeroth order value.
Holographic confinement in inhomogenous backgrounds
Marolf, Donald
2016-01-01
As noted by Witten, compactifying a $d$-dimensional holographic CFT on an $S^1$ gives a class of $(d-1)$-dimensional confining theories with gravity duals. The prototypical bulk solution dual to the ground state is a double Wick rotation of the AdS$_{d+1}$ Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the $S^1$, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for $3 \\le d \\le 8$ using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for $d \\le 6$ but repelled by gradients for $d \\ge 7$, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attract...
Holographic quenches and anomalous transport
Ammon, Martin; Grieninger, Sebastian; Jimenez-Alba, Amadeo; Macedo, Rodrigo P.; Melgar, Luis
2016-09-01
We study the response of the chiral magnetic effect due to continuous quenches induced by time dependent electric fields within holography. Concretely, we consider a holographic model with dual chiral anomaly and compute the electric current parallel to a constant, homogeneous magnetic field and a time dependent electric field in the probe approximation. We explicitly solve the PDEs by means of pseudospectral methods in spatial and time directions and study the transition to an universal "fast" quench response. Moreover, we compute the amplitudes, i.e., residues of the quasi normal modes, by solving the (ODE) Laplace transformed equations. We investigate the possibility of considering the asymptotic growth rate of the amplitudes as a well defined notion of initial time scale for linearized systems. Finally, we highlight the existence of Landau level resonances in the electrical conductivity parallel to a magnetic field at finite frequency and show explicitly that these only appear in presence of the anomaly. We show that the existence of these resonances induces, among others, a long-lived AC electric current once the electric field is switched off.
Linearity of Holographic Entanglement Entropy
Almheiri, Ahmed; Swingle, Brian
2016-01-01
We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certain such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of entropy operators in genera...
Theta dependence in Holographic QCD
Bartolini, Lorenzo; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea
2016-01-01
We study the effects of the CP-breaking topological $\\theta$-term in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f$ degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the $N_f=2$ case, we consider the baryonic sector and determine, to leading order in the small $\\theta$ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive ${\\cal O}(\\theta)$ corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating p...
Towards Unquenched Holographic Magnetic Catalysis
Filev, Veselin G
2011-01-01
We propose a string dual to the SU(Nc) N=4 SYM coupled to Nf massless fundamental flavors in an external magnetic field. The flavors are introduced by homogeneously smeared Nf D7-branes and the external magnetic field via a non-trivial Kalb-Rammond B-field. Our solution is perturbative in a parameter that counts the number of internal flavor loops. In the limit of vanishing B-field the background reduces to the supersymmetric one obtained in hep-th/0612118. We introduce an additional probe D7--brane and in the supersymmetric limit of vanishing B-field perform a holographic renormalization of its "on-shell" action. We consider also non-supersymmetric probes with fixed worldvolume gauge field corresponding to a magnetic field coupled only to the fundamental fields of the probe brane. We study the influence of the backreacted flavors on the effect of dynamical mass generation. Qualitatively the physical picture remains unchanged. In the next step we consider the case when the magnetic field couples to both the b...
Collapse and Revival in Holographic Quenches
da Silva, Emilia; Mas, Javier; Serantes, Alexandre
2014-01-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
Phases of kinky holographic nuclear matter
Elliot-Ripley, Matthew; Zamaklar, Marija
2016-01-01
Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the seq...
Holographic duality in condensed matter physics
Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad
2015-01-01
A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...
Holographic Butterfly Effect at Quantum Critical Points
Ling, Yi; Wu, Jian-Pin
2016-01-01
When the Lyapunov exponent $\\lambda_L$ in a quantum chaotic system saturates the bound $\\lambda_L\\leqslant 2\\pi k_BT$, it is proposed that this system has a holographic dual described by a gravity theory. In particular, the butterfly effect as a prominent phenomenon of chaos can ubiquitously exist in a black hole system characterized by a shockwave solution near the horizon. In this letter we propose that the butterfly velocity $v_B$ can be used to diagnose quantum phase transition (QPT) in holographic theories. We provide evidences for this proposal with two holographic models exhibiting metal-insulator transitions (MIT), in which the second derivative of $v_B$ with respect to system parameters characterizes quantum critical points (QCP) with local extremes. We also point out that this proposal can be tested by experiments in the light of recent progress on the measurement of out-of-time-order correlation function (OTOC).
Collapse and revival in holographic quenches
da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2015-04-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
The holographic Weyl semi-metal
Karl Landsteiner
2016-02-01
Full Text Available We present a holographic model of a Weyl semi-metal. We show the evidences that upon varying a mass parameter the model undergoes a sharp crossover at small temperature from a topologically non-trivial state to a trivial one. The order parameter is the anomalous Hall effect (AHE and we find that it is very strongly suppressed above a critical value of the mass parameter. This can be taken as a hint for an underlying topological quantum phase transition. We give an interpretation of the results in terms of a holographic RG flow and compare to a weakly coupled field theoretical model. Since there are no fermionic quasiparticle excitations in the strongly coupled holographic model the presence of an anomalous Hall effect cannot be bound to notions of topology in momentum spaces.
Fidelity Susceptibility as Holographic PV criticality
Momeni, Davood; Myrzakulov, Ratbay
2016-01-01
Motivated by the fact that the quantum entanglement entropy is dual to an area in AdS, quantities dual to a volume in the AdS have also been recently proposed. These include the holographic complexity and fidelity susceptibility of a quantum system. Even though both of them are dual to an volume in the bulk, there are some interesting difference between them. In this letter, we will explicitly compare them for an $ AdS _4$ solution, and clarify the main differences between them from thermodynamic point of the view. We will also obtain the correct and appropriate holographic dual of the thermodynamic volume of AdS blackhole, and demonstrate that to explain therodynamic in extended phase PV picture, from the AdS/CFT point of view,fidelity susceptibility is the preferred quantity in comparison to holographic complexity.
The holographic Weyl semi-metal
Landsteiner, Karl, E-mail: karl.landsteiner@csic.es; Liu, Yan, E-mail: yan.liu@csic.es
2016-02-10
We present a holographic model of a Weyl semi-metal. We show the evidences that upon varying a mass parameter the model undergoes a sharp crossover at small temperature from a topologically non-trivial state to a trivial one. The order parameter is the anomalous Hall effect (AHE) and we find that it is very strongly suppressed above a critical value of the mass parameter. This can be taken as a hint for an underlying topological quantum phase transition. We give an interpretation of the results in terms of a holographic RG flow and compare to a weakly coupled field theoretical model. Since there are no fermionic quasiparticle excitations in the strongly coupled holographic model the presence of an anomalous Hall effect cannot be bound to notions of topology in momentum spaces.
Holographic dark energy in the DGP model
Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Avelino, Arturo [Universidad de Guanajuato, Departamento de Fisica, DCI, Codigo Postal 37150, Leon, Guanajuato (Mexico)
2012-09-15
The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: {epsilon}={+-}1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)
Holographic bulk viscosity: GPR vs EO
Buchel, Alex; Kiritsis, Elias
2011-01-01
Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.
A holographic model for black hole complementarity
Lowe, David A
2016-01-01
In the version of black hole complementarity advocated by the authors, interior infalling degrees of freedom evolve according to the usual semiclassical effective field theory, generating the black hole interior via propagation along geodesics. Meanwhile the exterior degrees of freedom evolve according to an exact description of holographic origin. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to apparent violations of quantum mechanics for an infaller. Trace distance is used to quantify the difference between these complementary time evolutions, and to define the decoherence time and the scrambling time. In a particular model for the holographic theory which exhibits fast scrambling, we show these timescales coincide. Moreover we propose a dictionary between the holographic theory and the bulk description where mean field evolution corresponds to the evolution with respect...
Anomalous transport and holographic momentum relaxation
Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl; Megías, Eugenio
2017-09-01
The chiral magnetic and vortical effects denote the generation of dissipationless currents due to magnetic fields or rotation. They can be studied in holographic models with Chern-Simons couplings dual to anomalies in field theory. We study a holographic model with translation symmetry breaking based on linear massless scalar field backgrounds. We compute the electric DC conductivity and find that it can vanish for certain values of the translation symmetry breaking couplings. Then we compute the chiral magnetic and chiral vortical conductivities. They are completely independent of the holographic disorder couplings and take the usual values in terms of chemical potential and temperature. To arrive at this result we suggest a new definition of energy-momentum tensor in presence of the gravitational Chern-Simons coupling.
Holographic RG flows with nematic IR phases
Cremonini, Sera; Rong, Junchen; Sun, Kai
2014-01-01
We construct zero-temperature geometries that interpolate between a Lifshitz fixed point in the UV and an IR phase that breaks spatial rotations but preserves translations. We work with a simple holographic model describing two massive gauge fields coupled to gravity and a neutral scalar. Our construction can be used to describe RG flows in non-relativistic, strongly coupled quantum systems with nematic order in the IR. In particular, when the dynamical critical exponent of the UV fixed point is z=2 and the IR scaling exponents are chosen appropriately, our model realizes holographically the scaling properties of the bosonic modes of the quadratic band crossing model.
Top-down Holographic Glueball Decay Rates
Brünner, F; Rebhan, A
2015-01-01
We present new results on the decay patterns of scalar and tensor glueballs in the top-down holographic Witten-Sakai-Sugimoto model. This model, which has only one free dimensionless parameter, gives semi-quantitative predictions for the vector meson spectrum, their decay widths, and also a gluon condensate in agreement with SVZ sum rules. The holographic predictions for scalar glueball decay rates are compared with experimental data for the widely discussed gluon candidates f0(1500) and f0(1710).
Digital holographic Michelson interferometer for nanometrology
Sevrygin, Alexander A.; Korotkov, V. I.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Yu.; Volkov, O. V.
2014-11-01
The paper considers the dynamic holographic interferometry schemes with amplification (multiplication) of holographic fringes and with correction for distortions, imposed by the interferometer scheme elements. The use of digital microscope and of the matrix light modulator with direct addressing provides the completely digital closed-loop performance of the overall system for real-time evaluation of nano-scale objects size. Considered schemes were verified in the laboratory experiment, using the Michelson micro-interferometer, equipped by the USB-microscope and digital holography stage, equipped by the Holoeye spatial light modulator.
Holographic corrections to meson scattering amplitudes
Armoni, Adi; Ireson, Edwin, E-mail: 746616@swansea.ac.uk
2017-06-15
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Holographic Corrections to Meson Scattering Amplitudes
Armoni, Adi
2016-01-01
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Order parameter fluctuations in the holographic superconductor
Plantz, N W M; Vandoren, S
2015-01-01
We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, the fully backreacted spectral functions of the order parameter in both the normal and the superconducting phase are computed. We also present a vector-like large-$N$ version of the Ginzburg-Landau model that accurately describes our long-wavelength results in both phases. The large-$N$ limit of the latter model explains why the Higgs mode and the second-sound mode are not present in the spectral functions. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC-BCS crossover.
Sangac interferometer on the holographic bragg grating
Tikhonov, E A
2015-01-01
The ring interferometer with zero optical path difference known as Sagnac one is offered with a diffraction splitting of the entering light beam. As the beamsplitter, a transmission holographic Bragg grating is used. Conditions of normal operation of this interferometer achieve under the equal intensity of beam copies and the adjustable phase shift between them in its two interferometer shoulders. These conditions are met with the holographic grating, which provides the phase shift 180^0 on the central Bragg wavelength. Experimental approbation of the modified interferometer validates the expected results.
Holographic Aspects of a Relativistic Nonconformal Theory
Chanyong Park
2013-01-01
Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.
On the Holographic Nature Of Rindler Energy
Halyo, Edi
2014-01-01
We show that the dimensionless Rindler energy of a black hole, $E_R$, is exactly the surface Hamiltonian obtained from the Einstein--Hilbert action evaluated on the horizon. Therefore, $E_R$ is given by a surface integral over the horizon and manifestly holographic. In the context of the AdS/CFT duality, Rindler energy corresponds, on the boundary, to a dimensionless energy given by the product of the AdS radius and the extensive part of the CFT energy. We find that, beyond General Relativity, $E_R$ is still holographic but not necessarily given by the surface Hamiltonian of the theory.
Riboflavin Sensitized Photopolymer Materials for Holographic Storage
ZHAI Feng-Xiao; WANG Ai-Rong; YIN Qiong; LIU Jun-Hui; HUANG Ming-Ju
2005-01-01
@@ Riboflavin is employed as the photosensitizer of a novel photopolymer material for holographic recording. This material has a broad absorption spectrum range (more than 200nm) due to the addition of this dye. The experimental results show that our material has high diffraction efficiency and large refractive index modulation.The maximum diffraction efficiency of the photopolymer is about 56%. The digital data pages are stored in this medium and the reconstructed data page has a good fidelity, with the bit-error-ratio of about 1.8 × 10-4. It is found that the photopolymer material is suitable for high-density volume holographic digital storage.
Holographic RG flows for gravitational couplings
Rachwal, L. [ICTP, Strada Costiera 11, 34014 Trieste (Italy); SISSA, via Bonomea 265, 34136 Trieste (Italy); Percacci, R. [SISSA, via Bonomea 265, 34136 Trieste (Italy)
2014-09-11
We present the first attempt to find the holographic interpretation of running of the Newton's constant in 4-dimensional quantum theory. We compute its scale-dependence using functional renormalization group methods based on a Wilsonian momentum cutoff. We show the details of the corresponding holographic RG flow in 5-dimensional spacetime with minimally coupled scalar field in the bulk. In this domain wall setup the scalar potential is found. Solutions of this theory describe RG flows of gravitational coupling with the IR threshold phenomena fully taken into account. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Holographic geometries for condensed matter applications
Keranen, V
2013-01-01
Holographic modeling of strongly correlated many-body systems motivates the study of novel spacetime geometries where the scaling behavior of quantum critical systems is encoded into spacetime symmetries. Einstein-Dilaton-Maxwell theory has planar black brane solutions that exhibit Lifshitz scaling and in some cases hyperscaling violation. Entanglement entropy and Wilson loops in the dual field theory are studied by inserting simple geometric probes involving minimal surfaces into the black brane geometry. Coupling to background matter fields leads to interesting low-energy behavior in holographic models, such as U(1) symmetry breaking and emergent Lifshitz scaling.
Holographic non-Fermi-liquid fixed points.
Faulkner, Tom; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David
2011-04-28
Techniques arising from string theory can be used to study assemblies of strongly interacting fermions. Via this 'holographic duality', various strongly coupled many-body systems are solved using an auxiliary theory of gravity. Simple holographic realizations of finite density exhibit single-particle spectral functions with sharp Fermi surfaces, of a form distinct from those of the Landau theory. The self-energy is given by a correlation function in an infrared (IR) fixed-point theory that is represented by a two-dimensional anti de Sitter space (AdS(2)) region in the dual gravitational description. Here, we describe in detail the gravity calculation of this IR correlation function.
Real-time wideband holographic surveillance system
Sheen, David M. (1917 Hood, Richland, WA 99352); Collins, H. Dale (1751 Duluth, Richland, WA 99352); Hall, Thomas E. (8301 W. Entiat Pl., Kennewick, WA 99336); McMakin, Douglas L. (2173 Shasta Ave., Richland, WA 99352); Gribble, R. Parks (1215 Cottonwood Dr., Richland, WA 99352); Severtsen, Ronald H. (1803 Birch Ave., Richland, WA 99352); Prince, James M. (3029 W. 2nd Ave., Apt. F95, Kennewick, WA 99336); Reid, Larry D. (Rt. 1, Box 1291B, Benton City, WA 99320)
1996-01-01
A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm.
Kulikova, Olga
2016-01-01
This thesis was focused on the analysis of the concept of reverse logistics and actual reverse processes which are implemented in mining industry and finding solutions for the optimization of reverse logistics in this sphere. The objective of this paper was the assessment of the development of reverse logistics in mining industry on the example of potash production. The theoretical part was based on reverse logistics and mining waste related literature and provided foundations for further...
Jet quenching and holographic thermalization with a chemical potential
Caceres, Elena [Facultad de Ciencias, Universidad de Colima,Bernal Diaz del Castillo 340, Colima (Mexico); Theory Group, Department of Physics,University of Texas at Austin, Austin, TX 78712 (United States); Kundu, Arnab [Theory Group, Department of Physics,University of Texas at Austin, Austin, TX 78712 (United States); Yang, Di-Lun [Department of Physics, Duke University,Durham, North Carolina 27708 (United States)
2014-03-17
We investigate jet quenching of virtual gluons and thermalization of a strongly-coupled plasma with a non-zero chemical potential via the gauge/gravity duality. By tracking a charged shell falling in an asymptotic AdS{sub d+1} background for d=3 and d=4, which is characterized by the AdS-Reissner-Nordström-Vaidya (AdS-RN-Vaidya) geometry, we extract a thermalization time of the medium with a non-zero chemical potential. In addition, we study the falling string as the holographic dual of a virtual gluon in the AdS-RN-Vaidya spacetime. The stopping distance of the massless particle representing the tip of the falling string in such a spacetime could reveal the jet quenching of an energetic light probe traversing the medium in the presence of a chemical potential. We find that the stopping distance decreases when the chemical potential is increased in both AdS-RN and AdS-RN-Vaidya spacetimes, which correspond to the thermalized and thermalizing media respectively. Moreover, we find that the soft gluon with an energy comparable to the thermalization temperature and chemical potential in the medium travels further in the non-equilibrium plasma. The thermalization time obtained here by tracking a falling charged shell does not exhibit, generically, the same qualitative features as the one obtained studying non-local observables. This indicates that — holographically — the definition of thermalization time is observer dependent and there is no unambiguos definition.
Full-color holographic 3D printer
Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio
2003-05-01
A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.
Observational signatures of holographic models of inflation
P. McFadden; K. Skenderis
2009-01-01
We discuss the phenomenology of recently proposed holographic models of inflation, in which the very early universe is non-geometric and is described by a dual three-dimensional quantum field theory (QFT). We analyze models determined by a specific class of dual QFTs and show that they have the foll
A holographic model for black hole complementarity
Lowe, David A. [Physics Department, Brown University,Providence, RI 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107, Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics,Department of Physics, Stockholm University,AlbaNova University Centre, 10691 Stockholm (Sweden)
2016-12-07
We explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holographically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulk effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are complementary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.
Aberration coefficients of curved holographic optical elements
Verboven, P. E.; Lagasse, P. E.
1986-11-01
A general formula is derived that gives all aberration terms of holographic optical elements on substrates of any shape. The spherical substrate shape and the planar substrate shape are treated as important special cases. A numerical example illustrates the need of including higher-order aberrations.
Testing and inspecting lens by holographic means
Hildebrand, Bernard P.
1976-01-01
Processes for the accurate, rapid and inexpensive testing and inspecting of oncave and convex lens surfaces through holographic means requiring no beamsplitters, mirrors or overpower optics, and wherein a hologram formed in accordance with one aspect of the invention contains the entire interferometer and serves as both a master and illuminating source for both concave and said convex surfaces to be so tested.
Holographic QCD for H-dibaryon (uuddss)
Suganuma, Hideo
2016-01-01
The H-dibaryon (uuddss) is studied in holographic QCD for the first time. In holographic QCD, four-dimensional QCD, i.e., SU($N_c$) gauge theory with chiral quarks, can be formulated with $S^1$-compactified D4/D8/$\\overline{\\rm D8}$-brane system. In holographic QCD with large $N_c$, all the baryons appear as topological chiral solitons of Nambu-Goldstone bosons and (axial) vector mesons, and the H-dibaryon can be described as an SO(3)-type topological soliton with $B=2$. We derive the low-energy effective theory to describe the H-dibaryon in holographic QCD. The H-dibaryon mass is found to be twice of the $B=1$ hedgehog-baryon mass, $M_{\\rm H} \\simeq 2.00 M_{B=1}^{\\rm HH}$, and is estimated about 1.7GeV, which is smaller than mass of two nucleons (flavor-octet baryons), in the chiral limit.
A holographic model for black hole complementarity
Lowe, David A.; Thorlacius, Larus
2016-12-01
We explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holo-graphically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulk effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are comple-mentary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.
Propagation phasor approach for holographic image reconstruction
Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan
2016-03-01
To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears.
Photorefractive phase-conjugation digital holographic microscopy
Chang, Chi-Ching; Chan, Huang-Tian; Shiu, Min-Tzung; Chew, Yang-Kun
2015-05-01
In this work, we propose an innovative method for digital holographic microscopy named as photorefractive phaseconjugation digital holographic microscopy (PPCDHM) technique based on the phase conjugation dynamic holographic process in photorefractive BaTiO3 crystal and the retrieval of phase and amplitude of the object wave were performed by a reflection-type digital holographic method. Both amplitude and phase reconstruction benefit from the prior amplification by self-pumped conjugation (SPPC) as they have an increased SNR. The interest of the PPCDHM is great, because its hologram is created by interfered the amplified phase-conjugate wave field generated from a photorefractive phase conjugator (PPC) correcting the phase aberration of the imaging system and the reference wave onto the digital CCD camera. Therefore, a precise three-dimensional description of the object with high SNR can be obtained digitally with only one hologram acquisition. The method requires the acquisition of a single hologram from which the phase distribution can be obtained simultaneously with distribution of intensity at the surface of the object.
Holographic corrections to the Veneziano amplitude
Armoni, Adi; Ireson, Edwin
2017-08-01
We propose a holographic computation of the 2 → 2 meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.
Holographic memories with encryption-selectable function
Su, Wei-Chia; Lee, Xuan-Hao
2006-03-01
Volume holographic storage has received increasing attention owing to its potential high storage capacity and access rate. In the meanwhile, encrypted holographic memory using random phase encoding technique is attractive for an optical community due to growing demand for protection of information. In this paper, encryption-selectable holographic storage algorithms in LiNbO 3 using angular multiplexing are proposed and demonstrated. Encryption-selectable holographic memory is an advance concept of security storage for content protection. It offers more flexibility to encrypt the data or not optionally during the recording processes. In our system design, the function of encryption and non-encryption storage is switched by a random phase pattern and a uniform phase pattern. Based on a 90-degree geometry, the input patterns including the encryption and non-encryption storage are stored via angular multiplexing with reference plane waves at different incident angles. Image is encrypted optionally by sliding the ground glass into one of the recording waves or removing it away in each exposure. The ground glass is a key for encryption. Besides, it is also an important key available for authorized user to decrypt the encrypted information.
Holographic Lovelock gravities and black holes
de Boer, J.; Kulaxizi, M.; Parnachev, A.
2010-01-01
We study holographic implications of Lovelock gravities in AdS spacetimes. For a generic Lovelock gravity in arbitrary spacetime dimensions we formulate the existence condition of asymptotically AdS black holes. We consider small fluctuations around these black holes and determine the constraint on
Pattern recognition with magnonic holographic memory device
Kozhevnikov, A.; Dudko, G.; Filimonov, Y. [Kotel' nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov Branch, Saratov 410019 (Russian Federation); Gertz, F.; Khitun, A. [Electrical Engineering Department, University of California - Riverside, Riverside, California 92521 (United States)
2015-04-06
In this work, we present experimental data demonstrating the possibility of using magnonic holographic devices for pattern recognition. The prototype eight-terminal device consists of a magnetic matrix with micro-antennas placed on the periphery of the matrix to excite and detect spin waves. The principle of operation is based on the effect of spin wave interference, which is similar to the operation of optical holographic devices. Input information is encoded in the phases of the spin waves generated on the edges of the magnonic matrix, while the output corresponds to the amplitude of the inductive voltage produced by the interfering spin waves on the other side of the matrix. The level of the output voltage depends on the combination of the input phases as well as on the internal structure of the magnonic matrix. Experimental data collected for several magnonic matrixes show the unique output signatures in which maxima and minima correspond to specific input phase patterns. Potentially, magnonic holographic devices may provide a higher storage density compare to optical counterparts due to a shorter wavelength and compatibility with conventional electronic devices. The challenges and shortcoming of the magnonic holographic devices are also discussed.
Monopole correlations in holographically flavored liquids
Iqbal, N.
2015-01-01
Many-body systems with a conserved U(1) current in (2+1) dimensions may be probed by weakly gauging this current and studying correlation functions of magnetic monopole operators in the resulting dynamical gauge theory. We study such monopole correlations in holographic liquids with fundamental flav
Heterodyne holographic microscopy of gold particles
Atlan, Michael; Desbiolles, Pierre; Absil, Emilie; Tessier, Gilles; Coppey-Moisan, Maité
2007-01-01
We report experimental results on heterodyne holographic microscopy of subwavelength-sized gold particles. The apparatus uses continuous green laser illumination of the metal beads in a total internal reflection configuration for dark-field operation. Detection of the scattered light at the illumination wavelength on a charge-coupled device array detector enables 3D localization of brownian particles in water
Progress in high-resolution x-ray holographic microscopy
Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.
1987-07-01
Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.
Hull, Jonathan F; Himeda, Yuichiro; Wang, Wan-Hui; Hashiguchi, Brian; Periana, Roy; Szalda, David J; Muckerman, James T; Fujita, Etsuko
2012-03-18
Green plants convert CO(2) to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO(2) and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO(2), formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong π-donor, and is rationalized by theoretical and experimental studies.
A Study of the H-dibaryon in Holographic QCD
Matsumoto, Kohei; Suganuma, Hideo
2016-01-01
We study the H-dibaryon (uuddss) in holographic QCD for the first time. Holographic QCD is derived from a QCD-equivalent D-brane system in the superstring theory via the gauge/gravity correspondence. In holographic QCD, all baryons appear as topological chiral solitons of Nambu-Goldstone bosons and (axial) vector mesons. In this framework, the H-dibaryon can be described as an SO(3)-type hedgehog state. In this paper, we present the formalism of the H-dibaryon in holographic QCD, and perform the calculation to investigate its properties in the chiral limit.
Diarylethene Materials for Rewritable Volume Holographic Data Storage
刘国栋; 何庆声; 丁德华; 邬敏贤; 金国藩; 蒲守智; 张复实; 刘学东; 袁鹏
2003-01-01
The photochromic diarylethene, 1,2-bis(2-methyl-5-(4-formyIphenyl)-thien-3-yl)perfluorocyclopentene ( 1 a) is studied and its applicable potential in rewritable volume holographic data storage is verified. Holographic recording films of 10-μm thickness have been fabricated. The refractive index modulation (△n = 1.15 × 10-3) between the open- and close-ring forms is detected to be large enough so that the films are suitable for the production of volume holographic storage. The experiments of angle multiplexing and rewriting holograms show that the materials are fit for volume holographic data storage.
The compact and inexpensive arrowhead setup for holographic interferometry
Ladera, Celso L; Donoso, Guillermo, E-mail: clladera@usb.v [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1086 (Venezuela, Bolivarian Republic of)
2011-07-15
Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that requires neither a collimator nor a beam-splitter, and whose layout is reminiscent of an arrowhead. We show that this inexpensive setup is a good alternative for the study and applications of scientific holography by measuring small displacements and deformations of a body. The arrowhead setup will be found particularly useful for holography and holographic interferometry experiments and projects in teaching laboratories.
HOMES - Holographic Optical Method for Exoplanet Spectroscopy Project
National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope designed for exoplanet discovery. Its double dispersion architecture employs a...
A Holographic Proof of R\\'enyi Entropic Inequalities
Nakaguchi, Yuki
2016-01-01
We prove R\\'enyi entropic inequalities in a holographic setup based on the recent proposal for the holographic formula of R\\'enyi entropies. Regarding the R\\'enyi parameter as an inverse temperature, we reformulate the entropies in analogy with statistical mechanics, which provides us a concise interpretation of the inequalities as the positivities of entropy, energy and heat capacity. This analogy also makes clear a thermodynamic structure in deriving the holographic formula. As a by-product of the proof we obtain a holographic formula to calculate the quantum fluctuation of the modular Hamiltonian. A few examples of the capacity of entanglement are examined in detail.
Pramanik, Rajib; Ghatak, Chiranjib; Rao, Vishal Govind; Sarkar, Souravi; Sarkar, Nilmoni
2011-05-19
In this work, we reported a detailed study of the solvation dynamics of coumarin-480 in [bmim][BF(4)]/BHDC/benzene reverse micelles (RMs) with varying [bmim][BF(4)]/BHDC molar ratio (R) 1.00, 1.25, 1.50, and also study the solvation dynamics at five different temperatures from 15 to 35 °C RMs at [bmim][BF(4)]/BHDC molar ratio 1.25 for the first time. The average solvation time constant becomes slightly faster with the increase in R values at a temperature 25 °C. The solvation dynamics of the RMs with R value 1.25 becomes faster with the increase in temperature. We have also investigated temperature-dependent solvation dynamics in neat [bmim][BF(4)]. The solvation dynamics in neat [bmim][BF(4)] has a substantial temperature effect but for the [bmim][BF(4)]/BHDC/benzene RMs the temperature effect on the solvation dynamics is not that significant. Time-resolved fluorescence anisotropy studies reveal a decrease in the rotational restriction on the probe with increasing temperature. Wobbling-in-cone analysis of the anisotropy data also supports this finding.
Quantitative phase imaging through scattering media
Kollárová, Vera; Colláková, Jana; Dostál, Zbynek; Slabý, Tomas; Veselý, Pavel; Chmelík, Radim
2015-03-01
Coherence-controlled holographic microscope (CCHM) is an off-axis holographic system. It enables observation of a sample and its quantitative phase imaging with coherent as well as with incoherent illumination. The spatial and temporal coherence can be modified and thus also the quality and type of the image information. The coherent illumination provides numerical refocusing in wide depth range similarly to a classic coherent-light digital holographic microscopy (HM). Incoherent-light HM is characterized by a high quality, coherence-noise-free imaging with up to twice higher resolution compared to coherent illumination. Owing to an independent, free of sample reference arm of the CCHM the low spatial light coherence induces coherence-gating effect. This makes possible to observe specimen also through scattering media. We have described theoretically and simulated numerically imaging of a two dimensional object through a scattering layer by CCHM using the linear systems theory. We have investigated both strongly and weakly scattering media characterized by different amount of ballistic and diffuse light. The influence of a scattering layer on the quality of a phase signal is discussed for both types of the scattering media. A strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with model samples, as well as real biologic objects particularly then by time-lapse observations of live cells reactions to substances producing optically turbid emulsion.
Biometric identification using holographic radar imaging techniques
McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlen P.
2007-04-01
Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first "biometric" application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.
Holographic Mutual Information for Singular Surfaces
Mozaffar, M Reza Mohammadi; Omidi, Farzad
2015-01-01
We study corner contributions to holographic mutual information for entangling regions composed of a set of disjoint sectors of a single infinite circle in three-dimensional conformal field theories. In spite of the UV divergence of holographic mutual information, it exhibits a first order phase transition. We show that tripartite information is also divergent for disjoint sectors, which is in contrast with the well-known feature of tripartite information being finite even when entangling regions share boundaries. We also verify the locality of corner effects by studying mutual information between regions separated by a sharp annular region. Possible extensions to higher dimensions and hyperscaling violating geometries is also considered for disjoint sectors.
Holographic Hall conductivities from dyonic backgrounds
Lindgren, Jonathan; Taliotis, Anastasios; Vanhoof, Joris
2015-01-01
We develop a general framework for computing the holographic 2-point functions and the corresponding conductivities in asymptotically locally AdS backgrounds with an electric charge density, a constant magentic field, and possibly non-trivial scalar profiles, for a broad class of Einstein-Maxwell-Axion-Dilaton theories, including certain Chern-Simons terms. Holographic renormalization is carried out for any theory in this class and the computation of the renormalized AC conductivities at zero spatial momentum is reduced to solving a single decoupled first order Riccati equation. Moreover, we develop a first order fake supergravity formulalism for dyonic renormalization group flows in four dimensions, allowing us to construct analytically infinite families of such backgrounds by specifying a superpotential at will. These RG flows interpolate between AdS$_4$ in the UV and a hyperscaling violating Lifshitz geometry in the IR with exponents $1
Holographic bound in covariant loop quantum gravity
Tamaki, Takashi
2016-01-01
We investigate puncture statistics based on the covariant area spectrum in loop quantum gravity. First, we consider Maxwell-Boltzmann statistics with a Gibbs factor for punctures. We establish formulae which relate physical quantities such as horizon area to the parameter characterizing holographic degrees of freedom. We also perform numerical calculations and obtain consistency with these formulae. These results tell us that the holographic bound is satisfied in the large area limit and correction term of the entropy-area law can be proportional to the logarithm of the horizon area. Second, we also consider Bose-Einstein statistics and show that the above formulae are also useful in this case. By applying the formulae, we can understand intrinsic features of Bose-Einstein condensate which corresponds to the case when the horizon area almost consists of punctures in the ground state. When this phenomena occurs, the area is approximately constant against the parameter characterizing the temperature. When this ...
Holographic entanglement entropy in the nonconformal medium
Park, Chanyong
2015-01-01
We investigate holographically the entanglement entropy of a nonconformal medium whose dual geometry is described by an Einstein-Maxwell-dilaton theory. Due to an additional conserved charge corresponding to the number operator in the dual field theory, its thermodynamics is governed by either a grand canonical or canonical ensemble. We calculate thermodynamic quantities of them by using the holographic renormalization. In addition, we study the entanglement entropy of a nonconformal medium. After defining the entanglement chemical potential analogous to the entanglement temperature, we find that the entanglement entropy of a small subsystem satisfies the relation resembling the first law of thermodynamics for the canonical ensemble. We further show that the entanglement chemical potential, unlike the entanglement temperature, is not universal.
Holographic free energy and thermodynamic geometry
Ghorai, Debabrata
2016-01-01
We analytically obtain the free energy and thermodynamic geometry of holographic superconductors in $2+1$-dimensions. The gravitational theory in the bulk dual to this $2+1$-dimensional strongly coupled theory lives in the $3+1$-dimensions and is that of a charged $AdS$ black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method.
Holographic Josephson Junction from Massive Gravity
Hu, Ya-Peng; Zeng, Hua-Bi; Zhang, Hai-Qing
2015-01-01
We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.
Cold holographic matter in the Higgs branch
Itsios, Georgios; Ramallo, Alfonso V
2015-01-01
We study collective excitations of cold (2+1)-dimensional fundamental matter living on a defect of the four-dimensional N=4 super Yang-Mills theory in the Higgs branch. This system is realized holographically as a D3-D5 brane intersection, in which the D5-brane is treated as a probe with a non-zero gauge flux across the internal part of its worldvolume. We study the holographic zero sound mode in the collisionless regime at low temperature and find a simple analytic result for its dispersion relation. We also find the diffusion constant of the system in the hydrodynamic regime at higher temperature. In both cases we study the dependence on the flux parameter which determines the amount of Higgs symmetry breaking. We also discuss the anyonization of this construction.
Reheating of the Universe as holographic thermalization
Kawai, Shinsuke; Nakayama, Yu
2016-08-01
Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.
Dynamics and observer dependence of holographic screens
Bousso, Raphael; Moosa, Mudassir
2017-02-01
We study the evolution of holographic screens, both generally and in explicit examples, including cosmology and gravitational collapse. A screen H consists of a one-parameter sequence of maximal surfaces called leaves. Its causal structure is nonrelativistic. Each leaf can store all of the quantum information on a corresponding null slice holographically at no more than one bit per Planck area. Therefore, we expect the screen geometry to reflect certain coarse-grained quantities in the quantum gravity theory. In a given spacetime, there are many different screens, which are naturally associated with different observers. We find that this ambiguity corresponds precisely to the free choice of a single function on H . We also consider the background-free construction of H , where the spacetime is not given. The evolution equations then constrain aspects of the full spacetime and the screen's embedding in it.
Holographic Theory of Gravity and Cosmology
Ng, Y Jack
2016-01-01
According to the holographic principle, the maximum amount of information stored in a region of space scales as the area of its two-dimensional surface, like a hologram. We show that the holographic principle can be understood heuristically as originated from quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant $\\Lambda$ of the observed magnitude, in agreement with the result obtained for the present and recent cosmic eras, by using unimodular gravity and causal-set theory. By generalizing the concept of entropic gravity, we find a critical acceleration parameter related to $\\Lambda$ in galactic dynamics, and we construct a phenomenological model of dark matter which we call "modified dark matter" (MDM). We provide successful observational tests of MDM at both the galactic and cluster scales. We also discuss the possibility that the quanta of both dark energy and dark matter obey the quantum Boltzmann statistics or infinite statistics as descri...
Note on Zero Temperature Holographic Superfluids
Guo, Minyong; Niu, Chao; Tian, Yu; Zhang, Hongbao
2016-01-01
In this note, we have addressed various issues on zero temperature holographic superfluids. First, inspired by our numerical evidence for the equality between the superfluid density and particle density, we provide an elegant analytic proof for this equality by a boost trick. Second, using not only the frequency domain analysis but also the time domain analysis from numerical relativity, we identify the hydrodynamic normal modes and calculate out the sound speed, which is shown to increase with the chemical potential and saturate to the value predicted by the conformal field theory in the large chemical potential limit. Third, the generic non-thermalization is demonstrated by the fully non-linear time evolution from a non-equilibrium state for our zero temperature holographic superfluid. Furthermore, a conserved Noether charge is proposed in support of this behavior.
Note on zero temperature holographic superfluids
Guo, Minyong; Lan, Shanquan; Niu, Chao; Tian, Yu; Zhang, Hongbao
2016-06-01
In this note, we have addressed various issues on zero temperature holographic superfluids. First, inspired by our numerical evidence for the equality between the superfluid density and particle density, we provide an elegant analytic proof for this equality by a boost trick. Second, using not only the frequency domain analysis but also the time domain analysis from numerical relativity, we identify the hydrodynamic normal modes and calculate out the sound speed, which is shown to increase with the chemical potential and saturate to the value predicted by the conformal field theory in the large chemical potential limit. Third, the generic non-thermalization is demonstrated by the fully nonlinear time evolution from a non-equilibrium state for our zero temperature holographic superfluid. Furthermore, a conserved Noether charge is proposed in support of this behavior.
Riccati equations for holographic 2-point functions
Papadimitriou, Ioannis
2013-01-01
Any second order linear ordinary differential equation can be transformed into a first order non-linear Riccati equation. We argue that the Riccati form of the linearized fluctuation equations that determine the holographic 2-point functions simplifies considerably the numerical computation of such 2-point functions and the corresponding transport coefficients, while it provides a neat criterion for the infrared regularity of the fluctuations. The Riccati form computes directly the response functions, thus eliminating the arbitrary source from the start. We demonstrate the use of the Riccati equation in this context by computing the holographic 2-point functions for the stress tensor and a scalar operator in a number of asymptotically anti de Sitter backgrounds of a bottom up scalar-gravity model. A recipe for numerical computations is provided and applied in some examples. Exact results are obtained in two confining geometries including geometries that belong in the class of IHQCD.
A Simple Holographic Model of Nonlinear Conductivity
Horowitz, Gary T; Santos, Jorge E
2013-01-01
We present a simple analytic gravitational solution which describes the holographic dual of a 2+1-dimensional conductor which goes beyond the usual linear response. In particular it includes Joule heating. We find that the nonlinear frequency-dependent conductivity is a constant. Surprisingly, the pressure remains isotropic. We also apply an electric field to a holographic insulator and show that there is a maximum electric field below which it can remain an insulator. Above this critical value, we argue that it becomes a conductor due to pair creation of charged particles. Finally, we study 1+1 and 3+1 dimensional conductors at the nonlinear level; here exact solutions are not available and a perturbative analysis shows that the current becomes time dependent, but in a way that is captured by a time-dependent effective temperature.
Reheating of the Universe as holographic thermalization
Shinsuke Kawai
2016-08-01
Full Text Available Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.
Reheating of the Universe as holographic thermalization
Kawai, Shinsuke, E-mail: shinsuke.kawai@gmail.com [Department of Physics, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Nakayama, Yu [California Institute of Technology, 452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, Kashiwa, Chiba 277-8583 (Japan)
2016-08-10
Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.
Lifshitz Scaling Effects on Holographic Superconductors
Lu, Jun-Wang; Qian, Peng; Zhao, Yue-Yue; Zhang, Xue
2014-01-01
Via numerical and analytical methods, the effects of the Lifshitz dynamical exponent $z$ on holographic superconductors are studied in some detail, including $s$ wave and $p$ wave models. Working in the probe limit, we find that the behaviors of holographic models indeed depend on concrete value of $z$. We obtain the condensation and conductivity in both Lifshitz black hole and soliton backgrounds with general $z$. For both $s$ wave and $p$ wave models in the black hole backgrounds, as $z$ increases, the phase transition becomes more difficult and the growth of conductivity is suppressed. For the Lifshitz soliton backgrounds, when $z$ increases ($z=1,~2,~3$), the critical chemical potential decreases in the $s$ wave cases but increases in the $p$ wave cases. For $p$ wave models in both Lifshitz black hole and soliton backgrounds, the anisotropy between the AC conductivity in different spatial directions is suppressed when $z$ increases. The analytical results uphold the numerical results.
Capability enhancement in compact digital holographic microscopy
Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Asundi, Anand
2015-03-01
A compact reflection digital holographic microscopy (DHM) system integrated with the light source and optical interferometer is developed for 3D topographic characterization and real-time dynamic inspection for Microelectromechanical systems (MEMS). Capability enhancement methods in lateral resolution, axial resolving range and large field of view for the compact DHM system are presented. To enhance the lateral resolution, the numerical aperture of a reflection DHM system is analyzed and optimum designed. To enhance the axial resolving range, dual wavelengths are used to extend the measuring range. To enable the large field of view, stitching of the measurement results is developed in the user-friendly software. Results from surfaces structures on silicon wafer, micro-optics on fused silica and dynamic inspection of MEMS structures demonstrate applications of this compact reflection digital holographic microscope for technical inspection in material science.
Holographic trace anomaly at finite temperature
Lee, Bum-Hoon; Nam, Siyoung; Park, Chanyong
2017-01-01
Using the holographic renormalization, we investigate the finite temperature and size effect to the energy-momentum tensor of the dual field theory and its renormalization group (RG) flow. Following the anti-de Sitter/conformal field theory correspondence, the dual field theory of the AdS space is well known to be a conformal field theory that has no nontrivial RG flow. Holographically, that theory can be lifted to a finite temperature version by considering a AdS black hole solution. Because the black hole horizon associated with temperature is dimensionful, it breaks the boundary conformal symmetry and leads to a nontrivial RG flow. In this work, we investigate the finite temperature and size correction to a strongly interacting conformal field theory along the Wisonian renormalization group flow.
Hadron Structure in Holographic Quantum Chromodynamics
Lyubovitskij, V. E.; Gutsche, T.; Schmidt, I.
2017-08-01
Hadrons and multiquark states are discussed within the context of holographic quantum chromodynamics. This approach is based on an action that describes the hadron structure with breaking of conformal and chiral symmetry and includes confinement through the presence of a background dilaton field. According to gauge/gravity duality, five-dimensional boson and fermion fields, moving in AdS space, are dual to the four-dimensional fields on the surface of the AdS sphere, which correspond to hadrons. In this framework, the hadron wave functions - the building blocks of the hadron properties - are dual to the profiles of the AdS fields in the fifth (holographic) dimension, which is identified with a scale. As applications, we consider the properties of hadrons and multiquark states.
Spiral holographic imaging through quantum interference
Tang, Jie; Ming, Yang; Hu, Wei; Lu, Yan-qing
2017-07-01
Spiral holographic imaging in the Hong-Ou-Mandel interference scheme is introduced. Using spontaneous parametric down-conversion as a source of photon pairs, we analyze the joint orbital angular momentum spectrum of a reference photon and the photon encoding information of the object. The first-order interference of light beams in standard holographic imaging is replaced by the quantum interference of two-photon probability amplitudes. The difficulty in retrieving the amplitude and phase structure of an unknown photon is thereby avoided as classical interferometric techniques such as optical holography do not apply. Our results show that the full information of the object's transmission function can be recorded in the spiral hologram, which originates directly from the joint orbital angular momentum spectrum. This presents a lateral demonstration of compressive imaging and can potentially be used for remote sensing.
Exploring unconventional capabilities of holographic tweezers
Hernandez, R. J.; Pagliusi, P.; Provenzano, C.; Cipparrone, G.
2011-06-01
We report an investigation of manipulation and trapping capabilities of polarization holographic tweezers. A polarization gradient connected with a modulation of the ellipticity shows an optical force related to the polarization of the light that can influence optically isotropic particles. While in the case of birefringent particles an unconventional trapping in circularly polarized fringes is observed. A liquid crystal emulsion has been adopted to investigate the capabilities of the holographic tweezers. The unusual trapping observed for rotating bipolar nematic droplets has suggested the involvement of the lift hydrodynamic force responsible of the Magnus effect, originating from the peculiar optical force field. We show that the Magnus force which is ignored in the common approach can contribute to unconventional optohydrodynamic trapping and manipulation.
Holographic renormalization and the electroweak precision parameters
Round, Mark
2010-09-01
We study the effects of holographic renormalization on an AdS/QCD inspired description of dynamical electroweak symmetry breaking. Our model is a 5D slice of AdS5 geometry containing a bulk scalar and SU(2)×SU(2) gauge fields. The scalar field obtains a vacuum expectation value (VEV) which represents a condensate that triggers electroweak symmetry breaking. Fermion fields are constrained to live on the UV brane and do not propagate in the bulk. The two-point functions are holographically renormalized through the addition of boundary counterterms. Measurable quantities are then expressed in terms of well-defined physical parameters, free from any spurious dependence on the UV cutoff. A complete study of the precision parameters is carried out and bounds on physical quantities derived. The large-N scaling of results is discussed.
Holographic Renormalisation and the Electroweak Precision Parameters
Round, Mark
2010-01-01
We study the effects of holographic renormalisation on an AdS/QCD inspired description of dynamical electroweak symmetry breaking. Our model is a 5D slice of AdS_5 geometry containing a bulk scalar and SU(2) times SU(2) gauge fields. The scalar field obtains a VEV which represents a condensate that triggers electroweak symmetry breaking. Fermion fields are constrained to live on the UV brane and do not propagate in the bulk. The two-point functions are holographically renormalised through the addition of boundary counterterms. Measurable quantities are then expressed in terms of well defined physical parameters, free from any spurious dependence on the UV cut-off. A complete study of the precision parameters is carried out and bounds on physical quantities derived. The large-N scaling of results is discussed.
Very General Holographic Superconductors and Entanglement Thermodynamics
Dey, Anshuman; Sarkar, Tapobrata
2014-01-01
We construct and analyze holographic superconductors with generalized higher derivative couplings, in single R-charged black hole backgrounds in four and five dimensions. These systems, which we call very general holographic superconductors, have multiple tuning parameters and are shown to exhibit a rich phase structure. We establish the phase diagram numerically as well as by computing the free energy, and then validated the results by calculating the entanglement entropy for these systems. The entanglement entropy is shown to be a perfect indicator of the phase diagram. The differences in the nature of the entanglement entropy in R-charged backgrounds compared to the AdS-Schwarzschild cases are pointed out. We also compute the analogue of the entangling temperature for a subclass of these systems and compare the results with non-hairy backgrounds.
Reheating of the Universe as holographic thermalization
Kawai, Shinsuke
2015-01-01
Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model gives significantly lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.
Revisiting holographic superconductors with hyperscaling violation
Pan, Qiyuan [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil); Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Zhang, Shao-Jun [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil)
2016-03-15
We investigate the effect of the hyperscaling violation on the holographic superconductors. In the s-wave model, we find that the critical temperature decreases first and then increases as the hyperscaling violation increases, and the mass of the scalar field will not modify the value of the hyperscaling violation which gives the minimum critical temperature. We analytically confirm the numerical results by using the Sturm-Liouville method with the higher order trial function and improve the previous findings in Fan (J High Energy Phys 09:048, 2013). However, different from the s-wave case, we note that the critical temperature decreases with the increase of the hyperscaling violation in the p-wave model. In addition, we observe that the hyperscaling violation affects the conductivity of the holographic superconductors and changes the expected relation in the gap frequency in both s-wave and p-wave models. (orig.)
Holographic duality from random tensor networks
Hayden, Patrick; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao
2016-01-01
Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit simple models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models obey the Ryu-Takayanagi entropy formula for all boundary regions, whether connected or not, a fact closely related to known properties of the multipartite entanglement of assistance. Moreover, we find that all boundary regions faithfully encode the physics of their entire bulk entanglement wedges, not just their smaller causal wedges. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bu...
Holographic dictionary and defects in the bulk
Khramtsov, Mikhail
2016-10-01
We study the holographic dual of the AdS3 spacetime with a conical defect. We calculate the boundary two-point correlator using the holographic Gubser-Klebanov-Polyakov/Witten dictionary for a scalar field in the bulk. We consider the general case, when the conical defect breaks conformal symmetry at the boundary. The results are compared with previous studies based on the geodesic approximation. They are in good agreement for short correlators, and main discrepancy comes in the region of long correlations. It is shown that in the case when the spacetime is the AdS3/ℤN orbifold, both methods give the same result which also produces the result expected from the orbifold CFT.
HOMES Holographic Optical Method for Exoplanet Spectroscopy
Ditto, Thomas D.; McGrew, Stephen P.
2013-09-01
A novel telescope architecture is proposed specifically for the purpose of taking spectra of exoplanets orbiting stars within 10 pc ("the neighborhood"). The primary objective and the secondary spectrograph are holographic optical elements (HOEs) formed on flat membrane substrates of low areal mass that can be transported on cylinder rolls that are compatible with the payload geometry of delivery vehicles. Ribbon-shaped HOEs of up to 100 x 10 meters are contemplated. Computer models are presented with these dimensions. The models predict resolving power better than 10 mas. Because the primary separates wavelengths, we consider coronagraphs that use the divide and conquer strategy of one wavelength at a time. After delivery at the second Lagrange point, the stowed membranes are unfurled into flat holographic optics positioned in a four part formation spanning 1 km of open space.
Disordered Holographic Systems I: Functional Renormalization
Adams, Allan
2011-01-01
We study quenched disorder in strongly correlated systems via holography, focusing on the thermodynamic effects of mild electric disorder. Disorder is introduced through a random potential which is assumed to self-average on macroscopic scales. Studying the flow of this distribution with energy scale leads us to develop a holographic functional renormalization scheme. We test this scheme by computing thermodynamic quantities and confirming that the Harris criterion for relevance, irrelevance or marginality of quenched disorder holds.
Holographic phase transitions at finite chemical potential
Mateos, David; Myers, Robert C; Thomson, Rowan M
2007-01-01
Recently holographic techniques have been used to study the thermal properties of N=2 SYM theory, with gauge group SU(Nc) and coupled to Nf Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].
Document watermarking based on digital holographic principle
Kim, Chol-Su; Im, Song-Jin
2013-01-01
A new method for document watermarking based on the digital Fourier hologram is proposed. It applies the methods of digital image watermarking based on holographic principle presented previously in several papers into printed documents. Experimental results show that the proposed method can not only meet the demand on invisibility, robustness and non-reproducibility of the document watermark, and but also has other advantages compared with the conventional methods for document securities such as embossed hologram, Lippmann photograph and halftone modulation.
Holographic window for solar power generation
Kasezawa, Toshihiro; Horimai, Hideyoshi; Tabuchi, Hiroshi; Shimura, Tsutomu
2016-12-01
A new photovoltaic generation unit based on the application of holographic technologies called a Holo-Window is proposed in this work. The basic principle and the optical configuration used for the basic experimental unit are described. Suitable fabrication technology for a hologram with the broadband spectrum required to provide the appropriate sunlight capture capability is then discussed. Finally, a laboratory-prototype Holo-Window unit was developed and its performance was evaluated.
Using a portable holographic camera in cosmetology
Bakanas, R.; Gudaitis, G. A.; Zacharovas, S. J.; Ratcliffe, D. B.; Hirsch, S.; Frey, S.; Thelen, A.; Ladrière, N.; Hering, P.
2006-07-01
The HSF-MINI portable holographic camera is used to record holograms of the human face. The recorded holograms are analyzed using a unique three-dimensional measurement system that provides topometric data of the face with resolution less than or equal to 0.5 mm. The main advantages of this method over other, more traditional methods (such as laser triangulation and phase-measurement triangulation) are discussed.
A Stringy (Holographic) Pomeron with Extrinsic Curvature
Qian, Yachao
2014-01-01
We model the soft pomeron in QCD using a scalar Polyakov string with extrinsic curvature in the bottom-up approach of holographic QCD. The overall dipole-dipole scattering amplitude in the soft pomeron kinematics is shown to be sensitive to the extrinsic curvature of the string for finite momentum transfer. The characteristics of the diffractive peak in the differential elastic $pp$ scattering are affected by a small extrinsic curvature of the string.
Phases of holographic d-wave superconductor
Krikun, A.
2015-01-01
We study different phases in the holographic model of d-wave superconductor. These are described by solutions to the classical equations of motion found in different ansatze. Apart from the known homogeneous d-wave superconducting phase we find three new solutions. Two of them represent two distinct families of the spatially modulated solutions, which realize the charge density wave phases in the dual theory. The third one is the new homogeneous phase with nonzero anapole moment. These phases...
Review of holographic superconductors with Weyl corrections
Momeni, Davood; Myrzakulov, Ratbay
2014-01-01
A quick review on the analytical aspects of holographic superconductors (HSC) with Weyl corrections has been presented. Mainly we focus on matching method and variations approaches. Different types of such HSC have been investigated, s-wave, p-wave and St\\'{u}ckelberg ones. We also review the fundamental construction of a p-wave type , in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.
Interacting holographic generalized cosmic Chaplygin gas model
Naji, Jalil
2014-03-01
In this paper we consider a correspondence between the holographic dark energy density and interacting generalized cosmic Chaplygin gas energy density in flat FRW universe. Then, we reconstruct the potential of the scalar field which describe the generalized cosmic Chaplygin cosmology. In the special case we obtain time-dependent energy density and study cosmological parameters. We find stability condition of this model which is depend on cosmic parameter.
Commensurability effects in holographic homogeneous lattices
Andrade, Tomas; Krikun, Alexander
2016-01-01
An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as "homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to...
Some aspects of holographic W-gravity
Li, Wei
2015-01-01
We use the Chern-Simons formulation of higher spin theories in three dimensions to study aspects of holographic W-gravity. Concepts which were useful in studies of pure bulk gravity theories, such as the Fefferman-Graham gauge and the residual gauge transformations, which induce Weyl transformations in the boundary theory and their higher spin generalizations, are reformulated in the Chern-Simons language. Flat connections that correspond to conformal and lightcone gauges in the boundary theory are considered.
Some aspects of holographic W-gravity
Li, Wei; Theisen, Stefan
2015-08-01
We use the Chern-Simons formulation of higher spin theories in three dimensions to study aspects of holographic W-gravity. Concepts which were useful in studies of pure bulk gravity theories, such as the Fefferman-Graham gauge and the residual gauge transformations, which induce Weyl transformations in the boundary theory and their higher spin generalizations, are reformulated in the Chern-Simons language. Flat connections that correspond to conformal and lightcone gauges in the boundary theory are considered.
Master Symmetry for Holographic Wilson Loops
Klose, Thomas; Munkler, Hagen
2016-01-01
We identify the symmetry underlying the recently observed spectral-parameter transformations of holographic Wilson loops alias minimal surfaces in AdS/CFT. The generator of this nonlocal symmetry is shown to furnish a raising operator on the classical Yangian-type charges of symmetric coset models. We explicitly demonstrate how this master symmetry acts on strong-coupling Wilson loops and indicate a possible extension to arbitrary coupling.
Moduli spaces of cold holographic matter
Ammon, Martin; Jensen, Kristan; Kim, Keun-Young; Laia, João N.; O'Bannon, Andy
2012-11-01
We use holography to study (3 + 1)-dimensional {N}=4 supersymmetric Yang-Mills theory with gauge group SU( N c ), in the large- N c and large-coupling limits, coupled to a single massless ( n + 1)-dimensional hypermultiplet in the fundamental representation of SU( N c ), with n = 3, 2, 1. In particular, we study zero-temperature states with a nonzero baryon number charge density, which we call holographic matter. We demonstrate that a moduli space of such states exists in these theories, specifically a Higgs branch parameterized by the expectation values of scalar operators bilinear in the hypermultiplet scalars. At a generic point on the Higgs branch, the R-symmetry and gauge group are spontaneously broken to subgroups. Our holographic calculation consists of introducing a single probe D p-brane into AdS 5 × {{{S}}^5} , with p = 2 n + 1 = 7, 5, 3, introducing an electric flux of the D p-brane worldvolume U(1) gauge field, and then obtaining explicit solutions for the worldvolume fields dual to the scalar operators that parameterize the Higgs branch. In all three cases, we can express these solutions as non-singular self-dual U(1) instantons in a four-dimensional space with a metric determined by the electric flux. We speculate on the possibility that the existence of Higgs branches may point the way to a counting of the microstates producing a nonzero entropy in holographic matter. Additionally, we speculate on the possible classification of zero-temperature, nonzero-density states described holographically by probe D-branes with worldvolume electric flux.
Holographic window for solar power generation
Kasezawa, Toshihiro; Horimai, Hideyoshi; Tabuchi, Hiroshi; Shimura, Tsutomu
2016-08-01
A new photovoltaic generation unit based on the application of holographic technologies called a Holo-Window is proposed in this work. The basic principle and the optical configuration used for the basic experimental unit are described. Suitable fabrication technology for a hologram with the broadband spectrum required to provide the appropriate sunlight capture capability is then discussed. Finally, a laboratory-prototype Holo-Window unit was developed and its performance was evaluated.
Holographic cosmological models on the braneworld
Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)
2009-01-26
In this Letter we have studied a closed universe which a holographic energy on the brane whose energy density is described by {rho}(H)=3c{sup 2}H{sup 2} and we obtain an equation for the Hubble parameter. This equation gave us different physical behavior depending if c{sup 2}>1 or c{sup 2}<1 against of the sign of the brane tension.
Holographic coherent states from random tensor networks
Qi, Xiao-Liang; Yang, Zhao; You, Yi-Zhuang
2017-08-01
Random tensor networks provide useful models that incorporate various important features of holographic duality. A tensor network is usually defined for a fixed graph geometry specified by the connection of tensors. In this paper, we generalize the random tensor network approach to allow quantum superposition of different spatial geometries. We setup a framework in which all possible bulk spatial geometries, characterized by weighted adjacient matrices of all possible graphs, are mapped to the boundary Hilbert space and form an overcomplete basis of the boundary. We name such an overcomplete basis as holographic coherent states. A generic boundary state can be expanded in this basis, which describes the state as a superposition of different spatial geometries in the bulk. We discuss how to define distinct classical geometries and small fluctuations around them. We show that small fluctuations around classical geometries define "code subspaces" which are mapped to the boundary Hilbert space isometrically with quantum error correction properties. In addition, we also show that the overlap between different geometries is suppressed exponentially as a function of the geometrical difference between the two geometries. The geometrical difference is measured in an area law fashion, which is a manifestation of the holographic nature of the states considered.
Holographic interferometry for security and forensic applications
Ambadiyil, Sajan; R. C., Sreelekshmi; Mahadevan Pillai, V. P.; Prabhu, Radhakrishna
2016-10-01
Security holograms having unique 3D images are one of the tools for enhancing the security for product and personnel authentication and anti-counterfeiting. Apart from the high technology that is required, the uniqueness of a 3D object presents a significant additional threshold for the counterfeiting of such security holograms. But, due to the development of 3D printing technology, the hurdles are disabled and allow the chances of counterfeiting. In order to overcome this, holographic interferometry is effectively utilized and the object is recorded twice before and after the state of random object change. At the time of reconstruction, two signal waves generated simultaneously interfere each other, resulting in a fringe modulation. This fringe modulation in 3D image hologram with respect to the random object change is exploited to generate a rigid and unique anticounterfeit feature. Though holographic interferometry techniques are being widely used for the non-destructive evaluation, the applicability of this technology for the security and forensic activity is less exploited. This paper describes our efforts to introduce holographic interferometry in 3D image holograms for security and forensic applications.
A shape dynamical approach to holographic renormalization
Gomes, Henrique [University of California at Davis, Davis, CA (United States); Gryb, Sean [Utrecht University, Institute for Theoretical Physics, Utrecht (Netherlands); Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Koslowski, Tim [University of New Brunswick, Fredericton, NB (Canada); Mercati, Flavio; Smolin, Lee [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)
2015-01-01
We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities. (orig.)
Redshift drift constraints on holographic dark energy
He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin
2017-03-01
The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman- α forest of distant quasars, covering the "redshift desert" of 2 ≲ z ≲ 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm0 and the Hubble constant H 0 in other cosmological observations. For the considered two typical dark energy models, not only can a 30-year observation of SL test improve the constraint precision of Ωm0 and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.
Redshift drift constraints on holographic dark energy
He, Dong-Ze; Zhang, Xin
2016-01-01
The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman-$\\alpha$ forest of distant quasars, covering the "redshift desert" of $2\\lesssim z\\lesssim5$, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density $\\Omega_{m0}$ and the Hubble constant $H_0$ in other cosmological observations. For the considered two typical dark e...
Holographic Interferometry Applications In External Osteosynthesis
Jacquot, P.; Rastogi, P. K.; Pflug, L.
1985-08-01
In order to maintain fragments of fractured bones in a state of immobilization, the use of an external rigid frame has proved to be very advantageous. Confronted by contradictory requirements, the conception of external fixation has, however, been a difficult task. The present paper aims to show, through three examples of varied bearings, the interest of holographic interferometry in external osteosynthesis. The first example deals with the mechanical behavior of a key element of the fixation device the ball joint submitted to realistic loads. The last two examples compare two models of ball joints as to their characteristics of rigidity and of resistance to slipping. Whereas in the former case holographic interferometry primarily fulfills the function of a prelude to the modelization work, in the latter cases it serves to formulate an engineering diagnostic. The findings relate to the remarkable elastic behavior of the ball joint, to the effectiveness of a lightened bowl design, and to the fact that cousin models may behave quite differently as to their resistance to slipping rotations of the bar. In comparison with other experimental methods, holographic interferometry appears to be very competitive and result-oriented and, as such, is expected to multiply applications in similar evaluation tasks.
Magnonic holographic imaging of magnetic microstructures
Gutierrez, D.; Chiang, H.; Bhowmick, T.; Volodchenkov, A. D.; Ranjbar, M.; Liu, G.; Jiang, C.; Warren, C.; Khivintsev, Y.; Filimonov, Y.; Garay, J.; Lake, R.; Balandin, A. A.; Khitun, A.
2017-04-01
We propose and demonstrate a technique for magnetic microstructure imaging via their interaction with propagating spin waves. In this approach, the object of interest is placed on top of a magnetic testbed made of material with low spin wave damping. There are micro-antennas incorporated in the testbed. Two of these antennas are used for spin wave excitation while another one is used for the detecting of inductive voltage produced by the interfering spin waves. The measurements are repeated for different phase differences between the spin wave generating antennas which is equivalent to changing the angle of illumination. The collected data appear as a 3D plot - the holographic image of the object. We present experimental data showing magnonic holographic images of a low-coercivity Si/Co sample, a high-coercivity sample made of SrFe12O19 and a diamagnetic copper sample. We also present images of the three samples consisting of a different amount of SrFe12O19 powder. The imaging was accomplished on a Y3Fe2(FeO4)3 testbed at room temperature. The obtained data reveal the unique magnonic signatures of the objects. Experimental data is complemented by the results of numerical modeling, which qualitatively explain the characteristic features of the images. Potentially, magnonic holographic imaging may complement existing techniques and be utilized for non-destructive in-situ magnetic object characterization. The fundamental physical limits of this approach are also discussed.
Holographic torus entanglement and its RG flow
Bueno, Pablo
2016-01-01
We study the universal contributions to the entanglement entropy (EE) of 2+1d and 3+1d holographic conformal field theories (CFTs) on topologically non-trivial manifolds, focusing on tori. The holographic bulk corresponds to AdS-soliton geometries. We characterize the properties of these regulator-independent EE terms as a function of both the size of the cylindrical entangling region, and the shape of the torus. In 2+1d, in the simple limit where the torus becomes a thin 1d ring, the EE reduces to a shape-independent constant $2\\gamma$. This is twice the EE obtained by bipartitioning an infinite cylinder into equal halves. We study the RG flow of $\\gamma$ by defining a renormalized EE that 1) is applicable to general QFTs, 2) resolves the failure of the area law subtraction, and 3) is inspired by the F-theorem. We find that the renormalized $\\gamma$ decreases monotonically when the holographic CFT is deformed by a relevant operator for all allowed scaling dimensions. We also discuss the question of non-uniqu...
Gravitation from Entanglement in Holographic CFTs
Faulkner, Thomas; Hartman, Thomas; Myers, Robert C; Van Raamsdonk, Mark
2013-01-01
Entanglement entropy obeys a 'first law', an exact quantum generalization of the ordinary first law of thermodynamics. In any CFT with a semiclassical holographic dual, this first law has an interpretation in the dual gravitational theory as a constraint on the spacetimes dual to CFT states. For small perturbations around the CFT vacuum state, we show that the set of such constraints for all ball-shaped spatial regions in the CFT is exactly equivalent to the requirement that the dual geometry satisfy the gravitational equations of motion, linearized about pure AdS. For theories with entanglement entropy computed by the Ryu-Takayanagi formula $S=A/(4G_N)$, we obtain the linearized Einstein equations. For theories in which the vacuum entanglement entropy for a ball is computed by more general Wald functionals, we obtain the linearized equations for the associated higher-curvature theories. Using the first law, we also derive the holographic dictionary for the stress tensor, given the holographic formula for ent...
Holographic renormalization as a canonical transformation
Papadimitriou, Ioannis
2010-01-01
The gauge/string dualities have drawn attention to a class of variational problems on a boundary at infinity, which are not well defined unless a certain boundary term is added to the classical action. In the context of supergravity in asymptotically AdS spaces these problems are systematically addressed by the method of holographic renormalization. We argue that this class of a priori ill defined variational problems extends far beyond the realm of holographic dualities. As we show, exactly the same issues arise in gravity in non asymptotically AdS spaces, in point particles with certain unbounded from below potentials, and even fundamental strings in flat or AdS backgrounds. We show that the variational problem in all such cases can be made well defined by the following procedure, which is intrinsic to the system in question and does not rely on the existence of a holographically dual theory: (i) The first step is the construction of the space of the most general asymptotic solutions of the classical equati...
Bottom-up holographic approach to QCD
Afonin, S. S. [V. A. Fock Department of Theoretical Physics, Saint Petersburg State University, 1 ul. Ulyanovskaya, 198504 (Russian Federation)
2016-01-22
One of the most known result of the string theory consists in the idea that some strongly coupled gauge theories may have a dual description in terms of a higher dimensional weakly coupled gravitational theory — the so-called AdS/CFT correspondence or gauge/gravity correspondence. The attempts to apply this idea to the real QCD are often referred to as “holographic QCD” or “AdS/QCD approach”. One of directions in this field is to start from the real QCD and guess a tentative dual higher dimensional weakly coupled field model following the principles of gauge/gravity correspondence. The ensuing phenomenology can be then developed and compared with experimental data and with various theoretical results. Such a bottom-up holographic approach turned out to be unexpectedly successful in many cases. In the given short review, the technical aspects of the bottom-up holographic approach to QCD are explained placing the main emphasis on the soft wall model.
Bottom-up holographic approach to QCD
Afonin, S. S.
2016-01-01
One of the most known result of the string theory consists in the idea that some strongly coupled gauge theories may have a dual description in terms of a higher dimensional weakly coupled gravitational theory — the so-called AdS/CFT correspondence or gauge/gravity correspondence. The attempts to apply this idea to the real QCD are often referred to as "holographic QCD" or "AdS/QCD approach". One of directions in this field is to start from the real QCD and guess a tentative dual higher dimensional weakly coupled field model following the principles of gauge/gravity correspondence. The ensuing phenomenology can be then developed and compared with experimental data and with various theoretical results. Such a bottom-up holographic approach turned out to be unexpectedly successful in many cases. In the given short review, the technical aspects of the bottom-up holographic approach to QCD are explained placing the main emphasis on the soft wall model.
Holographic backgrounds from D-brane probes
Moskovic, Micha
2014-01-01
This thesis focuses on the derivation of holographic backgrounds from the field theory side, without using any supergravity equations of motion. Instead, we rely on the addition of probe D-branes to the stack of D-branes generating the background. From the field theory description of the probe branes, one can compute an effective action for the probes (in a suitable low-energy/near-horizon limit) by integrating out the background branes. Comparing this action with the generic probe D-brane action then allows to determine the holographic background dual to the considered field theory vacuum. In the first part, the required pre-requisites of field and string theory are recalled and this strategy to derive holographic backgrounds is explained in more detail on the basic case of D3-branes in flat space probed by a small number of D-instantons. The second part contains our original results, which have already appeared in arXiv:1301.3738, arXiv:1301.7062 and arXiv:1312.0621. We first derive the duals to three conti...
Holographic Wilson loops in anisotropic quark-gluon plasma.
Ageev, Dmitry
2016-10-01
The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.
Holographic Wilson loops in anisotropic quark-gluon plasma.
Ageev Dmitry
2016-01-01
Full Text Available The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.
Digital compositing a full-color holographic animated stereogram
Diamond, Mark C.
1995-02-01
The paper addresses the use of hybrid cinematography, computer graphics, and electronic imaging to create a full color, animated, holographic stereogram for embossed replication. Several methods of stereoscopic techniques for pre-visualization of holographic stereogram subjects are discussed as well.
Rewritable azobenzene polyester for polarization holographic data storage
Kerekes, A; Sajti, Sz.; Loerincz, Emoeke;
2000-01-01
Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...... and erasing was tested. The ability of azobenzene polyester for rewriting was found satisfactory after many writing-erasing cycles....
New large-format holographic laboratory in France
Gauchet, Pascal E. P.
1994-01-01
A new holographic laboratory, Photonics 3D, has opened in Lyon, France. Its objectives are many fold: to encourage creative research in the field of holographic imagery, to set up an artist in residence program and to allow the production of very large holograms.
Holographic bounds on the UV cutoff scale in inflationary cosmology
Keski-Vakkuri, Esko; Sloth, Martin Snoager
2003-01-01
We discuss how holographic bounds can be applied to the quantum fluctuations of the inflaton. In general the holographic principle will lead to a bound on the UV cutoff scale of the effective theory of inflation, but it will depend on the coarse-graining prescription involved in calculating...
Jet Quenching and Holographic Thermalization with a Chemical Potential
Caceres, Elena; Yang, Di-Lun
2012-01-01
We investigate jet quenching of virtual gluons and thermalization of a strongly-coupled plasma with a non-zero chemical potential via the gauge/gravity duality. By tracking a charged shell falling in an asymptotic AdS$_{d+1}$ background for $d=3$ and $d=4$, which is characterized by the AdS-Reissner-Nordstr\\"om-Vaidya (AdS-RN-Vaidya) geometry, we extract a thermalization time of the medium with a non-zero chemical potential. In addition, we study the falling string as the holographic dual of a virtual gluon in the AdS-RN-Vaidya spacetime. The stopping distance of the massless particle representing the tip of the falling string in such a spacetime could reveal the jet quenching of an energetic light probe traversing the medium in the presence of a chemical potential. We find that the stopping distance decreases when the chemical potential is increased in both AdS-RN and AdS-RN-Vaidya spacetimes, which correspond to the thermalized and thermalizing media respectively. Moreover, we find that the soft gluon with ...
Missan, Sergey; Hrytsenko, Olga
2015-03-01
Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.
Depth perception and user interface in digital holographic television
Barabas, James; Jolly, Sundeep; Smalley, Daniel E.; Bove, V. Michael, Jr.
2012-03-01
A holographic television system, featuring realtime incoherent 3D capture and live holographic display is used for experiments in depth perception. Holographic television has the potential to provide more complete visual representations, including latency-free motion parallax and more natural affordances for accommodation. Although this technology has potential to improve realism in many display applications, we investigate benefits in uses where direct vision of a workspace is not possible. Applications of this nature include work with hazardous materials, teleoperation over distance, and laparoscopic surgery. In this study, subjects perform manual 3D object manipulation tasks where they can only see the workspace through holographic closed-circuit television. This study is designed to compare performance at manual tasks using holographic television compared to performance with displays that mimic 2D, and stereoscopic television.
Optical properties of a photopolymer film for digital holographic storage
Shin, Changwon; Kim, Junghoi; Kim, Nam; Lee, Hyojin; Kim, Eunkyoung
2005-09-01
Tir- and mono functional monomers were dispersed in a solution of polysulfone in organic solvent containing a photo initiator and other additives. New photopolymer film was prepared by dispersing acrylic monomer in a polysulfone matrix. The Polysulfone was adopted as a binder since it affords transparent thick films with low dimensional changes during holographic recording. Optical property of the photopolymer showed high diffraction efficiency (>90%) under an optimized optical condition at 532nm laser. The angular selectivity for angular multiplexing page oriented holographic memories (POHMs), the maximum diffraction efficiency of the material during holographic recording, the diffraction efficiency of the films as a function of an incident angle of two beams, exposure energy for saturation of the holographic material and application for holographic data storage will be discussed.
Research on copying system of dynamic multiplex holographic stereograms
Fu, Huaiping; Yang, Hong; Zheng, Tong
2003-05-01
The most important advantage of holographic stereograms over conventional hologram is that they can produce 3D images at any desired scale with movement, holographers in many countries involved in the studies towards it. We began our works in the early 80's and accomplished two research projects automatic system for making synthetic holograms and multiplex synthetic rainbow holograms, Based on these works, a large scale holographic stereogram of an animated goldfish was made by us for practical advertisement. In order to meet the needs of the market, a copying system for making multiplex holographic stereograms, and a special kind of silver halide holographic film developed by us recently. The characteristic of the copying system and the property of the special silver-halide emulsion are introduced in this paper.
Energy Momentum Tensor Correlators in Improved Holographic QCD
Krssak, Martin
2013-01-01
In this thesis, we study the physics of the quark gluon plasma (QGP) using holographic methods borrowed from string theory. We start our discussion by motivating the use of such machinery, explaining how recent experimental results from the LHC and RHIC colliders suggests that the created QGP should be described as a strongly coupled liquid with small but nonvanishing bulk and shear viscosities. We argue that holographic dualities are a very efficient framework for studying transport properties in such a medium. Next, we introduce the underlying physics behind all holographic dualities, the AdS/CFT correspondence, and then motivate the necessity of implementing conformal invariance breaking in them. After this, we present the phenomenologically most successful holographic model of the strong interactions - Improved Holographic QCD (IHQCD). Working within IHQCD, we next move on to calculate energy momentum tensor correlators in the bulk and shear channels of large-Nc Yang-Mills theory. In the shear channel, we...
M.P. de Brito (Marisa); S.D.P. Flapper; R. Dekker (Rommert)
2002-01-01
textabstractThis paper gives an overview of scientific literature that describes and discusses cases of reverse logistics activities in practice. Over sixty case studies are considered. Based on these studies we are able to indicate critical factors for the practice of reverse logistics. In addi
周悦昌; 任丽娜; 王旭辉; 陈建文; 陈妙佩; 毛鸿忠; 韩立杰
2015-01-01
目的：比较不同培养基、孵育温度及培养时间的选择对透析液和反渗水微生物监测总菌落计数的差异，确认透析液和反渗水微生物监测的最佳培养条件。方法采用无菌透析液和无菌反渗水配置模拟污染水样本，倾注法接种于伊红美蓝琼脂（EMB）、大豆酪蛋白琼脂（TSA）、胰蛋白胨葡萄糖浸液（TGEA）培养基，于25℃和35℃分别进行培养，并记录培养48、72 h 及7 d 的生长情况。结果不论是25℃还是35℃，TGEA 的生长情况均最佳且最接近预期菌落数（P ＜0．05）；各种培养基培养72 h 比48 h 生长好（P ＜0．05）；培养7 d 后的菌落数与培养72 h 比较差异无统计学意义（P ＞0．05）。结论使用倾注平板法及 TGEA 培养基对透析液和反渗水进行微生物监测，需同时在25℃及35℃条件下培养至少72 h，方可产生有效的监测报告，确保患者的透析安全。%Objective To compare the difference between media, incubation temperatures and culture times on the choice of hemodialysate and reverse osmosis water for microbiological monitoring of heterotrophic plate count, and further to confirm the best culture method of microbiological monitoring for hemodialysate and reverse osmosis.Methods The polluted samples were simulated by using sterile dialysate and sterile reverse osmosis water, and then were incubated in 25 ℃ and 35 ℃ with eosin methylene blue agar (EMB), tryptone soy agar (TSA) and tryptone glucose extract agar (TGEA)for 48 h, 72 h and 7 d, respectively.Results Either on 25 ℃ or 35 ℃, the bacteria′s growth condition in TGEA was better than those under other conditions(P 0.05 ).Conclusions The microbiological monitoring for hemodialysate and reverse osmosis water needs to use pour plate method with TGEA, incubating in 25 ℃ and 35 ℃ for 72 h, which may provide the effective reports for ensuring the safety of hemodialysis patients.
DC Conductivity of Magnetised Holographic Matter
Donos, Aristomenis; Griffin, Tom; Melgar, Luis
2015-01-01
We consider general black hole solutions of Einstein-Maxwell-scalar theory that are holographically dual to conformal field theories at finite charge density with non-vanishing magnetic fields and local magnetisation currents, which generically break translation invariance explicitly. We show that the thermoelectric DC conductivity of the field theory can be obtained by solving a system of generalised Stokes equations on the black hole horizon. For various examples, including Q-lattices and one-dimensional lattices, we solve the Stokes equations explicitly and obtain expressions for the DC conductivity in terms of the solution at the black hole horizon.
Holographic representation of local bulk operators
Hamilton, A; Lifschytz, G; Lowe, D A; Hamilton, Alex; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.
2006-01-01
The Lorentzian AdS/CFT correspondence implies a map between local operators in supergravity and non-local operators in the CFT. By explicit computation we construct CFT operators which are dual to local bulk fields in the semiclassical limit. The computation is done for general dimension in global, Poincare and Rindler coordinates. We find that the CFT operators can be taken to have compact support in a region of the complexified boundary whose size is set by the bulk radial position. We show that at finite N the number of independent commuting operators localized within a bulk volume saturates the holographic bound.
A Holographic Model of Quantum Hall Transition
Mezzalira, Andrea
2015-01-01
We consider a phenomenological holographic model, inspired by the D3/D7 system with a 2+1 dimensional intersection, at finite chemical potential and magnetic field. At large 't Hooft coupling the system is unstable and needs regularization; the UV cutoff can be decoupled by considering a certain double scaling limit. At finite chemical potential the model exhibits a phase transition between states with filling fractions plus and minus one--half as the magnetic field is varied. By varying the parameters of the model, this phase transition can be made to happen at arbitrary values of the magnetic field.
Holographic Lattices Give the Graviton a Mass
Blake, Mike; Vegh, David
2014-01-01
We discuss the DC conductivity of holographic theories with translational invariance broken by a background lattice. We show that the presence of the lattice induces an effective mass for the graviton via a gravitational version of the Higgs mechanism. This allows us to obtain, at leading order in the lattice strength, an analytic expression for the DC conductivity in terms of the size of the lattice at the horizon. In locally critical theories this leads to a power law resistivity that is in agreement with an earlier field theory analysis of Hartnoll and Hofman.
Holographic Quark Matter and Neutron Stars.
Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi
2016-07-15
We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.
Linearized Holographic Isotropization at Finite Coupling
Atashi, Mahdi; Jafari, Ghadir
2016-01-01
We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that increasing the Gauss-Bonnet coupling leads to significant increasing of the thermalization time. By including higher order corrections, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon.
Heavy quarkonium in a holographic basis
Yang Li
2016-07-01
Full Text Available We study the heavy quarkonium within the basis light-front quantization approach. We implement the one-gluon exchange interaction and a confining potential inspired by light-front holography. We adopt the holographic light-front wavefunction (LFWF as our basis function and solve the non-perturbative dynamics by diagonalizing the Hamiltonian matrix. We obtain the mass spectrum for charmonium and bottomonium. With the obtained LFWFs, we also compute the decay constants and the charge form factors for selected eigenstates. The results are compared with the experimental measurements and with other established methods.
Holographic computations of the Quantum Information Metric
Trivella, Andrea
2016-01-01
In this note we show how the Quantum Information Metric can be computed holographically using a perturbative approach. In particular when the deformation of the conformal field theory state is induced by a scalar operator the corresponding bulk configuration reduces to a scalar field perturbatively probing the unperturbed background. We study two concrete examples: a CFT ground state deformed by a primary operator and thermofield double state in $d=2$ deformed by a marginal operator. Finally, we generalize the bulk construction to the case of a multi dimensional parameter space and show that the Quantum Information Metric coincides with the metric of the non-linear sigma model for the corresponding scalar fields.
QCD and a holographic model of hadrons.
Erlich, Joshua; Katz, Emanuel; Son, Dam T; Stephanov, Mikhail A
2005-12-31
We propose a five-dimensional framework for modeling low-energy properties of QCD. In the simplest three parameter model we compute masses, decay rates and couplings of the lightest mesons. The model fits experimental data to within 10%. The framework is a holographic version of the QCD sum rules, motivated by the anti-de Sitter/conformal field theory correspondence. The model naturally incorporates properties of QCD dictated by chiral symmetry, which we demonstrate by deriving the Gell-Mann-Oakes-Renner relationship for the pion mass.
Simple recipe for holographic Weyl anomaly
Bugini, F
2016-01-01
We propose a recipe - arguably the simplest - to compute the holographic type-B Weyl anomaly for general higher-derivative gravity in asymptotically AdS spacetimes. In 5 and 7 dimensions we identify a suitable basis of curvature invariants that allows to read off easily, without any further computation, the Weyl anomaly coefficients of the dual CFT. We tabulate the contributions from quadratic, cubic and quartic purely algebraic curvature invariants and also from terms involving derivatives of the curvature. We provide few examples, where the anomaly coefficients have been obtained by other means, to illustrate the effectiveness of our prescription.
Holographic quark matter and neutron stars
Hoyos, Carlos; Jokela, Niko; Vuorinen, Aleksi
2016-01-01
We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding Equation of State (EoS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first order phase transition at densities between two and seven times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EoSs, we find maximal stellar masses in the excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EoSs.
A Holographic Dual of the Quantum Inequalities
Levine, Adam R
2016-01-01
In this note, we establish the 2-D Quantum Inequalities - first proved by Flanagan - for all CFTs with a causal holographic dual. Following the treatment of Kelly \\& Wall, we establish that the Boundary Causality Condition in an asymptotic AdS spacetime implies the Quantum Inequalities on the boundary. Our results extend easily to curved spacetime and are stable under deformations of the CFT by relevant operators. We discuss higher dimensional generalizations and possible connections to recent bounds on $a/c$ in 4-D CFTs.
Drag phenomena from holographic massive gravity
Baggioli, Matteo; Brattan, Daniel K.
2017-01-01
We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally, we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.
Drag phenomena from holographic massive gravity
Baggioli, Matteo
2015-01-01
We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.
An adaptive holographic implementation of a neural network
Downie, John D.; Hine, Butler P., III; Reid, Max B.
1990-01-01
A holographic implementation for neural networks is proposed and demonstrated as an alternative to the optical matrix-vector multiplier architecture. In comparison, the holographic architecture makes more efficient use of the system space-bandwidth product for certain types of neural networks. The principal network component is a thermoplastic hologram, used to provide both interconnection weights and beam direction. Given the updatable nature of this type of hologram, adaptivity or network learning is possible in the optical system. Two networks with fixed weights are experimentally implemented and verified, and for one of these examples the advantage of the holographic implementation with respect to the matrix-vector processor is demonstrated.
Inflation via logarithmic entropy-corrected holographic dark energy model
Darabi, F.; Felegary, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of)
2016-12-15
We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)
Inflation via logarithmic entropy-corrected holographic dark energy model
Darabi, F; Setare, M R
2016-01-01
We study the inflation via logarithmic entropy-corrected holographic dark energy LECHDE model with future event horizon, particle horizon and Hubble horizon cut-offs, and compare the results with those of obtained in the study of inflation by holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in HDE model. Moreover, the consistency with the observational data in LECHDE model of inflation, constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections.
Complexified boost invariance and holographic heavy ion collisions
Gubser, Steven S
2015-01-01
At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. One of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.
New model for holographic storage by simultaneous angular multiplexing
Ibarra, J. C.; Urzua, D.; Olivares-Peréz, A.; Ortiz-Gutierrez, M.
2006-05-01
We describe a technique for holographic storage by simultaneous angular multiplexing to obtain a large-scale holographic memory. We recorded 72 objects at the same time in one point on holographic plate PFG-03M from Slavich Co., using a He-Ne laser (λ = 633 nm). Each object is placed on a circular photographic transparency, separate 0.94 degree each one. The technique allows us simultaneous reconstruction of the 72 images without cross-talk. The diffraction efficiency obtained at order one is 6%. Experimental results are shown.
Entanglement between Two Interacting CFTs and Generalized Holographic Entanglement Entropy
Mollabashi, Ali; Takayanagi, Tadashi
2014-01-01
In this paper we discuss behaviors of entanglement entropy between two interacting CFTs and its holographic interpretation using the AdS/CFT correspondence. We explicitly perform analytical calculations of entanglement entropy between two free scalar field theories which are interacting with each other in both static and time-dependent ways. We also conjecture a holographic calculation of entanglement entropy between two interacting $\\mathcal{N}=4$ super Yang-Mills theories by introducing a minimal surface in the S$^5$ direction, instead of the AdS$_5$ direction. This offers a possible generalization of holographic entanglement entropy.
Entanglement between two interacting CFTs and generalized holographic entanglement entropy
Mollabashi, Ali; Shiba, Noburo; Takayanagi, Tadashi
2014-04-01
In this paper we discuss behaviors of entanglement entropy between two interacting CFTs and its holographic interpretation using the AdS/CFT correspondence. We explicitly perform analytical calculations of entanglement entropy between two free scalar field theories which are interacting with each other in both static and time-dependent ways. We also conjecture a holographic calculation of entanglement entropy between two interacting = 4 super Yang-Mills theories by introducing a minimal surface in the S5 direction, instead of the AdS5 direction. This offers a possible generalization of holographic entanglement entropy.
Entanglement between two interacting CFTs and generalized holographic entanglement entropy
Mollabashi, Ali [School of physics, Institute for Research in Fundamental Sciences (IPM),Tehran (Iran, Islamic Republic of); Yukawa Institute for Theoretical Physics (YITP),Kyoto University, Kyoto 606-8502 (Japan); Shiba, Noburo [Yukawa Institute for Theoretical Physics (YITP),Kyoto University, Kyoto 606-8502 (Japan); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics (YITP),Kyoto University, Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo, Kashiwa, Chiba 277-8582 (Japan)
2014-04-30
In this paper we discuss behaviors of entanglement entropy between two interacting CFTs and its holographic interpretation using the AdS/CFT correspondence. We explicitly perform analytical calculations of entanglement entropy between two free scalar field theories which are interacting with each other in both static and time-dependent ways. We also conjecture a holographic calculation of entanglement entropy between two interacting N=4 super Yang-Mills theories by introducing a minimal surface in the S{sup 5} direction, instead of the AdS{sub 5} direction. This offers a possible generalization of holographic entanglement entropy.
Generation of spatial Bessel beams using holographic metasurface.
Cai, Ben Geng; Li, Yun Bo; Jiang, Wei Xiang; Cheng, Qiang; Cui, Tie Jun
2015-03-23
We propose to use backward radiations of leaky waves supported by a holographic metasurface to produce spatial Bessel beams in the microwave frequency regime. The holographic metasurface consists of a grounded dielectric slab and a series of metal patches. By changing the size of metal patches, the surface-impedance distribution of the holographic metasurface can be modulated, and hence the radiation properties of the leaky waves can be designed to realize Bessel beams. Both numerical simulations and experiments verify the features of spatial Bessel beams, which may be useful in imaging applications or wireless power transmissions with the dynamic focal-depth controls.
Lifshitz holographic superconductor in Hořava–Lifshitz gravity
Luo, Cheng-Jian, E-mail: rocengeng@hotmail.com [Department of Physics, Nanchang University, Nanchang, 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Kuang, Xiao-Mei, E-mail: xmeikuang@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Shu, Fu-Wen, E-mail: shufuwen@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang, 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China)
2016-08-10
We study the holographic phase transition of superconductor dual to a Lifshitz black brane probed by an anisotropic scalar field in the probe limit in Hořava–Lifshitz gravity. With the use of numerical and analytical method, we investigate how the critical temperature of the condensation is affected by the Lifshitz exponent z, α-correction term in the action as well as the dimensions of the gravity. We also numerically explore the condensation of the dual operator and optical conductivity of the holographic system. Various interesting properties of the holographic condensation affected by the parameters of model are discussed.
Lifshitz holographic superconductor in Horava-Lifshitz gravity
Luo, Cheng-Jian; Shu, Fu-Wen
2016-01-01
We study the holographic phase transition of superconductor dual to a Lifshitz black brane probed by an anisotropic scalar field in the probe limit in Ho\\u{r}ava-Lifshitz gravity. With the use of numerical and analytical method, we investigate how the critical temperature of the condensation is affected by the Lifshitz exponent $z$, $\\alpha-$correction term in the action as well as the dimensions of the gravity. We also numerically explore the condensation of the dual operator and optical conductivity of the holographic system. Various interesting properties of the holographic condensation affected by the parameters of model are discussed.
Recent progress in backreacted bottom-up holographic QCD
Järvinen, Matti [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05 (France)
2016-01-22
Recent progress in constructing holographic models for QCD is discussed, concentrating on the bottom-up models which implement holographically the renormalization group flow of QCD. The dynamics of gluons can be modeled by using a string-inspired model termed improved holographic QCD, and flavor can be added by introducing space filling branes in this model. The flavor fully backreacts to the glue in the Veneziano limit, giving rise to a class of models which are called V-QCD. The phase diagrams and spectra of V-QCD are in good agreement with results for QCD obtained by other methods.
Solitonic approach to holographic nuclear physics
Baldino, Salvatore; Bolognesi, Stefano; Gudnason, Sven Bjarke; Koksal, Deniz
2017-08-01
We discuss nuclear physics in the Sakai-Sugimoto model in the limit of a large number Nc of colors and large 't Hooft coupling λ . In this limit the individual baryons are described by classical solitons whose size is much smaller than the typical distance at which they settle in a nuclear bound state. We can thus use the linear approximation outside the instanton cores to compute the interaction potential. We find the classical geometry of nuclear bound states for baryon number up to 8. One of the interesting features that we find is that holographic nuclear physics provides a natural description for lightly bound states when λ is large. For the case of two nuclei, we also find the topology and metric of the manifold of zero modes and, quantizing it, we find that the ground state can be identified with the deuteron state. We discuss the relations with other methods in the literature used to study Skyrmions and holographic nuclear physics. We discuss 1 /Nc and 1 /λ corrections and the challenges to overcome to reach the phenomenological values to fit with real QCD.
A Holographic Approach to Spacetime Entanglement
Wien, Jason
2014-01-01
Recently it has been proposed that the Bekenstein-Hawking formula for the entropy of spacetime horizons has a larger significance as the leading contribution to the entanglement entropy of general spacetime regions, in the underlying quantum theory [2]. This `spacetime entanglement conjecture' has a holographic realization that equates the entropy formula evaluated on an arbitrary space-like co-dimension two surface with the differential entropy of a particular family of co-dimension two regions on the boundary. The differential entropy can be thought of as a directional derivative of entanglement entropy along a family of surfaces. This holographic relation was first studied in [3] and extended in [4], and it has been proven to hold in Einstein gravity for bulk surfaces with planar symmetry (as well as for certain higher curvature theories) in [4]. In this essay, we review this proof and provide explicit examples of how to build the appropriate family of boundary intervals for a given bulk curve. Conversely,...
Holographic quenches towards a Lifshitz point
Camilo, Giancarlo; Abdalla, Elcio
2015-01-01
We use the holographic duality to study quantum quenches of a strongly coupled CFT that drive the theory towards a non-relativistic fixed point with Lifshitz scaling. We consider the case of a Lifshitz dynamical exponent $z$ close to unity, where the non-relativistic field theory can be understood as a specific deformation of the corresponding CFT and, hence, the standard holographic dictionary can be applied. On the gravity side this amounts to finding a dynamical bulk solution which interpolates between AdS and Lishitz spacetimes as time evolves. We show that an asymptotically Lifshitz black hole is always formed in the final state. This indicates that it is impossible to reach the vacuum state of the Lifshitz theory from the CFT vacuum as a result of the proposed quenching mechanism. The nonequilibrium dynamics following the breaking of the relativistic scaling symmetry is also probed using both local and non-local observables. In particular, we conclude that the equilibration process happens in a top-down...
Holographic dark energy with cosmological constant
Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Holographic Photon Production in Heavy Ion Collisions
Iatrakis, Ioannis; Shen, Chun; Yang, Di-Lun
2016-01-01
The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled $\\mathcal{N}=4$ super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser's phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, by using IP-glassma initial states, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM ...
Riccati equations for holographic 2-point functions
Papadimitriou, Ioannis; Taliotis, Anastasios
2014-04-01
Any second order homogeneous linear ordinary differential equation can be transformed into a first order non-linear Riccati equation. We argue that the Riccati form of the linearized fluctuation equations that determine the holographic 2-point functions simplifies considerably the numerical computation of such 2-point functions and of the corresponding transport coefficients by computing directly the response functions, eliminating the arbitrary source from the start. Moreover, it provides a neat criterion for the infrared regularity of the fluctuations. In particular, it is shown that the infrared regularity conditions for scalar and tensor fluctuations coincide, and hence they are either both regular or both singular. We demonstrate our numerical recipe based on the Riccati equations by computing the holographic 2-point functions for the stress tensor and a scalar operator in a number of asymptotically anti de Sitter backgrounds of bottom up scalar-gravity models. Analytical results are obtained for the 2-point function of the transverse traceless part of the stress tensor in two confining geometries, including a geometry that belongs to the class of IHQCD. We find that in this background the spin-2 spectrum is linear and, as expected, the position space 2-point function decays exponentially at large distances at a rate proportional to the confinement scale.
Free energy of a Lovelock holographic superconductor
Aranguiz, Ligeia
2014-01-01
We study black hole solutions in Lanczos-Lovelock AdS gravity in d+1 dimensions coupled to nonlinear electrodynamics and a Stueckelberg scalar field. This class of theories with [d/2] gravitational coupling constants and two arbitrary functions that govern the matter interaction is used in the context of gauge/gravity duality to describe a high-temperature superconductor in d dimensions. We regularize the gravitational action and find the finite conserved quantities for a planar black hole with scalar hair. Then we derive the quantum statistical relation in the Euclidean sector of the theory, and obtain the exact formula for the free energy of the superconductor in the holographic quantum field theory. Our result is exact, analytic and it includes the effects of back reaction of the gravitational field. We further discuss on how this formula could be used to analyze second order phase transitions through the discontinuities of the free energy, and classify holographic superconductors in terms of the parameter...
Holographic free energy and thermodynamic geometry
Ghorai, Debabrata [S.N. Bose National Centre for Basic Sciences, Kolkata (India); Gangopadhyay, Sunandan [Indian Institute of Science Education and Research, Kolkata, Nadia (India); West Bengal State University, Department of Physics, Barasat (India); Inter University Centre for Astronomy and Astrophysics, Pune (India)
2016-12-15
We obtain the free energy and thermodynamic geometry of holographic superconductors in 2 + 1 dimensions. The gravitational theory in the bulk dual to this 2 + 1-dimensional strongly coupled theory lives in the 3 + 1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method. (orig.)
Moduli Spaces of Cold Holographic Matter
Ammon, Martin; Kim, Keun-Young; Laia, João; O'Bannon, Andy
2012-01-01
We use holography to study (3+1)-dimensional N=4 supersymmetric Yang-Mills theory with gauge group SU(Nc), in the large-Nc and large-coupling limits, coupled to a single massless (n+1)-dimensional hypermultiplet in the fundamental representation of SU(Nc), with n=3,2,1. In particular, we study zero-temperature states with a nonzero baryon number charge density, which we call holographic matter. We demonstrate that a moduli space of such states exists in these theories, specifically a Higgs branch parameterized by the expectation values of scalar operators bilinear in the hypermultiplet scalars. At a generic point on the Higgs branch, the R-symmetry and gauge group are spontaneously broken to subgroups. Our holographic calculation consists of introducing a single probe Dp-brane into AdS5 times S^5, with p=2n+1=7,5,3, introducing an electric flux of the Dp-brane worldvolume U(1) gauge field, and then obtaining explicit solutions for the worldvolume fields dual to the scalar operators that parameterize the Higgs...
Gravitation, holographic principle, and extra dimensions
Caimmi, R
2016-01-01
Within the context of Newton's theory of gravitation, restricted to point-like test particles and central bodies, stable circular orbits in ordinary space are related to stable circular paths on a massless, unmovable, undeformable vortex-like surface, under the action of a tidal gravitational field along the symmetry axis. An interpretation is made in the light of a holographic principle, in the sense that motions in ordinary space are connected with motions on a selected surface and vice versa. Then ordinary space is conceived as a 3-hypersurface bounding a $n$-hypervolume where gravitation takes origin, within a $n$-hyperspace. The extension of the holographic principle to extra dimensions implies the existence of a minimum distance where test particles may still be considered as distinct from the central body. Below that threshold, it is inferred test particles lose theirs individuality and "glue" to the central body via unification of the four known interactions and, in addition, (i) particles can no long...
Miniaturized low-cost digital holographic interferometer
Michalkiewicz, Aneta; Kujawinska, Małgorzata; Marc, Paweł; Jaroszewicz, Leszek R.
2006-04-01
Digital holography (DH) and digital holographic interferometry (DHI) are very useful, robust, full-field visualization and measurement techniques applied for small objects, especially in the field of bioengineering and microelements system testing. Nowadays CCD/CMOS detectors and microlasers allow to build miniaturized and compact digital holographic head. Various approaches to develop DH/DHI systems including a variety of optical and mechanical solutions have been made. The main recent requirements for holocamera design include compactness, insensitivity to vibrations environmental changes and with good quality of output data. Other requirement is the ability to build a low-cost and robust system for sensing applications. In our paper, we propose a design of miniaturized holo-camera head with fibre optics light delivery system and remote data read-out. The opto-mechanical architecture allows out-of-plane and shape measurements of diffuse and reflective surfaces. The possible data capture schemes and software for enhanced quality numerical reconstruction of complex objects are discussed and the optimized methodology is determined. Also real-time optoelectronic hologram reconstruction is demonstrated on the base of remote data delivery to liquid crystal on silicon spatial light modulator. The performance of the system is tested on the resolution amplitude test and master sphere, while engineering objects in the experiments are static and dynamic microelements.
Riccati equations for holographic 2-point functions
Papadimitriou, Ioannis [Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid,Madrid 28049 (Spain); Taliotis, Anastasios [Theoretische Natuurkunde, Vrije Universiteit Brussel,and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)
2014-04-30
Any second order homogeneous linear ordinary differential equation can be transformed into a first order non-linear Riccati equation. We argue that the Riccati form of the linearized fluctuation equations that determine the holographic 2-point functions simplifies considerably the numerical computation of such 2-point functions and of the corresponding transport coefficients by computing directly the response functions, eliminating the arbitrary source from the start. Moreover, it provides a neat criterion for the infrared regularity of the fluctuations. In particular, it is shown that the infrared regularity conditions for scalar and tensor fluctuations coincide, and hence they are either both regular or both singular. We demonstrate our numerical recipe based on the Riccati equations by computing the holographic 2-point functions for the stress tensor and a scalar operator in a number of asymptotically anti de Sitter backgrounds of bottom up scalar-gravity models. Analytical results are obtained for the 2-point function of the transverse traceless part of the stress tensor in two confining geometries, including a geometry that belongs to the class of IHQCD. We find that in this background the spin-2 spectrum is linear and, as expected, the position space 2-point function decays exponentially at large distances at a rate proportional to the confinement scale.
Setting up of holographic optical tweezer arrays
Gupta, Deepak K.; Tata, B. V. R.; Ravindran, T. R.
2017-05-01
Optical tweezers use tightly focused laser beams to hold and move microscopic objects in a solvent. However, many applications require simultaneous control over multitude of particles, positioning them in 3D space at desired locations with desired symmetry, which is made possible by the use of holographic optical tweezers using the technique of beam shaping and holography. We have designed and developed a holographic optical tweezer set-up using a phase only liquid crystal, reflective spatial light modulator. We employ the technique of phase modulation to modulate the phase of the beam by generating holograms using Random Superposition (RS) and weighted Gerchberg Saxton algorithm (WGS) algorithm for generating desired patterns of light at the trapping plane. A 4×4 array of beams with square symmetry was generated using WGS algorithm and trapped polystyrene particles of size 1.2 micron in a 4×4 two dimensional array. There were uniformity issues among the trap intensities, as we move away from the zeroth order spot. This was corrected by taking into account diffraction effects due to the pixelated nature of SLM modulating the intensity of the trap spots and the ghost order suppression by spatial disorder.
Random holographic "large worlds" with emergent dimensions
Trugenberger, Carlo A.
2016-11-01
I propose a random network model governed by a Gaussian weight corresponding to Ising link antiferromagnetism as a model for emergent quantum space-time. In this model, discrete space is fundamental, not a regularization; its spectral dimension ds is not a model input but is, rather, completely determined by the antiferromagnetic coupling constant. Perturbative terms suppressing triangles and favoring squares lead to locally Euclidean ground states that are Ricci flat "large worlds" with power-law extension. I then consider the quenched graphs of lowest energy for ds=2 and ds=3 , and I show how quenching leads to the spontaneous emergence of embedding spaces of Hausdorff dimension dH=4 and dH=5 , respectively. One of the additional, spontaneous dimensions can be interpreted as time, causality being an emergent property that arises in the large N limit (with N the number of vertices). For ds=2 , the quenched graphs constitute a discrete version of a 5D-space-filling surface with a number of fundamental degrees of freedom scaling like N2 /5, a graph version of the holographic principle. These holographic degrees of freedom can be identified with the squares of the quenched graphs, which, being triangle-free, are the fundamental area (or loop) quanta.
AdS$_2$ Holographic Dictionary
Cvetič, Mirjam
2016-01-01
We construct the holographic dictionary for both running and constant dilaton solutions of the 2D Einstein-Maxwell-Dilaton theory obtained by a circle reduction from 3D gravity with negative cosmological constant. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a 2D CFT, but our results apply qualitatively to a wider class of 2D dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show t...
Time reversal and holography with spacetime transformations
Bacot, Vincent; Labousse, Matthieu; Eddi, Antonin; Fink, Mathias; Fort, Emmanuel
2016-10-01
Wave control is usually performed by spatially engineering the properties of a medium. Because time and space play similar roles in wave propagation, manipulating time boundaries provides a complementary approach. Here, we experimentally demonstrate the relevance of this concept by introducing instantaneous time mirrors. We show with water waves that a sudden change of the effective gravity generates time-reversed waves that refocus at the source. We generalize this concept for all kinds of waves, introducing a universal framework which explains the effect of any time disruption on wave propagation. We show that sudden changes of the medium properties generate instant wave sources that emerge instantaneously from the entire space at the time disruption. The time-reversed waves originate from these `Cauchy sources’, which are the counterpart of Huygens virtual sources on a time boundary. It allows us to revisit the holographic method and introduce a new approach for wave control.
Holographic and e-Beam Image Recording in Ge5As37S58-Se Nanomultilayer Structures
Stronski, A.; Achimova, E.; Paiuk, O.; Meshalkin, A.; Abashkin, V.; Lytvyn, O.; Sergeev, S.; Prisacar, A.; Triduh, G.
2016-01-01
Processes of e-beam and holographic recording of surface relief structures using Ge5As37S58-Se multilayer nanostructures as registering media were studied in this paper. Optical properties of Ge5As37S58, Se layers, and Ge5As37S58-Se multilayer nanostructures were investigated. Spectral dependencies of refractive index were analyzed within the frames of single oscillator model. Values of optical band gaps for Ge5As37S58, Se layers, and Ge5As37S58-Se multilayer nanostructures were obtained from Tauc dependencies. Using e-beam and holographic recording, diffraction gratings were fabricated in Ge5As37S58-Se multilayer nanostructures. Images of Ukraine and Moldova state emblems were obtained by e-beam recording. Image size consisted of 512 × 512 pixels (size of 1 pixel was ~2 μm). Ge5As37S58-Se multilayer nanostructures are perspective for the direct recording of holographic diffraction gratings and other optical elements.
Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model
Zhang Xin, E-mail: zhangxin@mail.neu.edu.c [Department of Physics, College of Sciences, Northeastern University, Shenyang 110004 (China); Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100080 (China)
2010-01-18
The current observational data imply that the universe would end with a cosmic doomsday in the holographic dark energy model. However, unfortunately, the big-rip singularity will ruin the theoretical foundation of the holographic dark energy scenario. To rescue the holographic scenario of dark energy, we employ the braneworld cosmology and incorporate the extra-dimension effects into the holographic theory of dark energy. We find that such a mend could erase the big-rip singularity and leads to a de Sitter finale for the holographic cosmos. Therefore, in the holographic dark energy model, the extra-dimension recipe could heal the world.
Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model
Zhang, Xin
2009-01-01
The current observational data imply that the universe would end with a cosmic doomsday in the holographic dark energy model. However, unfortunately, the big-rip singularity will ruin the theoretical foundation of the holographic dark energy scenario. To rescue the holographic scenario of dark energy, we employ the braneworld cosmology and incorporate the extra-dimension effects into the holographic theory of dark energy. We find that such a mend could erase the big-rip singularity and leads to a de Sitter finale for the holographic cosmos. Therefore, in the holographic dark energy model, the extra-dimension recipe could heal the world.
Exploring Neural Cell Dynamics with Digital Holographic Microscopy
Marquet, Pierre
2013-04-21
In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.
3D Holographic Technology and Its Educational Potential
Lee, Hyangsook
2013-01-01
This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.
A holographic perspective on phonons and pseudo-phonons
Amoretti, Andrea; Argurio, Riccardo; Musso, Daniele; Zayas, Leopoldo A Pando
2016-01-01
We analyze the concomitant spontaneous breaking of translation and conformal symmetries by introducing in a CFT a complex scalar operator that acquires a spatially dependent expectation value. The model, inspired by the holographic Q-lattice, provides a privileged setup to study the emergence of phonons from a spontaneous translational symmetry breaking in a conformal field theory and offers valuable hints for the treatment of phonons in QFT at large. We first analyze the Ward identity structure by means of standard QFT techniques, considering both spontaneous and explicit symmetry breaking. Next, by implementing holographic renormalization, we show that the same set of Ward identities holds in the holographic Q-lattice. Eventually, relying on the holographic and QFT results, we study the correlators realizing the symmetry breaking pattern and how they encode information about the low-energy spectrum.
Fluctuations of spacetime and holographic noise in atomic interferometry
Göklü, Ertan
2009-01-01
Space--time can be understood as some kind of space--time foam of fluctuating bubbles or loops which are expected to be an outcome of a theory of quantum gravity. One recently discussed model for this kind of space--time fluctuations is the holographic principle which allows to deduce the structure of these fluctuations. We review and discuss two scenarios which rely on the holographic principle leading to holographic noise. One scenario leads to fluctuations of the space--time metric affecting the dynamics of quantum systems: (i) an apparent violation of the equivalence principle, (ii) a modification of the spreading of wave packets, and (iii) a loss of quantum coherence. All these effects can be tested with cold atoms. These tests would supplement measurements of a so called ``mystery noise'' at the gravitational wave detector GEO600 which was recently speculated to have its origin in holographic noise.
Quantitative measurement of holographic image quality using Adobe Photoshop
Wesly, E.
2013-02-01
Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.
Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry
Miller, Arne; McLaughlin, W. L.
1975-01-01
Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images and measur......Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k...
Holographic Renormalization of general dilaton-axion gravity
Papadimitriou, Ioannis
2011-01-01
We consider a very general dilaton-axion system coupled to Einstein-Hilbert gravity in arbitrary dimension and we carry out holographic renormalization for any dimension up to and including five dimensions. This is achieved by developing a new systematic algorithm for iteratively solving the radial Hamilton-Jacobi equation in a derivative expansion. The boundary term derived is valid not only for asymptotically AdS backgrounds, but also for more general asymptotics, including non-conformal branes and Improved Holographic QCD. In the second half of the paper, we apply the general result to Improved Holographic QCD with arbitrary dilaton potential. In particular, we derive the generalized Fefferman-Graham asymptotic expansions and provide a proof of the holographic Ward identities.
A Holographic Entanglement Entropy Conjecture for General Spacetimes
Sanches, Fabio
2016-01-01
We present a natural generalization of holographic entanglement entropy proposals beyond the scope of AdS/CFT by anchoring extremal surfaces to holographic screens. Holographic screens are a natural extension of the AdS boundary to arbitrary spacetimes and are preferred codimension 1 surfaces from the viewpoint of the covariant entropy bound. Screens have a unique preferred foliation into codimension 2 surfaces called leaves. Our proposal is to find the areas of extremal surfaces achored to the boundaries of regions in leaves. We show that the properties of holographic screens are sufficient to prove, under generic conditions, that extremal surfaces anchored in this way always lie within a causal region associated with a given leaf. Within this causal region, a maximin construction similar to that of Wall proves that our proposed quantity satisfies standard properties of entanglement entropy like strong subadditivity. We conjecture that our prescription computes entanglement entropies in quantum states that h...
Automated Digital Analysis Of Holographic Interferograms Of Pure Translations
Choudry, A.; Frankena, H. J.; van Beek, J. W.
1983-10-01
Holographic interferometry is a versatile technique for non-tactile measurement of changes in a wide variety of physical variables such as temperature, strain, position etc. It has a great potential for becoming an important metrologic technique in industrial applications. For holographic interferometry to become more attractive for industrial practice the problem of quantitative analysis of the patterns and thereby eliciting reliable values of the relevant parameters has to be addressed. In an attempt to calibrate the technique of holographic interferometry and ascertain the reliability of the subsequent digital analysis, we have chosen precisely known translations as a basis. Holographic interferograms taken from these are analysed manually and by digital techniques specially developed for such patterns. The results are promising enough to indicate the feasibility of automated digital analysis for determining translations within an acceptable accuracy. Some details of the evaluation techniques, along with a brief discussion of the preliminary results are presented.
Experiments on diffusion in liquids using holographic interferometry
Fenichel, Henry; Frankena, Hans; Groen, Fokke
1984-08-01
An experiment is described which uses the technique of holographic interferometry to study diffusion in liquids. The diffusion process can be recorded on double exposed holograms or it can be observed and recorded in real time using video techniques.
Entanglement Entropy for time dependent two dimensional holographic superconductor
Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R
2016-01-01
We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.
3D Holographic Technology and Its Educational Potential
Lee, Hyangsook
2013-01-01
This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.
Holographic entanglement and causal information in coherent states
Gentle, Simon A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Rangamani, Mukund [Centre for Particle Theory & Department of Mathematical Sciences, Lower Mountjoy, South Road, Durham DH1 3LE (United Kingdom)
2014-01-22
Scalar solitons in global AdS{sub 4} are holographically dual to coherent states carrying a non-trivial condensate of a scalar operator. We study the holographic information content of these states, focusing on a particular spatial region, by examining the entanglement entropy and causal holographic information. We show generically that whenever the dimension of the condensed operator is sufficiently low (characterized by the double-trace operator becoming relevant), such coherent states have lower entanglement and causal holographic information than the vacuum state of the system, despite having greater energy. We also use these geometries to illustrate the fact that causal wedges associated with a simply-connected boundary region can have non-trivial topology even in causally trivial spacetimes.
Holographic storage scheme based on digital signal processing
Kebin Jia(贾克斌); Dapeng Yang(杨大鹏); Shubo Dun(敦书波); Shiquan Tao(陶世荃); Mingyan Qin(覃鸣燕)
2003-01-01
In this paper, a holographic storage scheme for multimedia data storage and retrieval based on the digitalsignal processing (DSP) is designed. A communication model for holographic storage system is obtainedon the analogy of traditional communication system. Many characteristics of holographic storage areembodied in the communication model. Then some new methods of DSP including two-dimensional (2-D)shifting interleaving, encoding and decoding of modulation-array (MA) code and method of soft-decision,etc. are proposed and employed in the system. From the results of experiments it can be seen that thosemeasures can effectively reduce the influence of noise. A segment of multimedia data, including video andaudio data, is retrieved successfully after holographic storage by using those techniques.
Holographic butterfly effect and diffusion in quantum critical region
Ling, Yi; Xian, Zhuo-Yu
2017-09-01
We investigate the butterfly effect and charge diffusion near the quantum phase transition in holographic approach. We argue that their criticality is controlled by the holographic scaling geometry with deformations induced by a relevant operator at finite temperature. Specifically, in the quantum critical region controlled by a single fixed point, the butterfly velocity decreases when deviating from the critical point. While, in the non-critical region, the behavior of the butterfly velocity depends on the specific phase at low temperature. Moreover, in the holographic Berezinskii-Kosterlitz-Thouless transition, the universal behavior of the butterfly velocity is absent. Finally, the tendency of our holographic results matches with the numerical results of Bose-Hubbard model. A comparison between our result and that in the O( N ) nonlinear sigma model is also given.
Review of Random Phase Encoding in Volume Holographic Storage
Wei-Chia Su
2012-09-01
Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.
Holographic RG flows, entanglement entropy and the sum rule
Casini, Horacio; Torroba, Gonzalo
2015-01-01
We calculate the two-point function of the trace of the stress tensor in holographic renormalization group flows between pairs of conformal field theories. We show that the term proportional to the momentum squared in this correlator gives the change of the central charge between fixed points in d=2 and in d>2 it gives the holographic entanglement entropy for a planar region. This can also be seen as a holographic realization of the Adler-Zee formula for the renormalization of Newton's constant. Holographic regularization is found to provide a perfect match of the finite and divergent terms of the sum rule, and it is analogous to the regularization of the entropy in terms of mutual information. Finally, we provide a general proof of reflection positivity in terms of stability of the dual bulk action, and discuss the relation between unitarity constraints, the null energy condition and regularity in the interior of the gravity solution.
Can Holographic dark energy increase the mass of the wormhole?
Chattopadhyay, Surajit; Altaibayeva, Aziza; Myrzakulov, Ratbay
2014-01-01
In this work, we have studied accretion of dark energy (DE) onto Morris- Thorne wormhole with three different forms, namely, holographic dark energy, holographic Ricci dark energy and modified holographic Ricci dark energy . Considering the scale factor in power-law form we have observed that as the holographic dark energy accretes onto wormhole, the mass of the wormhole is decreasing. In the next phase we considered three parameterization schemes that are able to get hold of quintessence as well as phantom phases. Without any choice of scale factor we reconstructed Hubble parameter from conservation equation and dark energy densities and subsequently got the mass of the wormhole separately for accretion of the three dark energy candidates. It was observed that if these dark energies accrete onto the wormhole, then for quintessence stage, wormhole mass decreases up to a certain finite value and then again increases to aggressively during phantom phase of the universe.
Under The Dome: Doped holographic superconductors with broken translational symmetry
Baggioli, Matteo
2015-01-01
We comment on a simple way to accommodate translational symmetry breaking into the recently proposed holographic model which features a superconducting dome-shaped region on the temperature-doping phase diagram.
Avoiding Boltzmann Brain domination in holographic dark energy models
Horvat, R
2015-01-01
.... The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating...
Holographic entanglement entropy in 2D holographic superconductor via AdS3/CFT2
Davood Momeni
2015-07-01
Full Text Available The aim of the present letter is to find the holographic entanglement entropy (HEE in 2D holographic superconductors (HSC. Indeed, it is possible to compute the exact form of this entropy due to an advantage of approximate solutions inside normal and superconducting phases with backreactions. By making the UV and IR limits applied to the integrals, an approximate expression for HEE is obtained. In case the software cannot calculate minimal surface integrals analytically, it offers the possibility to proceed with a numerical evaluation of the corresponding terms. We'll understand how the area formula incorporates the structure of the domain wall approximation. We see that HEE changes linearly with belt angle. It's due to the extensivity of this type of entropy and the emergent of an entropic force. We find that the wider belt angle corresponds to a larger holographic surface. Another remarkable observation is that no “confinement/deconfinement” phase transition point exists in our 2D dual field theory. Furthermore, we observe that the slope of the HEE with respect to the temperature dSdT decreases, thanks to the emergence extra degree of freedom(s in low temperature system. A first order phase transition is detected near the critical point.
Reverse-symmetry waveguides: Theory and fabrication
Horvath, R.; Lindvold, Lars René; Larsen, N.B.
2002-01-01
We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractiv...... has the advantage of deeper penetration of the evanescent electromagnetic field into the cover medium, theoretically permitting higher sensitivity to analytes compared to traditional waveguide designs. We present calculated sensitivities and probing depths of conventional and reverse...
Holographic Refraction and the Measurement of Spherical Ametropia.
Nguyen, Nicholas Hoai Nam
2016-10-01
To evaluate the performance of a holographic logMAR chart for the subjective spherical refraction of the human eye. Bland-Altman analysis was used to assess the level of agreement between subjective spherical refraction using the holographic logMAR chart and conventional autorefraction and subjective spherical refraction. The 95% limits of agreement (LoA) were calculated between holographic refraction and the two standard methods (subjective and autorefraction). Holographic refraction has a lower mean spherical refraction when compared to conventional refraction (LoA 0.11 ± 0.65 D) and when compared to autorefraction (LoA 0.36 ± 0.77 D). After correcting for systemic bias, this is comparable between autorefraction and conventional subjective refraction (LoA 0.45 ± 0.79 D). After correcting for differences in vergence distance and chromatic aberration between holographic and conventional refraction, approximately 65% (group 1) of measurements between holography and conventional subjective refraction were similar (MD = 0.13 D, SD = 0.00 D). The remaining 35% (group 2) had a mean difference of 0.45 D (SD = 0.12 D) between the two subjective methods. Descriptive statistics showed group 2's mean age (21 years, SD = 13 years) was considerably lower than group 1's mean age (41 years, SD = 17), suggesting accommodation may have a role in the greater mean difference of group 2. Overall, holographic refraction has good agreement with conventional refraction and is a viable alternative for spherical subjective refraction. A larger bias between holographic and conventional refraction was found in younger subjects than older subjects, suggesting an association between accommodation and myopic over-correction during holographic refraction.
Holographic Gratings in Azobenzene Side-Chain Polymethacrylates
Andruzzi, Luisa; Altomare, Angelina; Ciardelli, Francesco
1999-01-01
Optical storage properties of thin unoriented liquid crystalline and amorphous side-chain azobenzene polymethacrylate films are examined by polarization holographic measurements. The investigated materials are free radical copolymers derived from two photochromic monomers, 6-(4-oxy-4'-cyanoazoben......Optical storage properties of thin unoriented liquid crystalline and amorphous side-chain azobenzene polymethacrylate films are examined by polarization holographic measurements. The investigated materials are free radical copolymers derived from two photochromic monomers, 6-(4-oxy-4...
P-Wave Holographic Insulator/Superconductor Phase Transition
Akhavan, Amin
2010-01-01
Using a five dimensional AdS soliton in an Einstein-Yang-Mills theory with SU(2) gauge group we study p-wave holographic insulator/superconductor phase transition. To explore the phase structure of the model we consider the system in the probe limit as well as fully back reacted solutions. We will also study zero temperature limit of the p-wave holographic superconductor in four dimensions.
Holographic Entanglement Entropy in Insulator/Superconductor Transition
Cai, Rong-Gen; Li, Li; Zhang, Yun-Long
2012-01-01
We investigate the behaviors of entanglement entropy in the holographical insulator/superconductor phase transition. We calculate the holographic entanglement entropy for two kinds of geometry configurations in a completely back-reacted gravitational background describing the insulator/superconductor phase transition. The non-monotonic behavior of the entanglement entropy is found in this system. In the belt geometry case, there exist four phases characterized by the chemical potential and belt width.
Holographic Entanglement Entropy in Insulator/Superconductor Transition
Cai, Rong-Gen; He, Song; Li, Li; Zhang, Yun-Long
2012-01-01
We investigate the behaviors of entanglement entropy in the holographical insulator/superconductor phase transition. We calculate the holographic entanglement entropy for two kinds of geometry configurations in a completely back-reacted gravitational background describing the insulator/superconductor phase transition. The non-monotonic behavior of the entanglement entropy is found in this system. In the belt geometry case, there exist four phases characterized by the chemical potential and be...
Glueball decay patterns in top-down holographic QCD
Brünner, Frederic; Rebhan, Anton
2015-01-01
We discuss our results on scalar glueball decay in the top-down holographic Witten-Sakai-Sugimoto model for low-energy QCD and compare with available experimental data, which appear to disfavor the glueball candidate $f_0(1500)$ but seem to be perfectly consistent with interpreting $f_0(1710)$ as a nearly unmixed glueball. The holographic model moreover makes definite predictions for future experiments.
Note on the butterfly effect in holographic superconductor models
Ling, Yi; Wu, Jian-Pin
2016-01-01
In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.
Quantum logic via optimal control in holographic dipole traps
Dorner, U [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Calarco, T [ECT, I-38050 Villazzano, TN (Italy); Zoller, P [Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Browaeys, A [Laboratoire Charles Fabry de l' Institut d' Optique, Centre Universitaire, Batiment 503, F-91403 Orsay (France); Grangier, P [Laboratoire Charles Fabry de l' Institut d' Optique, Centre Universitaire, Batiment 503, F-91403 Orsay (France)
2005-10-01
We propose a scheme for quantum logic with neutral atoms stored in an array of holographic dipole traps where the positions of the atoms can be rearranged by using holographic optical tweezers. In particular, this allows for the transport of two atoms to the same well where an external control field is used to perform gate operations via the molecular interaction between the atoms. We show that optimal control techniques allow for the fast implementation of the gates with high fidelity.
Quantum logic via optimal control in holographic dipole traps
Dorner, U; Zoller, P; Browaeys, A; Grangier, P
2005-01-01
We propose a scheme for quantum logic with neutral atoms stored in an array of holographic dipole traps where the positions of the atoms can be rearranged by using holographic optical tweezers. In particular, this allows for the transport of two atoms to the same well where an external control field is used to perform gate operations via the molecular interaction between the atoms. We show that optimal control techniques allow for the fast implementation of the gates with high fidelity.
Holographic dark energy and f(R) gravity
Aghamohammadi, A [Faculty of Science, Islamic Azad University of Sanandaj, Sanandaj (Iran, Islamic Republic of); Saaidi, Kh, E-mail: ksaaidi@uok.ac.ir, E-mail: agha35484@yahoo.com [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2011-02-15
We investigate the corresponding relation between f(R) gravity and holographic dark energy. We introduce a type of energy density from f(R) that has the same role as holographic dark energy. We obtain the differential equation that specifies the evolution of the introduced energy density parameter based on a varying gravitational constant. We discover the relation for the equation of state parameter for low redshifts that contains varying G correction.
High speed optical object recognition processor with massive holographic memory
Chao, T.; Zhou, H.; Reyes, G.
2002-01-01
Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.
Nonlinear Blind Equalization for Volume Holographic Data Storage
商未雄; 何庆声; 金国藩
2004-01-01
We investigate the nonlinear blind equalization for volume holographic data storage channel. Base on the recurrent neural network channel model, we describe a novel blind equalizer for the volume holographic data storage system to improve the bit error rate and hence to make the storage densities achievable. The experimental results also indicate that a significant improvement in the bit error rate to 2.55 × 10-3 is possible with the nonlinear blind equalization.
Holographic Dark Energy from a Modified GBIG Scenario
Nozari, Kourosh
2009-01-01
We construct a holographic dark energy model in a braneworld setup that gravity is induced on the brane embedded in a bulk with Gauss-Bonnet curvature term. We include possible modification of the induced gravity and its coupling with a canonical scalar field on the brane. Through a perturbational approach to calculate the effective gravitation constant on the brane, we examine the outcome of this model as a candidate for holographic dark energy.
Note on the butterfly effect in holographic superconductor models
Yi Ling
2017-05-01
Full Text Available In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.
Note on the butterfly effect in holographic superconductor models
Ling, Yi; Liu, Peng; Wu, Jian-Pin
2017-05-01
In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.
1980-02-01
will have been introduced. 9. Reversible celular autemata We shall assume the reader to have some familiarity with the concept of cel- lular...10003 Mr. Kin B. Thcmpson 1 copy Technical Director Information Systems Divisia.i Naval Research Laboratory (OP-91T) Technical Information Division
High quality digital holographic reconstruction on analog film
Nelsen, B.; Hartmann, P.
2017-05-01
High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.
3D holographic portraits: presence and absence
Oliveria, Rosa M.; Bernardo, Luís Miguel
2011-02-01
Authors writing about the portrait insist on the status of extending the model image portrayed beyond the absence and even death. The portrait also has this ability and suggests immortality. The picture suspends the time, making the absent present. The portrait has been, over time, one of the themes mostly used in art. No wonder that in holography it is an important subject as well. The face is a body area of privileged communication and expression. It expresses emotions through looks, smiles, movements and expressions. Being Holography, so far, the recording technology that represents the object most similar to the original, with the same parallax, we may fall into a mimetic representation of reality. On Art Holography even by following paths already traversed, the resulting holograms are always different because of the unique concept that each artist-holographer puts into his work. As with any other artistic technology, each artist uses the medium differently and with different results.
Understanding the holographic principle via RG flow
Mukhopadhyay, Ayan
2016-01-01
This is a review of some recent works which demonstrate how the classical equations of gravity in AdS themselves hold the key to understanding their holographic origin in the form of a strongly coupled large $N$ QFT whose algebra of local operators can be generated by a few (single-trace) elements. I discuss how this can be realised by reformulating Einstein's equations in AdS in the form of a non-perturbative RG flow that further leads to a new approach towards constructing strongly interacting QFTs. In particular, the RG flow can self-determine the UV data that are otherwise obtained by solving classical gravity equations and demanding that the solutions do not have naked singularities. For a concrete demonstration, I focus on the hydrodynamic limit in which case this RG flow connects the AdS/CFT correspondence with the membrane paradigm, and also reproduces the known values of the dual QFT transport coefficients.
Holographic Polytropic f(T Gravity Models
Surajit Chattopadhyay
2015-01-01
Full Text Available The present paper reports a study on the cosmological consequences arising from reconstructing f(T gravity through new holographic polytropic dark energy. We assume two approaches, namely, a particular form of Hubble parameter H and a solution for f(T. We obtain the deceleration parameter and effective equation of state, as well as torsion equation of state parameters from total density and pressure in both cases. It is interesting to mention here that the deceleration and torsion equation of state represent transition from deceleration to acceleration phase. We study the statefinder parameters under both approaches which result in the fact that statefinder trajectories are found to attain ΛCDM point. The comparison with observational data represents consistent results. Also, we discuss the stability of reconstructed models through squared speed of sound which represents stability in late times.
Holographic Dual of the Lowest Landau Level
Blake, Mike; Tong, David; Wong, Kenny
2012-01-01
We describe the lowest Landau level of a quantum electron star in AdS4. In the presence of a suitably strong magnetic field, the dynamics of fermions in the bulk is effectively reduced from four to two dimensions. These two-dimensional fermions can subsequently be treated using the techniques of bosonization and the difficult many-body problem of building a gravitating, charged quantum star is reduced to solving the sine-Gordon model coupled to a gauge field and a metric. The kinks of the sine-Gordon model provide the holographic dual of the lowest Landau levels of the strongly-coupled d=2+1 dimensional boundary field theory. The system exhibits order one oscillations in the magnetic susceptibility, now arising as a classical effect in the bulk. Moreover, as the chemical potential is varied, we find jumps in the charge density, oscillations in the fractionalised charge density and plateaux in the cohesive charge density
Noncommutative effects of spacetime on holographic superconductors
Ghorai, Debabrata, E-mail: debanuphy123@gmail.com [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098 (India); Gangopadhyay, Sunandan, E-mail: sunandan.gangopadhyay@gmail.com [Department of Physics, West Bengal State University, Barasat (India); Inter University Centre for Astronomy & Astrophysics, Pune (India)
2016-07-10
The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.
A Holographic Model For Quantum Critical Responses
Myers, Robert C; Witczak-Krempa, William
2016-01-01
We analyze the dynamical response functions of strongly interacting quantum critical states described by conformal field theories (CFTs). We construct a self-consistent holographic model that incorporates the relevant scalar operator driving the quantum critical phase transition. Focusing on the finite temperature dynamical conductivity $\\sigma(\\omega,T)$, we study its dependence on our model parameters, notably the scaling dimension of the relevant operator. It is found that the conductivity is well-approximated by a simple ansatz proposed by Katz et al [1] for a wide range of parameters. We further dissect the conductivity at large frequencies $\\omega >> T$ using the operator product expansion, and show how it reveals the spectrum of our model CFT. Our results provide a physically-constrained framework to study the analytic continuation of quantum Monte Carlo data, as we illustrate using the O(2) Wilson-Fisher CFT. Finally, we comment on the variation of the conductivity as we tune away from the quantum cri...
Holographic Vortex Pair Annihilation in Superfluid Turbulence
Du, Yiqiang; Tian, Yu; Zhang, Hongbao
2014-01-01
We make a first principles investigation of the dynamical evolution of vortex number in a two-dimensional (2D) turbulent superfluid by holography through numerically solving its highly non-trivial gravity dual. With the randomly placed vortices and antivortices prepared as initial states, we find that the temporal evolution of the vortex number can be well fit statistically by two-body decay due to the vortex pair annihilation featured relaxation process remarkably from a very early time on. In particular, subtracted by the universal offset, the power law fit indicates that our holographic turbulent superfluid exhibits an apparently different decay pattern from the superfluid recently experimented in highly oblate Bose-Einstein condensates.
Holographic phase transitions at finite chemical potential
Mateos, David; Matsuura, Shunji; Myers, Robert C.; Thomson, Rowan M.
2007-11-01
Recently, holographic techniques have been used to study the thermal properties of Script N = 2 super-Yang-Mills theory, with gauge group SU(Nc) and coupled to Nf coupling. Here we consider the phase diagram as a function of temperature and baryon chemical potential μb. For fixed μb transitions separating a region with vanishing baryon density and one with nonzero density. For fixed μb>Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].
Cellular Dynamics Revealed by Digital Holographic Microscopy☆
Marquet, P.
2016-11-22
Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.
Universal properties of cold holographic matter
Jokela, Niko
2015-01-01
We study the collective excitations of holographic quantum liquids formed in the low energy theory living at the intersection of two sets of D-branes. The corresponding field theory dual is a supersymmetric Yang-Mills theory with massless matter hypermultiplets in the fundamental representation of the gauge group which generically live on a defect of the unflavored theory. Working in the quenched (probe) approximation, we focus on determining the universal properties of these systems. We analyze their thermodynamics, the speed of first sound, the diffusion constant, and the speed of zero sound. We study the influence of temperature, chemical potential, and magnetic field on these quantities, as well as on the corresponding collisionless/hydrodynamic crossover. We also generalize the alternative quantization for all conformally $AdS_4$ backgrounds and study the anyonic correlators.
Shell deformation studies using holographic interferometry
Parmerter, R. R.
1974-01-01
The buckling of shallow spherical shells under pressure has been the subject of many theoretical and experimental papers. Experimental data above the theoretical buckling load of Huang have given rise to speculation that shallow shell theory may not adequately predict the stability of nonsymmetric modes in higher-rise shells which are normally classified as shallow by the Reissner criterion. This article considers holographic interferometry as a noncontact, high-resolution method of measuring prebuckling deformations. Prebuckling deformations of a lambda = 9, h/b = 0.038 shell are Fourier-analyzed. Buckling is found to occur in an N = 5 mode as predicted by Huang's theory. The N = 4 mode was unusually stable, suggesting that even at this low value of h/b, stabilizing effects may be at work.
Digital Holographic Microscopy Principles, Techniques, and Applications
Kim, Myung K
2011-01-01
Digital holography is an emerging field of new paradigm in general imaging applications. By replacing the photochemical procedures with electronic imaging and having a direct numerical access to the complex optical field, a wide range of new imaging capabilities become available, many of them difficult or infeasible in conventional holography. An increasing number of researchers—not only in optical physics and optical engineering, but also in diverse applications areas such as microbiology, medicine, marine science, particle analysis, microelectromechanics, and metrology—are realizing and exploiting the new capabilities of digital holography. Digital Holographic Microscopy: Principles, Techniques, and Applications, by Dr. Myung K. Kim, is intended to provide a brief but consistent introduction to the principles of digital holography as well as to give an organized overview of the large number of techniques and applications being developed. This will also shed some light on the range of possibilities for f...
Inverse magnetic catalysis in dense holographic matter
Preis, Florian; Schmitt, Andreas
2010-01-01
We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition ...
Cavity techniques for holographic data storage recording.
Miller, Bo E; Takashima, Yuzuru
2016-03-21
Conventionally, reading and writing of data holograms utilizes a fraction of the light power because of a trade off in write and read efficiencies. This system constraint can be mitigated by applying a resonator cavity. Cavities enable more efficient use of the available light leading to enhanced read and write data rates with no additional energy cost. This enhancement is inversely related to diffraction efficiency, so these techniques work well for large capacity holographic data storage having low diffraction efficiency. The enhancement in write data transfer rate is evaluated by writing plane wave holograms and image bearing holograms in Fe:LiNbO3 with a 532 nm wavelength laser. We confirmed 1.2 times enhancement in write data rate, out of a 1.4 theoretical maximum for materials absorption of 16%.
Linearized holographic isotropization at finite coupling
Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)
2017-06-15
We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)
Holo-GPC: Holographic Generalized Phase Contrast
Bañas, Andrew; Glückstad, Jesper
2017-01-01
Light shaping methods based on spatial phase-only modulation can be classified depending on whether they distribute multiple beams or shape the individual beams. Diffractive optics or holography can be classified as the former, as it spatially distributes a plurality of focal spots over a working...... volume. On the other hand, Generalized Phase Contrast (GPC) forms beams with well-defined lateral shapes and could be classified as the latter. To certain extents, GPC and holography can also perform both beam distribution and beam shaping. But despite the overlap in beam distribution and beam shaping...... of GPC in forming well-defined speckle-free shapes that can be distributed over an extended 3D volume through holographic means. The combined strengths of the two photon-efficient phase-only light shaping modalities open new possibilities for contemporary laser sculpting applications....
Holographic interpretations of the renormalization group
Balasubramanian, Vijay; Lawrence, Albion
2012-01-01
In semiclassical holographic duality, the running couplings of a field theory are conventionally identified with the classical solutions of field equations in the dual gravitational theory. However, this identification is unclear when the bulk fields fluctuate. Recent work has used a Wilsonian framework to propose an alternative identification of the running couplings in terms of non-fluctuating data; in the classical limit, these new couplings do not satisfy the bulk equations of motion. We study renormalization scheme dependence in the latter formalism, and show that a scheme exists in which couplings to single trace operators realize particular solutions to the bulk equations of motion, in the semiclassical limit. This occurs for operators with dimension $\\Delta \
A Holographic Bound on Cosmic Magnetic Fields
McInnes, Brett
2015-01-01
Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary) times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark-gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description. We show that holography imposes an upper bound on the intensity of magnetic fields (scaled by the squared temperature) in these circumstances, and that the values expected in some models of cosmic magnetism come close to attaining that bound.
A holographic three-slit interferometer
王丁; LI; Jingsong
2002-01-01
A new type of real-time holographic three-slit interferometer is presented.It uses a calcite polarized optical element to obtain objective light and reference light to record a hologram.Its remarkable feature is to use a beam of fixed slit diffracted light as the reference light to record the lateral slit diffracted wave front,and to use also the same diffracted light as the illuminating light to reconstruct the wave front.This insures the phase distribution of the reconstructed wave front against the influence by the small natural direction drift of the laser beam and also by the tiny external vibration.The stabillity,reliability and measuring accuracy of this apparatus are improved notably.
Holographic thermal relaxation in superfluid turbulence
Du, Yiqiang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Niu, Chao [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); Zhang, Hongbao [Department of Physics, Beijing Normal University,Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)
2015-12-02
Holographic duality provides a first-principles approach to investigate real time processes in quantum many-body systems, in particular at finite temperature and far-from-equilibrium. We use this approach to study the dynamical evolution of vortex number in a two-dimensional (2D) turbulent superfluid through numerically solving its gravity dual. We find that the temporal evolution of the vortex number can be well fit statistically by two-body decay due to the vortex pair annihilation featured relaxation process, thus confirm the previous suspicion based on the experimental data for turbulent superfluid in highly oblate Bose-Einstein condensates. Furthermore, the decay rate near the critical temperature is in good agreement with the recently developed effective theory of 2D superfluid turbulence.
Holographic Isotropisation in Gauss-Bonnet Gravity
Andrade, Tomas; Ficnar, Andrej
2016-01-01
We study holographic isotropisation of homogeneous, strongly coupled, non-Abelian plasmas in Gauss-Bonnet gravity with a negative cosmological constant. We focus on small values of the Gauss-Bonnet coupling parameter $\\lambda_{GB}$ and linearise the equations of motion around a time-dependent background solution with $\\lambda_{GB}=0$. We numerically solve the linearised equations and show that the entire time evolution of the pressure anisotropy can be well approximated by the linear in $\\lambda_{GB}$ corrections to the quasinormal mode expansion, even in the cases of high anisotropy. We finally show that, quite generally, the time evolution of the pressure anisotropy with the Gauss-Bonnet term is approximately {\\it shifted} with respect to the evolution without it, with the sign of the shift being directly related to the sign of the $\\lambda_{GB}$ parameter. This suggests that finite coupling corrections generically {\\it increase} the isotropisation time of strongly coupled plasmas.
Real Observers and the Holographic Principle
Dance, M C
2004-01-01
The holographic principle asserts that the observable number of degrees of freedom inside a volume is proportional not to the volume, but to the surface area bounding the volume. There is currently a need to explain the principle in terms of a more fundamental microscopic theory. This paper suggests a potential explanation. This paper suggests that in general, for an observer to observe the r coordinate of an event, the process of making that observation must generate at least as much entropy as the information that the observation gains. Following on from that, this paper sets out a simple argument that leads to the result that observers on the surface of a sphere can observe an amount of information about the enclosed system that is no more than an amount that is proportional to the surface area of the sphere.
A holographic bound on cosmic magnetic fields
Brett McInnes
2015-03-01
Full Text Available Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark–gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description in terms of a thermal asymptotically AdS black hole. We show that holography imposes an upper bound on the intensity of magnetic fields (≈3.6×1018gauss at the hadronization temperature in these circumstances; this is above, but not far above, the values expected in some models of cosmic magnetogenesis.
Holographic Schwinger effect in de Sitter space
Fischler, Willy; Pedraza, Juan F; Tangarife, Walter
2014-01-01
Using the AdS/CFT correspondence, we construct the holographic dual of a tunneling instanton describing Schwinger pair creation in de Sitter space. Our approach allows us to extract the critical value of the electric field for which the potential barrier disappears, rendering the vacuum unstable. In addition, we compute the large-$\\lambda$, large-$N_c$ corrections to the nucleation rate and we find that it agrees with previous expectations based on perturbative computations. As a by-product of this investigation, we study the causal structure of the string dual to the nucleated pair as seen by different static observers and we show that it can be interpreted as a dynamical creation of a `gluonic' wormhole. We explain how this result provides further evidence for the ER=EPR conjecture as an equivalence between two descriptions of the same physical phenomenon.
Holographic EPR Pairs, Wormholes and Radiation
Chernicoff, Mariano; Pedraza, Juan F
2013-01-01
As evidence for the ER=EPR conjecture, it has recently been observed that the string that is holographically dual to an entangled quark-antiquark pair separating with (asymptotically) uniform acceleration has a wormhole on its worldsheet. We point out that a two-sided horizon and a wormhole actually appear for much more generic quark-antiquark trajectories, which is consistent with the fact that the members of an EPR pair need not be permanently out of causal contact. The feature that determines whether the causal structure of the string worldsheet is trivial or not turns out to be the emission of gluonic radiation by the dual quark and antiquark. In the strongly-coupled gauge theory, it is only when radiation is emitted that one obtains an unambiguous separation of the pair into entangled subsystems, and this is what is reflected on the gravity side by the existence of the worldsheet horizon.
Noncommutative effects of spacetime on holographic superconductors
Debabrata Ghorai
2016-07-01
Full Text Available The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.
Holographic p-wave Superconductor with Disorder
Arean, Daniel; Zayas, Leopoldo A Pando; Landea, Ignacio Salazar; Scardicchio, Antonello
2014-01-01
We implement the effects of disorder on a holographic p-wave superconductor by introducing a random chemical potential which defines the local energy of the charge carriers. Since there are various possibilities for the orientation of the vector order parameter, we explore the behavior of the condensate in the parallel and perpendicular directions to the introduced disorder. We clarify the nature of various branches representing competing solutions and construct the disordered phase diagram. We find that moderate disorder enhances superconductivity as determined by the value of the condensate. The disorder we introduce is characterized by its spectral properties, and we also study its influence on the spectral properties of the condensate and charge density. We find fairly universal responses of the resulting power spectra characterized by linear functions of the disorder power spectrum.
Spatial heterodyne scanning laser confocal holographic microscopy
Liu, Changgeng
2016-01-01
Scanning laser confocal holographic microscopy using a spatial heterodyne detection method is presented. Spatial heterodyne detection technique employs a Mach-Zehnder interferometer with the reference beam frequency shifted by two acousto-optic modulators (AOM) relative to the object beam frequency. Different from the traditional temporal heterodyne detection technique in which hundreds temporal samples are taken at each scanning point to achieve the complex signal, the spatial heterodyne detection technique generates spatial interference fringes by use of a linear tempo-spatial relation provided by galvanometer scanning in a typical line-scanning confocal microscope or for the slow-scanning on one dimension in a point-scanning confocal microscope, thereby significantly reducing sampling rate and increasing the signal to noise ratio under the same illumination compared to the traditional temporal heterodyne counterpart. The proposed spatial heterodyne detection scheme applies to both line-scanning and point-s...
Towards Holographic Renormalization of Fake Supergravity
Borodatchenkova, Natalia; Mueck, Wolfgang
2008-01-01
A step is made towards generalizing the method of holographic renormalization to backgrounds which are not asymptotically AdS, corresponding to a dual gauge theory which has logarithmically running couplings even in the ultraviolet. A prime example is the background of Klebanov-Strassler (KS). In particular, a recipe is given how to calculate renormalized two-point functions for the operators dual to the bulk scalars. The recipe makes use of gauge-invariant variables for the fluctuations around the background and works for any bulk theory of the fake supergravity type. It elegantly incorporates the renormalization scheme dependence of local terms in the correlators. Before applying the method to the KS theory, it is verified that known results in asymptotically AdS backgrounds are reproduced. Finally, some comments on the calculation of renormalized vacuum expectation values are made.
Holographic dark energy interacting with dark matter
Forte, Mónica I
2012-01-01
We investigate a spatially flat Friedmann-Robertson-Walker (FRW) cosmological model with cold dark matter coupled to a dark energy which is given by the modified holographic Ricci cutoff. The interaction used is linear in both dark energy densities, the total energy density and its derivative. Using the statistical method of $\\chi^2$-function for the Hubble data, we obtain $H_0=73.6km/sMpc$, $\\omega_s=\\gamma_s -1=-0.842$ for the asymptotic equation of state and $ z_{acc}= 0.89 $. The estimated values of $\\Omega_{c0}$ which fulfill the current observational bounds corresponds to a dark energy density varying in the range $0.25R < \\ro_x < 0.27R$.
Commensurability effects in holographic homogeneous lattices
Andrade, Tomas
2015-01-01
An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as "homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous ...
Entanglement tsunami: universal scaling in holographic thermalization.
Liu, Hong; Suh, S Josephine
2014-01-10
We consider the time evolution of entanglement entropy after a global quench in a strongly coupled holographic system, whose subsequent equilibration is described in the gravity dual by the gravitational collapse of a thin shell of matter resulting in a black hole. In the limit of large regions of entanglement, the evolution of entanglement entropy is controlled by the geometry around and inside the event horizon of the black hole, resulting in regimes of pre-local-equilibration quadratic growth (in time), post-local-equilibration linear growth, a late-time regime in which the evolution does not carry memory of the size and shape of the entangled region, and a saturation regime with critical behavior resembling those in continuous phase transitions. Collectively, these regimes suggest a picture of entanglement growth in which an "entanglement tsunami" carries entanglement inward from the boundary. We also make a conjecture on the maximal rate of entanglement growth in relativistic systems.
Cell shape identification using digital holographic microscopy
Zakrisson, Johan; Andersson, Magnus
2015-01-01
We present a cost-effective, simple and fast digital holographic microscopy method based upon Rayleigh-Sommerfeld back propagation for identification of the geometrical shape of a cell. The method was tested using synthetic hologram images generated by ray-tracing software and from experimental images of semi-transparent spherical beads and living red blood cells. Our results show that by only using the real part of the back-reconstructed amplitude the proposed method can provide information of the geometrical shape of the object and at the same time accurately determine the axial position of the object under study. The proposed method can be used in flow chamber assays for pathophysiological studies where fast morphological changes of cells are studied in high numbers and at different heights.
Dense QCD: a Holographic Dyonic Salt
Rho, Mannque; Zahed, Ismail
2009-01-01
Dense QCD at zero temperature with a large number of colors is a crystal. We show that in the holographic dual description, the crystal is made out of pairs of dyons with $e=g=\\pm 1$ charges in a salt-like arrangement. We argue that with increasing density the dyon masses and topological charges equalize, turning the salt-like configuration to a bcc of half-instantons. The latter is dual to a cubic crystal of half-skyrmions. We estimate the transition from an fcc crystal of instantons to a bcc crystal of dyons to about 3 times nuclear matter density with a dyon binding energy of about 180 MeV.
Generalized Holographic Superconductors with Higher Derivative Couplings
Dey, Anshuman; Sarkar, Tapobrata
2014-01-01
We introduce and study generalized holographic superconductors with higher derivative couplings between the field strength tensor and a complex scalar field, in four dimensional AdS black hole backgrounds. We study this theory in the probe limit, as well as with backreaction. There are multiple tuning parameters in the theory, and with two non-zero parameters, we show that the theory has a rich phase structure, and in particular, the transition from the normal to the superconducting phase can be tuned to be of first order or of second order within a window of one of these. This is established numerically as well as by computing the free energy of the boundary theory. We further present analytical results for the critical temperature of the model, and compare these with numerical analysis. Optical properties of this system are also studied numerically in the probe limit, and our results show evidence for negative refraction at low frequencies.
The thermoelectric properties of inhomogeneous holographic lattices
Donos, Aristomenis
2014-01-01
We consider inhomogeneous, periodic, holographic lattices of D=4 Einstein-Maxwell theory. We show that the DC thermoelectric conductivity matrix can be expressed analytically in terms of the horizon data of the corresponding black hole solution. We numerically construct such black hole solutions for lattices consisting of one, two and ten wave-numbers. We numerically determine the AC electric conductivity which reveals Drude physics as well as resonances associated with sound modes. No evidence for an intermediate frequency scaling regime is found. All of the monochromatic lattice black holes that we have constructed exhibit scaling behaviour at low temperatures which is consistent with the appearance of $AdS_2\\times\\mathbb{R}^2$ in the far IR at T=0.
Holographic Construction of Excited CFT States
Christodoulou, Ariana
2016-01-01
We present a systematic construction of bulk solutions that are dual to CFT excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised solution is universal and depends only on the conformal dimension of the primary operator that is associated with the state via the operator-state correspondence, while higher order terms depend on detailed properties of the operator, such as its OPE with itself and generally involve many bulk fields. We illustrate the discussion with the holographic construction of the universal part of the solution for states of two dimensional CFTs, either on $R \\times S^1$ or on $R^{1,1}$. We compute the 1-point function both in the CFT and in the bulk, finding exact agreement. We comment on the relation with other reconstruction approaches.
Entanglement Tsunami: Universal Scaling in Holographic Thermalization
Liu, Hong
2013-01-01
We consider the time evolution of entanglement entropy after a global quench in a strongly coupled holographic system, whose subsequent equilibration is described in the gravity dual by the gravitational collapse of a thin shell of matter resulting in a black hole. In the limit of large regions of entanglement, the evolution of entanglement entropy is controlled by the geometry around and inside the event horizon of the black hole, allowing us to identify regimes of pre-local- equilibration quadratic growth (in time), post-local-equilibration linear growth, a late-time regime in which the evolution does not carry any memory of the size and shape of the entangled region, and a saturation regime with critical behavior resembling those in continuous phase transitions. Collectively, these regimes suggest a picture of entanglement growth in which an "entanglement tsunami" carries entanglement inward from the boundary. We also make a conjecture on the maximal rate of entanglement growth in relativistic systems.
Towards a Holographic Marginal Fermi Liquid
Jensen, Kristan; Kachru, Shamit; Karch, Andreas; Polchinski, Joseph; Silverstein, Eva
2011-08-15
We present an infinite class of 2+1 dimensional field theories which, after coupling to semi-holographic fermions, exhibit strange metallic behavior in a suitable large N limit. These theories describe lattices of hypermultiplet defects interacting with parity-preserving supersymmetric Chern-Simons theories with U(N) x U(N) gauge groups at levels {+-}k. They have dual gravitational descriptions in terms of lattices of probe M2 branes in AdS{sub 4} x S{sup 7}/Z{sub k} (for N >> 1,N >> k{sup 5}) or probe D2 branes in AdS{sub 4} x CP{sup 3} (for N >> k >> 1,N << k{sup 5}). We discuss several challenges one faces in maintaining the success of these models at finite N, including backreaction of the probes in the gravity solutions and radiative corrections in the weakly coupled field theory limit.
Towards a holographic marginal Fermi liquid
Jensen, Kristan; Karch, Andreas; Polchinski, Joseph; Silverstein, Eva
2011-01-01
We present an infinite class of 2+1 dimensional field theories which, after coupling to semi-holographic fermions, exhibit strange metallic behavior in a suitable large $N$ limit. These theories describe lattices of hypermultiplet defects interacting with parity-preserving supersymmetric Chern-Simons theories with $U(N) \\times U(N)$ gauge groups at levels $\\pm k$. They have dual gravitational descriptions in terms of lattices of probe M2 branes in $AdS_4 \\times S^7/Z_k$ (for $N \\gg 1, N \\gg k^5$) or probe D2 branes in $AdS_4 \\times CP^3$ (for $N \\gg k \\gg 1, N \\ll k^5$). We discuss several challenges one faces in maintaining the success of these models at finite $N$, including backreaction of the probes in the gravity solutions and radiative corrections in the weakly coupled field theory limit.
Real-time color holographic interferometry
Desse, Jean-Michel; Albe, Felix; Tribillon, Jean-Louis
2002-09-01
A new optical technique based on real-time color holographic interferometry has been developed for analyzing unsteady aerodynamic wakes in fluid mechanics or for measuring displacements and deformations in solid mechanics. The technique's feasibility is demonstrated here. It uses three coherent wavelengths produced simultaneously by a cw laser (mixed argon and krypton). Holograms are recorded on single-layer panchromatic silver halide (Slavich PFG 03C) plates. Results show the optical setup can be adjusted to obtain a uniform background color. The interference fringe pattern visualized is large and colored and exhibits a single central white fringe, which makes the zero order of the interferogram easy to identify. An application in a subsonic wind tunnel is presented, in which the unsteady wake past a cylinder is recorded at high rate.
Interpixel crosstalk cancellation on holographic memory
Ishii, Toshiki; Fujimura, Ryushi
2017-09-01
In holographic memory systems, there have been no practical techniques to minimize interpixel crosstalk thus far. We developed an interpixel crosstalk cancellation technique using a checkerboard phase pattern with a phase difference of π/2, which can decrease the size of the spatial filter along the Fourier plane with the signal-to-noise ratio (SNR) kept high. This interpixel crosstalk cancellation technique is simple because it requires only one phase plate in the signal beam path. We verified the effect of such a cancellation technique by simulation. The improvement of SNR is maximized to 6.5 dB when the filter size specified in the Nyquist areal ratio is approximately 1.05 in ideal optical systems with no other fixed noise. The proposed technique can improve SNR by 0.85 in an assumed monocular architecture at an actual noise intensity. This improvement of SNR is very useful for realizing high-density recording or enhancing system robustness.
Astronomical telescope with holographic primary objective
Ditto, Thomas D.; Friedman, Jeffrey F.; Content, David A.
2011-09-01
A dual dispersion telescope with a plane grating primary objective was previously disclosed that can overcome intrinsic chromatic aberration of dispersive optics while allowing for unprecedented features such as million object spectroscopy, extraordinary étendue, flat primary objective with a relaxed figure tolerance, gossamer membrane substrate stowable as an unsegmented roll inside a delivery vehicle, and extensibility past 100 meter aperture at optical wavelengths. The novel design meets many criteria for space deployment. Other embodiments are suitable for airborne platforms as well as terrestrial and lunar sites. One problem with this novel telescope is that the grazing exodus configuration necessary to achieve a large aperture is traded for throughput efficiency. Now we show how the hologram of a point source used in place of the primary objective plane grating can improve efficiency by lowering the diffraction angle below grazing exodus. An intermediate refractive element is used to compensate for wavelength dependent focal lengths of the holographic primary objective.
Holographic entanglement entropy of surface defects
Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos
2016-04-01
We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena [1] to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.
Holographic entanglement entropy of surface defects
Gentle, Simon A; Marasinou, Chrysostomos
2015-01-01
We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in ${\\cal N}=4$ Super Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed
Experimental research of digital holographic microscopic measuring
Zhu, Xueliang; Chen, Feifei; Li, Jicheng
2013-06-01
Digital holography is a new imaging technique, which is developed on the base of optical holography, Digital processing, and Computer techniques. It is using CCD instead of the conventional silver to record hologram, and then reproducing the 3D contour of the object by the way of computer simulation. Compared with the traditional optical holographic, the whole process is of simple measuring, lower production cost, faster the imaging speed, and with the advantages of non-contact real-time measurement. At present, it can be used in the fields of the morphology detection of tiny objects, micro deformation analysis, and biological cells shape measurement. It is one of the research hot spot at home and abroad. This paper introduced the basic principles and relevant theories about the optical holography and Digital holography, and researched the basic questions which influence the reproduce images in the process of recording and reconstructing of the digital holographic microcopy. In order to get a clear digital hologram, by analyzing the optical system structure, we discussed the recording distance and of the hologram. On the base of the theoretical studies, we established a measurement and analyzed the experimental conditions, then adjusted them to the system. To achieve a precise measurement of tiny object in three-dimension, we measured MEMS micro device for example, and obtained the reproduction three-dimensional contour, realized the three dimensional profile measurement of tiny object. According to the experiment results consider: analysis the reference factors between the zero-order term and a pair of twin-images by the choice of the object light and the reference light and the distance of the recording and reconstructing and the characteristics of reconstruction light on the measurement, the measurement errors were analyzed. The research result shows that the device owns certain reliability.
Cvetič, Mirjam; Papadimitriou, Ioannis
2016-12-01
We construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger [1], in agreement with the results of Castro and Song [2]. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS2 × S 2 or conformally AdS2 × S 2 solutions of the STU model in four dimensions, including non extremal black holes. The four dimensional solutions obtained by uplifting the running dilaton solutions coincide with the so called `subtracted geometries', while those obtained
Optical data storage in nonphotosensitive media by femtosecond laser pulses
无
2007-01-01
Ultrashort lasers have become powerful tools by inducing extremely nonlinear effects in a wide variety of materials.Femtosecond laser data storage in non-photosensitive media is promising for its high density and fast retrieval. We reviewed the progress of three types of femtosecond laser storage in transparent materials: three-dimensional bit-oriented storage by micro-voids, holographic data storage by two beam interference and storage by computer-generated holograms.
Liu, H. K.
1976-01-01
The techniques of speckle beam holographic interferometry and speckle photographic interferometry are described. In particular, their practical limitations and their applications to the existing holographic nondestructive test system are discussed.
Kujawinska, Malgorzata; Jozwicka, Agata; Kozacki, Tomasz
2008-08-01
In order to control performance of photonics microelements it is necessary to receive 3D information about their amplitude and phase distributions. To perform this task we propose to apply tomography based on projections gather by digital holography (DH). Specifically the DH capability to register several angular views of the object during a single hologram capture is employed, which may in future shorten significantly the measurement time or even allow for tomographic analysis of dynamic media. However such a new approach brings a lot of new issues to be considered. Therefore, in this paper the method limitations, with special emphasis on holographic reconstruction process, are investigated through extensive numerical experiments with special focus on 3D refractive index distribution determination.. The main errors and means of their elimination are presented. The possibility of 3D refractive index distribution determination by means of DHT is proved numerically and experimentally.
Measurement of anisotropic energy transport in flowing polymers by using a holographic technique.
Schieber, Jay D; Venerus, David C; Bush, Kendall; Balasubramanian, Venkat; Smoukov, Stoyan
2004-09-07
Almost no experimental data exist to test theories for the nonisothermal flow of complex fluids. To provide quantitative tests for newly proposed theories, we have developed a holographic grating technique to study energy transport in an amorphous polymer melt subject to flow. Polyisobutylene with weight-averaged molecular mass of 85 kDa is sheared at a rate of 10 s(-1), and all nonzero components of the thermal conductivity tensor are measured as a function of time, after cessation. Our results are consistent with proposed generalizations to the energy balance for microstructural fluids, including a generalized Fourier's law for anisotropic media. The data are also consistent with a proposed stress-thermal rule for amorphous polymer melts. Confirmation of the universality of these results would allow numerical modelers to make quantitative predictions for the nonisothermal flow of polymer melts.