Reversed field pinch diagnostics
International Nuclear Information System (INIS)
Weber, P.G.
1986-01-01
The Reversed Field Pinch (RFP) is a toroidal, axisymmetric magnetic confinement configuration characterized by a magnetic field configuration in which the toroidal magnetic field is of similar strength to the poloidal field, and is reversed at the edge compared to the center. The RFP routinely operates at high beta, and is a strong candidate for a compact fusion device. Relevant attributes of the configuration will be presented, together with an overview of present and planned experiments and their diagnostics. RFP diagnostics are in many ways similar to those of other magnetic confinement devices (such as tokamaks); these lectures will point out pertinent differences, and will present some diagnostics which provide special insights into unique attributes of the RFP
Reversed field pinch experiments
International Nuclear Information System (INIS)
Roberston, S.
1991-05-01
The Reversatron RFP is usually operated with toroidal field windings which are a continuous helix of 144 turns. These windings produce a poloidal current which is uniform around the torus. The distribution of current is fixed by the geometry so that the applied field has only an m = 0, n = 0 component. The windings cannot act to stabilize an m = 0 mode with |n| > 0 or any m = 1 mode because these modes will excite no current in the windings. It has recently been suggested that parallel connected field coils might act as a shell by forcing the flux within each winding to be the same. Coils connected in parallel must have the same voltage at their terminals and thus must enclose the same volt-seconds or flux. Data from ZT-40 show that the discharges are more quiescent when parallel or series-parallel connected windings are used
Reversed field pinch ignition requirements
International Nuclear Information System (INIS)
Werley, K.A.
1991-01-01
Plasma models are described and used to calculated numerically the transport confinement (nτ E ) requirements and steady state operation points for both the reversed field pinch (RFP) and the tokamak. The models are used to examine the CIT tokamak ignition conditions and the RFP experimental and ignition conditions. Physics differences between RFPs and tokamaks and their consequences for a D-T ignition machine are discussed. Compared with a tokamak, the ignition RFP has many physics advantages, including Ohmic heating to ignition (no need for auxiliary heating systems), higher beta, lower ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits) and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic field, larger aspect ratios and smaller plasma cross-sections, translate to significant cost reductions for both ignition and reactor applications. The primary drawback of the RFP is the uncertainty that the present scaling will extrapolate to reactor regimes. Devices that are under construction should go a long way toward resolving this scaling uncertainty. The 4 MA ZTH is expected to extend the nτ E transport scaling data by three orders of magnitude above the results of ZT-40M, and, if the present scaling holds, ZTH is expected to achieve a D-T equivalent scientific energy breakeven, Q = 1. A base case RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. (author). 19 refs, 11 figs, 3 tabs
Turbulent transport in reversed field pinches
International Nuclear Information System (INIS)
Christiansen, J.P.; Roberts, K.V.
1976-01-01
MHD stability of the Reversed Field Pinch (RFP) relies on reversal of the toroidal field component in the outer plasma region. Interest in this configuration comes from its potential economic advantages as a thermonuclear reactor, since compared to a Tokamak the RFP supports a higher value of β, the ratio between plasma and total magnetic pressure. Results of computations on the time-evolution of the RFP using a 1D MHD model are reported. (orig./GG) [de
Reversed-Field Pinch plasma model
International Nuclear Information System (INIS)
Miley, G.H.; Nebel, R.A.; Moses, R.W.
1979-01-01
The stability of a Reversed-Field Pinch (RFP) is strongly dependent on the plasma profile and the confining sheared magnetic field. Magnetic diffusion and thermal transport produce changing conditions of stability. Despite the limited understanding of RFP transport, modelling is important to predict general trends and to study possible field programming options. To study the ZT-40 experiment and to predict the performance of future RFP reactors, a one-dimensional transport code has been developed. This code includes a linear, ideal MHD stability check based on an energy principle. The transport section integrates plasma profiles forward in time while the stability section periodically checks the stability of the evolving plasma profile
LASL toroidal reversed-field pinch programme
International Nuclear Information System (INIS)
Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.
1979-01-01
The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)
LASL toroidal reversed-field pinch program
International Nuclear Information System (INIS)
Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.
1978-01-01
The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show over half of the energy loss is accounted for by this mechanism. Thomson scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport are needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given
Interchange stability of noncircular reversed field pinches
International Nuclear Information System (INIS)
Skinner, D.A.; Prager, S.C.; Todd, A.M.M.
1987-08-01
Interchange (Mercier) stability of toroidal reversed-field-pinch plasmas with noncircular cross-section is evaluated numerically. Marginally stable pressure profiles and beta values are produced. Most shapes, such as indented or vertically elongated, reduce stability by making the net magnetic curvature of the poloidal-field-dominated plasmas yet worse than that of the circle. Horizontally elongated plasmas slightly enhance stability beyond that of the circle as a result of increased shear produced by toroidicity. Such shear enhancement by the toroidal shift of magnetic surfaces might be exploited for future, more comprehensive studies
Confinement dynamics in the reversed field pinch
International Nuclear Information System (INIS)
Schoenberg, K.F.
1988-01-01
The study of basic transport and confinement dynamics is central to the development of the reversed field pinch (RFP) as a confinement concept. Thus, the goal of RFP research is to understand the connection between processes that sustain the RFP configuration and related transport/confinement properties. Recently, new insights into confinement have emerged from a detailed investigation of RFP electron and ion physics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and strongly coupled role in RFP sustainment and confinement dynamics. In this paper, we summarize the results of these studies on the ZT-40M experiment. 8 refs
Compact reversed-field pinch reactors (CRFPR)
International Nuclear Information System (INIS)
Krakowski, R.A.; Miller, R.L.; Bathke, C.G.; Hagenson, R.L.; Copenhaver, C.; Werley, K.A.
1986-01-01
The unique confinement properties of the Reversed-Field Pinch (RFP) are exploited to examine physics and technical issues related to a compact, high-power-density fusion reactor. This resistive-coil, steady-state, toroidal device would use a dual-media power cycle driven by a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, and coils) with a power density and mass approaching values characteristic of pressurized-water fission rectors. A 1000-MWe(net) base case is selected from a comprehensive trade-off study to examine technological issues related to operating a high-power-density FPC. After describing the main physics and technology issues for this base-case reactor, directions for future study are suggested
Reversed field pinch reactor study 3
International Nuclear Information System (INIS)
Hollis, A.A.; Mitchell, J.T.D.
1977-12-01
This report, the third of a series on the Reversed Field Pinch Reactor, describes a preliminary concept of the engineering design and layout of this pulsed toroidal reactor, which uses the stable plasma behaviour first observed in ZETA. The basic parameters of the 600 MW(e) reactor are taken from a companion study by Hancox and Spears. The plasma volume is 1.75m minor radius and 16m major radius surrounded by a 1.8m blanket-shield region - with the blanket divided into 14 removable segments for servicing. The magnetic confinement system consists of 28 toroidal field coils situated just outside the blanket and inside the poloidal and vertical field coils and all coils have normal copper conductors. The requirement to incorporate a conducting shell at the front of the blanket to provide a short-time plasma stability has a marked effect on the design. It sets the size of the blanket segment and the scale of the servicing operations, limits the breeding gain and complicates the blanket cooling and its integration with the heat engine. An extensive study will be required to confirm the overall reactor potential of the concept. (author)
Reversed-field pinch fusion reactor
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.
1980-01-01
A conceptual engineering design of a fusion reactor based on plasma confinement in a toroidal Reversed-Field Pinch (RFP) configuration is described. The plasma is ohmically ignited by toroidal plasma currents which also inherently provide the confining magnetic fields in a toroidal chamber having major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and undergoes a transient, unrefueled burn at 10 to 20 keV for approx. 20 s to give a DT burnup of approx. 50%. The 5-s dwell period between burn pulses for plasma quench and refueling allows steady-state operation of all thermal systems outside the first wall; no auxiliary thermal capacity is required. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented water/steam coolant tubes. The slightly superheated steam emerging from this blanket directly drives a turbine that produces electrical power at an efficiency of 30%. A borated-water shield is located immediately outside the thermal blanket to protect the superconducting magnet coils. Both the superconducting poloidal and toroidal field coils are energized by homopolar motor/generators. Accounting for all major energy sinks yields a cost-optimized system with a recirculating power fraction of 0.17; the power output is 750 MWe
Reversed-Field Pinch Reactor (RFPR) concept
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.; Cort, G.E.
1979-08-01
A conceptual engineering design of a fusion reactor based on plasma confinement in a Reversed-Field Pinch (FRP) configuration is presented. A 50% atomic mixture of deuterium and tritium (DT) is ohmically heated to ignition by currents flowing in the toroidal plasma; this plasma current also inherently produces the confining magnetic fields in a toroidal chamber having a major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and burns at 10 to 20 keV for approx. 20 s to give a fuel burnup of approx. 50%. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented coolant tubes carrying a mixture of high-pressure steam and water. The slightly superheated steam emerging from this blanket would be used to drive a turbine directly. Low-pressure helium containing trace amounts of oxygen is circulated through the packed Li 2 O bed to extract the tritium. A 20-mm-thick copper first wall serves as a neutron multiplier, acts as a tritium barrier, and supports image currents to provide plasma stabilization on a 0.1-s timescale; external windings provide stability for longer times
Compact reversed-field pinch reactors (CRFPR)
International Nuclear Information System (INIS)
Krakowski, R.A.; Hagenson, R.L.; Schnurr, N.M.; Copenhaver, C.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.
1986-01-01
The unique confinement properties of the poloidal-field-dominated Reversed-Field Pinch (RFP) are exploited to examine physics and technical issues related to a compact high-power-density fusion reactor. This resistive-coil, steady-state, toroidal device would use a dual-media (i.e., two separate coolants) power cycle that would be driven by a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, and coils) having a power density and mass approaching pressurized-water-fission reactor values. A 1000-MWe(net) base case is selected from a comprehensive trade-off study to examine technological issues related to operating a high-power-density FPC. A general rationale outlining the need for improved fusion concepts is given, followed by a description of the RFP principle, a detailed systems and trade-off analysis, and a conceptual FPC design for the ∝ 20-MW/m 2 (neutrons) compact RFP reactor, CRFPR(20). Key FPC components are quantified, and full power-balance, thermal, and mechanical FPC integrations are given. (orig.)
The TITAN reversed-field-pinch fusion reactor study
International Nuclear Information System (INIS)
1990-01-01
This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors
The physics of reversed-field pinch profile sustainment
International Nuclear Information System (INIS)
Moses, R.W.
1985-01-01
A description of the Reversed-Field Pinch (RFP) is given. There is experimental evidence that indicates that an RFP dynamo effect sustains field reversal in steady state. Three sustainment mechanisms are reviewed: the MHD model, the tangled discharge model, and the kinetic dynamo model. The relationship of these models to each another is discussed briefly
MHD turbulence models for the reversed field pinch
International Nuclear Information System (INIS)
Gimblett, C.G.; Watkins, M.L.
1976-01-01
A kinematic model which describes the effect of isotropic, non-mirror symmetric turbulence on a mean magnetic field is used to examine the temporal behaviour of magnetic field in high beta pinch experiments. Solutions to the model can indicate the formation of a steady-state, force-free configuration that corresponds to the state of lowest magnetic energy and the reversal of the toroidal magnetic field at the plasma boundary in accordance with experimental observations on toroidal pinches such as ZETA and HBTX. This model neglects both the dynamic interaction between fluid and field and the associated anisotropy. These effects are examined in a further model. (author)
Toroidal equilibrium in an iron-core reversed field pinch
International Nuclear Information System (INIS)
Miller, G.
1984-04-01
An analytical theory of toroidal equilibrium in the ZT-40M reversed field pinch is obtained, including effects of iron cores and resistive shell. The iron cores alter the form of the equilibrium condition and cause the equilibrium to be unstable on the shell resistive time scale
Overview of quasi single helicity experiments in reversed field pinches
International Nuclear Information System (INIS)
Martin, P.; Marrelli, L.; Spizzo, G.
2003-01-01
We report the results of an experimental and theoretical project dedicated to the study of Quasi Single Helicity Reversed Field Pinch plasmas. The project has involved several RFP devices and numerical codes. It appears that QSH spectra are a feature common to all the experiments. (author)
Oscillating field current drive for reversed field pinch discharges
International Nuclear Information System (INIS)
Schoenberg, K.F.; Gribble, R.F.; Baker, D.A.
1984-06-01
Oscillating Field Current Drive (OFCD), also known as F-THETA pumping, is a steady-state current-drive technique proposed for the Reversed Field Pinch (RFP). Unlike other current-drive techniques, which employ high-technology, invasive, and power intensive schemes using radio frequency or neutral particle injection, F-THETA pumping entails driving the toroidal and poloidal magnetic field circuits with low-frequency (audio) oscillating voltage sources. Current drive by this technique is a consequence of the strong nonlinear plasma coupling in the RFP. Because of its low frequency and efficient plasma coupling, F-THETA pumping shows excellent promise as a reactor-relevant current-drive technique. A conceptual and computational study of this concept, including its experimental and reactor relevance, is explored in this paper
Field reversed theta pinch TC-I UNICAMP
International Nuclear Information System (INIS)
Honda, R.Y.; Machida, M.; Aramaki, E.A.; Porto, P.; Berni, L.A.
1990-01-01
Field reversed configuration TC-I device is 16 cm diameter, 1 meter long with two mirror coils and 30 kJ field reversed theta pinch working for over two years at University of Campinas. Its implosion dynamics and field reversal parameters have been studied using flux excluded loops, internal magnetic probe, visible spectroscopy, photodiode array and image converter camera. The vacuum vessel is a pyrex tube of 14,5 cm diameter pumped with a liquid nitrogen cooled diffusion pump to a base pressure of 6 x 10 -7 Torr. The schematic view of the machine and experimental set up are shown. (Author)
3-dimensional simulation of dynamo effect of reversed field pinch
International Nuclear Information System (INIS)
Koide, Shinji.
1990-09-01
A non-linear numerical simulation of the dynamo effect of a reversed field pinch (RFP) with finite beta is presented. It is shown that the m=-1, n=(9,10,11,....,19) modes cause the dynamo effect and sustain the field reversed configuration. The role of the m=0 modes on the dynamo effect is carefully examined. Our simulation shows that the magnetic field fluctuation level scales as S -0.2 or S -0.3 in the range of 10 3 5 , while Nebel, Caramana and Schnack obtained the fluctuation level is independent of S for a pressureless RFP plasma. (author)
Nonlinear tearing modes in the reversed field pinch
International Nuclear Information System (INIS)
Miller, G.
1989-01-01
Finite-amplitude islands, which are the saturated states of tearing modes in the reversed field pinch, are calculated. These states are bifurcated noncylindrical equilibrium states. With σ(r) (σequivalentj x B/B 2 ) nonuniform across the plasma, as is consistent with experiment, a variety of m = 1 and m = 0 bifurcated equilibria are possible, instead of just the m = 1 helix calculated for uniform σ(r) by Taylor [in Pulsed High Beta Plasmas, edited by D. Evans (Pergamon, Oxford, 1976), p. 59]. Assuming the magnetic field lines in the reversed field pinch are weakly stochastic, the growth time of an unstable tearing mode is on the inertial time scale, as in the Taylor model, in constrast to growth on the resistive time scale predicted from nonlinear tearing mode theory when magnetic surfaces exist. The dependence of the saturated island width on radius of a conducting shell is investigated. Islands in the reversed field pinch often have magnetic wells in the island interior, which may result in improved confinement in the island regions
Prospects for fusion applications of reversed-field pinches
International Nuclear Information System (INIS)
Bathke, C.G.; Krakowski, R.A.; Hagenson, R.L.
1985-01-01
The applicability of the Reversed-Field Pinch (RFP) as a source of fusion neutrons for use in developing key fusion nuclear technologies is examined. This Fusion Test Facility (FTF) would emphasize high neutron wall loading, small plasma volume, low fusion and driver powers, and steady-state operation. Both parametric tradeoffs based on present-day physics understanding and a conceptual design based on an approx.1-MW/m 2 (neutron) driven operation are reported. 10 refs
A reversed-field theta-pinch plasma machine
International Nuclear Information System (INIS)
Yasojima, Yoshiyuki; Ueda, Yoshihiro; Sasao, Hiroyuki; Ueno, Noboru; Tanaka, Toshihide
1984-01-01
Mitsubishi Electric has constructed a reversed-field theta-pinch machine at its Central Research Laboratory and initiated a series of plasma diagnostics and control studies for development of nuclear-fusion technology. Although the device has a linear configuration, a stable high-temperature, high-density toroidal plasma can be generated. The article describes the overall structure, vacuum system, power-supply system, and diagnostics and control system of the plasma machine. (author)
Electrical circuit modeling of reversed field pinches
International Nuclear Information System (INIS)
Sprott, J.C.
1988-02-01
Equations are proposed to describe the radial variation of the magnetic field and current density in a circular, cylindrical RFP. These equations are used to derive the electrical circuit parameters (inductance, resistance, and coupling coefficient) for an RFP discharge. The circuit parameters are used to evaluate the flux and energy consumption for various startup modes and for steady-state operation using oscillating field current drive. The results are applied to the MST device. 32 refs., 14 figs., 1 tab
Recent studies of Reversed-Field Pinch reactors
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.
1981-01-01
The reactor prognoses of a class of confinement scheme that relies primarily on self-fields induced by axial currents flowing within a plasma column are presented. The primary focus has been placed on the toroidal Reversed-Field Pinch (RFP). At the limit of very large current densities is the gas-embedded Dense Z-Pinch (DZP), a small-radius, linear device. Past conventional RFP reactor designs are reviewed. The extention of these conventional RFP reactors to DD advanced-fuel operation is described. The implications are summarized of operating higher-density, compact RFPs as reactors, wherein the current density rather than physical dimensions are scaled. Lastly, the application of very high current densities supported in a sub-millimeter linear current channel, as embodied in the DZP reactor, is reviewed
Energy confinement in a high-current reversed field pinch
International Nuclear Information System (INIS)
An, Z.G.; Lee, G.S.; Diamond, P.H.
1985-07-01
The ion temperature gradient driven (eta/sub i/) mode is proposed as a candidate for the cause of anomalous transport in high current reversed field pinches. A 'four-field' fluid model is derived to describe the coupled nonlinear evolution of resistive interchange and eta/sub i/ modes. A renormalized theory is discussed, and the saturation level of the fluctuations is analytically estimated. Transport scalings are obtained, and their implications discussed. In particular, these results indicate that pellet injection is a potentially viable mechanism for improving energy confinement in a high temperature RFP
Physics of reversed-field pinch profile sustainment
International Nuclear Information System (INIS)
Moses, R.W.
1984-01-01
A description of the Reversed-Field Pinch (RFP) is given, emphasizing the necessity of a magnetohydrodynamic (MHD) or kinetic process to sustain field reversal. Three sustainment mechanisms are reviewed: the MHD dynamo, the tangled discharge model, and nonlocal resistivity. A slab model of steady (ohmic) states is described. A relationship between ohmic state wave numbers and the minimum amplitude of nonsymmetric field components is given. If ohmic states are the sole source of the sustainment process, their wave lengths are probably much longer than the minor diameter of the plasma. Otherwise field asymmetries would exceed those observed in experiments. It is noted that internal field data are still limited, restricting the generality of our comments
Electron temperature diagnostics in the RFX reversed field pinch experiment
International Nuclear Information System (INIS)
Bartiromo, R.; Carraro, L.; Marrelli, L.; Murari, A.; Pasqualotto, R.; Puiatti, M.E.; Scarin, P.; Valisa, M.; Franz, P.; Martin, P.; Zabeo, L.
2000-01-01
The paper presents an integrated approach to the problem of electron temperature diagnostics of the plasma in a reversed field pinch. Three different methods, sampling different portions of the electron distribution function, are adopted, namely Thomson scattering, soft X-ray spectroscopy by pulse-height analysis and filtered soft X-ray intensity ratio. A careful analysis of the different sources of systematic errors is performed and a novel statistical approach is adopted to mutually validate the three independent measurements. A satisfactory agreement is obtained over a large range of experimental conditions, indicating that in the plasma core the energy distribution function is well represented by a maxwellian. (author)
Asymmetric flux generation and its relaxation in reversed field pinch
International Nuclear Information System (INIS)
Arimoto, H.; Masamune, S.; Nagata, A.
1985-02-01
The toroidally asymmetric flux enhancement [''dynamo effect''] and the axisymmetrization of the enhanced fluxes that follows in the setting up phase of Reversed Field Pinch are investigated on the STP-3[M] device. A rapid increase in the toroidal flux generated by the dynamo effect is first observed near the poloidal and toroidal current feeders. Then, this inhomogeneity of the flux propagates toroidally towards the plasma current. The axisymmetrization of the flux is attained just after the maximum of plasma current. The MHD activities decrease significantly after this axisymmetrization and the quiescent period is obtained. (author)
Behaviour of the peripheral plasma in the reversed field pinch
International Nuclear Information System (INIS)
Matsuoka, A.; Sato, K.I.; Arimoto, H.; Yamada, S.; Nagata, A.; Murata, H.
1986-01-01
By using Langmuir probes installed behind limiters, time behaviour of the peripheral plasma in the Reversed Field Pinch (RFP) are investigated. They are strongly affected by the confined RFP plasma and are divided into three phases (the initial phase before setting up the RFP configuration, the current rising phase, and the quiescent phase), which are just the same as those of the confined RFP plasma. Typical behaviour of the peripheral plasma have relations to the pump out phenomena and of the toroidal flux generation. (author)
Proposal for the ZT-40 reversed-field Z-pinch experiment
International Nuclear Information System (INIS)
Baker, D.A.; Machalek, M.D.
1977-08-01
A next-generation, toroidal, reversed-field Z-pinch experiment to be constructed at LASL is proposed. On the basis of encouraging ZT-I and ZT-S experimental results, a larger device with a 40-cm bore and a 114-cm major radius is proposed, to extend the confinement time by about an order of magnitude. The new experiment will explore the physics of programming reversed-field pinches in a size range unexplored by previous reversed-field pinch experiments. Model reversed-field pinch reactor calculations show that, if stability is assumed, small fusion reactors are possible if the pinch current density is high. A basic aim will be to delineate the plasma and current density ranges in which stable reversed-field pinches can be produced. Improved vacuum techniques will be used to overcome the radiation losses that probably kept electron temperatures low in the earlier, smaller experiments
Advanced-fuel reversed-field pinch reactor (RFPR)
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.
1981-10-01
The utilization of deuterium-based fuels offers the potential advantages of greater flexibility in blanket design, significantly reduced tritium inventory, potential reduction in radioactivity level, and utilization of an inexhaustible fuel supply. The conventional DT-fueled Reversed-Field Pinch Reactor (RFPR) designs are reviewed, and the recent extension of these devices to advanced-fuel (catalyzed-DD) operation is presented. Attractive and economically competitive DD/RFPR systems are identified having power densities and plasma parameters comparable to the DT systems. Converting an RFP reactor from DT to DD primarily requires increasing the magnetic field levels a factor of two, still requiring only modest magnet coil fields (less than or equal to 4 T). When compared to the mainline tokamak, the unique advantages of the RFP (e.g., high beta, low fields at the coils, high ohmic-heating power densities, unrestricted aspect ratio) are particularly apparent for the utilization of advanced fuels
Statistical theory of field fluctuations in a reversed-field pinch
International Nuclear Information System (INIS)
Turner, L.
1982-01-01
A statistical description of three-dimensional, incompressible turbulence in an ideal, current-bearing, bounded magnetofluid is given both analytically and numerically. Our results are then compared with existing data taken from reversed-field pinch experiments
Magnetohydrodynamic effects of current profile control in reversed field pinches
International Nuclear Information System (INIS)
Sovinec, C.R.; Prager, S.C.
1999-01-01
Linear and non-linear MHD computations are used to investigate reversed field pinch configurations with magnetic fluctuations reduced through current profile control. Simulations with reduced ohmic drive and moderate auxiliary current drive, represented generically with an electron force term, applied locally in radius near the plasma edge show magnetic fluctuation energies that are orders of magnitude smaller than those in simulations without profile control. The core of the improved configurations has reduced magnetic shear and closed flux surfaces in some cases, and reversal is sustained through the auxiliary current drive. Modes resonant near the edge may become unstable with auxiliary drive, but their saturation levels can be controlled. The space of auxiliary drive parameters is explored, and the ill effects of deviating far from optimal conditions is demonstrated in non-linear simulations. (author)
Confinement in TPE-RX reversed field pinch
International Nuclear Information System (INIS)
Yagi, Y.; Bolzonella, T.; Canton, A.
2001-01-01
Characteristics of the confinement properties of a reversed field pinch (RFP), the TPE-RX (R/a=1.72/0.45 m, R and a are major and minor radii), are presented for the plasma current, I p of 0.2-0.4 MA. TPE-RX has been operational since 1998, and I p =0.5 MA and duration time of up to 0.1 s have been obtained separately. It is found that I p /N (=12x10 -14 Am, N is the line density) is higher than those of other RFPs and poloidal beta, β p , and energy confinement time, τ E , are 5-10% and 0.5-1 ms, respectively, which are comparable with those of other RFPs of comparable sizes (RFX and MST). Pulsed poloidal current drive has recently been tested and the result has shown a twofold improvement of β p and τ E . The improvement is discussed in terms of the dynamic trajectories in the F-Θ plane, where F and Θ are reversal and pinch parameters, respectively. The global confinement properties are compared between the locked and non-locked discharges, which yields a better understanding of the mode-locking phenomena in RFP plasmas. (author)
Physics considerations of the Reversed-Field Pinch fusion reactor
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.
1980-01-01
A conceptual engineering design of a fusion reactor based on plasma confinement in a toroidal Reversed-Field Pinch (RFP) configuration is described. The plasma is ohmically ignited by toroidal plasma currents which also inherently provide the confining magnetic fields in a toroidal chamber having major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and undergoes a transient, unrefueled burn at 10 to 20 keV for approx. 20 s to give a DT burnup of approx. 50%. Accounting for all major energy sinks yields a cost-optimized system with a recirculating power fraction of 0.17; the power output is 750 MWe
Divertor design for the TITAN reversed-field-pinch reactor
International Nuclear Information System (INIS)
Cooke, P.I.H.; Bathke, C.G.; Blanchard, J.P.; Creedon, R.L.; Grotz, S.P.; Hasan, M.Z.; Orient, G.; Sharafat, S.; Werley, K.A.
1987-01-01
The design of the toroidal-field divertor for the TITAN high-power-density reversed-field-pinch reactor is described. The heat flux on the divertor target is limited to acceptable levels (≤ 10 MW/m 2 ) for liquid-lithium cooling by use of an open divertor geometry, strong radiation from the core and edge plasma, and careful shaping of the target surface. The divertor coils are based on the Integrated-Blanket-Coil approach to minimize the loss in breeding-blanket coverage due to the divertor. A tungsten-rhenium armour plate, chosen for reasons of sputtering resistance, and good thermal and mechanical properties, protects the vanadium-alloy coolant tubes
Turbulent transport in the MST reversed-field pinch
International Nuclear Information System (INIS)
Rempel, T.D.; Almagri, A.F.; Assadi, S.; Den Hartog, D.J.; Hokin, S.A.; Prager, S.C.; Sarff, J.S.; Shen, W.; Sidikman, K.L.; Spragins, C.W.; Sprott, J.C.; Stoneking, M.R.; Zita, E.J.
1991-11-01
Measurements of edge turbulence and the associated transport are ongoing in the Madison Symmetric Torus (R = 1.5 m, a = 0.52 m) reversed-field pinch using magnetic and electrostatic probes. Magnetic fluctuations are dominated by m = 1 and n ∼ 2R/a tearing modes. Particle losses induced by magnetic field fluctuations have been found to be ambipolar ( parallel B r > = O). Electrostatic fluctuations are broadband and turbulent, with mode widths δm ∼ 3--7 and δn ∼70--150. Particle, parallel current, and energy transport arising from coherent motion with the fluctuating ExB drift has been measured. Particle transport via this channel is comparable to the total particle loss from MST. Energy transport (from phi >/B o ) due to electrostatic fluctuations is relatively small, and parallel current transport (from parallel E chi >/B o ) may be small as well
Studies of a poloidal divertor reversed field pinch
International Nuclear Information System (INIS)
Sarff, J.S.; Almagri, A.F.; Assadi, S.; Den Hartog, D.J.; Dexter, R.N.; Prager, S.C.; Sprott, J.C.
1988-07-01
An attempt has been made to form a reversed field pinch (RFP) in a poloidal divertor configuration which position the plasma far from a conducting wall. In this configuration, the plasma is localized within a magnetic separatrix formed by the combination of toroidal currents in the plasma and four internal aluminum rings. Plasmas were formed with plasma current /approximately/135 kA, toroidal field reversal lasting /approximately/1 msec, line-averaged density /approximately/1--2 /times/ 10 13 cm/sup /minus/3/ and central electron temperature /approximately/55 eV, but a large asymmetry in the magnetic field (δB/B /approximately/40%) onset at about the time the toroidal field reversed at the wall. Symmetric, poloidal divertor RFP equilibria were not formed. This behavior might be expected based on linear MHD stability analysis of a cylindrical plasma bounded by a large vacuum region and distant conducting wall. The symmetric equilibrium before the asymmetry develops and the asymmetry itself are described. 15 refs., 3 figs
Catalyzed deuterium fueled reversed-field pinch reactor assessment
International Nuclear Information System (INIS)
Dobrott, D.
1985-01-01
This study is part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corporation. The purpose of this portion of the study is to perform an assessment of a conceptual compact reversed-field pinch reactor (CRFPR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to physics, technology, safety, and cost. The Cat-d CRFPR is compared to a d-t fueled fusion reactor with respect to several issues in this study. The comparison includes cost, reactor performance, and technology requirements for a Cat-d fueled CRFPR and a comparable cost-optimized d-t fueled conceptual design developed by LANL
A vented pump limiter for the reversed field pinch RFX
International Nuclear Information System (INIS)
Sonato, P.
1998-01-01
The reversed field pinch (RFP) plasma performance, as in the Tokamak, is strongly correlated with the edge neutral particle control. The drawbacks of the conventional magnetic divertors and throat limiters on the RFP plasma have slackened the application of an active particle control system in existing devices. An advanced solution, based on the idea of the 'vented pump limiter' experimented on Tore Supra, has been conceived for RFX. This type of pump limiter is very attractive for a RFP. In this paper, the design of a 'vented limiter' prototype for RFX is presented. Up to six modules of this limiter can be installed at the equatorial plane of RFX, allowing a particle exhaust efficiency comparable with a divertor or a throat limiter working in a Tokamak. Finally, the optimization of this concept for the next step RFP device is presented. (orig.)
Simulation study of dynamo structure in reversed field pinch
International Nuclear Information System (INIS)
Nagata, A.; Sato, K.I.; Ashida, H.; Amano, T.
1992-10-01
The dynamo structure in the reversed field pinch (RFP) is studied through the nonlinear dynamics of single-helicity mode. Simulation is concentrated upon the physical structure of nonlinear interactions of the plasma flow and magnetic fluctuation. The result indicates that when the initial equilibrium profile is deformed by resistive diffusion, the radial flow is driven near the core of the plasma. As this flow forms a vortex structure and magnetic fluctuation grows radially, the dynamo electric field is spirally induced just inside the reversal surface and then the toroidal flux is increased. This dynamo electric field correlates to nonlinear evolution of the kinetic energy of m=1 mode, and the increase of the toroidal flux is originated in the growth process of the magnetic energy of this mode. Consequently, the RFP configuration can be sustained by the single-helicity evolution of m=1 mode alone, and the electric field induced by the interactions of the toroidal velocity and the radial magnetic field is the most dominant source on the dynamo action. (author)
Magnetic islands at the field reversal surface in reversed field pinches
International Nuclear Information System (INIS)
Pinsker, R.I.; Reiman, A.H.
1985-09-01
In the reversed field pinch (RFP), magnetic field perturbations having zero poloidal mode number and any toroidal mode number are resonant at the field reversal surface. Such perturbations are a particular threat to the RFP because of their weak radial dependence at low toroidal mode number, and because the toroidal field ripple is essentially of this type. The widths of the resulting islands are calculated in this paper. The self-consistent plasma response is included through the assumption that the plasma relaxes to a Taylor force-free state. The connection with linear tearing mode theory is established for those limits where arbitrarily large islands result from infinitesimal perturbations. Toroidal effects are considered, and application of the theory to RFP experiments is discussed
Plasma behaviors in the open field region of reversed-field theta-pinch
International Nuclear Information System (INIS)
Aso, Yoshiyuki; Hirano, Keiichi.
1983-03-01
A characteristic behavior of the plasma in an open field region of reversed field theta pinch has been studied with the guide field (GF) which extends the field line along the axial direction. The experimental result suggests that the rotaional instability may be induced in FRC after the plasma touches the wall at the ends of the open field. (author)
Nonlinear dynamics of tearing modes in the reversed field pinch
International Nuclear Information System (INIS)
Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.
1987-05-01
The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10 ≤ n ≤ 20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back-coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments. 13 refs., 21 figs., 1 tab
Plasma behaviour in large reversed-field pinches and reactors
International Nuclear Information System (INIS)
Christiansen, J.P.; Bodin, H.A.B.; Carolan, P.G.; Johnston, J.W.; Newton, A.A.; Roberts, K.V.; Robinson, D.C.; Watts, M.R.C.; Piotrowicz, V.A.
1981-01-01
Recent analytic and numerical results on large reversed-field-pinch (RFP) systems and RFP reactors are presented. Predictions are made of the plasma behaviour in Eta Beta II, HBTXIA (under construction) and RFX (planned). The setting-up phase of an RFP is studied by using turbulence theory in transport equilibrium calculations, and estimates are made of the volt-seconds consumption for four different modes of field control. A prescription is given for a dynamo producing self-reversal which yields finite-β configurations. Residual instabilities of these equilibria may be resistive pressure-driven g-modes, and a new study of these modes that includes parallel viscosity indicates stability for anti β approximately 10%. The sustainment phase of the RFP is examined with tokamak scaling laws assumed for the energy confinement time. Temperatures in excess of 1keV are predicted for currents of 2MA in RFX. An operating cycle for a pulsed RFP reactor including gas puffing to reach ignition is proposed following a study of the energy replacement time for an Ohmically heated plasma. The scaling of the reactor parameters with minor radius is also investigated. (author)
Nonlinear dynamics of tearing modes in the reversed field pinch
International Nuclear Information System (INIS)
Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.
1988-01-01
The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10approx. < napprox. <20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments
Torus C-I field reversed theta-pinch at UNICAMP
International Nuclear Information System (INIS)
Machida, M.; Collares, M.P.; Honda, R.Y.; Sakanaka, P.H.; Scheid, V.H.B.
1984-01-01
The influence of multipole fields (octopole and quadrupole) on supressing the n=2 rotational instability, field reconnection, particle loss effects is studied, and the viability of transforming the theta-pinch from Campinas, Brazil (100Kv, 55Kj) to the field reversed theta-pinch with plasma translation program is analyzed. (E.G.) [pt
Pellet injection in the RFP (Reversed Field Pinch)
Wurden, G. A.; Weber, P. G.; Munson, C. P.; Cayton, T. E.; Bunting, C. A.; Carolan, P. G.
Observation of pellets injected into the ZT-40M Reversed Field Pinch has allowed a new twist on the usual tokamak ablation physics modeling. The RFP provides a strong ohmic heating regime with relatively high electron drift parameter (xi sub drift approx. 0.2), in the presence of a highly sheared magnetic field geometry. In situ photos of the pellet ablation cloud using a grated-intensified CCD camera, as well as two-view integrated photos of the pellet trajectory show substantial modification of the original pellet trajectory, in both direction and speed. Depending on the launch geometry, increases in the initial 500 m/s pellet speed by 50 percent were observed, and a ski jump deflector plate in the launch port has been used to counteract strong poloidal curvature. In contrast to the tokamak, the D sub alpha light signature is strongest near the edge, and weaker in the plasma center. Additional information on ion temperature response to pellet injection with 20 microsec time resolution has been obtained using a 5-channel neutral particle analyzer (NPA). The energy confinement is transiently degraded while the beta is largely unchanged. This may be indicative of pellet injection into a high-beta plasma operating at fixed beta.
Overview of results from the MST reversed field pinch experiment
International Nuclear Information System (INIS)
Sarff, J.S.; Almagri, A.F.; Anderson, J.K.; Borchardt, M.; Carmody, D.; Caspary, K.; Chapman, B.E.; Den Hartog, D.J.; Duff, J.; Eilerman, S.; Falkowski, A.; Forest, C.B.; Goetz, J.A.; Holly, D.J.; Kim, J.-H.; King, J.; Ko, J.; Koliner, J.; Kumar, S.; Lee, J.D.
2013-01-01
An overview of recent results from the MST programme on physics important for the advancement of the reversed field pinch (RFP) as well as for improved understanding of toroidal magnetic confinement more generally is reported. Evidence for the classical confinement of ions in the RFP is provided by analysis of impurity ions and energetic ions created by 1 MW neutral beam injection (NBI). The first appearance of energetic-particle-driven modes by NBI in a RFP plasma is described. MST plasmas robustly access the quasi-single-helicity state that has commonalities to the stellarator and ‘snake’ formation in tokamaks. In MST the dominant mode grows to 8% of the axisymmetric field strength, while the remaining modes are reduced. Predictive capability for tearing mode behaviour has been improved through nonlinear, 3D, resistive magnetohydrodynamic computation using the measured resistivity profile and Lundquist number, which reproduces the sawtooth cycle dynamics. Experimental evidence and computational analysis indicates two-fluid effects, e.g., Hall physics and gyro-viscosity, are needed to understand the coupling of parallel momentum transport and current profile relaxation. Large Reynolds and Maxwell stresses, plus separately measured kinetic stress, indicate an intricate momentum balance and a possible origin for MST's intrinsic plasma rotation. Gyrokinetic analysis indicates that micro-tearing modes can be unstable at high beta, with a critical gradient for the electron temperature that is larger than for tokamak plasmas by roughly the aspect ratio. (paper)
Confinement properties of the RFP [Reversed Field Pinch
International Nuclear Information System (INIS)
Weber, P.G.; Schoenberg, K.F.; Ingraham, J.C.; Miller, G.; Munson, C.P.; Pickrell, M.M.; Wurden; Tsui, H.Y.W.; Ritz, Ch.P.
1990-01-01
Research in ZT-40M has been focused on elucidating the confinement properties of the Reversed Field Pinch (RFP). Recent improvements in diagnostic capability have permitted measurement of radial profiles, as well as a detailed study of the edge plasma. The emerging confinement picture for ZT-40M has several ingredients: Typically 0.3 of the Ohmic input power to ZT-40M is available to drive fluctuations. Evidence points to this fluctuational power heating the ions. Approximately one quarter of the input power is lost through radiation, with metal impurities playing a key role. Magnetic fluctations in ZT-40M are at the percent level, as measured in the edge plasma. Extrapolating these data to small radii shows stochasticity in the core plasma. Suprathermal electrons are measured in the edge plasma. These electrons originate in the core, and transport to the edge along the fluctuating magnetic field lines. Under typical conditions, these electrons constitute the major electron energy loss channel in ZT-40M. Electrostatic fluctuations dominate the edge electron particle flux, but not the electron thermal flux. The major ion loss process is charge exchange, with smaller contributions from conduction and convection. In examining these observations, and the parametric dependences of confinement, a working model for RFP confinement emerges. An overview of this model, together with implications for the multi-mega-ampere ZTH experiment will be presented
Pellet injection in the RFP [Reversed Field Pinch
International Nuclear Information System (INIS)
Wurden, G.A.; Weber, P.G.; Munson, C.P.; Cayton, T.E.; Bunting, C.A.; Carolan, P.G.
1988-01-01
Observation of pellets injected into the ZT-40M Reversed Field Pinch has allowed a new twist on the usual tokamak ablation physics modeling. The RFP provides a strong ohmic heating regime with relatively high electron drift parameter (ξ/sub drift/ /approximately/ 0.2), in the presence of a highly sheared magnetic field geometry. In situ photos of the pellet ablation cloud using a grated-intensified CCD camera, as well as two-view integrated photos of the pellet trajectory show substantial modification of the original pellet trajectory, in both direction and speed. Depending on the launch geometry, increases in the initial 500 m/s pellet speed by 50% have been observed, and a ski jump deflector plate in the launch port has been used to counteract strong poloidal curvature. In contrast to the tokamak, the D/sub α/ light signature is strongest near the edge, and weaker in the plasma center. Additional information on ion temperature response to pellet injection with 20 μsec time resolution has been obtained using a 5-channel neutral particle analyzer (NPA). The energy confinement is transiently degraded while the beta is largely unchanged. This may be indicative of pellet injection into a high-beta plasma operating at fixed beta. 10 refs., 6 figs
Scaling of sustained ZT-40 M reversed field pinches
International Nuclear Information System (INIS)
Graham, J.; Haberstich, A.; Baker, D.A.; Buchenauer, C.J.; Caramana, E.J.; DiMarco, J.N.; Erickson, R.M.; Ingraham, J.C.; Jacobson, A.R.; Little, E.M.; Massey, R.S.; Phillips, J.A.; Schoenberg, K.F.; Schofield, A.E.; Thomas, K.S.; Watt, R.G.; Weber, P.G.
1993-12-01
Experiments aimed at evaluating the scaling properties of the ZT-40M Reversed-Field Pinch (RFP) facility were conducted in 1983 at Los Alamos. Sustained discharges were produced at nominal toroidal currents ranging from 60 to 240 kA. The standard fill pressure was kept close to the lower limit of the usable pressure range, and the scaling data were acquired at a fixed time in the discharges while the plasma was in a quasi-steady state. Scalings of the diameter-averaged electron density, electron temperature on axis, product of these two parameters, and of various definitions of the electrical resistivity are presented. Trends of the toroidal voltage, energy containment time, and poloidal beta are shown. The impurity contents, particle containment time, and total radiation losses are described, and results obtained with and without poloidal limiters are compared. In addition, the performance of the facility at higher than standard density and at a constant ratio of the toroidal current over the electron line density is examined
Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.
1984-08-01
The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment [i.e., fusion power core (FPC) plus support systems]. In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development
Chaos in reversed-field-pinch plasma simulation and experiment
International Nuclear Information System (INIS)
Watts, C.; Newman, D.E.; Sprott, J.C.
1994-01-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed-field-pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear-analysis techniques is used to identify low-dimensional chaos. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents, and short-term predictability. In addition, nonlinear-noise-reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS computer code, which models global RFP dynamics, and the dissipative trapped-electron-mode model, which models drift-wave turbulence. Data from both simulations show strong indications of low-dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low-dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate that the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system
Does shaping bring an advantage for reversed field pinch plasmas?
International Nuclear Information System (INIS)
Guo, S.C.; Xu, X.Y.; Wang, Z.R.; Liu, Y.Q.
2013-01-01
The MHD–kinetic hybrid toroidal stability code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503) is applied to study the shaping effects on magnetohydrodynamic (MHD) stabilities in reversed field pinch (RFP) plasmas, where both elongation and triangularity are taken into account. The ideal wall β (the ratio of the gaso-kinetic to magnetic pressures) limit set by the ideal kink mode/resistive wall mode in shaped RFP is investigated first, followed by a study of the kinetic damping on the resistive wall mode. Physics understanding of the results is provided by a systematic numerical analysis. Furthermore, the stability boundary of the linear resistive tearing mode in shaped RFP plasmas is computed and compared with that of the circular case. Finally, bootstrap currents are calculated for both circular and shaped RFP plasmas. Overall, the results of these studies indicate that the current circular cross-section is an appropriate choice for RFP devices, in the sense that the plasma shaping does not bring an appreciable advantage to the RFP performance in terms of macroscopic stabilities. In order to reach a steady-state operation, future RFP fusion reactors will probably need a substantial fraction of external current drives, due to the unfavourable scaling for the plasma-generated bootstrap current in the RFP configuration. (paper)
Radio frequency wave experiments on the MST reversed field pinch
International Nuclear Information System (INIS)
Forest, C.B.; Chattopadhyay, P.K.; Nornberg, M.D.; Prager, S.C.; Thomas, M.A.; Harvey, R.W.; Ram, A.K.
1999-04-01
Experiments, simulations, and theory all indicate that the magnetic fluctuations responsible for the poor confinement in the reversed field pinch (RFP) can be controlled by altering the radial profile of the current density. The magnetic fluctuations in the RFP are due to resistive MHD instabilities caused by current profile peaking; thus confinement in the RFP is ultimately the result of a misalignment between inductively driven current profiles and the stable current profiles characteristic of the Taylor state. If a technique such as rf current drive can be developed to non-inductively sustain a Taylor state (a current profile linearly stable to all tearing modes), the confinement of the RFP and its potential as a reactor concept are likely to increase. Whether there is a self-consistent path from poor confinement to greatly improved confinement through current profile modification is an issue for future experiments to address if and only if near term experiments can demonstrate: (1) coupling to and the propagation of rf waves in RFP plasmas, (2) efficient current drive, and (3) control of the power deposition which will make it possible to control the current profile. In this paper, modeling results and experimental plans are presented for two rf experiments which have the potential of satisfying these three goals: high-n parallel lower hybrid (LH) waves and electron Bernstein waves (EBWs)
Results from TRX-2 slow field-reversed-theta-pinch
International Nuclear Information System (INIS)
Slough, J.T.; Harding, D.; Hoffman, A.L.
1984-01-01
FRCs have been successfully generated in the TRX-2 slow risetime theta pinch. Initial studies indicate that the flux trapping through field reversal is about as good (''50%) as on TRX-1, although the quarter cycle time of the main coil was increased from 3 to 10 μsec. Formation studies have been started using the programmed formation techniques developed on TRX-1. The plasma dynamics are very similar to those exhibited in the faster rise TRX-1 experiments. The formation phase shows the same high degree of symmetry and reproducibility that was observed in TRX-1. Equilibrium behaviour of the FRCs formed is very similar to that observed on TRX-1, as long as impurity content is kept low. T/sub e/ + T/sub i/ temperatures of 400 to 500 eV are obtained and confirmed by impurity line broadening and decay rates. Flux and particle lifetimes ≅ 100 μsec have been observed and show the same strong scaling with x/sub s/ that was observed on TRX-1
Murakami density limit in tokamaks and reversed-field pinches
International Nuclear Information System (INIS)
Perkins, F.W.; Hulse, R.A.
1984-03-01
A theoretical upper limit for the density in an ohmically heated tokamak discharge follows from the requirement that the ohmic heating power deposited in the central current-carrying channel exceed the impurity radiative cooling in this critical region. A compact summary of our results gives this limit n/sub M/ for the central density as n/sub M/ = [Z/sub e//(Z/sub e/-1]/sup 1/2/n/sub eo/ (B/sub T//1T)(1m/R) where n/sub eo/ depends strongly on the impurity species and is remarkably independent of the central electron temperature T/sub e/(0). For T/sub e/(0) approx. 1 keV, we have n/sub eo/ = 1.5 x 10 14 cm -3 for beryllium, n/sub eo/ = 5 x 10 13 cm -3 for oxygen, n/sub eo/ = 1.0 x 10 13 cm -3 for iron, and n/sub eo/ = 0.5 x 10 13 cm -3 for tungsten. The results agree quantitatively with Murakami's original observations. A similar density limit, known as the I/N limit, exists for reversed-field pinch devices and this limit has also been evaluated for a variety of impurity species
Self-consistent equilibria in cylindrical reversed-field pinch
International Nuclear Information System (INIS)
Lo Surdo, C.; Paccagnella, R.; Guo, S.
1995-03-01
The object of this work is to study the self-consistent magnetofluidstatic equilibria of a 2-region (plasma + gas) reversed-field pinch (RFP) in cylindrical approximation (namely, with vanishing inverse aspect ratio). Differently from what happens in a tokamak, in a RFP a significant part of the plasma current is driven by a dynamo electric field (DEF), in its turn mainly due to plasma turbulence. So, it is worked out a reasonable mathematical model of the above self-consistent equilibria under the following main points it has been: a) to the lowest order, and according to a standard ansatz, the turbulent DEF say ε t , is expressed as a homogeneous transform of the magnetic field B of degree 1, ε t =(α) (B), with α≡a given 2-nd rank tensor, homogeneous of degree 0 in B and generally depending on the plasma state; b) ε t does not explicitly appear in the plasma energy balance, as it were produced by a Maxwell demon able of extract the corresponding Joule power from the plasma. In particular, it is showed that, if both α and the resistivity tensor η are isotropic and constant, the magnetic field is force-free with abnormality equal to αη 0 /η, in the limit of vanishing β; that is, the well-known J.B. Taylor'result is recovered, in this particular conditions, starting from ideas quite different from the usual ones (minimization of total magnetic energy under constrained total elicity). Finally, the general problem is solved numerically under circular (besides cylindrical) symmetry, for simplicity neglecting the existence of gas region (i.e., assuming the plasma in direct contact with the external wall)
Experiments on the ZT-S reversed-field pinch, August--December 1978
International Nuclear Information System (INIS)
Jacobson, A.R.
1979-06-01
During the latter half of 1978 the ZT-S reversed-field pinch was used to explore the utility of pitch-programming techniques in setting up stable diffuse pinch profiles. Several experimental observations relating to this goal are presented
Edge topology and flows in the reversed-field pinch
International Nuclear Information System (INIS)
Spizzo, G.; Agostini, M.; Scarin, P.; Vianello, N.; Cappello, S.; Puiatti, M. E.; Valisa, M.; White, R. B.
2012-01-01
Edge topology and plasma flow deeply influence transport in the reversed-field pinch as well as in all fusion devices, playing an important role in many practical aspects of plasma performance, such as access to enhanced confinement regimes, the impact on global power balance and operative limits, such as the density limit (Spizzo G. et al 2010 Plasma Phys. Control. Fusion 52 095011). A central role is played by the edge electric field, which is determined by the ambipolar constraint guaranteeing quasi-neutrality in a sheath next to the plasma wall. Its radial component is experimentally determined in RFX over the whole toroidal angle by means of a diagnostic set measuring edge plasma potential and flow with different techniques (Scarin P. et al 2011 Nucl. Fusion 51 073002). The measured radial electric field is used to construct the potential in the form Φ(ψ p , θ, ζ) (ψ p radial coordinate, θ, ζ angles), by means of the Hamiltonian guiding-centre code ORBIT. Simulations show that a proper functional form of the potential can balance the differential radial diffusion of electrons and ions subject to m = 0 magnetic island O- and X-points. Electrons spend more time in the X-points of such islands than in O-points; ions have comparatively larger drifts and their radial motion is more uniform over the toroidal angle. The final spatial distribution of Φ(ψ p , θ, ζ) results in a complex 3D pattern, with convective cells next to the wall. Generally speaking, an edge topology dominating parallel transport with a given symmetry brings about an edge potential with the same symmetry. This fact helps us to build a first step of a unified picture of the effect of magnetic topology on the Greenwald limit, and, more generally, on flows in the edge of RFPs and tokamaks. (paper)
Necessary stability condition for field-reversed theta pinches
International Nuclear Information System (INIS)
Cary, J.R.
1981-03-01
Toroidal systems of arbitrary cross section without toroidal magnetic field are analyzed via the double adiabatic fluid equations. Such systems are shown to be unstable if there exists one closed field line on which the average of kapparB 2 is positive, where kappa is the curvature. A similar criterion is derived for linear systems and is applied to a noncircular z-pinch
Global properties of ohmically heated reversed-field pinches
International Nuclear Information System (INIS)
Gerwin, R.A.
The simultaneous requirements of power balance and pressure balance have been considered. The treatment generalizes the Pease-Braginskii pinch current limit by including toroidal magnetic field, anomalous resistivity, nonradiative losses, and time-dependent fields. The rise of the temperature to a state of power balance proves to be amenable to a very simple and unified description. Finally, the practical parameter windows implied by the joint action of power balance and pressure balance are displayed
Microinstabilities and turbulent transport in the reversed field pinch
Carmody, Daniel Richard
The work presented in this thesis is concerned with addressing the nature of drift wave microturbulence in the reversed field pinch (RFP). Microturbulence is an important phenomenon and contributor to heat and particle transport in tokamaks, where it has been studied for several decades, but its role in the RFP is a rather new topic of study. As such, the nature of RFP drift waves and their relationship to their tokamak counterparts is still developing, and many of the results in this work are focused on addressing this challenge. Fundamental advances in microturbulence research have been made in recent decades through two parallel developments: the theoretical framework encompassed in the gyrokinetic model, and the computational power offered by massively-parallel, high-performance computing systems. Gyrokinetics is a formulation of kinetic theory in such a way that the fast timescale gyromotion of particles around magnetic field lines is averaged out. The implementation and use of RFP equilibrium models in gyrokinetic codes constitutes the bulk of this thesis. A simplified analytic equilibrium, the toroidal Bessel function model (TBFM), is used in the gyrokinetic code GYRO to explore the fundamental scaling properties of drift waves in the RFP geometry. Two drift wave instabilities, the ion temperature gradient (ITG) mode and the microtearing mode (MTM) are found to occur, and the relationship of their critical threshold in driving gradients and plasma beta is explored. The critical values in these parameters are found to be above those of similar tokamak cases by roughly a factor of the flux surface aspect ratio. The MTM is found to be stabilized by increasing the RFP pinch parameter theta, making it unlikely for it to unstable in the high-theta improved confinement pulsed poloidal current drive (PPCD) discharges. Efforts are also made to address microinstabilities in specific experimental discharges of the Madison Symmetric Torus (MST). A semi
The TITAN Reversed-Field Pinch fusion reactor study
International Nuclear Information System (INIS)
1988-03-01
The TITAN Reversed-Field Pinch (RFP) fusion reactor study is a multi-institutional research effort to determine the technical feasibility and key developmental issues of an RFP fusion reactor, especially at high power density, and to determine the potential economics, operations, safety, and environmental features of high-mass-power-density fusion systems. The TITAN conceptual designs are DT burning, 1000 MWe power reactors based on the RFP confinement concept. The designs are compact, have a high neutron wall loading of 18 MW/m 2 and a mass power density of 700 kWe/tonne. The inherent characteristics of the RFP confinement concept make fusion reactors with such a high mass power density possible. Two different detailed designs have emerged: the TITAN-I lithium-vanadium design, incorporating the integrated-blanket-coil concept; and the TITAN-II aqueous loop-in-pool design with ferritic steel structure. This report contains a collection of 16 papers on the results of the TITAN study which were presented at the International Symposium on Fusion Nuclear Technology. This collection describes the TITAN research effort, and specifically the TITAN-I and TITAN-II designs, summarizing the major results, the key technical issues, and the central conclusions and recommendations. Overall, the basic conclusions are that high-mass power-density fusion reactors appear to be technically feasible even with neutron wall loadings up to 20 MW/m 2 ; that single-piece maintenance of the FPC is possible and advantageous; that the economics of the reactor is enhanced by its compactness; and the safety and environmental features need not to be sacrificed in high-power-density designs. The fact that two design approaches have emerged, and others may also be possible, in some sense indicates the robustness of the general findings
Non ideal instabilities in field reversed O-pinches
International Nuclear Information System (INIS)
Santiago, M.A.M.; Gomes, A.S.
1987-01-01
Rotational instabilities and resistive tearing modes are the most striking modes observed in high temperature θ-pinches with zero orversed bias field. The configurations which have the effect of a rigid rotation of the plasma column are studied. Some recent experimental data indicate that an m=2 mode appears after the rotation reaches a critical value. It is shown that the growth rate of the m=2 mode may be greater than that of the m=1 resistive kink mode, depending on the experimental conditions. The result are applied to several experimental data in the literature. (author) [pt
Poloidal flux loss in a field-reversed theta pinch
International Nuclear Information System (INIS)
Hoffman, A.L.; Milroy, R.D.; Steinhauer, L.C.
1981-01-01
Poloidal flux loss has been measured in field-reversed configurations and related to anomalous resistivity near the magnetic field null. The results indicate that mechanisms in addition to the lower-hybrid drift instability are affecting transport
Compressibility Effects in the Dynamics of the Reversed-Field Pinch
International Nuclear Information System (INIS)
Onofri, M.; Malara, F.; Veltri, P.
2008-01-01
We study the reversed-field pinch through the numerical solution of the compressible magnetohydrodynamic equations. Two cases are investigated: In the first case the pressure is derived from an adiabatic condition, and in the second case the pressure equation includes heating terms due to resistivity and viscosity. In the adiabatic case a single helicity state is observed, and the reversed-field pinch configuration is formed for short time intervals and is finally lost. In the nonadiabatic case the system reaches a multiple helicity state, and the reversal parameter remains negative for a longer time. The results show the importance of compressibility in determining the large scale dynamics of the system
International Nuclear Information System (INIS)
Meyerhofer, D.D.; Perkins, F.W.
1984-04-01
The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer-Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 m -1 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches
Ohmic heating of the reversed-field pinch
International Nuclear Information System (INIS)
Gerwin, R.
1980-04-01
Simple analytic expressions are found for the global heating rate and the time needed to achieve global power balance with radiation and other losses, in useful agreement with large RFP transport codes. A simple condition is noted, which insures that the heating can be accomplished before appreciable resistive evolution occurs in the pinch profile. The product of poloidal beta, β/sub theta/, and toroidal current, I, that characterizes a condition of global power balance is derived subject to the above-mentioned condition without making key assumptions used by earlier investigators. First, a perfectly steady state (with local power balance) is not assumed, nor is it appropriate to do so. Secondly, the cross-field resistivity is not required to be classical. Since the value of (β/sub theta/ I) plays a fundamental role in determining the kind of device one requires, the foundations of this value are important
Reversed-field pinch configuration with minimum energy and finite beta
International Nuclear Information System (INIS)
Zhang Peng
1989-01-01
The reversed-field pinch (RFP) configuration has been studied for the case of finite beta. Suydam's condition and the sufficient criterion have been used to examine this configuration. Results of numerical calculations show that the critical value of the pinch parameter Θ for the appearance of the reverse toroidal field increases as the β-value increases. The critical value of Θ for the helical state increases with β as well. Suydam's and Robinson's stability regions increase and shift towards higher values of Θ with increasing β. Theoretical results for finite β coincide with recent RFP experimental results
The reversed-field pinch as a poloidal-field-dominated, compact, high-power-density fusion system
International Nuclear Information System (INIS)
Krakowski, R.A.
1988-01-01
This paper discusses the feasibility of reversed-field pinch devices as future thermonuclear reactors. Safety, cost, ion temperatures, Lawson numbers, and power densities are reviewed for these types of devices. 12 refs., 2 figs., 1 tab
Edge plasmas and plasma/wall interactions in an ignition-class reversed field pinch
International Nuclear Information System (INIS)
Werley, K.A.; Bathke, C.G.; Krakowski, R.A.
1987-01-01
A range of limiter, armor, and divertor options are examined as a means to minimize plasma/wall interactions for a high-power-density, ignition-class reversed field pinch. An open, toroidal-field divertor can operate at maximum powers, while isolating the core plasma from impurities and protecting the wall. 16 refs
Method and apparatus for producing average magnetic well in a reversed field pinch
International Nuclear Information System (INIS)
Ohkawa, T.
1983-01-01
A magnetic well reversed field plasma pinch method and apparatus produces hot magnetically confined pinch plasma in a toroidal chamber having a major toroidal axis and a minor toroidal axis and a small aspect ratio, e.g. < 6. A pinch current channel within the plasma and at least one hyperbolic magnetic axis outside substantially all of the plasma form a region of average magnetic well in a region surrounding the plasma current channel. The apparatus is operated so that reversal of the safety factor q and of the toroidal magnetic field takes place within the plasma. The well-producing plasma cross section shape is produced by a conductive shell surrounding the shaped envelope and by coils. A shell is of copper or aluminium with non-conductive breaks, and is bonded to a thin aluminium envelope by silicone rubber. (author)
Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch
International Nuclear Information System (INIS)
Hedqvist, A.; Rachlew-Kaellne, E.
1998-01-01
Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)
Changes in transport and confinement in the EXTRAP-T2 reversed field pinch
Sallander, E.; Sallander, J.; Hedqvist, A.
1999-09-01
At the EXTRAP-T2 reversed field pinch a non-intrusive approach has been undertaken to monitor transport driven by magnetic fluctuations. Correlations are presented between fluctuations observed in the core and at the edge of the plasma. The fluctuations are characterized and their effect on the confinement of core electron energy is estimated.
Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch
Hedqvist, Anders; Rachlew-Källne, Elisabeth
1998-09-01
Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.
Changes in transport and confinement in the EXTRAP-T2 reversed field pinch
International Nuclear Information System (INIS)
Sallander, E.; Sallander, J.; Hedqvist, A.
1999-01-01
At the EXTRAP-T2 reversed field pinch a non-intrusive approach has been undertaken to monitor transport driven by magnetic fluctuations. Correlations are presented between fluctuations observed in the core and at the edge of the plasma. The fluctuations are characterized and their effect on the confinement of core electron energy is estimated. (author)
Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch
International Nuclear Information System (INIS)
Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.
1990-10-01
Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs
Plasma engineering design of a compact reversed-field pinch reactor (CRFPR)
International Nuclear Information System (INIS)
Bathke, C.G.; Embrechts, M.J.; Hagenson, R.L.; Krakowski, R.A.; Miller, R.L.
1983-01-01
The rationale for and the characteristics of the high-power-density Compact Reversed-Field Pinch Reactor (CRFPR) are discussed. Particular emphasis is given to key plasma engineering aspects of the conceptual design, including plasma operations, current drive, and impurity/ash control by means of pumped limiters or magnetic divertors. A brief description of the Fusion-Power-Core integration is given
International Nuclear Information System (INIS)
Newton, A.A.
1986-01-01
Field-reversed configurations (FRC) and theta pinches with trapped reversed bias field are essentially the same magnetic confinement systems using closed magnetic field lines inside an open-ended magnetic flux tube. A simple model of joule heating and parallel electron thermal conduction along the open flux lines to an external heat sink gives the electron temperature as Tsub(e)(eV) approx.= 0.05 Bsup(2/3)(G)Lsup(1/3)(cm), where B is the magnetic field and L is the coil length. This model appears to agree with measurements from present FRC experiments and past theta-pinch experiments which cover a range of 40-900 eV. The energy balance in the model is dominated by (a) parallel electron thermal conduction along the open field lines which has a steep temperature dependence, Q is proportional to Tsub(e)sup(7/2), and (b) the assumed rapid perpendicular transport in the plasma bulk which, in experiments to date, may be due to the small number of ion gyroradii across the plasma. (author)
Collisional tearing in a field-reversed sheet pinch assuming nonparallel propagation
International Nuclear Information System (INIS)
Quest, K.B.; Coroniti, F.V.
1985-01-01
We examine the linear stability properties of the collisional tearing mode in a reversed-field sheet pinch assuming that the wave vector is not parallel to B, where B is the equilibrium magnetic field. We show that pressure balance in the direction of the equilibrium current requires a nonzero perturbed current component deltaJ/sub z/ that is driven toward tyhe center of the pinch. At the center of the pinch, deltaJ/sub z/ goes to zero, and momentum is balanced by coupling to the ion-acoustic mode. In order to achieve current closure, a large perturbed field-aligned current is generated that is strongly localized about the dissipative tearing layer. The relation of this work to the collisionless case is discussed
Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor
International Nuclear Information System (INIS)
Bathke, C.G.; Krakowski, R.A.; Miller, R.L.
1985-01-01
Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line tracings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented
International Nuclear Information System (INIS)
Pasqualini, D.; Martin, P.; Koguchi, H.; Yagi, Y.; Hirano, Y.; Sakakita, H.; Spizzo, G.
2006-01-01
The MHD instabilities that sustain the reversed-field pinch (RFP) configuration tend to phase-lock together and also to wall-lock, forming a bulging of the plasma column, called 'locked mode'. This phenomenon is of particular interest, since the locked mode causes a larger plasma resistivity, plasma cooling, and, in some cases, anomalous discharge termination. Up to now, studies of the locked mode have been focused on m=1 modes (being m the poloidal mode number). In this Letter we show that m=0 modes also play a role, based on the cross-check between magnetic spectra and toroidally resolved D α array measurements. (author)
Flux trapping during field reversal in a field reversed theta pinch
International Nuclear Information System (INIS)
Milroy, R.D.; Hoffman, A.L.; Slough, J.T.; Harding, D.G.
1983-01-01
In this paper we present new results from both numerical and experimental studies of the formation of the conducting sheath near the tube wall and its effectiveness in trapping bias flux during field reversal
Overview of the TITAN-II reversed-field pinch aqueous fusion power core design
Energy Technology Data Exchange (ETDEWEB)
Wong, C.P.C.; Creedon, R.L.; Grotz, S.; Cheng, E.T.; Sharafat, S.; Cooke, P.I.H.
1988-03-01
TITAN-II is a compact, high power density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MWm/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a passive safety assurance design. 13 refs., 3 figs., 1 tab.
Overview of the TITAN-II reversed-field pinch aqueous fusion power core design
Energy Technology Data Exchange (ETDEWEB)
Wong, C.P.C.; Creedon, R.L.; Cheng, E.T. (General Atomic Co., San Diego, CA (USA)); Grotz, S.P.; Sharafat, S.; Cooke, P.I.H. (California Univ., Los Angeles (USA). Dept. of Mechanical, Aerospace and Nuclear Engineering; California Univ., Los Angeles, CA (USA). Inst. for Plasma and Fusion Research); TITAN Research Group
1989-04-01
TITAN-II is a compact, high-power-density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MW/m/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a level 2 of passive safety assurance design. (orig.).
Enhanced confinement with plasma biasing in the MST reversed field pinch
International Nuclear Information System (INIS)
Craig, D.; Almagri, A.F.; Anderson, J.K.
1997-06-01
We report an increase in particle confinement with plasma biasing in a reversed field pinch. Miniature plasma sources are used as electrodes to negatively bias the plasma at the edge (r/a ∼ 0.9). Particle content increases and H α radiation decreases upon application of bias and global particle confinement roughly doubles as a result. Measurements of plasma potential, impurity flow, and floating potential fluctuations indicate that strong flows are produced and that electrostatic fluctuations are reduced
Initial reversed-field pinch experiments on ZT-40 and recent advances in RFP theory
International Nuclear Information System (INIS)
Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.
1980-01-01
The ZT-40 reversed-field pinch (RFP) has been operated in several modes: (1) without reversed toroidal field, (2) with self reversal, and (3) with aided reversal. An analytic ohmic heating and ignition model both confirm and provide guidance for transport codes. Nondissipative formation schemes have been analyzed and ideal MHD stable evolution and burn scenarios have been found. Particle and fluid simulations have produced qualitative agreement with respect to the nonlinear behavior of m = 0 resistive g-modes. Helical ohmic reversed field states are produced by a 2-D dynamical simulation, and nonlinear analytic work describes the final state. A fast resistive MHD code for linear stability has clarified the relations between several kinds of resistive instabilities. Ballooning modes and g-modes in systems with arbitrary magnetic shear including resistivity and viscosity, have been studied in a unified treatment with growth rate vs wavenumber showing the existence of important cutoffs
International Nuclear Information System (INIS)
Scardovelli, R.A.; Nebel, R.A.; Werley, K.A.; Miley, G.H.
1987-01-01
Oscillating Field Current Drive (OFCD) is based on the premise that in order to sustain a relaxing Reversed Field Pinch (RFP) plasma, one needs only to supply magnetic helicity at the same rate it is consumed. The purpose of this work is to try to better understand the possible mechanisms underlying these relaxations within the context of different kinds of resistive MHD instabilities
International Nuclear Information System (INIS)
Onchi, T; Fujisawa, A; Sanpei, A; Himura, H; Masamune, S
2017-01-01
Permutation entropy and statistical complexity are measures for complex time series. The Bandt–Pompe methodology evaluates probability distribution using permutation. The method is robust and effective to quantify information of time series data. Statistical complexity is the product of Jensen–Shannon divergence and permutation entropy. These physical parameters are introduced to analyse time series of emission and magnetic fluctuations in low-aspect-ratio reversed-field pinch (RFP) plasma. The observed time-series data aggregates in a region of the plane, the so-called C – H plane, determined by entropy versus complexity. The C – H plane is a representation space used for distinguishing periodic, chaos, stochastic and noisy processes of time series data. The characteristics of the emissions and magnetic fluctuation change under different RFP-plasma conditions. The statistical complexities of soft x-ray emissions and magnetic fluctuations depend on the relationships between reversal and pinch parameters. (paper)
Toroidal magnetic field system for a 2-MA reversed-field pinch experiment
International Nuclear Information System (INIS)
Melton, J.G.; Linton, T.W.
1983-01-01
The engineering design of the toroidal magnetic field (TF) system for a 2-MA Reversed-Field Pinch experiment (ZT-H) is described. ZT-H is designed with major radius 2.15 meters, minor radius 0.40 meters, and a peak toroidal magnetic field of 0.85 Tesla. The requirement for highly uniform fields, with spatial ripple <0.2% leads to a design with 72 equally spaced circular TF coils, located at minor radius 0.6 meters, carrying a maximum current of 9.0 MA. The coils are driven by a 12-MJ capacitor bank which is allowed to ring in order to aid the reversal of magnetic field. A stress analysis is presented, based upon calculated hoop tension, centering force, and overturning moment, treating these as a combination of static loads and considering that the periodic nature of the loading causes little amplification. The load transfer of forces and moments is considered as a stress distribution resisted by the coils, support structures, wedges, and the structural shell
Magnetic divertor design for the compact reversed-field pinch reactor
International Nuclear Information System (INIS)
Bathke, C.G.; Miller, R.L.; Krakowski, R.A.
1984-01-01
A recently completed design of a pumped-limiter-based Compact Reversed-Field Pinch Reactor is used to estimate for the first time the impact of magnetic divertors. A range of divertor options for the low-toroidal-field RFP is examined, and a design selection is made constrained by consideration of field ripple (magnetic island), blanket displacement, recirculating power, cost, heat flux, and access. Design choices based on diversion of minority (toroidal) field lead to a preference for (poloidally) symmetric or bundle divertor geometries
Resistive wall modes in the EXTRAP T2R reversed-field pinch
Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.
2003-10-01
Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.
Effects of compressibility and heating in magnetohydrodynamics simulations of a reversed field pinch
International Nuclear Information System (INIS)
Onofri, M.; Malara, F.; Veltri, P.
2009-01-01
The reversed field pinch is studied using numerical simulations of the compressible magnetohydrodynamics equations. Contrary to what has been done in previous works, the hypotheses of constant density and vanishing pressure are not used. Two cases are investigated. In the first case the pressure is derived from an adiabatic condition and in the second case the pressure equation includes heating terms due to resistivity and viscosity. The evolution of the reversal parameter and the production of single helicity or multiple helicity states are different in the two cases. The simulations show that the results are affected by compressibility and are very sensitive to hypotheses on heat production.
MHD computation of feedback of resistive-shell instabilities in the reversed field pinch
International Nuclear Information System (INIS)
Zita, E.J.; Prager, S.C.
1992-05-01
MHD computation demonstrates that feedback can sustain reversal and reduce loop voltage in resistive-shell reversed field pinch (RFP) plasmas. Edge feedback on ∼2R/a tearing modes resonant near axis is found to restore plasma parameters to nearly their levels with a close-fitting conducting shell. When original dynamo modes are stabilized, neighboring tearing modes grow to maintain the RFP dynamo more efficiently. This suggests that experimentally observed limits on RFP pulselengths to the order of the shell time can be overcome by applying feedback to a few helical modes
Stable Alfven wave dynamo action in the reversed field pinch
International Nuclear Information System (INIS)
Werley, K.A.
1984-01-01
Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. Static quasi-linear Alfven wave calculations have shown that dynamo emfs on the order of eta vector J are possible. This suggested a possible explanation of RFP behavior and a new (externally driven) mechanism for extending operation and controlling field profiles (possibly reducing plasma transport). This thesis demonstrates that the dynamo emf can quickly induce plasma currents whose emf cancels the dynamo effect. This thesis also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number
Statistical magnetohydrodynamics and reversed-field-pinch quiescence
International Nuclear Information System (INIS)
Turner, L.
1982-01-01
A statistical model of a bounded, incompressible, cylindrical magnetofluid is presented. This model predicts the presence of magnetic fluctuations about a cylindrically-symmetric, Bessel-function-model, mean magnetic field, which satisfies del x = μ . As theta → 1.56, the model predicts that the significant region of the fluctuation spectrum narrows down to a single (coherent) m = 1 mode. An analogy between the Debye length of an electrostatic plasma and μ -1 suggests the physical validity o the model's prediction of when /r - r'/ greater than or equal to μ -1
Compact-Toroid Fusion Reactor (CTOR) based on the Field-Reversed Theta Pinch
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.
1981-01-01
Scoping studies of a translating Compact Torus Reactor (CTOR) have been made on the basis of a dynamic plasma model and an overall systems approach. This CTOR embodiment uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plamoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radition shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15
Compact-Toroid fusion reactor based on the field-reversed theta pinch
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.
1981-03-01
Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CTOR) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15
Mode dynamics and confinement in the reversed field pinch
International Nuclear Information System (INIS)
Brunsell, P.R.; Bergsaker, H.; Brzozowski, J.H.; Cecconello, M.; Drake, J.R.; Malmberg, J.-A.; Scheffel, J.; Schnack, D.D.
2001-01-01
Tearing mode dynamics and toroidal plasma flow in the RFP has been experimentally studied in the Extrap T2 device. A toroidally localised, stationary magnetic field perturbation, the 'slinky mode' is formed in nearly all discharges. There is a tendency of increased phase alignment of different toroidal Fourier modes, resulting in higher localised mode amplitudes, with higher magnetic fluctuation level. The fluctuation level increases slightly with increasing plasma current and plasma density. The toroidal plasma flow velocity and the ion temperature has been measured with Doppler spectroscopy. Both the toroidal plasma velocity and the ion temperature clearly increase with I/N. Initial, preliminary experimental results obtained very recently after a complete change of the Extrap T2 front-end system (first wall, shell, TF coil), show that an operational window with mode rotation most likely exists in the rebuilt device, in contrast to the earlier case discussed above. A numerical code DEBSP has been developed to simulate the behaviour of RFP confinement in realistic geometry, including essential transport physics. Resulting scaling laws are presented and compared with results from Extrap T2 and other RFP experiments. (author)
Gravestijn, Bob
2003-01-01
The determination of the plasma confinement propertiesdemand data as the electron temperature, the ionic and electrondensity profiles and the radiative emissivity profiles. Thefocus of this thesis is the importance of radial profiles inspectroscopic diagnostics applied to the EXTRAP-T2Rreversed-field pinch. EXTRAP-T2R is a resistive shell reversed-field pinch with amagnetic field shell penetration time much longer than therelaxation cycle time scale. Significant improvements inconfinement pro...
END effects on the n = 2 rotational instability in the reversed field theta-pinch
International Nuclear Information System (INIS)
Aso, Y.; Wu, Ch.; Himeno, S.; Hirano, K.
1981-07-01
It is observed that n = 2 rotational mode which appears in the field reversed configuration created by a theta-pinch can be stabilized if the ejected plasmas from the ends are guided out to the far ends of the apparatus by long axial solenoidal fields. This is understood from the fact that endshorting becomes no longer possible before the ejecting plasma tips reach to the ends. Measurement of plasma rotations just outside the separatrix suggests that both preferential diffusion loss and endshorting play a very important role for the n = 2 mode. (author)
Alpha effect of Alfven waves and current drive in reversed field pinches
International Nuclear Information System (INIS)
Litwin, C.; Prager, S.C.
1997-10-01
Circularly polarized Alfven waves give rise to an α-dynamo effect that can be exploited to drive parallel current. In a open-quotes laminarclose quotes magnetic the effect is weak and does not give rise to significant currents for realistic parameters (e.g., in tokamaks). However, in reversed field pinches (RFPs) in which magnetic field in the plasma core is stochastic, a significant enhancement of the α-effect occurs. Estimates of this effect show that it may be a realistic method of current generation in the present-day RFP experiments and possibly also in future RFP-based fusion reactors
Ion heating and MHD dynamo fluctuations in the reversed field pinch
International Nuclear Information System (INIS)
Scime, E.; Hokin, S.; Watts, C.; Mattor, N.
1992-01-01
Ion temperature measurements, time resolved to 10 μs, have been made in the Madison Symmetric Torus reversed-field pinch with a five channel charge exchange analyzer. The ion temperature, T i ∼ 200 eV for I = 350 kA, increases by as much as 100% during discrete dynamo bursts in MST discharges. Magnetic field fluctuations in the range 0.5--5 MHz were also measured. Structure in the fluctuation frequency spectrum at the ion cyclotron frequency appears as the bursts terminate, suggesting that the mechanism of ion heating involves the dissipation of dynamo fluctuations at ion gyro-orbit scales
Numerical studies of active current profile control in the reversed-field pinch
International Nuclear Information System (INIS)
Dahlin, J-E; Scheffel, J; Anderson, J K
2007-01-01
Quenching of the reversed-field pinch (RFP) dynamo is observed in numerical simulations using current profile control. A novel algorithm employing active feedback of the dynamo field has been utilized. The quasi-steady state achieved represents an important improvement as compared with earlier numerical work and may indicate a direction for the design of future experiments. Both earlier and the novel schemes of feedback control result in quasi-single helicity states. The energy confinement time and poloidal beta are observed to be substantially increased, as compared with the conventional RFP, in both the cases. Different techniques for experimental implementation are discussed
Electron Bernstein wave emission from an overdense reversed field pinch plasma
International Nuclear Information System (INIS)
Chattopadhyay, P.K.; Anderson, J.K.; Biewer, T.M.; Craig, D.; Forest, C.B.; Harvey, R.W.; Smirnov, A.P.
2002-01-01
Blackbody levels of emission in the electron cyclotron range of frequencies have been observed from an overdense (ω pe ∼3ω ce ) Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch plasma, a result of electrostatic electron Bernstein waves emitted from the core and mode converted into electromagnetic waves at the extreme plasma edge. Comparison of the measured radiation temperature with profiles measured by Thomson scattering indicates that the mode conversion efficiency can be as high as ∼75%. Emission is preferentially in the X-mode polarization, and is strongly dependent upon the density and magnetic field profiles at the mode conversion point
Tokamak-like confinement at high beta and low field in the reversed field pinch
International Nuclear Information System (INIS)
Sarff, J S; Anderson, J K; Biewer, T M; Brower, D L; Chapman, B E; Chattopadhyay, P K; Craig, D; Deng, B; Hartog, D J Den; Ding, W X; Fiksel, G; Forest, C B; Goetz, J A; O'Connell, R; Prager, S C; Thomas, M A
2003-01-01
For several reasons, improved-confinement achieved in the reversed field pinch (RFP) during the last few years can be characterized as 'tokamak-like'. Historically, RFP plasmas have had relatively poor confinement due to tearing instability which causes magnetic stochasticity and enhanced transport. Tearing reduction is achieved through modification of the inductive current drive, which dramatically improves confinement. The electron temperature increases to >1 keV and the electron heat diffusivity decreases to approx. 5 m 2 s -1 , comparable with the transport level expected in a tokamak plasma of the same size and current. This corresponds to a 10-fold increase in global energy confinement. Runaway electrons are confined, and Fokker-Planck modelling of the electron distribution reveals that the diffusion at high energy is independent of the parallel velocity, uncharacteristic of stochastic transport. Improved-confinement occurs simultaneously with increased beta approx. 15%, while maintaining a magnetic field strength ten times weaker than a comparable tokamak. Measurements of the current, magnetic, and electric field profiles show that a simple Ohm's Law applies to this RFP sustained without dynamo relaxation
Equilibrium poloidal-field distributions in reversed-field-pinch toroidal discharges
International Nuclear Information System (INIS)
Baker, D.A.; Mann, L.W.; Schoenberg, K.F.
1983-01-01
A comparison between the approximate analytic formulae of Shafranov for equilibrium in axisymmetric toroidal systems and fully toroidal numerical solutions of the Grad-Shafranov equation for reversed-field-pinch (RFP) configurations is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal-field distribution at the conducting shell that surrounds the plasma is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one third of the minor toroidal radius. The analytic description for the centre shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one tenth of the minor conducting boundary radius. The Shafranov formulae provide a convenient method for describing the gross equilibrium behaviour of an axisymmetric RFP discharge, as well as an effective tool for designing the poloidal-field systems of RFP experiments. (author)
Electron transport in the stochastic fields of the reversed-field pinch
International Nuclear Information System (INIS)
Kim, M.-H.; Punjabi, A.
1996-01-01
We employ the Monte Carlo method for the calculation of anomalous transport developed by Punjabi and Boozer to calculate the particle diffusion coefficient for electrons in the stochastic magnetic fields of the reversed-field pinch (RFP). In the Monte Carlo calculations represented here, the transport mechanism is the loss of magnetic surfaces due to resistive perturbations. The equilibrium magnetic fields are represented by the Bessel function model for the RFP. The diffusion coefficient D is calculated as a function of a, the amplitude of the perturbation. We see three regimes as the amplitude of the tearing modes is increased: the Rechester-Rosenbluth regime where D scales as a 2 ; the anomalous regime where D scales more rapidly than a 2 ; and the Mynick-Krommes regime where D scales more slowly than a 2 . Inclusion of the effects of loop voltage on the particle drift orbits in the RFP does not affect the intervals in the amplitude a where these regimes operate. (Author)
Role of magnetic reconnection phenomena in the reversed-field pinch
International Nuclear Information System (INIS)
Baker, D.A.
1983-01-01
The reversed-field pinch (RFP), an axisymmetric toroidal magnetic confinement experiment, has physics rich in the area commonly called field line reconnection or merging. This paper reviews the topics where reconnection plays a vital role: (a) RFP formation and the phenomenon of self-reversal, (b) RFP sustainment in which the RFP configuration has been shown to be capable of maintaining itself for times much longer than earlier predictions from classical resistive MHD theory, (c) steady state current drive in which dynamo action and associated reconnection processes give rise to the possibility of sustaining the configuration indefinitely by means of low frequency ac modulation of the toroidal and poloidal magnetic fields, (d) the effects of reconnection on the formation and evolution of the magnetic surfaces which are intimately related to the plasma containment properties. It appears that all phases of the RFP operation are intimately related to the reconnection and field regeneration processes similar to those encountered in space and astrophysics
Magnetic fluctuation driven cross-field particle transport in the reversed-field pinch
International Nuclear Information System (INIS)
Scheffel, J.; Liu, D.
1997-01-01
Electrostatic and electromagnetic fluctuations generally cause cross-field particle transport in confined plasmas. Thus core localized turbulence must be kept at low levels for sufficient energy confinement in magnetic fusion plasmas. Reversed-field pinch (RFP) equilibria can, theoretically, be completely stable to ideal and resistive (tearing) magnetohydrodynamic (MHD) modes at zero beta. Unstable resistive interchange modes are, however, always present at experimentally relevant values of the poloidal beta β θ . An analytical quasilinear, ambipolar diffusion model is here used to model associated particle transport. The results indicate that core density fluctuations should not exceed a level of about 1% for plasmas of fusion interest. Parameters of experimentally relevant stationary states of the RFP were adjusted to minimize growth rates, using a fully resistive linearized MHD stability code. Density gradient effects are included through employing a parabolic density profile. The scaling of particle diffusion [D(r)∝λ 2 n 0.5 T/aB, where λ is the mode width] is such that the effects of particle transport are milder in present day RFP experiments than in future reactor-relevant plasmas. copyright 1997 American Institute of Physics
Equilibrium poloidal field distributions in reversed-field-pinch toroidal discharges
International Nuclear Information System (INIS)
Baker, D.A.; Mann, L.W.; Schoenberg, K.F.
1982-04-01
A comparison between the analytic formulae of Shafranov for equilibrium in axisymmetric toroidal reversed field pinch (RFP) systems and fully toroidal numerical solutions of the Grad-Shafranov equation is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal field distribution is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one-third of the minor toroidal radius. The analytic description for the center shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one-tenth of the minor conducting boundary radius. The behavior of the magnetic axis shift as a function of plasma parameters is included. The Shafranov formulae provide a convenient method for describing the equilibrium behavior of an RFP discharge. Examples illustrating the application of the analytic formulae to the Los Alamos ZT-40M RFP experiment are given
Numerical modeling of formation of helical structures in reversed-field-pinch plasma
International Nuclear Information System (INIS)
Mizuguchi, N.; Ichiguchi, K.; Todo, Y.; Sanpei, A.; Oki, K.; Masamune, S.; Himura, H.
2012-11-01
Nonlinear three-dimensional magnetohydrodynamic(MHD) simulations have been executed for the low-aspect-ratio reversed-field-pinch (RFP) plasma to reveal the physical mechanism of the formation processes of helical structures. The simulation results show a clear formation of n=4 structure as a result of dominant growth of resistive modes, where n represents the toroidal mode number. The resultant relaxed helical state consists of a unique bean-shaped and hollow pressure profile in the poloidal cross section for both cases of resonant and non-resonant triggering instability modes. The results are partially comparable to the experimental observations. The physical mechanisms of those processes are examined. (author)
Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R
Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.
2005-08-01
The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E × B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport.
Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R
International Nuclear Information System (INIS)
Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsaaker, H.; Cecconello, M.; Drake, J.R.
2005-01-01
The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E x B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport
Characteristics of a large reversed field pinch machine, TPE-RX
International Nuclear Information System (INIS)
Yagi, Y.; Shimada, T.; Hirano, Y.; Sekine, S.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Maejima, Y.; Hirota, I.; Hayase, K.; Sato, Y.; Sugisaki, K.; Oyabu, I.; Hasegawa, M.; Yamane, M.; Sato, F.; Kuno, K.; Minato, T.; Kiryu, A.; Takagi, S.; Sako, K.; Kudough, F.; Urata, K.; Orita, J.; Kaguchi, H.; Sago, H.; Ue, K.
1998-01-01
Construction of a new, large reversed field pinch (RFP) machine called TPE-RX was complete at the end of 1997 as a successor of the previous TPE-1RM20 machine at the Electrotechnical Laboratory (ETL). RFP configuration has been successfully obtained in March 1998. The optimization of the operating condition and discharge cleaning of the wall are presently undergoing with the first physics experiments. This paper is the first report of TPE-RX especially on the goals, overall machine characteristics and the present status. Other papers accompanying with this one will present specific topics on the magnetic coil system and the vacuum vessel system. (author)
Characteristics of a large reversed field pinch machine, TPE-RX
Energy Technology Data Exchange (ETDEWEB)
Yagi, Y.; Shimada, T.; Hirano, Y.; Sekine, S.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Maejima, Y.; Hirota, I.; Hayase, K.; Sato, Y.; Sugisaki, K. [Electrotechnical Lab., Tsukuba-shi, Ibaraki (Japan); Oyabu, I.; Hasegawa, M.; Yamane, M.; Sato, F.; Kuno, K.; Minato, T.; Kiryu, A.; Takagi, S.; Sako, K. [Mitsubishi Electric Corp. (Japan); Kudough, F.; Urata, K.; Orita, J.; Kaguchi, H.; Sago, H.; Ue, K. [Mitsubishi Heavy Industries Ltd. (Japan)
1998-07-01
Construction of a new, large reversed field pinch (RFP) machine called TPE-RX was complete at the end of 1997 as a successor of the previous TPE-1RM20 machine at the Electrotechnical Laboratory (ETL). RFP configuration has been successfully obtained in March 1998. The optimization of the operating condition and discharge cleaning of the wall are presently undergoing with the first physics experiments. This paper is the first report of TPE-RX especially on the goals, overall machine characteristics and the present status. Other papers accompanying with this one will present specific topics on the magnetic coil system and the vacuum vessel system. (author)
Data-acquisition system of the reversed field pinch device REPUTE-1
International Nuclear Information System (INIS)
Tsuzuki, N.; Aoki, H.; Shinohara, H.; Toyama, H.; Morikawa, J.
1988-01-01
The new, compact data-acquisition system of the reversed field pinch device, REPUTE-1, is reported. Its distinctive feature is high flexibility and easy handling. The interface between the computer and measurement devices is CAMAC. The computer and the CAMAC devices are connected to a CAMAC byte serial highway that transmits setup parameters and acquisition data. The computer carries out setup of CAMAC devices and data acquisition automatically by use of CAMAC parameters and the acquisition data base. The maintenance tools for the data base are also provided. The computer system, which consists of a ''TOSBAC DS-600,'' has been in operation for REPUTE-1 since 1985
Velocity-space particle loss in field-reversed theta pinches
International Nuclear Information System (INIS)
Hsiao, M.Y.
1983-01-01
A field-reversed theta pinch (FRTP) is a compact device for magnetic fusion. It has attracted much attention in recent years since encouraging experimental results have been obtained. However, the definite causes for the observed particle loss rate and plasma rotation are not well known. In this work, we study the velocity-space particle loss (VSPL), i.e., particle loss due to the existence of a loss region in velocity space, in FRTP's in order to have a better understanding about the characteristics of this device
The reversed-field-pinch (RFP) fusion neutron source: A conceptual design
International Nuclear Information System (INIS)
Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Werley, K.A.
1989-01-01
The conceptual design of an ohmically heated, reversed-field pinch (RFP) operating at ∼5-MW/m 2 steady-state DT fusion neutron wall loading and ∼124-MW total fusion power is presented. These results are useful in projecting the development of a cost effective, low input power (∼206 MW) source of DT neutrons for large-volume (∼10 m 3 ), high-fluence (3.4 MW yr/m 2 ) fusion nuclear materials and technology testing. 19 refs., 15 figs., 9 tabs
Transient loss of plasma from a theta pinch having an initially reversed magnetic field
International Nuclear Information System (INIS)
Heidrich, J.E.
1981-01-01
The results of an experimental study of the transient loss of plasma from a 25-cm-long theta pinch initially containing a reversed trapped magnetic field are presented. The plasma, amenable to MHD analyses, was a doubly ionized helium plasma characterized by an ion density N/sub i/ = 2 x 10 16 cm -3 and an ion temperature T/sub i/ = 15 eV at midcoil and by N/sub i/ = 0.5 x 10 16 cm -3 and T/sub i/ = 6 eV at a position 2.5 cm beyond the end of the theta coil
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
Energy Technology Data Exchange (ETDEWEB)
Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smith, R. J. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)
2015-04-15
Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
Weber, T. E.; Intrator, T. P.; Smith, R. J.
2015-04-01
Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.
FRC formation studies in a field reversed theta pinch with a variable length coil
International Nuclear Information System (INIS)
Maqueda, R.; Sobehart, J.; Rodrigo, A.B.
1987-01-01
The formation phase of field reversed configurations (FRC) produced using a theta pinch has received considerable attention lately in connection with the possibility of developing formation methods in time scales longer than the Alven radial time, which would permit the use of low-voltage technology and represent an important engineering simplification in the trend towards larger scale machines sup (1)). The mechanisms leading to the loss of trapped reversed flux during the preheating 2 ) and formation sup (3,4)) stages, looking for maximization of this quantity in order to improve on the stability and transport properties of the configuration in its final equilibrium state are investigated. As a result, semi-emperical scaling laws have been obtained relating the reversed flux loss with experimental operating parameters during the early stages of the formation process 1 ). (author) [pt
International Nuclear Information System (INIS)
Sakakita, H.; Asai, T.; Fiksel, G.; Yagi, Y.; Frassinetti, L.; Hayase, K.; Hirano, Y.; Kiyama, S.; Koguchi, H.; Shimada, T.; Innocente, P.; Spizzo, G.; Terranova, D.; Sato, Y.; Yoshikawa, M.
2005-01-01
We present the characteristics and experimental scaling laws of reversed-field pinch (RFP) plasmas, which are obtained from the recently established toroidal pinch experiment (TPE) database. The database contains information for approximately 1500 discharges consistently selected from four TPE RFP devices, and covers two decades of RFP experiments under conventional operating conditions at the National Institute of Advanced Industrial Science and Technology. We present the physics of the pulsed poloidal current drive (PPCD) discharges in the TPE-RX RFP device, and a comparison of the improved energy confinement time in PPCD, τ E P PCD , with τ E s caling as the reference scaling law (τ E s caling ∼ a 1.63 (I P 0.78 (I P /N) 0.33 Θ 2.97 ) in the TPE database, is attempted. The result shows that τ E P PCD agrees well with τ E s caling because of the strong pinch parameter dependence on the TPE scaling law. A potential improved confinement mode in the quasi-single-helicity (QSH) state is also investigated in TPE-RX, with respect to the operation conditions under which the QSH spontaneously appears in the core region, where a typical island structure is observed by means of soft Xray tomography. (author)
Fusion core start-up, ignition, and burn simulations of reversed-field pinch (RFP) reactors
International Nuclear Information System (INIS)
Chu, Y.Y.
1988-01-01
A transient reactor simulation model is developed to investigate and simulate the start-up, ignition, and burn of a reversed-field pinch reactor. The simulation is based upon a spatially averaged plasma balance model with field profiles obtained from MHD quasi-equilibrium analysis. Alpha particle heating is estimated from Fokker-Planck calculations. The instantaneous plasma current is derived from a self-consistent circuit analysis for plasma/coil/eddy current interactions. The simulation code is applied to the TITAN RFP reactor design which features a compact, high-power-density reversed-field pinch fusion system. A contour analysis is performed using the steady-state global plasma balance. The results are presented with contours of constant plasma current. A saddle point is identified in the contour plot which determined the minimum value of plasma current required to achieve ignition. In the simulations of the TITAN RFP reactor, the OH-driven super-conducting EF coils are found to deviate from the required equilibrium values as the induced plasma current increases. A set of basic results from the simulation of TITAN RFP reactor yield a picture of RFP plasma operation in a reactor. Investigations of eddy currents are also presented and have very important in reactor design
Toroidal fusion reactor design based on the reversed-field pinch
International Nuclear Information System (INIS)
Hagenson, R.L.
1978-07-01
The toroidal reversed-field pinch (RFP) achieves gross equilibrium and stability with a combination of high shear and wall stabilization, rather than the imposition of tokamak-like q-constraints. Consequently, confinement is provided primarily by poloidal magnetic fields, poloidal betas as large as approximately 0.58 are obtainable, the high ohmic-heating (toroidal) current densities promise a sole means of heating a D-T plasma to ignition, and the plasma aspect ratio is not limited by stability/equilibrium constraints. A reactor-like plasma model has been developed in order to quantify and to assess the general features of a power system based upon RFP confinement. An ''operating point'' has been generated on the basis of this plasma model and a relatively detailed engineering energy balance. These results are used to generate a conceptual engineering model of the reversed-field pinch reactor (RFPR) which includes a general description of a 750 MWe power plant and the preliminary consideration of vacuum/fueling, first wall, blanket, magnet coils, iron core, and the energy storage/transfer system
A study of reversed field pinch experiments using a new programming mode
International Nuclear Information System (INIS)
Kita, Y.
1979-08-01
A new mode of external-field programming for setting up a reversed-field pinch (RFP) is tested in STP-1. It involves creating an initial plasma with a screw pinch followed by external-field reversal. The program is done carefully so as to satisfy the equilibrium relation with respect to the minor radius throughout the setting-up phase. Increase of the trapped flux in the plasma by a factor of two is consequently attained, as compared with previous usual programming mode. Actually, at a plasma current of 58 kA, a stable operation time of 13 μsec is achieved with a density of 3.5 x 10 15 cm -3 and a temperature of 20 eV. After 13 μsec stable operation time, the plasma is suddenly crashed down by a violent MHD instability. One dimensional stability analysis based on ideal MHD model is applied to the experimental results. It is found that the instability is m = 1 resistive tearing mode under the influence of viscosity. Using the new programming high current operation at 110 kA is done and results in higher plasma temperature and density of 40 eV and 4.5 x 10 15 cm -3 , respectively. The duration of stable discharge, however, is limited to about 10 μsec, in spite of the expected longer confinement time at the higher temperature. (author)
International Nuclear Information System (INIS)
Onofri, M.; Malara, F.; Veltri, P.
2010-01-01
A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity.
Electrical design of a high current density air-core reversed-field pinch ''ZTP''
International Nuclear Information System (INIS)
Reass, W.A.; Cribble, R.F.; Melton, J.G.
1983-01-01
This paper describes the electrical design of a small, high current density (10 MA/m 2 ) toroidal reversed-field Z-Pinch (RFP) presently being constructed at Los Alamos. Special purpose magnetic field programs were used to calculate self and mutual inductances for the poloidal field windings. The network analysis program MINI-SCEPTRE was then used to predict plasma current, including the interaction between toroidal and poloidal field circuits, as described by the Bessel function model for RFP's. Using these programs, coil geometry was obtained for minimal field errors and the pulse power systems were optimized to minimize equilibrium control power. Results of computer modeling and implementation of the electrical circuits are presented
Ohm close-quote s law for plasmas in reversed field pinch configuration
International Nuclear Information System (INIS)
Martines, E.; Vallone, F.
1997-01-01
An analytical relationship between current density and applied electric field in reversed field pinch (RFP) plasmas has been derived in the framework of the kinetic dynamo theory, that is assuming a radial field-aligned momentum transport caused by the magnetic field stochasticity. This Ohm close-quote s law yields current density profiles with a poloidal current density at the edge which can sustain the magnetic field configuration against resistive diffusion. The dependence of the loop voltage on plasma current and other plasma parameters for RFP experiments has been obtained. The results of the theoretical work have been compared with experimental data from the RFX experiment, and a good agreement has been found. copyright 1997 The American Physical Society
Electrical design of a high current density air-core reversed-field pinch ZTP
International Nuclear Information System (INIS)
Reass, W.A.; Melton, J.G.; Gribble, R.F.
1983-01-01
This paper describes the electrical design of a small, high current density (10 MA/m 2 ) toroidal reversed-field Z-Pinch (RFP) presently being constructed at Los Alamos. Special purpose magnetic field programs were used to calculate self and mutual inductances for the poloidal field windings. The network analysis program MINI-SCEPTRE was then used to predict plasma current, including the interaction between toroidal and poloidal field circuits, as described by the Bessel function model for RFP's. Using these programs, coil geometry was obtained for minimal field errors and the pulse power systems were optimized to minimize equilibrium control power. Results of computer modeling and implementation of the electrical circuits are presented
Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch
International Nuclear Information System (INIS)
Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.
1998-01-01
Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data
International Nuclear Information System (INIS)
Meyerhofer, D.D.; Perkins, F.W.
1984-01-01
The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer--Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches
Compact Reversed-Field Pinch Reactors (CRFPR): fusion-power-core integration study
International Nuclear Information System (INIS)
Copenhaver, C.; Krakowski, R.A.; Schnurr, N.M.
1985-08-01
Using detailed two-dimensional neutronics studies based on the results of a previous framework study (LA-10200-MS), the fusion-power-core (FPC) integration, maintenance, and radio-activity/afterheat control are examined for the Compact Reversed-Field Pinch Reactor (CRFPR). While maintaining as a base case the nominal 20-MW/m 2 neutron first-wall loading design, CRFPR(20), the cost and technology impact of lower-wall-loading designs are also examined. The additional detail developed as part of this follow-on study also allows the cost estimates to be refined. The cost impact of multiplexing lower-wall-loading FPCs into a approx. 1000-MWe(net) plant is also examined. The CRFPR(20) design remains based on a PbLi-cooled FPC with pressurized-water used as a coolant for first-wall, pumped-limiter, and structural-shield systems. Single-piece FPC maintenance of this steady-state power plant is envisaged and evaluated on the basis of a preliminary layout of the reactor building. This follow-on study also develops the groundwork for assessing the feasibility and impact of impurity/ash control by magnetic divertors as an alternative to previously considered pumped-limiter systems. Lastly, directions for future, more-detailed power-plant designs based on the Reversed-Field Pinch are suggested
Temperature evolution in a magnetohydrodynamics simulation of a reversed-field pinch
International Nuclear Information System (INIS)
Onofri, M.; Malara, F.; Veltri, P.
2010-01-01
The temperature evolution in a magnetohydrodynamics (MHD) simulation of a reversed-field pinch (RFP) is investigated including thermal conductivity. For numerical reasons, an isotropic thermal conductivity is used, even though in a RFP plasma the parallel conductivity is much larger than the perpendicular one so that magnetic field lines tend to become isothermal. The system shows alternating multiple helicity states and quasi-single helicity states. Single-helical-axis states are formed when the amplitude of the dominant mode is above a determined threshold, as observed in experiments. The relation between heat transport and magnetic field topology that is observed in RFP experiments cannot be found in the simulation, since thermal conductivity is independent of the magnetic field. This difficulty should be taken into account in the numerical investigation of the RFP dynamics. In this paper, the first description of the temperature evolution in a compressible MHD simulation of a RFP is given.
Role of anisotropic thermal conductivity in the reversed-field pinch dynamics
International Nuclear Information System (INIS)
Onofri, M.; Malara, F.; Veltri, P.
2011-01-01
Two compressible magnetohydrodynamics simulations of the reversed-field pinch are performed, with isotropic and anisotropic thermal conductivity. We describe in detail the numerical method we use to reproduce the effect of a large parallel thermal conductivity, which makes magnetic field lines almost isothermal. We compare the results of the two simulations, showing that the anisotropic thermal conductivity causes the formation of a hot island when closed magnetic surfaces exist, while temperature becomes almost uniform when the magnetic field is chaotic. After a transient single-helicity state that is formed in the initial phase, a stationary state is reached where the RFP configuration exists in a multiple helicity state, even though the Hartmann number is below the threshold found in previous simulations for the formation of multiple helicity states.
Edge-plasmas and wall protection in RFPs [Reversed-Field Pinch
International Nuclear Information System (INIS)
Werley, K.A.; Bathke, C.G.; Krakowski, R.A.
1988-01-01
The Reverse-Field Pinch (RFP) has the ability to operate as a compact, moderate-to-high beta, high-power-density system. A compact system requires careful control of the particle and heat fluxes impinging on plasma-facing components. A strongly recycling, toroidal-field open divertor combined with a highly radiating (>90% of plasma heating power) core plasma is required. An open divertor configuration locates the plate near the field null to take advantage of the flux expansion and minimum poloidal asymmetries to minimize peak heat fluxes. The physics and engineering requirements are quantitatively discussed for an evolutionary sequence of impurity/ash-control schemes for AT-40M (0.4 MA) → ZT-P (0.08 MA) → ZTH (2-4 MA) → FTF/RFP (10 MA) → TITAN (18 MA). 13 refs., 5 figs., 2 tabs
Plasma performance and scaling laws in the RFX-mod reversed-field pinch experiment
International Nuclear Information System (INIS)
Innocente, P.; Alfier, A.; Canton, A.; Pasqualotto, R.
2009-01-01
The large range of plasma currents (I p = 0.2-1.6 MA) and feedback-controlled magnetic boundary conditions of the RFX-mod experiment make it well suited to performing scaling studies. The assessment of such scaling, in particular those on temperature and energy confinement, is crucial both for improving the operating reversed-field pinch (RFP) devices and for validating the RFP configuration as a candidate for the future fusion reactors. For such a purpose scaling laws for magnetic fluctuations, temperature and energy confinement have been evaluated in stationary operation. RFX-mod scaling laws have been compared with those obtained from other RFP devices and numerical simulations. The role of the magnetic boundary has been analysed, comparing discharges performed with different active control schemes of the edge radial magnetic field.
Field-reversed configuration produced by a linear theta-pinch, Tupa-1
International Nuclear Information System (INIS)
Kayama, M.E.; Boeckelmann, H.K.; Sakanaka, P.H.; Machida, M.
1987-01-01
The formation of field reversed configuration, FRC, in one meter mirrorless linear theta-pinch device Tupa-I was observed. This configuration was studied during the first half magnetic cycle of ringing main bank discharge using magnetic probes. The separatrix radius by the exclude flux probe and the ion temperature by visible spectroscopy were measured. The plasma dynamics was observed by the image converter camera. A clear indication of the formation of FRC due to reconnection of the antiparallel bias to the main field and a fast reconnection, less than 0.2 microsec, that is explained in terms of forced reconnection driven by the Kruskal-Schwarzschild instability, are also observed. (author) [pt
Thermal instabilities in the edge region of reversed-field pinches
International Nuclear Information System (INIS)
Goedert, J.; Mondt, J.P.
1984-04-01
Thermal stability of the edge region of reversed-field pinch configurations is analyzed within the context of a two-fluid model. Two major sources of instability are identified in combination with a parallel electric field: either an electron temperature gradient and/or a density gradient that leads to rapid growth (of several to many ohmic heating rates) over a region of several millimeters around the mode-rational surfaces in the edge region. The basic signature of both instabilities is electrostatic. In the case of the density gradient mode, the signature relies on the effects of electron compressibility, whereas the temperature gradient mode can be identified as the current-convective instability by taking the limit of zero diamagnetic drift, density gradient, thermal force, drift heat flux, and electron compressibility
A comprehensive theory of the equilibria in a tokamak and a reversed field pinch
International Nuclear Information System (INIS)
Chiyoda, Katsuji
1996-01-01
The equilibrium configuration of a tokamak is analysed by the equilibrium equations derived for analysing a reversed field pinch (RFP). The expressions of the magnetic field and the toroidal shift in the internal plasma region and the external vacuum region are obtained. The expressions in the vacuum region become the Shafranov's expressions, when the plasma-center coordinates is used. Discontinuities of the equilibrium quantities are considered. It is concluded that the equilibrium equations are applicable also to the tokamak plasma and that the difference of the equilibria between the tokamak and the RFP stems from the choices of the pressure and the toroidal current function. A feature of our theory is that any ordering to the safety factor is not imposed. (author)
International Nuclear Information System (INIS)
Hoffman, A.L.; Armstrong, W.T.
1982-01-01
TRX-1 is a new 20 cm diameter, 1-m long field reversed theta pinch with a magnetic field swing of 10 kG in 3 μsec. It employs z discharge preionization and octopole barrier fields to maximize flux trapping on first half cycle operation. Cusp coils are used at the theta pinch ends to delay reconnection and fast mirror coils are used to trigger reconnection at a time designed to maximize axial heating efficiency and toroid lifetime. These controls are designed to study toroid formation methods which are claimed to be especially efficient by Russian experimenters. Studies have been conducted on flux trapping efficiency, triggered reconnection, and equilibrium and lifetime
Energetic electron measurements in the edge of a reversed-field pinch
International Nuclear Information System (INIS)
Ingraham, J.C.; Ellis, R.F.; Downing, J.N.; Munson, C.P.; Weber, P.G.; Wurden, G.A.
1990-01-01
The edge plasma of the ZT-40M [Fusion Technol. 8, 1571 (1985)] reversed-field pinch has been studied using a combination of three different plasma probes: a double-swept Langmuir probe, an electrostatic energy analyzer, and a calorimeter--Langmuir probe. The edge plasma has been measured both with and without a movable graphite tile limiter present nearby in the plasma. Without a limiter a fast nonthermal tail of electrons (T congruent 350 eV) is detected in the edge plasma with nearly unidirectional flow along B and having a density between 2% and 10% of the cold edge plasma (T congruent 20 eV). The toroidal sense of this fast electron flow is against the force of the applied electric field. A large power flux along B is measured flowing in the same direction as the fast electrons and is apparently carried by the fast electrons. With the limiter present the fast electrons are still detected in the plasma, but are strongly attenuated in the shadow of the limiter. The measured scrape-off lengths for both the fast electrons and the cold plasma indicate cross-field transport at the rate of, or less than, Bohm diffusion. Estimates indicate that the fast electrons could carry the reversed-field pinch current density at the edge and, from the measured transverse diffusion rates, could also account for the electron energy loss channel in ZT-40 M. The long mean-free-path kinetic nature of these fast electrons suggests that a kinetic process, rather than a magnetohydrodynamic process that is based upon a local Ohm's law formulation, is responsible for their generation
International Nuclear Information System (INIS)
Yagi, Y.; Maejima, Y.; Zollino, G.
2001-01-01
Confinement characteristics of the TPE series reversed field pinch (RFP) machines, TPE-1RM15, TPE-1RM20 and TPE-1RM20mod, at Electrotechnical Laboratory (ETL) are summarized. Especially data are synthesized in respect to the effects of the different boundary structures of the machines, where shell proximity and overlapped poloidal shell gaps by the multi-layered shell structure are featured. Comparison of the experimental results is shown in terms of the characteristics of magnetic fluctuations, global confinement properties in general, operation capability of the improved confinement in high pinch parameter (Q) discharges and locked mode events. Linear growth rate of the unstable modes as a function of the shell distance is numerically simulated. Understandings of RFP plasma physics have also made progress by the most recent intensive experiments on correlation studies between fast electrons and dynamo activities and measurement of the plasma and mode rotation. TPE-1RM20mod was shutdown in December 1996 and new RFP experiment has started in TPE-RX from March 1998. The new machine also succeeds the concept of the shell configuration of the TPE-1RM20. (author)
Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch
International Nuclear Information System (INIS)
Sallander, J.
1999-01-01
Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities. (author)
Reversed-field pinch experiments in EXTRAP T2R with a resistive shell boundary
International Nuclear Information System (INIS)
Malmberg, J.-A.; Cecconello, M.; Brunsell, P.R.; Yadikin, D.; Drake, J.R.
2003-01-01
The EXTRAP T2R reversed-field pinch has a resistive shell with a magnetic penetration time of 6 ms. This time is intermediate between the dynamo/relaxation cycle time scale (<2ms) and the pulse length (∼20ms). The resonant tearing modes do not wall-lock. They rotate with angular phase velocities in the range of 20 to 600 krad/s. As a result of the rotation the radial component of the perturbations at the shell from the resonant modes is suppressed. Non-resonant (resistive-wall) kink modes are unstable and their linear growth rates have been measured. The measured growth rates follow the trend expected from theoretical estimates for a range of equilibrium parameters. Furthermore, when the resonant modes are rotating, the loop voltage and confinement parameters have values comparable to those of a conducting shell RFP. The poloidal beta is around 10% for a range of current and density. (author)
Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch
Sallander, J.
1999-05-01
Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.
International Nuclear Information System (INIS)
Shiina, S.; Yagi, Y.; Sugimoto, H.; Ashida, H.; Hirano, Y.; Koguchi, H.; Sakakita, H.; Taguchi, M.; Nagamine, Y.; Osanai, Y.; Saito, K.; Watanabe, M.; Aizawa, M.
2005-01-01
Dominant plasma self-induced current equilibrium is achieved together with the high β for the steady-state neoclassical reversed field pinch (RFP) equilibrium with low aspect ratio by broadening the plasma pressure profile. The RF-driven current, when the safety factor is smaller than unity, is much less than the self-induced current, which dominates (96%) the toroidal current. This neoclassical RFP equilibrium has strong magnetic shear or a high-stability beta (β t = 63%) due to its hollow current profile. It is shown that the obtained equilibrium is close to the relaxed-equilibrium state with a minimum energy, and is also robust against microinstabilities. These attractive features allow the economical design of compact steady-state fusion power plants with low cost of electricity (COE). (author)
Tritium systems for the TITAN reversed-field pinch fusion reactor design
International Nuclear Information System (INIS)
Martin, R.C.; Sze, D.K.; Bartlit, J.R.; Gierszewski, P.J.
1987-01-01
Tritium systems for the TITAN reversed-field pinch (RFP) fusion reactor study have been designed for two blanket concepts. The TITAN-1 design uses a self-cooled liquid-lithium blanket. The TITAN-2 design uses a self-cooled aqueous-solution blanket, with lithium nitrate dissolved in the water for tritium breeding. Tritium inventory, release, and safety margins are within regulatory limits, at acceptable costs. Major issues for TITAN-1 are plasma-driven permeation, the need for a secondary coolant loop, tritium storage requirements, redundancy in the plasma exhaust system, and minimal isotopic distillation of the exhaust. TITAN-1 fuel cleanup, reprocessing, and air detritiation systems are described in detail
Soft x-ray measurement of internal tearing mode structure in a reversed-field pinch
International Nuclear Information System (INIS)
Chartas, G.; Hokin, S.
1991-01-01
The structure of internally resonant tearing modes has been studied in the Madison Symmetric Torus reversed-field pinch with a soft x-ray detector system consisting of an imaging array at one toroidal location and several detectors at different toroidal locations. The toroidal mode numbers of m = 1 structures are in the range n = -5, -6, -7. The modes propagate with phase velocity v = 1--6 x 10 6 cm/s, larger than the diamagnetic drift velocity v d ∼ 5 x 10 5 cm/s. Phase locking between modes with different n in manifested as a beating of soft x-ray signals which is found to be strongest near the resonant surfaces of the modes (r/a = 0.1 -- 0.5). 15 refs., 5 figs
The reversed-field pinch: a compact approach to fusion power
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.
1985-01-01
The potential of the reversed-field pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. This compact system promises to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that substantiate these promising results have been completed. This 1000 MW(e) (net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion. The RFP presents a robust plasma confinement system capable of providing a range of reactor systems that are compact in both physical size and/or net power output while ensuring acceptable cost and engineering feasibility for a range of assumed physics performance. (author)
Confinement dynamics and boundary condition studies in the Reversed Field Pinch
International Nuclear Information System (INIS)
Schoenberg, K.F.; Ingraham, J.C.; Moses, R.W. Jr.
1988-01-01
The study of confinement dynamics, including investigation of the boundary conditions required for plasma sustainment, are central to the development of the Reversed Field Pinch (RFP) concept. Recently, several insights into confinement have emerged from a detailed investigation RFP electron and ion dynamics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and coupled role in RFP stability, sustainment, and confinement. In this paper, we summarize the results of confinement studies on the ZT-40M experiment, and boundary condition studies on the Wisconsin non-circular RFP experiment. A brief description of the newly commissioned Madison Symmetric Torus (MST) is also presented. 28 refs., 3 figs
High beta plasma confinement and neoclassical effects in a small aspect ratio reversed field pinch
International Nuclear Information System (INIS)
Hayase, K.; Sugimoto, H.; Ashida, H.
2003-01-01
The high β equilibrium and stability of a reversed field pinch (RFP) configuration with a small aspect ratio are theoretically studied. The equilibrium profile, high beta limit and the bootstrap current effect on those are calculated. The Mercier stable critical β decreases with 1/A, but β∼0.2 is permissible at A=2 with help of edge current profile modification. The effect of bootstrap current is evaluated for various pressure and current profiles and cross-sectional shapes of plasma by a self-consistent neoclassical PRSM equilibrium formulation. The high bootstrap current fraction (F bs ) increases the shear stabilization effect in the core region, which enhances significantly the stability β limit compared with that for the classical equilibrium. These features of small aspect ratio RFP, high β and high F bs , and a possibly easier access to the quasi-single helicity state beside the intrinsic compact structure are attractive for the feasible economical RFP reactor concept. (author)
A one-dimensional plasma and impurity transport model for reversed field pinches
International Nuclear Information System (INIS)
Veerasingam, R.
1991-11-01
In this thesis a one-dimensional (1-D) plasma and impurity transport model is developed to address issues related to impurity behavior in Reversed Field Pinch (RFP) fusion plasmas. A coronal non-equilibrium model is used for impurities. The impurity model is incorporated into an existing one dimensional plasma transport model creating a multi-species plasma transport model which treats the plasma and impurity evolution self-consistently. Neutral deuterium particles are treated using a one-dimensional (slab) model of neutral transport. The resulting mode, RFPBI, is then applied to existing RFP devices such as ZT-40M and MST, and also to examine steady state behavior of ZTH based on the design parameters. A parallel algorithm for the impurity transport equations is implemented and tested to determine speedup and efficiency
Simulations of the lower-hybrid antenna in the Madison Symmetric Torus reversed-field pinch
International Nuclear Information System (INIS)
Carlsson, Johan; Smithe, David; Kaufman, Michael; Goetz, John; Thomas, Mark
2014-01-01
Due to constraints inherent to a reversed-field pinch plasma configuration, an unusual launch structure—the interdigital line—was used for lower-hybrid current-drive experiments in the Madison Symmetric Torus. The antenna design and performance were analyzed using an array of codes (including RANT3D/AORSA1D-H, Microwave Studio and VORPAL). It was found that the voltage phasing was not the intended one. As a result, the parallel-wavenumber spectrum of the launched wave peaks at a value lower than desired, making the accessibility marginal. Further simulations demonstrated that the error can largely be corrected by either lowering the antenna operating frequency or shortening the length of the resonators. (paper)
Confinement improvement with rf poloidal current drive in the reversed-field pinch
International Nuclear Information System (INIS)
Hokin, S.; Sarff, J.; Sovinec, C.; Uchimoto, E.
1994-01-01
External control of the current profile in a reversed-field pinch (RFP), by means such as rf poloidal current drive, may have beneficial effects well beyond the direct reduction of Ohmic input power due to auxiliary heating. Reduction of magnetic turbulence associated with the dynamo, which drives poloidal current in a conventional RFP, may allow operation at lower density and higher electron temperature, for which rf current drive becomes efficient and the RFP operates in a more favorable regime on the nτ vs T diagram. Projected parameters for RFX at 2 MA axe studied as a concrete example. If rf current drive allows RFX to operate with β = 10% (plasma energy/magnetic energy) at low density (3 x 10 19 m -3 ) with classical resistivity (i.e. without dynamo-enhanced power input), 40 ms energy confinement times and 3 keV temperatures will result, matching the performance of tokamaks of similar size
International Nuclear Information System (INIS)
Dreicer, H.
1987-09-01
Potential commercial fusion power systems must be acceptable from a safety and environmental standpoint. They must also promise to be competitive with other sources of energy (i.e., fossil, fission, etc.) when considered from the standpoint of the cost of electricity (COE) and the unit direst cost (UDC) in ($/kWe). These costs are affected by a host of factors including recirculating power, plant availability, construction time, capital cost etc., and are, thus, influenced by technological complexity. In a attempt to meet these requirements, the emphasis of fusion research in the United States has been moving toward smaller, lower-cost systems. There is increased interest in higher beta tokamaks and stellarators, and in compact alternate concepts such as the Reversed Field Pinch (RFP) and the Compact Toroids (CTs) which are, in part, the subject of this paper
High-β, improved confinement reversed-field pinch plasmas at high density
International Nuclear Information System (INIS)
Wyman, M. D.; Chapman, B. E.; Ahn, J. W.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Ebrahimi, F.; Ennis, D. A.; Fiksel, G.; Gangadhara, S.; Goetz, J. A.; O'Connell, R.; Oliva, S. P.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Bonomo, F.; Franz, P.; Brower, D. L.
2008-01-01
In Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] discharges where improved confinement is brought about by modification of the current profile, pellet injection has quadrupled the density, reaching n e =4x10 19 m -3 . Without pellet injection, the achievable density in improved confinement discharges had been limited by edge-resonant tearing instability. With pellet injection, the total beta has been increased to 26%, and the energy confinement time is comparable to that at low density. Pressure-driven local interchange and global tearing are predicted to be linearly unstable. Interchange has not yet been observed experimentally, but there is possible evidence of pressure-driven tearing, an instability usually driven by the current gradient in the reversed-field pinch
A review of the experimental and theoretical status of the reversed-field pinch
International Nuclear Information System (INIS)
Baker, D.A.
1987-01-01
This paper reviews the status of the reversed-field pinch (RFP) approach to the development of a compact nuclear fusion reactor. Two RFP papers in this conference are complementary; the first paper contains the historical origins and basic concepts concerning MHD instabilities, relaxation and RFP confinement properties as well as a discussion of future prospects of the RFP. This paper gives an overview of the status of plasma parameters of the present main RFP experiments and of the status of theory and experiment of the interesting RFP plasma phenomena of relaxation, self reversal and flux generation (these effects are often referred to as the dynamo effect). The low frequency oscillating-field current drive concept which exploits these effects is discussed. Particular emphasis is given to the theoretical results obtained from plasma simulation codes used in these active areas of study. Selected topics of recent research on the Los Alamos ZT-40M experiments are reported. The paper concludes with descriptions of the next generation Los Alamos RFP experiment ZTH, to be located in the new Confinement Physics Research Facility (CPRF) presently under construction, and the characteristics of an RFP compact reactor. 68 refs
Design and development of a lower-hybrid antenna for the MST reversed field pinch
International Nuclear Information System (INIS)
Thomas, M.; Cekic, M.; Lovell, T.W.; Prager, S.C.; Sarff, J.S.; Uchimoto, E.
1995-01-01
Recent theoretical studies strongly motivated the development of a radio-frequency current drive scheme for current density gradient reduction in the outer region of a reversed field pinch. The preliminary experiments using inductive current drive indicate that such current density profile modification reduces the magnetic fluctuation amplitude and related energy and particle losses. To test the theoretical predictions and to further improve confinement in the MST, the authors are planning a series of lower-hybrid wave experiments. The initial phase is the design and optimization of a low-power antenna to study slow wave propagation in a frequency range 2--3 f LH (200--300 MHz) with parallel index of refraction n parallel ∼10. Ray-tracing calculations, for typical MST plasma parameters, indicate that such a wave will spiral radially into a target zone inside the reversal layer. The antenna consists of an array of tunable loops arranged in the poloidal direction. The design is compatible with the existing box-port openings in the MST conductive shell to prevent additional magnetic field errors associated with large portholes. Antenna vacuum characteristics are studied on a test-stand designed to approximate the geometry of the MST shell. For the initial measurements of plasma response and antenna loading, the authors designed a reduced, easily insertable, vacuum antenna structure. The results of plasma impedance measurements will be compared with the numerical modeling results and incorporated in the optimized design of the antenna for wave propagation experiments
Far-infrared laser interferometry measurements on the STP-3(M) reversed-field pinch
International Nuclear Information System (INIS)
Kubota, Shigeyuki; Nagatsu, Masaaki; Tsukishima, Takashige; Arimoto, Hideki; Sato, Koichi; Matsuoka, Akio.
1993-09-01
Far-infrared laser interferometry at 432 μm was carried out on the STP-3(M) reversed-field pinch. Measurements along two vertical chords showed a change from a parabolic-like to a flat-like electron density profile after field reversal. A density profile inversion and a correlated toroidal magnetic flux perturbation were also observed during the transition from the current rising to the current decay phase. Measurements of electron density fluctuations indicated relative fluctuation levels of ∼10% for both chords during the current rising phase and ∼5% and ∼15% during the current decay phase for the central and outer chords, respectively. Spectral analysis showed a ∼30 kHz mode consistent with poloidal mode number m=0 magnetic fluctuations, and a ∼90 kHz mode localized to the outer region of the plasma, which was strongly excited during the current decay phase and may be connected to particle and energy transport in STP-3(M). (author)
Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R
Brunsell, P. R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J. R.; Rachlew, E.
2006-11-01
Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.
Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R
International Nuclear Information System (INIS)
Brunsell, P.R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J.R.; Rachlew, E.
2006-01-01
Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size
Analysis of resistive tearing-mode in the reversed-field pinch plasma
International Nuclear Information System (INIS)
Oshiyama, Hiroshi; Masamune, Sadao; Hamuro, Eitaro; Tamaki, Reiji.
1985-01-01
As one of the methods of confining high temperature plasma by magnetic stress, attention has been paid to reversed field pinch (RFP). This RFP is the method of maintaining plasma pressure by combining the poloidal field generated by plasma current and the toroidal field having nearly same intensity, thus forming the toroidal shape, closed magnetic surface. As the typical RFP equipment, there have been TPE-1R(M), HBTX-1A, ZT-40M and OHTE, but in order to anticipate the further development, one of the problems is the resistive instability. In this study, the critical beta value determined by the tearing mode in RFP configuration was examined by analytical and numerical calculation methods. The position of a wall required for the stability was determined by solving a second order differential equation for a radial perturbed magnetic field. The propriety of the computer code for determining the position was examined. The magnetic field configuration having a finite beta value was determined, and its stability against a tearing mode was investigated. For this judgement of the stability, the developed computer code was used. The tearing mode in a Bessel function model, the tearing mode of a finite beta value and others are described. (Kako, I.)
Advanced feedback control methods in EXTRAP T2R reversed field pinch
Yadikin, D.; Brunsell, P. R.; Paccagnella, R.
2006-07-01
Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.
Advanced feedback control methods in EXTRAP T2R reversed field pinch
International Nuclear Information System (INIS)
Yadikin, D.; Brunsell, P. R.; Paccagnella, R.
2006-01-01
Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of t d ≅10τ w is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system
ZT-P: an advanced air core reversed field pinch prototype
International Nuclear Information System (INIS)
Schoenberg, K.F.; Buchenauer, C.J.; Burkhardt, L.C.
1986-01-01
The ZT-P experiment, with a major radius of 0.45 m and a minor radius of 0.07 m, was designed to prototype the next generation of reversed field pinch (RFP) machines at Los Alamos. ZT-P utilizes an air-core poloidal field system, with precisely wound and positioned rigid copper coils, to drive the plasma current and provide plasma equilibrium with intrinsically low magnetic field errors. ZT-P's compact configuration is adaptable to test various first wall and limiter designs at reactor-relevant current densities in the range of 5 to 20 MA/m 2 . In addition, the load assembly design allows for the installation of toroidal field divertors. Design of ZT-P began in October 1983, and assembly was completed in October 1984. This report describes the magnetic, electrical, mechanical, vacuum, diagnostic, data acquisition, and control aspects of the machine design. In addition, preliminary data from initial ZT-P operation are presented. Because of ZT-P's prototypical function, many of its design aspects and experimental results are directly applicable to the design of a next generation RFP. 17 refs., 47 figs
Single-piece maintenance procedures for the TITAN reversed-field pinch reactor
International Nuclear Information System (INIS)
Grotz, S.P.; Creedon, R.L.; Cooke, P.I.H.; Duggan, W.P.; Krakowski, R.A.; Najmabadi, F.; Wong, C.P.C.
1987-01-01
The TITAN reactor is a compact (major radius of 3.9 m and minor plasma radius of 0.6 m), high neutron wall loading (--18MW/m 2 ) fusion energy system based on the reversed-field pinch (RFP) concept. The TITAN-I fusion power core (FPC) is a lithium, self-cooled design with vanadium alloy (V-3Ti-1Si) structural material. The compact design of the TITAN fusion power core (FPC) reduces the system to a few small and relatively low mass components, making toroidal segmentation of the FPC unnecessary. A single-piece maintenance procedure in which the replaceable first wall and blanket is removed as a single unit is, therefore, possible. The TITAN FPC design provides for top access to the reactor with vertical lifts used to remove the components. The number of remote handling procedures is few and the movements are uncomplicated. The annual torus replacement requires that the reusable ohmic-heating coil set and hot-shield assembly be removed and temporarily stored in a hot cell. The used first wall and blanket assembly is drained and disconnected from the coolant supply system, then lifted to a processing room where it is cooled and prepared for Class-C waste burial. The new, pre-tested first wall and blanket assembly is then lowered into position and the removal procedure is reversed to complete the replacement process
Core fluctuations and current profile dynamics in the MST reversed-field pinch
International Nuclear Information System (INIS)
Brower, D.L.; Ding, W.X.; Lei, J.
2003-01-01
First measurements of the current density profile, magnetic field fluctuations and electrostatic (e.s.) particle flux in the core of a high-temperature reversed-field pinch (RFP) are presented. We report three new results: (1) The current density peaks during the slow ramp phase of the sawtooth cycle and flattens promptly at the crash. Profile flattening can be linked to magnetic relaxation and the dynamo which is predicted to drive anti-parallel current in the core. Measured core magnetic fluctuations are observed to increases four-fold at the crash. Between sawtooth crashes, measurements indicate the particle flux driven by e.s. fluctuations is too small to account for the total radial particle flux. (2) Core magnetic fluctuations are observed to decrease at least twofold in plasmas where energy confinement time improves ten-fold. In this case, the radial particle flux is also reduced, suggesting core e.s. fluctuation-induced transport may play role in confinement. (3) The parallel current density increases in the outer region of the plasma during high confinement, as expected, due to the applied edge parallel electric field. However, the core current density also increases due to dynamo reduction and the emergence of runaway electrons. (author)
Plasma-column instabilities in a reversed-field pinch without a shell
Energy Technology Data Exchange (ETDEWEB)
Schmid, P.G.
1988-01-01
Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell.
Plasma-column instabilities in a reversed-field pinch without a shell
International Nuclear Information System (INIS)
Schmid, P.G.
1988-01-01
Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell
Compact reversed-field pinch reactors (CRFPR): sensitivity study and design-point determination
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.
1982-07-01
If the costing assumptions upon which the positive assessment of conventional large superconducting fusion reactors are based proves overly optimistic, approaches that promise considerably increased system power density and reduced mass utilization will be required. These more compact reactor embodiments generally must operate with reduced shield thickness and resistive magnets. Because of the unique, magnetic topology associated with the Reversed-Field Pinch (RFP), the compact reactor embodiment for this approach is particularly attractive from the viewpoint of low-field resistive coils operating with Ohmic losses that can be made small relative to the fusion power. A comprehensive system model is developed and described for a steady-state, compact RFP reactor (CRFPR). This model is used to select a unique cost-optimized design point that will be used for a conceptual engineering design. The cost-optimized CRFPR design presented herein would operate with system power densities and mass utilizations that are comparable to fission power plants and are an order of magnitude more favorable than the conventional approaches to magnetic fusion power. The sensitivity of the base-case design point to changes in plasma transport, profiles, beta, blanket thickness, normal vs superconducting coils, and fuel cycle (DT vs DD) is examined. The RFP approach is found to yield a point design for a high-power-density reactor that is surprisingly resilient to changes in key, but relatively unknown, physics and systems parameters
Reversed-field pinch experiments in EXTRAP T2R with a resistive shell boundary
International Nuclear Information System (INIS)
Drake, J.R.
2002-01-01
The EXTRAP T2R reversed-field pinch is operated with a resistive shell with a magnetic penetration time of 6 ms. This time is intermediate between the dynamo/relaxation cycle time scale (<1 ms) and the pulse length (= 20 ms). The internally-resonant tearing modes do not wall lock and exhibit natural rotation with velocities in the range of 20 to 600 krad/s. Under these conditions the radial component of the tearing mode perturbation at the shell is suppressed. Therefore the linear growth rates of the unstable, non-resonant, ideal (resistive-wall) kink modes can be observed even at very low amplitudes (0.01% of the equilibrium field). Both internally-non-resonant and externally non-resonant RW mode types are observed. The growth rates have been measured for a range of equilibrium current profile parameters and are compared with theoretical estimates. Previous observations and simulations for the resistive-shell RFP have shown an increased loop voltage associated with altered dynamo dynamics. When the tearing modes are rotating, the loop voltage and confinement parameters have values comparable to those of a conducting-shell RFP. (author)
Cost-constrained design point for the Reversed-Field Pinch Reactor (RFPR)
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.
1978-01-01
A broad spectrum of Reversed-Field Pinch Reactor (RFPR) operating modes are compared on an economics basis. An RFPR with superconducting coils and an air-core poloidal field transformer optimizes to give a minimum cost system when compared to normal-conducting coils and the iron-core transformer used in earlier designs. An interim design is described that exhibits a thermally stable, unrefueled, 21 s burn (burnup 50 percent) with an energy containment time equal to 200 times the Bohm time, which is consistent with present-day tokamak experiments. This design operates near the minimum energy state (THETA = B/sub THETA/(r/sub w/)/[B/sub z/] = 2.0 and F = B/sub z/(r/sub w/)/[B/sub z/] = 1.0 from the High Beta Model) of the RFP configuration. This cost-optimized design produces a reactor of 1.5-m minor radius and 12.8-m major radius, that generates 1000 MWe (net) with a recirculating power fraction of 0.15 at a direct capital cost of 970 $/kWe
Ion heating and MHD dynamo fluctuations in the reversed field pinch
International Nuclear Information System (INIS)
Scime, E.E.
1992-05-01
Ion temperature measurements, time resolved to 10 μs, have been made in the Madison Symmetric Torus (MST) reversed field pinch (RFP) with a five channel charge exchange analyzer. The characteristic anomalously high ion temperature of RFP discharges has been observed in the MST. The evolution of the ion and electron temperature, as well as density and charge exchange power loss, were measured for a series of reproducible discharges. The ion heating expected from collisional processes with the electrons is calculated and shown too small to explain the measured ion temperatures. The charge exchange determined ion temperature is also compared to measurements of the thermally broadened CV 227.1 nm line. The ion temperature, T i ∼ 250 eV for I = 360 kA, increases by more than 100% during discrete dynamo bursts in MST discharges. Magnetic field fluctuations in the range 0.5 endash 5 MHz were also measured during the dynamo bursts. Structure in the fluctuation frequency spectrum at the ion cyclotron frequency appears as the bursts terminate, suggesting that the mechanism of ion heating involves the dissipation of dynamo fluctuations at ion cyclotron frequencies. Theoretical models for ion heating are reviewed and discussed in light of the experimental results. Similar electron heating mechanisms may be responsible for the discrepancy between measured and expected loop voltages in the RFP. The electrons, as well as the ions, may be heated by turbulent mechanisms, and a RFP energy budget including such phenomena is described
Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch
Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.
2017-12-01
The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.
Stable Alfven-wave dynamo action in the reversed-field pinch
International Nuclear Information System (INIS)
Werley, K.A.
1984-01-01
Previous theoretical work has suggested that Alfven waves may be related to the anomalous toroidal magnetic flux generation and extended (over classical expectations) discharge times observed in the reversed-field pinch. This thesis examines the dynamo action of stable Alfven waves as a means of generating toroidal flux. Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. This technique is readily extendable to other plasmas in which dynamic stable model action is of interest. Such plasmas include Alfven wave current-drive and plasma heating for fusion devices, as well as astrophysical and geophysical dynamo systems. This study also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number
Effect of double-shell structure on reduction of field errors in the STP-3(M) reversed-field pinch
International Nuclear Information System (INIS)
Yamada, S.; Masamune, S.; Nagata, A.; Arimoto, H.; Oshiyama, H.; Sato, K.I.
1988-08-01
Reversed-field pinch (RFP) operation on STP-3 (M) proved that the adition of a quasistational vertical field B sub(perpendicular) together with large reduction of irregular magnetic field at the shell gap could remarkably improve properties of the plasma confinement. Here, the gaps of a thick shell is wholely covered with the single primary coil having a shell shape. The measured field error at the gap is as small as 7.5 % of the poloidal field. The application of B sub(perpendicular) sets the plasma at a more perfect equilibrium. In this operation, the plasma resistivety much decreased by a factor 2 and the electron temperature rose up to 0.8 keV. (author)
Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma
Energy Technology Data Exchange (ETDEWEB)
Anderson, J. K., E-mail: jkanders@wisc.edu; Kim, J.; Bonofiglo, P. J.; Capecchi, W.; Eilerman, S.; Nornberg, M. D.; Sarff, J. S.; Sears, S. H. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2016-05-15
While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution. Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.
Fluctuation reduction and enhanced confinement in the MST reversed-field pinch
International Nuclear Information System (INIS)
Chapman, B.E.
1997-10-01
Plasmas with a factor of ≥3 improvement in energy confinement have been achieved in the MST reversed-field pinch (RFP). These plasmas occur spontaneously, following sawtooth crashes, subject to constraints on, eg, toroidal magnetic field reversal and wall conditioning. Possible contributors to the improved confinement include a reduction of core-resonant, global magnetic fluctuations and a reduction of electrostatic fluctuations over the entire plasma edge. One feature of these plasmas is a region of strong ExB flow shear in the edge. Never before observed in conjunction with enhanced confinement in the RFP, such shear is common in enhanced confinement discharges in tokamaks and stellarators. Another feature of these plasmas is a new type of discrete dynamo event. Like sawtooth crashes, a common form of discrete dynamo, these events correspond to bursts of edge parallel current. The reduction of electrostatic fluctuations in these plasmas occurs within and beyond the region of strong ExB flow shear, similar to what is observed in tokamaks and stellarators. However, the reductions in the MST include fluctuations whose correlation lengths are larger than the width of the shear region. The reduction of the global magnetic fluctuations is most likely due to flattening of the μ=μ 0 rvec J· rvec B/B 2 profile. Flattening can occur, eg, due to the new type of discrete dynamo event and reduced edge resistivity. Enhanced confinement plasmas are also achieved in the MST when auxiliary current is applied to flatten the μ profile and reduce magnetic fluctuations. Unexpectedly, these plasmas also exhibit a region (broader than in the case above) of strong ExB flow shear in the edge, an edge-wide reduction of electrostatic fluctuations, and the new type of discrete dynamo event. Auxiliary current drive has historically been viewed as the principal route to fusion reactor viability for the RFP
Resistive Wall Mode Stability and Control in the Reversed Field Pinch
International Nuclear Information System (INIS)
Yadikin, Dmitriy
2006-03-01
Control of MHD instabilities using a conducting wall together with external magnetic fields is an important route to improved performance and reliability in fusion devices. Active control of MHD modes is of interest for both the Advanced Tokamak and the Reversed Field Pinch (RFP) configurations. A wide range of unstable, current driven MHD modes is present in the RFP. An ideally conducting wall facing the plasma can in principle provide stabilization to these modes. However, a real, resistive wall characterized by a wall field diffusion time, cannot stabilize the ideal MHD modes unless they rotate with Alfvenic velocity, which is usually not the case. With a resistive wall, the ideal modes are converted into resistive wall modes (RWM) with growth rates comparable to the inverse wall time. Resistive wall modes have been studied in the EXTRAP T2R thin shell RFP device. Growth rates have been measured and found in agreement with linear MHD stability calculations. An advanced system for active control has been developed and installed on the EXTRAP T2R device. The system includes an array of 128 active saddle coils, fully covering the torus surface. Experiments on EXTRAP T2R have for the first time demonstrated simultaneous active suppression of multiple independent RWMs. In experiments with a partial array, coupling of different modes due to the limited number of feedback coils has been observed, in agreement with theory. Different feedback strategies, such as the intelligent shell, the rotating shell, and mode control have been studied. Further, feedback operation with different types of magnetic field sensors, measuring either the radial or the toroidal field components have been compared
Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch
Energy Technology Data Exchange (ETDEWEB)
Chapman, James Tharp [Univ. of Wisconsin, Madison, WI (United States)
1998-09-01
The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.
Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch
International Nuclear Information System (INIS)
Chapman, J.T.
1998-09-01
The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8--20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation
Simulation study of self-sustainment mechanism in reversed-field pinch configuration
International Nuclear Information System (INIS)
Kusano, Kanya; Sato, Tetsuya.
1989-09-01
3D magnetohydrodynamic (MHD) simulations are carried out in order to reveal the fundamental mechanism of the self-sustainment process in the reversed-field pinch plasma. It is confirmed that the RFP configuration is sustained in a cyclic process, where the MHD relaxation phase and the resistive diffusion phase appear cyclically and alternatively. In the MHD relaxation process, the RFP plasma approaches a Taylor's minimum energy state, but it departs from there in the diffusion process. In other words, since MHD relaxation processes periodically release excess magnetic energy accumulated in the resistive diffusion phase, RFP plasma can stay in the neighborhood of the minimum energy state. The mechanism of this cyclic process is disclosed. Namely, when at least two ideal kink (m = 1) modes becomes unstable, MHD relaxation can take place. This is because the MHD relaxation progresses through nonlinear reconnection of the m = 0 mode, which is driven by nonlinear coupling between the unstable kink modes. Therefore, self-sustainment processes can be achieved by the nonlinear effects of essentially the m = 0 and 1 modes. The quantitative dependence of the relaxation-diffusion cycle on the aspect ratio of the device is considered along with its dependence on the magnetic Reynolds, number. These results are consistent with recent experiments and indicate that a coherent oscillation, which is often observed in experiments, is necessary for self-sustainment. The influence of self-sustainment processes on particle confinement is briefly discussed. (author)
Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch
International Nuclear Information System (INIS)
Welander, A.
1999-01-01
In the Extrap T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a=0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a>0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n 1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures. (author)
Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch
Welander, A.
1999-01-01
In the EXTRAP T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a = 0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a > 0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures.
Spontaneous quasi single helicity regimes in EXTRAP T2R reversed-field pinch
Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Menmuir, S.; Cecconello, M.
2007-11-01
In recent years, good progress toward a better understanding and control of the plasma performance in reversed-field pinch devices has been made. These improvements consist both of the discovery of spontaneous plasma regimes, termed the quasi single helicity (QSH) regime, in which part of the plasma core is no longer stochastic, and of the development of techniques for active control of plasma instabilities. In this paper, a systematic study of spontaneous QSH in the EXTRAP T2R device [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] is presented. In this device, QSH states can occur spontaneously and it is associated with magnetic and thermal structures. A statistical analysis to determine the most favorable experimental conditions to have a transition to the QSH regime will be presented. The results described here are useful to understand the underlying properties of QSH regimes in view of future applications of the QSH active control in EXTRAP T2R; they are also important to have a comparison with the QSH studied in other devices.
Self-Organisation and Intermittent Coherent Oscillations in the EXTRAP T2 Reversed Field Pinch
Cecconello, M.; Malmberg, J.-A.; Sallander, E.; Drake, J. R.
Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented.
Measurements of hot electrons in the Extrap T1 reversed-field pinch
International Nuclear Information System (INIS)
Welander, A.; Bergsaaker, H.
1998-01-01
The presence of an anisotropic energetic electron population in the edge region is a characteristic feature of reversed-field pinch (RFP) plasmas. In the Extrap T1 RFP, the anisotropic, parallel heat flux in the edge region measured by calorimetry was typically several hundred MWm -2 . To gain more insight into the origin of the hot electron component and to achieve time resolution of the hot electron flow during the discharge, a target probe with a soft x-ray monitor was designed, calibrated and implemented. The x-ray emission from the target was measured with a surface barrier detector covered with a set of different x-ray filters to achieve energy resolution. A calibration in the range 0.5-2 keV electron energy was performed on the same target and detector assembly using a LaB 6 cathode electron gun. The calibration data are interpolated and extrapolated numerically. A directional asymmetry of more than a factor of 100 for the higher energy electrons is observed. The hot electrons are estimated to constitute 10% of the total electron density at the edge and their energy distribution is approximated by a half-Maxwellian with a temperature slightly higher than the central electron temperature. Scalings with plasma current, as well as correlations with local Hα measurements and radial dependences, are presented. (author)
Measurements of hot electrons in the Extrap T1 reversed-field pinch
Welander, A.; Bergsåker, H.
1998-02-01
The presence of an anisotropic energetic electron population in the edge region is a characteristic feature of reversed-field pinch (RFP) plasmas. In the Extrap T1 RFP, the anisotropic, parallel heat flux in the edge region measured by calorimetry was typically several hundred 0741-3335/40/2/011/img1. To gain more insight into the origin of the hot electron component and to achieve time resolution of the hot electron flow during the discharge, a target probe with a soft x-ray monitor was designed, calibrated and implemented. The x-ray emission from the target was measured with a surface barrier detector covered with a set of different x-ray filters to achieve energy resolution. A calibration in the range 0.5-2 keV electron energy was performed on the same target and detector assembly using a 0741-3335/40/2/011/img2 cathode electron gun. The calibration data are interpolated and extrapolated numerically. A directional asymmetry of more than a factor of 100 for the higher energy electrons is observed. The hot electrons are estimated to constitute 10% of the total electron density at the edge and their energy distribution is approximated by a half-Maxwellian with a temperature slightly higher than the central electron temperature. Scalings with plasma current, as well as correlations with local 0741-3335/40/2/011/img3 measurements and radial dependences, are presented.
International Nuclear Information System (INIS)
Mirus, K.A.
1998-06-01
In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses
Energy Technology Data Exchange (ETDEWEB)
Mirus, Kevin A. [Univ. of Wisconsin, Madison, WI (United States)
1998-01-01
In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.
Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas
Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.
2018-01-01
Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.
Improved zero dimensional model of a reversed field pinch fusion device
International Nuclear Information System (INIS)
Haynes, K.E.
1987-01-01
A zero-dimensional model has been developed which accurately predicts conditions observed during several runs of the ZT-40M reversed field pinch fusion device at Los Alamos National Laboratory. The model is based on a physical model developed by E.H. Klevans at Penn State University. Improvements made to this model included the use of coronal non-equilibrium equations for predicting impurity effects, the inclusion of an exponentially decaying ion heating term, and the relaxation of the assumption that ion and electron densities are equal in the device. The model has been used to simulate ZT-40M in both flat-top and slowly ramped current modes. Using experimentally measured density and current evolutions, the model accurately predicts observed tau/sub E/, β/sub Θ/, T/sub e/, T/sub i/, Z/sub eff/, and radiated power. The continuing goal of this work is to predict conditions in the ZT-H device, which is under construction. 28 refs., 18 figs
Engineering and physics of high-power-density, compact, reversed-field-pinch fusion reactors
International Nuclear Information System (INIS)
Najmabadi, F.; Conn, R.W.; Krakowski, R.A.; Schultz, K.R.; Steiner, D.
1989-01-01
The technical feasibility and key developmental issues of compact, high-power-density Reversed-Field-Pinch (RFP) reactors are the primary results of the TITAN RFP reactor study. Two design approaches emerged, TITAN-I and TITAN-II, both of which are steady-state, DT-burning, circa 1000 MWe power reactors. The TITAN designs are physically compact and have a high neutron wall loading of 18 MW m 2 . Detailed analyses indicate that: a) each design is technically feasible; b) attractive features of compact RFP reactors can be realized without sacrificing the safety and environmental potential of fusion; and c) major features of this particular embodiment of the RFP reactor are retained in a design window of neutron wall loading ranging from 10 to 20 MW/m 2 . A major product of the TITAN study is the identification and quantification of major engineering and physics requirements for this class of RFP reactors. These findings are the focus of this paper. (author). 26 refs.; 4 figs.; 1 tab
The safety designs for the TITAN reversed-field pinch reactor study
International Nuclear Information System (INIS)
Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.; Sharafat, S.; Najmabadi, F.
1989-01-01
TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections, and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated at a level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated at a level 2 of safety assurance. (orig.)
Mirus, Kevin Andrew
In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Rossler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high- dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.
Self-organisation and intermittent coherent oscillations in the EXTRAP T2 reversed field pinch
International Nuclear Information System (INIS)
Cecconello, M.; Malmberg, J.A.; Sallander, E.; Drake, J.R.
2002-01-01
Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented
High-flux first-wall design for a small reversed-field pinch reactor
International Nuclear Information System (INIS)
Cort, G.E.; Graham, A.L.; Christensen, K.E.
1982-01-01
To achieve the goal of a commercially economical fusion power reactor, small physical size and high power density should be combined with simplicity (minimized use of high-technology systems). The Reversed-Field Pinch (RFP) is a magnetic confinement device that promises to meet these requirements with power densities comparable to those in existing fission power plants. To establish feasibility of such an RFP reactor, a practical design for a first wall capable of withstanding high levels of cyclic neutron wall loadings is needed. Associated with the neutron flux in the proposed RFP reactor is a time-averaged heat flux of 4.5 MW/m 2 with a conservatively estimated transient peak approximately twice the average value. We present the design for a modular first wall made from a high-strength copper alloy that will meet these requirements of cyclic thermal loading. The heat removal from the wall is by subcooled water flowing in straight tubes at high linear velocities. We combined a thermal analysis with a structural fatigue analysis to design the heat transfer module to last 10 6 cycles or one year at 80% duty for a 26-s power cycle. This fatigue life is compatible with a radiation damage life of 14 MW/yr/m 2
A conceptual design study of a reversed field pinch fusion reactor
International Nuclear Information System (INIS)
Kondo, S.; Tanaka, S.; Terai, T.; Hashizume, H.
1989-01-01
A conceptual design of a Reversed-Field Pinch (RFP) fusion reactor with a solid breeder blanket REPUTER-1 has been studied through parametric system studies and detailed design and analysis in order to clarify the technical feasibility of a compact fusion reactor. F-θ pumping is used for driving the plasma current necessary for steady state operation. A maintenance policy of replacing a whole fusion power core including TF coils is proposed to cope with the requirements of high wall loading and high mass power density. For the same reason a normal conductor is selected for most of the coils. The first wall is structurally independent of the blanket. The blanket module is composed of SiC reinforced blocks which form a stable arch so as to keep the stresses in SiC basically compressive. The coolant for the first wall and the limiter is pressurized water, while the coolant for the blanket is helium gas. A number of thin Li 2 O and thick beryllium tiles are packed into the blanket block so as to obtain a proper tritium breeding ratio. A pumped limiter is chosen for the plasma exhaust system. The study has shown the technical feasibility of a high power density fusion power reactor (330 kWe/tonne) with solid breeder blanket and many key physics and engineering issues are also clarified. (orig.)
Point design for deuterium-deuterium compact reversed-field pinch reactors
International Nuclear Information System (INIS)
Dabiri, A.E.; Dobrott, D.R.; Gurol, H.; Schnack, D.D.
1984-01-01
A deuterium-deuterium (D-D) reversed-field pinch (RFP) reactor may be made comparable in size and cost to a deuterium-tritium (D-T) reactor at the expense of high-thermal heat load to the first wall. This heat load is the result of the larger percentage of fusion power in charged particles in the D-D reaction as compared to the D-T reaction. The heat load may be reduced by increasing the reactor size and hence the cost. In addition to this ''degraded'' design, the size may be kept small by means of a higher heat load wall, or by means of a toroidal divertor, in which case most of the heat load seen by the wall is in the form of radiation. Point designs are developed for these approaches and cost studies are performed and compared with a D-T reactor. The results indicate that the cost of electricity of a D-D RFP reactor is about20% higher than a D-T RFP reactor. This increased cost could be offset by the inherent safety features of the D-D fuel cycle
Maintenance procedures for the TITAN-I and TITAN-II reversed field pinch reactors
International Nuclear Information System (INIS)
Grotz, S.P.; Duggan, W.; Krakowski, R.; Najmabadi, F.; Wong, C.P.C.
1989-01-01
The TITAN reactor is a compact, high-power-density (neutron wall loading 18 MW/m 2 ) machine, based on the reversed-field-pinch (RFP) confinement concept. Two designs for the fusion power core have been examined: TITAN-I is based on a self-cooled lithium loop with a vanadium-alloy structure for the first wall, blanket and shield; and TITAN-II is based on an aqueous loop-in-pool design with a LiNO 3 solution as the coolant and breeder. The compact design of the TITAN fusion power core, (FPC) reduces the system to a few small and relatively low mass components, making toroidal segmentation of the FPC unnecessary. A single-piece maintenance procedure is possible. The potential advantages of single-piece maintenance procedures are: (1) Short period of down time; (2) improved reliability; (3) no adverse effects resulting from unequal levels of irradiation; and (4) ability to continually modify the FPC design. Increased availability can be expected from a fully pre-tested, single-piece FPC. Pre-testing of the FPC throughout the assembly process and prior to installation into the reactor vault is discussed. (orig.)
The safety designs for the TITAN reversed-field pinch reactor study
International Nuclear Information System (INIS)
Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.P.; Sharafat, S.; Najmabadi, F.
1988-01-01
TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated as level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated as level 2 of safety assurance. 7 refs., 2 figs
Zero-dimensional model of a reversed field pinch fusion reactor
International Nuclear Information System (INIS)
Veerasingam, R.
1987-12-01
A zero-dimensional model for the energy balance for electrons and ions of a Reversed Field Pinch (RFP) device has been developed. The model can be used as a tool for parametric studies and has been applied to simulate some ZT-40M experiments. In the model multiplicative coefficients C 1 , C 2 , C 3 and C 4 are introduced to treat anomalous resistivity, electron and ion energy confinement times and to account for the instability driven ion heating that is observed in RFP experiments. Parametric studies were performed to determine the sensitivity of the model to changes in multiplicative coefficients. A set of coefficients which can simulate a number of ZT-40M experiments have been obtained and the sensitivity of T/sub e/ and T/sub i/ to these coefficients was examined. Both flat top and ramp current waveforms were studied. The effects of different levels of impurities were also examined. The results showed that while all the three impurities used, viz., carbon, oxygen and nickel contributed to Z/sub eff/, nickel dominated the impurity radiation power. The results were then applied to study the behavior of the ZT-H device which is being built in the Confinement Physics Research Facility at the Los Alamos National Laboratory. 30 refs., 39 figs., 12 tabs
Blanket activation and afterheat for the Compact Reversed-Field Pinch Reactor
International Nuclear Information System (INIS)
Davidson, J.W.; Battat, M.E.
1985-01-01
A detailed assessment has been made of the activation and afterheat for a Compact Reversed-Field Pinch Reactor (CRFPR) blanket using a two-dimensional model that included the limiter, the vacuum ducts, and the manifolds and headers for cooling the limiter and the first and second walls. Region-averaged, multigroup fluxes and prompt gamma-ray/neutron heating rates were calculated using the two-dimensional, discrete-ordinates code TRISM. Activation and depletion calculations were performed with the code FORIG using one-group cross sections generated with the TRISM region-averaged fluxes. Afterheat calculations were performed for regions near the plasma, i.e., the limiter, first wall, etc. assuming a 10-day irradiation. Decay heats were computed for decay periods up to 100 minutes. For the activation calculations, the irradiation period was taken to be one year and blanket activity inventories were computed for decay times to 4 x 10 5 years. These activities were also calculated as the toxicity-weighted biological hazard potential (BHP). 15 refs
Current profile redistribution driven by neutral beam injection in a reversed-field pinch
Energy Technology Data Exchange (ETDEWEB)
Parke, E. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Anderson, J. K.; Den Hartog, D. J. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Brower, D. L.; Ding, W. X.; Lin, L. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Johnson, C. A. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Department of Physics, Auburn University 206 Allison Laboratory, Auburn, Alabama 36849 (United States)
2016-05-15
Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].
Generation and confinement of hot ions and electrons in a reversed-field pinch plasma
International Nuclear Information System (INIS)
Chapman, B E; Almagri, A F; Anderson, J K; Caspary, K J; Clayton, D J; Den Hartog, D J; Ennis, D A; Fiksel, G; Gangadhara, S; Kumar, S; Magee, R M; O'Connell, R; Parke, E; Prager, S C; Reusch, J A; Sarff, J S; Stephens, H D; Brower, D L; Ding, W X; Craig, D
2010-01-01
By manipulating magnetic reconnection in Madison Symmetric Torus (MST) discharges, we have generated and confined for the first time a reversed-field pinch (RFP) plasma with an ion temperature >1 keV and an electron temperature of 2 keV. This is achieved at a toroidal plasma current of about 0.5 MA, approaching MST's present maximum. The manipulation begins with intensification of discrete magnetic reconnection events, causing the ion temperature to increase to several kiloelectronvolts. The reconnection is then quickly suppressed with inductive current profile control, leading to capture of a portion of the added ion heat with improved ion energy confinement. Electron energy confinement is simultaneously improved, leading to a rapid ohmically driven increase in the electron temperature. A steep electron temperature gradient emerges in the outer region of the plasma, with a local thermal diffusivity of about 2 m 2 s -1 . The global energy confinement time reaches 12 ms, the largest value yet achieved in the RFP and which is roughly comparable to the H-mode scaling prediction for a tokamak with the same plasma current, density, heating power, size and shape.
Demonstration of Electron Bernstein Wave Heating in a Reversed Field Pinch
Seltzman, Andrew H.
The Electron Bernstein wave (EBW) presents an alternative to conventional electron cyclotron resonance heating and current drive in overdense plasmas, where electromagnetic waves are inaccessible. The first observation of rf heating in a reversed field pinch (RFP) using the EBW has been demonstrated on Madison Symmetric Torus (MST). The EBW propagates radially inward through a magnetic field that is either stochastic or has broken flux surfaces, before absorption on a substantially Doppler-shifted cyclotron resonance (? = n*?_ce - k_parallel*v_parallel), where n is the harmonic number. Deposition depth is controllable with plasma current on a broad range (n=1-7) of harmonics. Novel techniques were required to measure the suprathermal electron tail generated by EBW heating in the presence of intense Ohmic heating. In the thick-shelled MST RFP, the radial accessibility of the EBW is limited to r/a > 0.8 ( 10 cm), where a=52cm is the minor radius, by magnetic field error induced by the porthole necessary for the antenna; accessibility in a thin-shelled device with actively controlled saddle coils (without the burden of substantial porthole field error) is likely to be r/a> 0.5 in agreement with ray tracing studies. Measured electron loss rates with falloff time constants in the 10s of micros imply a large, non-collisional radial diffusivity; collisional times with background particles are on the order of one millisecond. EBW-heated test electrons are used as a probe of edge (r/a > 0.9) radial transport, showing a modest transition from 'standard' to reduced-tearing RFP operation.
International Nuclear Information System (INIS)
Veranda, M; Bonfiglio, D; Cappello, S; Chacón, L; Escande, D F
2013-01-01
Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically—in 3D visco-resistive magnetohydrodynamic (MHD) simulations—and experimentally, as in the RFX-mod device at high current (I P above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values. (paper)
Reversed field pinch magnetic equilibrium and profile dynamics in Extrap T1-upgrade
International Nuclear Information System (INIS)
Nordlund, P.; Mazur, S.; Drake, J.R.
1992-05-01
An eight station insertable magnetic probe has been installed on the Extrap T1-U machine. The structure of the reversed field pinch magnetic equilibrium and the time evolution of the profiles has been studied. The probe was inserted into sustained high current density RFP plasma, typically 12-16 MA/m 2 on axis. When the probe was inserted there was a somewhat shorter pulse duration and a slightly decaying current. The magnetic field profiles are shift corrected and expressed in a cylindrically symmetric form. All quantities are then derived from cylindrically symmetric equations. In the beginning of the sustainment phase, where the best reproducibility is achieved, we have been able to obtain estimates of the pressure profile consistent with independent measurements of the central pressure. Values of βθ approx = 0.19 and approx = 0.09 are found leading to an estimation of the energy confinement time, with the probe inserted, of τε approx = 5 μs. Profiles of the effective parallel conductivity clearly indicates the presence of a 'dynamo mechanism' sustaining the field configuration. Higher Θ discharges usually exhibit large oscillations in the F-Θ plane. We find that these oscillations represents macroscopic redistribution of the current in the plasma. A cyclic process is found where the parallel current density (μ-profile) tends to peak in the center and then relax towards a flatter and broader configuration. Towards the end of the discharge there is an increasing fluctuation level along with an increasing V loop /I p - Here we find a relative increase in the current density in the edge region resulting in a hollow μ-profile. (au) (15 refs., 31 figs.)
International Nuclear Information System (INIS)
Malmberg, Jenny-Ann
2003-06-01
It is relatively straightforward to establish equilibrium in magnetically confined plasmas, but the plasma is frequently susceptible to a variety of instabilities that are driven by the free energy in the magnetic field or in the pressure gradient. These unstable modes exhibit effects that affect the particle, momentum and heat confinement properties of the configuration. Studies of the dynamics of several of the most important modes are the subject of this thesis. The studies are carried out on plasmas in the reversed field pinch (RFP) configuration. One phenomenon commonly observed in RFPs is mode wall locking. The localized nature of these phase- and wall locked structures results in localized power loads on the wall which are detrimental for confinement. A detailed study of the wall locked mode phenomenon is performed based on magnetic measurements from three RFP devices. The two possible mechanisms for wall locking are investigated. Locking as a result of tearing modes interacting with a static field error and locking due to the presence of a non-ideal boundary. The characteristics of the wall locked mode are qualitatively similar in a device with a conducting shell system (TPE-RX) compared to a device with a resistive shell (Extrap T2). A theoretical model is used for evaluating the threshold values for wall locking due to eddy currents in the vacuum vessel in these devices. A good correlation with experiment is observed for the conducting shell device. The possibility of successfully sustaining discharges in a resistive shell RFP is introduced in the recently rebuilt device Extrap T2R. Fast spontaneous mode rotation is observed, resulting in low magnetic fluctuations, low loop voltage and improved confinement. Wall locking is rarely observed. The low tearing mode amplitudes allow for the theoretically predicted internal non-resonant on-axis resistive wall modes to be observed. These modes have not previously been distinguished due to the formation of wall
Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch
International Nuclear Information System (INIS)
Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.
2014-01-01
Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q fi ) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes
Momentum transport during reconnection events in the MST reversed field pinch
Kuritsyn, Alexey
2008-11-01
During reconnection events in the MST reversed field pinch momentum parallel to the magnetic field is observed to be suddenly transported from the core to the edge. This occurs simultaneous with a surge in multiple resistive tearing instabilities. From measurements of the plasma flow and the forces arising from tearing instability (Maxwell and Reynolds stresses) we have established that tearing instabilities induce strong momentum transport. Comparison with nonlinear MHD computation of tearing fluctuations supports this conclusion, although it also indicates that effects beyond single-fluid MHD are likely to be important. The radial profile of the parallel velocity is reconstructed from a combination of diagnostics: Rutherford scattering of injected neutral atoms (for majority ions), charge exchange recombination spectroscopy (for minority ions), and Mach probes (for edge majority ion flow). Maxwell stress has been measured previously in the core by laser Faraday rotation, and both stresses are measured in the edge with probes. A surprising observation is that both the Maxwell and Reynolds stresses are each ten times larger than needed to account for the observed momentum transport (i.e., larger than the inertial and viscous terms in the momentum balance equation). However, they are oppositely directed such that their difference is approximately equal to the rate of change of plasma momentum. The large magnitude of the individual stresses is not predicted by MHD theory; the Maxwell stress also produces a Hall dynamo effect, implying that a two-fluid theory might be necessary for a complete description of momentum transport. To test further the relation between momentum transport and tearing fluctuations, momentum transport was measured perturbatively, by altering plasma rotation with inserted biased electrodes. Biasing is applied in plasmas with large tearing activity and improved confinement plasmas in which tearing activity is reduced by inductive current profile
Movable limiter experiment on TPE-1RM15 reversed field pinch machine
International Nuclear Information System (INIS)
Yagi, Yasuyuki; Shimada, Toshio; Hirota, Isao; Maejima, Yoshiki; Hirano, Yoichi; Ogawa, Kiyoshi
1989-01-01
Two movable limiters with a graphite head (35 mm Φ x 40 mm high) were installed in TPE-1RM15 reversed field pinch (RFP) machine. Measurement of the heat flux input to the movable limiters and the effect of the insertion of the limiter on plasma properties, as well as surface analyses of the graphite head after the exposure, were conducted. The heat flux input into the electron drift side of the limiter exceeded that from the ion drift side by factor of 4-6 at the maximum insertion of the limiters (10 mm inward from the shadow of the fixed limiters). This factor increased as the movable limiter protruded into the plasma, and this profile is attributed to the change of the pitch profile of the magnetic field line at the plasma periphery. At the maximum insertion of the two movable limiters, the energy input into a graphite head was about 10% of the joule input energy during the current sustainment phase. The one turn loop voltage and plasma resistance increased when the movable limiters were inserted beyond the shadow of the fixed limiters, and the increment of the joule input power roughly correlates with the increment of the loss power into the protruded movable limiters. Unbalanced position scanning showed that the relative distance of a movable limiter from the plasma column was not affected by another movable limiter installed 180 0 toroidally away from the former limiter. Fundamental surface analyses of the graphite head showed that deposition of metal impurities (Fe and Cr) was higher at the corner of the ion drift side than that of the electron shift side, and that the corner of the electron drift side was more roughened than the ion drift side. (orig.)
Ultra-low q and reversed field pinch experiments in Extrap T1 with a resistive shell
International Nuclear Information System (INIS)
Brunsell, P.; Drake, J.R.; Mazur, S.; Nordlund, P.
1991-02-01
The Extrap T1 device is a high aspect ratio toroidal pinch with the dimensions R/a = 0.5 m/0.057 m. In the experiments described here, the stainless steel bellows vacuum vessels was surrounded by a resistive shell with a perpendicular field penetration time of 75 μs. The ULQ discharges, with toroidal currents in the range 20-50 kA and pulse lengths up to 2 ms, showed the typical step-wise decay of the plasma current. The current steps corresponded to transitions of the edge q-value across rational values 1/4, 1/3, 1/2, and 1. During a step through a rational q value, there was an increase in the fluctuation activity and a corresponding increase in the plasma resistance. As part of the ULQ studies, discharges with four poloidal field nulls were produced by applying an octupole magnetic field, thus demonstrating that it is possible to sustain ULQ equilibria with poloidal field x-points and a magnetic separatix. In another study, the transition from ULQ discharges to relaxed state discharges was investigated. When the initial bias toroidal field was reduced so that q was less than about 1/6, which corresponded to a pinch parameter of about 0.6, a change in the discharge character was observed. The loop voltage required to sustain a given current increased and stochastic fluctuations were seen. Toroidal flux was generated and relaxed state equilibira developed. For higher pinch parameter, in the range of 1.5 to 2.0, a reversed field pinch could be set up if the toroidal field power supply provided a reversed current in the coils. The plasma resistivity was again lower and the pulse lengths in the RFP mode were up to 1 ms, corresponding to over 10 shell penetration times. (au)
Quantitative plasma spectroscopy in a resistive shell reversed-field pinch
International Nuclear Information System (INIS)
Hedqvist, Anders
1999-10-01
The subject addressed in this thesis is quantitative plasma spectroscopy. Measurements of electron temperature and impurity ion density, performed at EXTRAP-T2, are aimed to investigate the effects of operating a reversed- field pinch with a resistive shell and a graphite wall. The spectroscopic measurements are analyzed with a collisional-radiative model and a consistency check is performed for the measurements and the model itself. The resistive shell results in wall-locked modes, enhanced plasma-wall interaction and degraded confinement. Measurements of vacuum ultraviolet resonant transitions of carbon and oxygen show that the local heating of the wall, at the position of the locking, leads to influxes of hydrogen and impurities, resulting in a cold and resistive plasma. Effects on the local scale are also observed. Spatially-resolved measurements of line emission originating from charge exchange collisions are used to investigate the change in neutral hydrogen profile. Temporal correlations between soft x-ray emission and poloidal loop voltage at the position of the wall-locked modes are observed and in connection, a decrease in central electron temperature, indicating there is a direct energy loss channel between the center and the edge. The hydrogen recycling properties of the graphite wall are investigated in an isotope exchange experiment. The density of the hydrogen isotopes are measured from spectral line emission and compared with recycling models. In charge exchange collisions between fully stripped chlorine and thermal deuterium, observed in JET plasmas, only a single n-level is populated. This is different from most ions and may be used to test models for calculating charge exchange collision cross-sections
Experimental studies of confinement in the EXTRAP T2 and T2R reversed field pinches
International Nuclear Information System (INIS)
Cecconello, Marco
2003-01-01
The confinement properties of fusion plasmas are affected by magnetic and electrostatic fluctuations. The determination of the plasma confinement properties requires the measurement of several global and local quantities such as the ion and electron temperatures, the electron and neutral density profiles, the radiation emissivity profiles, the ohmic input power and the particle and heat diffusivities. The focus of this thesis is the study of the plasma confinement properties based on measurements of these quantities under different experimental conditions. The studies have been carried out on the reversed field pinch experiments EXTRAP T2 and T2R at the Alfven Laboratory, Royal Institute of Technology in Stockholm. Studies carried out in EXTRAP T2 were focused on dynamo activity and on the effect of phase alignment and locking to the wall of magnetic instabilities. These were observed with a dedicated imaging system. The experimental studies in EXTRAP T2R were focused on the measurement of the confinement properties of different configurations. To this aim, a set of diagnostics were used some of which were upgraded, such as the interferometer, while others were newly installed, such as a neutral particle energy analyser and a bolometer array. The dynamo, which is responsible for the plasma sustainment, involves resistive magnetohydrodynamic instabilities that enhance stochastic transport. Furthermore, the plasma confinement properties are in general improved in the presence of mode rotation. The possibility of reducing the stochastic transport and thereby further improving the confinement has been demonstrated in a current profile control experiment. These results indicate that long pulse operations with a resistive shell and current profile control are indeed feasible
The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report
International Nuclear Information System (INIS)
1987-01-01
The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m 2 ) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately
The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report
Energy Technology Data Exchange (ETDEWEB)
1987-01-01
The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m/sup 2/) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately.
A global analysis of the behaviour of the ZT-40M reversed field pinch
International Nuclear Information System (INIS)
Philipps, J.A.; Baker, D.A.; Gribble, R.F.
1995-01-01
Experimental data from the reversed field experiment, ZT-40M, have been re-examined in an attempt to determine the scaling behaviour of the physical plasma quantities and their fluctuations. A subset of the data is defined, allowing a reduced number of independent variables to described the behaviour. For flat-top ZT-40M discharges the independent variables are chosen as being the toroidal current, I φ , and the dimensionless pinch parameter, Θ, which is proportional to the ratio of the toroidal current to the toroidal magnetic flux. The amplitudes of the dependent variables, including the electron temperature, plasma resistance, toroidal flux, the ratio of I φ to the mean electron density and their fluctuation amplitudes, exhibit minima as functions of Θ for constant Iφ. These minima move towards lower Θ values with increasing I φ . Over the range of conditions for acceptable operation, the scaling of variables with I φ is not unique but depends on the variation of Θ as I φ increases. The Θ variation is governed by the specific conditions (such as constant poloidal beta, β p ) chosen to set the desired RFP operational constraints. Contour plots of the dependent variables versus the two independent variables, I φ and Θ, allow the determination of the Iφ-Θ trajectory that corresponds to discharges that meet the chosen condition. The analysis shows that the amplitude of the low frequency fluctuations correlates with the mean β p and energy confinement time of ZT-40M. By modifying the external circuits on ZT-40M, low frequency fluctuations were reduced. Comparing the designs of different RFP experiments and their operating behaviour, these modifications suggest design changes for present and future RFP experiments that will benefit their performance. (author). 90 refs, 14 figs, 3 tabs
Quantitative plasma spectroscopy in a resistive shell reversed-field pinch
Energy Technology Data Exchange (ETDEWEB)
Hedqvist, Anders
1999-10-01
The subject addressed in this thesis is quantitative plasma spectroscopy. Measurements of electron temperature and impurity ion density, performed at EXTRAP-T2, are aimed to investigate the effects of operating a reversed- field pinch with a resistive shell and a graphite wall. The spectroscopic measurements are analyzed with a collisional-radiative model and a consistency check is performed for the measurements and the model itself. The resistive shell results in wall-locked modes, enhanced plasma-wall interaction and degraded confinement. Measurements of vacuum ultraviolet resonant transitions of carbon and oxygen show that the local heating of the wall, at the position of the locking, leads to influxes of hydrogen and impurities, resulting in a cold and resistive plasma. Effects on the local scale are also observed. Spatially-resolved measurements of line emission originating from charge exchange collisions are used to investigate the change in neutral hydrogen profile. Temporal correlations between soft x-ray emission and poloidal loop voltage at the position of the wall-locked modes are observed and in connection, a decrease in central electron temperature, indicating there is a direct energy loss channel between the center and the edge. The hydrogen recycling properties of the graphite wall are investigated in an isotope exchange experiment. The density of the hydrogen isotopes are measured from spectral line emission and compared with recycling models. In charge exchange collisions between fully stripped chlorine and thermal deuterium, observed in JET plasmas, only a single n-level is populated. This is different from most ions and may be used to test models for calculating charge exchange collision cross-sections.
Linear studies of resistive interchange modes in a cylindrical reversed field pinch
International Nuclear Information System (INIS)
Mirin, A.A.; O'Neill, N.J.; Killeen, J.; Bonugli, R.J.; Ellis, M.J.
1986-01-01
Resistive interchange modes in a cylindrical reversed field pinch are studied using a one-dimensional, linear, compressible initial value code. Separate equations for the electron and ion temperature perturbations are solved. Hall terms and the thermal force vector are included in Ohm's law. Anisotropic thermal conductivity and viscosity are included in the code model. Calculations are carried out for various values of poloidal and toroidal mode number, Lundquist number, Suydam parameter, Hall parameter, thermal conductivity, viscosity, etc., with respect to uniform density equilibria known to be stable to tearing modes. It is shown that in the cold ion limit sufficiently large Hall terms cause all modes that are tested to become stable. However for T/sub i/ = T/sub e/ and ignoring the effects of viscosity and thermal conductivity, there is a critical value of the ratio of Alfven to ion cyclotron frequency above which the ''even'' mode not only dominates the ''odd'' mode but is likely to have a growth rate significantly larger than that of the odd mode in the absence of Hall terms. Inclusion of a classical tensor thermal conductivity, while having little effect on the odd mode in the absence of Hall terms, does stabilize the even mode for sufficiently large Hall parameter. Inclusion of a classical tensor viscosity reduces the growth rate of (but does not necessarily stabilize) the odd mode. Inclusion of Hall and thermal force terms, tensor thermal conductivity and tensor viscosity causes all modes that are tested to stabilize. Results are compared to other contemporary studies
International Nuclear Information System (INIS)
Hagenson, R.L.; Krakowski, R.A.
1980-01-01
Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CT) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conduction shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15
Refueling and density control in the ZT-40M reversed field pinch
International Nuclear Information System (INIS)
Wurden, G.A.; Weber, P.G.; Watt, R.G.; Munson, C.P.; Cayton, T.E.; Buechl, K.
1987-01-01
The effects of pellet injection and gas puff refueling have been studied in the ZT-40M Reversed Field Pinch. Multiple deuterium pellets (≤ 6 x 10 19 D atoms/pellet) with velocities ranging from 300 to 700 m/sec have been injected into plasmas with n-bar/sub e/ ∼1 to 5 X 10 19 m -3 , I/sub phi/ ∼100 to 250 kA, T/sub e/(0) ∼150 to 300 eV and discharge durations of ≤ 20 msec. Photographs and an array D/sub α/ detectors show substantial deflection of the pellet trajectory in both the poloidal and toroidal planes, due to asymmetric ablation of the pellet by electrons streaming along field lines. To compensate for the poloidal deflection, the injector was moved up +14 cm off-axis, allowing the pellets to curve down to the midplane. In this fashion, central peaking of the pellet density deposition profile can be obtained. Both electron and ion temperatures fall in response to the density rise, such that β/sub θ/(β/sub θ/ identical to n-bar/sub e/(T/sub e/(0) + T/sub i/)/(B/sub θ/(a)) 2 ) remains roughly constant. Energy confinement is momentarily degraded, and typically a decrease in F (F identical to B/sub phi/(a)/(B/sub phi/)) is seen as magnetic energy is converted to plasma energy when the pellet ablates. As a result of pellet injection at I/sub phi/ = 150 kA we observe T/sub e/(0) α n-bar/sub e//sup -.9 +- .1/, while the helicity based resistivity eta/sub k/ transiently varies as n-bar/sub e//sup .7 +- .1/. While the achievement of center-peaked density profiles is possible with pellet injection, gas puffing at rates strong enough to show a 50% increase in n-bar/sub e/ over a period of 10 msec (∼150 torr-litres/sec) leads to hollow density profiles. The refueling requirements for parameters expected in the next generation RFPs (ZTH, RFX) can be extrapolated from these data using modified tokamak pellet ablation codes
International Nuclear Information System (INIS)
Baker, D.A.; Burkhardt, L.C.; Di Marco, J.N.; Haberstich, A.; Hagenson, R.L.; Howell, R.B.; Karr, H.J.; Schofield, A.E.
1977-01-01
The scaling properties of a toroidal reversed-field Z pinch have been investigated over a limited range by comparing two experiments having conducting walls and discharge-tube minor diameters which differ by a factor of approximately 1.5. Both the confinement time of the plasma column and the electron temperature were found to increase about a factor of two with the increased minor diameter. Both the poloidal field diffusion and the decay of the toroidal reversed field were significantly reduced with the larger tube diameter. These results support the hypothesis that the loss of stability later in the discharge is caused by diffusion-induced deterioration of initially favourable plasma-field profiles to MHD unstable ones. This conclusion has been verified by stability analysis of the magnetic field profiles. Fusion reactor calculations show that small reactors are conceptually possible assuming good containment can be achieved for current densities approximately >20MAm -2 . (author)
Activation and waste disposal of the TITAN RFP [reversed-field-pinch] reactors
International Nuclear Information System (INIS)
Cheng, E.T.; Conn, R.W.
1988-01-01
The TITAN-I lithium self-cooled and TITAN-II aqueous lithium nitrate solution-cooled fusion reactors are based on the reversed-field-pinch (RFP) toroidal confinement concept and operate at high power density with an 18.1 MW/m 2 neutron wall loading. These designs were analyzed to study the activation and waste disposal aspects of such high-power density reactors. It was found that because of the use of V-3Ti-1Si (TITAN-I) and reduced activation ferritic steel (TITAN-II) as structural alloys for the first wall, blanket, reflector, and shield components, all the TITAN components except the divertor collector plates can be classified as shallow-land burial (10CFR61 Class C or better) nuclear waste for disposal, provided that the impurity elements, niobium and molybdenum, can be controlled below about 1 and 0.3 appm levels, respectively. The average annual disposal masses were estimated to be 150 and 96 tonnes, respectively, for the 1,000 MW TITAN-I and TITAN-II reactors. This corresponds to about 11% of the total mass in the fusion power core of both reactors. The divertor collector plates are fabricated with tungsten because of its low particle sputtering properties. These divertor collector plates in the TITAN-I reactor will be qualified as Class C waste after 18.1 MW-y/m 2 operation. The waste disposal rating of the divertor collector plates in the TITAN-II reactor, however, is estimated to be a factor of 4 higher than allowed for Class C disposal, because of the soft neutron spectrum in the beryllium environment. The annual disposal mass of this non-Class C waste is 0.35 tons, about 0.04% of the average annual discharge mass for the TITAN-II reactor. An additional 74 m 3 annual discharge of Class C waste containing 14 C may be needed for the TITAN-II reactor because of the use of nitrate salt in the aqueous coolant as the tritium breeder. 13 refs., 6 tabs
International Nuclear Information System (INIS)
Onofri, M.; Malara, F.
2013-01-01
Compressible magnetohydrodynamics simulations of the reversed-field pinch (RFP) are presented. Previous simulations of the RFP, including density and pressure evolution, showed that a stationary state with a reversed toroidal magnetic field could not be obtained, contrary to the results produced with numerical codes neglecting density and pressure dynamics. The simulations described in the present paper show that including density and pressure evolution, a stationary RFP configuration can be obtained if the resistivity has a radial profile steeply increasing close to the wall. Such resistivity profile is more realistic than a uniform resistivity, since the temperature at the wall is lower than in the plasma core
International Nuclear Information System (INIS)
Nebel, R.A.; Hagenson, R.L.; Moses, R.W.; Krakowski, R.A.
1980-01-01
Conceptual fusion reactor designs of the Reversed-Field Pinch Reactor (RFPR) have been based on profile-averaged zero-dimensional (point) plasma models. The plasma response/performance that has been predicted by the point plasma model is re-examined by a comprehensive one-dimensional (radial) burn code that has been developed and parametrically evaluated for the RFPR. Agreement is good between the zero-dimensional and one-dimensional models, giving more confidence in the RFPR design point reported previously from the zero-dimensional analysis
Properties of the edge plasma in the rebuilt Extrap-T2R reversed field pinch experiment
International Nuclear Information System (INIS)
Vianello, N; Spolaore, M; Serianni, G; Bergsaker, H; Antoni, V; Drake, J R
2002-01-01
The edge region of the rebuilt Extrap-T2R reversed field pinch experiment has been investigated using Langmuir probes. Radial profiles of main plasma parameters are obtained and compared with those of the previous device Extrap-T2. The spontaneous setting up of a double shear layer of ExB toroidal velocity is confirmed. The particle flux induced by electrostatic fluctuations is calculated and the resulting effective diffusion coefficient is consistent with the Bohm estimate. A close relationship between electrostatic fluctuations at the edge and non-linear coupling of MHD modes in the core is found
Properties of the edge plasma in the rebuilt Extrap-T2R reversed field pinch experiment
Vianello, N.; Spolaore, M.; Serianni, G.; Bergsåker, H.; Antoni, V.; Drake, J. R.
2002-12-01
The edge region of the rebuilt Extrap-T2R reversed field pinch experiment has been investigated using Langmuir probes. Radial profiles of main plasma parameters are obtained and compared with those of the previous device Extrap-T2. The spontaneous setting up of a double shear layer of E×B toroidal velocity is confirmed. The particle flux induced by electrostatic fluctuations is calculated and the resulting effective diffusion coefficient is consistent with the Bohm estimate. A close relationship between electrostatic fluctuations at the edge and non-linear coupling of MHD modes in the core is found.
International Nuclear Information System (INIS)
Sakakita, Hajime; Craig, Darren; Anderson, Jay K.; Chapman, Brett E.; Den-Hartog, Daniel J.; Prager, Stewart C.; Biewer, Ted M.; Terry, Stephen D.
2003-01-01
We report on passive measurements of impurity ion velocities during the pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed-field pinch. During PPCD, the electron temperature increased and a sudden reduction of magnetic fluctuations was observed. For this change, we have studied whether plasma velocity is affected. Plasma rotation is observed to decrease during PPCD. From measurements of line intensities for several impurities at 10 poloidal chords, it is found that the impurity line emission shifts outward. The ion temperature of impurities is reasonably connected to that measured by charge exchange recombination spectroscopy from core to edge. (author)
Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.
2013-04-01
A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.
International Nuclear Information System (INIS)
Jacobson, A.R.; Rusbridge, M.G.; Burkhardt, L.C.
1984-01-01
The characteristics of edge-region electromagnetic disturbances and of pulsed radial fluxes of plasma to the liner as well as the detailed interrelationship among these processes have been studied on the ZT-40M reversed-field pinch in its normal, shallow-reversal operating regime. The dominant magnetic disturbances are spiky (pulsewidth approx.5--10 μs) low-amplitude (Vertical BarB/sub r//B/sub theta/Vertical Bar -2 )= poloidally symmetric radial-field structures intersecting the vacuum wall and precessing toroidally in the anti-I/sub phi/ sense. The effect of even slight toroidal-field reversal (Vertical BarB/sub phi/(a)Vertical Barroughly-equalB/sub theta/(a)/10) is to polarize these radial-field spikes preferentially positive (i.e., B/sub r/>0) and to increase the speed of the minority (B/sub r/ 0) spikes. Synchronous with the polarized B/sub r/ spikes are intense radially outward fluxes of plasma (instantaneously > or approx. =10 22 m -2 s -1 ) leading to recurrent, large amplitude (Vertical BarΔn/n> or approx. =25%) depletion of the density in the outer quarter of minor radius. The resulting time-averaged global loss-rate per particle is significant (approx.10 3 s -1 )
Poloidal field system design for the ZT-H reversed field pinch experiment
International Nuclear Information System (INIS)
Schoenberg, K.F.; Gribble, R.F.; Linton, T.W.; Reass, W.R.
1983-01-01
This report discusses each of the following areas: (1) equilibrium specification, (2) the equilibrium winding, (3) the magnetizing winding, (4) numerical poloidal field system analysis, (5) coil cross section, turns, minimum field error, (6) coil stresses and cooling, (7) the upper structure, (8) the loads, (9) boundary conditions and method of analysis, and (10) design description
Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.
2006-09-01
Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.
International Nuclear Information System (INIS)
Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.
2006-01-01
Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4x10 10 cm -3 for a central electron density of 1x10 13 cm -3 . Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20 m 2 s -1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ∼2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge
International Nuclear Information System (INIS)
Gravestijn, R M; Drake, J R; Hedqvist, A; Rachlew, E
2004-01-01
A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, τ s , has a critical role in the stability and performance of the RFP. Confinement in the EXTRAP device has been studied with two values of τ s , first (EXTRAP-T2) with tau s of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with τ s much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence
Mao, Wenzhe; Yuan, Peng; Zheng, Jian; Ding, Weixing; Li, Hong; Lan, Tao; Liu, Adi; Liu, Wandong; Xie, Jinlin
2016-11-01
A compact and lightweight support platform has been used as a holder for the interferometer system on the Keda Torus eXperiment (KTX), which is a reversed field pinch device. The vibration caused by the interaction between the time-varying magnetic field and the induced current driven in the metal optical components has been measured and, following comparison with the mechanical vibration of the KTX device and the refraction effect of the ambient turbulent air flow, has been identified as the primary vibration source in this case. To eliminate this electromagnetic disturbance, nonmetallic epoxy resin has been selected as the material for the support platform and the commercially available metal optical mounts are replaced. Following these optimization steps and mechanical reinforcements, the stability of the interferometer platform has improved significantly. The phase shift caused by the vibration has been reduced to the level of background noise.
Analytical study of a reversed-field pinch with rectangular cross section
International Nuclear Information System (INIS)
Zhang Peng
1990-01-01
An analyic solution of the force-free equation for a toroidal configuration of rectangular cross section is presented. It is shown that the critical value of contraction ratio for the appearance of a reversed field as well as of the ohmic current increases as the elongation of the cross section increases
Start-up assist by magnetized plasma flow injection in TPE-RX reversed-field pinch
Energy Technology Data Exchange (ETDEWEB)
Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Nagata, M. [Graduate School of Engineering, University of Hyogo, Himeji (Japan); Koguchi, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Hirano, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Sakakita, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Yambe, K. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Kiyama, S. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)
2006-11-15
A reversed-field pinch (RFP) start-up assisted by a magnetized plasma flow injection was demonstrated for the first time on a TPE-RX machine. This sequence of experiments aimed to establish a new method of ionization, gas-fill and helicity injection in the start-up phase of an RFP. In this start-up method, magnetized and well-ionized plasma is formed by a magnetized coaxial plasma gun and injected into the torus chamber as an initial pre-ionized plasma for RFP formation. In the initial experiments, attenuated density pump-out and comparatively slow decay of the toroidal flux and plasma current were observed as evidence of its being an effective start-up method.
International Nuclear Information System (INIS)
Wang, Z.R.; Guo, S.C.
2011-01-01
The cylindrical MHD model integrated with a feedback system is applied to the study of resistive wall mode (RWM) in reversed field pinch (RFP) plasmas. The model takes into account the compressibility, longitudinal flow, viscosity and resistive wall with a finite thickness. The study, via both analytical and numerical analyses, provides a physical understanding on the following subjects: firstly, on the nature of the instability spectrum of the RWM observed in RFP plasmas; specifically, the growth rates of the two groups of the RWMs (internally non-resonant and externally non-resonant) have opposite dependence on the variation of the field reversal. Secondly, on the response of the unstable plasmas to the feedback control in RFPs, the mode behaviour in plasmas under the feedback is clarified and discussed in detail. Finally, the linear solutions of time evolution of RWM instability in various feedback scenarios are given. The effects of the wall proximity, the sensor location and the system response time are discussed, respectively.
Malmberg, J.-A.; Brunsell, P. R.
2002-01-01
Observations of resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell (τw=6 ms) reversed field pinch are described. A nonresonant mode (m=1,n=-10) with the same handedness as the internal field grows nearly exponentially with an average growth time of about 2.6 ms (less than 1/2 of the shell time) consistent with linear stability theory. The externally nonresonant unstable modes (m=1,n>0), predicted by linear stability theory, are observed to have only low amplitudes (in the normal low-Θ operation mode of the device). The radial field of the dominant internally resonant tearing modes (m=1,n=-15 to n=-12) remain low due to spontaneous fast mode rotation, corresponding to angular phase velocities up to 280 krad/s. Phase aligned mode structures are observed to rotate toroidally with an average angular velocity of 40 krad/s, in the opposite direction of the plasma current. Toward the end of the discharge, the radial field of the internally resonant modes grows as the modes slow down and become wall-locked, in agreement with nonlinear computations. Fast rotation of the internally resonant modes has been observed only recently and is attributed to a change of the front-end system (vacuum vessel, shell, and TF coil) of the device.
International Nuclear Information System (INIS)
Mirnov, V.V.
2002-01-01
Large-scale tearing instabilities have long been considered to underlie transport and dynamo processes in the reversed field pinch (RFP). The vast majority of theoretical and computational RFP work has focused on pressureless, single-fluid MHD in cylindrical plasmas driven solely by a toroidal electric field. We report results of five investigations covering two-fluid dynamos, toroidal nonlinear MHD computation, nonlinear computation of Oscillating Field Current Drive (OFCD), the effect of shear flow on tearing instability, and the effect of pressure on resistive instability. The key findings are: (1) two-fluid dynamo arising from the Hall term is much larger than the standard MHD dynamo present in a single-fluid treatment, (2) geometric coupling from toroidicity precludes the occurrence of laminar single helicity states, except for nonreversed plasmas, (3) OFCD, a form of AC helicity injection, can sustain the RFP plasma current, although magnetic fluctuations are enhanced, (4) edge shear flow can destabilize the edge resonant m=0 modes, which occur as spikes in experiment, and (5) pressure driven modes are resistive at low beta, only becoming ideal at extremely high beta. (author)
International Nuclear Information System (INIS)
Den Hartog, D.J.
1989-11-01
Thomson scattering measurements of the central electron temperature and density during the plasma current peak have been performed on the MST Reversed Field Pinch (RFP). This Thomson scattering diagnostic was calibrated for absolute electron density measurements. These measurements of T e and n e , when combined with profile assumptions, were used to calculate estimates of energy confinement time (τ E ) and poloidal beta (β θ ). A standard discharge with I p ∼ 400 kA, F ∼ -0.1, and θ ∼ 1.6 typically exhibited T e ∼ 275 eV, n e ∼ 2.0 x 10 13 cm -3 , τ E ≤ 1 ms, and β θ ≤ 8%. The results of a limited plasma current scaling study did not indicate a strong scaling of T e or τ E with I p . The Thomson scattering diagnostic was used in conjunction with a bolometer, VUV radiation monitor, and edge magnetic coils to study the loss of energy from the plasma. Results indicate that thermal transport from stochastic magnetic fields, particle loss, and radiation are important energy loss processes. The experiments done for this study included an F-scan, a paddle limiter insertion series, and an argon doping series. The plasma maintained a constant βτ during these perturbation experiments, suggesting that increases in one energy loss channel are compensated by drops in other channels and increases in input power to the plasma
International Nuclear Information System (INIS)
Kuritsyn, A.; Fiksel, G.; Almagri, A. F.; Miller, M. C.; Mirnov, V. V.; Prager, S. C.; Sarff, J. S.; Brower, D. L.; Ding, W. X.
2009-01-01
In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxation of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly related to the Maxwell stress, drives the parallel current profile relaxation at resonant surfaces at the reconnection events. These results qualitatively agree with analytical calculations and numerical simulations. It is plausible that current-driven instabilities can be responsible for momentum transport in other laboratory and astrophysical plasmas.
Energy Technology Data Exchange (ETDEWEB)
Munaretto, S., E-mail: smunaretto@wisc.edu; Chapman, B. E.; Nornberg, M. D.; Boguski, J.; DuBois, A. M.; Almagri, A. F.; Sarff, J. S. [Department of Physics, University of Wisconsin–Madison, 1150 University Ave, Madison, Wisconsin 53706 (United States)
2016-05-15
The orientation of 3D equilibria in the Madison Symmetric Torus (MST) [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch can now be controlled with a resonant magnetic perturbation (RMP). Absent the RMP, the orientation of the stationary 3D equilibrium varies from shot to shot in a semi-random manner, making its diagnosis difficult. Produced with a poloidal array of saddle coils at the vertical insulated cut in MST's thick conducting shell, an m = 1 RMP with an amplitude b{sub r}/B ∼ 10% forces the 3D structure into any desired orientation relative to MST's diagnostics. This control has led to improved diagnosis, revealing enhancements in both the central electron temperature and density. With sufficient amplitude, the RMP also inhibits the generation of high-energy (>20 keV) electrons, which otherwise emerge due to a reduction in magnetic stochasticity in the core. Field line tracing reveals that the RMP reintroduces stochasticity to the core. A m = 3 RMP of similar amplitude has little effect on the magnetic topology or the high-energy electrons.
International Nuclear Information System (INIS)
Guo, S.C.; Chu, M.S.
2002-01-01
The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω -2 <<1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX
ExB flow shear and enhanced confinement in the Madison Symmetric Torus reversed-field pinch
International Nuclear Information System (INIS)
Chapman, B.E.; Almagri, A.F.; Anderson, J.K.; Chiang, C.; Craig, D.; Fiksel, G.; Lanier, N.E.; Prager, S.C.; Sarff, J.S.; Stoneking, M.R.; Terry, P.W.
1998-01-01
Strong ExB flow shear occurs in the edge of three types of enhanced confinement discharge in the Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch. Measurements in standard (low confinement) discharges indicate that global magnetic fluctuations drive particle and energy transport in the plasma core, while electrostatic fluctuations drive particle transport in the plasma edge. This paper explores possible contributions of ExB flow shear to the reduction of both the magnetic and electrostatic fluctuations and, thus, the improved confinement. In one case, shear in the ExB flow occurs when the edge plasma is biased. Biased discharges exhibit changes in the edge electrostatic fluctuations and improved particle confinement. In two other cases, the flow shear emerges (1) when auxiliary current is driven in the edge and (2) spontaneously, following sawtooth crashes. Both edge electrostatic and global magnetic fluctuations are reduced in these discharges, and both particle and energy confinement improve. copyright 1998 American Institute of Physics
Vertical field systems in TPE-1RM15 reversed dield pinch experiment
International Nuclear Information System (INIS)
Shimada, T.; Hirano, Y.; Yagi, Y.; Ogawa, K.; Yamane, M.; Yamaguchi, S.; Oyabu, I.; Murakami, S.
1989-01-01
Design of equilibrium control system in TPE-1RM15 is described in detail, where equilibrium is maintained bij the combinatuion of the error field at shell cuts by the external vertical field with pre-programmed wave form is essential to set up and maintain RPF discharge. Control of the equilibrium position in the vacuum vessel by using DC vertical field inside the shell at the plasma break down phase, which makes it possible to operate DC vertical field in a wide range. Tooidal asymmetry of the feeders of the pulsed vertical field coil located there. This asymmetry is compensated bij the local vertical field of saddle coil wound around the shell cuts. (author). 2 refs.;4 figs
Analysis techniques for diagnosing runaway ion distributions in the reversed field pinch
Energy Technology Data Exchange (ETDEWEB)
Kim, J., E-mail: jkim536@wisc.edu; Anderson, J. K.; Capecchi, W.; Bonofiglo, P. J.; Sears, S. H. [University of Wisconsin—Madison, Madison, Wisconsin 53706 (United States)
2016-11-15
An advanced neutral particle analyzer (ANPA) on the Madison Symmetric Torus measures deuterium ions of energy ranges 8-45 keV with an energy resolution of 2-4 keV and time resolution of 10 μs. Three different experimental configurations measure distinct portions of the naturally occurring fast ion distributions: fast ions moving parallel, anti-parallel, or perpendicular to the plasma current. On a radial-facing port, fast ions moving perpendicular to the current have the necessary pitch to be measured by the ANPA. With the diagnostic positioned on a tangent line through the plasma core, a chord integration over fast ion density, background neutral density, and local appropriate pitch defines the measured sample. The plasma current can be reversed to measure anti-parallel fast ions in the same configuration. Comparisons of energy distributions for the three configurations show an anisotropic fast ion distribution favoring high pitch ions.
Transport and confinement studies in the RFX-mod reversed-field pinch experiment
International Nuclear Information System (INIS)
Innocente, P.; Alfier, A.; Carraro, L.; Lorenzini, R.; Pasqualotto, R.; Terranova, D.
2007-01-01
In the modified RFX experiment (RFX-mod) external magnetic field coils and a close fitting thin conductive shell control radial magnetic fields. In the so-called virtual shell (VS) operation, radial field zeroing at the thin shell radius is stationary provided by the feedback-controlled coils. First experiments on RFX-mod proved the capability of the active scheme to steadily reduce the radial magnetic field. Furthermore it has been found that such edge magnetic field control extends its beneficial effects to the whole plasma. With respect to the old RFX, where magnetohydrodynamic modes amplitude was controlled by the use of a passive thick conductive shell, a stationary 2- to 3-fold reduction of the B r field amplitude in the core is obtained. The reduction of field fluctuations positively reflects on confinement. In fact, a strong reduction of the loop voltage is observed and correspondingly a 3-fold increase in pulse length is achieved by using the same poloidal flux swing. Temperature and particle measurements confirm the improved confinement properties of the VS operation. With a lower ohmic input power, higher electron temperature and lower particle influx are measured. Particle and heat transport have been studied by means of a 1D code. Local power balance was used to compute the heat conductivity profile: for the VS discharges a lower conductivity over a significant region of the plasma is found. The improved properties of RFX-mod VS operation provide a better confinement scaling in terms of plasma current. The results show that compared with the thick shell configuration, a significant confinement improvement can be obtained under stationary conditions by actively controlling the plasma magnetic boundary
Experiments of spheromak and reversed field configuration in 2m theta pinch
International Nuclear Information System (INIS)
Nogi, Y.; Shimamura, S.; Ogura, H.; Osanai, Y.; Saito, K.; Shiina, S.; Yoshimura, H.
1981-01-01
Since the z-current produces the paramagnetic field near the electrodes, the spheromak formation is more difficult in the straight bias field. In order to help the reconnection at the coil ends, the cusp bias coils are added to both ends of the straight coil. Then the spheromak configuration is formed and the plasma is confined for 5 to 10 μs. On the other hand, the RFC continues for about 30 μs in case of the straight bias field. The confinement time is limited by the rotational instability. Although the start time of the instability is not clear, the elongation of the plasma is detected in 15 to 20 μs after the RFC is formed. The period of the rotation is slightly different every shot. Detailed study of the instability is being pursued
Reversed-field-pinch and ultra-low-q discharges in REPUTE-2
International Nuclear Information System (INIS)
Inoue, N.; Yoshida, Z.; Kamada, Y.; Saito, M.; Miyamoto, K.
1987-01-01
Ultra-low q (ULQ) and very-low q (VLQ) discharge experiments have been done using the REPUTE-1 RFP. It was found that in these q regime, the plasma density and beta are fairly high, and the confinement property is less sensitive to the error field compared to the RFP. However, since the temperature of the REPUTE-1 discharge is limited in low value because of the small plasma current due to the small toroidal field, its magnetic Reynolds number is too small to simulate the reactor plasma behavior. The radiation barrier has not been overcome yet, and consequently the energy confinement time is very short. In order to improve these aspects of the REPUTE-1 experiment, the REPUTE-2 is designed to produce higher toroidal field of 2T. The toroidal field increases slowly to the final value as in the case of the ramp-up mode of the RFP operation. The first stage of the REPUTE-2 project will be devoted to study the confinement physics of RFP, ULQ, and VLQ. In the second stage, innovation of these configurations, such as resistive shell RFP, neutral beam current drive, and higher current density, is planned. 8 refs., 1 fig., 2 tabs
Theoretical reversed field pinch studies: Progress report, August 31, 1987 to June 1988
International Nuclear Information System (INIS)
1988-01-01
This paper describes the progress made in Grant DE-FG02-85ER53212 since the end of the last year, August 31, 1987 to the present (June, 1988). Substantial results have emerged in two areas of high importance to the RFP program - nonlinear evolution with nonideal boundaries and self-consistent equilibrium in the presence of field errors. Both of these topics are critical for a basic understanding of RFP physics, for interpretation of current experiments, and for design of future devices and reactors. 3 refs
Magnetic and electrostatic fluctuation measurements on the ZT-40M reversed field pinch
International Nuclear Information System (INIS)
Miller, G.; Ingraham, J.C.; Munson, C.P.; Schoenberg, K.F.; Weber, P.G.; Tsui, H.Y.; Ritz, C.P.
1990-01-01
It is presently unknown whether anomalous transport in toroidal, magnetically confined plasma systems, if fluctuation induced, is dominated by electrostatic or magnetic turbulence. We are participating in a joint study of the edge plasmas of tokamak, stellarator, and RFP in an attempt to elucidate this issue. We measure magnetic and electrostatic fields using probes inserted into the edge of the ZT-40M RFP. Using the present technique, with stationary probes, these measurements can be done without damaging the probes only for low current discharges (60 kA). In this initial study, we find that both turbulent magnetic and electrostatic transport are of importance. (author) 10 refs., 2 figs., 1 tab
PF magnetic design for the 4MA reversed field pinch experiment CPRF
International Nuclear Information System (INIS)
Gribble, R.F.; Rogers, J.D.
1987-01-01
ZTH is to reach 2 MA by inductive energy transfer in 0.05 s followed by power supply ramping to 4 MA in 0.4 s. Major and minor radii are 2.4 and 0.4 m. Copper for the poloidal field coils weighs 48 metric tonnes, the one-turn equivalent ohmic heating (OH) coil inductance is 1.90 μH, and the OH coil rating is 15.4 MAT, 225 MJ, and 29.3 Vs at 60 kA. The normal operating OH current is 50 kA. Design of the coil for 60 kA provides a margin for uncertainties. OH coils are connected in series and the combination is connected in parallel with four equilibrium field (EF) coils. With optimized location of all coils, this connection provides decoupling between the OH and EH coil sets so that the changing OH current does not affect EF winding current. 3 refs., 2 figs., 1 tab
Self-consistent equilibrium in a cylindrical, dissipative reverse field pinch
International Nuclear Information System (INIS)
Guo, S.C.; Paccagnella, R.
1994-01-01
One of the authors (C.L.S.) recently proposed a dissipative model to self-consistently solve the equilibrium problem in a free-boundary plasma column under cylindrical symmetry. In the present paper, on one hand the problem is strongly specialized to circular symmetry and to Ohm's and Fourier's laws without off-diagonal contributions; on the other hand, it is generalized by adding a dynamo effective electric field E d in Ohm's law, based on the standard turbulent model. This seems appropriate enough to study RFP equilibria, since it is well known that a stationary and cylindrically symmetric RFP is incompatible with a classical Ohm's law. Reasonably, only numerical solutions are expected to be accessible in general; but the further simplified problem with scalar and constant electric resistivity and constant dynamo coefficient α (E d =αB) can be solved analytically by elementary means. (author) 4 refs., 2 figs
MHD control experiments in the Extrap T2R Reversed Field Pinch
Marrelli, L.; Bolzonella, T.; Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Gregoratto, D.; Manduchi, G.; Martin, P.; Ortolani, S.; Paccagnella, R.; Piovesan, P.; Spizzo, G.; Yadikin, D.; Zanca, P.
2004-11-01
We report here on MHD active control experiments performed in the Extrap T2R device, which has been recently equipped with a set of 32 feedback controlled saddle coils couples. Experiments aiming at selectively exciting a resonant resistive instability in order to actively induce Quasi Single Helicity states will be presented. Open loop experiments have in fact shown that a spectrum with one dominant mode can be excited in a high aspect ratio device like T2R. In addition, evidences of controlled braking of tearing modes, which spontaneously rotate in T2R, have been gathered, allowing the determination of a threshold for mode wall locking. Different feedback control schemes have been implemented. In particular, mode suppression schemes proved successful in delaying resistive wall modes growth and in increasing the discharge duration: this suggests a hybrid mode control scenario, in which RWM are suppressed and QSH is induced. Radiation imaging and internal magnetic field reconstructions performed with the ORBIT code will be presented.
Scrape-off model and pumped-limiter design for reversed-field pinches (RFP)
International Nuclear Information System (INIS)
Embrechts, M.J.; Bathke, C.G.; Krakowski, R.A.
1983-01-01
In order to develop a better understanding of the plasma/first-wall interaction in an RFP configuration, the models being developed to describe edgeplasma and scrapeoff regions for the tokamak have been adopted. Specifically, a scrapeoff model similar to the one developed and used for the tokamak FED design is used to model the parameter range where pumped limiters may be applied to the compact RFP. The one-dimensional, steady-state heat and particle equations are solved in the scrapeoff layer for an RFP geometry, assuming equal electron and ion temperature and density, convective transport along field lines, and Bohm-like diffusion. All charge-exchange and radiation effects are assumed to take place in the region between plasma and scrapeoff layer, and only a specific fraction of the total plasma energy will enter the scrapeoff layer in the form of conduction and convection. A simplified recycling model based on an effective recycling coefficient is used. For a given particle and energy flux entering the scrapeoff and for specified relationships between the particle flux and the energy flux near the first wall, the temperature and density profiles in the scrapeoff layer region are determined. The shape of the limiter surface is determined iteratively for a specified number of poloidal limiters by specifying a constant (design) heat flux for the limiter surfaces
Frassinetti, L; Predebon, I; Koguchi, H; Yagi, Y; Hirano, Y; Sakakita, H; Spizzo, G; White, R B
2006-10-27
The quasi-single-helicity (QSH) state of a reversed-field pinch (RFP) plasma is a regime in which the RFP configuration can be sustained by a dynamo produced mainly by a single tearing mode and in which a helical structure with well-defined magnetic flux surfaces arises. In this Letter, we show that spontaneous transitions to the QSH regime enhance the particle confinement. This improvement is originated by the simultaneous and cooperative action of the increase of the magnetic island and the reduction of the magnetic stochasticity.
Gregoratto, D.; Drake, J. R.; Yadikin, D.; Liu, Y. Q.; Paccagnella, R.; Brunsell, P. R.; Bolzonella, T.; Marchiori, G.; Cecconello, M.
2005-09-01
Arrays of magnetic coils and sensors in the EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43 1457 (2001)] reversed-field pinch have been used to investigate the plasma response to an applied resonant magnetic perturbation in the range of the resistive-wall modes (RWMs). Measured RWM growth rates agree with predictions of a cylindrical ideal-plasma model. The linear growth of low-n marginally stable RWMs is related to the so-called resonant-field amplification due to a dominant ∣n∣=2 machine error field of about 2 G. The dynamics of the m =1 RWMs interacting with the applied field produced by the coils can be accurately described by a two-pole system. Estimated poles and residues are given with sufficient accuracy by the cylindrical model with a thin continuous wall.
Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.
2012-10-01
A new ITER-relevant non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the Extrap-T2R reversed field pinch. Resistive Wall Modes (RWMs) were generated and their rotation sustained by rotating magnetic perturbations. In particular, stable modes of toroidal mode number n=8 and 10 and unstable modes of n=1 were used in this experiment. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the RWMs were observed to rotate non-uniformly and be modulated in amplitude (in the case of unstable modes, the observed oscillation was superimposed to the mode growth). This behavior was used to infer the amplitude and toroidal phase of n=1, 8 and 10 EFs. The method was first tested against known, deliberately applied EFs, and then against actual intrinsic EFs. Applying equal and opposite corrections resulted in longer discharges and more uniform mode rotation, indicating good EF compensation. The results agree with a simple theoretical model. Extensions to tearing modes, to the non-uniform plasma response to rotating perturbations, and to tokamaks, including ITER, will be discussed.
Energy Technology Data Exchange (ETDEWEB)
Olofsson, K Erik J; Brunsell, Per R; Drake, James R [Fusion Plasma Physics, School of Electrical Engineering, Royal Institute of Technology (KTH Stockholm), Sweden (Association EURATOM-VR) (Sweden); Rojas, Cristian R; Hjalmarsson, Haakan, E-mail: erik.olofsson@ee.kth.se [Automatic Control, School of Electrical Engineering, KTH Stockholm (Sweden)
2011-08-15
The usage of computationally feasible overparametrized and nonregularized system identification signal processing methods is assessed for automated determination of the full reversed-field pinch external plasma response spectrum for the experiment EXTRAP T2R. No assumptions on the geometry of eigenmodes are imposed. The attempted approach consists of high-order autoregressive exogenous estimation followed by Markov block coefficient construction and Hankel matrix singular value decomposition. It is seen that the obtained 'black-box' state-space models indeed can be compared with the commonplace ideal magnetohydrodynamics (MHD) resistive thin-shell model in cylindrical geometry. It is possible to directly map the most unstable autodetected empirical system pole to the corresponding theoretical resistive shell MHD eigenmode.
Energy Technology Data Exchange (ETDEWEB)
Olofsson, K Erik J; Brunsell, Per R; Drake, James R [School of Electrical Engineering, Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Witrant, Emmanuel, E-mail: erik.olofsson@ee.kth.s [Control Systems Department, UJF/GIPSA-lab, INPG/UJF Grenoble University (France)
2010-10-15
Recent developments and applications of system identification methods for the reversed-field pinch (RFP) machine EXTRAP T2R have yielded plasma response parameters for decoupled dynamics. These data sets are fundamental for a real-time implementable fast Fourier transform (FFT) decoupled discrete-time fixed-order strongly stabilizing synthesis as described in this work. Robustness is assessed over the data set by bootstrap calculation of the sensitivity transfer function worst-case H{sub {infinity}}-gain distribution. Output tracking and magnetohydrodynamic mode m = 1 tracking are considered in the same framework simply as two distinct weighted traces of a performance channel output-covariance matrix as derived from the closed-loop discrete-time Lyapunov equation. The behaviour of the resulting multivariable controller is investigated with dedicated T2R experiments.
Olofsson, K. Erik J.; Brunsell, Per R.; Rojas, Cristian R.; Drake, James R.; Hjalmarsson, Håkan
2011-08-01
The usage of computationally feasible overparametrized and nonregularized system identification signal processing methods is assessed for automated determination of the full reversed-field pinch external plasma response spectrum for the experiment EXTRAP T2R. No assumptions on the geometry of eigenmodes are imposed. The attempted approach consists of high-order autoregressive exogenous estimation followed by Markov block coefficient construction and Hankel matrix singular value decomposition. It is seen that the obtained 'black-box' state-space models indeed can be compared with the commonplace ideal magnetohydrodynamics (MHD) resistive thin-shell model in cylindrical geometry. It is possible to directly map the most unstable autodetected empirical system pole to the corresponding theoretical resistive shell MHD eigenmode.
Sallander, J.
1998-06-01
The radial distribution of impurity line emission in the EXTRAP-T2 reversed field pinch (RFP) is studied with a five viewing chord, absolutely calibrated, spectrometer system. The light is analyzed with a single 0.5 m grating spectrometer. Different parts of the entrance slit are used for different channels. This arrangement makes it possible to use the system over a wide wavelength range, from 2500 to 6500 Å, without having to recalibrate the relative sensitivity for the different channels. The rather short plasma pulses of 10-15 ms require a high time resolution. The use of photomultiplier tubes provides a time resolution of 10 μs which is limited by the transient recorders used. The result is a robust, low-cost system that produces reliable measurements of the radial dependence of emission from a wide range of impurity ions.
International Nuclear Information System (INIS)
Itagaki, Masafumi; Sanpei, Akio; Masamune, Sadao; Watanabe, Kiyomasa
2014-01-01
For the MHD equilibrium reconstruction of a reverse field pinch device, it is a big issue to identify accurately the strong eddy current flow on the shell. In the present work, boundary integrals of the eddy current along the shell are added to the conventional Cauchy-condition surface method formulation. The eddy current profile is unknown in advance but straightforwardly identified using only the signals from magnetic sensors located outside the plasma. Two ideas are introduced to overcome the numerical difficulties encountered in the problem. One is an accurate boundary integral scheme to damp out the near singularity occurring at the sensor position very close to the shell. The other is the modified truncated singular value decomposition technique to solve an ill-conditioned matrix equation when a large number of nodal points exist on the shell. The capability of the new method is demonstrated for a test problem modeling the RELAX device. (author)
International Nuclear Information System (INIS)
Drake, J.R.; Brunsell, P.R.; Yadikin, D.; Cecconello, M.; Malmberg, J.A.; Gregoratto, D.; Paccagnella, R.; Bolzonella, T.; Manduchi, G.; Marrelli, L.; Ortolani, S.; Spizzo, G.; Zanca, P.; Bondeson, A.; Liu, Y.Q.
2005-01-01
Active feedback control of resistive wall modes (RWMs) has been demonstrated on the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real or complex values (targeted-harmonics). The growth of the dominant RWMs can be suppressed by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of saddle coils in the array is half the number of sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. As a result, each control harmonic has to control simultaneously two mode harmonics. Real gains can stabilize non-rotating RWMs, while complex gains give better results for (slowly) rotating RWMs. In addition open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic. (author)
Energy Technology Data Exchange (ETDEWEB)
Koliner, J. J.; Boguski, J., E-mail: boguski@wisc.edu; Anderson, J. K.; Chapman, B. E.; Den Hartog, D. J.; Duff, J. R.; Goetz, J. A.; McGarry, M.; Morton, L. A.; Parke, E. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Cianciosa, M. R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States)
2016-03-15
In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch (RFP) plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFP plasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B{sub θ} measurement loops around the plasma minor diameter with qualitative agreement between each other and the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B{sub θ} at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.
Sallander, J.; Hedqvist, A.; Rachlew-Källne, E.
1998-09-01
The investigations of the radial distributions of 0953-4075/31/17/015/img2 emission from the EXTRAP-T2 reversed-field pinch (RFP) plasma show that the emission profile varies a lot, even during one plasma discharge. At central electron temperatures of about 150 eV it was expected that the 0953-4075/31/17/015/img2 emission should emerge from the plasma centre. In comparison, 0953-4075/31/17/015/img4 is always observed to radiate from the centre. Our measurements of 0953-4075/31/17/015/img2 emission have, however, shown that this is not always the case, the emission often comes from the plasma edge. The analysis of the measurements has led us to conclude that the edge emission comes from charge-exchange recombination with neutral hydrogen near the carbon first wall. These observations provide a way to estimate the change in neutral hydrogen density during local plasma-wall interaction.
Yadikin, D.; Brunsell, P. R.; Drake, J. R.
2006-01-01
An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m = 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (Nc) directions (Mc × Nc = 2 × 32 and Mc × Nc = 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral-derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional-derivative control for high proportional gain is seen in the experiments.
Drake, J. R.; Brunsell, P. R.; Yadikin, D.; Cecconello, M.; Malmberg, J. A.; Gregoratto, D.; Paccagnella, R.; Bolzonella, T.; Manduchi, G.; Marrelli, L.; Ortolani, S.; Spizzo, G.; Zanca, P.; Bondeson, A.; Liu, Y. Q.
2005-07-01
Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (corresponding to an intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real and complex values (targeted harmonics). The growth of the dominant RWMs can be reduced by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of the saddle coils in the array is half the number of the sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. Individual unstable harmonics can be controlled with real gains. However if there are two unstable mode harmonics coupled by the sideband effect, control is much less effective with real gains. According to the theory, complex gains give better results for (slowly) rotating RWMs, and experiments support this prediction. In addition, open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic.
International Nuclear Information System (INIS)
Drake, J.R.; Brunsell, P.R.; Yadikin, D.
2005-01-01
Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (corresponding to an intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real and complex values (targeted harmonics). The growth of the dominant RWMs can be reduced by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of the saddle coils in the array is half the number of the sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. Individual unstable harmonics can be controlled with real gains. However if there are two unstable mode harmonics coupled by the sideband effect, control is much less effective with real gains. According to the theory, complex gains give better results for (slowly) rotating RWMs, and experiments support this prediction. In addition, open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic
Field reversal experiments (FRX)
International Nuclear Information System (INIS)
Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.
1978-01-01
The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centers the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFC's with a major radius R = 2-6 cm, minor radius a approximately 2 cm, and a total length l approximately 35 cm. The observed temperatures are T/sub e/ approximately 100 eV and T/sub i/ = 150-350 eV with a peak density n approximately 2 x 10 15 cm -3 . After the plasma reaches equilibrium, the RFC remains stable for up to 30 μs followed by the rapid growth of the rotational m = 2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behavior of the m = 2 mode qualitatively agrees with the theoretically predicted instability for rotational velocities exceeding some critical value
Field reversal experiments (FRX)
International Nuclear Information System (INIS)
Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.
1979-01-01
The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centres the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFCs with a major radius R=2-6cm, a minor radius a approximately 2cm, and a total length l approximately 35cm. The observed temperatures are Tsub(e) approximately 100eV and Tsub(i)=150-350eV with a peak density n approximately 2x10 15 cm -3 . After the plasma has reached equilibrium, the RFC remains stable for up to 30μs, followed by the rapid growth of the rotational m=2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behaviour of the m=2 mode agrees qualitatively with the theoretically predicted instability for rotational velocities exceeding some critical value. (author)
Time-resolved observation of discrete and continuous MHD dynamo in the reversed-field pinch edge
International Nuclear Information System (INIS)
Ji, H.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.
1994-01-01
We report the first experimental verification of the MHD dynamo in the RFP. A burst of magnetohydrodynamic (MHD) dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the MST RFP edge. By measuring each term, the parallel MHD mean-field Ohm's law is observed to hold within experimental error bars both between and during sawtooth crashes
International Nuclear Information System (INIS)
Nalesso, G.; Jacobson, A.R.
1984-01-01
Using a ten-chord interferometer, we have measured a field-aligned (k/sub parallel/roughly-equal2 m -1 ; k/sub perpendicular/> or approx. =25 m -1 ) plasma-density disturbance propagating along B with a speed in the ion acoustic range. The propagation is purely in the electron drift direction and is observed only when the drift parameter (electron drift speed/electron thermal speed)> or approx. =0.1. A novel spatial-filter technique resolves this localized mode, which otherwise would be hidden by more robust global disturbances present along the lines of sight
International Nuclear Information System (INIS)
Kusano, K.; Kondoh, Y.; Gesso, H.; Osanai, Y.; Saito, K.N.; Ukai, R.; Nanba, T.; Nagamine, Y.; Shiina, S.
2001-01-01
Before the generation of steady state, dynamo-free RFP configuration by rf current driving scheme, it is necessary to find an optimum configuration into high stability beta limit against m=1 resonant resistive MHD modes and reducing nonlinearly turbulent level with less rf power. As first step to the optimization study, we are interested in partially relaxed state model (PRSM) RFP configuration, which is considered to be closer to a relaxed state at finite beta since it has force-free fields for poloidal direction with a relatively shorter characteristic length of relaxation and a relatively higher stability beta limit to m=1 resonant ideal MHD modes. The stability beta limit to m=1 resonant resistive MHD modes can be predicted to be relatively high among other RFP models and to be enhanced by the current density profile control using fast magnetosonic waves (FMW), which are accessible to high density region with strong absorption rate. (author)
Energy Technology Data Exchange (ETDEWEB)
Carraro, L.; Sattin, F.; Puiatty, M.E.; Scarin, P.; Valisa, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Mattioli, M.; Demichelis, C.; Mandl, W. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Hogan, J.T. [Oak Ridge National Lab., TN (United States)
1996-07-01
Collisional radiative models (CRM) are needed to simulate experimental line brightnesses and emissivities from fusion devices. CRM are built for H-like and He-like carbon and oxygen ions. The impurity ion radial distribution is obtained using a transport code with two radius dependent transport parameters: a diffusion coefficient D and an inward convection velocity V. Examples are given of the quantitative interpretation of experimental spectroscopic data from two fusion devices: the Tore Supra Tokamak and the Reversed Field Pinch RFX. (K.A.). 60 refs.
International Nuclear Information System (INIS)
Carraro, L.; Sattin, F.; Puiatty, M.E.; Scarin, P.; Valisa, M.; Mattioli, M.; Demichelis, C.; Mandl, W.
1996-07-01
Collisional radiative models (CRM) are needed to simulate experimental line brightnesses and emissivities from fusion devices. CRM are built for H-like and He-like carbon and oxygen ions. The impurity ion radial distribution is obtained using a transport code with two radius dependent transport parameters: a diffusion coefficient D and an inward convection velocity V. Examples are given of the quantitative interpretation of experimental spectroscopic data from two fusion devices: the Tore Supra Tokamak and the Reversed Field Pinch RFX. (K.A.)
High current density toroidal pinch discharges with weak toroidal fields
International Nuclear Information System (INIS)
Brunsell, P.; Brzozowski, J.; Drake, J.R.; Hellblom, G.; Kaellne, E.; Mazur, S.; Nordlund, P.
1990-01-01
Toroidal discharges in the ultralow q regime (ULQ) have been studied in the rebuilt Extrap TI device. ULQ discharges are sustained for pulse lengths exceeding 1 ms, which corresponds to more than 10 resistiv shell times. Values for the safety factor at the vacuum vessel wall are between rational values: 1/(n+1) -2 . The magnetic fluctuation level increases during the transition between rational values of q(a). For very low values of q(a), the loop voltage increases and the toroidal field development in the discharge exhibits the characteristic behaviour of the setting-up phase of a field reversed pinch. (author) 1 ref., 2 figs., 1 tab
International Nuclear Information System (INIS)
Iguchi, H.; Ida, K.; Yamada, H.
1994-01-01
Radial particle transport has been experimentally studied in the low-aspect-ratio heliotron/torsatron device CHS. A non-diffusive outward particle flow (inverse pinch) is observed in the magnetic configuration with the magnetic axis shifted outward, while an inward pinch, like in tokamaks, is observed with the magnetic axis shifted inward. This change in the direction of anomalous particle flow is not due to the reversal of temperature gradient nor the radial electric field. The observation suggests that the particle pinch velocity is sensitive to the magnetic field structure. (author)
Magnetic field compression using pinch-plasma
International Nuclear Information System (INIS)
Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.
1987-01-01
In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch
Surface interactions in a reverse field pinch
Energy Technology Data Exchange (ETDEWEB)
McCracken, G.M.; Firth, L.; Goodall, D.H.J.; King, R.E.; Lavender, K.E.; Newton, A.A.; Thompson, V.K. (Euratom/UKAEA Fusion Association, Abingdon (UK). Culham Lab.); Edwards, B.C.; Titchmarsh, J. (UKAEA Atomic Energy Research Establishment, Harwell. Metallurgy Div.)
The principle findings of the investigations were: (1) mechanical deformation occurring at the end of the bellows section adjacent to the weld. (2) Very localised erosion on at least three deformed sections, leading in one case to the puncturing of the liner wall. These eroded spots were all at a region of the liner underneath a gap in the shell. The mechanism whereby the energy is deposited locally is not understood. (3) Deposition of stainless steel as molten droplets was observed over a much larger area adjacent to the shell gap. There is no obvious link between this deposition and the puncture. (4) Arcing is observed over a large proportion of the liner surface: the highest local density of arcs is found on the outer part of the torus, especially near the ports. (5) The inside of the vessel has large coloured areas which were identified as oxide layers probably formed as the result of liner heating by the plasma in the presence of leaks during the last weeks of operation.
Draws on a relativistic pinch with a longitudinal magnetic field
International Nuclear Information System (INIS)
Trubnikov, B.A.
1991-01-01
The problems of draws on a relativistic pinch with longitudinal magnetic field are discussed. The absence of collisions promoting the energy exchange between different degrees of particle freedom is assumed. The calculations are conducted using the ideal relativistic anisotropic magnetic hydrodynamics equations. The spectrum of particles accelerated in the draws, is determined
International Nuclear Information System (INIS)
Schaffer, M.J.
1997-08-01
A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The open-quotes helical-Dclose quotes geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a open-quotes dynamoclose quotes process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1
Electron-Cloud Pinch Dynamics in Presence of Lattice Magnet Fields
Franchetti, G
2011-01-01
The pinch of the electron cloud due to a passing proton bunch was extensively studied in a field free region and in a dipolar magnetic field. For the latter study, a strong field approximation helped to formulate the equations of motion and to understand the complex electron pinch dynamics, which exhibited some similarities with the field-free situation. Here we extend the analysis to the case of electron pinch in quadrupoles and in sextupoles. We discuss the limits of validity for the strong field approximation and we evaluate the relative magnitude of the peak tune shift along the bunch expected for the different fields.
Geomagnetic Field During a Reversal
Heirtzler, J. R.
2003-01-01
It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.
Experiments on a Toroidal Screw Pinch with Various Field Programming
Energy Technology Data Exchange (ETDEWEB)
Zwicker, H.; Wilhelm, R.; Krause, H. [Max-Planck-Institut Fuer Plasmaphysik, EURATOM-Association, Garching, Munich, Federal Republic of Germany (Germany)
1971-10-15
In the toroidal screw pinch ISAR-IV (large diameter 60 cm, aspect ratio 5, maximum storage, energy 140 kj) attempts were made to get an improved stability of the plasma by different kinds of field programming. The best results were obtained with positive trapped B{sub z}-fields and simultaneous switching of main B{sub z}-field and I{sub z}-current. In this case the dense plasma column (n{sub e} Almost-Equal-To 2-3 x 10{sup 16} , kT Almost-Equal-To 50-100 eV, {beta} Almost-Equal-To 15-20%) is surrounded by a force-free plasma ({beta} = 1%) with weak shear and it behaves stably for, at least, 25 {mu}s. The resulting containment time nr of near 10{sup 12} s cm{sup -3} remains a factor of 2-3 below the upper limit given by the classical diffusion. The following loss of the equilibrium position near the coil axis ({Delta} Almost-Equal-To 1-2 cm) is connected to a strong damping of the axial plasma current which starts near the end of the containment. It may be assumed that the increase of the effective plasma resistance mainly results from a contact of the force-free regions with the tube wall. Attempts were made to improve the containment by suitable programming of a plasma z-current. The results are presented. Experiments with one quartz limiter inside the torus improved the equilibrium but introduced instabilities at the new surface of the dilute plasma. To obtain more information about the outer region, the dilute plasma was produced without a dense core and separated from the tube walls by weak adiabatic compression. Under these Tokamak-like conditions the q-value was varied. In the region of q Almost-Equal-To 1 there appeared instabilities which seem to haver higher m-modes and rather short wavelengths. In a different kind of field programming the field distribution of the ''diffuse pinch'' was realized within an accuracy of 5-10% (kT Almost-Equal-To 100 eV, {beta} Almost-Equal-To 30%). In contrast to the predictions of MHD-theory, stability was observed only for
Formation of field reversed configurations in a slow, multi-turn coil system: Appendix B
International Nuclear Information System (INIS)
Slough, J.T.; Hoffman, A.L.
1987-01-01
A previous field-reversed theta pinch, TRX-1, has been modified by replacing the single turn main compression coil with an array of three-turn coils. Field reversed configurations (FRCs) have been formed at relatively low values of azimuthal electric field, where ohmic dissipation and axial compressive heating are substituted for the radial shock heating which is dominant in high voltage theta pinches. The longer magnetic field risetime has allowed various controls to be applied to the formation timing, so that the axial implosion can be made to coincide with the peak of the applied magnetic field. This 'programmed formation' control results in maximum plasma heating, and minimizes the formation dynamics
On the stabilization of toroidal pinches by finite larmor radius effects and toroidal magnetic field
International Nuclear Information System (INIS)
Singh, R.; Weiland, J.
1989-01-01
The radial eigenvalue problem for internal modes in a large aspect ratio toriodal pinch has been solved. A particularly stable regime for a weak but nonzero toroidal magnetic field has been found. (31 refs.)
Field reversal in mirror machines
International Nuclear Information System (INIS)
Pearlstein, L.D.; Anderson, D.V.; Boozer, A.H.
1978-01-01
This report discusses some of the physics issues anticipated in field-reversed mirrors. The effect of current cancellation due to electrons is described. An estimate is made of the required impurity level to maintain a field-reversed configuration. The SUPERLAYER code is used to simulate the high-β 2XIIB results, and favorable comparisons require inclusion of quasilinear RF turbulence. Impact of a quadrupole field on field-line closure and resonant transport is discussed. A simple self-consistent model of ion currents is presented. Conditions for stability of field-reversed configurations to E x B driven rotations are determined
Reduction of thermal expansion in Z-pinches by electron beam assisted magnetic field generation
International Nuclear Information System (INIS)
Heikkinen, J.A.; Karttunen, S.J.
1989-01-01
Weak radial expansion of a Z-pinch plasma column during its strong initial ohmic heating phase is expected when the generation of a confining magnetic field is assisted by a correctly formed electron beam pulse. Appropriate one-dimensional magnetohydrodynamic equations are numerically solved, and the observed increase of plasma radius as a function of time for various discharge parameters is compared to a normal Z-pinch discharge initiation. (author)
Field reversal experiments (FRX). [Equilibrium, confinement, and stability
Energy Technology Data Exchange (ETDEWEB)
Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.
1978-01-01
The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centers the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFC's with a major radius R = 2-6 cm, minor radius a approximately 2 cm, and a total length l approximately 35 cm. The observed temperatures are T/sub e/ approximately 100 eV and T/sub i/ = 150-350 eV with a peak density n approximately 2 x 10/sup 15/ cm/sup -3/. After the plasma reaches equilibrium, the RFC remains stable for up to 30 ..mu..s followed by the rapid growth of the rotational m = 2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behavior of the m = 2 mode qualitatively agrees with the theoretically predicted instability for rotational velocities exceeding some critical value.
Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch
International Nuclear Information System (INIS)
Ivanov, Vladimir V.
2016-01-01
Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics, magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution 20 MG, suggested in micropinches, Cotton-Mouton and cutoff diagnostics will be applied. A picosecond optical Kerr shutter will be tested to increase a sensitivity of UV methods for application at multi-MA Z pinches. The proposal is based on the experimental capability of NTF. The Zebra generator produces 1-1.7 MA Z-pinches with electron plasma density of 10"2"0-10"2"1cm"-"3, electron temperature of 0.5-1 keV, and magnetic fields >10 MG. The Leopard laser was upgraded to energy of 90-J at 0.8 ns. This regime will be used for laser initiation
The Geomagnetic Field During a Reversal
Heirtzler, James R.
2003-01-01
By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.
Experimental studies of field-reversed configuration translation
Energy Technology Data Exchange (ETDEWEB)
Rej, D.J.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.; Milroy, R.D.
1986-03-01
In the FRX-C/T experiment (Proceedings of the 9th Symposium for Engineering Problems of Fusion Research (IEEE, New York, 1981), p. 1751), field-reversed configuration (FRC) plasmas have been formed in, and launched from, a field-reversed theta-pinch source and subsequently trapped in an adjacent confinement region. No destructive instabilities or enhanced losses of poloidal flux, particles, or thermal energy are observed for FRC total trajectories of up to 16 m. The observed translation dynamics agree with two-dimensional magnetohydrodynamic (MHD) simulations. When translated into reduced external magnetic fields, FRC's are observed to accelerate, expand, and cool in partial agreement with adiabatic theory. The plasmas reflect from an external mirror and after each reflection, the axial kinetic energy is reduced by approximately 50%. Because of this reduction, FRC's are readily trapped without the need of pulsed gate magnet coils.
Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch
Energy Technology Data Exchange (ETDEWEB)
Ivanov, Vladimir V. [Univ. of Nevada, Reno, NV (United States)
2016-08-17
Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics, magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of stagnated
Magnetic turbulent electron transport in a reversed field pinch
International Nuclear Information System (INIS)
Schoenberg, K.; Moses, R.
1990-01-01
A model of magnetic turbulent electron transport is presented. The model, based on the thermal conduction theory of Rechester and Rosenbluth, entails a Boltzmann description of electron dynamics in the long mean-free-path limit and quantitatively describes the salient features of superthermal electron measurements in the RFP edge plasma. Included are predictions of the mean superthermal electron energy, current density, and power flux asymmetry. A discussion of the transport model, the assumptions implicit in the model, and the relevance of this work to more general issue of magnetic turbulent transport in toroidal systems is presented. 32 refs., 3 figs
The TITAN reversed-field-pinch fusion reactor study
International Nuclear Information System (INIS)
1990-01-01
This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures
The TITAN reversed-field-pinch fusion reactor study
Energy Technology Data Exchange (ETDEWEB)
1990-01-01
This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.
The TITAN reversed-field-pinch fusion reactor study
Energy Technology Data Exchange (ETDEWEB)
1990-01-01
This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.
The TITAN reversed-field-pinch fusion reactor study
International Nuclear Information System (INIS)
1990-01-01
This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures
''Compact'' reversed-field pinch (CRFP) reactor design
International Nuclear Information System (INIS)
Miley, G.H.; Nebel, R.A.
1980-01-01
These results indicate that a CRFP operating in the range of 100 MWe should be feasible. While the large aspect ratio leads to a 6.4-m major radius, the design still retains many attributes of conventional compact tori, such as simplicity and ease of access. The relatively low Q/sub p/ with batch burns might be satifactory for a demonstration unit. However, to obtain power-plant ''grade'' Q/sub p/, either refueling (possibly by pellets) or larger size plasmas appear necessary
Field-reversed configuration confinement in TRX-1
International Nuclear Information System (INIS)
Steinhauer, L.; Slough, J.
1984-01-01
Particle and poloidal flux lifetime data from the TRX-1, field-reversed theta pinch experiment, have been used to infer information on the basic transport behavior. The field-reversed configurations were created over a broad range of plasma parameters: separatrix radii, 4-8 cm; lengths, 35-80 cm; and temperature T/sub e/ + T/sub i/, 150-1000 eV. The confinement times covered a wide range as well: Particles, tau/sub N/ = 30-170 μs; poloidal flux, tau/sub phi/ = 30-140 μs; and energy tau/sub E/ = 20-75 μs. The experimental data was divided, a priori, into three classes: 1) the triggered-reconnection mode; 2) the programmed-formation mode with a good preionization (PI); and 3) programmed formation with poor PI
Theory of field reversed configurations
International Nuclear Information System (INIS)
Steinhauer, L.C.
1990-01-01
This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs
International Nuclear Information System (INIS)
Carlson, G.A.
1978-01-01
The reactor design is a multicell arrangement wherein a series of field-reversed plasma layers are arranged along the axis of a long superconducting solenoid which provides the background magnetic field. Normal copper mirror coils and Ioffe bars placed at the first wall radius provide shallow axial and radial magnetic wells for each plasma layer. Each of 11 plasma layers requires the injection of 3.6 MW of 200 keV deuterium and tritium and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe and an estimated direct capital cost of $1200/kWe
Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods
International Nuclear Information System (INIS)
Lambert, M.A.
1996-06-01
An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere's law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods
Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2
International Nuclear Information System (INIS)
Anderson, D.V.; Auerbach, S.P.; Berk, H.L.
1980-01-01
Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented
Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2
International Nuclear Information System (INIS)
Anderson, D.V.; Auerbach, S.P.; Berk, H.L.
1980-01-01
Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are dramatically improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented
Los Alamos field-reversed configuration (FRC) research
Energy Technology Data Exchange (ETDEWEB)
Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.
1981-01-01
Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R/sup 2/. A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction.
Los Alamos field-reversed configuration (FRC) research
International Nuclear Information System (INIS)
Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.
1981-01-01
Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R 2 . A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction
Revised field pinch experiments. Annual progress report, June 1, 1984-May 31, 1985
International Nuclear Information System (INIS)
Robertson, S.
1985-01-01
The dielectric breaks in the Reversatron vacuum chamber were replaced by bellows sections in December 1984, and operation was resumed in January 1985. The plasma current was limited to 20 kA due to the inefficiency of the air-core transformer. RFP discharges were not obtained due to the pinch parameter theta being below the required value of 1.6. Diagnostics indicated n approx. 4 x 10 13 cm -3 and T/sub e/ approx. 75 eV. Inductively decoupled vertical field coils were used to vary the equilibrium position of the plasma and to maximize the plasma current. A new air-core transformer is being installed which will give an increased plasma current and pinch parameter. Operation with the shell in place will begin in June 1985. If adequate theta values and RFP discharges are obtained, operation without the shell will begin in October 1985
Generation of a subgigagauss magnetic field by pinching the plasma channel of exploded-wire
International Nuclear Information System (INIS)
Bogolyubsky, S.L.
1990-01-01
An interest in the dense pinches produced in the explosion of thin wires in the diodes of high current-nanosecond-REB-generators is provided by an opportunity to obtain high temperature-dense plasma configurations as an object of fusion studies and that in the spectroscopy of multi-charged ions. One needs to have a micrometer size of the Z-pinch neck to ignite the fusion reaction. The plasma channel pinching of the wires exploded by a megaampere current to a micrometer size of its neck can provide gigagauss magnetic fields. An important aspect of a given study is verification of an opportunity to obtain the radiation collapse of the plasma channel due to an exploded wire along its whole length up to the kA because of a line radiation cut-off due to the Braginsky-Pease current reduction to 150-200 from the plasma with left-angle Z right-angle much-gt 1. This paper presents experimental studies in this field, with the currents 0.2 MA, 0.5 MA, 1.2 MA
Dynamic processes in field-reversed-configuration compact toroids
International Nuclear Information System (INIS)
Rej, D.J.
1987-01-01
In this lecture, the dynamic processes involved in field-reversed configuration (FRC) formation, translation, and compression will be reviewed. Though the FRC is related to the field-reversed mirror concept, the formation method used in most experiments is a variant of the field-reversed Θ-pinch. Formation of the FRC eqilibrium occurs rapidly, usually in less than 20 μs. The formation sequence consists of several coupled processes: preionization; radial implosion and compression; magnetic field line closure; axial contraction; equilibrium formation. Recent experiments and theory have led to a significantly improved understanding of these processes; however, the experimental method still relies on a somewhat empirical approach which involves the optimization of initial preionization plasma parameters and symmetry. New improvements in FRC formation methods include the use of lower voltages which extrapolate better to larger devices. The axial translation of compact toroid plasmas offers an attractive engineering convenience in a fusion reactor. FRC translation has been demonstrated in several experiments worldwide, and these plasmas are found to be robust, moving at speeds up to the Alfven velocity over distances of up to 16 m, with no degradation in the confinement. Compact toroids are ideal for magnetic compression. Translated FRCs have been compressed and heated by imploding liners. Upcoming experiments will rely on external flux compression to heat a translater FRC at 1-GW power levels. 39 refs
International Nuclear Information System (INIS)
Mason, R.J.
1989-01-01
The early time penetration of magnetic field into the low density coronal plasma of a Z-pinch fiber is studied with the implicit plasma simulation code ANTHEM. Calculations show the emission of electrons from the cathode, pinching of the electron flow, magnetic insulation of the electrons near the anode, and low density ion blow off. PIC-particle ion calculations show a late time clumping of the ion density not seen with a fluid ion treatment. 4 refs., 4 figs
Spectroscopic determination of the magnetic field distribution in a gas-puff Z-pinch plasma
Energy Technology Data Exchange (ETDEWEB)
Gregorian, L; Davara, G; Kroupp, E; Maron, Y [Weizmann Institute of Science, Rehovot (Israel). Dept. of Particle Physics
1997-12-31
The time dependent radial distribution of the magnetic field in a gas-puff Z-pinch plasma has been determined by observing the Zeeman effect on emission lines, allowed for by polarization spectroscopy and high accuracy line-profile measurements. A modeling scheme, based on a 1-D magnetic diffusion equation, is used to fit the experimental data. The plasma conductivity inferred from the field distribution was found to be consistent with the Spitzer conductivity. The current density distribution and the time dependent plasma region in which the entire circuit current flows were determined. (author). 3 figs., 6 refs.
Zero field reversal probability in thermally assisted magnetization reversal
Prasetya, E. B.; Utari; Purnama, B.
2017-11-01
This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.
Stability properties of a toroidal z-pinch in an external magnetic multipole field
International Nuclear Information System (INIS)
Eriksson, H.G.
1987-01-01
MHD stability of m=1, axisymmetric, external modes of a toroidal z-pinch immersed in an external multipole field (Extrap configuration) is studied. The description includes the effects of a weak toroidicity, a non-circular plasma cross-section and the influence of induced currents in the external conductors. It is found that the non-circularity of the plasma cross-section always has a destabilizing effect but that the m=1 mode can be stabilized by the external feedback if the non-circularity is small. (author)
... You are here Home » Disorders » All Disorders Pinched Nerve Information Page Pinched Nerve Information Page What research is being done? Within the NINDS research programs, pinched nerves are addressed primarily through studies associated with pain ...
How the geomagnetic field vector reverses polarity
Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.
1985-01-01
A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.
International Nuclear Information System (INIS)
Shlachter, J.S.; Hammel, J.E.; Scudder, D.W.
1985-01-01
Early researchers recogniZed the desirable features of the linear Z-pinch configuration as a magnetic fusion scheme. In particular, a Z-pinch reactor might not require auxiliary heating or external field coils, and could constitute an uncomplicated, high plasma β geometry. The simple Z pinch, however, exhibited gross MHD instabilities that disrupted the plasma, and the linear Z pinch was abandoned in favor of more stable configurations. Recent advances in pulsed-power technology and an appreciation of the dynamic behavior of an ohmically heated Z pinch have led to a reexamination of the Z pinch as a workable fusion concept
Magnetization reversal mechanisms under oblique magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr
2017-03-01
In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.
Stability of the field-reversed mirror
International Nuclear Information System (INIS)
Morse, E.C.
1979-01-01
The stability of a field reversed mirror plasma configuration is studied with an energy principle derived from the Vlasov equation. Because of finite orbit effects, the stability properties of a field-reversed mirror are different from the stability properties of similar magnetohydrodynamic equilibria. The Vlasov energy principle developed here is applied to a computer simulation of an axisymmetric field-reversed mirror state. It has been possible to prove that the l = 0 modes, called tearing modes, satisfy a sufficient condition for stability. Precessional modes, with l = 1, 2, are found to be unstable at low growth rate. This suggests possible turbulent behavior (Bohm confinement) in the experimental devices aiming at field reversal. Techniques for suppressing these instabilities are outlined, and the applicability of the Vlasov energy principle to more complicated equilibrium models is shown
International Nuclear Information System (INIS)
Tetsu, Miyamoto
1999-01-01
The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)
Earth's magnetic field is probably not reversing.
Brown, Maxwell; Korte, Monika; Holme, Richard; Wardinski, Ingo; Gunnarson, Sydney
2018-04-30
The geomagnetic field has been decaying at a rate of [Formula: see text]5% per century from at least 1840, with indirect observations suggesting a decay since 1600 or even earlier. This has led to the assertion that the geomagnetic field may be undergoing a reversal or an excursion. We have derived a model of the geomagnetic field spanning 30-50 ka, constructed to study the behavior of the two most recent excursions: the Laschamp and Mono Lake, centered at 41 and 34 ka, respectively. Here, we show that neither excursion demonstrates field evolution similar to current changes in the geomagnetic field. At earlier times, centered at 49 and 46 ka, the field is comparable to today's field, with an intensity structure similar to today's South Atlantic Anomaly (SAA); however, neither of these SAA-like fields develop into an excursion or reversal. This suggests that the current weakened field will also recover without an extreme event such as an excursion or reversal. The SAA-like field structure at 46 ka appears to be coeval with published increases in geomagnetically modulated beryllium and chlorine nuclide production, despite the global dipole field not weakening significantly in our model during this time. This agreement suggests a greater complexity in the relationship between cosmogenic nuclide production and the geomagnetic field than is commonly assumed.
Computational methods for reversed-field equilibrium
International Nuclear Information System (INIS)
Boyd, J.K.; Auerbach, S.P.; Willmann, P.A.; Berk, H.L.; McNamara, B.
1980-01-01
Investigating the temporal evolution of reversed-field equilibrium caused by transport processes requires the solution of the Grad-Shafranov equation and computation of field-line-averaged quantities. The technique for field-line averaging and the computation of the Grad-Shafranov equation are presented. Application of Green's function to specify the Grad-Shafranov equation boundary condition is discussed. Hill's vortex formulas used to verify certain computations are detailed. Use of computer software to implement computational methods is described
The large-s field-reversed configuration experiment
International Nuclear Information System (INIS)
Hoffman, A.L.; Carey, L.N.; Crawford, E.A.; Harding, D.G.; DeHart, T.E.; McDonald, K.F.; McNeil, J.L.; Milroy, R.D.; Slough, J.T.; Maqueda, R.; Wurden, G.A.
1993-01-01
The Large-s Experiment (LSX) was built to study the formation and equilibrium properties of field-reversed configurations (FRCs) as the scale size increases. The dynamic, field-reversed theta-pinch method of FRC creation produces axial and azimuthal deformations and makes formation difficult, especially in large devices with large s (number of internal gyroradii) where it is difficult to achieve initial plasma uniformity. However, with the proper technique, these formation distortions can be minimized and are then observed to decay with time. This suggests that the basic stability and robustness of FRCs formed, and in some cases translated, in smaller devices may also characterize larger FRCs. Elaborate formation controls were included on LSX to provide the initial uniformity and symmetry necessary to minimize formation disturbances, and stable FRCs could be formed up to the design goal of s = 8. For x ≤ 4, the formation distortions decayed away completely, resulting in symmetric equilibrium FRCs with record confinement times up to 0.5 ms, agreeing with previous empirical scaling laws (τ∝sR). Above s = 4, reasonably long-lived (up to 0.3 ms) configurations could still be formed, but the initial formation distortions were so large that they never completely decayed away, and the equilibrium confinement was degraded from the empirical expectations. The LSX was only operational for 1 yr, and it is not known whether s = 4 represents a fundamental limit for good confinement in simple (no ion beam stabilization) FRCs or whether it simply reflects a limit of present formation technology. Ideally, s could be increased through flux buildup from neutral beams. Since the addition of kinetic or beam ions will probably be desirable for heating, sustainment, and further stabilization of magnetohydrodynamic modes at reactor-level s values, neutral beam injection is the next logical step in FRC development. 24 refs., 21 figs., 2 tabs
Heating of field-reversed plasma rings estimated with two scaling models
Energy Technology Data Exchange (ETDEWEB)
Shearer, J.W.
1978-05-18
Scaling calculations are presented of the one temperature heating of a field-reversed plasma ring. Two sharp-boundary models of the ring are considered: the long thin approximation and a pinch model. Isobaric, adiabatic, and isovolumetric cases are considered, corresponding to various ways of heating the plasma in a real experiment by using neutral beams, or by raising the magnetic field. It is found that the shape of the plasma changes markedly with heating. The least sensitive shape change (as a function of temperature) is found for the isovolumetric heating case, which can be achieved by combining neutral beam heating with compression. The complications introduced by this heating problem suggest that it is desirable, if possible, to create a field reversed ring which is already quite hot, rather than cold.
Dynamical similarity of geomagnetic field reversals.
Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio
2012-10-04
No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.
Laser heating of field-reversed configurations
International Nuclear Information System (INIS)
Carson, R.S.; Vlases, G.C.
1983-01-01
The experimental facility is a 21-cm-long solenoid with a 5.5-cm bore. The 4-cm ID quartz tube is filled with slowly flowing H 2 to 0.5-3.0 torr. Fields up to 6.5 T in 3.7 μsec are produced, with reverse-bias fields up -1.9 T. Preionization is by 40kA axial discharge 4.5 μsec before field-reversal is begun. The CO 2 laser used produces 300 to 400 J in 2 μsec, in an annular beam that can be defocused for preheating the outer edges of the plasma, or focused tightly for central-column heating and beam propagation during formation. The focusing system includes a return mirror for multiple passing of the laser energy. Diagnostics include compensated, diamagnetic flux loops, internal field probes, cross-tube and axial interferometers, fast photography, and spectroscopy
Particle transort in field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Tuszewski, M.; Linford, R.K.; Lipson, J.; Sgro, A.G.
1981-01-01
A field reversed configuration (FRC) is a compact toroid that contains no toroidal field. These plasmas are observed to be grossly stable for about 10-100 ..mu..sec. The lifetimes appear limited by an n = 2 rotational instability which may be caused by particle loss. Particle transport is therefore an important issue for these configurations. We investigate particle loss with a steady-state, 1-D model which approximates the experimental observation of elongated FRC equilibrium with about constant separatrix radius.
Field reversal produced by a plasma gun
International Nuclear Information System (INIS)
Hartman, C.W.; Condit, W.; Granneman, E.H.A.; Prono, D.; Smith, A.C. Jr.; Taska, J.; Turner, W.C.
1980-01-01
Experimental results are presented of the production of Field-Reversed Plasma with a high energy coaxial plasma gun. The gun is magnetized with solenoids inside the center electrode and outside the outer electrode so that plasma emerging from the gun entrains the radial fringer field at the muzzle. The plasma flow extends field lines propagating a high electrical conductivity, the flux inside the center electrode should be preserved. However, for low flux, the trapped flux exceeds by 2 or more the initial flux, possibly because of helical deformation of the current channel extending from the center electrode
Nash, Tom
2009-11-01
Simulations of a z-pinch compressing an applied 100 kG Bz field onto an on-axis DT fiber tamped with beryllium show the field reaching over 100 MG in the tamp, sufficient to confine DT alpha particles and to form a thermal barrier. The barrier allows the DT plasma to burn at a rho*r value as low as 0.045 g/cm^2, and at temperatures over 50 keV for a 63 MA drive current. Driving currents between 21 and 63 MA are considered with cryogenic DT fiber diameters between 600 μm and 1.6 mm. Pinch implosion times are 120 ns with a peak implosion velocity of 35 cm/μs. 1D simulations are of a foil pinch, but for improved stability we propose a nested wire-array. Simulated fusion yields with this system scale as the sixth power of the current, with burn fractions scaling as the fourth power of the current. At 63 MA the simulated yield is 521 MJ from 4.2 mg/cm of DT with a 37% burn fraction at a rho*r of only 0.18 g/cm^2.
Midday reversal of equatorial ionospheric electric field
Directory of Open Access Journals (Sweden)
R. G. Rastogi
1997-10-01
Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.
Midday reversal of equatorial ionospheric electric field
Directory of Open Access Journals (Sweden)
R. G. Rastogi
Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.
Field-reversed experiments (FRX) on compact toroids
Energy Technology Data Exchange (ETDEWEB)
Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.
1981-11-01
Equilibrium, stability, and confinement properties of compact toroids produced in field-reversed theta-pinch experiments (FRX) are reported. Two experimental facilities, FRX-A and FRX-B, have been used to study highly elongated compact toroid plasmas confined in a purely poloidal field geometry. Spatial scans and fill pressure scaling of the equilibrium plasma parameters are presented. Plasma conditions range from T/sub e/approx.150 eV, T/sub i/approx.800 eV, n/sub m/approx.1 x 10/sup 15/ cm/sup -3/ to T/sub e/approx.100 eV, T/sub i/approx.150 eV, n/sub m/approx.4 x 10/sup 15/ cm/sup -3/. Typical confined plasma dimensions are: major radius Rapprox.4 cm, minor radius aapprox.2 cm, and total length 35--50 cm. The plasma configuration remains in a stable equilibrium for up to 50 ..mu..sec followed by the destructive n = 2 rotational instability. The stable period prior to the onset of the rotational mode is up to one hundred times greater than characteristic Alfven transit times of the plasma. This stable period increases and the mode growth rate decreases with increased a/rho/sub i/ (where rho/sub i/ is the ion gyroradius). Agreement of experimental and theoretical mode frequencies for the instability is observed. Preferential particle loss has been proposed as a likely cause of rotation. The particle inventory at the onset of the instability is consistent with this hypothesis. The particle loss rate is also consistent with the predicted anomalous transport near the separatrix. Contributions to rotational instability from diffusion, end-shorting, equipartition, and compression are also discussed.
Field-reversed experiments (FRX) on compact toroids
International Nuclear Information System (INIS)
Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.
1981-01-01
Equilibrium, stability, and confinement properties of compact toroids produced in field-reversed theta-pinch experiments (FRX) are reported. Two experimental facilities, FRX-A and FRX-B, have been used to study highly elongated compact toroid plasmas confined in a purely poloidal field geometry. Spatial scans and fill pressure scaling of the equilibrium plasma parameters are presented. Plasma conditions range from T/sub e/approx.150 eV, T/sub i/approx.800 eV, n/sub m/approx.1 x 10 15 cm -3 to T/sub e/approx.100 eV, T/sub i/approx.150 eV, n/sub m/approx.4 x 10 15 cm -3 . Typical confined plasma dimensions are: major radius Rapprox.4 cm, minor radius aapprox.2 cm, and total length 35--50 cm. The plasma configuration remains in a stable equilibrium for up to 50 μsec followed by the destructive n = 2 rotational instability. The stable period prior to the onset of the rotational mode is up to one hundred times greater than characteristic Alfven transit times of the plasma. This stable period increases and the mode growth rate decreases with increased a/rho/sub i/ (where rho/sub i/ is the ion gyroradius). Agreement of experimental and theoretical mode frequencies for the instability is observed. Preferential particle loss has been proposed as a likely cause of rotation. The particle inventory at the onset of the instability is consistent with this hypothesis. The particle loss rate is also consistent with the predicted anomalous transport near the separatrix. Contributions to rotational instability from diffusion, end-shorting, equipartition, and compression are also discussed
FRC [field-reversed configuration] translation studies on FRX-C/LSM
International Nuclear Information System (INIS)
Rej, D.; Barnes, G.; Baron, M.
1989-01-01
In preparation for upcoming compression-heating experiments, field-reversed configurations (FRCs) have been translated out of the FRX-C/LSM θ-pinch source, and into the 0.4-m-id, 6.7-m-long translation region formerly used on FRX-C/T. Unlike earlier experiments FRCs are generated without magnetic tearing in the larger FRX-C/LSM source (nominal coil id = 0.70 m, length = 2 m); larger, lower-energy-density FRCs are formed: r/sub s/ ≅ 0.17 m, B/sub ext/ ≅ 0.35 T, ≅ 7 /times/ 10 20 m/sup /minus/3/ and T/sub e/ + T/sub i/ ≅ 400 eV. An initial 3-mtorr D 2 pressure is introduced by either static or puff fill. Asymmetric fields from auxiliary end coils (used for non-tearing formation) provide the accelerating force on the FRC, thereby eliminating the need for a conical θ-pinch coil. An important feature is the abrupt 44% decrease in the flux-conserving wall radius at the transition between the θ-pinch and translation region, similar to that in the compressor. In this paper we review a variety of issues addressed by the recent translation experiments: translation dynamics; translation through a modulated magnetic field; stabilization of the n = 2 rotational instability by weak helical quadrupole fields; and confinement properties. Results from internal magnetic field measurements in translating FRCs may be found in a companion paper. 10 refs., 5 figs
Reversed-field multiple mirror concept
International Nuclear Information System (INIS)
Steinhauer, L.C.; Grossmann, W.; Seyler, C.E.
1978-01-01
The reversed-field multiple mirror (RFMM), is a promising technique for end-stoppering linear magnetic fusion plasmas. By this means the physics and engineering advantages of a linear plasma are gained while circumventing the endloss problem, allowing the projection of very short (less than or equal to 100 m) conceptual reactors. RFMM end-stoppering is accomplished by a string of closed field-line cells on the plasma column axis; these cells strongly retard the axial flow of particles and energy. We describe the reactor implications of the RFMM
Particle transport in field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Tuszewski, M.; Linford, R.K.
1982-05-01
Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average ..beta.. condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement.
Particle transport in field-reversed configurations
International Nuclear Information System (INIS)
Tuszewski, M.; Linford, R.K.
1982-01-01
Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average β condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement
The belt-screw-pinch reactor and other high-beta systems
International Nuclear Information System (INIS)
Bustraan, M.; Klippel, H.Th.; Veringa, H.J.; Verschuur, K.A.
1981-01-01
In a screw-pinch reactor the expenditure for plasma implosion and compression can be reduced and the reacting volume and burn time can be enlarged. This is possible by pinch ignition of only a few percent of the fuel. Fusion energy then ignites injected fuel pellets and expands the plasma. The magnitude of the pulsed magnetic fields is such as to make the application of superconducting coils feasible. An economical reactor model is described. A comparison is made with tokamak and reversed field pinch reactor designs. (author)
Domino model for geomagnetic field reversals.
Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M
2013-01-01
We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.
Simplified scaling model for the THETA-pinch
Ewing, K. J.; Thomson, D. B.
1982-02-01
A simple ID scaing model for the fast Theta pinch was developed and written as a code that would be flexible, inexpensive in computer time, and readily available for use with the Los Alamos explosive-driven high magnetic field program. The simplified model uses three successive separate stages: (1) a snowplow-like radial implosion, (2) an idealized resistive annihilation of reverse bias field, and (3) an adiabatic compression stage of a Beta = 1 plasma for which ideal pressure balance is assumed to hold. The code uses one adjustable fitting constant whose value was first determined by comparison with results from the Los Alamos Scylla III, Scyllacita, and Scylla IA Theta pinches.
Magnetization reversal in ultrashort magnetic field pulses
International Nuclear Information System (INIS)
Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.
2000-01-01
We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question
International Nuclear Information System (INIS)
Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.
1979-01-01
Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)
Conceptual design for an air core 2 meg-amp reversed field experiment
International Nuclear Information System (INIS)
Hammer, C.F.
1983-01-01
The Los Alamos CTR Division is involved in the conceptual design of a next phase Reversed Field Pinch experiment. The paper will discuss, in general, some of the physics questions that the experiment will address. Also in more detail it will discuss the engineering parameters and the possible hardware design solutions. The experiment is designed to produce a plasma current of about 2 MA which can be sustained for about 200 ms. The electrical energy for the system is provided by a large motor generator set. An inductive energy store is used to drive the magnetizing and poloidal field windings. A capacitor bank provides the energy for the toroidal field windings. The current in both circuits is maintained by using SCR controlled transformer rectifiers
Conceptual design for an AIR CORE 2 MEG-AMP Reversed field experiment
International Nuclear Information System (INIS)
Hammer, C.F.
1983-01-01
The Los Alamos CTR Division is involved in the conceptual design of a next phase Reversed Field Pinch experiment. The paper will discuss, in general, some of the physics questions that the experiment will address. Also in more detail it will discuss the engineering parameters and the possible hardware design solutions. The experiment is designed to produce a plasma current of about 2 MA which can be sustained for about 200 ms. The electrical energy for the system is provided by a large motor generator set. An inductive energy store is used to drive the magnetizing and poloidal field windings. A capacitor bank provides the energy for the toroidal field windings. The current in both circuits is maintained by using SCR controlled transformer rectifiers
Tilt stability and compression heating studies of field-reversed configurations
International Nuclear Information System (INIS)
Rej, D.J.; Tuszewski, M.; Barnes, D.C.; Barnes, G.A.; Chrien, R.E.; Siemon, R.E.; Taggart, D.P.; Webster, R.B.; Wright, B.L.; Milroy, R.D.; Crawford, E.A.; Slough, J.T.; Steinhauer, L.C.; Bailey, A.D.; Baron, M.H.; Cobb, J.W.; Staudenmeier, J.L.; Sugimoto, S.; Takahashi, T.
1990-01-01
The first observations of internal tilt instabilities in field-reversed configurations (FRCs) are reported. Detailed comparisons with theory establish that data from an array of external magnetic probes are signatures of these destructive plasma instabilities. This work reconciles theory and experiments and suggests that grossly stable FRCs are restricted to very kinetic and elongated plasmas. Self-consistent three-dimensional numerical simulations demonstrate tilt stabilization by the addition of a beam ion component. High-power compression heating experiments with stable equilibrium FRCs are also reported. Plasmas formed in a tapered theta-pinch coil have been translated along a guide magnetic field into a new single-turn compression coil where the external field is increased up to 7 times the initial value in 55 μs. Substantial heating is observed accompanied by a decrease in confinement time. 17 refs
Kinetic Stability of the Field Reversed Configuration
International Nuclear Information System (INIS)
E.V. Belova; R.C. Davidson; H. Ji; and M. Yamada
2002-01-01
New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). The FRC is an innovative confinement approach that offers a unique fusion reactor potential because of its compact and simple geometry, translation properties, and high plasma beta. One of the most important issues is FRC stability with respect to low-n (toroidal mode number) MHD modes. There is a clear discrepancy between the predictions of standard MHD theory that many modes should be unstable on the MHD time scale, and the observed macroscopic resilience of FRCs in experiments
Particle-confinement criteria for axisymmetric field-reversed magnetic configurations
International Nuclear Information System (INIS)
Hsiao, M.Y.; Miley, G.H.
1984-01-01
Based on two constants of motion, H and Psub(theta), where H is the total energy of a particle and Psub(theta) is its canonical angular momentum, particle confinement criteria are derived which impose constraints on H and Psub(theta). With no electric field at the ends of field-reversed magnetic configurations, confinement criteria for closed-field and absolute confinements are obtained explicitly, including both lower and upper bounds of Psub(theta)/q, where q is the charge of the species considered, for a class of Hill's vortex field-reversed magnetic configurations. The commonly used criterion for the Hamiltonian, H 0 Psub(theta), where ω 0 is identical to qB 0 /mc, is deduced from a more general form as a special case. In this special case, it is found necessary to impose a new criterion, -B 0 R 2 sub(w)/2c 0 is the vacuum field, which reduces the confinement region in (H,Psub(theta)) space. With the presence of electric fields at the ends of field-reversed magnetic configurations, confinement criteria are obtained for two interesting cases. In addition to lower and upper bounds of H, both lower and upper bounds of Psub(theta)/q are found. For axially confined particles, the lower bound of Psub(theta)/q reduces the confinement region in (H,Psub(theta)) space and represents a new criterion. These results can be applied to calculations for field-reversed mirrors and field-reversed theta pinches. (author)
Tilting mode in field-reversed configurations
International Nuclear Information System (INIS)
Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.
1982-01-01
Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal
Atmospheric helium and geomagnetic field reversals.
Sheldon, W. R.; Kern, J. W.
1972-01-01
The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.
Coupled transport in field-reversed configurations
Steinhauer, L. C.; Berk, H. L.; TAE Team
2018-02-01
Coupled transport is the close interconnection between the cross-field and parallel fluxes in different regions due to topological changes in the magnetic field. This occurs because perpendicular transport is necessary for particles or energy to leave closed field-line regions, while parallel transport strongly affects evolution of open field-line regions. In most toroidal confinement systems, the periphery, namely, the portion with open magnetic surfaces, is small in thickness and volume compared to the core plasma, the portion with closed surfaces. In field-reversed configurations (FRCs), the periphery plays an outsized role in overall confinement. This effect is addressed by an FRC-relevant model of coupled particle transport that is well suited for immediate interpretation of experiments. The focus here is particle confinement rather than energy confinement since the two track together in FRCs. The interpretive tool yields both the particle transport rate χn and the end-loss time τǁ. The results indicate that particle confinement depends on both χn across magnetic surfaces throughout the plasma and τǁ along open surfaces and that they provide roughly equal transport barriers, inhibiting particle loss. The interpretation of traditional FRCs shows Bohm-like χn and inertial (free-streaming) τǁ. However, in recent advanced beam-driven FRC experiments, χn approaches the classical rate and τǁ is comparable to classic empty-loss-cone mirrors.
Energy Technology Data Exchange (ETDEWEB)
Longmire, Conrad L [University of California, Los Alamos Scientific Laboratory, Los Alamos, NM (United States)
1958-07-01
In a pinch, the outward diffusion of plasma due to collisions can be balanced by the inward drift resulting from ExB, where E is the applied electric field and B the magnetic field. From the equation expressing the balance of these two effects, together with the pressure balance equation, one obtains the perpendicular conductivity, which is about one-half of the classical parallel conductivity. This result has been applied to the problem of a static pinch under the assumptions: 1) there is an applied longitudinal (B{sub z}) magnetic field; 2) the plasma is isothermal; 3) the solution depends only on the radial coordinate.
Evolution of the MHD sheet pinch
International Nuclear Information System (INIS)
Matthaeus, W.H.; Montgomery, D.
1979-01-01
A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table
International Nuclear Information System (INIS)
York, T.M.; Klevans, E.H.
1979-02-01
Experimental and analytical studies of end loss from a linear theta pinch have been carried out. Analysis of reduced data on loss from a 25 cm long theta pinch has indicated: rotation at the end of pinch collapse, which appears to persist; ejection of the plasma in two modes, the first of which includes reversed, trapped fields; unique patterns of radial and axial variation of electron density in the end loss flow; substantial inaccuracies in plasma properties indicated by spectroscopy as compared to Thomson scattering. Studies of loss in a 50 cm long pinch with 50 eV, 2 x 10 16 cm -3 plasma are underway
Theory of field-reversed configurations
International Nuclear Information System (INIS)
Steinhauer, L.C.
1993-01-01
This report summarizes results from the theoretical program on field reversed configurations (FRC) at STI Optronics. The program, which has spanned the last 13 years, has included analytical as well as computational components. It has led to published papers on every major topic of FRC theory. The report is outlined to summarize results from each of these topic areas: formation, equilibrium, stability, and confinement. Also briefly described are Steinhauer's activities as Compact Toroid Theory Listening Post. Appendix A is a brief listing of the major advances achieved in this program. Attached at the back of this report is a collection of technical papers in archival journals that resulted from work in this program. The discussion within each subsection is given chronologically in order to give a historical sense of the evolution of understanding of FRC physics
Rotational instabilities in field reversed configurations
International Nuclear Information System (INIS)
Santiago, M.A.M.; Tsui, K.H.; Ponciano, B.M.B.; Sakanaka, P.H.
1988-01-01
The rotational instability (n = 2 toroidal mode) in field reversed configurations (FRC) using the ideal MHD equations in cylindrical geometry is studied. These equations are solved using a realistic densite profile, and the influence of some plasma parameters on the growth rate is analysed. The model shows good qualitative results. The growth rate increases rapidly as rotational frequency goes up and the mode m = 2 dominates over the m = 1 mode. With the variation of the density profile, it is observed that the growth rate decreases as the density dip at the center fills up. Calculated value ranges from 1/2 to 1/7 of the rotational frequency Ω whereas the measured value is around Ω/50. The developed analysis is valid for larger machines. The influence of the plasma resistivity on the mode stabilization is also analysed. The resistivity, which is the fundamental factor in the formation of compact torus, tends to decrease the growth rate. (author) [pt
Experimental study of the initial plasma formation stage in a linear theta pinch of inverted field
International Nuclear Information System (INIS)
Casin, G.C.; Alvarez, Ricardo; Rojkind, R.H.; Rodrigo, A.B.
1986-01-01
The initial stage of the plasma formation was studied in a linear theta pinch. Experiments were made to determine the machine operating conditions for good shot-to-shot reproducibility. Spectroscopic measurements of electron density and of electron and ion temperature were made afterwards to characterize the plasma at different stages of its heating process. The results obtained indicate that shot-to-shot reproducibility is strongly influenced by the presence of impurities and by the plasma preionization technique used. Under proper operating conditions, excellent reproducibility was observed. The measured values of the plasma parameters are compatible with those determined for similar machines. (Author) [es
Kinetic stability of field-reversed configurations
International Nuclear Information System (INIS)
Staudenmeier, J.L.; Hsiao, M.-Y.
1991-01-01
The internal tilt mode is considered to be the biggest threat to Field-Reversed Configuration (FRC) global stability. The tilt stability of the FRC is studied using the MHD, Hall MHD, and the Vlasov-fluid (Vlasov ions, cold massless fluid electrons) models. Nonlinear Hall MHD calculations showed that the FRC was stable to the tilt mode when the s value of the FRC was below a critical value that was dependent on plasma length. The critical s value is larger for longer plasma equilibria. The stability of FRC's with toroidal field was studied with a linear initial value MHD code. The calculations showed an axial perturbation wavelength of the most unstable eigenfunction that was consistent with internal probe measurements made on translated FRC's. Linear Vlasov-fluid eigenvalue calculations showed that kinetic ion effects can change both the growth rate and the structure of the eigenfunctions when compared to the corresponding MHD modes. Calculations on short FRC equilibria indicate that MHD is not the appropriate small gyroradius limit of the Vlasov-fluid model because the axial transit time of a thermal ion is approximately equal to an MHD growth time for the tilt mode. Calculations were done using a small number of unstable MHD eigenfunctions as basis functions in order to reduce the dimensionality of the stability problem. The results indicated that this basis set can produce inaccurate growth rates at large value for s for some equilibria
Formation of Field Reversed Configuration (FRC on the Yingguang-I device
Directory of Open Access Journals (Sweden)
Qizhi Sun
2017-09-01
Full Text Available As a hybrid approach to realizing fusion energy, Magnetized Target Fusion (MTF based on the Field Reversed Configuration (FRC, which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion, has been recently widely pursued around the world. To investigate the formation and confinement of the FRC plasma injector for MTF, the Yingguang-I, which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system, was constructed at the Institute of Fluid Physics (IFP, China. This paper presents the pulsed power components and their parameters of the device in detail, then gives a brief description of progress in experiments of FRC formation. Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T, 10 kA/1.2 T and 1.7 MA/3.4 T were achieved in the bias, mirror and θ-pinch circuits with quarter cycle of 80 μs, 700 μs and 3.8 μs respectively. The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV. With H2 gas of 8 Pa, the plasma target of density 1016 cm−3, separatrix radius 4 cm, half-length 17 cm, equilibrium temperature 200 eV and lifetime 3 μs (approximately the half pulse width of the reversed field have been obtained through the θ-pinch method when the bias, mirror, ionization and θ-pinch banks were charged to 5 kV, 5 kV, 55 kV and ±45 kV respectively. The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code (2D-MHD.
International Nuclear Information System (INIS)
Rogister, A.
1998-01-01
We show that the large negative radial electric fields which are measured in front of the separatrix in H-mode discharges are easily explainable on the basis of the rigorous 'revisited' neoclassical theory, including finite Larmor radii and inertia effects that was published earlier (Rogister A 1994 Phys. Plasmas 1 619); the same theory naturally leads to sub-neoclassical energy transport and novel particle pinch terms. The calculation has so far been developed only in the high collisionality regime: step sizes comparable to gradient-scale sizes are therefore not required to explain observed properties! Based on the analysis, we conclude that the radial electric field profile develops a well in front of the separatrix when the plasma is unable to sustain ambipolar flows otherwise. (author)
International Nuclear Information System (INIS)
Santiago, M.A.M.
1987-01-01
A review of the problem of growth rate calculations for tearing modes in field reversed Θ-pinches is presented. Its shown that in the several experimental data, the methods used for analysing the plasma with a global finite resistivity has a better quantitative agreement than the boundary layer analysis. A comparative study taking into account the m = 1 resistive kindmode and the m = 2 mode, which is more dangerous for the survey of rotational instabilities of the plasma column is done. It can see that the imaginary component of the eigenfrequency, which determinates the growth rate, has a good agreement with the experimental data and the real component is different from the rotational frequency as it has been measured in some experiments. (author) [pt
FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS
International Nuclear Information System (INIS)
Melrose, D. B.
2010-01-01
The standard formula for the rotation measure (RM), which determines the position angle, ψ = RMλ 2 , due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, Δψ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.
FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS
Energy Technology Data Exchange (ETDEWEB)
Melrose, D B [SIfA, School of Physics, University of Sydney, NSW 2006 (Australia)
2010-12-20
The standard formula for the rotation measure (RM), which determines the position angle, {psi} = RM{lambda}{sup 2}, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution {Delta}{psi} needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, {Delta}{psi} is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.
International Nuclear Information System (INIS)
Linford, R.K.; Downing, J.N.; Gribble, R.F.; Jacobson, A.R.; Platts, D.A.; Thomas, K.S.
1975-01-01
The Staged Theta Pinch program is designed to study the technological and physics problems associated with producing fat plasmas and separating the implosion heating from the adiabatic compression. Several methods of implosion heating are discussed. Circuit diagrams and theoretical magnetic field behavior are described for the STP and resonant heating experiments. (MOW)
Tandem mirror and field-reversed mirror experiments
Energy Technology Data Exchange (ETDEWEB)
Coensgen, F.H.; Simonen, T.C.; Turner, W.C.
1979-08-21
This paper is largely devoted to tandem mirror and field-reversed mirror experiments at the Lawrence Livermore Laboratory (LLL), and briefly summarizes results of experiments in which field-reversal has been achieved. In the tandem experiment, high-energy, high-density plasmas (nearly identical to 2XIIB plasmas) are located at each end of a solenoid where plasma ions are electrostatically confined by the high positive poentials arising in the end plug plasma. End plug ions are magnetically confined, and electrons are electrostatically confined by the overall positive potential of the system. The field-reversed mirror reactor consists of several small field-reversed mirror plasmas linked together for economic reasons. In the LLL Beta II experiment, generation of a field-reversed plasma ring will be investigated using a high-energy plasma gun with a transverse radial magnetic field. This plasma will be further heated and sustained by injection of intense, high-energy neutral beams.
Thomson scattering in the EXTRAP-T2 reversed-field pinch
International Nuclear Information System (INIS)
Welander, A.
1996-11-01
A Thomson scattering system has been installed on the EXTRAP-T2 RFP experiment. The system measures the electron density and temperature in three radial points using three spectral channels. A description of the system, the calibration techniques and examples of data obtained are given. The error bars for the electron temperature measurements are estimated to be < 10% for typical T2-plasmas. 4 refs
Confinement and fluctuations in the MST [Madison Symmetric Torus] reversed field pinch
International Nuclear Information System (INIS)
Sprott, J.C.; Almagri, A.F.; Assadi, S.; Beckstead, J.A.; Chartas, G.; Dexter, N.; Den Hartog, D.J.; Hokin, S.A.; Holly, D.J.; Prager, S.C.; Rempel, T.D.; Sarff, J.S.; Scime, E.; Shen, W.; Spragins, C.W.; Watts, C.
1990-09-01
MST is a large (R 0 /a = 1.5/0.52 m) RFP which to date has obtained 80 ms discharges at a peak plasma current of 0.6 MA. Low loop voltages (15 volts) and modest temperatures (T e /T i ∼ 350/250 eV) are routinely obtained giving estimated unoptimized energy confinement times of about 1 ms. Loop voltage and ion temperature are anomalous. Magnetic fluctuations are typically 0.5% with most of the power at frequencies below 30 kHz and mode numbers in agreement with MHD prediction for tearing modes. Electrostatic fluctuations are typically 10 to 20% with a spectrum that decreases with frequency. 5 refs., 2 figs
Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch
Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.
2005-01-01
A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.
Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch
International Nuclear Information System (INIS)
Corre, Y.; Rachlew, E.; Gravestijn, R.M.; Hedqvist, A.; Stancalie, V.
2005-01-01
A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O 4+ (Be-like) and C 3+ (Li-like)
Electron Bernstein wave experiments in a over-dense reversed field pinch plasma
International Nuclear Information System (INIS)
Forest, C. B.; Anderson, J.K.; Cengher, M.; Chattopadhyay, P.K.; Carter, M.; Harvey, R.W.; Pinsker, R.I.; Smirnov, A.P.
2003-01-01
Experiments and theoretical work show that it is possible to couple power to the EBW in an RFP, and that these waves may be suitable for driving current. The main results of our work thus far are: (1) A coupling theory for a phased array of waveguides is developed and compared to experiment. Both O and X mode polarizations can be used; in general coupling for both is optimized for obliquely launched waves. (2) The surface impedance and reflection coefficients have been measured for EBWs launched by waveguide antennas on the edge of MST. Emission and coupling measurements are both consistent with theoretical models and the measured density gradients at the plasma edge. In particular, the coupling showed a strong asymmetry in N Φ for X-mode launch. (3) Black-body levels of emission have been observed in the ECRF from over-dense MST plasmas, which by reciprocity indicate that coupling to the EBW is possible with external antennas. Emission is preferentially polarized in the X-mode and is affected by density fluctuations at the plasma edge. Mode conversion efficiencies as high as 75% have been observed. (4) Ray tracing of EBW waves, coupled to Fokker Planck calculations show that localized, efficient current drive is possible. Current drive is possible by choosing the poloidal angle of the launching antenna to control the N of the wave. (authors)
International Nuclear Information System (INIS)
Thomson, D.B.
1987-11-01
These Proceedings contain the formal contributed papers, the workshop papers and workshop summaries presented at the International Workshop on Engineering Design of Next Step RFP Devices held at Los Alamos, July 13-17, 1987. Contributed papers were presented at formal sessions on the topics: (1) physics overview (3 papers); (2) general overview (3 papers); (3) front-end (9 papers); (4) computer control and data acquisition (1 paper); (5) magnetics (5 papers); and (6) electrical design (9 papers). Informal topical workshop sessions were held on the topics: (1) RFP physics (9 papers); (2) front-end (7 papers); (3) magnetics (3 papers); and (4) electrical design (1 paper). This volume contains the summaries written by the Chairmen of each of the informal topical workshop sessions. The papers in these Proceedings represent a significant review of the status of the technical base for the engineering design of the next step RFP devices being developed in the US, Europe, and Japan, as of this date
Magnetic fluctuation induced transport and edge dynamo measurements in the MST reversed-field pinch
International Nuclear Information System (INIS)
Hokin, S.; Fiksel, G.; Ji, H.
1994-09-01
Probe measurements in MST indicate that RFP particle and energy loss is governed by magnetic fluctuations inside r/a = 0.8, with energy carried out convectively by superthermal electrons. The radial loss rate is lower than the Rechester-Rosenbluth level, presumably due to the establishment of a restraining ambipolar potential. Several aspects of these measurements contradict the Kinetic Dynamo Theory, while the MHD dynamo EMF is measured to be large enough to drive the edge current carried by these superthermal electrons
Pitch programming of the ZT-S reversed-field pinch experiment
International Nuclear Information System (INIS)
Jacobson, A.; Burkhardt, L.C.; Baker, D.A.; Howell, R.B.; Schofield, A.E.; Sgro, A.G.
1979-01-01
Pitch programming is only realizable in the non-ideal case and as such is tried on ZT-S. Once the resistivity profile in the plasma is determined along with the appropriate thermal conductivity, then q(t) at the wall possesses a fairly simple mapping to a q(r) for a given time as shown in the experimental results. Thus the resulting q(r) profiles are qualitatively similar to ones desirable from the point of MHD stability theory. The results of this initial investigation indicate that pitch programming should be pursued further as a possible means of setting up desirable equilibrium profiles in an RFP
ZTI: Preliminary characterization of an ignition class reversed-field pinch
International Nuclear Information System (INIS)
Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Werley, K.A.
1990-01-01
A preliminary cost-optimized conceptual design of an intermediate-step, ignition-class RFP device (ZTI) for the study of alpha-particle physics in a DT plasma is reported. The ZTI design reflects potentially significant cost savings relative to similar ignition-class tokamaks for device parameters that reside on the path to a viable commercial RFP reactor. Reductions in both device costs and number of steps to commercialization portend a significantly reduced development cost for fusion. The methodology and result and coupling realistic physics, engineering, and cost models through a multi-dimensional optimizer are reported for ZTI, which is a device that would follow the 2--4 MA ZTH on a approx-gt 1996--98 timescale. 15 refs., 7 figs., 2 tabs
Global modelling of plasma-wall interaction in reversed field pinches
International Nuclear Information System (INIS)
Bagatin, M.; Costa, S.; Ortolani, S.
1989-01-01
The impurity production and deuterium recycling mechanisms in ETA-BETA II and RFX are firstly discussed by means of a simple model applicable to a stationary plasma interacting with the wall. This gives the time constant and the saturation values of the impurity concentration as a function of the boundary temperature and density. If the latter is sufficiently high, the impurity buildup in the main plasma becomes to some extent stabilized by the shielding effect of the edge. A self-consistent global model of the time evolution of an RFP plasma interacting with the wall is then described. The bulk and edge parameters are derived by solving the energy and particle balance equations incorporating some of the basic plasma-surface processes, such as sputtering, backscattering and desorption. The application of the model to ETA-BETA II confirms the impurity concentrations of the light and metal impurities as well as the time evolution of the average electron density found experimentally under different conditions. The model is then applied to RFX, a larger RFP experiment under construction, whose wall will be protected by a full graphite armour. The time evolution of the discharge shows that carbon sputtering could increase Z eff to ≅ 4, but without affecting significantly the plasma performance. (orig.)
Global modelling of plasma-wall interaction in reversed field pinches
Bagatin, M.; Costa, S.; Ortolani, S.
1989-04-01
The impurity production and deuterium recycling mechanisms in ETA—BETA II and RFX are firstly discussed by means of a simple model applicable to a stationary plasma interacting with the wall. This gives the time constant and the saturation values of the impurity concentration as a function of the boundary temperature and density. If the latter is sufficiently high, the impurity buildup in the main plasma becomes to some extent stabilized by the shielding effect of the edge. A self-consistent global model of the time evolution of an RFP plasma interacting with the wall is then described. The bulk and edge parameters are derived by solving the energy and particle balance equations incorporating some of the basic plasma-surface processes, such as sputtering, backscattering and desorption. The application of the model to ETA-BETA II confirms the impurity concentrations of the light and metal impurities as well as the time evolution of the average electron density found experimentally under different conditions. The model is then applied to RFX, a larger RFP experiment under construction, whose wall will be protected by a full graphite armour. The time evolution of the discharge shows that carbon sputtering could increase Zeff to ~ 4, but without affecting significantly the plasma performance.
B4C solid target boronization of the MST reversed-field pinch
International Nuclear Information System (INIS)
Den Hartog, D.J.; Cekic, M.; Fiksel, G.; Hokin, S.A.; Kendrick, R.D.; Prager, S.C.; Stoneking, M.R.
1992-10-01
A solid rod of hot-pressed boron carbide is being used as the source of boron during boronization of MST. The most striking result of this procedure is the reduction in oxygen contamination of the plasma (O III radiation, characteristic of oxygen at the edge, falls by about a factor of 3 after boronization.). The radiated power fraction drops to about half its initial value. Particle reflux from the wall is also lowered, making density control simpler. The rod (12.7 mm diameter) is inserted into the edge plasma of normal high-power RFP discharges. B 4 C is ablated from the surface of the rod and deposited in a thin film (a-B/C:H) on the walls and limiters. The energy flux carried by ''superthermal'' (not ''runaway'') electrons at the edge of MST appears to enhance the efficient, non-destructive ablation of the boron carbide rod
Energy Technology Data Exchange (ETDEWEB)
Thomson, D.B. (comp.)
1987-11-01
These Proceedings contain the formal contributed papers, the workshop papers and workshop summaries presented at the International Workshop on Engineering Design of Next Step RFP Devices held at Los Alamos, July 13-17, 1987. Contributed papers were presented at formal sessions on the topics: (1) physics overview (3 papers); (2) general overview (3 papers); (3) front-end (9 papers); (4) computer control and data acquisition (1 paper); (5) magnetics (5 papers); and (6) electrical design (9 papers). Informal topical workshop sessions were held on the topics: (1) RFP physics (9 papers); (2) front-end (7 papers); (3) magnetics (3 papers); and (4) electrical design (1 paper). This volume contains the summaries written by the Chairmen of each of the informal topical workshop sessions. The papers in these Proceedings represent a significant review of the status of the technical base for the engineering design of the next step RFP devices being developed in the US, Europe, and Japan, as of this date.
The topology of intrasector reversals of the interplanetary magnetic field
Kahler, S. W.; Crooker, N. U.; Gosling, J. T.
1996-11-01
A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.
Paleomagnetic Study of a Reversal of the Earth's Magnetic Field.
Dunn, J R; Fuller, M; Ito, H; Schmidt, V A
1971-05-21
A detailed record of a field reversal has been obtained from the natural remanent magnetization of the Tatoosh intrusion in Mount Rainier National Park, Washington. The reversal took place at 14.7 +/- 1 million years and is interpreted to be from reverse to normal. A decrease in the intensity of the field of about an order of magnitude occurs immediately before the reversal, while its orientation remains substantially unchanged. The onset of the reversal is marked by abrupt swinging of the virtual geomagnetic pole along an arc of a great circle. During the reversal the pole traces a path across the Pacific. In the last stage of the process recorded in the sections, the succession of virtual geomagnetic poles is very similar to those generated by secular variation in the recent past. Although the cooling rate of the intrusion is not sufficiently well known to permit a useful calculation of the duration of the reversal process, an estimate based on the length of the supposed secular variation cycles gives 1 to 4 x 103 years for the reversal of field direction and approximately 1 x 104 years for the time scale of the intensity changes.
Z-Pinch Fusion for Energy Applications
Energy Technology Data Exchange (ETDEWEB)
SPIELMAN,RICK B.
2000-01-01
Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.
Z-Pinch Fusion for Energy Applications
International Nuclear Information System (INIS)
SPIELMAN, RICK B.
2000-01-01
Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999
Magnetization reversal in ferromagnetic film through solitons by electromagnetic field
International Nuclear Information System (INIS)
Veerakumar, V.; Daniel, M.
2001-07-01
We study the reversal of magnetization in an isotopic ferromagnetic film free from charges by exposing it to a circularly polarized electromagnetic (EM) field. The magnetization excitations are obtained in the form of line and lump solitons of the completely integrable modified KP-II equation which is derived using a reductive perturbation method from the set of coupled Landau-Lifschitz and Maxwell equations. It is observed that when the polarization of the EM-field is reversed followed by a rotation, for every (π)/2-degrees, the magnetization is reversed. (author)
Field reversal experiments: FRX-A and FRX-B results
International Nuclear Information System (INIS)
Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.
1981-01-01
The equilibrium, stability, and confinement properties of the Field Reversed Configuration (FRC) are being studied in two theta pinch facilities referred to as FRX-A, and FRX-B. The configuration is a toroidal plasma confined in a purely poloidal field configuration containing both closed and open field lines. The FRX system produces highly elongated tori with major radius R=3 to 5 cm, minor radius a approx. 2 cm, and a full length l approx. 35 to 50 cm. Plasma conditions have ranged from T/sub e/ approx. 150 eV, T/sub i/ approx. 800 eV, and n/sub max/ approx. 10 15 /cm 3 to T/sub e/ approx. 100 eV, T/sub i/ approx. 150 eV, and n/sub max/ approx. 4 x 10 15 /cm 3 . The plasma remains in a stable equilibrium for up to 50 μs followed by an n = 2 rotational instability which results in termination of the FRC. The plasma behavior with respect to equilibrium, stability, and rotation is consistent with recent theoretical work in these areas
Field-reversed configuration translation studies in FRX-C/T
International Nuclear Information System (INIS)
Chrien, R.E.; Armstrong, W.T.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.
1984-01-01
Field-Reversed Configuration (FRC) translation is being studied in the FRX-C/T device. The main goals of this experiment are to demonstrate translation into a dc field region with minimal losses and to study modification of the equilibrium profiles of the FRC by varying x/sub s/, the ratio of separatrix radius (r/sub s/) to conducting wall radius (r/sub w/), through translation. FRC's are formed with a range of densities (1→5 x 10/sup 15/ cm/sup -3/) and x/sub s/ (0.35→0.55) in the FRX-C source, configured as a slightly conical theta pinch coil (r/sub w/ increases from 0.22 m to 0.28 m in four steps over 2 m). In 10→40 μs after formation, the FRC enters a 0.20-m radius stainless steel vessel with a dc field up to 8 kG. The translation velocity varies from 5→12 cm/μs and is typically about one-half the FRC Alfven velocity
The belt-shaped screw-pinch reactor
International Nuclear Information System (INIS)
Bustraan, M.; Klippel, H.Th.; Veringa, H.J.; Verschuur, K.A.; Lievense, K.
1981-12-01
The belt-shaped screw pinch is a pulsed toroidal plasma with an elongated cross-section. Force-free currents in an outer plasma envelope of low density allow beta to rise to high values in the order of 50%. This is a potential possibility to develop an economically attractive reactor. The physical requirements of its realization are described: formation, heating and ignition of a very small amount of the fuel to be burnt in one pulse by the fields generated by normal or superconducting coils. Then follows injection of the greater part of the fuel by D-T pellets and consequent plasma heating and expansion by nuclear reactions without undue disturbing of the plasma current configuration. Technical requirements include an insulating first wall and fast rising magnetic fields produced by superconducting coils. This reactor system is compared with the tokamak and the reversed-field pinch system
Steady state theta pinch concept for slow formation of FRC
International Nuclear Information System (INIS)
Hirano, K.
1987-05-01
A steady state high beta plasma flow through a channel along the magnetic field increasing downstream can be regarded as a ''steady state theta pinch'', because if we see the plasma riding on the flow we should observe very similar process taking place in a theta pinch. Anticipating to produce an FRC without using very high voltage technics such as the ones required in a conventional theta pinch, we have studied after the analogy a ''steady state reversed field theta pinch'' which is brought about by steady head-on collision of counter plasma streams along the channel as ejected from two identical co-axial plasma sources mounted at the both ends of the apparatus. The ideal Poisson and shock adiabatic flow models are employed for the analysis of the steady colliding process. It is demonstrated that an FRC involving large numbers of particles is produced only by the weak shock mode which is achieved in case energetic plasma flow is decelerated almost to be stagnated through Poisson adiabatic process before the streams are collided. (author)
International Nuclear Information System (INIS)
Anderson, O.A.; Baker, W.R.; Ise, J. Jr.; Kunkel, W.B.; Pyle, R.V.; Stone, J.M.
1958-01-01
Three types of sheet-like discharges are being studied at Berkeley. The first of these, which has been given the name 'Triax', consists of a cylindrical plasma sleeve contained between two coaxial conducting cylinders A theoretical analysis of the stability of the cylindrical sheet plasma predicts the existence of a 'sausage-mode' instability which is, however, expected to grow more slowly than in the case of the unstabilized linear pinch (by the ratio of the radial dimensions). The second pinch device employs a disk shaped discharge with radial current guided between flat metal plates, this configuration being identical to that of the flat hydromagnetic capacitor without external magnetic field. A significant feature of these configurations is the absence of a plasma edge, i.e., there are no regions of sharply curved magnetic field lines anywhere in these discharges. The importance of this fact for stability is not yet fully investigated theoretically. As a third configuration a rectangular, flat pinch tube has been constructed, and the behaviour of a flat plasma sheet with edges is being studied experimentally
Los Alamos Compact Toroid, fast liner, and High-Density Z-Pinch programs
International Nuclear Information System (INIS)
Linford, R.K.; Hammel, J.E.; Sherwood, H.R.
1982-01-01
The compact Toroid and High Density Z-Pinch are two of the plasma configurations presently being studied at Los Alamos. This paper summarizes these two programs along with the recently terminated Fast Liner Program. Included in this discussion is an analysis of compact Toroid formation techniques showing the tearing and reconnection of the fields that separate the spheromak from the radial fields of the coaxial source, and the final equilibrium state of the elongated FRC in the theta-pinch coil. In addition the typical dimensions of the geometry of the Fast Liner experiments are delineated Z-pinch and electrode assembly is displayed as is a graphic of the temporal behavior of the current required for radial equilibrium. Spheromak is examined in terms of formation, gross stability, and equilibrium and field reversed configuration is discussed in terms of gross stability, equilibrium, and confinement scaling
Equilibrium and stability of theta-pinch plasma in modified toroidal multiple mirror field
International Nuclear Information System (INIS)
Shiina, S.; Saito, K.; Osanai, Y.; Itagaki, T.; Karakizawa, T.; Gesso, H.; Todoroki, J.; Kawakami, I.; Yoshimura, H.
1976-01-01
To confine a high-beta plasma a new toroidal magnetic configuration with closed lines of force has been proposed [1]. The configuration is an appropriate superposition of l = 0, l = +- 1, l = +- 2,sup(...), helical fields. In this experiment, it is generated by modifying the multiple mirror field by enclosing the discharge tube in a copper shell which has longitudinal gap. This configuration is preferred for the wall stabilizing effect to that with the separated helical windings. The characteristics of the equilibrium conditions are examined based on the near-axis approximation theory and compared with the experimental results. The stability of plasma in the configurations with l = 0 field and with superposition of l = 0, l = +- 2 fields is investigated in linear geometry. (author)
Lower pinch radius limit in EXTRAP
International Nuclear Information System (INIS)
Lehnert, B.
1989-01-01
In an Extrap pinch there is a superimposed magnetic octupole field which forms a magnetic separatrix with the field generated by the pinch current. Earlier experiments have shown that the octupole field has a stabilizing influence on the plasma. Regardless of the details of this stabilizing mechanism, it is expected that the influence of the octupole field should become negligible for a sufficiently small ratio between the characteristic pinch and separatrix radii. In other words, there should exist a lower limit of this ratio below which the system approaches the state of an ordinary unstabilized Z-pinch. The present paper presents an extended version of an earlier theoretical model of this lower limit, and its relation to the corresponding critical ratio between the external conductor and pinch currents. This ratio is found to vary substantially with the plasma parameters. (authors)
Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal
Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.
2016-01-01
The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.
Midlatitude cooling caused by geomagnetic field minimum during polarity reversal.
Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi
2013-01-22
The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR-cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama-Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to 40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux.
A Mirnov loop array for field-reversed configurations
International Nuclear Information System (INIS)
Tuszewski, M.
1990-01-01
An array of 64 magnetic pick-up loops has been used for stability studies of large field-reversed configurations in the FRX-C/LSM device. This array proved reliable, could resolve signals of a few Gauss, and allowed the detection of several plasma instabilities. 3 refs., 4 figs
Time-reversal symmetry breaking by ac field: Effect of ...
Indian Academy of Sciences (India)
deviate from 2 thus signalling on the time-reversal breaking by the ac field. ... is also the parity effect: the enchancement is only present if either P or Q is even. ... analysis (see figure 1) is possible and the ergodic zero-dimensional approx-.
Detection of electric field around field-reversed configuration plasma
International Nuclear Information System (INIS)
Ikeyama, Taeko; Hiroi, Masanori; Nogi, Yasuyuki; Ohkuma, Yasunori
2010-01-01
Electric-field probes consisting of copper plates are developed to measure electric fields in a vacuum region around a plasma. The probes detect oscillating electric fields with a maximum strength of approximately 100 V/m through a discharge. Reproducible signals from the probes are obtained with an unstable phase dominated by a rotational instability. It is found that the azimuthal structure of the electric field can be explained by the sum of an n=2 mode charge distribution and a convex-surface electron distribution on the deformed separatrix at the unstable phase. The former distribution agrees with that anticipated from the diamagnetic drift motions of plasma when the rotational instability occurs. The latter distribution suggests that an electron-rich plasma covers the separatrix.
Dynamical determination of ohmic states of a cylindrical pinch
International Nuclear Information System (INIS)
Schnack, D.D.
1980-04-01
The dual problems of generation and sustainment of the reversed axial field are studied. It is shown that, if a cylindrical plasma is initially in an axisymmetric state with a sufficient degree of paramagnetism, field reversal can be attained by mode activity of a single helicity. The initial paramagnetism may be due to the method of pinch formation, as in fast experiments, or to a gradual altering of the pitch profile resulting from a succession of instabilities. Furthermore, if the total current is kept constant and energy loss and resistivity profiles are included in an ad hoc manner, one finds that the final steady state of the helical instability can be maintained for long times against resistive diffusion without the need for further unstable activity. These states, which possess zero order flow and possibly reversed axial field, represent steady equilibria which simultaneously satisfy force balance and Ohm's law, and are termed Ohmic states
Moving-ring field-reversed mirror reactor
International Nuclear Information System (INIS)
Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.
1981-01-01
We describe a first prototype fusion reactor design of the Moving-Ring Field-Reversed Mirror Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma. The plamsa rings, formed by a coaxial plasma gun, are magnetically compressed to ignition temperature while they are being injected into the reactor's burner section. DT ice pellets refuel the rings during the burn at a rate which maintains constant fusion power. A steady train of plasma rings moves at constant speed through the reactor under the influence of a slightly diverging magnetic field. The aluminum first wall and breeding zone structure minimize induced radioactivity; hands-on maintenance is possible on reactor components outside the breeding blanket. Helium removes the heat from the Li 2 O tritium breeding blanket and is used to generate steam. The reactor produces a constant, net power of 376 MW
Plasma sheath dynamics in pinch discharge
International Nuclear Information System (INIS)
Mansour, A.A.Abd-Fattah
1995-01-01
The main interest of the study was to understand the dynamic and to determine the plasma parameters in the 3.5 meter θ-pinch discharge. The 3.5 meter thetatron plasma device has been reconstructed and developed which consist of four capacitor banks: a) Main pinch capacitor bank, (θ-pinch bank) consists of 40 capacitors connected in parallel each of 1.5 μ F., with maximum energy equal to 48 k Joule. b) Preionization capacitor bank (z-pinch) consists of capacitors connected in series each of 1.5μ F., with maximum energy to 0.94 k Joule. c) Bias field bank consists of 4 capacitors connected in parallel each of 38μ F., with maximum energy equal to 4.46 k Joule. d) Screw pinch capacitor bank consists of 5 capacitors connected in parallel each of 1.5μ F., with maximum energy equal to 6 k Joule
The theta-pinch - a versatile tool for the generation and study of high temperature plasmas
Energy Technology Data Exchange (ETDEWEB)
Hintz, E. [Inst. fuer Plasmaphysik, Forschungszentrum-Juelich GmbH (Germany)
2004-07-01
The more general technical and physical features of theta-pinches are described. Special field of their application are high-ss plasmas. Two examples are analysed and studied in more detail: a high density plasma near thermal equilibrium and a low density plasma far from equilibrium. The latter is of special interest for future investigations. Possibilities of field-reversed configurations are pointed out. (orig.)
The theta-pinch - a versatile tool for the generation and study of high temperature plasmas
International Nuclear Information System (INIS)
Hintz, E.
2004-01-01
The more general technical and physical features of theta-pinches are described. Special field of their application are high-ss plasmas. Two examples are analysed and studied in more detail: a high density plasma near thermal equilibrium and a low density plasma far from equilibrium. The latter is of special interest for future investigations. Possibilities of field-reversed configurations are pointed out. (orig.)
The effect of quadrupole fields on particle confinement in a field-reversed mirror
International Nuclear Information System (INIS)
McColl, D.B.; Berk, H.L.; Hammer, J.; Morse, E.C.
1982-01-01
A particle simulation code has been modified to simulate particle loss caused by quadrupole magnetic fields on a field-reversed mirror plasma device. Since analytic fields are chosen for the equilibrium, the numerical algorithm is highly accurate for long-time integrations of particle orbits. The resultant particle loss due to the quadrupole fields can be competitive with collisional loss in the device
Rotational stability of a long field-reversed configuration
International Nuclear Information System (INIS)
Barnes, D. C.; Steinhauer, L. C.
2014-01-01
Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone
Rotational stability of a long field-reversed configuration
Energy Technology Data Exchange (ETDEWEB)
Barnes, D. C., E-mail: coronadocon@msn.com; Steinhauer, L. C. [Tri Alpha Energy, Rancho Santa Margarita, California 92688 (United States)
2014-02-15
Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.
Topological Field Theory of Time-Reversal Invariant Insulators
Energy Technology Data Exchange (ETDEWEB)
Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.
The reversal of the Sun's magnetic field in cycle 24
Mordvinov, Alexander V.; Pevtsov, Alexei A.; Bertello, Luca; Petrie, Gordon J. D.
2016-01-01
Analysis of synoptic data from the Vector Stokes Magnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) and the NASA/NSO Spectromagnetograph (SPM) at the NSO/Kitt Peak Vacuum Telescope facility shows that the reversals of solar polar magnetic fields exhibit elements of a stochastic process, which may include the development of specific patterns of emerging magnetic flux, and the asymmetry in activity between northern and southern hemispheres. The presence of su...
Analytic, two fluid, field reversed configuration equilibrium with sheared rotation
International Nuclear Information System (INIS)
Sobehart, J.R.
1989-01-01
A two fluid model is used to derive an analytical equilibrium for elongated field reversed configurations containing shear in both the electron and ion velocity profiles. Like some semiempirical models used previously, the analytical expressions obtained provide a satisfactory fit to the experimental results for all radii with a few key parameters. The present results reduce to the rigid rotor model and the infinite conductivity case for a specific choice of the parameters
Adiabatic compression of elongated field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Spencer, R.L.; Tuszewski, M.; Linford, R.K.
1983-06-01
The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.
Adiabatic compression of elongated field-reversed configurations
International Nuclear Information System (INIS)
Spencer, R.L.; Tuszewski, M.; Linford, R.K.
1983-01-01
The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas
Stochastic behaviour of particle orbits in field reversed geometries
International Nuclear Information System (INIS)
Finn, J.M.
1979-01-01
Studies of stochastic or ergodic behaviour of beam particle orbits in axisymmetric systems with field reversal produced by ion rings or by neutral injection are presented. In the former case a large class of orbits is ergodic, whereas in the latter most are integrable. Effects of ergodic behaviour on particle confinement, equilibrium, magnetic compression, and stability are discussed. The modification, due to ergodic orbits of the stability criterion for low frequency (ω << ωsub(ci)) resonant instabilities is presented. (author)
Magnetic field reversals, polar wander, and core-mantle coupling.
Courtillot, V; Besse, J
1987-09-04
True polar wander, the shifting of the entire mantle relative to the earth's spin axis, has been reanalyzed. Over the last 200 million years, true polar wander has been fast (approximately 5 centimeters per year) most of the time, except for a remarkable standstill from 170 to 110 million years ago. This standstill correlates with a decrease in the reversal frequency of the geomagnetic field and episodes of continental breakup. Conversely, true polar wander is high when reversal frequency increases. It is proposed that intermittent convection modulates the thickness of a thermal boundary layer at the base of the mantle and consequently the core-to-mantle heat flux. Emission of hot thermals from the boundary layer leads to increases in mantle convection and true polar wander. In conjunction, cold thermals released from a boundary layer at the top of the liquid core eventually lead to reversals. Changes in the locations of subduction zones may also affect true polar wander. Exceptional volcanism and mass extinctions at the Cretaceous-Tertiary and Permo-Triassic boundaries may be related to thermals released after two unusually long periods with no magnetic reversals. These environmental catastrophes may therefore be a consequence of thermal and chemical couplings in the earth's multilayer heat engine rather than have an extraterrestrial cause.
Upper pinch radius limit in EXTRAP
International Nuclear Information System (INIS)
Lehnert, B.
1989-12-01
A simple static equilibrium model of the Z-pinch is considered where a hot plasma core is surrounded by a cold-mantle (gas blanket). The pinch radius, defined as the radial extension of the fully ionized plasma core, is uniquely determined by the plasma particle. momentum and heat balance equations. In Extrap configurations an octupole field is introduced which imposes a magnetic separatrix on Z-pinch geometry. This makes the conditions for Extrap equilibrium 'overdetermined' when the characteristic pinch radium given by the plasma parameters tends to exceed the characteristic radius of the magnetic separatrix. In this case no conventional pinch equilibrium can exist, and part of the current which is forced into the plasma discharge by external sources must be channelled outside of the separatrix, i.e. into the surrounding support structure of the Extrap conductors and the vessel walls. A possibly existing bootstrap current in the plasma boundary layer is further expected to be 'scraped off' in this case. The present paper gives some illustrations of the marginal case of this upper pinch radius limit, in a state where the pinch current is antiparallel to the external rod currents which generate the octupole field. (authors)
A summary of the Berkeley and Livermore pinch programs
Energy Technology Data Exchange (ETDEWEB)
Colgate, Stirling A [University of California Radiation Laboratory, Livermore, CA (United States)
1958-07-01
In order to progress toward practical thermonuclear devices, the principal objective must be to prolong containment times by improving the electrical conductivity of the plasma. Those pinch configurations which are grossly unstable are, of course, unsuitable for practical thermonuclear work. Therefore our purely dynamic experiments are conducted only to study basic shock heating and instability mechanisms. Our basic evaluation of progress in pinch-type experiments is the reduction of the dissipation rate of the magnetic fields. The present pessimistic viewpoint is that most of the pinch devices that depend upon high current density within the plasma are beset with an enhanced dissipation rate which is disastrous to pinch containment. This dissipation is derived either from an electron plasma current instability or from hydromagnetic turbulence. Both have been predicted in theory and observed in experiment. Studies have been presented for the following cases: linear and toroidal pinch experiments; sheet pinch devices of modest size; homopolar geometry; shock heating and screw dynamic pinch.
Classical transport in field reversed mirrors: reactor implications
International Nuclear Information System (INIS)
Auerbach, S.P.; Condit, W.C.
1980-01-01
Assuming that the field-reversed mirror (or the closely related spheromak) turns out to be stable, the next crucial issue is transport of particles and heat. Of particular concern is the field null on axis (the X-point), which at first glance seems to allow particles to flow out unhindered. We have evaluated the classical diffusion coefficients for particles and heat in field-reversed mirrors, with particular reference to a class of Hill's vortex models. Two fairly surprising results emerge from this study. First, the diffusion-driven flow of particles and heat is finite at the X-points. This may be traced to the geometrical constraint that the current (and hence the ion-electron drag force, which causes cross-field transport) must vanish on axis. This conclusion holds for any transport model. Second, the classical diffusion coefficient D(psi), which governs both particle and heat flux, is finite on the separatrix. Indeed, in a wide class of Hill's vortex equilibria (spherical, oblate, or prolate) D(psi) is essentially independent of psi (except for the usual factor of n
Translation experiment of a plasma with field reversed configuration
International Nuclear Information System (INIS)
Tanjyo, Masayasu; Okada, Shigefumi; Ito, Yoshifumi; Kako, Masashi; Ohi, Shoichi
1984-01-01
Experiments to translate the FRC plasma from is formation area (pinch coil) into two kinds of metal vessels (magnetic flux conservers) with larger and smaller bore than that of the pinch coil have been carried out in OCT with an aim of improving the particle confinement time tau sub(N) by increasing xsub(s) (ratio of the plasma radius to that of the conducting wall). Demonstrated were successful translations of the plasma into both vessels. The xsub(s) of the translated plasma increased to 0.6 in the larger bore vessel and to 0.7 in the smaller one from 0.4 of the source plasma in the pinch coil. With the increase in xsub(s), tau sub(N) and also decay time of the trapped magnetic flux are extended from 15 - 20 μs of the source plasma to 50 - 80 μs. The tau sub(N) is found to have stronger dependence on xsub(s) than on rsub(s). During the translation phase, almost half of the total particle and the plasma energy are lost. The plasma volume is, therefore, about half of that expected from the analysis on the ideal translation process. It is also found that the translation process is nearly isothermal as is expected from the analysis. (author)
Reactor prospects and present status of field-reversed configurations
International Nuclear Information System (INIS)
Hoffman, A.L.
1995-01-01
Field-Reversed Configurations (FRC) have an ideal geometry for a reactor, combining high beta toroidal confinement, with a linear external geometry. Present small diameter FRCs are thought to be stabilized by kinetic effects, but recent experiments in the Large s Experiment (LSX) have demonstrated stability as well into the MHD regime. Present empirical transport coefficients are already sufficient for a small pulsed reactor, but small steady state reactors will require about an order of magnitude reduction in plasma diffusivity. 13 refs., 4 figs., 1 tab
Fueling moving ring field-reversed mirror reactor plasmas
International Nuclear Information System (INIS)
Felber, F.S.
1980-01-01
The concept of small fusion reactors is being studied jointly by Lawrence Livermore Laboratory General Atomic Company, and Pacific Gas and Electric Company. The objective is to investigate alternatives and then to develop a conceptual design for a small reactor that could produce useful, though not necessarily economical, energy by the late 1980s. Three methods of fueling a small moving ring field-reversed mirror are considered: injection of fuel pellets accelerated by laser ablation, injection of fuel pellets accelerated by deflagration-gun ablation, and direct injection of plasma by a deflagration gun. 13 refs
Tilting mode in rigidly rotating field-reversed configurations
International Nuclear Information System (INIS)
Clemente, R.A.; Milovich, J.L.
1983-01-01
The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant
Non-stationary classical diffusion in field - reversed configurations
International Nuclear Information System (INIS)
Clemente, R.A.; Sakanaka, P.H.; Mania, A.J.
1988-01-01
Plasma decay in field-reversed configurations (FRC) is described using resistive MHD equations. Assuming non-stationariety together with uniform but time dependent plasma temperature and neglecting inertial effects in the momentum balance equation, it is possible to show that the functional dependence of the plasma pressure with the poloidal magnetic flux remains fixed during diffusion. This allows to describe FRC evolution as a continuous sequence of plasma equilibria satisfying proper boundary conditions. The method is applied to pressure profiles linear with the poloidal magnetic flux obtaining the evolution of the flux, the number of confined particles and the size of the plasma boundary. (author) [pt
Maintenance of a multi-cell field reversed mirror reactor
International Nuclear Information System (INIS)
Neef, W.S. Jr.
1978-01-01
The Field Reversed Mirror Reactor is composed of a horizontal linear chain of cells, each of which requires neutral beam injection. Blanket replacement is achieved by lifting one complete cell module from the reactor and replacing it with a preassembled and tested identical module. Ioffe bar connectors eliminate redundant bus bars. Asymmetric cell design simplifies magnet construction and reduces replacement time. A tapered cylindrical coolant distributor simplifies blanket removal. An evacuated housing surrounds the reactor reducing cell-to-cell sealing problems related to maintenance. Remote couplings are used for coolant and accessories. Hot-cell location and design permits immediate reconditioning or storage of replacement cells
Direction of Impurity Pinch and Auxiliary Heating in Tokamak Plasmas
International Nuclear Information System (INIS)
Angioni, C.; Peeters, A.G.
2006-01-01
A mechanism of particle pinch for trace impurities in tokamak plasmas, arising from the effect of parallel velocity fluctuations in the presence of a turbulent electrostatic potential, is identified analytically by means of a reduced fluid model and verified numerically with a gyrokinetic code for the first time. The direction of such a pinch reverses as a function of the direction of rotation of the turbulence in agreement with the impurity pinch reversal observed in some experiments when moving from dominant auxiliary ion heating to dominant auxiliary electron heating
International Nuclear Information System (INIS)
Douglas, M.; Deeney, C.; Roderick, N.
1999-01-01
Numerical simulations have been carried out to investigate the role that magnetic field diffusion and ohmic heating have on the magnetohydrodynamic Rayleigh-Taylor (RT) development in fast z-pinch implosions. Previous work has indicated these terms can strongly influence the evolution of RT growth, leading to a reduction in RT amplitude, and an improvement in pinch performance. Indeed, Roderick et al have suggested that magnetic smoothing is an important mechanism in linear RT growth. To examine this in more detail, simulations are presented for a 1.4 mg, 25.0 mm diameter tungsten wire array imploded in the Saturn long pulse mode. The 130 ns implosion time of this calculation should enhance any mitigating effects that may be attributed to nonideal MHD. Calculations were performed using the 2D MHD code Mach2. The wire array was approximated by a right cylindrical slab of 1.0 mm width. Both a random density perturbation and single mode density perturbations were incorporated to initiate the instability. In the former case, a 5% cell-to-cell random perturbation was used. This allowed a range of modes to be initially present. In the single mode case, a 1.25 mm wavelength, on the order of the shell thickness, was defined. To isolate the contributions due to field diffusion, joule heating, and equation of state, simulations were run with and without ohmic heating using both constant and material-dependent spitzer resistivities. This analysis was then extended to look at the effect of such parameters on the nested shell load configuration. Detailed analysis of the simulations will be presented
Resistive m=o mode in reverse-field configurations
International Nuclear Information System (INIS)
Galvao, R.M.O.; Santiago, M.A.M.
1982-01-01
The resistive m=0 mode is studied. Where m is the azimuthal mode number in magnetic confinement configurations with parallel field lines such that the magnetic field reverses direction inside the plasma. A cylindrical plasma column which rotates rigidly with a rotation velocity Ω is considered. It is found that the growth rate of the mode γ scales differently with the plasma resistivity depending on whether Ω vanishes or not; γα sup(3/5) for Ω=0 and γα sup(1/3) for Ω different 0. When the Hall term is also included in the generalized Ohm's law, γα sup(1/2) is obtained. This last result is in disagreement with the results of Krappraff et al. (Author) [pt
Conceptual design of the field-reversed mirror reactor
International Nuclear Information System (INIS)
Carlson, G.A.; Condit, W.C.; Devoto, R.S.; Fink, J.H.; Hanson, J.D.; Neef, W.S.; Smith, A.C. Jr.
1978-01-01
For this reactor a reference case conceptual design was developed in some detail. The parameters of the design result partly from somewhat arbitrary physics assumptions and partly from optimization procedures. Two of the assumptions--that only 10% of the alpha-particle energy is deposited in the plasma and that particle confinement scales with the ion-ion collision time--may prove to be overly conservative. A number of possible start-up scenarios for the field-reversed plasmas were considered, but the choice of a specific start-up method for the conceptual design was deferred, pending experimental demonstration of one or more of the schemes in a mirror machine. Basic to our plasma model is the assumption that, once created, the plasma can be stably maintained by injection of a neutral-beam current sufficient to balance the particle-loss rate. The reference design is a multicell configuration with 11 field-reversed toroidal plasma layers arranged along the horizontal axis of a long-superconducting solenoid. Each plasma layer requires the injection of 3.6 MW of 200-keV deuterium and tritium, and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe. The preliminary estimate for the direct capital cost of the reference design is $1200/kWe. A balance-of-plant study is now underway and will result in a more accurate cost estimate
Field-reversed mirror pilot reactor. Annual report
International Nuclear Information System (INIS)
Devoto, R.S.; Erickson, J.L.; Fink, J.H.
1980-09-01
This report concludes a two-year effort to design a near-term small-scale fusion power plant which, through its construction and operation, would be a direct and important step toward the commercialization of fusion energy. The fusion reactor pilot plant was designed under the ground rules that it must produce net power, be compact, have minimum total cost, and use near-term (late 1980's) engineering technology. The neutral beam driven, field-reversed mirror (FRM) was selected as the fusion plasma confinement concept around which the pilot plant was designed. Although the physics data base for this design is not yet well in hand, it is being pursued within the magnetic field-reversal framework of the US Mirror Fusion Program. Depending on the plasma size, the pilot plant would gross up to 19.8 MW(e) and would produce up to 10.7 MW(e) net, with the recirculated power used principally for the neutral beam injectors and refrigeration for the superconducting magnets
End-shorting and electric field in edge plasmas with application to field-reversed configurations
International Nuclear Information System (INIS)
Steinhauer, Loren C.
2002-01-01
The shorting of open field lines where they intersect external boundaries strongly modifies the transverse electric field all along the field lines. The modified electric field is found by an extension of the familiar Boltzmann relation for the electric potential. This leads to a prediction of the electric drift. Flow generation by electrical shorting is applied here to three aspects of elongated field-reversed configurations: plasma rotation rate; the particle-loss spin-up mechanism; and the sustainability of the rotating magnetic field current drive method
Energy Technology Data Exchange (ETDEWEB)
Reynolds, P.; Lees, D. J.; Bickerton, R. J.; Hardcastle, R. A.; Wetherell, A. T.; White, B. M. [United Kingdom Atomic Energy Authority, Culham Laboratory, Abingdon, Berks. (United Kingdom)
1966-04-15
The inter-diffusion of plasma and magnetic field is studied in pinch and hardcore discharges in a large bore, linear discharge tube (TIBER). The variation with magnetic field configuration, initial pressure, peak current, pre-heat conditions and rise time is found. The rapid ('anomalous') field diffusion found in the pinch case is due to a hydromagnetic rather than an electrostatic instability. (author) [French] Les auteurs etudient l'interdiffusion d'un plasma et de champs magnetiques dans la striction rectiligne et la striction tubulaire, au moyen d'une chambre a decharge droite de grand diametre (TIBER). Ils en determinent les variations selon la configuration du champ magnetique, la pression initiale, le courant maximum, les conditions de preechauffage et le temps de montee. La diffusion du champ rapide (anormale) constatee dans le cas de la striction rectiligne s'explique par une instabilite hydromagnetique et non par une instabilite electrostatique. (author) [Spanish] Se estudia la interdifusion plasma-campo magnetico en descargas de estriccion y de nucleo rigido utilizando una camara lineal de descarga de gran diametro interno (TIBER). Se determina la variacion segun la configuracion del campo magnetico, la presion inicial, la intensidad maxima de corriente, las condiciones de precalentamiento y el tiempo de crecimiento. La rapida difusion de los campos ('difusion anomala') observada en el caso de la estriccion se debe mas a una inestabilidad hidromagnetica que a una electrostatica. (author) [Russian] Vzaimnaja diffuzija plazmy i magnitnogo polja issleduetsja v pinch-razrjadah i razrjadah v tverdoj serdcevine v linejnoj razrjadnoj trubke bol'shogo diametra (Tiber). Opredeljajutsja izmenenie konfiguracii magnitnogo polja, nachal'noe davlenie, pikovyj tok, uslovija predvaritel'nogo nagreva i vremja pod'ema. Pokazyvaetsja, chto bystraja (''anomal'naja'') diffuzija polja, ustanovlennaja pri pinche, imeet mesto skoree iz-za gidromagnitnoj, chem iz
Profile stabilization of tilt mode in a Field Reversed Configuration
Energy Technology Data Exchange (ETDEWEB)
Cobb, J.W.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Barnes, D.C. [Los Alamos National Lab., NM (United States)
1993-06-01
The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.
Profile stabilization of tilt mode in a Field Reversed Configuration
International Nuclear Information System (INIS)
Cobb, J.W.; Tajima, T.
1993-06-01
The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P(Ψ), are chosen, including ''hollow'' profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, β sep . The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed
Compact toroid development: activity plan for field reversed configurations
International Nuclear Information System (INIS)
1984-06-01
This document contains the description, goals, status, plans, and approach for the investigation of the properties of a magnetic configuration for plasma confinement identified as the field reversed configuration (FRC). This component of the magnetic fusion development program has been characterized by its potential for physical compactness and a flexible range of output power. The included material represents the second phase of FRC program planning. The first was completed in February 1983, and was reported in DOE/ER-0160; Compact Toroid Development. This planning builds on that previous report and concentrates on the detailed plans for the next several years of the current DOE sponsored program. It has been deliberately restricted to the experimental and theoretical efforts possible within the present scale of effort. A third phase of this planning exercise will examine the subsequent effort and resources needed to achieve near term (1987 to 1990) FRC technical objectives
Classical diffusion in a field-reversed mirror
International Nuclear Information System (INIS)
Auerbach, S.P.; Condit, W.C.
1981-01-01
Classical transport of particles and heat in field-reversed mirrors is discussed. The X-points (field nulls on axis) are shown to have no deleterious effect on transport; this conclusion is true for any transport model. For an elongated Hill's vortex equilibrium the classical diffusion coefficient is calculated analytically and used to construct an analytic solution to the transport equation for particles or energy; this yields exact results for particle and energy confinement times. These life-times are roughly 3 to 6 times shorter than previous heuristic estimates. Experimentally determined life-times are within a factor of 3 to 4 of our estimates. To assess the impact of these results on reactor designs, the authors construct an analytic reactor model in which neutral-beam input balances ion heat loss. Energy loss due to synchrotron radiation is calculated analytically and shown to be negligible, even with no wall reflection. Formulas are presented which give the reactor parameters in terms of plasma temperature, energy multiplication factor Q, and allowed neutron wall loading. The effect of anomalous resistivity is incorporated heuristically by assuming an anomalous resistivity which is enhanced by a factor A over classical resistivity. For large A the minimum power of a reactor scales as Asup(11/6). A=50 gives a reactor design which still seems reasonable, but A=200 leads to extremely large, high-power reactors. (author)
Transport and equilibrium in field-reversed mirrors
International Nuclear Information System (INIS)
Boyd, J.K.
1982-09-01
Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integrals in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior
Introduction to Pinch Technology
DEFF Research Database (Denmark)
Rokni, Masoud
? How to put energy efficiency and other targets like reducing emissions, increasing plant capacities, improve product qualities etc, into a one coherent strategic plan for the overall site? All these questions and more can be answered with a full understanding of Pinch Technology and an awareness...... of the available tools for applying it in a practical way. The aim here is to provide the basic knowledge of pinch technology concept and how it can be applied across a wide range of process industries. The pinch technology was proposed firstly for optimization of heat exchangers and therefore it is introduced...
International Nuclear Information System (INIS)
Yan'kov, V.V.
1991-01-01
Although pinches, unlike tokamaks, have not occupied a central position in fusion research, their structural simplicity and the wealth of physical processes associated with plasma foci have maintained a steady interest. The development of Z-pinches, including plasma foci, micropinches, and dense Z-pinches, is reviewed. Attention is focused on theoretical as opposed to experimental questions, and on recent work rather than the basic results now found in textbooks. Finally, Soviet work is discussed more fully than work done abroad, and applications to controlled fusion are emphasized
International Nuclear Information System (INIS)
Fiksel, G.; Frank, J.; Holly, D.
1993-01-01
Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO 3 or LiNbO 3 as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm 2 10 kW/cm 2 and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor
[Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].
Sabel, B A
2017-02-01
local activation of the visual cortex and global reorganisation of neuronal brain networks. Because modulation of neuroplasticity can strengthen residual vision, the brain deserves a better reputation in ophthalmology for its role in visual rehabilitation. For patients, there is now more light at the end of the tunnel, because vision loss in some areas of the visual field defect is indeed reversible. Georg Thieme Verlag KG Stuttgart · New York.
Influence of pinches on magnetic reconnection in turbulent space plasmas
Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey
A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.
International Nuclear Information System (INIS)
Yan'kov, V.V.
1991-01-01
The development of Z-pinches, including plasma foci, micropinches and dense Z-pinches are reviewed. A special attention is paid to the physics of sausage instability development. Theoretical questions are discussed in more detail that the experimental ones, recent works - to a fuller extent than the fundamental pioneer ones which are included in the textbooks. The Soviet works are given a greater coverage as compared to the foreign ones. An emphasis is made on the problem of controlled thermonuclear fusion
Moving ring field-reversed mirror blanket design considerations
International Nuclear Information System (INIS)
Wong, C.P.C.; Cheng, E.T.; Creedon, L.; Kessel, C.; Norman, J.; Schultz, K.R.
1981-01-01
A blanket design for the Moving Ring Field-Reversed Mirror Reactor (MRFRM) is presented in this paper. The design emphasis is placed on minimizing the induced radioactivities in the first-wall, blanket and shield. To this end, aluminum-alloy was selected as the reference structural material, giving dose rates two weeks after shutdown that are 3 to 4 orders of magnitude lower than comparable steel structures. The aluminum first-wall is water-cooled and thermally insulated from the high temperature SiC-clad Li 2 O tritium breeding zone. A local tritium breeding ratio of 1.05 was obtained for the design. The tritium is extracted from the Li 2 O by the use of a small dry helium purge stream through the SiC tubes. About 1 ppM hydrogen is added to the helium purge stream to enhance the tritium recovery rate. Helium at 28 atmospheres pressure is circulated through the blanket and shield, with an outlet temperature of 850 0 C, which is coupled with an existing small size closed-cycle gas turbine (CCGT) power conversion system. The spatial and temporal variations of the first-wall temperature caused by the translational movement of the plasma rings along the axis of the cylindrical reactor were evaluated. The after-heat cooling problems of the first-wall were also considered
Design of a new large s field reversed configuration experiment
International Nuclear Information System (INIS)
Hoffman, A.L.; Slough, J.T.
1986-01-01
The present TRX facility utilizes programmed formation techniques to form s = 2 plasmas in a 20 cm diameter by 1 m long plasma tube. LSX will have an 80 cm diameter by 4 m long plasma tube and will employ the same programmed formation techniques as TRX. This should result in s = 8 plasmas and FRC flux and energy lifetimes in the msec range if the presently measured scaling persists. LSX will be initially restricted to an external field of 7.5 kG, and typical plasma conditions will be 300 eV electron and ion temperatures and electron or ion densities of about 2x10/sup 15/ cm/sup -3/. The low voltage formation techniques developed in TRX-2 (Eθ /sub values of about 100 volts/cm) will also be employed on LSX, so that relatively low voltage power supplies can be utilized. A modified form of second half cycle circuitry is planned to replace the function of a large reverse bias capacitor bank. The increase in total power supply efficiency allows the primary magnet energy storage to be less that 1 MJ
Fusion proton diagnostic for the C-2 field reversed configurationa)
Magee, R. M.; Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.
2014-11-01
Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50 cm2), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (˜100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.
Study of fusion product effects in field-reversed mirrors
International Nuclear Information System (INIS)
Driemeyer, D.E.
1980-01-01
The effect of fusion products (fps) on Field-Reversed Mirror (FRM) reactor concepts has been evaluated through the development of two new computer models. The first code (MCFRM) treats fps as test particles in a fixed background plasma, which is represented as a fluid. MCFRM includes a Monte Carlo treatment of Coulomb scattering and thus provides an accurate treatment of fp behavior even at lower energies where pitch-angle scattering becomes important. The second code (FRMOD) is a steady-state, globally averaged, two-fluid (ion and electron), point model of the FRM plasma that incorporates fp heating and ash buildup values which are consistent with the MCFRM calculations. These codes have been used extensively in the development of an advanced-fuel FRM reactor design (SAFFIRE). A Catalyzed-D version of the plant is also discussed along with an investigation of the steady-state energy distribution of fps in the FRM. User guides for the two computer codes are also included
Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration
Energy Technology Data Exchange (ETDEWEB)
A.S. Landsman; S.A. Cohen; M. Edelman; G.M. Zaslavsky
2005-04-13
The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar{copyright} surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics.
Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration
International Nuclear Information System (INIS)
Landsman, A.S.; Cohen, S.A.; Edelman, M.; Zaslavsky, G.M.
2005-01-01
The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar(copyright) surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics
International Nuclear Information System (INIS)
York, T.M.; Klevans, E.H.
1978-02-01
Experimental and analytical studies of end loss from a theta pinch have been carried out. Detailed diagnostic studies of a 25 cm long theta pinch operating with reversed trapped fields have been completed; spectroscopic studies, magnetic probe, pressure probe, double diamagnetic loop, luminosity studies and Thomson scattering studies of the plasma have been carried out over the 8 μsec duration of the transient loss. Two new diagnostic techniques have been developed based on the available Thomson scattering laser source. A study of plasma loss from a 10.5 long theta pinch with an axial Twyman-Green interferometer has been completed and reported. The basic studies needed for subsequent experimental work on heat conduction loss being diagnosed by Thomson scattering data in the end region, with and without mirror coil, has been completed as a part of the mirror field studies
Resonant effects on the low frequency vlasov stability of axisymmetric field reversed configurations
International Nuclear Information System (INIS)
Finn, J.M.; Sudan, R.N.
We investigate the effect of particle resonances on low frequency MHD modes in field-reversed geometries, e.g., an ion ring. It is shown that, for sufficiently high field reversal, modes which are hydromagnetically stable can be driven unstable by ion resonances. The stabilizing effect of a toroidal magnetic field is discussed
Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure
Heron, J. T.; Trassin, M.; Ashraf, K.; Gajek, M.; He, Q.; Yang, S. Y.; Nikonov, D. E.; Chu, Y.-H.; Salahuddin, S.; Ramesh, R.
2011-11-01
A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated by the multiferroic. Such electric-field control of a magnetoelectric device demonstrates an avenue for next-generation, low-energy consumption spintronics.
Linear pinch driven by a moving compact torus
International Nuclear Information System (INIS)
Hartman, C.W.; Hammer, J.H.; Eddleman, J.L.
1984-01-01
In principle, a Z-pinch of sufficiently large aspect ratio can provide arbitrarily high magnetic field intensity for the confinement of plasma. In practice, however, achievable field intensities and timescales are limited by parasitic inductances, pulse driver power, current, voltage, and voltage standoff of nearby insulating surfaces or surrounding gas. Further, instabilities may dominate to prevent high fields (kink mode) or enhance them (sausage mode) but in a nonuniform and uncontrollable way. In this paper we discuss an approach to producing a high-field-intensity pinch using a moving compact torus. The moving torus can serve as a very high power driver and may be used to compress a pre-established pinch field, switch on an accelerating pinch field, or may itself be reconfigured to form an intense pinch. In any case, the high energy, high energy density, and high velocity possible with an accelerated compact torus can provide extremely high power to overcome, by a number of orders of magnitude, the limitations to pinch formation described earlier. In this paper we will consider in detail pinches formed by reconfiguration of the compact torus
Internal magnetic field measurements in a translating field-reversed configuration
International Nuclear Information System (INIS)
Armstrong, W.T.; Chrien, R.E.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.
1984-01-01
Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translational velocity v/sub z/ approx. 10 cm/μs). Data have been taken using a low-field (5 kG), 5-mtorr-D 2 gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10 15 cm -3 and x/sub s/ approx. 0.04. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Two translation conditions are studied: (1) translation into a 4 kG guide field (matched guide-field case), resulting in similar plasma parameters but with x/sub s/ approx. .45, and (2) translation into a 1 kG guide field (reduced guide-field case), resulting in expansion of the FRC to conditions of density approx. 3 x 10 14 , external field B 0 approx. 2 kG and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed in both cases. However, the field measurements indicate a possible sideways offset of the FRC from the machine axis in the matched case. There is also evidence of island structure in the reduced guide-field case. Fluctuating levels of B/sub theta/ are ovserved with amplitudes less than or equal to B 0 /3 in both cases. Field measurements on the FRC symmetry axis in the reduced guide-field case indicate β on the separatrix of β/sub s/ approx. = 0.3 (indexed to the external field) has been achieved. This decrease of β/sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement
Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons
International Nuclear Information System (INIS)
Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.
2010-01-01
We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.
The role of radial particle pinches in ELM suppression by resonant magnetic perturbations
International Nuclear Information System (INIS)
Stacey, W.M.; Evans, T.E.
2011-01-01
The force balance in the plasma edge in a matched pair of DIII-D (Luxon 2002 Nucl. Fusion 42 6149) tokamak discharges with and without resonant magnetic perturbations (RMPs) is evaluated in order to investigate the effects on particle transport of RMP applied for the purpose of suppressing edge-localized modes (ELMs). Experimental data are used to evaluate the radial and toroidal force balances, which may be written as a pinch-diffusion relation for the radial ion flux to facilitate investigation of transport effects. The radial electric field in the H-mode plasma had a sharp negative dip in the steep gradient region of the edge pedestal, associated with which was a large inward pinch velocity. The main effect of RMP was to make the edge electric field less negative or more positive, reducing this strong negative dip in the radial electric field (even reversing it from negative to positive over some regions), thereby reducing the strong inward particle pinch in the edge of an H-mode discharge, thus causing a reduction in edge density below the ELM threshold.
A bi-stable SOC model for Earth's magnetic field reversals
International Nuclear Information System (INIS)
Papa, A.R.R.; Espírito Santo, M.A. do; Barbosa, C.S.; Oliva, D.
2013-01-01
We introduce a simple model for Earth's magnetic field reversals. The model consists in random nodes simulating vortices in the liquid core which through a simple updating algorithm converge to a self-organized critical state, with inter-reversal time probability distributions functions in the form of power-laws for long persistence times (as supposed to be in actual reversals). A detailed description of reversals should not be expected. However, we hope to reach a profounder knowledge on reversals through some of the basic characteristic that are well reproduced. The work opens several future research trends.
Mills, R.; Lotoski, J.; Lu, Y.
2017-09-01
EUV continuum radiation (10-30 nm) arising only from very low energy pulsed pinch gas discharges comprising some hydrogen was first observed at BlackLight Power, Inc. and reproduced at the Harvard Center for Astrophysics (CfA). The source was determined to be due to the transition of H to the lower-energy hydrogen or hydrino state H(1/4) whose emission matches that observed wherein alternative sources were eliminated. The identity of the catalyst that accepts 3 · 27.2 eV from the H to cause the H to H(1/4) transition was determined to HOH versus 3H. The mechanism was elucidated using different oxide-coated electrodes that were selective in forming HOH versus plasma forming metal atoms as well as from the intensity profile that was a mismatch for the multi-body reaction required during 3H catalysis. The HOH catalyst was further shown to give EUV radiation of the same nature by igniting a solid fuel comprising a source of H and HOH catalyst by passing a low voltage, high current through the fuel to produce explosive plasma. No chemical reaction can release such high-energy light. No high field existed to form highly ionized ions that could give radiation in this EUV region that persisted even without power input. This plasma source serves as strong evidence for the existence of the transition of H to hydrino H(1/4) by HOH as the catalyst and a corresponding new power source wherein initial extraordinarily brilliant light-emitting prototypes are already producing photovoltaic generated electrical power. The hydrino product of a catalyst reaction of atomic hydrogen was analyzed by multiple spectroscopic techniques. Moreover, the mH catalyst was identified to be active in astronomical sources such as the Sun, stars and interstellar medium wherein the characteristics of hydrino match those of the dark matter of the Universe.
Field-effect magnetization reversal in ferromagnetic semiconductor quantum wellls
Czech Academy of Sciences Publication Activity Database
Lee, B.; Jungwirth, Tomáš; MacDonald, A. H.
2002-01-01
Roč. 65, č. 19 (2002), s. 193311-1-193311-4 ISSN 0163-1829 R&D Projects: GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductor quantum wells * magnetization reversal process Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002
Flux loss and heating during the formation of a field-reversed configuration
International Nuclear Information System (INIS)
Sgro, A.G.; Armstrong, W.T.; Lipson, J.; Tuszewski, M.G.; Cochrane, J.C.
1982-01-01
The simulated time evolution of magnetic field profiles and trapped flux in a field-reversed configuration, when compared with the experiment, implies that the rapid decay of the initial reversed flux is due to a resistivity that is anomalously enhanced over its classical value. A tenuous plasma between the field-reversed configuration and the wall carries a significant fraction of the current, and about half of the anomalous Joule heating must be deposited directly in the ions in order to calculate the correct ion temperature. The fractional flux retention is most sensitive to an increase of applied bias field
Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.
Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick
2005-03-31
Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.
High-energy electron acceleration in the gas-puff Z-pinch plasma
Energy Technology Data Exchange (ETDEWEB)
Takasugi, Keiichi, E-mail: takasugi@phys.cst.nihon-u.ac.jp [Institute of Quantum Science, Nihon University, 1-8 Kanda-Surugadai, Chiyoda, Tokyo 101-8308 (Japan); Miyazaki, Takanori [Institute of Quantum Science, Nihon University, 1-8 Kanda-Surugadai, Chiyoda, Tokyo 101-8308, Japan and Dept. Innovation Systems Eng., Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Nishio, Mineyuki [Anan National College of Technology, 265 Aoki, Minobayashi, Anan, Tokushima 774-0017 (Japan)
2014-12-15
The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.
International Nuclear Information System (INIS)
Kraus, B.; Tittel, W.; Gisin, N.; Nilsson, M.; Kroell, S.; Cirac, J. I.
2006-01-01
We propose a method for efficient storage and recall of arbitrary nonstationary light fields, such as, for instance, single photon time-bin qubits or intense fields, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening and relies on a hidden time-reversal symmetry of the optical Bloch equations describing the propagation of the light field. We briefly discuss experimental realizations of our proposal
Estimation of neutral-beam-induced field reversal in MFTF by an approximate scaling law
International Nuclear Information System (INIS)
Shearer, J.W.
1980-01-01
Scaling rules are derived for field-reversed plasmas whose dimensions are common multiples of the ion gyroradius in the vacuum field. These rules are then applied to the tandem MFTF configuration, and it is shown that field reversal appears to be possible for neutral beam currents of the order of 150 amperes, provided that the electron temperature is at least 500 eV
Current redistribution and generation of kinetic energy in the stagnated Z pinch.
Ivanov, V V; Anderson, A A; Papp, D; Astanovitskiy, A L; Talbot, B R; Chittenden, J P; Niasse, N
2013-07-01
The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch. Secondary implosions of trailing plasma generate kinetic energy and provide enhanced heating and radiation of plasma at stagnation. Hot spots in wire-array Z pinches also provide enhanced radiation of the Z pinch. A collapse of a single hot spot radiates 1%-3% of x-ray energy of the Z pinch with a total contribution of hot spots of 10%-30%.
Observation of the reversed current effect
International Nuclear Information System (INIS)
Jones, I.R.; Silawatshananai, C.
1979-05-01
The paper describes an observation of the reversed current effect, and its consequences, in a 'stabilized' Z-pinch. Magnetic probe measurements and holographic interferometry were used to follow the development of a reversed current layer and to pinpoint its location in the outer region of the pinched plasma column. The subsequent ejection of the outer plasma layer was observed using fast photography
Joint interpretation of two tracer tests with reversed flow fields
International Nuclear Information System (INIS)
Kunstmann, H.; Kinzelbach, W.; Marschall, P.; Li, G.
1995-01-01
Two dipole tracer experiments were performed in a fractured rock at the Grimsel Test Site in February/March 1993. In both experiments NaCl was used as a tracer. The extraction rate was twice the injection rate. In the second experiment injection and extraction were interchanged (Reverse-Experiment). Long tailing was characteristic for the breakthrough curves in both experiments. The tests were interpreted using a single fracture flow model. Tracer transport is described by advection/dispersion along the fracture allowing for diffusion into an immobile matrix. The authors were able to interpret the breakthrough curves for both experiments by one unique set of parameters, describing transport and baseflow. Uniqueness could only be achieved when using the information of both experiments. The authors conclude that performing a Reverse-Experiment is an indispensable tool for parameter identification in dipole tracer tests. A sensitivity analysis suggested that not only matrix diffusion is responsible for the tailing in the breakthrough curves but also transversal dispersivity. Further, the typical exchange time between mobile and immobile media was too small to be attributed to matrix diffusion in the strict sense which will cause tailing even at large spatial and temporal scales. Analysis of the covariance matrices showed that the parameters have small errors but high correlation
Design of equilibrium field control coil system of TPE-RX
Energy Technology Data Exchange (ETDEWEB)
Sato, F.; Hasegawa, M.; Yamane, M.; Oyabu, I.; Urata, K.; Kudough, F. [Mitsubishi Fusion Center, Chiyoda-ku, Tokyo (Japan); Minato, T.; Kiryu, A.; Takagi, S.; Kuno, K.; Sako, K. [Mitsubishi Electric Corp. (Japan). Energy and Industrial Systems Center; Hirano, Y.; Yagi, Y.; Shimada, T.; Sekine, S.; Sakakita, H. [Electrotechnical Lab. (Japan)
1998-07-01
The construction of TPE-RX reversed field pinch(RFP) machine at the Electrotechnical Laboratory (ETL) was complete at the end of 1997 and the coil system showed the expected performances on the test at the ETL site. In the reversed field pinch machine, the plasma is surrounded by a thick metal shell to maintain plasma equilibrium and to obtain plasma stability. We designed the coil system considering an error magnetic field which is generated by an iron core and the poloidal shell gap of the thick shell. This paper describes designs and the related studies of the equilibrium field control coil system of TPE-RX. (author)
Design of equilibrium field control coil system of TPE-RX
International Nuclear Information System (INIS)
Sato, F.; Hasegawa, M.; Yamane, M.; Oyabu, I.; Urata, K.; Kudough, F.; Minato, T.; Kiryu, A.; Takagi, S.; Kuno, K.; Sako, K.
1998-01-01
The construction of TPE-RX reversed field pinch(RFP) machine at the Electrotechnical Laboratory (ETL) was complete at the end of 1997 and the coil system showed the expected performances on the test at the ETL site. In the reversed field pinch machine, the plasma is surrounded by a thick metal shell to maintain plasma equilibrium and to obtain plasma stability. We designed the coil system considering an error magnetic field which is generated by an iron core and the poloidal shell gap of the thick shell. This paper describes designs and the related studies of the equilibrium field control coil system of TPE-RX. (author)
Production of field-reversed plasma with a magnetized coaxial plasma gun
International Nuclear Information System (INIS)
Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.
1981-01-01
Experimental data are presented on the production of field-reversed deuterium plasma by a modified coaxial plasma gun. The coaxial gun is constructed with solenoid coils along the inner and outer electrodes that, together with an external guide field solenoid, form a magnetic cusp at the gun muzzle. The net flux inside the inner electrode is arranged to be opposite the external guide field and is the source of field-reversed flux trapped by the plasma. The electrode length is 145 cm, the diameter of the inner (outer) electrode is 15 cm (32 cm). The gun discharge is driven with a 232-μF 40-kV capacitor bank. Acceleration of plasma through the magnetic cusp at the gun muzzle results in entrainment of field-reversed flux that is detected by magnetic probes 75 cm from the gun muzzle. Field-reversed plasma has been produced for a variety of experimental conditions. In one typical case, the guide magnetic field was B 0 =4.8 kG and the change in axial magnetic field ΔB/sub z/ normalized to B 0 was ΔB/sub z/ /B 0 =-3.1. Total field-reversed flux (poloidal flux) obtained by integrating ΔB/sub z/ profiles is in the range 2 x 10 3 kG cm 2 . Measurement of the orthogonal field component indicates a sizable toroidal field peaked off axis at rapprox. =10 cm with a magnitude of roughly one-half the poloidal field component that is measured on magnetic axis. Reconnection of the poloidal field lines has not been established for the data reported in the paper and will be addressed in future experiments which attempt to trap and confine the field-reversed plasma in a magnetic mirror
Field-reversal experiments in the mirror fusion test facility (MFTF)
International Nuclear Information System (INIS)
Shearer, J.W.; Condit, W.C.
1977-01-01
Detailed consideration of several aspects of a field-reversal experiment was begun in the Mirror Fusion Test Facility (MFTF): Model calculations have provided some plausible parameters for a field-reversed deuterium plasma in the MFTF, and a buildup calculation indicates that the MFTF neutral-beam system is marginally sufficient to achieve field reversal by neutral injection alone. However, the many uncertainties indicate the need for further research and development on alternate buildup methods. A discussion of experimental objectives is presented and important diagnostics are listed. The range of parameter space accessible with the MFTF magnet design is explored, and we find that with proper aiming of the neutral beams, meaningful experiments can be performed to advance toward these objectives. Finally, it is pointed out that if we achieve enhanced n tau confinement by means of field reversal, then quasi-steady-state operation of MFTF is conceivable
Importance of field-reversing ion ring formation in hot electron plasma
Energy Technology Data Exchange (ETDEWEB)
Ikuta, K.
1975-11-01
Formation of the field reversing ion ring in the mirror confined hot electron plasma may offer a device to confine the fusion plasma even under the restriction of the present technology. (Author) (GRA)
International Nuclear Information System (INIS)
Armstrong, W.T.; Cochrane, J.C.; Lipson, J.; Tuszewski, M.
1981-02-01
Tearing and reconnection processes during the formation and quiescent periods of a field-reversed configuration are studied with an axial array of compensated diamagnetic loops. Several representative plasma shots are documented
Flux loss during the equilibrium phase of field-reversed configurations
International Nuclear Information System (INIS)
Tuszewski, M.; Armstrong, W.T.; Bartsch, R.R.; Chrien, R.E.; Cochrane, J.C. Jr.; Kewish, R.W. Jr.; Klingner, P.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.
1982-01-01
Field-reversed configurations are consistently formed at low filling pressures in the FRX-C device, with decay time of the trapped flux after formation much larger than the stable period. This contrasts with previous experimental observations
Flux loss during the equilibrium phase of field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Tuszewski, M.; Armstrong, W.T.; Bartsch, R.R.; Chrien, R.E.; Cochrane, J.C. Jr.; Kewish, R.W. Jr.; Klingner, P.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.
1982-10-01
Field-reversed configurations are consistently formed at low filling pressures in the FRX-C device, with decay time of the trapped flux after formation much larger than the stable period. This contrasts with previous experimental observations.
Staged theta pinch experiments
International Nuclear Information System (INIS)
Linford, R.K.; Downing, J.N.; Gribble, R.F.; Jacobson, A.R.; Platts, D.A.; Thomas, K.S.
1976-01-01
Two implosion heating circuits are being experimentally tested. The principal experiment in the program is the 4.5-m-long Staged Theta Pinch (STP). It uses two relatively low energy (50kJ and 100 kJ), high voltage (125 kV) capacitor banks to produce the theta pinch plasma inside the 20 cm i.d. quartz discharge tube. A lower voltage (50 kV), higher energy (750 kJ) capacitor bank is used to contain the plasma and provide a variable amount of adiabatic compression. Because the experiment produces a higher ratio of implosion heating to compressional heating than conventional theta pinches, it should be capable of producing high temperature plasmas with a much larger ratio of plasma radius to discharge tube radius than has been possible in the past. The Resonant Heating Experiment (RHX) in its initial configuration is the same as a 0.9-m-long section of the high voltage part of the STP experiment and all the plasma results here were obtained with the experiment in that configuration. Part of the implosion bank will be removed and a low inductance crowbar added to convert it to the resonant heating configuration. (U.K.)
International Nuclear Information System (INIS)
Cook, D.
1998-06-01
In the past thirty-six months, great progress has been made in x-ray production using high-current z-pinches. Today, the x-ray energy and power output of the Z accelerator (formerly PBFA-II) is the largest available in the laboratory. These z-pinch x-ray sources have the potential to drive high-yield ICF reactions at affordable cost if several challenging technical problems can be overcome. In this paper, the recent technical progress with Z-pinches will be described, and a technical strategy for achieving high-yield ICF with z-pinches will be presented
Polar Magnetic Field Reversals of the Sun in Maunder Minimum
Indian Academy of Sciences (India)
tribpo
The data on polar migration of solar magnetic fields were obtained on the basis of. Η alpha magnetic synoptic charts for 1880 1991 using Kodaikanal, Kislovodsk and Italian observations, and Atlas of Η alpha charts (Mclntosh 1979; Makarov &. Fatianov 1980; Makarov & Sivaraman 1989; Makarov 1994). The Wolf numbers ...
Particle-in-cell simulations of Earth-like magnetosphere during a magnetic field reversal
Barbosa, M. V. G.; Alves, M. V.; Vieira, L. E. A.; Schmitz, R. G.
2017-12-01
The geologic record shows that hundreds of pole reversals have occurred throughout Earth's history. The mean interval between the poles reversals is roughly 200 to 300 thousand years and the last reversal occurred around 780 thousand years ago. Pole reversal is a slow process, during which the strength of the magnetic field decreases, become more complex, with the appearance of more than two poles for some time and then the field strength increases, changing polarity. Along the process, the magnetic field configuration changes, leaving the Earth-like planet vulnerable to the harmful effects of the Sun. Understanding what happens with the magnetosphere during these pole reversals is an open topic of investigation. Only recently PIC codes are used to modeling magnetospheres. Here we use the particle code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] to simulate an Earth-like magnetosphere at three different times along the pole reversal process. The code was modified, so the Earth-like magnetic field is generated using an expansion in spherical harmonics with the Gauss coefficients given by a MHD simulation of the Earth's core [Glatzmaier et al, Nature, 1995; 1999; private communication to L.E.A.V.]. Simulations show the qualitative behavior of the magnetosphere, such as the current structures. Only the planet magnetic field was changed in the runs. The solar wind is the same for all runs. Preliminary results show the formation of the Chapman-Ferraro current in the front of the magnetosphere in all the cases. Run for the middle of the reversal process, the low intensity magnetic field and its asymmetrical configuration the current structure changes and the presence of multiple poles can be observed. In all simulations, a structure similar to the radiation belts was found. Simulations of more severe solar wind conditions are necessary to determine the real impact of the reversal in the magnetosphere.
International Nuclear Information System (INIS)
Zhou, Dayu; Guan, Yan; Vopson, Melvin M.; Xu, Jin; Liang, Hailong; Cao, Fei; Dong, Xianlin; Mueller, Johannes; Schenk, Tony; Schroeder, Uwe
2015-01-01
HfO 2 -based binary lead-free ferroelectrics show promising properties for non-volatile memory applications, providing that their polarization reversal behavior is fully understood. In this work, temperature-dependent polarization hysteresis measured over a wide applied field range has been investigated for Si-doped HfO 2 ferroelectric thin films. Our study indicates that in the low and medium electric field regimes (E < twofold coercive field, 2E c ), the reversal process is dominated by the thermal activation on domain wall motion and domain nucleation; while in the high-field regime (E > 2E c ), a non-equilibrium nucleation-limited-switching mechanism dominates the reversal process. The optimum field for ferroelectric random access memory (FeRAM) applications was determined to be around 2.0 MV/cm, which translates into a 2.0 V potential applied across the 10 nm thick films
The paleomagnetic field and possible mechanisms for the formation of reversed rock magnetization
International Nuclear Information System (INIS)
Trukhin, Vladimir I.; Bezaeva, Natalia; Kurochkina, Evgeniya
2006-01-01
Investigations of ancient magnetized rocks show that their natural remanent magnetization (NRM) can be oriented in the direction of modern geomagnetic field (GMF) as well as in the opposite direction. It is supposed that reversed NRM is related to reversals of the GMF in the past geological periods. During reversals, the strength of the GMF is near zero and can cause the destruction of living organisms as a result of powerful space and solar radiation, which, in the absence of the GMF, can reach the Earth's surface. That is why the question of reality of the GMF reversals is of global ecological importance. There is also another natural mechanism for the formation of reversed NRM-the self-reversal of magnetization as a result of thermomagnetization of rocks. In the paper, both natural processes for the formation of reversed NRM in rocks are discussed, and the results of experimental research on the physical mechanism of self-reversal of magnetization in continental and oceanic rocks are presented. The results of computer modeling of the self-reversal phenomenon are also presented
The paleomagnetic field and possible mechanisms for the formation of reversed rock magnetization
Energy Technology Data Exchange (ETDEWEB)
Trukhin, Vladimir I. [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation)]. E-mail: trukhin@phys.msu.ru; Bezaeva, Natalia [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation); Kurochkina, Evgeniya [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation)
2006-05-15
Investigations of ancient magnetized rocks show that their natural remanent magnetization (NRM) can be oriented in the direction of modern geomagnetic field (GMF) as well as in the opposite direction. It is supposed that reversed NRM is related to reversals of the GMF in the past geological periods. During reversals, the strength of the GMF is near zero and can cause the destruction of living organisms as a result of powerful space and solar radiation, which, in the absence of the GMF, can reach the Earth's surface. That is why the question of reality of the GMF reversals is of global ecological importance. There is also another natural mechanism for the formation of reversed NRM-the self-reversal of magnetization as a result of thermomagnetization of rocks. In the paper, both natural processes for the formation of reversed NRM in rocks are discussed, and the results of experimental research on the physical mechanism of self-reversal of magnetization in continental and oceanic rocks are presented. The results of computer modeling of the self-reversal phenomenon are also presented.
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-12-21
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.
Theoretical and experimental studies of field-reversed configurations
International Nuclear Information System (INIS)
Chrien, R.E.; Hugrass, W.N.; Armstrong, W.T.
1986-01-01
The FRX-C/T formation region has been enlarged in diameter by 50%, and quasi-steady cusp coils have been installed to compare tearing and non-tearing formation. FRCs with significantly larger poloidal flux (≤8 mWb) and s (≤4) have been formed. However, their flux confinement was degraded compared with earlier FRX-C results. The n = 2 rotational instability has been completely suppressed on translated FRCs in FRX-C/T. Nearly equal stabilization thresholds were observed for straight and helical quadrupole fields, in contrast with another experiment
Theoretical and experimental studies of field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Chrien, R.E.; Hugrass, W.N.; Armstrong, W.T.; Caramana, E.J.; Lewis, H.R.; Linford, R.K.; Ling, K.M.; McKenna, K.F.; Rej, D.J.; Schwarzmeier, J.L.
1986-01-01
The FRX-C/T formation region has been enlarged in diameter by 50%, and quasi-steady cusp coils have been installed to compare tearing and non-tearing formation. FRCs with significantly larger poloidal flux (less than or equal to8 mWb) and s (less than or equal to4) have been formed. However, their flux confinement was degraded compared with earlier FRX-C results. The n = 2 rotational instability has been completely suppressed on translated FRCs in FRX-C/T. Nearly equal stabilization thresholds were observed for straight and helical quadrupole fields, in contrast with another experiment.
Nonlinear stage of a Z-pinch instability
International Nuclear Information System (INIS)
Garanin, S.F.; Chernyshev, Y.D.
1987-01-01
The nonlinear evolution of the sausage instability is analyzed for a Z-pinch with a fully developed skin effect in the current. Two-dimensional numerical calculations carried out on the sausage instability show that its occurrence leads to a stage describable by a self-similar solution when the length of the neck is fixed and the plasma compression is isentropic. At a perturbation wavelength small in comparison with the pinch radius, this stage is preceded by a stage which reduces to a nonlinear Rayleigh--Taylor instability. The dynamics of the motion of magnetic field ''bubbles'' and of plasma ''jets'' is analyzed in this case. The plasma jets emerging from the pinch do not block the pinch from the current source
International Nuclear Information System (INIS)
Kapchinskij, M.I.; Korenev, I.L.; Roginskij, L.A.
1990-01-01
Dynamics of charged particle beams in curvilinear transport channels comprising sections with counter direction of longitudinal focusing magnetic field is considered. It is shown that such magnetic field reverses reduce sufficiently the particle deflections conditioned by momentum spread of longitudinal motion and their application allows one to completely project the achromatic channel
International Nuclear Information System (INIS)
EOz, E.; Myers, C.E.; Edwards, M.R.; Berlinger, B.; Brooks, A.; Cohen, S.A.
2011-01-01
The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMF o from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τ fc ) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with τ fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 10 3 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.
Observation of tilt asymmetries in field-reversed configurations
International Nuclear Information System (INIS)
Tuszewski, M.; Barnes, D.C.; Klingner, P.; Ng, Chung.
1989-01-01
In recent years, part of the experimental effort on the FRX-C/LSM device has been devoted to understanding why good FRC confinement is observed only in a narrow window of the operating parameter space (fill pressures less than 5 mtorr and bias fields less than 0.8--0.9 kG). The transition from good to bad confinement has been shown for some time to correlate with strong axial shocks, suggesting a formation or stability problem. More recently, FRC magnetic asymmetries have been observed whenever the confinement was poor. To gain further understanding, a 64-coil probe array was built, and data from over 700 discharges were collected during the summer of 1989. We summarize in this paper the results of a preliminary analysis of these data. 5 refs., 4 figs
Stability of axisymmetric plasmas in closed line magnetic fields
International Nuclear Information System (INIS)
Simakov, A.N.; Vernon Wong, H.; Berk, H.L.
2003-01-01
The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study the stability of pressure driven shear Alfven modes. A point dipole is considered in detail to demonstrate that equilibria exist which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated for Z pinch and point dipole equilibria by means of resistive MHD theory. Kinetic theory is used to study drift frequency modes and their interaction with MHD modes near the ideal stability boundary for different collisionality regimes. Effects of collisional dissipation on drift mode stability are explicitly evaluated and applied to a Z pinch. The role of finite Larmor radius effects and drift reversed particles in modifying ideal stability thresholds is examined. (author)
Pacca, Igor G.; Frigo, Everton; Hartmann, Gelvam A.
2015-01-01
The Earth's rotation can change as a result of several internal and external processes, each of which is at a different timescale. Here, we present some possible connections between the Earth's rotation variations and the geomagnetic reversal frequency rates over the past 120 Myr. In addition, we show the possible relationship between the geomagnetic field reversal frequency and the δ18O oscillations. Because the latter reflects the glacial and interglacial periods, we hypothesize that it can...
PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges
Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.
2018-05-01
Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.
Damping Dependence of Reversal Magnetic Field on Co-based Nano-Ferromagnetic with Thermal Activation
Directory of Open Access Journals (Sweden)
Nadia Ananda Herianto
2015-02-01
Full Text Available Currently, hard disk development has used HAMR technology that applies heat to perpendicular media until near Curie temperature, then cools it down to room temperature. The use of HAMR technology is significantly influence by Gilbert damping constants. Damping affects the magnetization reversal and coercivity field. Simulation is used to evaluate magnetization reversal by completing Landau-Lifshitz-Gilbert explicit equation. A strong ferromagnetic cobalt based material with size 50×50×20 nm3 is used which parameters are anisotropy materials 3.51×106 erg/cm3, magnetic saturation 5697.5 G, exchange constant 1×10-7 erg/cm, and various Gilbert damping from 0.09 to 0.5. To observe the thermal effect, two schemes are used which are Reduced Barrier Writing and Curie Point Writing. As a result, materials with high damping is able to reverse the magnetizations faster and reduce the energy barrier. Moreover, it can lower the minimum field to start the magnetizations reversal, threshold field, and probability rate. The heating near Curie temperature has succeeded in reducing the reversal field to 1/10 compared to writing process in absence of thermal field.
History of HERMES III diode to z-pinch breakthrough and beyond :
Energy Technology Data Exchange (ETDEWEB)
Sanford, Thomas Williamlou.
2013-04-01
HERMES III and Z are two flagship accelerators of Sandias pulsed-power program developed to generate intense -ray fields for the study of nuclear radiation effects, and to explore high energy-density physics (including the production of intense x-ray fields for Inertia Confinement Fusion [ICF]), respectively. A diode at the exit of HERMES III converts its 20-MeV electron beam into -rays. In contrast, at the center of Z, a z-pinch is used to convert its 20-MA current into an intense burst of x-rays. Here the history of how the HERMES III diode emerged from theoretical considerations to actual hardware is discussed. Next, the reverse process of how the experimental discovery of wire-array stabilization in a z-pinch, led to a better theory of wirearray implosions and its application to one of the ICF concepts on Z--the DH (Dynamic Hohlraum) is reviewed. Lastly, the report concludes with how the unexpected axial radiation asymmetry measured in the DH is understood. The first discussion illustrates the evolution of physics from theory-to-observationto- refinement. The second two illustrate the reverse process of observationto- theory-to refinement. The histories are discussed through the vehicle of my research at Sandia, illustrating the unique environment Sandia provides for personal growth and development into a scientific leader.
Stochastic disk dynamo as a model of reversals of the Earth's magnetic field
International Nuclear Information System (INIS)
Ito, H.M.
1988-01-01
A stochastic model is given of a system composed of N similar disk dynamos interacting with one another. The time evolution of the system is governed by a master equation of the class introduced by van Kampen as relevant to stochastic macrosystems. In the model, reversals of the Earth's magnetic field are regarded as large deviations caused by a small random force of O(N/sup -1/2/) from one of the field polarities to the other. Reversal processes are studied by simulation, which shows that the model explains well the activities of the paleomagnetic field inclusive of statistical laws of the reversal sequence and the intensity distribution. Comparison are made between the model and dynamical disk dynamo models
Effects of boundary conditions on temperature and density in an EXTRAP Z-pinch
International Nuclear Information System (INIS)
Drake, J.R.; Karlsson, P.
1985-08-01
Using the fluid equations, we examine transport in an Extrap configuration by carrying out calculations incorporating model profiles for the density and temperature. The goal of this analysis is to examine the scaling of the pinch equilibrium plasma density, temperature and radius with parameters that are characteristic for Extrap Z-pinches. These parameters include the discharge current, the neutral hydrogen filling density, an oxygen impurity fractional concentration and the condition at the pinch boundary. An Extrap Z-pinch is a pinch discharge where the current channel has a characteristic non-circular cross-section achieved by bounding the discharge by a magnetic separatrix produced when a vacuum octupole magnetic field, generated by currents in external conductors, combines with the self-magnetic field produced by the discharge current. The pinch boundary is changed from a plasma-vacuum boundary to an interface between a high-beta pinch plasma and a low-beta plasma contained in the vacuum magnetic field. The energy that is lost from the pinch region sustains this boundary layer. The introduction of a separatrix boundary around the pinch with four X-point nulls deteriorates the containment of the pinch somewhat. However the presence of the warm, low-beta plasma scrape-off layer, which provides a boundary condition on the pinch, tends to counteract the negative effects of the poorer confinement. Thus the equilibrium parameters that characterize the pinch may not be severely deteriorated by the introduction of the separatrix when the entire configuration, including the scrape-off layer, is considered. (author)