WorldWideScience

Sample records for reverse tricarboxylic acid

  1. Attachment of di- and tricarboxylic acids to the starting structure of kukersite kerogen

    Energy Technology Data Exchange (ETDEWEB)

    Pobul, L; Mannik, A

    1974-01-01

    Oxidation of the kerogen of kukersite by alkaline permanganate at 50/sup 0/C gave a product containing straight-chain dicarboxylic acids (up to 80%), among which C/sub 4/-C/sub 10/ acids predominated (over 70%). Tricarboxylic acids (15 to 20%) and ..cap alpha..-methyl dicarboxylic acids (4 to 10%) were present. Straight-chain monocarboxylic acids, their isomers, and phenyl derivatives contributed less than 1%. Probably, ..cap alpha..-methyl dicarboxylic and tricarboxylic acids were original structural units of the kerogen. Similar oxidations of Baltic shale indicated that kerogens of different combustible shales differ in chemical composition, but the content of polymers of fatty acids was characteristic. Oxidation of the polymeric acids gave straight-chain mono- and dicarboxylic acids.

  2. Characterization of novel di- and tricarboxylic acids in fine tropical aerosols

    Czech Academy of Sciences Publication Activity Database

    Zdráhal, Zbyněk; Vermeylen, R.; Claeys, M.; Maenhaut, W.; Guyon, P.; Artaxo, P.

    2001-01-01

    Roč. 36, č. 4 (2001), s. 403-416 ISSN 1076-5174 Institutional research plan: CEZ:AV0Z4031919 Keywords : dicarboxylic acids * tricarboxylic acids * gas chromatography/mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.685, year: 2001

  3. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    Science.gov (United States)

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  4. Alteration of tricarboxylic acid cycle metabolism in rat brain slices by halothane

    International Nuclear Information System (INIS)

    Cheng, S.C.; Brunner, E.A.

    1978-01-01

    Metabolism of [2- 14 C] pyruvate, [1- 14 C] acetate and [5- 14 C] citrate in rat cerebral cortex slices was studied in the presence of halothane. Metabolites assayed include acetylcholine (ACh), citrate, glutamate, glutamineγ-aminobutyrate (GABA) and aspartate. The trichloroacetic acid soluble extract, the trichloracetic acid insoluble precipitate and its lipid extract were also studied. In control experiments, pyruvate preferentially labelled ACh, citrate, glutamate, GABA and aspartate. Acetate labelled ACh, but to a lesser extent than pyruvate. Acetate also labelled lipids and glutamine. Citrate labelled lipids but not ACh and served as a preferential precursor for glutamine. These data support a three-compartment model for cerebral tricarboxylic acid cycle metabolism. Halothane caused increases in GABA and aspartate contents and a decrease in ACh content. It has no effect on the contents of citrate, glutamate and glutamine. Halothane preferentially inhibited the metabolic transfer of radioactivity from pyruvate into almost all metabolites, an effect probably not related to pyruvate permeability. This is interpreted as halothane depression of the large metabolic compartment which includes the nerve endings. Halothane increased the metabolic transfer of radioactivity from acetate into lipids but did not alter such a transfer into the trichloroacetic acid extract. Halothane increased the metabolic transfer of radioactivity from citrate into the trichloroacetic acid precipitate, lipids and especially glutamine. Transfer of citrate radioactivity into GABA was somewhat decreased. The differential effects of halothane on acetate and citrate utilization suggest that the small metabolic compartment should be subdivided. Therefore, at least three metabolic compartments are demonstrated. Halothane did not interfere with the dicarboxylic acid portion of the tricarboxylic acid cycle. (author)

  5. Effects of continuous triiodothyronine infusion on the tricarboxylic acid cycle in the normal immature swine heart under extracorporeal membrane oxygenation in vivo.

    Science.gov (United States)

    Kajimoto, Masaki; Priddy, Colleen M O'Kelly; Ledee, Dolena R; Xu, Chun; Isern, Nancy; Olson, Aaron K; Portman, Michael A

    2014-04-15

    Extracorporeal membrane oxygenation (ECMO) is frequently used in infants with postoperative cardiopulmonary failure. ECMO also suppresses circulating triiodothyronine (T3) levels and modifies myocardial metabolism. We assessed the hypothesis that T3 supplementation reverses ECMO-induced metabolic abnormalities in the immature heart. Twenty-two male Yorkshire pigs (age: 25-38 days) with ECMO received [2-(13)C]lactate, [2,4,6,8-(13)C4]octanoate (medium-chain fatty acid), and [U-(13)C]long-chain fatty acids as metabolic tracers either systemically (totally physiological intracoronary concentration) or directly into the coronary artery (high substrate concentration) for the last 60 min of each protocol. NMR analysis of left ventricular tissue determined the fractional contribution of these substrates to the tricarboxylic acid cycle. Fifty percent of the pigs in each group received intravenous T3 supplement (bolus at 0.6 μg/kg and then continuous infusion at 0.2 μg·kg(-1)·h(-1)) during ECMO. Under both substrate loading conditions, T3 significantly increased the fractional contribution of lactate with a marginal increase in the fractional contribution of octanoate. Both T3 and high substrate provision increased the myocardial energy status, as indexed by phosphocreatine concentration/ATP concentration. In conclusion, T3 supplementation promoted lactate metabolism to the tricarboxylic acid cycle during ECMO, suggesting that T3 releases the inhibition of pyruvate dehydrogenase. Manipulation of substrate utilization by T3 may be used therapeutically during ECMO to improve the resting energy state and facilitate weaning.

  6. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  7. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin.

    Science.gov (United States)

    Shimizu, Motoyuki; Yuda, Naoki; Nakamura, Tomofumi; Tanaka, Hiroo; Wariishi, Hiroyuki

    2005-10-01

    A proteomic differential display technique was utilized to study cellular responses of Phanerochaete chrysosporium exposed to vanillin, one of the key intermediates found during lignin biodegradation. Intracellular proteins were resolved by 2-DE and target protein spots were identified using MALDI-MS after in-gel tryptic digestions. Upon addition of vanillin to P. chrysosporium, up-regulation of homogentisate 1,2-dioxygenase, 1,4-benzoquinone reductases, aldehyde dehydrogenase, and aryl-alcohol dehydrogenase, which seem to play roles in vanillin metabolism, was observed. Furthermore, enzymes involved in glycolysis, the tricarboxylic acid cycle, the pentose-phosphate cycle, and heme biosynthesis were also activated. Up-regulation of extracellular peroxidase was also observed. One of the most unique phenomena against exogenous vanillin was a switch from the glyoxylate cycle to the tricarboxylic acid cycle, where a drastic increase in isocitrate dehydrogenase activity was observed. The exogenous addition of other aromatic compounds also caused an increase in its activity, which in turn triggered NAD(P)H production via the action of dehydrogenases in the tricarboxylic acid cycle, heme biosynthesis via the action of aminolevulinic acid synthase on succinyl-CoA, and energy production via activation of the mitochondrial electron transfer system. These metabolic shifts seem to be required for activating a metabolic system for aromatic compounds.

  8. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    Directory of Open Access Journals (Sweden)

    Marie Izac

    Full Text Available It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  9. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    , and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA...... tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U-13 C]glucose. The presence of metformin did not compromise the viability of cultured...

  10. Tricarboxylic acid cycle activity measured by 13C magnetic resonance spectroscopy in rats subjected to the kaolin model of obstructed hydrocephalus

    DEFF Research Database (Denmark)

    Melø, Torun M; Håberg, Asta K; Risa, Øystein

    2011-01-01

    in the amounts of glutamate, alanine and taurine. In addition, the concentration of the neuronal marker N-acetyl aspartate was decreased. (13)C Labelling of most amino acids derived from [1,6-(13)C]glucose was unchanged 2 weeks after hydrocephalus induction. The only indication of astrocyte impairment......Evaluating early changes in cerebral metabolism in hydrocephalus can help in the decision making and the timing of surgical intervention. This study was aimed at examining the tricarboxylic acid (TCA) cycle rate and (13)C label incorporation into neurotransmitter amino acids and other compounds 2...

  11. Genetic Investigation of Tricarboxylic Acid Metabolism during the Plasmodium falciparum Life Cycle

    Directory of Open Access Journals (Sweden)

    Hangjun Ke

    2015-04-01

    Full Text Available New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO lines that delete six of the eight mitochondrial tricarboxylic acid (TCA cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of 13C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development.

  12. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    production. In addition, T23-treatment strongly increased the molecular carbon labeling of the TCA cycle intermediates citrate, succinate, fumarate and malate, and significantly increased the incorporation of (13)C-labelling into the amino acids glutamate, glutamine and aspartate. These results clearly......Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases and has been considered as potential anti-cancer drug. T23 was recently reported to acutely stimulate the glycolytic flux in primary cultured astrocytes. To investigate whether T23 also affects the tricarboxylic acid (TCA...

  13. Development of a LC-MS/MS Method for the Simultaneous Detection of Tricarboxylic Acid Cycle Intermediates in a Range of Biological Matrices

    Directory of Open Access Journals (Sweden)

    Omar Al Kadhi

    2017-01-01

    Full Text Available It is now well-established that perturbations in the tricarboxylic acid (TCA cycle play an important role in the metabolic transformation occurring in cancer including that of the prostate. A method for simultaneous qualitative and quantitative analysis of TCA cycle intermediates in body fluids, tissues, and cultured cell lines of human origin was developed using a common C18 reversed-phase column by LC-MS/MS technique. This LC-MS/MS method for profiling TCA cycle intermediates offers significant advantages including simple and fast preparation of a wide range of human biological samples. The analytical method was validated according to the guideline of the Royal Society of Chemistry Analytical Methods Committee. The limits of detection were below 60 nM for most of the TCA intermediates with the exception of lactic and fumaric acids. The calibration curves of all TCA analytes showed linearity with correlation coefficients r2>0.9998. Recoveries were >95% for all TCA analytes. This method was established taking into consideration problems and limitations of existing techniques. We envisage that its application to different biological matrices will facilitate deeper understanding of the metabolic changes in the TCA cycle from in vitro, ex vivo, and in vivo studies.

  14. Genetic investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle.

    Science.gov (United States)

    Ke, Hangjun; Lewis, Ian A; Morrisey, Joanne M; McLean, Kyle J; Ganesan, Suresh M; Painter, Heather J; Mather, Michael W; Jacobs-Lorena, Marcelo; Llinás, Manuel; Vaidya, Akhil B

    2015-04-07

    New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO) lines that delete six of the eight mitochondrial tricarboxylic acid (TCA) cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of (13)C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Metabonomics Indicates Inhibition of Fatty Acid Synthesis, β-Oxidation, and Tricarboxylic Acid Cycle in Triclocarban-Induced Cardiac Metabolic Alterations in Male Mice.

    Science.gov (United States)

    Xie, Wenping; Zhang, Wenpeng; Ren, Juan; Li, Wentao; Zhou, Lili; Cui, Yuan; Chen, Huiming; Yu, Wenlian; Zhuang, Xiaomei; Zhang, Zhenqing; Shen, Guolin; Li, Haishan

    2018-02-14

    Triclocarban (TCC) has been identified as a new environmental pollutant that is potentially hazardous to human health; however, the effects of short-term TCC exposure on cardiac function are not known. The aim of this study was to use metabonomics and molecular biology techniques to systematically elucidate the molecular mechanisms of TCC-induced effects on cardiac function in mice. Our results show that TCC inhibited the uptake, synthesis, and oxidation of fatty acids, suppressed the tricarboxylic acid (TCA) cycle, and increased aerobic glycolysis levels in heart tissue after short-term TCC exposure. TCC also inhibited the nuclear peroxisome proliferator-activated receptor α (PPARα), confirming its inhibitory effects on fatty acid uptake and oxidation. Histopathology and other analyses further confirm that TCC altered mouse cardiac physiology and pathology, ultimately affecting normal cardiac metabolic function. We elucidate the molecular mechanisms of TCC-induced harmful effects on mouse cardiac metabolism and function from a new perspective, using metabonomics and bioinformatics analysis data.

  16. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting.

    Science.gov (United States)

    Lu, Qian; Zhao, Yue; Gao, Xintong; Wu, Junqiu; Zhou, Haixuan; Tang, Pengfei; Wei, Qingbin; Wei, Zimin

    2018-05-01

    Composting is an environment friendly method to recycling organic waste. However, with the increasing concern about greenhouse gases generated in global atmosphere, it is significant to reduce the emission of carbon dioxide (CO 2 ). This study analyzes tricarboxylic acid (TCA) cycle regulators on the effect of reducing CO 2 emission, and the relationship among organic component (OC) degradation and transformation and microorganism during composting. The results showed that adding adenosine tri-phosphate (ATP) and nicotinamide adenine dinucleotide (NADH) could enhance the transformation of OC and increase the diversity of microorganism community. Malonic acid (MA) as a competitive inhibitor could decrease the emission of CO 2 by inhibiting the TCA cycle. A structural equation model was established to explore effects of different OC and microorganism on humic acid (HA) concentration during composting. Furthermore, added MA provided an environmental benefit in reducing the greenhouse gas emission for manufacture sustainable products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. In Folio Respiratory Fluxomics Revealed by 13C Isotopic Labeling and H/D Isotope Effects Highlight the Non-cyclic Nature of the Tricarboxylic Acid 'Cycle' in Illuminated Leaves

    International Nuclear Information System (INIS)

    Tcherkez, G.; Mahe, A.; Gauthier, P.; Hodges, M.; Tcherkez, G.; Mauve, C.; Cornic, G.; Gout, E.; Bligny, R.

    2009-01-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, 13 C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA 'cycle' does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. (authors)

  18. Aminocaproic Acid and Tranexamic Acid Fail to Reverse Dabigatran-Induced Coagulopathy.

    Science.gov (United States)

    Levine, Michael; Huang, Margaret; Henderson, Sean O; Carmelli, Guy; Thomas, Stephen H

    In recent years, dabigatran has emerged as a popular alternative to warfarin for treatment of atrial fibrillation. If rapid reversal is required, however, no reversal agent has clearly been established. The primary purpose of this manuscript was to evaluate the efficacy of tranexamic acid and aminocaproic acid as agents to reverse dabigatran-induced coagulopathy. Rats were randomly assigned to 6 groups. Each rat received either dabigatran or oral placebo, followed by saline, tranexamic acid, or aminocaproic acid. An activated clotting test was used to measure the coagulopathy. Neither tranexamic acid nor aminocaproic acid successfully reversed dabigatran-induced coagulopathy. In this rodent model of dabigatran-induced coagulopathy, neither tranexamic acid nor aminocaproic acid were able to reverse the coagulopathy.

  19. A plant pathogenic bacterium exploits the tricarboxylic acid cycle metabolic pathway of its insect vector

    Science.gov (United States)

    Nehela, Yasser; Hijaz, Faraj; Vincent, Christopher I.

    2018-01-01

    ABSTRACT Huanglongbing in citrus is caused by a phloem-limited, uncultivable, gram-negative α-proteobacterium, Candidatus Liberibacter asiaticus (CLas). CLas is transmitted by the phloem-sucking insect, Diaphorina citri (Hemiptera: Liviidae), in a persistent, circulative, and propagative manner. In this study, we investigated the metabolomic and respiration rates changes in D. citri upon infection with CLas using gas chromatography-mass spectrometry (GC-MS) and gas exchange analysis. The level of glycine, L-serine, L-threonine, and gamma-amino butyric acid were higher in CLas-infected D. citri, while L-proline, L-aspartic acid, and L-pyroglutamic acid were lower in CLas-infected D. citri compared with the control. Citric acid was increased in CLas-infected D. citri, whereas malic and succinic acids were reduced. Interestingly, most of the reduced metabolites such as malate, succinate, aspartate, and L-proline are required for the growth of CLas. The increase in citric acid, serine, and glycine indicated that CLas induced glycolysis and the tricarboxylic acid cycle (TCA) in its vector. In agreement with the GC-MS results, the gene expression results also indicated that glycolysis and TCA were induced in CLas-infected D. citri and this was accompanied with an increases in respiration rate. Phosphoric acid and most of the sugar alcohols were higher in CLas-infected D. citri, indicating a response to the biotic stress or cell damage. Only slight increases in the levels of few sugars were observed in CLas-infected D. citri, which indicated that sugars are tightly regulated by D. citri. Our results indicated that CLas induces nutrient and energetic stress in its host insect. This study may provide some insights into the mechanism of colonization of CLas in its vector. PMID:28594267

  20. Origin of the Reductive Tricarboxylic Acid (rTCA Cycle-Type CO2 Fixation: A Perspective

    Directory of Open Access Journals (Sweden)

    Norio Kitadai

    2017-10-01

    Full Text Available The reductive tricarboxylic acid (rTCA cycle is among the most plausible candidates for the first autotrophic metabolism in the earliest life. Extant enzymes fixing CO2 in this cycle contain cofactors at the catalytic centers, but it is unlikely that the protein/cofactor system emerged at once in a prebiotic process. Here, we discuss the feasibility of non-enzymatic cofactor-assisted drive of the rTCA reactions in the primitive Earth environments, particularly focusing on the acetyl-CoA conversion to pyruvate. Based on the energetic and mechanistic aspects of this reaction, we propose that the deep-sea hydrothermal vent environments with active electricity generation in the presence of various sulfide catalysts are a promising setting for it to progress. Our view supports the theory of an autotrophic origin of life from primordial carbon assimilation within a sulfide-rich hydrothermal vent.

  1. In Folio Respiratory Fluxomics Revealed by {sup 13}C Isotopic Labeling and H/D Isotope Effects Highlight the Non-cyclic Nature of the Tricarboxylic Acid 'Cycle' in Illuminated Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Tcherkez, G; Mahe, A; Gauthier, P; Hodges, M [Institut de Biotechnologie des Plantes, Plateforme Metabolisme-Metabolome IFR87, Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Tcherkez, G; Mauve, C; Cornic, G [Laboratoire d' Ecophysiologie Vegetale, Ecologie Systematique Evolution (G.C.), Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Gout, E; Bligny, R [Laboratoire de Physiologie Cellulaire Vegetale, Commissariat a l' Energie Atomique-Grenoble, 38054 Grenoble cedex 9 (France)

    2009-07-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, {sup 13}C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA 'cycle' does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. (authors)

  2. In Folio Respiratory Fluxomics Revealed by 13C Isotopic Labeling and H/D Isotope Effects Highlight the Noncyclic Nature of the Tricarboxylic Acid “Cycle” in Illuminated Leaves1[W

    Science.gov (United States)

    Tcherkez, Guillaume; Mahé, Aline; Gauthier, Paul; Mauve, Caroline; Gout, Elizabeth; Bligny, Richard; Cornic, Gabriel; Hodges, Michael

    2009-01-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, 13C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA “cycle” does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. PMID:19675152

  3. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle and de novo lipid biosynthesis during Bacillus anthracis sporulation.

    Science.gov (United States)

    Sadykov, Marat R; Ahn, Jong-Sam; Widhelm, Todd J; Eckrich, Valerie M; Endres, Jennifer L; Driks, Adam; Rutkowski, Gregory E; Wingerd, Kevin L; Bayles, Kenneth W

    2017-06-01

    Numerous bacteria accumulate poly(3-hydroxybutyrate) (PHB) as an intracellular reservoir of carbon and energy in response to imbalanced nutritional conditions. In Bacillus spp., where PHB biosynthesis precedes the formation of the dormant cell type called the spore (sporulation), the direct link between PHB accumulation and efficiency of sporulation was observed in multiple studies. Although the idea of PHB as an intracellular carbon and energy source fueling sporulation was proposed several decades ago, the mechanisms underlying PHB contribution to sporulation have not been defined. Here, we demonstrate that PHB deficiency impairs Bacillus anthracis sporulation through diminishing the energy status of the cells and by reducing carbon flux into the tricarboxylic acid (TCA) cycle and de novo lipid biosynthesis. Consequently, this metabolic imbalance decreased biosynthesis of the critical components required for spore integrity and resistance, such as dipicolinic acid (DPA) and the spore's inner membrane. Supplementation of the PHB deficient mutant with exogenous fatty acids overcame these sporulation defects, highlighting the importance of the TCA cycle and lipid biosynthesis during sporulation. Combined, the results of this work reveal the molecular mechanisms of PHB contribution to B. anthracis sporulation and provide valuable insight into the metabolic requirements for this developmental process in Bacillus species. © 2017 John Wiley & Sons Ltd.

  4. In Folio Respiratory Fluxomics Revealed by {sup 13}C Isotopic Labeling and H/D Isotope Effects Highlight the Non-cyclic Nature of the Tricarboxylic Acid 'Cycle' in Illuminated Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Tcherkez, G.; Mahe, A.; Gauthier, P.; Hodges, M. [Institut de Biotechnologie des Plantes, Plateforme Metabolisme-Metabolome IFR87, Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Tcherkez, G.; Mauve, C.; Cornic, G. [Laboratoire d' Ecophysiologie Vegetale, Ecologie Systematique Evolution (G.C.), Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Gout, E.; Bligny, R. [Laboratoire de Physiologie Cellulaire Vegetale, Commissariat a l' Energie Atomique-Grenoble, 38054 Grenoble cedex 9 (France)

    2009-07-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, {sup 13}C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA 'cycle' does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. (authors)

  5. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    Science.gov (United States)

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.

  6. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: kkano@kais.kyoto-u.ac.jp

    2008-12-30

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 {mu}L was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change ({delta}G{sup o}') is negative; (2) {alpha}-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive {delta}G{sup o}' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of {alpha}-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total {delta}G{sup o}' value negative.

  7. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    International Nuclear Information System (INIS)

    Fukuda, Jun; Tsujimura, Seiya; Kano, Kenji

    2008-01-01

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 μL was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change (ΔG o ') is negative; (2) α-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive ΔG o ' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of α-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total ΔG o ' value negative

  8. Spheroid cancer stem cells display reprogrammed metabolism and obtain energy by actively running the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Takahashi, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-05-31

    The Warburg effect is a metabolic hallmark of cancer cells; cancer cells, unlike normal cells, exclusively activate glycolysis, even in the presence of enough oxygen. On the other hand, intratumoral heterogeneity is currently of interest in cancer research, including that involving cancer stem cells (CSCs). In the present study, we attempted to gain an understanding of metabolism in CSCs that is distinct from that in non-CSCs. After forming spheroids from the OVTOKO (ovarian clear cell adenocarcinoma) and SiHa (cervical squamous cell carcinoma) cell lines, the metabolites of these cells were compared with the metabolites of cancer cells that were cultured in adherent plates. A principle components analysis clearly divided their metabolic features. Amino acids that participate in tricarboxylic acid (TCA) cycle reactions, such as serine and glutamine, were significantly increased in the spheroids. Indeed, spheroids from each cell line contained more total adenylates than did their corresponding cells in adherent cultures. This study demonstrated that cancer metabolism is not limited to aerobic glycolysis (i.e. the Warburg effect), but is flexible and context-dependent. In addition, activation of TCA cycles was suggested to be a metabolic feature of CSCs that was distinct from non-CSCs. The amino acid metabolic pathways discussed here are already considered as targets for cancer therapy, and they are additionally proposed as potential targets for CSC treatment.

  9. Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation.

    Science.gov (United States)

    Lozoya, Oswaldo A; Martinez-Reyes, Inmaculada; Wang, Tianyuan; Grenet, Dagoberto; Bushel, Pierre; Li, Jianying; Chandel, Navdeep; Woychik, Richard P; Santos, Janine H

    2018-04-18

    Mitochondrial function affects many aspects of cellular physiology, and, most recently, its role in epigenetics has been reported. Mechanistically, how mitochondrial function alters DNA methylation patterns in the nucleus remains ill defined. Using a cell culture model of induced mitochondrial DNA (mtDNA) depletion, in this study we show that progressive mitochondrial dysfunction leads to an early transcriptional and metabolic program centered on the metabolism of various amino acids, including those involved in the methionine cycle. We find that this program also increases DNA methylation, which occurs primarily in the genes that are differentially expressed. Maintenance of mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation in the context of mtDNA loss rescues methionine salvage and polyamine synthesis and prevents changes in DNA methylation and gene expression but does not affect serine/folate metabolism or transsulfuration. This work provides a novel mechanistic link between mitochondrial function and epigenetic regulation of gene expression that involves polyamine and methionine metabolism responding to changes in the tricarboxylic acid (TCA) cycle. Given the implications of these findings, future studies across different physiological contexts and in vivo are warranted.

  10. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    Science.gov (United States)

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  11. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile.

    Science.gov (United States)

    Nunoura, Takuro; Chikaraishi, Yoshito; Izaki, Rikihisa; Suwa, Takashi; Sato, Takaaki; Harada, Takeshi; Mori, Koji; Kato, Yumiko; Miyazaki, Masayuki; Shimamura, Shigeru; Yanagawa, Katsunori; Shuto, Aya; Ohkouchi, Naohiko; Fujita, Nobuyuki; Takaki, Yoshihiro; Atomi, Haruyuki; Takai, Ken

    2018-02-02

    Inorganic carbon fixation is essential to sustain life on Earth, and the reductive tricarboxylic acid (rTCA) cycle is one of the most ancient carbon fixation metabolisms. A combination of genomic, enzymatic, and metabolomic analyses of a deeply branching chemolithotrophic Thermosulfidibacter takaii ABI70S6 T revealed a previously unknown reversible TCA cycle whose direction was controlled by the available carbon source(s). Under a chemolithoautotrophic condition, a rTCA cycle occurred with the reverse reaction of citrate synthase (CS) and not with the adenosine 5'-triphosphate-dependent citrate cleavage reactions that had been regarded as essential for the conventional rTCA cycle. Phylometabolic evaluation suggests that the TCA cycle with reversible CS may represent an ancestral mode of the rTCA cycle and raises the possibility of a facultatively chemolithomixotrophic origin of life. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes.

    Science.gov (United States)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S; Dringen, Ralf

    2017-11-01

    Metformin is an antidiabetic drug that is used daily by millions of patients worldwide. Metformin is able to cross the blood-brain barrier and has recently been shown to increase glucose consumption and lactate release in cultured astrocytes. However, potential effects of metformin on mitochondrial tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U- 13 C]glucose. The presence of metformin did not compromise the viability of cultured astrocytes during 4 hr of incubation, but almost doubled cellular glucose consumption and lactate release. Compared with control cells, the presence of metformin dramatically lowered the molecular 13 C carbon labeling (MCL) of the cellular TCA cycle intermediates citrate, α-ketoglutarate, succinate, fumarate, and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA cycling ratio in metformin-treated astrocytes. Finally, the oxygen consumption of mitochondria isolated from metformin-treated astrocytes was drastically reduced in the presence of complex I substrates, but not of complex II substrates. These data demonstrate that exposure to metformin strongly impairs complex I-mediated mitochondrial respiration in astrocytes, which is likely to cause the observed decrease in labeling of mitochondrial TCA cycle intermediates and the stimulation of glycolytic lactate production. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by desulfuromonas acetoxidans IMV B-7384

    Science.gov (United States)

    Vasyliv, Oresta M.; Maslovska, Olga D.; Ferensovych, Yaroslav P.; Bilyy, Oleksandr I.; Hnatush, Svitlana O.

    2015-05-01

    Desulfuromonas acetoxidans IMV B-7384 is exoelectrogenic obligate anaerobic sulfur-reducing bacterium. Its one of the first described electrogenic bacterium that performs complete oxidation of an organic substrate with electron transfer directly to the electrode in microbial fuel cell (MFC). This bacterium is very promising for MFC development because of inexpensive cultivation medium, high survival rate and selective resistance to various heavy metal ions. The size of D. acetoxidans IMV B-7384 cells is comparatively small (0.4-0.8×1-2 μm) that is highly beneficial while application of porous anode material because of complete bacterial cover of an electrode area with further significant improvement of the effectiveness of its usage. The interconnection between functioning of reductive stage of tricarboxylic acid (TCA) cycle under anaerobic conditions, and MFC performance was established. Malic, pyruvic, fumaric and succinic acids in concentration 42 mM were separately added into the anode chamber of MFC as the redox agents. Application of malic acid caused the most stabile and the highest power generation in comparison with other investigated organic acids. Its maximum equaled 10.07±0.17mW/m2 on 136 hour of bacterial cultivation. Under addition of pyruvic, succinic and fumaric acids into the anode chamber of MFC the maximal power values equaled 5.80±0.25 mW/m2; 3.2±0.11 mW/m2, and 2.14±0.19 mW/m2 respectively on 40, 56 and 32 hour of bacterial cultivation. Hence the malic acid conversion via reductive stage of TCA cycle is shown to be the most efficient process in terms of electricity generation by D. acetoxidans IMV B-7384 in MFC under anaerobic conditions.

  14. A reverse KREBS cycle in photosynthesis: consensus at last

    Science.gov (United States)

    Buchanan, B. B.; Arnon, D. I.

    1990-01-01

    The Krebs cycle (citric acid or tricarboxylic acid cycle), the final common pathway in aerobic metabolism for the oxidation of carbohydrates, fatty acids and amino acids, is known to be irreversible. It liberates CO2 and generates NADH whose aerobic oxidation yields ATP but it does not operate in reverse as a biosynthetic pathway for CO2 assimilation. In 1966, our laboratory described a cyclic pathway for CO2 assimilation (Evans, Buchanan and Arnon 1966) that was unusual in two respects: (i) it provided the first instance of an obligate photoautotroph that assimilated CO2 by a pathway different from Calvin's reductive pentose phosphate cycle (Calvin 1962) and (ii) in its overall effect the new cycle was a reversal of the Krebs cycle. Named the 'reductive carboxylic acid cycle' (sometimes also called the reductive tricarboxylic acid cycle) the new cycle appeared to be the sole CO2 assimilation pathway in Chlorobium thiosulfatophilum (Evans et al. 1966) (now known as Chlorobium limicola forma thiosulfatophilum). Chlorobium is a photosynthetic green sulfur bacterium that grows anaerobically in an inorganic medium with sulfide and thiosulfate as electron donors and CO2 as an obligatory carbon source. In the ensuing years, the new cycle was viewed with skepticism. Not only was it in conflict with the prevailing doctrine that the 'one important property ... shared by all (our emphasis) autotrophic species is the assimilation of CO2 via the Calvin cycle' (McFadden 1973) but also some of its experimental underpinnings were challenged. It is only now that in the words of one of its early skeptics (Tabita 1988) 'a long and tortuous controversy' has ended with general acceptance of the reductive carboxylic acid cycle as a photosynthetic CO2 assimilation pathway distinct from the pentose cycle. (Henceforth, to minimize repetitiveness, the reductive pentose phosphate cycle will often be referred to as the pentose cycle and the reductive carboxylic acid cycle as the carboxylic

  15. Aurintricarboxylic acid is a potent inhibitor of phosphofructokinase.

    Science.gov (United States)

    McCune, S A; Foe, L G; Kemp, R G; Jurin, R R

    1989-01-01

    Aurintricarboxylic acid (ATA) was found to be a very potent inhibitor of purified rabbit liver phosphofructokinase (PFK), giving 50% inhibition at 0.2 microM. The inhibition was in a manner consistent with interaction at the citrate-inhibitory site of the enzyme. The data suggest that inhibition of PFK by ATA was not due to denaturation of the enzyme or the irreversible binding of inhibitor, since the inhibition could be reversed by addition of allosteric activators of PFK, i.e. fructose 2,6-bisphosphate or AMP. Two other tricarboxylic acids, agaric acid and (-)-hydroxycitrate, were found to inhibit PFK. ATA at much higher concentrations (500 microM) was shown to inhibit fatty acid synthesis from endogenous glycogen in rat hepatocytes; however, protein synthesis was not altered. PMID:2525029

  16. Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis.

    Science.gov (United States)

    Hu, D; Luo, W; Fan, L F; Liu, F L; Gu, J; Deng, H M; Zhang, C; Huang, L H; Feng, Q L

    2016-04-01

    Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis. © 2015 The Royal Entomological Society.

  17. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  18. Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid.

    Science.gov (United States)

    Chapman, A G; Talebi, A; Yip, P K; Meldrum, B S

    2001-07-20

    The metabotropic Group III agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-1), selective for the mGlu(4alpha) receptor, suppresses sound-induced seizures in DBA/2 mice following its intracerebroventricular (i.c.v.) administration (ED(50) 5.6 [2.9-10.7], nmol i.c.v., 15 min, clonic phase) and in genetically epilepsy-prone (GEP) rats following focal administration into the inferior colliculus (ED(50) 0.08 [0.01-0.50], nmol, 60 min, clonic phase). ACPT-1 also protects against clonic seizures induced in DBA/2 mice by the Group I agonist, (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) (ED(50) 0.60 [0.29-1.2], nmol i.c.v.) and by the Group III antagonist, (RS)-alpha-methylserine-O-phosphate (MSOP) (ED(50) 49.3 [37.9-64.1], nmol i.c.v.). Another Group III agonist, (RS)-4-phosphonophenyl-glycine (PPG), preferentially activating the mGlu(8) receptor, previously shown to protect against sound-induced seizures in DBA/2 mice and GEP rats, also protects against seizures induced in DBA/2 by 3,5-DHPG (ED(50) 3.7 [2.4-5.7], nmol i.c.v.) and by the Group III antagonist, MSOP (ED(50) 40.2 [21.0-77.0], nmol i.c.v.). At very high doses (500 nmol i.c.v. and above), Group III antagonists have pro-convulsant and convulsant activity. The anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(4) receptor agonist ACPT-1, is partially reversed by the co-administration of the Group III antagonists, MSOP, (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) or (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4), in the 20-50 nmol dose range. At doses of 50-200 nmol, MPPG and MAP4 cause further reversal of the ACPT-1 anticonvulsant protection, while the MSOP effect on ACPT-1 protection is abolished at higher doses. In contrast, the anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(8) receptor agonist PPG, is not

  19. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells.

    Science.gov (United States)

    Filipp, Fabian V; Scott, David A; Ronai, Ze'ev A; Osterman, Andrei L; Smith, Jeffrey W

    2012-05-01

    The tricarboxylic acid (TCA) cycle is the central hub of oxidative metabolism, running in the classic forward direction to provide carbon for biosynthesis and reducing agents for generation of ATP. Our metabolic tracer studies in melanoma cells showed that in hypoxic conditions the TCA cycle is largely disconnected from glycolysis. By studying the TCA branch point metabolites, acetyl CoA and citrate, as well as the metabolic endpoint glutamine and fatty acids, we developed a comprehensive picture of the rewiring of the TCA cycle that occurs in hypoxia. Hypoxic tumor cells maintain proliferation by running the TCA cycle in reverse. The source of carbon for acetyl CoA, citrate, and fatty acids switches from glucose in normoxia to glutamine in hypoxia. This hypoxic flux from glutamine into fatty acids is mediated by reductive carboxylation. This reductive carboxylation is catalyzed by two isocitrate dehydrogenases, IDH1 and IDH2. Their combined action is necessary and sufficient to effect the reverse TCA flux and maintain cellular viability. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  20. Sucrose tricarboxylate by sonocatalysed TEMPO-mediated oxidation.

    Science.gov (United States)

    Lemoine, S; Thomazeau, C; Joannard, D; Trombotto, S; Descotes, G; Bouchu, A; Queneau, Y

    2000-06-16

    Oxidation of sucrose by the NaOCl/TEMPO system provided sucrose tricarboxylate without the addition of sodium bromide as co-catalyst when high-frequency (500 kHz) ultrasound was applied, in contrast to very limited conversion without sonication. In the presence of sodium bromide, sonication also caused acceleration of the oxidation. The rate increase due to sonication of the oxidant system prior to sucrose addition suggests that ultrasound acts at the level of the formation of the nitrosonium ion, the active oxidising species in the catalytic cycle.

  1. Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry

    Science.gov (United States)

    Guzman, Marcelo I.; Martin, Scot T.

    2008-10-01

    The carboxylic acids produced by the reductive tricarboxylic acid (rTCA) cycle are possibly a biosynthetic core of initial life, although several steps such as the reductive kinetics of oxaloacetate (OAA) to malate (MA) are problematic by conventional chemical routes. In this context, we studied the kinetics of this reaction as promoted by ZnS mineral photoelectrochemistry. The quantum efficiency φMA of MA production from the photoelectrochemical reduction of OAA followed φMA=0.13 [OAA] (2.1×10-3+[OAA])-1 and was independent of temperature (5 to 50°C). To evaluate the importance of this forward rate under a prebiotic scenario, we also studied the temperature-dependent rate of the backward thermal decarboxylation of OAA to pyruvate (PA), which followed an Arrhenius behavior as log (k-2)=11.74 4956/T, where k-2 is in units of s-1. These measured rates were employed in conjunction with the indirectly estimated carboxylation rate of PA to OAA to assess the possible importance of mineral photoelectrochemistry in the conversion of OAA to MA under several scenarios of prebiotic conditions on early Earth. As an example, our analysis shows that there is 90% efficiency with a forward velocity of 3 yr/cycle for the OAA→MA step of the rTCA cycle at 280 K. Efficiency and velocity both decrease for increasing temperature. These results suggest high viability for mineral photoelectrochemistry as an enzyme-free engine to drive the rTCA cycle through the early aeons of early Earth, at least for the investigated OAA→MA step.

  2. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.

    Science.gov (United States)

    Liu, Jingjing; Xie, Zhipeng; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    2017-07-10

    Aspergillus oryzae finds wide application in the food, feed, and wine industries, and is an excellent cell factory platform for production of organic acids. In this work, we achieved the overproduction of L-malate by rewiring the reductive tricarboxylic acid (rTCA) pathway and L-malate transport pathway of A. oryzae NRRL 3488. First, overexpression of native pyruvate carboxylase and malate dehydrogenase in the rTCA pathway improved the L-malate titer from 26.1gL -1 to 42.3gL -1 in shake flask culture. Then, the oxaloacetate anaplerotic reaction was constructed by heterologous expression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase from Escherichia coli, increasing the L-malate titer to 58.5gL -1 . Next, the export of L-malate from the cytoplasm to the external medium was strengthened by overexpression of a C4-dicarboxylate transporter gene from A. oryzae and an L-malate permease gene from Schizosaccharomyces pombe, improving the L-malate titer from 58.5gL -1 to 89.5gL -1 . Lastly, guided by transcription analysis of the expression profile of key genes related to L-malate synthesis, the 6-phosphofructokinase encoded by the pfk gene was identified as a potential limiting step for L-malate synthesis. Overexpression of pfk with the strong sodM promoter increased the L-malate titer to 93.2gL -1 . The final engineered A. oryzae strain produced 165gL -1 L-malate with a productivity of 1.38gL -1 h -1 in 3-L fed-batch culture. Overall, we constructed an efficient L-malate producer by rewiring the rTCA pathway and L-malate transport pathway of A. oryzae NRRL 3488, and the engineering strategy adopted here may be useful for the construction of A. oryzae cell factories to produce other organic acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    Science.gov (United States)

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.

  4. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Gameiro, Paulo A; Laviolette, Laura A; Kelleher, Joanne K; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-05-03

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)(+) cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)(+) ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle.

  5. PTCA (1H-pyrrole-2,3,5-tricarboxylic acid) as a marker for oxidative hair treatment.

    Science.gov (United States)

    Petzel-Witt, Silvana; Meier, Sylvia I; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2018-04-01

    Hair analysis for the assessment of alcohol or drug abstinence has become a routine procedure in forensic toxicology. Hair coloration leading to loss of incorporated xenobiotics and to false negative results has turned out to be a major problem. Currently only colored extracts provide hints of manipulations but not bleaching. A liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed and validated to determine 1H-pyrrole-2,3,5-tricarboxylic acid (PTCA), a major oxidation product of melanin. PTCA was determined in natural hair samples (n = 21) after treatment with 3% hydrogen peroxide (H 2 O 2 ) for 30 or 40 minutes with concentrations up to 12% for 40 minutes. In another series, 12 natural hair samples were submitted to different coloration procedures (henna, tinting, semi-permanent and permanent dyeing, bleaching) and the changes in PTCA content were determined. A significant increase in the PTCA content was found for both incubation times and increasing H 2 O 2 concentrations. Coloration with henna or tinting had no influence on PTCA levels detected, but a significant increase was observed after semi-permanent and permanent dyeing and bleaching. As PTCA concentrations in natural hair were found to be in a range of <2.1-16.4 ng/mg (8.4 ± 3.8 ng/mg, mean ± SD, n = 33), a cut-off of 20 ng/mg is recommended for the distinction between natural vs. excessively oxidized hair. In case of naturally low melanin content (light-blond or white hair), no marked increase in PTCA may occur. The present study demonstrated that PTCA is formed during oxidative treatment of melanin in hair, which can be used to detect previous hair coloration including oxidation. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Cofactor Balance by Nicotinamide Nucleotide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle*♦

    Science.gov (United States)

    Gameiro, Paulo A.; Laviolette, Laura A.; Kelleher, Joanne K.; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-01-01

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)+ cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)+ ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle. PMID:23504317

  7. Crystal structure of [1,1':3',1''-ter-phenyl]-2',3,3''-tri-carb-oxy-lic acid.

    Science.gov (United States)

    Decato, Daniel A; Berryman, Orion B

    2015-09-01

    The asymmetric unit of the title compound, C21H14O6, com-prises two symmetrically independent mol-ecules that form a locally centrosymmetric hydrogen-bonded dimer, with the planes of the corresponding carb-oxy-lic acid groups rotated by 15.8 (1) and 17.5 (1)° relative to those of the adjacent benzene rings. The crystal as a whole, however, exhibits a noncentrosymmetric packing, described by the polar space group Pca21. The dimers form layers along the ab plane, being inter-connected by hydrogen bonds involving the remaining carb-oxy-lic acid groups. The plane of the central carb-oxy-lic acid group forms dihedral angles of 62.5 (1) and 63.0 (1)° with those of the adjacent benzene rings and functions as a hydrogen-bond donor and acceptor. As a donor, it inter-connects adjacent layers, while as an acceptor it stabilizes the packing within the layers. The 'distal' carb-oxy-lic acid groups are nearly coplanar with the planes of the adjacent benzene rings, forming dihedral angles of 1.8 (1) and 7.1 (1)°. These groups also form intra- and inter-layer hydrogen bonds, but with 'reversed' functionality, as compared with the central carb-oxy-lic acid groups.

  8. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids.

    Science.gov (United States)

    Banerjee, Sambuddha; Paul, Subrata; Nguyen, Leonard T; Chu, Byron C H; Vogel, Hans J

    2016-01-01

    The Escherichia coli Fec system, consisting of an outer membrane receptor (FecA), a periplasmic substrate binding protein (FecB) and an inner membrane permease-ATPase type transporter (FecC/D), plays an important role in the uptake and transport of Fe(3+)-citrate. Although several FecB sequences from various organisms have been reported, there are no biophysical or structural data available for this protein to date. In this work, using isothermal titration calorimetry (ITC), we report for the first time the ability of FecB to bind different species of Fe(3+)-citrate as well as other citrate complexes with trivalent (Ga(3+), Al(3+), Sc(3+) and In(3+)) and a representative divalent metal ion (Mg(2+)) with low μM affinity. Interestingly, ITC experiments with various iron-free di- and tricarboxylic acids show that FecB can bind tricarboxylates with μM affinity but not biologically relevant dicarboxylates. The ability of FecB to bind with metal-free citrate is also observed in (1)H,(15)N HSQC-NMR titration experiments reported here at two different pH values. Further, differential scanning calorimetry (DSC) experiments indicate that the ligand-bound form of FecB has greater thermal stability than ligand-free FecB under all pH and ligand conditions tested, which is consistent with the idea of domain closure subsequent to ligand binding for this type of periplasmic binding proteins.

  9. Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients.

    Science.gov (United States)

    Bubber, P; Hartounian, V; Gibson, G E; Blass, J P

    2011-03-01

    Images of brain metabolism and measurements of activities of components of the electron transport chain support earlier studies that suggest that brain glucose oxidation is inherently abnormal in a significant proportion of persons with schizophrenia. Therefore, we measured the activities of enzymes of the tricarboxylic (TCA) cycle in dorsolateral-prefrontal-cortex from schizophrenia patients (N=13) and non-psychiatric disease controls (N=13): the pyruvate dehydrogenase complex (PDHC), citrate synthase (CS), aconitase, isocitrate dehydrogenase (ICDH), the alpha-ketoglutarate dehydrogenase complex (KGDHC), succinate thiokinase (STH), succinate dehydrogenase (SDH), fumarase and malate dehydrogenase (MDH). Activities of aconitase (18.4%, pTCA cycle, were lower, but SDH (18.3%, pTCA cycle and cognitive function, age or choline acetyl transferase activity, except for aconitase activity which decreased slightly with age (r=0.55, p=003). The increased activities of dehydrogenases in the second half of the TCA cycle may reflect a compensatory response to reduced activities of enzymes in the first half. Such alterations in the components of TCA cycle are adequate to alter the rate of brain metabolism. These results are consistent with the imaging studies of hypometabolism in schizophrenia. They suggest that deficiencies in mitochondrial enzymes can be associated with mental disease that takes the form of schizophrenia. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.

  10. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Rahman, Mohammad M; Rosu, Simona; Joseph-Strauss, Daphna; Cohen-Fix, Orna

    2014-02-18

    The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.

  11. The reversed feto-maternal bile acid gradient in intrahepatic cholestasis of pregnancy is corrected by ursodeoxycholic acid.

    Science.gov (United States)

    Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine

    2014-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels.

  12. Reversal learning enhanced by lysergic acid diethylamide (LSD)

    Science.gov (United States)

    King, A.R.; Martin, I.L.; Arabella Melville, K.

    1974-01-01

    1 Small doses of lysergic acid diethylamide (LSD) (12.5-50 μg/kg) consistently facilitated learning of a brightness discrimination reversal. 2 2-Bromo-lysergic acid diethylamide (BOL-148), a structural analogue of LSD, with similar peripheral anti-5-hydroxytrypamine activity but no psychotomimetic properties, had no effect in this learning situation at a similar dose (25 μg/kg). 3 LSD, but not BOL-148, caused a small but significant increase in brain 5-hydroxytryptamine levels, but had no effect on the levels of catecholamines in the brain at 25 μg/kg. PMID:4458849

  13. Novel metal-organic and supramolecular 3D frameworks constructed from flexible biphenyl-2,5,3‧-tricarboxylate blocks: Synthesis, structural features and properties

    Science.gov (United States)

    You, Ao; Li, Yu; Zhang, Ze-Min; Zou, Xun-Zhong; Gu, Jin-Zhong; Kirillov, Alexander M.; Chen, Jin-Wei; Chen, Yun-Bo

    2017-10-01

    Biphenyl-2,5,3‧-tricarboxylic acid (H3L) was selected as an unexplored tricarboxylate building block and applied for the hydrothermal synthesis of three novel coordination compounds, namely a 0D tetramer [Co4(HL)2(μ3-HL)2(phen)6(H2O)2]·3H2O (1) and two 3D metal-organic frameworks (MOFs) [Cd3(μ5-L)(μ6-L)(py)(μ-H2O)2(H2O)]n·H2O (2) and [Zn3(μ4-L)2(2,2‧-bpy)(μ-4,4‧-bpy)]n·2H2O (3). These products were easily generated in aqueous medium from the corresponding metal(II) chlorides, H3L, and various N-donor ancillary ligands, selected from 1,10-phenanthroline (phen), pyridine (py), 2,2‧-bipyridine (2,2‧-bpy), and 4,4‧-bipyridine (4,4‧-bpy). Compounds 1-3 were isolated as stable crystalline solids and were fully characterized by IR and UV-vis spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a discrete tetracobalt(II) structure, which is extended into a 3D H-bonded network with the pcu topology. In contrast, MOF 2 discloses a very complex trinodal 4,5,12-connected net with an undocumented topology, while MOF 3 features the nce/I topological framework. The magnetic (for 1) and luminescence (for 2 and 3) properties were also studied and discussed. The present study thus widens a still very limited family of metal-organic and supramolecular frameworks driven by flexible biphenyl-2,5,3‧-tricarboxylate building blocks.

  14. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  15. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping

    2013-06-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions representative of seawater and river water). A bipolar membrane (BPM) was placed next to the anode to prevent Cl- contamination and acidification of the anolyte, and to produce protons for HCl recovery. A 5-cell paired reverse-electrodialysis (RED) stack provided the electrical energy required to overcome the BPM over-potential (0.3-0.6 V), making the overall process spontaneous. The MRCC reactor produced electricity (908 mW/m2) as well as concentrated acidic and alkaline solutions, and therefore did not require an external power supply. After a fed-batch cycle, the pHs of the chemical product solutions were 1.65 ± 0.04 and 11.98 ± 0.10, due to the production of 1.35 ± 0.13 mmol of acid, and 0.59 ± 0.14 mmol of alkali. The acid- and alkali-production efficiencies based on generated current were 58 ± 3% and 25 ± 3%. These results demonstrated proof-of-concept acid and alkali production using only renewable energy sources. © 2013 Elsevier B.V.

  16. The reversed feto-maternal bile acid gradient in intrahepatic cholestasis of pregnancy is corrected by ursodeoxycholic acid.

    Directory of Open Access Journals (Sweden)

    Victoria Geenes

    Full Text Available Intrahepatic cholestasis of pregnancy (ICP is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA. This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18, UDCA-treated ICP (n = 46 and uncomplicated pregnancy (n = 15 cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively, predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001, thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels.

  17. UPS and DFT investigation of the electronic structure of gas-phase trimesic acid

    Energy Technology Data Exchange (ETDEWEB)

    Reisberg, L., E-mail: rebban@ut.ee [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); Pärna, R. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); MAX IV Laboratory, Lund University, Fotongatan 2, 225 94 Lund (Sweden); Kikas, A.; Kuusik, I.; Kisand, V. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); Hirsimäki, M.; Valden, M. [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, FIN-33101 Tampere (Finland); Nõmmiste, E. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia)

    2016-11-15

    Highlights: • In the current study outer valence band electronic structure of benzene-1,3,5-tricarboxylic acid was interpreted. • Experimental and calculated trimesic acid (TMA) spectrum were compared to ones of benzene and benzoic acid. • It is shown that similarities between MO energies and shapes for benzene and TMA exists. • Addition of carboxyl groups to the benzene ring clearly correlates with increasing binding energy of HOMO. - Abstract: Benzene-1,3,5-tricarboxylic acid (trimesic acid, TMA) molecules in gas-phase have been investigated by using valence band photoemission. The photoelectron spectrum in the binding energy region from 9 to 22 eV is interpreted by using density functional theory calculations. The electronic structure of TMA is compared with benzene and benzoic acid in order to demonstrate changes in molecular orbital energies induced by addition of carboxyl groups to benzene ring.

  18. Convergent synthesis of degradable dendrons based on L-malic acid

    DEFF Research Database (Denmark)

    Meyhoff, Ulrich; Riber, Ulla; Boas, Ulrik

    2015-01-01

    New degradable polyester dendrons based on the cellular tricarboxylic acid cycle component L-malic acid were synthesized up to the third generation by convergent synthesis. The dendron wedges could be introduced in a stepwise, highly regioselective fashion. HMBC-NMR revealed that the C1-carbonyl...

  19. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  20. Crystal structure of [1,1′:3′,1′′-terphenyl]-2′,3,3′′-tricarboxylic acid

    Directory of Open Access Journals (Sweden)

    Daniel A. Decato

    2015-09-01

    Full Text Available The asymmetric unit of the title compound, C21H14O6, comprises two symmetrically independent molecules that form a locally centrosymmetric hydrogen-bonded dimer, with the planes of the corresponding carboxylic acid groups rotated by 15.8 (1 and 17.5 (1° relative to those of the adjacent benzene rings. The crystal as a whole, however, exhibits a noncentrosymmetric packing, described by the polar space group Pca21. The dimers form layers along the ab plane, being interconnected by hydrogen bonds involving the remaining carboxylic acid groups. The plane of the central carboxylic acid group forms dihedral angles of 62.5 (1 and 63.0 (1° with those of the adjacent benzene rings and functions as a hydrogen-bond donor and acceptor. As a donor, it interconnects adjacent layers, while as an acceptor it stabilizes the packing within the layers. The `distal' carboxylic acid groups are nearly coplanar with the planes of the adjacent benzene rings, forming dihedral angles of 1.8 (1 and 7.1 (1°. These groups also form intra- and inter-layer hydrogen bonds, but with `reversed' functionality, as compared with the central carboxylic acid groups.

  1. Retention prediction and hydrophobicity estimation of weak acidic compounds by reversed-phase liquid chromatography using acetic and perchloric acids as ion suppressors.

    Science.gov (United States)

    Han, Shu-ying; Ming, Xin; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen

    2010-11-01

    Simple acids are usually applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography. The purpose of this study is to investigate the retention behavior of various weak acidic compounds (monoprotic, diprotic, triprotic, and tetraprotic acids) using acetic or perchloric acid as ion suppressor in a binary hydroorganic mobile phase. The apparent n-octanol-water partition coefficient (K(ow)") was proposed to calibrate the n-octanol-water partition coefficient (K(ow)) of weak acidic compound. LogK(ow)" was found to have a better linear correlation with logk(w), the logarithm of the retention factor obtained by extrapolating to neat aqueous fraction of the mobile phase, for all weakly ionizable acidic compounds. This straightforward relationship offers a potential medium for direct measurement of K(ow) data of weak acidic analytes and can be used to predict retention behavior of these compounds in the ion suppression reversed-phase liquid chromatographic mode.

  2. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    Science.gov (United States)

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  3. Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in Toxoplasma gondii.

    Science.gov (United States)

    Fleige, Tobias; Pfaff, Nils; Gross, Uwe; Bohne, Wolfgang

    2008-08-01

    The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.

  4. Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization.

    Science.gov (United States)

    Njauw, Ching-Wei; Cheng, Chih-Yang; Ivanov, Viktor A; Khokhlov, Alexei R; Tung, Shih-Huang

    2013-03-26

    It has been known that the addition of bile salts to lecithin organosols induces the formation of reverse wormlike micelles and that the worms are similar to long polymer chains that entangle each other to form viscoelastic solutions. In this study, we further investigated the effects of different bile salts and bile acids on the growth of lecithin reverse worms in cyclohexane and n-decane. We utilized rheological and small-angle scattering techniques to analyze the properties and structures of the reverse micelles. All of the bile salts can transform the originally spherical lecithin reverse micelles into wormlike micelles and their rheological behaviors can be described by the single-relaxation-time Maxwell model. However, their efficiencies to induce the worms are different. In contrast, before phase separation, bile acids can induce only short cylindrical micelles that are not long enough to impart viscoelasticity. We used Fourier transform infrared spectroscopy to investigate the interactions between lecithin and bile salts/acids and found that different bile salts/acids employ different functional groups to form hydrogen bonds with lecithin. Such effects determine the relative positions of the bile salts/acids in the headgroups of lecithin, thus resulting in varying efficiencies to alter the effective critical packing parameter for the formation of wormlike micelles. This work highlights the importance of intermolecular interactions in molecular self-assembly.

  5. Cloning and properties of the Salmonella typhimurium tricarboxylate transport operon in Escherichia coli

    International Nuclear Information System (INIS)

    Widenhorn, K.A.; Boos, W.; Somers, J.M.; Kay, W.W.

    1988-01-01

    The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in λgtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by λTn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C-protein) was located near the center of the insert. E. coli/tctI clones on either multicopy or single-copy vectors grew on the same tricarboxylates as S. typhimurium, although unusually long growth lags were observed. E. coli/tctI clones exhibited similar [ 14 C] fluorocitrate transport kinetics to those of S. typhimurium, whereas E. coli alone was virtually impermeable to [ 14 C] fluorocitrate. The periplasmic C proteins (C1 and C2 isoelectric forms) were produced in prodigious quantities from the cloned strains. Motile E. coli/tctI clones were not chemotactic toward citrate, whereas tctI deletion mutants of S. typhimurium were. Taken together, these observations indicate that tctI is not an operon involved in chemotaxis

  6. Reverse atom transfer radical polymerization of methyl methacrylate initiated by AIBN/FeCl3/isophthalic acid system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The reverse ATRP of MMA using AIBN/FeCl3/ isophthalic acid as the initiating system was successfully performed. The new initiating system can be used to synthesize PMMA with high molecular weight and narrow polydis- persity index. The polymerization shows 'living'/controlled characteristics. Compared with other initiating system used in reverse ATRP, the easy availability and non-toxicity of isophthalic acid make it very attractive.

  7. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria.

    Science.gov (United States)

    Teemu, Halttunen; Seppo, Salminen; Jussi, Meriluoto; Raija, Tahvonen; Kalle, Lertola

    2008-07-15

    Extensive cadmium and lead contamination of water has been reported to occur locally as a result of human activities. Lactic acid bacteria have been reported to remove cadmium and lead from water. The aim of this work was to clarify the mechanisms of cadmium and lead removal from water. In addition, the effect of other metals, reversibility of binding and recyclability of the biomass was assessed. Based on our earlier data, the two most promising lactic acid bacteria, Lactobacillus fermentum ME3 and Bifidobacterium longum 46, were selected for these experiments. The results showed that the presence of other cationic metals and blocking of carboxyl and phosphoryl groups reduced cadmium and lead removal. These results suggest involvement of electrostatic interactions in cadmium and lead removal, and support our earlier findings. Transmission electron micrographs showed large deposits of lead on the bacterial surface suggesting formation of metallic lead precipitates. Both cadmium and lead removal were reversible processes established by full recovery of removed metal after desorption with dilute solutions of EDTA and HNO(3). Resorption capacity of both biomasses tested was reduced after regeneration with 10 mM EDTA and 15 mM HNO(3). Taken together, the results suggest involvement of several reversible mechanisms such as ion exchange and precipitation in cadmium and lead binding by lactic acid bacteria. The results show that specific lactic acid bacteria have the potential for removal of cadmium and lead from water although reduction in resorption capacity after regeneration of the biomass may form a problem. Since the studies so far have mainly focused on removal of single metals from pure water, metal removal in conditions of natural waters should be assessed in further experiments.

  8. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR

    Directory of Open Access Journals (Sweden)

    Kavita Jadhav

    2018-03-01

    Full Text Available Objectives: Activation of the bile acid (BA receptors farnesoid X receptor (FXR or G protein-coupled bile acid receptor (GPBAR1; TGR5 improves metabolic homeostasis. In this study, we aim to determine the impact of pharmacological activation of bile acid receptors by INT-767 on reversal of diet-induced metabolic disorders, and the relative contribution of FXR vs. TGR5 to INT-767's effects on metabolic parameters. Methods: Wild-type (WT, Tgr5−/−, Fxr−/−, Apoe−/− and Shp−/− mice were used to investigate whether and how BA receptor activation by INT-767, a semisynthetic agonist for both FXR and TGR5, could reverse diet-induced metabolic disorders. Results: INT-767 reversed HFD-induced obesity dependent on activation of both TGR5 and FXR and also reversed the development of atherosclerosis and non-alcoholic fatty liver disease (NAFLD. Mechanistically, INT-767 improved hypercholesterolemia by activation of FXR and induced thermogenic genes via activation of TGR5 and/or FXR. Furthermore, INT-767 inhibited several lipogenic genes and de novo lipogenesis in the liver via activation of FXR. We identified peroxisome proliferation-activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (CEBPα as novel FXR-regulated genes. FXR inhibited PPARγ expression by inducing small heterodimer partner (SHP whereas the inhibition of CEBPα by FXR was SHP-independent. Conclusions: BA receptor activation can reverse obesity, NAFLD, and atherosclerosis by specific activation of FXR or TGR5. Our data suggest that, compared to activation of FXR or TGR5 only, dual activation of both FXR and TGR5 is a more attractive strategy for treatment of common metabolic disorders. Keywords: Farnesoid X receptor, TGR5, Atherosclerosis, Obesity, NAFLD

  9. Ascorbic acid enables reversible dopamine receptor 3H-agonist binding

    International Nuclear Information System (INIS)

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-01-01

    The effects of ascorbic acid on dopaminergic 3 H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the 3 H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total 3 H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable 3 H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable 3 H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of 3 H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific 3 H-agonist binding to dopamine receptors

  10. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  11. The Krebs Uric Acid Cycle: A Forgotten Krebs Cycle.

    Science.gov (United States)

    Salway, Jack G

    2018-05-25

    Hans Kornberg wrote a paper entitled 'Krebs and his trinity of cycles' commenting that every school biology student knows of the Krebs cycle, but few know that Krebs discovered two other cycles. These are (i) the ornithine cycle (urea cycle), (ii) the citric acid cycle (tricarboxylic acid or TCA cycle), and (iii) the glyoxylate cycle that was described by Krebs and Kornberg. Ironically, Kornberg, codiscoverer of the 'glyoxylate cycle', overlooked a fourth Krebs cycle - (iv) the uric acid cycle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil.

    Science.gov (United States)

    Hashizaki, Kaname; Imai, Miko; Yako, Shuhei; Tsusaka, Hitomi; Sakanishi, Yuichi; Saito, Yoshihiro; Fujii, Makiko

    2017-09-01

    We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called "shear-thickening". Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η 0 ) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η 0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.

  13. [Determination of glycyrrhizinic acid in biotransformation system by reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Li, Hui; Lu, Dingqiang; Liu, Weimin

    2004-05-01

    A method for determining glycyrrhizinic acid in the biotransformation system by reversed-phase high performance liquid chromatography (RP-HPLC) was developed. The HPLC conditions were as follows: Hypersil C18 column (4.6 mm i.d. x 250 mm, 5 microm) with a mixture of methanol-water-acetic acid (70:30:1, v/v) as the mobile phase; flow rate at 1.0 mL/min; and UV detection at 254 nm. The linear range of glycyrrhizinic acid was 0.2-20 microg. The recoveries were 98%-103% with relative standard deviations between 0.16% and 1.58% (n = 3). The method is simple, rapid and accurate for determining glycyrrhizinic acid.

  14. The effects of ascorbic acid on diphtheria toxin and intoxicated hela cells

    International Nuclear Information System (INIS)

    Clark, C.E.; Smith, T.J.

    1976-01-01

    Ascorbic acid (vitamin C) prevented diphtheria toxin from inhibiting the incorporation of [U- 14 C]-alanine into trichloroacetic acid precipitable material in HeLa cells. Ascorbic acid did not exhibit an effect on the adenosine diphosphate-ribosylation of amino acyl transferase 2 nor did it separate fragment A from fragment B in ''nicked'' toxin. A non-specific reducing agent, para-methylaminophenol sulfate, exhibited an effect of HeLa cells very similar to the results of ascorbic acid. Citric acid, a tricarboxylic acid, had no effect on HeLa cells. (auth.)

  15. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    Science.gov (United States)

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  16. 13C NMR study of effects of fasting and diabetes on the metabolism of pyruvate in the tricarboxylic acid cycle and of the utilization of pyruvate and ethanol in lipogenesis in perfused rat liver

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    13 C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the 13 C enrichments at the individual carbons of glutamate when [3- 13 C]alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of 13 C label into fatty acids was monitored in this liver preparation. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by [1- 13 C]acetyl-CoA (from [2- 13 C]pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by [3- 13 C]alanine plus [2- 13 C]ethanol, which are converted to [2- 13 C]acetyl-CoA. Thus, measurement of 13 C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids. In addition to obtaining the rate of lipogenesis, it was possible to distinguish the contributions of chain elongation from those of the de novo synthesis pathway and to estimate the average chain length of the 13 C-labeled fatty acids produced

  17. The Kinetics of Reversible Hyaluronic Acid Filler Injection Treated With Hyaluronidase.

    Science.gov (United States)

    Juhász, Margit L W; Levin, Melissa K; Marmur, Ellen S

    2017-06-01

    Hyaluronidase is an enzyme capable of dissolution of hyaluronic acid (HA). There is a lack of evidence-based research defining time- and concentration-dependent reversal of HA filler using hyaluronidase. To explore the efficacy of different concentrations of hyaluronidase in digesting commercially available HA-based reversible fillers-Belotero Balance (BEL), Juvederm Ultra XC (JUVXC), Juvederm Ultra Plus (JUVX+), Juvederm Voluma XC (JUVV), Restylane-L (RESL), Restylane Silk (RESS), and Perlane/Restylane Lyft (RESLYFT). This was a blinded randomized study involving 15 participants. Participants received HA filler injection into their back, followed by no secondary injection, or injection with normal saline, 20 or 40 units of hyaluronidase. Using a 5-point palpation scale, the degradation of HA filler was monitored over 14 days. In the authors' study, there is a significant decrease in HA filler degradation using 20 and 40 units of hyaluronidase compared with no secondary injection or normal saline. There is no significant difference in HA filler dissolution when comparing 20 to 40 units of hyaluronidase. Lower concentrations of hyaluronidase may be just as effective as higher concentrations to degrade HA filler in situations where the reversal of cutaneous augmentation with HA filler arises.

  18. Tranexamic Acid Failed to Reverse the Anticoagulant Effect and Bleeding by an Oral Direct Factor Xa Inhibitor Edoxaban.

    Science.gov (United States)

    Honda, Yuko; Furugohri, Taketoshi; Morishima, Yoshiyuki

    2018-01-01

    Agents to reverse the anticoagulant effect of edoxaban, an oral direct factor Xa inhibitor, would be desirable in emergency situations. The aim of this study is to determine the effect of tranexamic acid, an antifibrinolytic agent, on the anticoagulant activity and bleeding by edoxaban in rats. A supratherapeutic dose of edoxaban (3 mg/kg) was intravenously administered to rats. Three minutes after dosing, tranexamic acid (100 mg/kg) was given intravenously. Bleeding was induced by making an incision with a blade on the planta 8 min after edoxaban injection and bleeding time was measured. Prothrombin time (PT) and clot lysis were examined. A supratherapeutic dose of edoxaban significantly prolonged PT and bleeding time. Tranexamic acid did not affect PT or bleeding time prolonged by edoxaban, although tranexamic acid significantly inhibited clot lysis in rat plasma. An antifibrinolytic agent tranexamic acid failed to reverse the anticoagulant effect and bleeding by edoxaban in rats. © 2017 S. Karger AG, Basel.

  19. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein.

    Science.gov (United States)

    Kim, Mi Kyoung; Kim, Yunyoung; Choo, Hyunah; Chong, Youhoon

    2017-02-01

    Previously, we have reported remarkable effect of a quercetin-glutamic acid conjugate to reverse multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer agents through inhibition of P-glycoprotein (Pgp)-mediated drug efflux. Due to the hydrolysable nature, MDR-reversal activity of the quercetin conjugate was attributed to its hydrolysis product, quercetin. However, several lines of evidence demonstrated that the intact quercetin-glutamic acid conjugate has stronger MDR-reversal activity than quercetin. In order to evaluate this hypothesis and to identify a novel scaffold for MDR-reversal agents, we prepared quercetin conjugates with a glutamic acid attached at the 7-O position via a non-hydrolysable linker. Pgp inhibition assay, Pgp ATPase assay, and MDR-reversal activity assay were performed, and the non-hydrolysable quercetin conjugates showed significantly higher activities compared with those of quercetin. Unfortunately, the quercetin conjugates were not as effective as verapamil in Pgp-inhibition and thereby reversing MDR, but it is worth to note that the structurally modified quercetin conjugates with a non-cleavable linker showed significantly improved MDR-reversal activity compared with quercetin. Taken together, the quercetin conjugates with appropriate structural modifications were shown to have a potential to serve as a scaffold for the design of novel MDR-reversal agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid

    International Nuclear Information System (INIS)

    Cruz-Castaneda, J.; Negron-Mendoza, A.; Heredia, A.; Ramos-Bernal, S.; Villafane-Barajas, S.; Frias, D.; Colin-Garcia, M.

    2015-01-01

    In the context of chemical evolution a simulation of a hydrothermal vent was performed. The thermolysis and radiolysis of malonic acid in aqueous solution were studied. The thermolysis was done by heating the samples (95 deg C) and radiolysis using gamma radiation. Products were identified by gas chromatography and gas chromatography-mass spectrometry. The thermal treatment produced acetic acid and CO 2 . The radiolysis experiments yield carbon dioxide, acetic acid, and di- and tricarboxylic acids. A theoretical model of the chemical process occurring under irradiation was developed; this was able to reproduce formation of products and the consumption of malonic acid. (author)

  1. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.

    Science.gov (United States)

    Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A

    2016-01-01

    The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The

  2. A two-dimensional ZnII coordination polymer constructed from benzene-1,2,3-tricarboxylic acid and N,N'-bis[(pyridin-4-yl)methylidene]hydrazine.

    Science.gov (United States)

    Wang, Xiangfei; Yang, Fang; Tang, Meng; Yuan, Limin; Liu, Wenlong

    2015-07-01

    The hydrothermal synthesis of the novel complex poly[aqua(μ4-benzene-1,2,3-tricarboxylato)[μ2-4,4'-(hydrazine-1,2-diylidenedimethanylylidene)dipyridine](μ3-hydroxido)dizinc(II)], [Zn(C9H3O6)(OH)(C12H10N4)(H2O)]n, is described. The benzene-1,2,3-tricarboxylate ligand connects neighbouring Zn4(OH)2 secondary building units (SBUs) producing an infinite one-dimensional chain. Adjacent one-dimensional chains are connected by the N,N'-bis[(pyridin-4-yl)methylidene]hydrazine ligand, forming a two-dimensional layered structure. Adjacent layers are stacked to generate a three-dimensional supramolecular architecture via O-H...O hydrogen-bond interactions. The thermal stability of this complex is described and the complex also appears to have potential for application as a luminescent material.

  3. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance.

    Science.gov (United States)

    Coon, J S; Knudson, W; Clodfelter, K; Lu, B; Weinstein, R S

    1991-02-01

    A recently developed non-ionic surfactant called Solutol HS 15 (poly-oxyethylene esters of 12-hydroxystearic acid), with low toxicity in vivo, was shown to reverse completely the multidrug resistance of KB 8-5 and KB 8-5-11 human epidermoid carcinoma cells in vitro but did not potentiate drug toxicity in drug-sensitive KB 3-1 cells. At a concentration of 10% of its own IC50 (mean concentration of drug that causes 50% inhibition of cell growth compared to controls), Solutol HS 15 produced a 35-, 28-, and 42-fold reduction in the resistance of KB 8-5-11 cells to colchicine, vinblastine, and doxorubicin, respectively. Solutol HS 15 was relatively much more potent than the prototypic reversing agent, verapamil, for reversing colchicine resistance, compared to the ability of each agent to reverse colchicine resistance, compared to the ability of each agent to reverse vinblastine resistance. Like verapamil, Solutol HS 15 promoted a 50-fold accumulation of rhodamine 123 in KB 8-5-11 cells, as measured by flow cytometry. Also, Solutol HS 15 and verapamil reduced the efflux of rhodamine 123 from KB 8-5-11 cells previously loaded with rhodamine 123 to a similar low rate. Solutol HS 15 did not affect the transport of alanine or glucose into KB 8-5-11 cells, indicating that its effect upon membrane active transport is not entirely nonspecific. Considering their different structure and different relative potency for reversing colchicine resistance, Solutol HS 15 and verapamil probably reverse multidrug resistance by different mechanisms. Solutol HS 15 merits consideration as a potential therapeutic agent because of its effectiveness for reversing multidrug resistance in vitro and its low toxicity in vivo.

  4. Development and Validation of a Reversed-Phase Liquid Chromatography Method for the Simultaneous Determination of Indole-3-Acetic Acid, Indole-3-Pyruvic Acid, and Abscisic Acid in Barley (Hordeum vulgare L.).

    Science.gov (United States)

    Nakurte, Ilva; Keisa, Anete; Rostoks, Nils

    2012-01-01

    A simple, sensitive, precise, and specific reverse HPLC method was developed and validated for the determination of plant hormones in barley (Hordeum vulgare L.). The method includes extraction in aqueous organic solvent followed by solid-phase extraction, sample evaporation, and reversed-phase HPLC analysis in a general purpose UV-visible (abscisic acid (ABA)) and fluorescence detection (indole-3-acetic acid (IAA) and indole-3-pyruvic acid (IPA)), high-performance liquid chromatography system. The separation was carried out on Zorbax Eclipse XDB C8 column (150  ×  4.6  mm I.D) with a mobile phase composed of methanol and 1% acetic acid (60 : 40 v/v) in isocratic mode at a flow rate of 1 ml min(-1). The detection was monitored at 270 nm (ABA) and at 282 nm (Ex) and 360 nm (Em) (IAA, IPA). The developed method was validated in terms of accuracy, precision, linearity, limit of detection, limit of quantification, and robustness. The determined validation parameters are in the commonly acceptable ranges for that kind of analysis.

  5. Separation and determination of some carboxylic acids by capillary electrophoresis

    International Nuclear Information System (INIS)

    Sladkov, V.; Fourest, B.

    2006-01-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  6. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  7. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.

    Science.gov (United States)

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander

    2017-09-19

    The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O 2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O 2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the

  8. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli

    OpenAIRE

    Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi

    2013-01-01

    Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental...

  9. Branched-Chain Amino Acid Levels Are Related with Surrogates of Disturbed Lipid Metabolism among Older Men

    OpenAIRE

    Urho M Kujala; Markku Peltonen; Merja K. Laine; Merja K. Laine; Jaakko Kaprio; Jaakko Kaprio; Jaakko Kaprio; Olli. J. Heinonen; Jouko Sundvall; Johan G. Eriksson; Johan G. Eriksson; Johan G. Eriksson; Antti Jula; Seppo Sarna; Heikki Kainulainen

    2016-01-01

    Aims/hypothesis Existing studies suggest that decreased branched-chain amino acid (BCAA) catabolism and thus elevated levels in blood are associated with metabolic disturbances. Based on such information we have developed a hypothesis how BCAA degradation mechanistically connects to tricarboxylic acid (TCA) cycle, intramyocellular lipid storage and oxidation thus allowing more efficient mitochondrial energy production from lipids as well as providing better metabolic health. We analyzed wheth...

  10. Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process.

    Science.gov (United States)

    Ahsan, Laboni; Jahan, M Sarwar; Ni, Yonghao

    2014-03-01

    This work investigated the feasibility of recovering and concentrating sugars and acetic acid (HAc) from prehydrolysis liquor (PHL) of the kraft-based dissolving pulp process prior to fermentation of hemicellulosic sugars, by the combination of activated carbon adsorption, nanofiltration (NF) and reverse osmosis (RO) processes. To reduce the fouling PHL was subjected to adsorption on activated carbon, then the treated PHL (TPHL) passed through a nanofiltration (NF DK) membrane to retain the sugars, and the permeate of acetic acid rich solution was passed through a reverse osmosis membrane (RO SG). It was found that for NF process sugars were concentrated from 48 to 227g/L at a volume reduction factor (VRF) of 5 while 80 to 90% of acetic acid was permeated. For the reverse osmosis process, 68% of acetic acid retention was achieved at pH 4.3 and 500 psi pressure and the HAc concentration increased from 10 to 50g/L. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Reversal learning enhanced by lysergic acid diethylamide (LSD): concomitant rise in brain 5-hydroxytryptamine levels.

    Science.gov (United States)

    King, A R; Martin, I L; Melville, K A

    1974-11-01

    1 Small doses of lysergic acid diethylamide (LSD) (12.5-50 mug/kg) consistently facilitated learning of a brightness discrimination reversal.2 2-Bromo-lysergic acid diethylamide (BOL-148), a structural analogue of LSD, with similar peripheral anti-5-hydroxytrypamine activity but no psychotomimetic properties, had no effect in this learning situation at a similar dose (25 mug/kg).3 LSD, but not BOL-148, caused a small but significant increase in brain 5-hydroxytryptamine levels, but had no effect on the levels of catecholamines in the brain at 25 mug/kg.

  12. Simultaneous determination of ascorbic acid and caffeine in commercial soft drinks using reversed-phase ultraperformance liquid chromatography.

    Science.gov (United States)

    Turak, Fatma; Güzel, Remziye; Dinç, Erdal

    2017-04-01

    A new reversed-phase ultraperformance liquid chromatography method with a photodiode array detector was developed for the quantification of ascorbic acid (AA) and caffeine (CAF) in 11 different commercial drinks consisting of one energy drink and 10 ice tea drinks. Separation of the analyzed AA and CAF with an internal standard, caffeic acid, was performed on a Waters BEH C 18 column (100 mm × 2.1 mm, 1.7 μm i.d.), using a mobile phase consisting of acetonitrile and 0.2M H 3 PO 4 (11:89, v/v) with a flow rate of 0.25 mL/min and an injection volume of 1.0 μL. Calibration graphs for AA and CAF were computed from the peak area ratio of AA/internal standard and CAF/internal standard detected at 244.0 nm and 273.6 nm, respectively. The developed reversed-phase ultraperformance liquid chromatography method was validated by analyzing standard addition samples. The proposed reversed-phase ultraperformance liquid chromatography method gave us successful results for the quantitative analysis of commercial drinks containing AA and CAF substances. Copyright © 2016. Published by Elsevier B.V.

  13. Simultaneous determination of ascorbic acid and caffeine in commercial soft drinks using reversed-phase ultraperformance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Fatma Turak

    2017-04-01

    Full Text Available A new reversed-phase ultraperformance liquid chromatography method with a photodiode array detector was developed for the quantification of ascorbic acid (AA and caffeine (CAF in 11 different commercial drinks consisting of one energy drink and 10 ice tea drinks. Separation of the analyzed AA and CAF with an internal standard, caffeic acid, was performed on a Waters BEH C18 column (100 mm × 2.1 mm, 1.7 μm i.d., using a mobile phase consisting of acetonitrile and 0.2M H3PO4 (11:89, v/v with a flow rate of 0.25 mL/min and an injection volume of 1.0 μL. Calibration graphs for AA and CAF were computed from the peak area ratio of AA/internal standard and CAF/internal standard detected at 244.0 nm and 273.6 nm, respectively. The developed reversed-phase ultraperformance liquid chromatography method was validated by analyzing standard addition samples. The proposed reversed-phase ultraperformance liquid chromatography method gave us successful results for the quantitative analysis of commercial drinks containing AA and CAF substances.

  14. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.

    2014-09-02

    Waste acid streams produced at industrial sites are often co-located with large sources of waste heat (e.g., industrial exhaust gases, cooling water, and heated equipment). Reverse electrodialysis (RED) systems can be used to generate electrical power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen production, while capturing energy from excess waste heat. The rate of acid neutralization was dependent on stack flow rate and increased 50× (from 0.06 ± 0.04 to 3.0 ± 0.32 pH units min -1 m-2 membrane), as the flow rate increased 6× (from 100 to 600 mL min-1). Acid neutralization primarily took place due to ammonium electromigration (37 ± 4%) and proton diffusion (60 ± 5%). The use of a synthetic waste acid stream as a catholyte (pH ≈ 2) also increased hydrogen production rates by 65% (from 5.3 ± 0.5 to 8.7 ± 0.1 m3 H2 m-3 catholyte day -1) compared to an AmB electrolyte (pH ≈ 8.5). These findings highlight the potential use of dissimilar electrolytes (e.g., basic anolyte and acidic catholyte) for enhanced power and hydrogen production in RED stacks. © 2014 American Chemical Society.

  15. Download this PDF file

    African Journals Online (AJOL)

    dell

    These catalyst were phosphoric acid, 1,2,4-benzene tricarboxylic acid and succinic acid. The new compounds were ... benzene tricarboxylic acid, characterization of alkyd resin properties ... polymerization reaction between three kinds ... leads to the formation of polymer chain to ... and experimental methods, which can be.

  16. PDK4 Inhibits Cardiac Pyruvate Oxidation in Late Pregnancy.

    Science.gov (United States)

    Liu, Laura X; Rowe, Glenn C; Yang, Steven; Li, Jian; Damilano, Federico; Chan, Mun Chun; Lu, Wenyun; Jang, Cholsoon; Wada, Shogo; Morley, Michael; Hesse, Michael; Fleischmann, Bernd K; Rabinowitz, Joshua D; Das, Saumya; Rosenzweig, Anthony; Arany, Zoltan

    2017-12-08

    Pregnancy profoundly alters maternal physiology. The heart hypertrophies during pregnancy, but its metabolic adaptations, are not well understood. To determine the mechanisms underlying cardiac substrate use during pregnancy. We use here 13 C glucose, 13 C lactate, and 13 C fatty acid tracing analyses to show that hearts in late pregnant mice increase fatty acid uptake and oxidation into the tricarboxylic acid cycle, while reducing glucose and lactate oxidation. Mitochondrial quantity, morphology, and function do not seem altered. Insulin signaling seems intact, and the abundance and localization of the major fatty acid and glucose transporters, CD36 (cluster of differentiation 36) and GLUT4 (glucose transporter type 4), are also unchanged. Rather, we find that the pregnancy hormone progesterone induces PDK4 (pyruvate dehydrogenase kinase 4) in cardiomyocytes and that elevated PDK4 levels in late pregnancy lead to inhibition of PDH (pyruvate dehydrogenase) and pyruvate flux into the tricarboxylic acid cycle. Blocking PDK4 reverses the metabolic changes seen in hearts in late pregnancy. Taken together, these data indicate that the hormonal environment of late pregnancy promotes metabolic remodeling in the heart at the level of PDH, rather than at the level of insulin signaling. © 2017 American Heart Association, Inc.

  17. Culture engineering examination and metabolism flux distribution system analysis for madding to convert into poly {beta}- hydroxybutyric acid (PHB) using the hydrogen bacteria of organic acid got in liquid-phase oxidation of lignite; Kattan no ekiso sanka de erareru yukisan wo suiso saikin wo riyoshite pori {beta}-hidorokishi rakusan(PHB) ni henkan saseru tameno baiyo kogakuteki kento to taisha ryusoku bunpu shisutemu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, Kinko; Seki, Suito; Shimizu, Kazuyuki; Mae, Kazuhiro; Miura, Koichi

    1999-04-05

    The culture engineering examination for madding to convert into poly {beta} - hydroxy Wisteria (PHB) which glycolic acid. Acetic acid, ant acid, malonic acid got in liquid-phase oxidation of lignite are raw material of biodegradable plastic using hydrogen bacteria Alcaligenes eutrophus was carried out. It was proven that acetic acid was the most efficiently converted into the PHB as a result of cultivating these organic acid as a single carbon source. And, it was utilized to the bacterial cell at the order of ant acid, acetic acid, glycolic acid, when it was cultivated in mixing organic acid, and it was proven to convert into the PHB. Though the malonic acid was not utilized for the bacterial cell breeding, it was indicated that as the result which analyzed metabolism flow distribution by calculating using the culture data, the succinate dehydrogenase of the tricarboxylic acid (TCA) circuit received competitive inhibition, when this is added in culture middle point, and that the flux of griot lysyl acid route and gluconeogenesis route lowers. And, it was proven that it was utilized in the route which comes to the PHB synthesis from acetoacetyl CoA with the lowering of the ammonia concentration on NADPH produced from the isocitric acid, though it was prior consumed to the glutamic acid of tricarboxylic acid cycle in the route, if ammonia concentration is high. (translated by NEDO)

  18. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in vitro and in vivo systems

    Science.gov (United States)

    Vassiliou, Evros K; Gonzalez, Andres; Garcia, Carlos; Tadros, James H; Chakraborty, Goutam; Toney, Jeffrey H

    2009-01-01

    Background Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-α in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKAy. Methods The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-α and oleic acid treated cells was evaluated using flow cytometry. PPAR-γ translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKAy mice and glucose levels were measured with a glucometer. Results Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-α inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-α and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid. Conclusion

  19. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems.

    Science.gov (United States)

    Vassiliou, Evros K; Gonzalez, Andres; Garcia, Carlos; Tadros, James H; Chakraborty, Goutam; Toney, Jeffrey H

    2009-06-26

    Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-alpha in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKAy. The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-alpha and oleic acid treated cells was evaluated using flow cytometry. PPAR-gamma translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKAy mice and glucose levels were measured with a glucometer. Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-alpha inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-alpha and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid. Oleic acid was found to

  20. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease

    OpenAIRE

    Sunny, Nishanth E.; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J.; Nautiyal, Manisha; Mathew, Justin T.; Williams, Caroline M.; Cusi, Kenneth

    2015-01-01

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperin...

  1. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    Science.gov (United States)

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-02

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Reversed-phase liquid chromatographic profile of free amino acids in strawberry-tree (Arbutus unedo L.) honey.

    Science.gov (United States)

    Spano, Nadia; Piras, Irene; Ciulu, Marco; Floris, Ignazio; Panzanelli, Angelo; Pilo, Maria I; Piu, Paola C; Sanna, Gavino

    2009-01-01

    The typical profile of the free amino acids contained in strawberry-tree (Arbutus unedo L.) honey is reported for the first time. An optimized reversed-phase liquid chromatographic (RP-LC) method with phenyl isothiocyanate precolumn derivatization was used. Fourteen free amino acids were identified and quantified in 16 analytical samples. Proline (65.63%) was found to be the most abundant free amino acid, followed by glutamic acid (6.49%), arginine (5.21%), alanine (5.17%), and phenylalanine (4.97%). The total free amino acid content of strawberry-tree honey (average value, 436 mg/kg) was found to be low in comparison to amounts cited in the literature concerning unifloral honeys. The analytical method was optimized and fully validated in terms of detection and quantitation limits, precision (by testing repeatability and reproducibility), linearity, and bias (by means of recovery tests). The acceptability of the validation protocol results was verified using Horwitz's mathematical model and AOAC guidelines.

  3. Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans.

    Science.gov (United States)

    Tao, Li; Zhang, Yulong; Fan, Shuru; Nobile, Clarissa J; Guan, Guobo; Huang, Guanghua

    2017-08-01

    Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.

  4. Integration of the tricarboxylic acid (TCA cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Li Tao

    2017-08-01

    Full Text Available Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.

  5. Study of reverse flotation of calcite from scheelite in acidic media

    Science.gov (United States)

    Deng, Rongdong; Huang, Yuqing; Hu, Yuan; Ku, Jiangang; Zuo, Weiran; Yin, Wanzhong

    2018-05-01

    A new coated-reactive reverse flotation method based on the generation of CO2 bubbles at a calcite surface in acidic solution was used to separate calcite from scheelite. The dissolution kinetics of coated and uncoated calcite were studied in sulfuric acid. The CO2 bubbles generated on the uncoated calcite particle surface are enough to float the particle. However, most of these bubbles left the surface quickly, preventing calcite from floating. Here, a mixture of polyvinyl alcohol polymer and sodium dodecyl sulfonate was used to coat the mineral particles and form a stable membrane, resulting in the formation of a stable foam layer on the calcite surface. After the calcite is coated, the generated bubbles could be successfully captured on the calcite surface, and calcite particles could float to the air-water interface and remain there for more than one hour. Flotation tests indicated that a high-quality tungsten concentrate with a grade of more than 75% and a recovery of more than 99% could be achieved when the particle size was between 0.3 and 1.5 mm. The present results provide theoretical support for the development of a highly efficient flotation separation for carbonate minerals.

  6. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  7. Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK Channel Antagonist Mycotoxin Penitrem A

    Directory of Open Access Journals (Sweden)

    Amira A. Goda

    2016-11-01

    Full Text Available Penitrem A (PA is a food mycotoxin produced by several terrestrial and few marine Penicillium species. PA is a potent tremorgen through selective antagonism of the calcium-dependent potassium BK (Maxi-K channels. Discovery of natural products that can prevent the toxic effects of PA is important for food safety. Astaxanthin (AST is a marine natural xanthophyll carotenoid with documented antioxidant activity. Unlike other common antioxidants, AST can cross blood brain barriers (BBBs, inducing neuroprotective effects. Docosahexaenoic acid (DHA is polyunsaturated ω-3 fatty acid naturally occurring in fish and algae. DHA is essential for normal neurological and cellular development. This study evaluated the protective activity of AST and DHA against PA-induced toxicity, in vitro on Schwann cells CRL-2765 and in vivo in the worm Caenorhbitidis elegans and Sprague Dawley rat models. PA inhibited the viability of Schwann cells, with an IC50 of 22.6 μM. Dose-dependent treatments with 10–100 μM DHA significantly reversed the PA toxicity at its IC50 dose, and improved the survival of Schwann cells to 70.5%–98.8%. Similarly, dose-dependent treatments with 10–20 μM AST reversed the PA toxicity at its IC50 dose and raised these cells’ survival to 61.7%–70.5%. BK channel inhibition in the nematode C. elegans is associated with abnormal reversal locomotion. DHA and AST counteracted the in vivo PA BK channel antagonistic activity in the C. elegans model. Rats fed a PA-contaminated diet showed high levels of glutamate (GLU, aspartate (ASP, and gamma amino butyric acid (GABA, with observed necrosis or absence of Purkinjie neurons, typical of PA-induced neurotoxicity. Dopamine (DA, serotonin (5-HT, and norepinephrine (NE levels were abnormal, Nitric Oxide (NO and Malondialdehyde (MDA levels were significantly increased, and total antioxidant capacity (TAC level in serum and brain homogenates was significantly decreased in PA-treated rats. DHA and AST

  8. A first principles study of interactions of CO{sub 2} with surfaces of a Cu(benzene‐1,3,5‐tricarboxylate) metal organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie, E-mail: jl3336@drexel.edu [Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104 (United States); Zhu, Chenming [CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210 (China); Qiao, Zhen [Department of Chemistry, Drexel University, Philadelphia, PA 19104 (United States); Chen, Xinqing; Wei, Wei [CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210 (China); Ji, Haifeng [CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210 (China); Department of Chemistry, Drexel University, Philadelphia, PA 19104 (United States); Sohlberg, Karl [Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104 (United States); Department of Chemistry, Drexel University, Philadelphia, PA 19104 (United States)

    2016-11-01

    Highlights: • DFT calculations are reported for a new Cu(benzene 1,3,5 tricarboxylate) MOF. • Neither of two low-index surfaces displays appreciable surface relaxation. • Strongest CO{sub 2} binding is to surface-exposed aryl groups. • Surface-exposed Cu atoms do not bind CO{sub 2} strongly, even if unsaturated. • Fitting the BET isotherm yields a binding energy in agreement with DFT calculations. - Abstract: Density functional theory is used to investigate the interaction of CO{sub 2} with the 100 and 010 surfaces of a Cu(benzene 1,3,5 tricarboxylate) metal organic framework. The calculation method is first validated by applying it to similar systems for which reliable results have been reported in literature and verifying that consistent results are obtained. The method is then applied to the Cu(benzene 1,3,5 tricarboxylate) system. The results show that neither the 100 or 010 surface undergoes major surface relaxation or surface reconstruction during structural optimization. CO{sub 2} adsorption calculations show that on the 100 surface, the CO{sub 2} molecule interacts with the surface benzene ring through π-π interaction. On the 010 surface, the interaction between the CO{sub 2} and the surface is again dominated by dispersion. Population analysis shows that a Cu atom on the 010 surface, even when nominally coordinatively unsaturated, is not electron deficient, which explains why CO{sub 2} does not bind to it chemically. Adsorption of multiple CO{sub 2} molecules on the 100 surface was also studied to investigate the dependence of the interaction on surface coverage. Least squares fitting of experimental adsorption versus pressure data to the BET isotherm model yields a binding energy in good agreement with the first-principles calculations.

  9. Reverse osmosis influence over the content of metals and organic acids in low alcoholic beverages

    Directory of Open Access Journals (Sweden)

    Andrieş Mitică Tiberiu

    2017-01-01

    Full Text Available Wine is defined as an alcoholic beverage resulted from fermentation of grape must, having ethanol content higher than 8.5% (v/v. Wine consumption has health benefits related to the high concentration of polyphenolic compounds with antioxidant activity and cardiovascular protection effects. However, the alcohol content restricts wine consumption, but wines with low-alcohol content can be obtained with the help of the dealcoholisation process, after it was produced through alcoholic fermentation. The purpose of this work is to evaluate the organic acid concentration, metal content and other physical-chemical parameters of low alcoholic beverages obtained from grape must by a process which involves reverse osmosis, mixing in a variable ratio the permeate and concentrate and then fermentation. For the experiments, a Muscat Ottonel grape must from Iaşi vineyard was used. There were ten variants of beverages (wines with low alcoholic concentration, by mixing known quantities of the two phases resulting from the reverse osmosis process. These beverages (wines had an alcoholic concentration starting from 2.5% (v/v in the first variant, up to 7% (v/v in the tenth variant. Alcoholic concentration varies for each variant by 0.5% (v/v. After fermentation in 50 L stainless steel tanks, the samples were filtered with 0.45μm sterile membrane and bottled in 0.75 L glass bottles. After 2 months of storage at constant temperature, the beverage samples were analyzed to determine the metal content (AAS method, organic acids concentration (HPLC method, and other physical-chemical characteristics (OIV standard methods. The results obtained indicate that the very complex physical-chemical composition of the low alcoholic beverages analyzed is influenced by the specific chemical composition of a given grape must, as well as by the use of products obtained from reverse osmosis.

  10. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  11. A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC.

    Science.gov (United States)

    Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir

    2015-11-01

    Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines.

  12. Increase of extracellular glutamate concentration increases its oxidation and diminishes glucose oxidation in isolated mouse hippocampus: reversible by TFB-TBOA.

    Science.gov (United States)

    Torres, Felipe Vasconcelos; Hansen, Fernanda; Locks-Coelho, Lucas Doridio

    2013-08-01

    Glutamate concentration at the synaptic level must be kept low in order to prevent excitotoxicity. Astrocytes play a key role in brain energetics, and also astrocytic glutamate transporters are responsible for the vast majority of glutamate uptake in CNS. Experiments with primary astrocytic cultures suggest that increased influx of glutamate cotransported with sodium at astrocytes favors its flux to the tricarboxylic acid cycle instead of the glutamate-glutamine cycle. Although metabolic coupling can be considered an emergent field of research with important recent discoveries, some basic aspects of glutamate metabolism still have not been characterized in brain tissue. Therefore, the aim of this study was to investigate whether the presence of extracellular glutamate is able to modulate the use of glutamate and glucose as energetic substrates. For this purpose, isolated hippocampi of mice were incubated with radiolabeled substrates, and CO2 radioactivity and extracellular lactate were measured. Our results point to a diminished oxidation of glucose with increasing extracellular glutamate concentration, glutamate presumably being the fuel, and might suggest that oxidation of glutamate could buffer excitotoxic conditions by high glutamate concentrations. In addition, these findings were reversed when glutamate uptake by astrocytes was impaired by the presence of (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-L-aspartic acid (TFB-TBOA). Taken together, our findings argue against the lactate shuttle theory, because glutamate did not cause any detectable increase in extracellular lactate content (or, presumably, in glycolysis), because the glutamate is being used as fuel instead of going to glutamine and back to neurons. Copyright © 2013 Wiley Periodicals, Inc.

  13. Reversed electrogenic sodium bicarbonate cotransporter 1 is the major acid loader during recovery from cytosolic alkalosis in mouse cortical astrocytes.

    Science.gov (United States)

    Theparambil, Shefeeq M; Naoshin, Zinnia; Thyssen, Anne; Deitmer, Joachim W

    2015-08-15

    The regulation of H(+) i from cytosolic alkalosis has generally been attributed to the activity of Cl(-) -coupled acid loaders/base extruders in most cell types, including brain cells. The present study demonstrates that outwardly-directed sodium bicarbonate cotransport via electrogenic sodium bicarbonate cotransporter 1 (NBCe1) mediates the major fraction of H(+) i regulation from cytosolic alkalosis in mouse cortical astrocytes. Cl(-) -coupled acid-loading transporters play only a minor role in the regulation of H(+) i from alkalosis in mouse cortical astrocytes. NBCe1-mediated H(+) i regulation from alkalosis was dominant, with the support of intracellular carbonic anhydrase II, even when the intra- and extracellular [HCO3 (-) ] was very low (sodium bicarbonate cotransporter 1 (NBCe1) and for carbonic anhydrase (CA) isoform II. An acute cytosolic alkalosis was induced by the removal of either CO2 /HCO3 (-) or butyric acid, and the subsequent acid loading was analysed by monitoring changes in cytosolic H(+) or Na(+) using ion-sensitive fluorescent dyes. We have identified that NBCe1 reverses during alkalosis and contributes more than 70% to the rate of recovery from alkalosis by extruding Na(+) and HCO3 (-) . After CA inhibition or in CAII-knockout (KO) cells, the rate of recovery was reduced by 40%, and even by 70% in the nominal absence of CO2 /HCO3 (-) . Increasing the extracellular K(+) concentration modulated the rate of acid loading in wild-type cells, but not in NBCe1-KO cells. Removing chloride had only a minor effect on the recovery from alkalosis. Reversal of NBCe1 by reducing pH/[HCO3 (-) ] was demonstrated in astrocytes and in Xenopus oocytes, in which human NBCe1 was heterologously expressed. The results obtained suggest that reversed NBCe1, supported by CAII activity, plays a major role in acid-loading cortical astrocytes to support recovery from cytosolic alkalosis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  14. Elucidating the influence of praziquantel nanosuspensions on the in vivo metabolism of Taenia crassiceps cysticerci.

    Science.gov (United States)

    Silva, Luciana Damacena; Arrúa, Eva Carolina; Pereira, Dayanne Amaral; Fraga, Carolina Miguel; Costa, Tatiane Luiza da; Hemphill, Andrew; Salomon, Claudio Javier; Vinaud, Marina Clare

    2016-09-01

    The aim of this work was to develop nanosuspensions of praziquantel (PZQ) and to evaluate their influence on the energetic metabolism of cysticerci inoculated in BALB/c mice. We analyzed metabolic alterations of glycolytic pathways and the tricarboxylic acid cycle in the parasite. The nanosuspensions were prepared by precipitation and polyvinyl alcohol (PVA), poloxamer 188 (P188) and poloxamer 407 (P407) were used as stabilizers. Nanosuspension prepared with PVA had a particle size of 100nm, while P188- and P407-based nanosuspensions had particle sizes of 74nm and 285nm, respectively. The zeta potential was -8.1, -8.6, and -13.2 for the formulations stabilized with PVA, P188 and P407, respectively. Treatments of T. crassiceps cysticerci-infected mice resulted in an increase in glycolysis organic acids, and enhanced the partial reversion of the tricarboxylic acid cycle, the urea cycle and the production of ketonic bodies in the parasites when compared to the groups treated with conventional PZQ. These data suggest that PZQ nanosuspensions greatly modified the energetic metabolism of cysticerci in vivo. Moreover, the remarkable metabolic alterations produced by the stabilizers indicate that further studies on nanoformulations are required to find potentially suitable nanomedicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  16. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  17. Systematic Procedure for Integrated Process Operation: Reverse Electro-Enhanced Dialysis (REED) during Lactic Acid Fermentation

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    2011-01-01

    The integration of lactic acid fermentation and Reverse Electro-Enhanced Dialysis (REED) is investigated based upon previously developed mathematical models. A goal driven process and operation design procedure is proposed and partially investigated. The conceptual analysis of the processes...... integration shows the need for an additional pH controller in the fermenten A PI controller is implemented and tested. The complete control structure for the integrated system consists of this PI controller in the fermenter plus a previously developed (Prado-Rubio et al., 2010) input resetting control...

  18. Rapid Determination of Bile Acids in Bile from Various Mammals by Reversed-Phase Ultra-Fast Liquid Chromatography.

    Science.gov (United States)

    Si, Gu Leng Ri; Yao, Peng; Shi, Luwen

    2015-08-01

    A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. © Crown copyright 2014.

  19. Reverse osmosis and its use at the nuclear power plants. Purification of primary circuit coolant by the means of reverse osmosis

    International Nuclear Information System (INIS)

    Kus, Pavel; Vonkova, Katerina; Kunesova, Katerina; Bartova, Sarka; Skala, Martin; Moucha, Tomáš

    2014-01-01

    This contribution is focused on the use of membrane technologies (e.g. reverse osmosis) for the primary coolant purification at the nuclear power plants. Currently, boric acid present in the primary coolant is preconcentrated at the evaporators, but their operation is very inefficient and expensive. Therefore, reverse osmosis was proposed as one of promising methods possibly replacing evaporators. The aim of the purification process is to achieve boric acid solution of a defined concentration (40 g/l) in the retentate stream in order to recycle it and reuse it in the primary circuit. Additionally, permeate flow should consist solely of pure water. To study the efficiency of several reverse osmosis modulus in the boric acid removal form the water solutions, experimental apparatus was constructed in our laboratory. It consists of the solution reservoir, pump and reverse osmosis modulus. The arrangement of experiments was batch and the retentate flow was refluxed to the feed solution. Several modulus of commercial reverse osmosis membranes were tested. The feed solution contained various concentrations of H 3 BO 3 , KOH, LiOH and NH 3 in order to simulate real primary coolant composition. Based on the experimental results, mathematical model was developed in order to optimize experimental conditions for the best results in primary coolant purification and boric acid preconcentration. (author)

  20. Determination of trace elements in acid rain by reversed phase extraction chromatography and neutron activation

    International Nuclear Information System (INIS)

    Rao, R.R.; Goski, D.G.; Chatt, A.

    1991-01-01

    A preconcentration neutron activation analysis (PNAA) method has been developed for the simultaneous determination of selected trace elements in acid rain and other water samples. The method consists of preconcentration of the elements by reversed phase extraction chromatography using oxine-loaded Amberlite XAD-2 resin. Nearly 100% recoveries were obtained for Co, Cu, Hg, V and Zn at pH 6.0 and for Cd at pH 7.0. Manganese gave incomplete recoveries at the pH range of 4.0-8.0 studies. Various factors that can influence preconcentration of the elements have been investigated in detail. The precision and accuracy of measurements have been evaluated by analyzing certified reference materials. The detection limits have been found to be of the order of ppb. The PNAA method has been applied to a number of acid rain and other water samples

  1. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    Science.gov (United States)

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. An Additional Method for Analyzing the Reversible Inhibition of an ?Enzyme Using Acid Phosphatase as a Model

    OpenAIRE

    Baumhardt, Jordan M.; Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2015-01-01

    Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent const...

  3. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Chan, Jessica S K; Sjøberg, Kim Anker

    2017-01-01

    OBJECTIVE: Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether...... dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD......) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. METHODS: We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total...

  4. Comparison of Separation of Seed Oil Triglycerides Containing Isomeric Conjugated Octadecatrienoic Acid Moieties by Reversed-Phase HPLC

    OpenAIRE

    Anh Van Nguyen; Victor Deineka; Lumila Deineka; Anh Vu Thi Ngoc

    2017-01-01

    Relative retention analysis and increment approach were applied for the comparison of triglycerides (TGs) retention of a broad set of plant seed oils with isomeric conjugated octadecatrienoic acids (CLnA) by reversed-phase HPLC for “propanol-2-acetonitrile” mobile phases and Kromasil 100-5C18 stationary phase with diode array detection (DAD) and mass spectrometric (MS) detection. The subjects of investigation were TGs of seed oils: Calendula officinalis, Catalpa ovata, Jacaranda mimosifolia, ...

  5. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K.

    2015-01-01

    production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led......Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities...... of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact...

  6. Chromatographic retention prediction and octanol-water partition coefficient determination of monobasic weak acidic compounds in ion-suppression reversed-phase liquid chromatography using acids as ion-suppressors.

    Science.gov (United States)

    Ming, Xin; Han, Shu-ying; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen

    2009-08-15

    Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (K" ow) was proposed to calibrate the octanol-water partition coefficient (K(ow)) of these weak acidic compounds, which resulted in a better linear correlation with log k(w), the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This log K" ow-log k w linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring K(ow) data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.

  7. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men

    DEFF Research Database (Denmark)

    Ribel-Madsen, Amalie; Ribel-Madsen, Rasmus; Brøns, Charlotte

    2016-01-01

    We hypothesized that an increased, incomplete fatty acid beta‐oxidation in mitochondria could be part of the metabolic events leading to insulin resistance and thereby an increased type 2 diabetes risk in low birth weight (LBW) compared with normal birth weight (NBW) individuals. Therefore, we...... measured fasting plasma levels of 45 acylcarnitine species in 18 LBW and 25 NBW men after an isocaloric control diet and a 5‐day high‐fat, high‐calorie diet. We demonstrated that LBW men had higher C2 and C4‐OH levels after the control diet compared with NBW men, indicating an increased fatty acid beta...

  8. Verapamil reverses PTH- or CRF-induced abnormal fatty acid oxidation in muscle

    International Nuclear Information System (INIS)

    Perna, A.F.; Smogorzewski, M.; Massry, S.G.

    1988-01-01

    Chronic renal failure (CRF) is associated with impaired long chain fatty acids (LCFA) oxidation by skeletal muscle mitochondria. This is due to reduced activity of carnitine palmitoyl transferase (CPT). These derangements were attributed to the secondary hyperparathyroidism of CRF, since prior parathyroidectomy in CRF rats reversed these abnormalities and PTH administration to normal rats reproduced them. It was proposed that these effects of PTH are mediated by its ionophoric property leading to increased entry of calcium into skeletal muscle. A calcium channel blocker may, therefore, correct these derangements. The present study examined the effects of verapamil on LCFA oxidation, CPT activity by skeletal muscle mitochondria, and 45 Ca uptake by skeletal muscle obtained from CRF rats and normal animals treated with PTH with and without verapamil. Both four days of PTH administration and 21 days of CRF produced significant (P less than 0.01) reduction in LCFA oxidation and CPT activity of skeletal muscle mitochondria, and significant (P less than 0.01) increment in 45 Ca uptake by skeletal muscle. Simultaneous treatment with verapamil corrected all these derangements. Administration of verapamil alone to normal rats did not cause a significant change in any of these parameters. The data are consistent with the proposition that the alterations in LCFA in CRF or after PTH treatment are related to the ionophoric action of the hormone and could be reversed by a calcium channel blocker

  9. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA)

    DEFF Research Database (Denmark)

    Robaczewska, Magdalena; Narayan, Ramamurthy; Seigneres, Beatrice

    2005-01-01

    BACKGROUND/AIMS: Peptide nucleic acids (PNAs) appear as promising new antisense agents, that have not yet been examined as hepatitis B virus (HBV) inhibitors. Our aim was to study the ability of PNAs targeting the duck HBV (DHBV) encapsidation signal epsilon to inhibit reverse transcription (RT...... in primary duck hepatocytes (PDH). RESULTS: Both PNAs reproducibly inhibited DHBV RT in a dose-dependent manner with IC(50) of 10nM, whereas up to 600-fold higher concentration of S-ODNs was required for similar inhibition. The PNA targeting the bulge and upper stem of epsilon appeared as more efficient RT...

  10. Ascorbyl radical disproportionation in reverse micellar systems

    Science.gov (United States)

    Gębicki, J. L.; Szymańska-Owczarek, M.; Pacholczyk-Sienicka, B.; Jankowski, S.

    2018-04-01

    Ascorbyl radical was generated by the pulse radiolysis method and observed with the fast kinetic spectrophotometry within reverse micelles stabilized by AOT in n-heptane or by Igepal CO-520 in cyclohexane at different water to surfactant molar ratio, w0. Rate constants for the disproportionation of the ascorbyl radicals were smaller than those for intermicellar exchange for both type of reverse micelles and slower than those in homogeneous aqueous solutions. However, they increased with increasing w0 for AOT/n-heptane system, while they decreased for Igepal CO-520 system. The absorption spectra of ascorbic acid AOT/n-heptane reverse micellar system showed that the "pH" sensed by this molecule is lower than that in respective homogeneous aqueous solutions. The obtained results were rationalized taking into account three main factors (i) preferential location of ascorbic acid molecules in the interfacial region of the both types of reverse micelles; (ii) postulate that the pH of the interface is lower than that of the water pool of reverse micelles and (iii) different structure of the interface of the reverse micelles made by AOT in n-heptane and those formed by Igepal CO-520 I cyclohexane. Some possible consequences of these findings are discussed.

  11. "Click" synthesis of fatty acid derivatives as fast-degrading polyanhydride precursors.

    Science.gov (United States)

    Lluch, Cristina; Lligadas, Gerard; Ronda, Joan C; Galià, Marina; Cadiz, Virginia

    2011-09-01

    Fast-degrading linear and branched polyanhydrides are obtained by melt-condensation of novel di- and tri-carboxylic acid monomers based on oleic and undecylenic acid synthesized using photoinitiated thiol-ene click chemistry. (1)H NMR spectroscopy, size exclusion chromatography, differential scanning calorimetry, thermogravimetric analysis, and FT-IR spectroscopy have been used to fully characterize these polymers. The hydrolytic degradation of these polymers was studied by means of weight loss, anhydride bond loss, and changes in molecular weight, showing fast degrading properties. Drug release studies from the synthesized polyanhydrides have also been conducted, using rhodamine B as a hydrophobic model drug, to evaluate the potential of these polymers in biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-01-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH 4 CN, CH 3 CN, and C 2 H 4 CN, that had received multikilogray doses of 60 Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  13. L-[4-11C]aspartic acid: enzymatic synthesis, myocardial uptake, and metabolism

    International Nuclear Information System (INIS)

    Barrio, J.R.; Egbert, J.E.; Henze, E.; Schelbert, H.R.; Baumgartner, F.J.

    1982-01-01

    Sterile, pyrogen-free L-[4- 11 C]aspartic acid was prepared from 11 CO 2 using phosphoenolpyruvate carboxylase and glutamic/oxaloacetic acid transaminase immobilized on Sepharose supports to determine if it is a useful indicator for in vivo, noninvasive determination of myocardial metabolism. An intracoronary bolus injection of L-[4- 11 C]aspartic acid into dog myocardium showed a triexponential clearance curve with maximal production of 11 CO 2 100 s after injection. Inactivation of myocardial transaminase activity modified the tracer clearance and inhibited the production of 11 CO 2 . Positron-computed tomography imaging showed that the 11 C activities retained in rhesus monkey myocardium are higher than those observed in dog heart after intravenous injection of L-[4- 11 C]aspartic acid. These findings demonstrated the rapid incorporation of the carbon skeleton of L-aspartic acid into the tricarboxylic acid cycle after enzymatic transamination in myocardium and suggested that L-[4- 11 C]aspartic acid could be of value for in vivo, noninvasive assessment of local myocardial metabolism

  14. Simultaneous determination of 18α-glycyrrhetinic acid and 18β-glycyrrhetinic acid in Glycyrrhiza glabra root by reversed phase high-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Ambika Chamoli

    2016-01-01

    Full Text Available Background: The aim of the present research work is to develop a high-performance liquid chromatography (HPLC method for simultaneous analysis of 18α-glycyrrhetinic acid (18α-GA and 18β-GA (18β-GA of Glycyrrhiza glabra. Materials and Methods: About 20 μL aliquots of each 18α-GA and 18β-GA were analyzed using reversed-phase C-18 column. The mobile phase was acetonitrile:tetrahydrofuran:water (10:80:10, v/v/v. The run time was 10 min at flow rate of 1 ml/min. Ultraviolet detection was carried out at 254 nm. Results: 18α-GA and 18β-GA were well resolved in reversed phase C-18 column using mobile phase acetonitrile: tetrahydrofuran: water (10:80:10, v/v/v, pH 7.9. The Rtof 18α-GA and 18β-GA was detected at 2.091 and 2.377 min, respectively. Conclusion: The developed chromatography method could be extended for potential quantification or simultaneous determination of these markers in plant as well as in herbal formulation.

  15. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.

    Science.gov (United States)

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2018-04-01

    Fumarase catalyzes the interconversion of fumarate and l-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l-malic acid, l-aspartic acid, glycine and l-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes?

    Science.gov (United States)

    Rothman, Douglas L; De Feyter, Henk M; Maciejewski, Paul K; Behar, Kevin L

    2012-11-01

    The high in vivo flux of the glutamate/glutamine cycle puts a strong demand on the return of ammonia released by phosphate activated glutaminase from the neurons to the astrocytes in order to maintain nitrogen balance. In this paper we review several amino acid shuttles that have been proposed for balancing the nitrogen flows between neurons and astrocytes in the glutamate/glutamine cycle. All of these cycles depend on the directionality of glutamate dehydrogenase, catalyzing reductive glutamate synthesis (forward reaction) in the neuron in order to capture the ammonia released by phosphate activated glutaminase, while catalyzing oxidative deamination of glutamate (reverse reaction) in the astrocytes to release ammonia for glutamine synthesis. Reanalysis of results from in vivo experiments using (13)N and (15)N labeled ammonia and (15)N leucine in rats suggests that the maximum flux of the alanine/lactate or branched chain amino acid/branched chain amino acid transaminase shuttles between neurons and astrocytes are approximately 3-5 times lower than would be required to account for the ammonia transfer from neurons to astrocytes needed for glutamine synthesis (amide nitrogen) to sustain the glutamate/glutamine cycle. However, in the rat brain both the total ammonia fixation rate by glutamate dehydrogenase and the total branched chain amino acid transaminase activity are sufficient to support a branched chain amino acid/branched chain keto acid shuttle, as proposed by Hutson and coworkers, which would support the de novo synthesis of glutamine in the astrocyte to replace the ~20 % of neurotransmitter glutamate that is oxidized. A higher fraction of the nitrogen needs of total glutamate neurotransmitter cycling could be supported by hybrid cycles in which glutamate and tricarboxylic acid cycle intermediates act as a nitrogen shuttle. A limitation of all in vivo studies in animals conducted to date is that none have shown transfer of nitrogen for glutamine amide

  17. Integrated treatment of acid mine drainage using BOF slag, lime/soda ash and reverse osmosis (RO): Implication for the production of drinking water

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-12-01

    Full Text Available -up with environmental friendly and zeroliquid-discharge technologies. The purpose of this novel study was to produce drinking water and recover valuable minerals from acid mine drainage using an integration of Basic Oxygen Furnace (BOF) slag, lime, soda ash and Reverse...

  18. Determination of vitamin E acid succinate in biodegradable microspheres by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Martínez Sancho, C; Herrero Vanrell, R; Negro, S

    2004-01-01

    A simple, rapid, and reproducible reversed-phase high-performance liquid chromatographic (HPLC) method is applied to the routine assay of vitamin E acid succinate in biodegradable microspheres. Vitamin E acid-succinate-containing poly-(D,L-lactic-co-glycolic acid) microspheres are prepared by the solvent evaporation method. The starting drug-polymer ratio is 1:10 (w/w) and the total amount of drug and polymer processed is always 440 mg. The content of vitamin E acid succinate in the microspheres is evaluated by HPLC. Chromatography is carried out isocratically at 25 degrees C +/- 0.5 degrees C on an Extrasil ODS-2 column with a mobile phase composed of methanol-water (97:3, v/v) (pH 5.6) at a flow rate of 2 mL/min and UV detection at 284 nm. Parameters such as linearity, limits of quantitation (LOQ) and detection (LOD), precision, accuracy, recovery, specificity, and ruggedness are studied as reported in the International Conference on Harmonization guidelines. The stability of vitamin E acid succinate is also studied with satisfactory results after 48 h at 25 degrees C. The method is selective and linear for drug concentrations in the range 15-210 micro g/mL. The LOQ and LOD are 15 and 3 micro g/mL, respectively. The results for accuracy studies are good. Values for coefficient of variation for intra- and interassay are 2.08% and 2.32%, respectively. The mean percentage of vitamin E acid succinate in the recovery studies is 99.52% +/- 0.81%. The mean loading efficiency for microspheres is 96.53% +/- 1.31%.

  19. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  20. Determination of mycophenolic acid in mest products using mixed mode reversed phase-anion exchange clean-up and liquid chromatography-high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Sørensen, Louise Marie; Nielsen, Kristian Fog; Jacobsen, Thomas

    2008-01-01

    A method for determination of mycophenolic acid (MPA) in dry-cured ham, fermented sausage and liver pate is described. MPA was extracted from meat with bicarbonate-acetonitrile, further cleaned-up by mixed mode reversed phase-anion exchange and detected using a LC-MS system with electrospray...

  1. Indirect fluorescence detection of native amino acids in capillary zone electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhr, W.G.; Yeung, E.S.

    1988-09-01

    Amino acids are but one of several important classes of small chemical compounds in biological chemistry that have an inherent lack of analytically useful physical properties. Amino acids, peptides, fatty acids, sugars, many mono-, di-, and tricarboxylic acids, and phosphorylated intermediates in glycolysis and metabolism show little, if any, UV or visible absorption, fluorescence, or electrochemical activity. As the emphasis of biochemical research shifts to smaller samples where, for example, picomolar quantities of amino acids are analyzed in gas phase protein sequencing or in microliter samples of the extracellular fluid of the mammalian brain, the analytical problem becomes even more challenging due to the small volume of sample available for analysis. In this work, laser-induced fluorescence spectroscopy is performed on-column to detect the bands separated with capillary zone electrophoresis (CZE). CZE is an instrumental form of zone electrophoresis where chemical species are separated purely on the basis of their electrophoretic mobility, since no supporting gel is utilized. Both anions and cations can be separated in the same run because of the large electroosmotic flow generated in small diameter capillaries. This technique has already been used successfully in the rapid, efficient separation of dansyl-amino acids.

  2. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  3. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  4. Synthesis of Nickel (Ni) Doped HKUST-1 Using Solvotermal Method with Addition of Acetic Acid as Modulator

    OpenAIRE

    Safii, Farhan Fikri; Ediati, Ratna

    2015-01-01

    Hong Kong University of Science and Technology-1 (HKUST-1) is metal organic framework (MOF) that composed from ligand BTC (1,3,5-benzene tricarboxylic) and copper ions. The method used in this study is solvotermal with variations nickel ion doping and additions acetic acid as modulator. The purpose of this study is to increase the hydrogen storage capacity. The results obtained were characterized by XRD showed that the HKUST-1 and Ni-HKUST-1 has formed, showed by peaks at 2 theta = 6.7, 9.5, ...

  5. Metabolic regulation of manganese superoxide dismutase expression via essential amino acid deprivation.

    Science.gov (United States)

    Aiken, Kimberly J; Bickford, Justin S; Kilberg, Michael S; Nick, Harry S

    2008-04-18

    Organisms respond to available nutrient levels by rapidly adjusting metabolic flux, in part through changes in gene expression. A consequence of adaptations in metabolic rate is the production of mitochondria-derived reactive oxygen species. Therefore, we hypothesized that nutrient sensing could regulate the synthesis of the primary defense of the cell against superoxide radicals, manganese superoxide dismutase. Our data establish a novel nutrient-sensing pathway for manganese superoxide dismutase expression mediated through essential amino acid depletion concurrent with an increase in cellular viability. Most relevantly, our results are divergent from current mechanisms governing amino acid-dependent gene regulation. This pathway requires the presence of glutamine, signaling via the tricarboxylic acid cycle/electron transport chain, an intact mitochondrial membrane potential, and the activity of both the MEK/ERK and mammalian target of rapamycin kinases. Our results provide evidence for convergence of metabolic cues with nutrient control of antioxidant gene regulation, revealing a potential signaling strategy that impacts free radical-mediated mutations with implications in cancer and aging.

  6. Simultaneous determination of furfural and its degradation products, furoic acid and maleic acid, in transformer oil by the reversed-phase vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Yifan; Li, Haiyan; Yang, Zhen; Zhang, Weijie; Hua, Jia

    2017-12-01

    To explore why the use of furfural as a transformer oil-paper insulation aging characteristic is problematic in real world application, we developed a method for the simultaneous determination of furfural, furoic acid, and maleic acid in transformer oil by reversed-phase vortex-assisted liquid-liquid microextraction combined with high-performance liquid chromatography. The conditions for the proposed method were optimized, and the obtained extract can be directly analyzed by high-performance liquid chromatography. The detection limits (signal-to-noise ratio = 3) of the method ranged from 1.0 to 4.6 μg/L, the enrichment factors for furfural, furoic acid, maleic acid, and fumaric acid were 4.6, 25.1, 15.6, and 17.5, respectively, and the recovery rates for three analytes (fumaric acid was undetected) range from 82.1 to 106.2%. The contents of furfural, furoic acid, and maleic acid resulted from accelerated aging of transformer insulation oil-paper were measured using the present method for the first time, and the aging samples were analyzed by liquid chromatography with mass spectrometry for the identification of furoic acid and maleic acid in the aging transformer oil samples. Using the optimal method, the target products of samples at different aging time were tracked and measured. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reverse osmosis for the recovery of boric acid from the primary coolant at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bártová, Šárka, E-mail: sarka.bartova@cvrez.cz [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Kůs, Pavel [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Skala, Martin [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); University of Chemical Technology, Prague, Department of Chemical Engineering, Technická 5, Prague 166 28 (Czech Republic); Vonková, Kateřina [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic)

    2016-04-15

    Highlights: • RO membranes tested for boric acid recovery from primary coolant of nuclear power plants. • Scanning electron microscopy was used for the characterization of the membranes. • Lab scale experiments performed under various operation conditions. • We proposed configuration of and operation conditions for RO unit in nuclear power plant. - Abstract: At nuclear power plants (NPP), evaporators are used for the treatment of primary coolant and other liquid radioactive waste containing H{sub 3}BO{sub 3}. Because the operation of evaporators is expensive, a number of more cost-effective alternatives has been considered, one of which is reverse osmosis. We tested reverse osmosis modules from several manufactures on a batch laboratory apparatus. SEM images of the tested membranes were taken to distinguish the differences between the membranes. Water permeability through membranes was evaluated from the experiments with pure water. The experiments were performed with feed solutions containing various concentrations of H{sub 3}BO{sub 3} in a range commonly occurring in radioactive waste. The pH of the feed solutions ranged from 5.2 to 11.2. Our results confirmed that the pH of the feed solution plays the most important role in membrane separation efficiency of H{sub 3}BO{sub 3}. Certain modifications to the pH of the feed solution were needed to enable the tested membranes to concentrate the H{sub 3}BO{sub 3} in the retentate stream, separate from the pure water in the permeate stream. On this basis, we propose the configuration of and operational conditions for a reverse osmosis unit at NPP.

  8. Chemical treatment of commercial reverse osmosis membranes for use in FO

    Science.gov (United States)

    Commercially available reverse osmosis (RO) membranes – SW30HR, BW30, and AG – were chemically treated for use in forward osmosis (FO). Nitric acid, phosphoric acid, sulfuric acid, ethanol, and ethanol–acid–water ternary solutions were employed for the treatment. All three membra...

  9. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence.

    Science.gov (United States)

    Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen

    2016-12-01

    The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C 18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Proteome-based systems biology analysis of the diabetic mouse aorta reveals major changes in fatty acid biosynthesis as potential hallmark in diabetes mellitus-associated vascular disease.

    Science.gov (United States)

    Husi, Holger; Van Agtmael, Tom; Mullen, William; Bahlmann, Ferdinand H; Schanstra, Joost P; Vlahou, Antonia; Delles, Christian; Perco, Paul; Mischak, Harald

    2014-04-01

    Macrovascular complications of diabetes mellitus are a major risk factor for cardiovascular morbidity and mortality. Currently, studies only partially described the molecular pathophysiology of diabetes mellitus-associated effects on vasculature. However, better understanding of systemic effects is essential in unraveling key molecular events in the vascular tissue responsible for disease onset and progression. Our overall aim was to get an all-encompassing view of diabetes mellitus-induced key molecular changes in the vasculature. An integrative proteomic and bioinformatics analysis of data from aortic vessels in the low-dose streptozotocin-induced diabetic mouse model (10 animals) was performed. We observed pronounced dysregulation of molecules involved in myogenesis, vascularization, hypertension, hypertrophy (associated with thickening of the aortic wall), and a substantial reduction of fatty acid storage. A novel finding is the pronounced downregulation of glycogen synthase kinase-3β (Gsk3β) and upregulation of molecules linked to the tricarboxylic acid cycle (eg, aspartate aminotransferase [Got2] and hydroxyacid-oxoacid transhydrogenase [Adhfe1]). In addition, pathways involving primary alcohols and amino acid breakdown are altered, potentially leading to ketone-body production. A number of these findings were validated immunohistochemically. Collectively, the data support the hypothesis that in this diabetic model, there is an overproduction of ketone-bodies within the vessels using an alternative tricarboxylic acid cycle-associated pathway, ultimately leading to the development of atherosclerosis. Streptozotocin-induced diabetes mellitus in animals leads to a reduction of fatty acid biosynthesis and an upregulation of an alternative ketone-body formation pathway. This working hypothesis could form the basis for the development of novel therapeutic intervention and disease management approaches.

  11. Biochemistry of fluoroacetate poisoning: the isolation and some properties of the fluorotricarboxylic acid inhibitor of citrate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R; Wakelin, R W

    1953-01-01

    It has been suggested that the toxicity of fluoroacetate is due to the enzymic synthesis of a fluorotricarboxylic acid, which 'jams' the tricarboxylic acid cycle at the citrate stage. This communication presents the proof of this hypothesis. The inhibitory substance for citrate metabolism synthesized by enzymic action from fluoroacetate has been isolated as a compouud in crystalline form of great potency. Under the conditions of test it inhibits the disappearance of approximately 300 times its weight of citric acid in 30 min. The final isolation involved a separation from citric acid by the use of ion-exchange resin, and fractional extraction with ether. It is a monofluorotricarboxylic acid, as shown by its migration on a paper chromatogram, by its fluorine content (estimated spectrochemically), and by its titration curve. It does not give the colour reaction with sodium sulphide for pentabromacetone produced from citric acid by the usual methods. It gives an infra-red band which may be expected from a C-F bond. By a process of exclusion, it is considered to be a fluorocitric acid; a final decision must await synthesis.

  12. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species

    International Nuclear Information System (INIS)

    Chia, D.W.; Yoder, T.J.; Reiter, W.D.; Gibson, S.I.

    2000-01-01

    Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C(sub 3) plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C(sub 3) plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean[Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport

  13. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species

    Energy Technology Data Exchange (ETDEWEB)

    Chia, D.W.; Yoder, T.J.; Reiter, W.D.; Gibson, S.I.

    2000-10-01

    Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C{sub 3} plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C{sub 3} plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean [Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport.

  14. L-Chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro

    International Nuclear Information System (INIS)

    Reinke, Ryan A.; Lee, Deborah J.; McDougall, Brenda R.; King, Peter J.; Victoria, Joseph; Mao Yingqun; Lei Xiangyang; Reinecke, Manfred G.; Robinson, W. Edward

    2004-01-01

    The human immunodeficiency virus (HIV) integrase (IN) must covalently join the viral cDNA into a host chromosome for productive HIV infection. L-Chicoric acid (L-CA) enters cells poorly but is a potent inhibitor of IN in vitro. Using quantitative real-time polymerase chain reaction (PCR), L-CA inhibits integration at concentrations from 500 nM to 10 μM but also inhibits entry at concentrations above 1 μM. Using recombinant HIV IN, steady-state kinetic analyses with L-CA were consistent with a noncompetitive or irreversible mechanism of inhibition. IN, in the presence or absence of L-CA, was successively washed. Inhibition of IN diminished, demonstrating that L-CA was reversibly bound to the protein. These data demonstrate that L-CA is a noncompetitive but reversible inhibitor of IN in vitro and of HIV integration in vivo. Thus, L-CA likely interacts with amino acids other than those which bind substrate

  15. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Prediction of Molar Extinction Coefficients of Proteins and Peptides Using UV Absorption of the Constituent Amino Acids at 214 nm To Enable Quantitative Reverse Phase High-Performance Liquid Chromatography-Mass Spectrometry Analysis

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Gruppen, H.

    2007-01-01

    The molar extinction coefficients of 20 amino acids and the peptide bond were measured at 214 nm in the presence of acetonitrile and formic acid to enable quantitative comparison of peptides eluting from reversed-phase high-performance liquid chromatography, once identified with mass spectrometry

  17. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.

    Science.gov (United States)

    Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I

    2009-07-01

    In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.

  18. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    Science.gov (United States)

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  19. Aspartate protects Lactobacillus casei against acid stress.

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics.

  20. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xu Guoqiang

    2012-02-01

    Full Text Available Abstract Background Fumaric acid is a commercially important component of foodstuffs, pharmaceuticals and industrial materials, yet the current methods of production are unsustainable and ecologically destructive. Results In this study, the fumarate biosynthetic pathway involving reductive reactions of the tricarboxylic acid cycle was exogenously introduced in S. cerevisiae by a series of simple genetic modifications. First, the Rhizopus oryzae genes for malate dehydrogenase (RoMDH and fumarase (RoFUM1 were heterologously expressed. Then, expression of the endogenous pyruvate carboxylase (PYC2 was up-regulated. The resultant yeast strain, FMME-001 ↑PYC2 + ↑RoMDH, was capable of producing significantly higher yields of fumarate in the glucose medium (3.18 ± 0.15 g liter-1 than the control strain FMME-001 empty vector. Conclusions The results presented here provide a novel strategy for fumarate biosynthesis, which represents an important advancement in producing high yields of fumarate in a sustainable and ecologically-friendly manner.

  1. The Mitotic and Metabolic Effects of Phosphatidic Acid in the Primary Muscle Cells of Turbot (Scophthalmus maximus

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    2018-05-01

    Full Text Available Searching for nutraceuticals and understanding the underlying mechanism that promote fish growth is at high demand for aquaculture industry. In this study, the modulatory effects of soy phosphatidic acids (PA on cell proliferation, nutrient sensing, and metabolic pathways were systematically examined in primary muscle cells of turbot (Scophthalmus maximus. PA was found to stimulate cell proliferation and promote G1/S phase transition through activation of target of rapamycin signaling pathway. The expression of myogenic regulatory factors, including myoD and follistatin, was upregulated, while that of myogenin and myostatin was downregulated by PA. Furthermore, PA increased intracellular free amino acid levels and enhanced protein synthesis, lipogenesis, and glycolysis, while suppressed amino acid degradation and lipolysis. PA also was found to increased cellular energy production through stimulated tricarboxylic acid cycle and oxidative phosphorylation. Our results identified PA as a potential nutraceutical that stimulates muscle cell proliferation and anabolism in fish.

  2. Comparison of Separation of Seed Oil Triglycerides Containing Isomeric Conjugated Octadecatrienoic Acid Moieties by Reversed-Phase HPLC

    Directory of Open Access Journals (Sweden)

    Anh Van Nguyen

    2017-12-01

    Full Text Available Relative retention analysis and increment approach were applied for the comparison of triglycerides (TGs retention of a broad set of plant seed oils with isomeric conjugated octadecatrienoic acids (CLnA by reversed-phase HPLC for “propanol-2-acetonitrile” mobile phases and Kromasil 100-5C18 stationary phase with diode array detection (DAD and mass spectrometric (MS detection. The subjects of investigation were TGs of seed oils: Calendula officinalis, Catalpa ovata, Jacaranda mimosifolia, Centranthus ruber, Momordica charantia, Trichosanthes anguina, Punica granatum, Thladiantha dubia, Valeriana officinalis, and Vernicia montana. It was found that a sequence of elution of TGs of the same types is the same without any inversions for full range of mobile phase compositions: punicic (C18:39Z11E13Z < jacaric (C18:38Z10E12Z < catalpic (C18:39E11E13Z < α-eleostearic (C18:39Z11E13E < calendic (C18:38E10E12Z < β-eleostearic (C18:39E11E13E < all-E calendic (C18:38E10E12E acids. TGs and fatty acid compositions were calculated for all oil samples. Regularities of solute retentions as a function of isomeric conjugated octadecatrienoic acid moiety structure are discussed. Thus, it was proven that it is possible to differentiate TGs of complex composition with moieties of all natural CLnA by retention control accomplished by electronic spectra comparison, even though there are only three types of electronic-vibration spectra for seven isomeric CLnA.

  3. Impact of Acid Cleaning on the Performance of PVDF UF Membranes in Seawater Reverse Osmosis Pretreatment

    KAUST Repository

    Alsogair, Safiya

    2016-05-05

    Low-pressure membrane systems such as Microfiltration (MF) and Ultrafiltration (UF) have been presented as viable option to pre-treatment systems in potable water applications. UF membranes are sporadically backwashed with ultra-filtered water to remove deposited matter from the membrane and restore it. Several factors that may cause permeability and selectivity decrease are involved and numerous procedures are applicable to achieve this objective. Membrane cleaning is the most important step required to maintain the characteristics of the membrane. This research was made with the purpose of investigating the effects of acid cleaning during chemically enhanced backwashing (CEB) on the performance of ultrafiltration (UF) membranes in seawater reverse osmosis (SWRO) pretreatment. To accomplish this, the questions made were: Does the acid addition (before or after the alkali CEB) influence the overall CEB cleaning effectiveness on Dow UF membrane? Does the CEB order of alkali (NaOCl) and acid (H2SO4) affect the overall CEB cleaning effectiveness? If yes, which order is better/worse? What is the optimal acid CEB frequency that will ensure the most reliable performance of the UF?. To answer this queries, a series of sequences were carried out with different types of chemical treatments: Only NaOCl, daily NaOCl plus weekly acid, daily NaOCl plus daily acid, and weekly acid plus daily NaOCl. To investigate the consequence of acid by studying the effect of operational data like the trans-pressure membrane, resistance or permeability and support that by the analytical experiments (organic, inorganic and microbial characterization). Microorganisms were removed almost completely at hydraulic cleaning and showed no difference with addition of acid. As a conclusion of the operational data the organic and inorganic chatacterization resulted in the elimination of the first sequence due to the acummulation of fouling over time, which produces that the cleaning increases downtime

  4. Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system.

    Science.gov (United States)

    Park, Kyung Min; Kwon, Oh Taek; Ahn, Seon Min; Lee, JaeHwan; Chang, Pahn-Shick

    2010-02-28

    Calotropis procera R. Br. carboxylesterase (EC 3.1.1.1) solubilized in reversed micellar glycerol droplets containing a very small amount of water (less than 5ppm) and stabilized by a surfactant effectively catalyzed the esterification between glycerol and capric acid to produce 1-monocaprin. Reaction variables including surfactant types, organic solvent media, reaction time, G-value ([glycerol]/[capric acid]), R-value ([water]/[surfactant]), pH, temperature, and types of metal ion inhibitors on the carboxylesterase-catalyzed esterification were characterized and optimized to efficiently produce 1-monocaprin. Bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and isooctane were the most effective surfactant and organic solvent medium, respectively, for 1-monocaprin formation in reversed micelles. The optimum G- and R-values were 3.0 and 0.05, respectively, and the optimum pH and temperature were determined to be 10.0 and 60 degrees C, respectively. K(m,app.) and V(max,app.) were calculated from a Hanes-Woolf plot, and the values were 9.64 mM and 2.45 microM/min mg protein, respectively. Among various metal ions, Cu(2+) and Fe(2+) severely inhibited carboxylesterase-catalyzed esterification activity (less than 6.0% of relative activity). Copyright 2009 Elsevier B.V. All rights reserved.

  5. Differential impact of amino acids on OXPHOS system activity following carbohydrate starvation in Arabidopsis cell suspensions.

    Science.gov (United States)

    Cavalcanti, João Henrique F; Quinhones, Carla G S; Schertl, Peter; Brito, Danielle S; Eubel, Holger; Hildebrandt, Tatjana; Nunes-Nesi, Adriano; Braun, Hans-Peter; Araújo, Wagner L

    2017-12-01

    Plant respiration mostly depends on the activity of glycolysis and the oxidation of organic acids in the tricarboxylic acid cycle to synthesize ATP. However, during stress situations plant cells also use amino acids as alternative substrates to donate electrons through the electron-transfer flavoprotein (ETF)/ETF:ubiquinone oxidoreductase (ETF/ETFQO) complex to the mitochondrial electron transport chain (mETC). Given this, we investigated changes of the oxidative phosphorylation (OXPHOS) system in Arabidopsis thaliana cell culture under carbohydrate starvation supplied with a range of amino acids. Induction of isovaleryl-CoA dehydrogenase (IVDH) activity was observed under carbohydrate starvation which was associated with increased amounts of IVDH protein detected by immunoblotting. Furthermore, activities of the protein complexes of the mETC were reduced under carbohydrate starvation. We also observed that OXPHOS system activity behavior is differently affected by different amino acids and that proteins associated with amino acids catabolism are upregulated in cells following carbohydrate starvation. Collectively, our results support the contention that ETF/ETFQO is an essential pathway to donate electrons to the mETC and that amino acids are alternative substrates to maintain respiration under carbohydrate starvation. © 2017 Scandinavian Plant Physiology Society.

  6. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Saad, Maged M; Chappuis, Marie-Louise; Boffa, Mauro; Perret, Xavier; Ortega Pérez, Ruben; Barja, François

    2012-03-16

    Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar. Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH. In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262(T) when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified. Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. [Separation of p-aminobenzenearsonic acid and its oxide by ion-pair reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Kang, J; Ma, X; Meng, L; Ma, D

    1999-05-01

    To study the separation of p-aminobenzenearsonic acid (PABAA) and its oxide, p-aminophenylarsine oxide (PAPAO), both the absorption spectra were scanned at the wavelengths from 200 nm to 380 nm. PABAA had absorption maximum at 254 nm and PAPAO 258 nm. The effects of salt concentration, column temperature, methanol and ion-pair agent concentrations on the capacity factor were investigated. Compounds of high polarity showed almost no retention on reversed-phase column; as the volume fraction of the methanol decreased from 90% to 10%, the retention time of PABAA gradually increased with broad peak, and partially eluted when methanol volume fraction being below 20%. With temperature rising, the retention time of PABAA was decreased. But PABAA capacity factor can be increased by selecting an appropriate salt concentration for the mobile phase. The cetyltrimethyl and tetrabutyl ammonium ions were separately added as ion-pair agents to the mobile phase containing methanol in phosphate buffer of 10 mmol/L, the changes of retention time were observed. The mechanism of retention based on reversed phase ion-pair model is proposed. Besides, the retention behaviour is also influenced by size exclusion in stationary phase as well as polar interactions with residual silanol group on the silica surface.

  8. Positive selection results in frequent reversible amino acid replacements in the G protein gene of human respiratory syncytial virus.

    Science.gov (United States)

    Botosso, Viviane F; Zanotto, Paolo M de A; Ueda, Mirthes; Arruda, Eurico; Gilio, Alfredo E; Vieira, Sandra E; Stewien, Klaus E; Peret, Teresa C T; Jamal, Leda F; Pardini, Maria I de M C; Pinho, João R R; Massad, Eduardo; Sant'anna, Osvaldo A; Holmes, Eddie C; Durigon, Edison L

    2009-01-01

    Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a "flip-flop" phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.

  9. Positive selection results in frequent reversible amino acid replacements in the G protein gene of human respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Viviane F Botosso

    2009-01-01

    Full Text Available Human respiratory syncytial virus (HRSV is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a "flip-flop" phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.

  10. Metabolic Regulation of Manganese Superoxide Dismutase Expression via Essential Amino Acid Deprivation*

    Science.gov (United States)

    Aiken, Kimberly J.; Bickford, Justin S.; Kilberg, Michael S.; Nick, Harry S.

    2008-01-01

    Organisms respond to available nutrient levels by rapidly adjusting metabolic flux, in part through changes in gene expression. A consequence of adaptations in metabolic rate is the production of mitochondria-derived reactive oxygen species. Therefore, we hypothesized that nutrient sensing could regulate the synthesis of the primary defense of the cell against superoxide radicals, manganese superoxide dismutase. Our data establish a novel nutrient-sensing pathway for manganese superoxide dismutase expression mediated through essential amino acid depletion concurrent with an increase in cellular viability. Most relevantly, our results are divergent from current mechanisms governing amino acid-dependent gene regulation. This pathway requires the presence of glutamine, signaling via the tricarboxylic acid cycle/electron transport chain, an intact mitochondrial membrane potential, and the activity of both the MEK/ERK and mammalian target of rapamycin kinases. Our results provide evidence for convergence of metabolic cues with nutrient control of antioxidant gene regulation, revealing a potential signaling strategy that impacts free radical-mediated mutations with implications in cancer and aging. PMID:18187411

  11. Reduced TCA flux in diabetic myotubes: A governing influence on the diabetic phenotype?

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. It is unknown whether the reduced tricarboxylic acid cycle (TCA) flux in skeletal muscle of obese and obese type 2 diabetic (T2D) subjects is of primary origin. Acetate oxidation (measurement of TCA-flux) was sign......The diabetic phenotype is complex, requiring elucidation of key initiating defects. It is unknown whether the reduced tricarboxylic acid cycle (TCA) flux in skeletal muscle of obese and obese type 2 diabetic (T2D) subjects is of primary origin. Acetate oxidation (measurement of TCA...

  12. [Application of reversed-phase ion-pair chromatography for universal estimation of octanol-water partition coefficients of acid, basic and amphoteric drugs].

    Science.gov (United States)

    Zhu, Hui; Yang, Ri-Fang; Yun, Liu-Hong; Jiang, Yu; Li, Jin

    2009-09-01

    This paper is to establish a reversed-phase ion-pair chromatography (RP-IPC) method for universal estimation of the octanol/water partition coefficients (logP) of a wide range of structurally diverse compounds including acidic, basic, neutral and amphoteric species. The retention factors corresponding to 100% water (logk(w)) were derived from the linear part of the logk'/phi relationship, using at least four isocratic logk' values containing different organic compositions. The logk(w) parameters obtained were close to the corresponding logP values obtained with the standard "shake flask" methods. The mean deviation for test drugs is 0.31. RP-IPC with trifluoroacetic acid as non classic ion-pair agents can be applicable to determine the logP values for a variety of drug-like molecules with increased accuracy.

  13. Development of wet-dry reversible reverse osmosis membrane with high performance from cellulose acetate and cellulose triactate blend

    NARCIS (Netherlands)

    Vasarhelyi, K.; Ronner, J.A.; Mulder, M.H.V.; Smolders, C.A.

    1987-01-01

    Wet-dry reversible membrane were prepared bt a two-step coagulation procedure. A cast film containing a blend of cellulose triacetate as polymers, dioxane and acetone as solvents and maleic acid and methanol as additives was immersed consecutively in two aqueous coagulation baths, the first bath

  14. Application of perfluorinated acids as ion-pairing reagents for reversed-phase chromatography and retention-hydrophobicity relationships studies of selected beta-blockers.

    Science.gov (United States)

    Flieger, J

    2010-01-22

    The addition of the homologous series of perfluorinated acids-trifluoroacetic acid (TFAA), pentafluoropropionic acid (PFPA), heptafluorobutyric acid (HFBA) to mobile phases for reversed-phase high-performance liquid chromatography (RP-HPLC) of beta-blockers was tested. Acidic modifiers were responsible for acidification of mobile phase (pH 3) ensuring the protonation of the beta-blockers and further ion pairs creation. The effect of the type and concentration of mobile phase additives on retention parameters, the efficiency of the peaks, their symmetry and separation selectivity of the beta-blockers mixture were all studied. It appeared that at increasing acid concentration, the retention factor, for all compounds investigated, increased to varying degrees. It should be stressed that the presence of acids more significantly affected the retention of the most hydrophobic beta-blockers. Differences in hydrophobicity of drugs can be maximized through variation of the hydrophobicity of additives. Thus, the relative increase in the retention depends on either concentration and hydrophobicity of the anionic mobile phase additive or hydrophobicity of analytes. According to QSRR (quantitative structure retention relationship) methodology, chromatographic lipophilicity parameters: isocratic log k and log k(w) values (extrapolated retention to pure water) were correlated with the molecular (log P(o/w)) and apparent (log P(app)) octanol-water partition coefficients obtained experimentally by countercurrent chromatography (CCC) or predicted by Pallas software. The obtained, satisfactory retention-hydrophobicity correlations indicate that, in the case of the basic drugs examined in RP-HPLC systems modified with perfluorinated acids, the retention is mainly governed by their hydrophobicity. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Liquid-liquid extraction by reversed micelles in biotechnological processes

    Directory of Open Access Journals (Sweden)

    Kilikian B. V.

    2000-01-01

    Full Text Available In biotechnology there is a need for new purification and concentration processes for biologically active compounds such as proteins, enzymes, nucleic acids, or cells that combine a high selectivity and biocompatibility with an easy scale-up. A liquid-liquid extraction with a reversed micellar phase might serve these purposes owing to its capacity to solubilize specific biomolecules from dilute aqueous solutions such as fermentation and cell culture media. Reversed micelles are aggregates of surfactant molecules containing an inner core of water molecules, dispersed in a continuous organic solvent medium. These reversed micelles are capable of selectively solubilizing polar compounds in an apolar solvent. This review gives an overview of liquid-liquid extraction by reversed micelles for a better understanding of this process.

  16. A novel retinoic acid chalcone reverses epithelial‑mesenchymal transition in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Jian Zhong

    2015-06-01

    Full Text Available The present study was performed to investigate the effect of retinoic acid fluoro chalcone (RAFC on lipopolysaccharide (LPS induced epithelial-mesenchymal transition (EMT in PC3 and CWR22rv1 prostate cell lines. Lipo-polysaccharide (LPS was used to induce epithelial-mesenchymal transition in prostate carcinoma cell lines. The results revealed that treatment of PC3 and CWR22rv1 cells with LPS resulted in significant changes in the morphological features of the EMT. The mesenchymal marker, vimentin expression was significantly increased whereas the expression level of E‑cadherin was markedly decreased after the treatment. We also observed increased cell motility and higher level of transcription factor glioma‑associated oncogene homolog 1 (Gli1 expression on LPS treatment. Treatment of prostate cells with RAFC reversed the morphological changes induced by LPS in prostate cells. RAFC also reduced the expression of EMT markers induced by LPS and suppressed the Gli1 expression. The resultant effect of these changes was the suppression of motility and invasiveness of the prostrate cells. Thus, RAFC exhibited anti‑invasive effect on prostrate cells by inhibition of the EMT process via Hedgehog signaling pathway.

  17. Remendable Polymeric Materials Using Reversible Covalent Bonds

    Science.gov (United States)

    2008-12-01

    response in poly(ethylene-co-methacrylic acid ) copolymers. Journal of The Royal Society Interface, 4, 405-411. Kavitha, A. A., and N. K. Singha...2007: A tailor-made polymethacrylate bearing a reactive diene in reversible diels-alder reaction. J. Polym. Sci. A Polym. Chem., 45, 4441-4449

  18. Structure of fumarate hydratase from Rickettsia prowazekii, the agent of typhus and suspected relative of the mitochondria

    International Nuclear Information System (INIS)

    Phan, Isabelle; Subramanian, Sandhya; Olsen, Christian; Edwards, Thomas E.; Guo, Wenjin; Zhang, Yang; Van Voorhis, Wesley C.; Stewart, Lance J.; Myler, Peter J.

    2011-01-01

    Fumarate hydratase is an enzyme of the tricarboxylic acid cycle, one of the metabolic pathways characteristic of the mitochondria. The structure of R. prowazekii class II fumarate hydratase is reported at 2.4 Å resolution and is compared with the available structure of the human homolog. Rickettsiae are obligate intracellular parasites of eukaryotic cells that are the causative agents responsible for spotted fever and typhus. Their small genome (about 800 protein-coding genes) is highly conserved across species and has been postulated as the ancestor of the mitochondria. No genes that are required for glycolysis are found in the Rickettsia prowazekii or mitochondrial genomes, but a complete set of genes encoding components of the tricarboxylic acid cycle and the respiratory-chain complex is found in both. A 2.4 Å resolution crystal structure of R. prowazekii fumarate hydratase, an enzyme catalyzing the third step of the tricarboxylic acid cycle pathway that ultimately converts phosphoenolpyruvate into succinyl-CoA, has been solved. A structure alignment with human mitochondrial fumarate hydratase highlights the close similarity between R. prowazekii and mitochondrial enzymes

  19. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation.

    Science.gov (United States)

    Reddy, Aravind T; Lakshmi, Sowmya P; Muchumarri, Ramamohan R; Reddy, Raju C

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs' electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease.

  20. Kinetin Reversal of NaCl Effects

    Science.gov (United States)

    Katz, Adriana; Dehan, Klara; Itai, Chanan

    1978-01-01

    Leaf discs of Nicotiana rustica L. were floated on NaCl in the presence of kinetin or abscisic acid. On the 5th day 14CO2 fixation, [3H]leucine incorporation, stomatal conductance, and chlorophyll content were determined. Kinetin either partially or completely reversed the inhibitory effects of NaCl while ABA had no effect. PMID:16660618

  1. Rapid Quantitative Analysis of Naringenin in the Fruit Bodies of Inonotus vaninii by Two-phase Acid Hydrolysis Followed by Reversed Phase-high Performance Liquid Chromatography-ultra Violet.

    Science.gov (United States)

    Guohua, Xia; Pan, Ruirong; Bao, Rui; Ge, Yanru; Zhou, Cunshan; Shen, Yuping

    2017-01-01

    Sanghuang is one of mystical traditional Chinese medicines recorded earliest 2000 years ago, that included various fungi of Inonotus genus and was well-known for antitumor effect in modern medicine. Inonotus vaninii is grown in natural forest of Northeastern China merely and used as Sanghuang commercially, but it has no quality control specification until now. This study was to establish a rapid method of two-phase acid hydrolysis followed by reversed phase-high performance liquid chromatography-ultra violet (RP-HPLC-UV) to quantify naringenin in the fruit body of I. vaninii . Sample solution was prepared by pretreatment of raw material in two-phase acid hydrolysis and the hydrolysis technology was optimized. After reconstitution, analysis was performed using RP-HPLC-UV. The method validation was investigated and the naringenin content of sample and comparison were determined. The naringenin was obtained by two-phase acid hydrolysis method, namely, 10.0 g of raw material was hydrolyzed in 200 mL of 1% sulfuric acid aqueous solution (v/v) and 400 mL of chloroform in oil bath at 110°C for 2 h. Good linearity ( r = 0.9992) was achieved between concentration of analyte and peak area. The relative standard deviation (RSD) of precision was 2.47% and the RSD of naringenin contents for repeatability was 3.13%. The accuracy was supported with recoveries at 96.37%, 97.30%, and 99.31%. The sample solution prepared using the proposed method contained higher content of naringenin than conventional method and was stable for 8 h. Due to the high efficiency of sample preparation and high reliability of the HPLC method, it is feasible to use this method for routine analysis of naringenin in the fungus. A convenient two-phase acid hydrolysis was employed to produce naringenin from raw material, and then an efficient and reliable reversed phase-high performance liquid chromatography-ultra violet method was established to monitor naringenin in the fruit bodies of Inonotus vaninii

  2. Metabotyping of docosahexaenoic acid - treated Alzheimer's disease cell model.

    Directory of Open Access Journals (Sweden)

    Priti Bahety

    Full Text Available BACKGROUND: Despite the significant amount of work being carried out to investigate the therapeutic potential of docosahexaenoic acid (DHA in Alzheimer's disease (AD, the mechanism by which DHA affects amyloid-β precursor protein (AβPP-induced metabolic changes has not been studied. OBJECTIVE: To elucidate the metabolic phenotypes (metabotypes associated with DHA therapy via metabonomic profiling of an AD cell model using gas chromatography time-of-flight mass spectrometry (GC/TOFMS. METHODS: The lysate and supernatant samples of CHO-wt and CHO-AβPP695 cells treated with DHA and vehicle control were collected and prepared for GC/TOFMS metabonomics profiling. The metabolic profiles were analyzed by multivariate data analysis techniques using SIMCA-P+ software. RESULTS: Both principal component analysis and subsequent partial least squares discriminant analysis revealed distinct metabolites associated with the DHA-treated and control groups. A list of statistically significant marker metabolites that characterized the metabotypes associated with DHA treatment was further identified. Increased levels of succinic acid, citric acid, malic acid and glycine and decreased levels of zymosterol, cholestadiene and arachidonic acid correlated with DHA treatment effect. DHA levels were also found to be increased upon treatment. CONCLUSION: Our study shows that DHA plays a role in mitigating AβPP-induced impairment in energy metabolism and inflammation by acting on tricarboxylic acid cycle, cholesterol biosynthesis pathway and fatty acid metabolism. The perturbations of these metabolic pathways by DHA in CHO-wt and CHO-AβPP695 cells shed further mechanistic insights on its neuroprotective actions.

  3. Reversal of diabetic nephropathy by a ketogenic diet.

    Directory of Open Access Journals (Sweden)

    Michal M Poplawski

    Full Text Available Intensive insulin therapy and protein restriction delay the development of nephropathy in a variety of conditions, but few interventions are known to reverse nephropathy. Having recently observed that the ketone 3-beta-hydroxybutyric acid (3-OHB reduces molecular responses to glucose, we hypothesized that a ketogenic diet, which produces prolonged elevation of 3-OHB, may reverse pathological processes caused by diabetes. To address this hypothesis, we assessed if prolonged maintenance on a ketogenic diet would reverse nephropathy produced by diabetes. In mouse models for both Type 1 (Akita and Type 2 (db/db diabetes, diabetic nephropathy (as indicated by albuminuria was allowed to develop, then half the mice were switched to a ketogenic diet. After 8 weeks on the diet, mice were sacrificed to assess gene expression and histology. Diabetic nephropathy, as indicated by albumin/creatinine ratios as well as expression of stress-induced genes, was completely reversed by 2 months maintenance on a ketogenic diet. However, histological evidence of nephropathy was only partly reversed. These studies demonstrate that diabetic nephropathy can be reversed by a relatively simple dietary intervention. Whether reduced glucose metabolism mediates the protective effects of the ketogenic diet remains to be determined.

  4. Reversal of Diabetic Nephropathy by a Ketogenic Diet

    Science.gov (United States)

    Poplawski, Michal M.; Mastaitis, Jason W.; Isoda, Fumiko; Grosjean, Fabrizio; Zheng, Feng; Mobbs, Charles V.

    2011-01-01

    Intensive insulin therapy and protein restriction delay the development of nephropathy in a variety of conditions, but few interventions are known to reverse nephropathy. Having recently observed that the ketone 3-beta-hydroxybutyric acid (3-OHB) reduces molecular responses to glucose, we hypothesized that a ketogenic diet, which produces prolonged elevation of 3-OHB, may reverse pathological processes caused by diabetes. To address this hypothesis, we assessed if prolonged maintenance on a ketogenic diet would reverse nephropathy produced by diabetes. In mouse models for both Type 1 (Akita) and Type 2 (db/db) diabetes, diabetic nephropathy (as indicated by albuminuria) was allowed to develop, then half the mice were switched to a ketogenic diet. After 8 weeks on the diet, mice were sacrificed to assess gene expression and histology. Diabetic nephropathy, as indicated by albumin/creatinine ratios as well as expression of stress-induced genes, was completely reversed by 2 months maintenance on a ketogenic diet. However, histological evidence of nephropathy was only partly reversed. These studies demonstrate that diabetic nephropathy can be reversed by a relatively simple dietary intervention. Whether reduced glucose metabolism mediates the protective effects of the ketogenic diet remains to be determined. PMID:21533091

  5. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons

    Science.gov (United States)

    With insulin-resistance or type 2 diabetes mellitus, mismatches between mitochondrial fatty acid fuel delivery and oxidative phosphorylation/tricarboxylic acid cycle activity may contribute to inordinate accumulation of short- or medium-chain acylcarnitine fatty acid derivatives (markers of incomple...

  6. [Metabolic syndrome reversion by polyunsaturated fatty acids ingestion].

    Science.gov (United States)

    Campos Mondragón, Martha Gabriela; Oliart Ros, Rosa María; Martínez Martinez, Angélica; Méndez Machado, Gustavo Francisco; Angulo Guerrero, Jesús Ofelia

    2013-12-21

    Metabolic syndrome (MS) frequency is growing and diet has an important influence on its evolution. Our objective was to study the effect of 3 sources of polyunsaturated fatty acids on MS parameters in humans. The MS was diagnosed according to the International Diabetes Federation. Three groups of individuals (n=15/group) were quasi-randomly assigned to one of the following treatments during 6 weeks: a) 1.8 g/d n-3 (1.08g eicosapentoaenoic acid+0.72 g docosahexaenoic acid); b) 2.0 g/d conjugated linoleic acid (CLA, 50:50, cis9:trans11, trans10:cis12), and c) 40 g/d walnut. The clinical and biochemical parameters were evaluated at the beginning and the end of the essay. In the group with n-3 the triglycerides level decreased from 183.9 ± 35.2mg/dl to 149.6 ± 29.0mg/dl (P=.007). In the group with walnut the HDL level rose from 41.7 ± 5.2mg/dl to 47.8 ± 5.4 mg/dl (P=.004) and the Castelli index (total cholesterol/HDL) decreased from 4.86 ± 0.97 to 3.82 ± 0.81 (P=.004). There were not significant changes in the CLA group. At the end of the essay, 46.7% of walnut group patients, 46.7% of n-3 group and 20% of CLA group, had no MS. The groups that consumed polyunsaturated fatty acids n-3 and those in walnut in moderate daily doses during 6 weeks had an improvement of the dyslipidemia component of MS, hypertriglyceridemia and low HDL level. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  7. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system.

    Science.gov (United States)

    Septer, Alecia N; Bose, Jeffrey L; Lipzen, Anna; Martin, Joel; Whistler, Cheryl; Stabb, Eric V

    2015-01-01

    The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence. © 2014 John Wiley & Sons Ltd.

  8. Convenient synthesis of Cu3(BTC)2 encapsulated Keggin heteropolyacid nanomaterial for application in catalysis.

    Science.gov (United States)

    Wee, Lik H; Bajpe, Sneha R; Janssens, Nikki; Hermans, Ive; Houthoofd, Kristof; Kirschhock, Christine E A; Martens, Johan A

    2010-11-21

    Nanomaterial of Cu(3)(BTC)(2) (BTC = benzene tricarboxylic acid) incorporating Keggin heteropolyacid conveniently prepared at room temperature and recovered by freeze drying outperforms ultrastable Y zeolite in acid catalysed esterification reaction.

  9. Reversible and Irreversible Binding of Nanoparticles to Polymeric Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Binder

    2009-01-01

    Full Text Available Reversible and irreversible binding of CdSe-nanoparticles and nanorods to polymeric surfaces via a strong, multiple hydrogen bond (= Hamilton-receptor/barbituric acid is described. Based on ROMP-copolymers, the supramolecular interaction on a thin polymer film is controlled by living polymerization methods, attaching the Hamilton-receptor in various architectures, and concentrations. Strong binding is observed with CdSe-nanoparticles and CdSe-nanorods, whose surfaces are equipped with matching barbituric acid-moieties. Addition of polar solvents, able to break the hydrogen bonds leads to the detachment of the nanoparticles from the polymeric film. Irreversible binding is observed if an azide/alkine-“click”-reaction is conducted after supramolecular recognition of the nanoparticles on the polymeric surface. Thus reversible or irreversible attachment of the nanosized objects can be achieved.

  10. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    Wong, K.L.; Tyce, G.M.

    1983-01-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U- 14 C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  11. pH Gradient Reversal: An Emerging Hallmark of Cancers.

    Science.gov (United States)

    Sharma, Mohit; Astekar, Madhusudan; Soi, Sonal; Manjunatha, Bhari S; Shetty, Devi C; Radhakrishnan, Raghu

    2015-01-01

    Several tumors exhibit pH gradient reversal, with acidification of extracellular pH (pHe) and alkalinization of intracellular pH (pHi). The pH gradient reversal is evident even during the preliminary stages of tumorigenesis and is crucial for survival and propagation of tumors, irrespective of their pathology, genetics and origins. Moreover, this hallmark seems to be present ubiquitously in all malignant tumors. Based on these facts, we propose a new emerging hallmark of cancer "pH gradient reversal". Normalizing pH gradient reversal through inhibition of various proton transporters such as Na(+)-H(+) exchanger (NHE), Vacuolar-type H(+)-ATPase (V-ATPase), H(+)/K(+)-ATPases and carbonic anhydrases (CAs) has demonstrated substantial therapeutic benefits. Indeed, inhibition of NHE1 is now being regarded as the latest concept in cancer treatment. A recent patent deals with the utilization of cis-Urocanic acid to acidify the pHi and induce apoptosis in tumors. Another patent reports therapeutic benefit by inhibiting Lactate Dehydrogenase - 5 (LDH-5) in various cancers. Several patents have been formulated by designing drugs activated through acidic pHe providing a cancer specific action. The purpose of this review is to analyze the available literature and help design selective therapies that could be a valuable adjunct to the conventional therapies or even replace them.

  12. 40 CFR 747.200 - Triethanolamine salt of tricarboxylic acid.

    Science.gov (United States)

    2010-07-01

    ... import for commercial purposes, manufacture solely for export, manufacturer, new chemical substance... (—NO) to a secondary or tertiary amine to form the corresponding nitrosamine. (c) Use limitations. (1) Any person producing a metalworking fluid, or a product which could be used in or as a metalworking...

  13. Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica.

    Science.gov (United States)

    Kamzolova, Svetlana V; Morgunov, Igor G

    2017-11-01

    Comparative study of 43 natural yeast strains belonging to 20 species for their capability for overproduction of citric acid (CA) from glucose under nitrogen limitation of cell growth was carried out. As a result, natural strain Yarrowia lipolytica VKM Y-2373 was selected. The effect of growth limitation by biogenic macroelements (nitrogen, phosphorus, or sulfur) on the CA production by the selected strain was studied. It was shown that yeasts Y. lipolytica grown under deficiency of nitrogen, phosphorus, or sulfur were able to excrete CA in industrially sufficient amounts (80-85g/L with the product yield (Y CA ) of 0.70-0.75g/g and the process selectivity of 92.5-95.3%). Based on the obtained data on activities of enzymes involved in the initial stages of glucose oxidation, the cycle of tricarboxylic acids, and the glyoxylate cycle, the conception of the mechanism responsible for the CA overproduction from glucose in Y. lipolytica was formulated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Brain antioxidant effect of mirtazapine and reversal of sedation by its combination with alpha-lipoic acid in a model of depression induced by corticosterone.

    Science.gov (United States)

    Oliveira, Tatiana de Queiroz; de Sousa, Caren Nádia Soares; Vasconcelos, Germana Silva; de Sousa, Luciene Costa; de Oliveira, Anneheydi Araújo; Patrocínio, Cláudio Felipe Vasconcelos; Medeiros, Ingridy da Silva; Honório Júnior, José Eduardo Ribeiro; Maes, Michael; Macedo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2017-09-01

    Depression is accompanied by activated neuro-oxidative and neuro-nitrosative pathways, while targeting these pathways has clinical efficacy in depression. This study aimed to investigate the effects of mirtazapine (MIRT) alone and combined with alpha-lipoic acid (ALA) against corticosterone (CORT) induced behavioral and oxidative alterations. Male mice received vehicle or CORT 20mg/kg during 14 days. From the 15th to 21st days they were divided in groups administered: vehicle, MIRT 3mg/kg or the combinations MIRT+ALA100 or MIRT+ALA200. On the 21st day of treatment, the animals were subjected to behavioral tests. Twenty-four hours after the last drug administration hippocampus (HC) and striatum (ST) were dissected for the determination reduced glutathione (GSH), lipid peroxidation (LP) and nitrite levels. CORT induced anxiety- and depressive-like behaviors as observed by increased immobility time in the tail suspension test and decreased sucrose consumption. MIRT or MIRT+ALA are effective in reversing anxiety- and depressive-like behaviors induced by CORT. CORT and MIRT alone prolonged sleeping time and this effect was reversed by MIRT+ALA. CORT significantly increased LP, which was reversed by MIRT or MIRT+ALA. Nitrite levels were increased in CORT-treated animals and reversed by MIRT+ALA200 (HC), MIRT or MIRT+ALA (ST). A relative small sample size and lack of a washout period between drug administration and behavioral testing. MIRT or MIRT+ALA reverse CORT-induced anxiety- and depressive-like behaviors probably via their central antioxidant effects. Augmentation of MIRT with ALA may reverse sedation, an important side effect of MIRT. Randomized controlled studies are needed to examine the clinical efficacy of this combination in human depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis.

    Science.gov (United States)

    Liu, Wenlan; Sun, Zhirong; Qu, Jixu; Yang, Chunning; Zhang, Xiaomin; Wei, Xinxin

    2017-09-01

    The aim of the present study was to investigate the correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis . Root respiration was determined using a biological oxygen analyzer. Respiration-related enzymes including glucose-6-phosphate dehydrogenase plus 6-phosphogluconate dehydrogenase, phosphohexose isomerase and succinate dehydrogenase, and respiratory pathways were evaluated. Biomass was determined by a drying-weighing method. In addition, the percentage of glycyrrhizic acid was detected using high-performance liquid chromatography. The association between root respiration and the levels of biomass and glycyrrhizic acid was investigated. The glycolysis pathway (EMP), tricarboxylic acid cycle (TCA) and pentose phosphate (PPP) pathway acted concurrently in the roots of G. uralensis . Grey correlation analysis showed that TCA had the strongest correlation (correlation coefficient, 0.8003) with biomass. Starch and acetyl coenzyme A had the closest association with above-ground biomass, while soluble sugar correlated less strongly with above-ground biomass. Grey correlation analysis between biochemical pathways and the intermediates showed that pyruvic acid had the strongest correlation with EMP, while acetyl coenzyme A correlated most strongly with TCA. Among the intermediates and pathways, pyruvic acid and EMP exhibited the greatest correlation with glycyrrhizic acid, while acetyl coenzyme A and TCA correlated with glycyrrhizic acid less closely. The results of this study may aid the cultivation of G. uralensis . However, these results require verification in further studies.

  16. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid.

    Science.gov (United States)

    Kresnowati, M T A P; van Winden, W A; van Gulik, W M; Heijnen, J J

    2008-11-01

    Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 mM. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae. Using this experimental set-up, we found significant fast-transient (< 3000 s) increases in O(2) consumption and CO(2) production rates, of approximately 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to approximately 80% of the initial value. The intracellular metabolite profile in the new steady-state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O(2) uptake rates.

  17. Ferulic acid with ascorbic acid synergistically extenuates the mitochondrial dysfunction during beta-adrenergic catecholamine induced cardiotoxicity in rats.

    Science.gov (United States)

    Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-10-27

    Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.

  18. 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis.

    Science.gov (United States)

    Araújo, Wagner L; Martins, Auxiliadora O; Fernie, Alisdair R; Tohge, Takayuki

    2014-01-01

    The tricarboxylic acid (TCA) cycle intermediate 2-oxoglutarate (2-OG) is used as an obligatory substrate in a range of oxidative reactions catalyzed by 2-OG-dependent dioxygenases. These enzymes are widespread in nature being involved in several important biochemical processes. We have recently demonstrated that tomato plants in which the TCA cycle enzyme 2-OG dehydrogenase (2-ODD) was antisense inhibited were characterized by early senescence and modified fruit ripening associated with differences in the levels of bioactive gibberellin (GA). Accordingly, there is now compelling evidence that the TCA cycle plays an important role in modulating the rate of flux from 2-OG to amino acid metabolism. Here we discuss recent advances in the biochemistry and molecular biology of 2-OG metabolism occurring in different biological systems indicating the importance of 2-OG and 2-OG dependent dioxygenases not only in glucosinolate, flavonoid and alkaloid metabolism but also in GA and amino acid metabolism. We additionally summarize recent findings regarding the impact of modification of 2-OG metabolism on biosynthetic pathways involving 2-ODDs.

  19. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Enggrob, Kirsten L.; King, S. M.

    2013-01-01

    products cis-pinic and terpenylic acids, but similar to the second-generation oxidation products 3-methyl-1,2,3-butane tricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). Dimer esters were observed within the first 30 min, indicating rapid production simultaneous to their structural...

  20. The reversal of essential fatty acid deficiency symptoms in the cheetah

    African Journals Online (AJOL)

    symptoms are reversible by administration of linoleic and a- ... are unlikely to be fresh, and thus the nutritional value will .... by the drain on the bodily stores of polyenoics to provide ... Malnutrition, and the Developing Brain, (eds) Elliot, K. &.

  1. Reverse association of omega-3/omega-6 polyunsaturated fatty acids ratios with carotid atherosclerosis in patients on hemodialysis.

    Science.gov (United States)

    Umemoto, Norio; Ishii, Hideki; Kamoi, Daisuke; Aoyama, Toru; Sakakibara, Takashi; Takahashi, Hiroshi; Tanaka, Akihito; Yasuda, Yoshinari; Suzuki, Susumu; Matsubara, Tatsuaki; Murohara, Toyoaki

    2016-06-01

    Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are widely recognized to have beneficial effects against cardiovascular disease. We investigated the association of n-3 PUFAs levels with carotid atherosclerosis in patients on hemodialysis (HD), who are at high risk for cardiovascular events. Carotid ultra-sound was performed in a total of 461 patients on HD (male 67%, age 67 ± 12years, diabetes rate 46%). Intima-media thickness (IMT) and the plaque score (PS) in carotid arteries were measured. Carotid atherosclerosis was defined as IMT >1.2 mm and/or PS > 5.0. The levels of n-6 PUFAs [dihomo-gamma-linolenic acid (DHLA) and arachidonic acid (AA)] and n-3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] were also measured prior to carotid ultra-sound. Carotid atherosclerosis was observed in 94 patients (20.4%). Individual PUFAs levels were comparable between patients with and without carotid atherosclerosis. However, the ratio of EPA/AA and that of n-3/n-6 PUFAs were significantly lower in patients with carotid atherosclerosis compared to those without (median 0.36 vs. 0.41, p = 0.031 and 0.85 vs. 0.93, p = 0.041, respectively]. After adjustment for other confounders, the ratio of EPA/AA (OR 0.30, 95% CI 0.12-0.70, p = 0.0055) and the ratio of n-3/n-6 PUFAs (OR 0.45, 95% CI 0.25-0.80, p = 0.0066) showed an independent reverse association with carotid atherosclerosis. In addition, the area under receiver-operating characteristic curves for carotid atherosclerosis was significantly greater in an established risk model with EPA/AA and n-3/n-6 ratios than in the established risk model alone. These data suggest that low ratios of both EPA/AA ratio and n-3/n-6 PUFAs were closely associated with carotid atherosclerosis in patients on HD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Reversible hydronephrosis in the rat: a new surgical technique assessed by radioisotopic measurements

    International Nuclear Information System (INIS)

    Flam, T.; Venot, A.; Bariety, J.

    1984-01-01

    A new technique for experimental reversible hydronephrosis in the rat was developed. A noninvasive radioisotopic investigation, using Tc-99m dimercaptosuccinic acid, permitted sequential assessment of the separate renal function at different stages of the study. After 1 week of unilateral ureteral obstruction, reversibility was obtained by the removal of the obstructive device. Ten days after the obstruction release, the ipsilateral kidney had returned to 71 per cent of its preligation uptake value. Histological findings demonstrated the reversibility of the surgical obstruction

  3. Nor-ursodeoxycholic acid reverses hepatocyte-specific nemo-dependent steatohepatitis.

    Science.gov (United States)

    Beraza, Naiara; Ofner-Ziegenfuss, Lisa; Ehedego, Haksier; Boekschoten, Mark; Bischoff, Stephan C; Mueller, Michael; Trauner, Michael; Trautwein, Christian

    2011-03-01

    Hepatocyte-specific NEMO/NF-κB deleted mice (NEMO(Δhepa)) develop spontaneous non-alcoholic steatohepatitis (NASH). Free fatty acids and bile acids promote DR5 expression. TRAIL/NK cell-mediated activation of TRAIL-R2/DR5 plays an important role during acute injury in NEMO(Δhepa) mice. To inhibit the progression of NASH in the absence of hepatocyte-NEMO/NF-kB signaling. NEMOf/f and NEMO(Δhepa) mice were fed with a low-fat diet, and with two anticholestatic diets; UDCA and NorUDCA. The impact of these treatments on the progression of NASH was evaluated. We show that high expression of DR5 in livers from NEMO(Δhepa) mice is accompanied by an abundant presence of bile acids (BAs), misregulation of BA transporters and significant alteration of lipid metabolism-related genes. Additionally, mice lacking NEMO in hepatocytes spontaneously showed ductular response at young age. Unexpectedly, feeding of NEMO(Δhepa) mice with low-fat diet failed to improve chronic liver injury. Conversely, anti-cholestatic treatment with nor-ursodeoxycholic acid (NorUDCA), but not with ursodeoxycholic acid (UDCA), led to a significant attenuation of liver damage in NEMO(Δhepa) mice. The strong therapeutic effect of NorUDCA relied on a significant downregulation of LXR-dependent lipogenesis and the normalisation of BA metabolism through mechanisms involving cross-talk between Cyp7a1 and SHP. This was associated with the significant improvement of liver histology, NEMO(Δhepa)/NorUDCA-treated mice showed lower apoptosis and reduced CyclinD1 expression, indicating attenuation of the compensatory proliferative response to hepatocellular damage. Finally, fibrosis and ductular reaction markers were significantly reduced in NorUDCA-treated NEMO(Δhepa) mice. Overall, our work demonstrates the contribution of bile acids metabolism to the progression of NASH in the absence of hepatocyte-NF-kB through mechanisms involving DR5-apoptosis, inflammation and fibrosis. Our work suggests a potential

  4. Reversible flowchart languages and the structured reversible program theorem

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    Many irreversible computation models have reversible counterparts, but these are poorly understood at present. We introduce reversible flowcharts with an assertion operator and show that any reversible flowchart can be simulated by a structured reversible flowchart using only three control flow...... operators. Reversible flowcharts are r- Turing-complete, meaning that they can simuluate reversible Turing machines without garbage data. We also demonstrate the injectivization of classical flowcharts into reversible flowcharts. The reversible flowchart computation model provides a theoretical...

  5. Formal TCA cycle description based on elementary actions

    Indian Academy of Sciences (India)

    Prakash

    2006-12-20

    Dec 20, 2006 ... Applied to the description of the tricarboxylic acid cycle (TCA), we show that. BioΨ allows ... BAs, biological activities; BEAs, basic elements of action; BFs, biological ..... the mitochondria, such as respiratory chain and fatty acid.

  6. Enzymatic synthesis of 11C-pyruvic acid and 11C-L-lactic acid

    International Nuclear Information System (INIS)

    Cohen, M.B.; Spolter, L.; Chang, C.C.; Cook, J.S.; Macdonald, N.S.

    1980-01-01

    L-Lactic acid is formed as the end product of glycolysis under anaerobic conditions in all cells, but this reaction is of special significance in the myocardium. L-Lactic acid is reversibly formed from and is in equilibrium with myocardial pyruvic acid, which is its sole metabolic pathway. 11 C-Pyruvic acid is synthesized from 11 C carbon dioxide using pyruvate-ferredoxin oxidoreductase and coenzymes. The 11 C-pyruvic acid is then converted to 11 -L-lactic acid by lactic acid dehydrogenase. The availability of 11 C-pyruvic acid and 11 C-L-lactic acid will permit the in vivo investigation of lactate metabolism. (author)

  7. Studies on the reverse osmosis treatment of uranyl nitrate solution

    International Nuclear Information System (INIS)

    Prabhakar, S.; Panicker, S.T.; Misra, B.M.; Ramani, P.S.

    1992-01-01

    The aqueous effluent generated in uranium processing, particularly in the nuclear fuel fabrication step, contains mainly uranium nitrate. This requires treatment before discharge into the environment to meet stringent standards. This paper presents the performance of cellulose acetate membranes with regard to rejection of uranium under reverse osmotic conditions for feed concentrations up to 200 mg/l of uranium, which corresponds to the levels normally prevalent in the effluents. The use of additives like the disodium salt of ethylenediaminetetraacetic acid and sodium sulfate for the improvement of reverse osmosis performance of the above membranes was also investigated. In the light of the experimental results, the suitability of reverse osmosis for the decontamination of uranium effluents is discussed

  8. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2008-09-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous in atmospheric aerosol. It is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggests citric acid solution droplets become ultra-viscous and form glassy solids under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and nucleation is negligible in glassy droplets; this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous and glassy solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  9. Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.

    Science.gov (United States)

    Kamei, Asuka; Watanabe, Yuki; Shinozaki, Fumika; Yasuoka, Akihito; Shimada, Kousuke; Kondo, Kaori; Ishijima, Tomoko; Toyoda, Tsudoi; Arai, Soichi; Kondo, Takashi; Abe, Keiko

    2017-02-01

    Maple syrup contains various polyphenols and we investigated the effects of a polyphenol-rich maple syrup extract (MSXH) on the physiology of mice fed a high-fat diet (HFD). The mice fed a low-fat diet (LFD), an HFD, or an HFD supplemented with 0.02% (002MSXH) or 0.05% MSXH (005MSXH) for 4 weeks. Global gene expression analysis of the liver was performed, and the differentially expressed genes were classified into three expression patterns; pattern A (LFD 002MSXH = 005MSXH, LFD > HFD 005MSXH, LFD > HFD = 002MSXH 002MSXH HFD 005MSXH). Pattern A was enriched in glycolysis, fatty acid metabolism, and folate metabolism. Pattern B was enriched in tricarboxylic acid cycle while pattern C was enriched in gluconeogenesis, cholesterol metabolism, amino acid metabolism, and endoplasmic reticulum stress-related event. Our study suggested that the effects of MSXH ingestion showed (i) dose-dependent pattern involved in energy metabolisms and (ii) reversely pattern involved in stress responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Anaplerosis for Glutamate Synthesis in the Neonate and in Adulthood

    DEFF Research Database (Denmark)

    Brekke, Eva; Morken, Tora Sund; Walls, Anne B

    2016-01-01

    A central task of the tricarboxylic acid (TCA, Krebs, citric acid) cycle in brain is to provide precursors for biosynthesis of glutamate, GABA, aspartate and glutamine. Three of these amino acids are the partners in the intricate interaction between astrocytes and neurons and form the so-called g...

  11. Reverse Algols

    Science.gov (United States)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  12. Effect of α-linolenic acid on endoplasmic reticulum stress-mediated apoptosis of palmitic acid lipotoxicity in primary rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Dong Lei

    2011-07-01

    Full Text Available Abstract Background Hepatic inflammation and degeneration induced by lipid depositions may be the major cause of nonalcoholic fatty liver disease (NAFLD. In this study, we investigated the effects of saturated and unsaturated fatty acids (FA on apoptosis in primary rat hepatocytes. Methods The primary rat hepatocytes were treated with palmitic acid and/or α-linolenic acid in vitro. The expression of proteins associated with endoplasmic reticulum (ER stress, apoptosis, caspase-3 levels were detected after the treatment. Results The treatment with palmitic acid produced a significant increase in cell death. The unfolded protein response (UPR-associated genes CHOP, GRP78, and GRP94 were induced to higher expression levels by palmitic acid. Co-treatment with α-linolenic acid reversed the apoptotic effect and levels of all three indicators of ER stress exerted by palmitic acid. Tunicamycin, which induces ER stress produced similar effects to those obtained using palmitic acid; its effects were also reversed by α-linolenic acid. Conclusions α-Linolenic acid may provide a useful strategy to avoid the lipotoxicity of dietary palmitic acid and nutrient overload accompanied with obesity and NAFLD.

  13. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid-like metabolism induction and reversal upon re-watering.

    Science.gov (United States)

    D'Andrea, Rodrigo Matías; Andreo, Carlos Santiago; Lara, María Valeria

    2014-11-01

    Portulaca oleracea is a C(4) plant; however, under drought it can change its carbon fixation metabolism into a crassulacean acid metabolism (CAM)-like one. While the C(3) -CAM shift is well known, the C(4) -CAM transition has only been described in Portulaca. Here, a CAM-like metabolism was induced in P. oleracea by drought and then reversed by re-watering. Physiological and biochemical approaches were undertaken to evaluate the drought and recovery responses. In CAM-like plants, chlorophyll fluorescence parameters were transitory affected and non-radiative energy dissipation mechanisms were induced. Induction of flavonoids, betalains and antioxidant machinery may be involved in photosynthetic machinery protection. Metabolic analysis highlights a clear metabolic shift, when a CAM-like metabolism is induced and then reversed. Increases in nitrogenous compounds like free amino acids and urea, and of pinitol could contribute to withstand drought. Reciprocal variations in arginase and urease in drought-stressed and in re-watered plants suggest urea synthesis is strictly regulated. Recovery of C(4) metabolism was accounted by CO(2) assimilation pattern and malate levels. Increases in glycerol and in polyamines would be of importance of re-watered plants. Collectively, in P. oleracea multiple strategies, from induction of several metabolites to the transitory development of a CAM-like metabolism, participate to enhance its adaptation to drought. © 2014 Scandinavian Plant Physiology Society.

  14. Managing Reverse Logistics or Reversing Logistics Management?

    OpenAIRE

    Brito, Marisa

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse logistics. The thesis brings insights on reverse logistics decision-making and it lays down theoretical principles for reverse logistics as a research field.In particular it puts together a framework ...

  15. Toward an improved definition of the genetic and tumor spectrum associated with SDH germ-line mutations

    NARCIS (Netherlands)

    Evenepoel, Lucie; Papathomas, Thomas G.; Krol, Niels; Korpershoek, Esther; De Krijger, Ronald R.; Persu, Alexandre; Dinjens, Winand N M

    2015-01-01

    The tricarboxylic acid, or Krebs, cycle is central to the cellular metabolism of sugars, lipids, and amino acids; it fuels the mitochondrial respiratory chain for energy generation. In the past decade, mutations in the Krebs-cycle enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate

  16. Antivenom reversal of biochemical alterations induced by black scorpion Heterometrus fastigiousus Couzijn venom in mice

    Directory of Open Access Journals (Sweden)

    MK Chaubey

    2009-01-01

    Full Text Available In the present study, Heterometrus fastigiousus venom (HFV was employed as antigen to produce species-specific scorpion antivenom (SAV in albino mice (NIH strain. To determine SAV efficacy, it was pre-incubated with 10 LD50 of HFV and then injected subcutaneously into mice. Subsequently, mortality was observed after 24 hours. Minimum effective dose (MED was 12.5 LD50 of HFV/mL of SAV. SAV effectiveness to reverse HFV-induced biochemical alterations in mice was analyzed by challenge method. Simultaneously, mice received subcutaneously 40% of 24-hour-LD50 of HFV and intravenously SAV. After four hours, changes in serum glucose, free amino acids, uric acids, pyruvic acid, cholesterol, total protein, alkaline phosphatase, acid phosphatase, lactic dehydrogenase and glutamate-pyruvate transaminase enzyme level were determined. Treatment with species-specific SAV resulted in the reversal of HFV-induced biochemical alterations.

  17. Reversed phase chromatographic behaviour of Pu (III), Pu (IV) and Pu (VI) in presence of α-hydroxyisobutyric acid

    International Nuclear Information System (INIS)

    Jaison, P.G.; Telmore, V.M.; Kumar, Pranaw

    2016-01-01

    Understanding the aqueous chemistry of plutonium is important in process conditions as well as in environmental conditions. Since plutonium possesses multiple oxidation states which can coexist in solution, a reliable method for the identification of these oxidation states is essential to understand its physical and chemical processes. The identification of plutonium oxidation states is conventionally determined through a series of liquid-liquid extraction procedures using selective extractants. Spectroscopic and laser based techniques also have been used for the identification of its oxidation state in solutions. Liquid chromatographic behavior of different oxidation states of Pu and other actinide ions is reported to correlate their retention behaviour with stability constants. Objective of the present work is to study the reversed phase chromatography behavior of the three oxidation states of plutonium viz. Pu(III), Pu(IV) and Pu(VI) in presence of á-hydroxyisobutyric acid (HIBA) as an eluent

  18. Structural variations and photoluminescent properties of a series of metal-organic frameworks constructed from 5-(4-carboxybenzoylamino)-isophthalic acid

    International Nuclear Information System (INIS)

    Zhao, Wen; Zhang, Li-Juan; Zhao, Xiao-Li

    2013-01-01

    Five new metal-organic frameworks (MOFs) with 5-(4-carboxybenzoylamino)-isophthalic acid (H 3 L), namely, [Cd 9 L 6 (DMA) 6 ]·4DMA (1), [Cd 3 L 2 (H 2 O) 9 ]·4H 2 O (2), [LaL(H 2 O) 4 ]·2H 2 O (3), [CeL(H 2 O) 4 ]·H 2 O (4) and [Tb(HL)(H 2 L)(H 2 O) 3 ]·5H 2 O (5) (DMA=N,N-dimethylacetamide), have been synthesized. Complex 1 shows a three-dimensional architecture generated from linkage of Cd–O chains via L 3− ligands. Minor variations in synthetic conditions of 1 afforded 2, which features an interesting 2D→3D catenation architecture containing helical chains. Complexes 3 and 4 are isostructural and each feature a two-dimensional architecture constructed from the linkage of L 3− with Ln 3+ . Complex 5 displays a chain-like structure, of which the most interesting feature is the existence of free carboxylic acid (–COOH) group which may confer unique functionality. Moreover, the investigations of the thermal stability, powder X-ray diffractions and solid-state photoluminescent properties for these crystalline materials have been carried out. - Graphical Abstract: Solvothermal reactions of tricarboxylate ligand H 3 L with Cd 2+ /Ln 3+ has yielded a series of new MOFs containing interesting structural motifs. - Highlights: • A tricarboxylate ligand whose coordinating functionalities are not symmetry equivalent is employed to construct MOFs. • Complex 2 features an interesting 2D→3D catenation architecture containing helical chains. • Complex 3 feature chain-like structure containing free – COOH group, which may confer unique functionality. • Photoluminescent properties and thermal behaviors for 1–5 have been reported

  19. Solid-phase synthesis of protein-polymers on reversible immobilization supports.

    Science.gov (United States)

    Murata, Hironobu; Carmali, Sheiliza; Baker, Stefanie L; Matyjaszewski, Krzysztof; Russell, Alan J

    2018-02-27

    Facile automated biomacromolecule synthesis is at the heart of blending synthetic and biologic worlds. Full access to abiotic/biotic synthetic diversity first occurred when chemistry was developed to grow nucleic acids and peptides from reversibly immobilized precursors. Protein-polymer conjugates, however, have always been synthesized in solution in multi-step, multi-day processes that couple innovative chemistry with challenging purification. Here we report the generation of protein-polymer hybrids synthesized by protein-ATRP on reversible immobilization supports (PARIS). We utilized modified agarose beads to covalently and reversibly couple to proteins in amino-specific reactions. We then modified reversibly immobilized proteins with protein-reactive ATRP initiators and, after ATRP, we released and analyzed the protein polymers. The activity and stability of PARIS-synthesized and solution-synthesized conjugates demonstrated that PARIS was an effective, rapid, and simple method to generate protein-polymer conjugates. Automation of PARIS significantly reduced synthesis/purification timelines, thereby opening a path to changing how to generate protein-polymer conjugates.

  20. Evaluation of spiral wound reverse osmosis for four radioactive waste processing applications

    International Nuclear Information System (INIS)

    Sen Gupta, S.K.

    1997-01-01

    A pilot-scale spiral wound reverse osmosis rig was used to treat four significantly different radioactive waste streams, three of which were generated at the Chalk River Laboratories at AECL. These streams included: 1. A chemical decontamination (CD/DC) waste stream which is routinely treated by the plant-scale membrane system at CRL; 2. Reactor waste which is a dilute radioactive waste stream (containing primarily tritium and organic acids), and it an effluent from the operating reactors at AECL; 3. An ion exchange regenerant waste stream which contains a mixture of stream (1) (CD/DC), blended with secondary waste from ion exchange regeneration; 4. Boric acid simulated waste which is a by-product waste of the PWR reactors. This was the only stream treated that was not generated as a waste liquid at AECL. For the first three streams specified above, reverse osmosis was used to remove chemical and radiochemical impurities from the water with efficiencies usually exceeding 99%. In these three cases the 'permeate' or clean water was the product of the process. In the case of stream 4, reverse osmosis was used in a recovery application for the purpose of recycling boric acid back to the reactor, with the concentrate being the 'product'. Reverse osmosis technology was successfully demonstrated for the treatment of all four streams. Prefiltration and oxidation (with photocatalytic continuous oxidation technology) were evaluated as pretreatment alternatives for streams 1, 2, and 3. The results indicated that the effective crossflow velocity through and membrane vessel was more important in determining the extent of membrane fouling than the specific pretreatment strategy employed. (author)

  1. Simultaneous determination of acidic 3,4-dihydroxyphenylalanine metabolites and 5-hydroxyindole-3-acetic acid in urine by high-performance liquid chromatography

    NARCIS (Netherlands)

    Stroomer, A. E.; Overmars, H.; Abeling, N. G.; van Gennip, A. H.

    1990-01-01

    We describe a simple and rapid quantitative method for the simultaneous determination of 3,4-dihydroxyphenylalanine acid metabolites and 5-hydroxyindole-3-acetic acid. After solvent extraction from acidified urine, the acids are analyzed by reversed-phase high-performance liquid chromatography. For

  2. Reverse Logistics

    OpenAIRE

    Kulikova, Olga

    2016-01-01

    This thesis was focused on the analysis of the concept of reverse logistics and actual reverse processes which are implemented in mining industry and finding solutions for the optimization of reverse logistics in this sphere. The objective of this paper was the assessment of the development of reverse logistics in mining industry on the example of potash production. The theoretical part was based on reverse logistics and mining waste related literature and provided foundations for further...

  3. Heart and bile acids - Clinical consequences of altered bile acid metabolism.

    Science.gov (United States)

    Vasavan, Tharni; Ferraro, Elisa; Ibrahim, Effendi; Dixon, Peter; Gorelik, Julia; Williamson, Catherine

    2018-04-01

    Cardiac dysfunction has an increased prevalence in diseases complicated by liver cirrhosis such as primary biliary cholangitis and primary sclerosing cholangitis. This observation has led to research into the association between abnormalities in bile acid metabolism and cardiac pathology. Approximately 50% of liver cirrhosis cases develop cirrhotic cardiomyopathy. Bile acids are directly implicated in this, causing QT interval prolongation, cardiac hypertrophy, cardiomyocyte apoptosis and abnormal haemodynamics of the heart. Elevated maternal serum bile acids in intrahepatic cholestasis of pregnancy, a disorder which causes an impaired feto-maternal bile acid gradient, have been associated with fatal fetal arrhythmias. The hydrophobicity of individual bile acids in the serum bile acid pool is of relevance, with relatively lipophilic bile acids having a more harmful effect on the heart. Ursodeoxycholic acid can reverse or protect against these detrimental cardiac effects of elevated bile acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A Urinary Metabolic Signature for Multiple Sclerosis and Neuromyelitis Optica

    DEFF Research Database (Denmark)

    Gebregiworgis, Teklab; Nielsen, Helle H; Massilamany, Chandirasegaran

    2016-01-01

    a statistically distinct metabolic signature from healthy and NMO-SD controls. A total of 27 metabolites were differentially altered in the urine from MS and NMO-SD patients and were associated with synthesis and degradation of ketone bodies, amino acids, propionate and pyruvate metabolism, tricarboxylic acid...

  5. Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid

    KAUST Repository

    Seubert, Erica L.

    2012-12-01

    The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the

  6. Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid

    KAUST Repository

    Seubert, Erica L.; Trussell, Shane; Eagleton, John; Schnetzer, Astrid; Cetinić, Ivona; Lauri, Phil; Jones, Burton; Caron, David A.

    2012-01-01

    The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the

  7. Metabolic regulation of trisporic acid on Blakeslea trispora revealed by a GC-MS-based metabolomic approach.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available The zygomycete Blakeslea trispora is used commercially as natural source of â-carotene. Trisporic acid (TA is secreted from the mycelium of B. trispora during mating between heterothallic strains and is considered as a mediator of the regulation of mating processes and an enhancer of carotene biosynthesis. Gas chromatography-mass spectrometry and multivariate analysis were employed to investigate TA-associated intracellular biochemical changes in B. trispora. By principal component analysis, the differential metabolites discriminating the control groups from the TA-treated groups were found, which were also confirmed by the subsequent hierarchical cluster analysis. The results indicate that TA is a global regulator and its main effects at the metabolic level are reflected on the content changes in several fatty acids, carbohydrates, and amino acids. The carbon metabolism and fatty acids synthesis are sensitive to TA addition. Glycerol, glutamine, and ã-aminobutyrate might play important roles in the regulation of TA. Complemented by two-dimensional electrophoresis, the results indicate that the actions of TA at the metabolic level involve multiple metabolic processes, such as glycolysis and the bypass of the classical tricarboxylic acid cycle. These results reveal that the metabolomics strategy is a powerful tool to gain insight into the mechanism of a microorganism's cellular response to signal inducers at the metabolic level.

  8. The biochemistry of citric acid accumulation by Aspergillus niger.

    Science.gov (United States)

    Karaffa, L; Sándor, E; Fekete, E; Szentirmai, A

    2001-01-01

    Fungi, in particular Aspergilli, are well known for their potential to overproduce a variety of organic acids. These microorganisms have an intrinsic ability to accumulate these substances and it is generally believed that this provides the fungi with an ecological advantage, since they grow rather well at pH 3 to 5, while some species even tolerate pH values as low as 1.5. Organic acid production can be stimulated and in a number of cases conditions have been found that result in almost quantitative conversion of carbon substrate into acid. This is exploited in large-scale production of a number of organic acids like citric-, gluconic- and itaconic acid. Both in production volume as well as in knowledge available, citrate is by far the major organic acid. Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) is a true bulk product with an estimated global production of over 900 thousand tons in the year 2000. Till the beginning of the 20th century, it was exclusively extracted from lemons. Since the global market was dominated by an Italian cartel, other means of production were sought. Chemical synthesis was possible, but not suitable due to expensive raw materials and a complicated process with low yield. The discovery of citrate accumulation by Aspergillus niger led to a rapid development of a fermentation process, which only a decade later accounted for a large part of the global production. The application of citric acid is based on three of its properties: (1) acidity and buffer capacity, (2) taste and flavour, and (3) chelation of metal ions. Because of its three acid groups with pKa values of 3.1, 4.7 and 6.4, citrate is able to produce a very low pH in solution, but is also useful as a buffer over a broad range of pH values (2 to 7). Citric acid has a pleasant acid taste which leaves little aftertaste. It sometimes enhances flavour, but is also able to mask sweetness, such as the aspartame taste in diet beverages. Chelation of metal ions is a very

  9. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.

    Science.gov (United States)

    Yang, Linyan; She, Qianhong; Wan, Man Pun; Wang, Rong; Chang, Victor W-C; Tang, Chuyang Y

    2017-06-01

    Recent studies report high concentrations of haloacetic acids (HAAs), a prevalent class of toxic disinfection by-products, in swimming pool water (SPW). We investigated the removal of 9 HAAs by four commercial reverse osmosis (RO) and nanofiltration (NF) membranes. Under typical SPW conditions (pH 7.5 and 50 mM ionic strength), HAA rejections were >60% for NF270 with molecular weight cut-off (MWCO) equal to 266 Da and equal or higher than 90% for XLE, NF90 and SB50 with MWCOs of 96, 118 and 152 Da, respectively, as a result of the combined effects of size exclusion and charge repulsion. We further included 7 neutral hydrophilic surrogates as molecular probes to resolve the rejection mechanisms. In the absence of strong electrostatic interaction (e.g., pH 3.5), the rejection data of HAAs and surrogates by various membranes fall onto an identical size-exclusion (SE) curve when plotted against the relative-size parameter, i.e., the ratio of molecular radius over membrane pore radius. The independence of this SE curve on molecular structures and membrane properties reveals that the relative-size parameter is a more fundamental SE descriptor compared to molecular weight. An effective molecular size with the Stokes radius accounting for size exclusion and the Debye length accounting for electrostatic interaction was further used to evaluate the rejection. The current study provides valuable insights on the rejection of trace contaminants by RO/NF membranes. Copyright © 2017. Published by Elsevier Ltd.

  10. Boronic acid-based autoligation of nucleic acids

    DEFF Research Database (Denmark)

    Barbeyron, R.; Vasseur, J.-J.; Smietana, M.

    2013-01-01

    Abstract: The development of synthetic systems displaying dynamic and adaptive characteristics is a formidable challenge with wide applications from biotechnology to therapeutics. Recently, we described a dynamic and programmable nucleic acid-based system relying on the formation of reversible bo....... Evidence suggests that geometric and steric factors are key features for controlling the equilibria. Graphical Abstract: [Figure not available: see fulltext.]...

  11. Determination of medronic acid by reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Zhao Xiuyan; Wang Xiaojing; Fu Bo; Ye Zhaoyun; Liu Yinli

    2012-01-01

    An isocratic liquid chromatographic method with evaporative light scattering detection (ELSD) was developed for the determination of medronic acid and its related sub- stances. Volatile pentylamine was used as the ion-pairing agent. Separations were performed on a Symmetry C8 column with an mobile phase of 98 : 2 (V : V) 30 mmol/L pentylamine (pH 5.0, adjusted with acetic acid)-methanol. The mobile phase was delivered at a flow-rate 1.0 mL/min. The method is applicable to the routine analysis and the quality con- trol of medronic acid. (authors)

  12. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries.

    Science.gov (United States)

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao; Hou, Singyuk; Chen, Long; Wang, Fei; Jiang, Jianjun; Chen, Zonghai; Ren, Yang; Amine, Khalil; Wang, Chunsheng

    2018-03-05

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAh g -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAh g -1 can be retained for 2000 cycles, demonstrating excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na + . The reversible redox chemistry between azo compound and Na ions offer opportunities for developing long-cycle-life and high-rate SSIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Radioimmunoassay method for determination of 3, 3', 5'-triiodothyronine (reverse - T3)

    International Nuclear Information System (INIS)

    Kosowicz, J.

    1979-01-01

    To introduce radioimmunoassay, 3, 3', 5'-triiodothyronine (reverse-T 3 ) was coupled to bovine serum albumin by the carbodiimide technique and rabbits were immunized with the conjugates obtained. The immunizations were performed by multiple site intradermal injections at places in which cornynebacterium parvum was previously injected to enhance immunologic reaction. After 3 months the rabbits raised antisera to reverse-T 3 of a high titer and specificity. To obtain labelled 125 I-reverse T 3 , 3,3'-diiodothyronine was used. Iodination was performed by the chloramine T technique and the iodination mixture was subjected to gel filtration on Sephadex G-25 (fine) column. The purified monolabelled 125 I-reverse T 3 had a specific activity of 3,000 milli Curie/mg. The reverse T 3 radioimmunoassay of a high sensitivity (ca 2 pg/tube) was introduced in the clinical studies and facilitated direct determination of reverse T 3 in sera without the need of plasma extractions. The interference of serum proteins (TBG) was avoided by adding 8-anilino-1-naphtalene sulfonic acid to serum samples. Separation of free from antibody bound antigens was achieved by polyethylene glycol precipitation or immunoprecipitation. (author)

  14. A Reversible Photoacid Functioning in PBS Buffer under Visible Light.

    Science.gov (United States)

    Abeyrathna, Nawodi; Liao, Yi

    2015-09-09

    A metastable-state photoacid that can reversibly release a proton in PBS buffer (pH = 7.4) under visible light is reported. The design is based on the dual acid-base property and tautomerization of indazole. The quantum yield was as high as 0.73, and moderate light intensity (10(2) μmol·m(2)·s(-1)) is sufficient for the photoreaction. Reversible pH change of 1.7 units was demonstrated using a 0.1 mM aqueous solution. This type of photoacid is promising for control of proton-transfer processes in physiological conditions and may find applications in biomedical areas.

  15. Effect of sequence and stereochemistry reversal on p53 peptide mimicry.

    Directory of Open Access Journals (Sweden)

    Alessio Atzori

    Full Text Available Peptidomimetics effective in modulating protein-protein interactions and resistant to proteolysis have potential in therapeutic applications. An appealing yet underperforming peptidomimetic strategy is to employ D-amino acids and reversed sequences to mimic a lead peptide conformation, either separately or as the combined retro-inverso peptide. In this work, we examine the conformations of inverse, reverse and retro-inverso peptides of p53(15-29 using implicit solvent molecular dynamics simulation and circular dichroism spectroscopy. In order to obtain converged ensembles for the peptides, we find enhanced sampling is required via the replica exchange molecular dynamics method. From these replica exchange simulations, the D-peptide analogues of p53(15-29 result in a predominantly left-handed helical conformation. When the parent sequence is reversed sequence as either the L-peptide and D-peptide, these peptides display a greater helical propensity, feature reflected by NMR and CD studies in TFE/water solvent. The simulations also indicate that, while approximately similar orientations of the side-chains are possible by the peptide analogues, their ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids and side-chain orientation (for reversed sequences. A retro-inverso peptide is disadvantaged as a mimic in both aspects, and further chemical modification is required to enable this concept to be used fruitfully in peptidomimetic design. The replica exchange molecular simulation approach adopted here, with its ability to provide detailed conformational insights into modified peptides, has potential as a tool to guide structure-based design of new improved peptidomimetics.

  16. Rapid Detection of Prunus Necrotic Ringspot Virus by Reverse Transcription-cross-priming Amplification Coupled with Nucleic Acid Test Strip Cassette.

    Science.gov (United States)

    Huo, Ya-Yun; Li, Gui-Fen; Qiu, Yan-Hong; Li, Wei-Min; Zhang, Yong-Jiang

    2017-11-23

    Prunus necrotic ringspot virus (PNRSV) is one of the most devastating viruses to Prunus spp. In this study, we developed a diagnostic system RT-CPA-NATSC, wherein reverse transcription-cross-priming amplification (RT-CPA) is coupled with nucleic acid test strip cassette (NATSC), a vertical flow (VF) visualization, for PNRSV detection. The RT-CPA-NATSC assay targets the encoding gene of the PNRSV coat protein with a limit of detection of 72 copies per reaction and no cross-reaction with the known Prunus pathogenic viruses and viroids, demonstrating high sensitivity and specificity. The reaction is performed on 60 °C and can be completed less than 90 min with the prepared template RNA. Field sample test confirmed the reliability of RT-CPA-NATSC, indicating the potential application of this simple and rapid detection method in routine test of PNRSV.

  17. Metabolomic analysis of alterations in lipid oxidation, carbohydrate and amino acid metabolism in dairy goats caused by exposure to Aflotoxin B1.

    Science.gov (United States)

    Cheng, Jianbo; Huang, Shuai; Fan, Caiyun; Zheng, Nan; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2017-11-01

    The purposes of this study were to investigate the systemic and characteristic metabolites in the serum of dairy goats induced by aflatoxin B1 (AFB1) exposure and to further understand the endogenous metabolic alterations induced by it. A nuclear magnetic resonance (NMR)-based metabonomic approach was used to analyse the metabolic alterations in dairy goats that were induced by low doses of AFB1 (50 µg/kg DM). We found that AFB1 exposure caused significant elevations of glucose, citrate, acetate, acetoacetate, betaine, and glycine yet caused reductions of lactate, ketone bodies (acetate, β-hydroxybutyrate), amino acids (citrulline, leucine/isoleucine, valine, creatine) and cell membrane structures (choline, lipoprotein, N-acetyl glycoproteins) in the serum. These data indicated that AFB1 caused endogenous metabolic changes in various metabolic pathways, including cell membrane-associated metabolism, the tricarboxylic acid cycle, glycolysis, lipids, and amino acid metabolism. These findings provide both a comprehensive insight into the metabolic aspects of AFB1-induced adverse effects on dairy goats and a method for monitoring dairy animals exposed to low doses of AFB1.

  18. Emulsifier development for high-concentrated reverse emulsions

    Directory of Open Access Journals (Sweden)

    I.L. Kovalenko

    2016-05-01

    Full Text Available The reverse emulsions have found broad application in ore mining industry as matrixes of emulsion explosive substances and boring washing waters. The defining characteristic of reverse emulsions of industrial explosive substances is the high stability and immunity to crystallization. Aim: The aim of this work is to assess the mechanism of emulsifiers effect like SMO and some PIBSA-derivatives, that are most abundantly used in world practice, and also to develop an effective domestic emulsifier of reverse emulsions. Materials and methods: Using the semi-dynamic method with use of the reverse stalagmometer it was determined the decreasing in interfacial tension on “water / diesel fuel” border in the presence of 0.5 wt % sorbitan monooleate of various producers. Emulsions with use of the chosen emulsifiers using the dynamic mixer on the basis of monosolution of ammonium nitrate and diesel fuel have been produced. The emulsions have the following composition, wt %: ammonium nitrate – 76.8; water – 15.6; diesel fuel – 6.0; emulsifier – 1.6. Results: By the researches results of the interfacial tension “surfactant water / solution in diesel fuel”, the stability of emulsions using monosolution of ammonium nitrate and the IR spectrums of SMO of various producers it is established that presence in product of impurity of oleic acid, di- and trioleates leads to decreasing in interphase activity, increasing of emulsifier oil solubility and decreasing the resistance of emulsions to crystallization. On the basis of the spectral data analysis it is suggested about possibility of specific interaction on the mechanism of “spectral resonance” between emulsifiers of the PIBSA-MEA, LZX type and crystals nucleus of NH4NO3 ammonium nitrate in dispersed phase of emulsion. Amidation of vegetable oils by monoethanol amine is implemented at the reduced temperatures (90…100 °C. It was proved the availability mainly of fatty acids amides in product

  19. Reversible switching of quantum cascade laser-modes using a pH-responsive polymeric cladding as transducer.

    Science.gov (United States)

    Basnar, Bernhard; Schartner, Stephan; Austerer, Maximilian; Andrews, Aaron Maxwell; Roch, Tomas; Schrenk, Werner; Strasser, Gottfried

    2008-06-09

    We present a novel approach for the reversible switching of the emission wavelength of a quantum cascade laser (QCL) using a halochromic cladding. An air-waveguide laser ridge is coated with a thin layer of polyacrylic acid. This cladding introduces losses corresponding to the absorption spectrum of the polymer. By changing the state of the polymer, the absorption spectrum and losses change, inducing a shift of 7 cm(-1) in the emission wavelength. This change is induced by exposure to acidic or alkaline vapors under ambient conditions and is fully reversible. Such lasers can be used as multi-color light source and as sensor for atmospheric pH.

  20. OPTIMASI DAN PEMODELAN PROSES RECOVER FLAVOR DARI LIMBAH CAIR INDUSTRI PENGOLAHAN RAJUNGAN DENGAN REVERSE OSMOSIS

    Directory of Open Access Journals (Sweden)

    Uju

    2009-04-01

    Full Text Available The waste water of blue crab pasteurization has potential in environmental pollution. It contained TSS of 206.5mg.1-1, BOD 7,092.6mg.1-1 and COD of 51,000mg.1-1. on the other hand, it also contains an interesting flavor compound, which composed of 0.23% non protein nitrogen and 17 amino acids where the highest was glutamic acid one. In this study, pre-filtration step using filter size 0.3 µ followed by reverse osmosis has been used to reduce these pollutions load and flavor compound recovery. During pre-filtration steps, TSS was reduced to 74.8% so turbidity decrased reased until 31%. After reverse osmosis process, BOD, and COD decreased more than 99%, and there was no amino acids detected in permeate stream. Factors that affect performance of reverse osmosis were transmembrane pressure, temperature and pH. The higher transmembrane pressure, temperature and pH resulted the higher the flux permeate. The use of higher temperature make flux increasing, eventually increasing transmembrane pressure make the flux increased only at transmembrane pressure less than 716 kPa. The protein rejection was influenced unsignifanctly by transmembrane pressure, temperature and pH. During concentrating flux declined exponentially by time function. At concentration factor 2.75 resulted 79% and 12% of increasing protein and NPN, respectively. The amino acids content can be increased 2−23 times of the origin. Even arginin and sistin, the amino acids that were undetectable initially, but they can bedetected at concentration of 0.0360 and 0.0250 (w/v respectively at the end of the process. Hidrolysis and fermentation process can increase the amino acid content 31−45 times

  1. High Performance Liquid Chromatography Determination of Urinary Hippuric Acid and Benzoic Acid as Indices for Glue Sniffer Urine

    OpenAIRE

    Abdul Rahim Yacob; Mohamad Raizul Zinalibdin

    2010-01-01

    A simple method for the simultaneous determination of hippuric acid and benzoic acid in urine using reversed-phase high performance liquid chromatography was described. Chromatography was performed on a Nova-Pak C18 (3.9 x 150 mm) column with a mobile phase of mixed solution methanol: water: acetic acid (20:80:0.2) and UV detection at 254 nm. The calibration curve was linear within concentration range at 0.125 to 6.0 mg/ml of hippuric acid and benzoic acid. The recovery, ...

  2. Treatment of acid mine wastewaters

    International Nuclear Information System (INIS)

    Hayward, D.; Barnard, R.

    1993-01-01

    Acid mine drainage often results from the oxidation sulfide minerals to form sulfuric acid. As a consequence, high concentrations of metals in the both the suspended and dissolved state result from the low pH water. This paper discusses several of the more common treatment methods for acid mine drainage including the use of chemical precipitation agents, pH correction agents, filtration methods, and biodegradation methods. Advanced treatment technologies are also briefly described and include microfiltration, reverse osmosis, ion exchange, and electrodialysis

  3. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  4. Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis.

    Science.gov (United States)

    Ramirez-Malule, Howard; Junne, Stefan; Nicolás Cruz-Bournazou, Mariano; Neubauer, Peter; Ríos-Estepa, Rigoberto

    2018-05-01

    Clavulanic acid (CA) is produced by Streptomyces clavuligerus (S. clavuligerus) as a secondary metabolite. Knowledge about the carbon flux distribution along the various routes that supply CA precursors would certainly provide insights about metabolic performance. In order to evaluate metabolic patterns and the possible accumulation of tricarboxylic acid (TCA) cycle intermediates during CA biosynthesis, batch and subsequent continuous cultures with steadily declining feed rates were performed with glycerol as the main substrate. The data were used to in silico explore the metabolic capabilities and the accumulation of metabolic intermediates in S. clavuligerus. While clavulanic acid accumulated at glycerol excess, it steadily decreased at declining dilution rates; CA synthesis stopped when glycerol became the limiting substrate. A strong association of succinate, oxaloacetate, malate, and acetate accumulation with CA production in S. clavuligerus was observed, and flux balance analysis (FBA) was used to describe the carbon flux distribution in the network. This combined experimental and numerical approach also identified bottlenecks during the synthesis of CA in a batch and subsequent continuous cultivation and demonstrated the importance of this type of methodologies for a more advanced understanding of metabolism; this potentially derives valuable insights for future successful metabolic engineering studies in S. clavuligerus.

  5. Ion-pair chromatography of nucleic acid derivatives

    International Nuclear Information System (INIS)

    Perrone, P.A.; Brown, P.R.

    1985-01-01

    Little work has been done on the ion-pair chromatography of nucleic acid constituents, although there is a great potential for the use of this technique in the field. Since the classic work in 1949, nucleotides, as well as nucleosides and bases, have been separated by ion-exchange chromatography. However, ion exchange is a difficult mode and most researchers prefer the use of reversed-phase whenever possible. Although reversed-phase is now the method of choice, ionic compounds like nucleotides and some of the more polar bases are not adequately retained by many systems of this type. In addition, it is difficult to analyze simultaneously members of all three classes of nucleic acid compounds (bases, nucleosides, and nucleotides) using a reversed-phase system, even with gradient elution. Ion pairing can be a useful technique because, theoretically, the separation of nonionic bases and nucleosides along with the ionic nucleotides can be achieved. Additionally, each group of compounds may be separated isocratically. In this chapter, they will discuss ion-pair chromatography as applied to nucleic acid constituents. The current theories, advantages and disadvantages, a limited number of applications, and potential for future work are presented

  6. Zero field reversal probability in thermally assisted magnetization reversal

    Science.gov (United States)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  7. [[Chiral separation of five arylpropionic acid drugs and determination of their enantiomers in pharmaceutical preparations by reversed-phase high performance liquid chromatography with cellulose-tris-(4-methylbenzoate) stationary phase

    Science.gov (United States)

    Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan

    2014-09-01

    Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.

  8. Di(2-ethylhexyl)phthalate Alters the Synthesis and β-Oxidation of Fatty Acids and Hinders ATP Supply in Mouse Testes via UPLC-Q-Exactive Orbitrap MS-Based Metabonomics Study.

    Science.gov (United States)

    Shen, Guolin; Zhou, Lili; Liu, Wei; Cui, Yuan; Xie, Wenping; Chen, Huiming; Yu, Wenlian; Li, Wentao; Li, Haishan

    2017-06-21

    Di(2-ethylhexyl) phthalate (DEHP) is considered to be an environmental endocrine disruptor at high levels of general exposure. Studies show that DEHP may cause testicular toxicity on human being. In this study, metabonomics techniques were used to identify differential endogenous metabolites, draw the network metabolic pathways, and conduct network analysis, to determine the underlying mechanisms of testicular toxicity induced by DEHP. The results showed that DEHP inhibited synthesis and accelerated β-oxidation of fatty acids and impaired the tricarboxylic acid cycle (TCA cycle) and gluconeogenesis, resulting in lactic acid accumulation and an insufficient ATP supply in the microenvironment of the testis. These alterations led to testicular atrophy and, thus, may be the underlying causes of testicular toxicity. DEHP also inhibited peroxisome proliferator activated receptors in the testis, which may be another potential reason for the testicular atrophy. These findings provided new insights to better understand the mechanisms of testicular toxicity induced by DEHP exposure.

  9. Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli.

    Science.gov (United States)

    Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi

    2013-09-22

    Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.

  10. Reverse Osmosis

    Indian Academy of Sciences (India)

    many applications, one of which is desalination of seawater. The inaugural Nobel Prize in Chemistry was awarded in 1901 to van 't Hoff for his seminal work in this area. The present article explains the principle of osmosis and reverse osmosis. Osmosis and Reverse Osmosis. As the name suggests, reverse osmosis is the ...

  11. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  12. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism

    DEFF Research Database (Denmark)

    Mourtzakis, M.; Graham, T.E.; Gonzalez-Alonso, J.

    2008-01-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate...... declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70......% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (Pglutamate infusion. Peak...

  13. Predicting and measurement of pH of seawater reverse osmosis concentrates

    KAUST Repository

    Waly, Tarek

    2011-10-01

    The pH of seawater reverse osmosis plants (SWRO) is the most influential parameter in determining the degree of supersaturation of CaCO3 in the concentrate stream. For this, the results of pH measurements of the concentrate of a seawater reverse osmosis pilot plant were compared with pH calculations based on the CO2-HCO3 --CO3 2- system equilibrium equations. Results were compared with two commercial software programs from membrane suppliers and also the software package Phreeqc. Results suggest that the real concentrate pH is lower than that of the feed and that none of the used programs was able to predict correctly real pH values. In addition, the effect of incorporating the acidity constant calculated for NaCl medium or seawater medium showed a great influence on the concentrate pH determination. The HCO3 - and CO3 2- equilibrium equation using acidity constants developed for seawater medium was the only method able to predict correctly the concentrate pH. The outcome of this study indicated that the saturation level of the concentrate was lower than previously anticipated. This was confirmed by shutting down the acid and the antiscalants dosing without any signs of scaling over a period of 12 months. © 2011 Elsevier B.V.

  14. Use of reversed-phase gel partition chromatography for the purification of chemically synthesized (5,6,8,9,11,12,14,15(n)) octadeuterium- and octatritium-labelled arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wollard, P M; Lascelles, P T [Department of Chemical Pathology, Institute of Neurology, London, Great Britain; Hensby, C N [Hammersmith Hospital, London (UK). Postgraduate Medical School

    1978-12-11

    The development of a method is described for the preparation and purification of (5,6,8,9,11,12,14,15(n)-/sup 2/H)arachidonic acid (/sup 2/H/sub 8/-AA). The /sup 2/H/sub 8/-AA was chemically synthesised by the selective reduction of 5,8,11,14-eiconsatetraynoic acid (ETYA) with deuterium gas. Using reversed-phase partition chromatography on a Lipidex 5000 column support, it was shown that: (1) The reaction products could readily be separated from each other to yield /sup 2/H/sub 8/-AA of greater than 98% mass purity by gas chromatography. (2) Closely related C20 cis-ethylenic fatty acids differing only in the degree of unsaturation are efficiently separated. The resolution increases exponentially on saturation of double bonds. (3) Commercially available (5,6,8,9,11,12,14,15(n))octatritium-labelled arachidonic acid (/sup 3/H/sub 8/-AA) was readily purified. Both (/sup 3/H/sub 8/)- and (1-/sup 14/C)arachidonic acid (/sup 14/C-AA) co-chromatographed with /sup 2/H/sub 8/-AA. (4) The mass spectra of the methyl ester and trimethylsilyl ester of the purified /sup 2/H/sub 8/-AA showed molecular ions at m/e 326 and 384, respectively.

  15. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery.

    Science.gov (United States)

    Chen, Ying; Liu, Yong; Yao, Yongchao; Zhang, Shiyong; Gu, Zhongwei

    2017-04-11

    With special confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water-insolubility of RMs hinders their further application prospects, especially for applications related to biology. We recently reported the first successful transfer of RMs from organic media to an aqueous phase without changing the smart water pools by the hydrolysis of an arm-cleavable interfacial cross-linked reverse micelles. Herein, we employed another elaborate amphiphile 1 to construct new acrylamide-based cross-linked water-soluble nanoparticles (ACW-NPs) under much gentler conditions. The special property of the water pools of the ACW-NPs was confirmed by both the Förster resonance energy transfer (FRET) between 5-((2-aminoethyl)amino)naphthalene-1-sulfonic acid (1,5-EDANS) and benzoic acid, 4-[2-[4-(dimethylamino)phenyl]diazenyl] (DABCYL) and satisfactory colloidal stability in 10% fetal bovine serum. Importantly, featured by the gentle synthetic strategy, confined water pool, and carboxylic acid-functionalized surface, the new ACW-NPs are well suitable for biological applications. As an example, the fluorescent reagent 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) was encapsulated in the core and simultaneously, the anticancer drug gemcitabine (Gem) was covalently conjugated onto the surface exterior. As expected, the resulting multifunctional ACW-NPs@HPTS@Gem exhibits a high imaging effect and anticancer activity for non-small lung cancer cells.

  16. Effect of Eu(III) on the degradation of malic acid by Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Nankawa, T.; Ozaki, T.; Ohnuki, T.; Suzuki, Y.; Francis, A.J.

    2005-01-01

    Full text of publication follows: The transuranic elements, such as Am(III) and Cm(III), are highly toxic because they emit high-energy α particles and have long half-lives. To estimate their long-term environmental behavior, we need to elucidate degradation of actinide-organic complexes by microorganisms. We studied the biodegradation of Eu(III)-malic acid complexes by Pseudomonas fluorescens. Malic acid is ubiquitous in the environment and is one of the microbial metabolites that is part of the tri-carboxylic acid (TCA) cycle. Europium(III) is a good analogue for Am(III) and Cm(III). To investigate the effect of Eu(III) on the degradation of malic acid by P. fluorescens, we compared the degradation behavior of Eu(III)-malic acid complexes to that of Fe(III) and Al(III)-malic acid complexes. In the medium containing 1 mM malic acid and 0-0.5 mM Fe(III), malic acid was degraded completely. In the medium containing 1 mM malic acid and 0.05-0.5 mM Al(III), malic acid was degraded until the concentration of malic acid became equal to that of Al(III), indicating that Al(III)-malic acid complex with 1: 1 molar ratio was recalcitrant to biodegradation. In the medium containing 1 mM malic acid and 0.05-0.5 mM Eu(III), degradation of malic acid was not observed. The effect of metals on degradation of malic acid was in the order of Fe(III) < Al(III) < Eu(III). The stability constants of 1:1 Fe(III)-, Al(III)-, and Eu(III)-malic acid complexes are 7.1, 4.6, and 4.9, respectively. These results indicate that degradability of malic acid does not depend on the stability constants of metal-malic acid complexes. We found that 10 mM malic acid was degraded in the presence of 0.05 and 0.1 mM Eu(III) but 1 mM malic acid was not degraded in the presence of 0.05 and 0.1 mM Eu(III). The degradation rate of malic acid increased with a decreasing ratio of Eu(III) to malic acid. (authors)

  17. Phylogenomic analysis of Candidatus ‘Izimaplasma’ species: free-living representatives from a Tenericutes clade found in methane seeps

    KAUST Repository

    Skennerton, Connor T.; Haroon, Mohamed; Briegel, Ariane; Shi, Jian; Jensen, Grant J.; Tyson, Gene W.; Orphan, Victoria J.

    2016-01-01

    ' (SILVA taxonomy) or 'RF3' (Greengenes taxonomy). Metabolic reconstruction revealed that, like cultured members of the Mollicutes, these 'NB1-n' representatives lack a tricarboxylic acid cycle and instead use anaerobic fermentation of simple sugars

  18. Reversibility of the effects on local circulation of high lipid concentrations in blood

    DEFF Research Database (Denmark)

    Bülow, J; Madsen, J; Højgaard, L

    1990-01-01

    Regional perfusion and vascular resistance were examined in different tissues with the radioactive microsphere technique in Göttingen minipigs before, during and after treatment with Intralipid and heparin. This treatment led to an increase in the free fatty acid/albumin molar ratio from 0.39 +/-...... fully reversible when the free fatty acid/albumin molar ratio had normalized. This vascular effect of lipid emulsions has to be considered when patients are treated with parenteral nutrition....

  19. Reversible entrapment of plasmid deoxyribonucleic acid on different chromatographic supports.

    Science.gov (United States)

    Gabor, Boštjan; Černigoj, Urh; Barut, Miloš; Štrancar, Aleš

    2013-10-11

    HPLC based analytical assay is a powerful technique that can be used to efficiently monitor plasmid DNA (pDNA) purity and quantity throughout the entire purification process. Anion exchange monolithic and non-porous particle based stationary phases were used to study the recovery of the different pDNA isoforms from the analytical column. Three differently sized pDNA molecules of 3.0kbp, 5.2kbp and 14.0kbp were used. Plasmid DNA was injected onto columns under the binding conditions and the separation of the isoforms took place by increasing the ionic strength of the elution buffer. While there was no substantial decrease of the recovered supercoiled and linear isoforms of the pDNA with the increase of the plasmid size and with the increase of the flow rate (recoveries in all cases larger than 75%), a pronounced decrease of the oc isoform recovery was observed. The entrapment of the oc pDNA isoform occurred under non-binding conditions as well. The partial oc isoform elution from the column could be achieved by decreasing the flow rate of the elution mobile phase. The results suggested a reversible entrapment of the oc isoform in the restrictions within the pores of the monolithic material as well as within the intra-particle space of the non-porous particles. This phenomenon was observed on both types of the stationary phase morphologies and could only be connected to the size of a void space through which the pDNA needs to migrate. A prediction of reversible pDNA entrapment was successfully estimated with the calculation of Peclet numbers, Pe, which defines the ratio between a convective and diffusive mass transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Using porphyrin-amino acid pairs to model the electrochemistry of heme proteins: experimental and theoretical investigations.

    Science.gov (United States)

    Samajdar, Rudra N; Manogaran, Dhivya; Yashonath, S; Bhattacharyya, Aninda J

    2018-04-18

    Quasi reversibility in electrochemical cycling between different oxidation states of iron is an often seen characteristic of iron containing heme proteins that bind dioxygen. Surprisingly, the system becomes fully reversible in the bare iron-porphyrin complex: hemin. This leads to the speculation that the polypeptide bulk (globin) around the iron-porphyrin active site in these heme proteins is probably responsible for the electrochemical quasi reversibility. To understand the effect of such polypeptide bulk on iron-porphyrin, we study the interaction of specific amino acids with the hemin center in solution. We choose three representative amino acids-histidine (a well-known iron coordinator in bio-inorganic systems), tryptophan (a well-known fluoroprobe for proteins), and cysteine (a redox-active organic molecule). The interactions of these amino acids with hemin are studied using electrochemistry, spectroscopy, and density functional theory. The results indicate that among these three, the interaction of histidine with the iron center is strongest. Further, histidine maintains the electrochemical reversibility of iron. On the other hand, tryptophan and cysteine interact weakly with the iron center but disturb the electrochemical reversibility by contributing their own redox active processes to the system. Put together, this study attempts to understand the molecular interactions that can control electrochemical reversibility in heme proteins. The results obtained here from the three representative amino acids can be scaled up to build a heme-amino acid interaction database that may predict the electrochemical properties of any protein with a defined polypeptide sequence.

  1. Proton-Fueled, Reversible DNA Hybridization Chain Assembly for pH Sensing and Imaging.

    Science.gov (United States)

    Liu, Lan; Liu, Jin-Wen; Huang, Zhi-Mei; Wu, Han; Li, Na; Tang, Li-Juan; Jiang, Jian-Hui

    2017-07-05

    Design of DNA self-assembly with reversible responsiveness to external stimuli is of great interest for diverse applications. We for the first time develop a pH-responsive, fully reversible hybridization chain reaction (HCR) assembly that allows sensitive sensing and imaging of pH in living cells. Our design relies on the triplex forming sequences that form DNA triplex with toehold regions under acidic conditions and then induce a cascade of strand displacement and DNA assembly. The HCR assembly has shown dynamic responses in physiological pH ranges with excellent reversibility and demonstrated the potential for in vitro detection and live-cell imaging of pH. Moreover, this method affords HCR assemblies with highly localized fluorescence responses, offering advantages of improving sensitivity and better selectivity. The proton-fueled, reversible HCR assembly may provide a useful approach for pH-related cell biology study and disease diagnostics.

  2. Biological responses to perfluorododecanoic acid exposure in rat kidneys as determined by integrated proteomic and metabonomic studies.

    Directory of Open Access Journals (Sweden)

    Hongxia Zhang

    Full Text Available BACKGROUND: Perfluorododecanoic acid (PFDoA is a perfluorinated carboxylic chemical (PFC that has broad applications and distribution in the environment. While many studies have focused on hepatotoxicity, immunotoxicity, and reproductive toxicity of PFCAs, few have investigated renal toxicity. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used comparative proteomic and metabonomic technologies to provide a global perspective on renal response to PFDoA. Male rats were exposed to 0, 0.05, 0.2, and 0.5 mg/kg/day of PFDoA for 110 days. After 2-D DIGE and MALDI TOF/TOF analysis, 79 differentially expressed proteins between the control and the PFDoA treated rats (0.2 and 0.5 mg-dosed groups were successfully identified. These proteins were mainly involved in amino acid metabolism, the tricarboxylic acid cycle, gluconeogenesis, glycolysis, electron transport, and stress response. Nuclear magnetic resonance-based metabonomic analysis showed an increase in pyruvate, lactate, acetate, choline, and a variety of amino acids in the highest dose group. Furthermore, the profiles of free amino acids in the PFDoA treated groups were investigated quantitatively by high-coverage quantitative iTRAQ-LC MS/MS, which showed levels of sarcosine, asparagine, histidine, 1-methylhistidine, Ile, Leu, Val, Trp, Tyr, Phe, Cys, and Met increased markedly in the 0.5 mg dosed group, while homocitrulline, α-aminoadipic acid, β-alanine, and cystathionine decreased. CONCLUSION/SIGNIFICANCE: These observations provide evidence that disorders in glucose and amino acid metabolism may contribute to PFDoA nephrotoxicity. Additionally, α(2u globulin may play an important role in protecting the kidneys from PFDoA toxicity.

  3. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.

    Science.gov (United States)

    Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong

    2012-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples.

  4. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  5. Managing Reverse Logistics or Reversing Logistics Management?

    NARCIS (Netherlands)

    M.P. de Brito (Marisa)

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse

  6. Table 1.xlsx

    Indian Academy of Sciences (India)

    Sandra Feijoo Bandin

    60 Kda heat shock protein, mitochondrial. GRP75_MOUSE Stress-70 protein, mitochondrial. PHB_MOUSE. Prohibitin. Biological process. Metabolic process. Glycolysis. Lipid metabolism. Tricarboxylic acid cycle. Respiratory electron transport chain. Muscle contraction. Cellular component organization. Transport.

  7. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    Science.gov (United States)

    Zeb, Alam; Ullah, Fareed

    2017-04-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins and two chlorophylls. Lutein (806.0 µg/g), chlorophyll b' (410.0 µg/g), chlorophyll a (162.4 µg/g), 9'-Z-neoxanthin (142.8 µg/g) and all-E-violaxanthin (82.2 µg/g)) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of thirteen compounds, namely p-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g) and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for possible medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a potential source of nutraceuticals or as a functional food ingredient.

  8. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells.

    Science.gov (United States)

    Liu, Hongliang; Li, Yingying; Sun, Kang; Fan, Junbing; Zhang, Pengchao; Meng, Jingxin; Wang, Shutao; Jiang, Lei

    2013-05-22

    Artificial stimuli-responsive surfaces that can mimic the dynamic function of living systems have attracted much attention. However, there exist few artificial systems capable of responding to dual- or multistimulation as the natural system does. Herein, we synthesize a pH and glucose dual-responsive surface by grafting poly(acrylamidophenylboronic acid) (polyAAPBA) brush from aligned silicon nanowire (SiNW) array. The as-prepared surface can reversibly capture and release targeted cancer cells by precisely controlling pH and glucose concentration, exhibiting dual-responsive AND logic. In the presence of 70 mM glucose, the surface is pH responsive, which can vary from a cell-adhesive state to a cell-repulsive state by changing the pH from 6.8 to 7.8. While keeping the pH at 7.8, the surface becomes glucose responsive--capturing cells in the absence of glucose and releasing cells by adding 70 mM glucose. Through simultaneously changing the pH and glucose concentration from pH 6.8/0 mM glucose to pH 7.8/70 mM glucose, the surface is dual responsive with the capability to switch between cell capture and release for at least 5 cycles. The cell capture and release process on this dual-responsive surface is noninvasive with cell viability higher than 95%. Moreover, topographical interaction between the aligned SiNW array and cell protrusions greatly amplifies the responsiveness and accelerates the response rate of the dual-responsive surface between cell capture and release. The responsive mechanism of the dual-responsive surface is systematically studied using a quartz crystal microbalance, which shows that the competitive binding between polyAAPBA/sialic acid and polyAAPBA/glucose contributes to the dual response. Such dual-responsive surface can significantly impact biomedical and biological applications including cell-based diagnostics, in vivo drug delivery, etc.

  9. Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media.

    Science.gov (United States)

    Durst, Julien; Lopez-Haro, Miguel; Dubau, Laetitia; Chatenet, Marian; Soldo-Olivier, Yvonne; Guétaz, Laure; Bayle-Guillemaud, Pascale; Maillard, Frédéric

    2014-02-06

    Following a well-defined series of acid and heat treatments on a benchmark Pt3Co/C sample, three different nanostructures of interest for the electrocatalysis of the oxygen reduction reaction were tailored. These nanostructures could be sorted into the "Pt-skin" structure, made of one pure Pt overlayer, and the "Pt-skeleton" structure, made of 2-3 Pt overlayers surrounding the Pt-Co alloy core. Using a unique combination of high-resolution aberration-corrected STEM-EELS, XRD, EXAFS, and XANES measurements, we provide atomically resolved pictures of these different nanostructures, including measurement of the Pt-shell thickness forming in acidic media and the resulting changes of the bulk and core chemical composition. It is shown that the Pt-skin is reverted toward the Pt-skeleton upon contact with acid electrolyte. This change in structure causes strong variations of the chemical composition.

  10. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species.

    Science.gov (United States)

    Hurd, Thomas R; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T; Baranowski, Bartlomiej; Fearnley, Ian M; Prime, Tracy A; Murphy, Michael P; James, Andrew M

    2012-10-12

    Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H(2)O(2)) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H(2)O(2) derives from superoxide (O(2)(.)), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O(2)(.) production, such as may occur under nutrient excess and low ATP demand, the increase in O(2)() and H(2)O(2) may provide feedback signals to modulate mitochondrial metabolism.

  11. Sodium p-Aminosalicylic Acid Reverses Sub-Chronic Manganese-Induced Impairments of Spatial Learning and Memory Abilities in Rats, but Fails to Restore γ-Aminobutyric Acid Levels

    Science.gov (United States)

    Li, Shao-Jun; Ou, Chao-Yan; He, Sheng-Nan; Huang, Xiao-Wei; Luo, Hai-Lan; Meng, Hao-Yang; Lu, Guo-Dong; Jiang, Yue-Ming; Vieira Peres, Tanara; Luo, Yi-Ni; Deng, Xiang-Fa

    2017-01-01

    Excessive manganese (Mn) exposure is not only a health risk for occupational workers, but also for the general population. Sodium para-aminosalicylic acid (PAS-Na) has been successfully used in the treatment of manganism, but the involved molecular mechanisms have yet to be determined. The present study aimed to investigate the effects of PAS-Na on sub-chronic Mn exposure-induced impairments of spatial learning and memory, and determine the possible involvements of γ-aminobutyric acid (GABA) metabolism in vivo. Sprague-Dawley male rats received daily intraperitoneal injections MnCl2 (as 6.55 mg/kg Mn body weight, five days per week for 12 weeks), followed by daily subcutaneous injections of 100, 200, or 300 mg/kg PAS-Na for an additional six weeks. Mn exposure significantly impaired spatial learning and memory ability, as noted in the Morris water maze test, and the following PAS-Na treatment successfully restored these adverse effects to levels indistinguishable from controls. Unexpectedly, PAS-Na failed to recover the Mn-induced decrease in the overall GABA levels, although PAS-Na treatment reversed Mn-induced alterations in the enzyme activities directly responsible for the synthesis and degradation of GABA (glutamate decarboxylase and GABA-transaminase, respectively). Moreover, Mn exposure caused an increase of GABA transporter 1 (GAT-1) and decrease of GABA A receptor (GABAA) in transcriptional levels, which could be reverted by the highest dose of 300 mg/kg PAS-Na treatment. In conclusion, the GABA metabolism was interrupted by sub-chronic Mn exposure. However, the PAS-Na treatment mediated protection from sub-chronic Mn exposure-induced neurotoxicity, which may not be dependent on the GABA metabolism. PMID:28394286

  12. Replication-dependent 65R→K reversion in human immunodeficiency virus type 1 reverse transcriptase double mutant K65R + L74V

    International Nuclear Information System (INIS)

    Sharma, Prem L.; Nurpeisov, Viktoria; Lee, Kimberly; Skaggs, Sara; Di San Filippo, Christina Amat; Schinazi, Raymond F.

    2004-01-01

    Understanding of the mechanisms of interaction among nucleoside reverse transcriptase inhibitor (NRTI)-selected mutations in the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) coding sequence is essential for the design of newer drugs and for enhancing our vision of the structure function relationship among amino acids of the polymerase domain of HIV-1. Although several nucleoside reverse transcriptase inhibitors select RT mutations K65R and L74V, the combination of 65R + 74V is rare in clinics. A novel NRTI (-)-β-D-dioxolane-guanosine (DXG) is known to select in vitro either the 65R or 74V mutant virus (Antimicrob. Agents Chemother. 44 (2000) 1783). These mutations were not selected together during repeated passaging of the HIV-1 in the presence of this drug. To analyze the impact of these RT mutations on viral replication, a double mutant containing K65R + L74V was created by site-directed mutagenesis in a pNL4-3 background. Replication kinetic assays revealed that the mutant K65R + L74V is unstable, and 65R→K reversion occurs during replication of virus in phytohemagglutinin (PHA)-stimulated human peripheral blood mononuclear (PBM) cells in the absence of selection pressure. Replication kinetic assays in MT-2 cells demonstrated that double mutant 65R + 74V is highly attenuated for replication and the initiation of reversion is related to the increase in RT activity. Additionally, the suppression of viral replication in the presence of DXG or under suboptimal human recombinant interleukin-2 leads to minimal or no 65R→K reversion. These observations provide evidence that 65R→K reversion in the double mutant 65R + 74V is dependent on a specific rate of viral replication in a pNL4-3 background. A similar phenomenon may occur in vivo, which may have implications for treatment management strategies

  13. Reversal of aflatoxin induced liver damage by turmeric and curcumin.

    Science.gov (United States)

    Soni, K B; Rajan, A; Kuttan, R

    1992-09-30

    The effect of certain food additives on aflatoxin production by Aspergillus parasiticus has been studied in vitro. Extracts of turmeric (Curcuma longa), garlic (Allium sativum) and asafoetida (Ferula asafoetida) inhibited the aflatoxin production considerably (more than 90%) at concentrations of 5-10 mg/ml. Similar results were also seen using butylated hydroxytoluene, butylated hydroxyanisole and ellagic acid at concentration 0.1 mM. Curcumin, the antioxidant principle from Curcuma longa did not have any effect on aflatoxin production. Turmeric and curcumin were also found to reverse the aflatoxin induced liver damage produced by feeding aflatoxin B1 (AFB1) (5 micrograms/day per 14 days) to ducklings. Fatty changes, necrosis and biliary hyperplasia produced by AFB1 were considerably reversed by these food additives.

  14. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Aschi, Massimiliano; D'Archivio, Angelo Antonio; Mazzeo, Pietro; Pierabella, Mirko; Ruggieri, Fabrizio

    2008-01-01

    A feed-forward artificial neural network (ANN) learned by error back-propagation is used to generate a retention predictive model for phenoxy acid herbicides in isocratic reversed-phase high-performance liquid chromatography. The investigated solutes (18 compounds), apart from the most common herbicides of this class, include some derivatives of benzoic acid and phenylacetic acid structurally related to phenoxy acids, as a whole covering a pK a range between 2.3 and 4.3. A mixed model in terms of both solute descriptors and eluent attributes is built with the aim of predicting retention in water-acetonitrile mobile phases within a large range of composition (acetonitrile from 30% to 70%, v/v) and acidity (pH of water before mixing with acetonitrile ranging between 2 and 5). The set of input variables consists of solute pK a and quantum chemical molecular descriptors of both the neutral and dissociated form, %v/v of acetonitrile in the mobile phase and pH of aqueous phase before mixing with acetonitrile. After elimination of redundant variables, a nine-dimensional model is identified and its prediction ability is evaluated by external validation based on three solutes not involved in model generation and by cross-validation. A multilinear counterpart in terms of the same descriptors is seen to provide a noticeably poorer retention prediction

  15. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Aschi, Massimiliano [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)], E-mail: darchivi@univaq.it; Mazzeo, Pietro; Pierabella, Mirko; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2008-06-02

    A feed-forward artificial neural network (ANN) learned by error back-propagation is used to generate a retention predictive model for phenoxy acid herbicides in isocratic reversed-phase high-performance liquid chromatography. The investigated solutes (18 compounds), apart from the most common herbicides of this class, include some derivatives of benzoic acid and phenylacetic acid structurally related to phenoxy acids, as a whole covering a pK{sub a} range between 2.3 and 4.3. A mixed model in terms of both solute descriptors and eluent attributes is built with the aim of predicting retention in water-acetonitrile mobile phases within a large range of composition (acetonitrile from 30% to 70%, v/v) and acidity (pH of water before mixing with acetonitrile ranging between 2 and 5). The set of input variables consists of solute pK{sub a} and quantum chemical molecular descriptors of both the neutral and dissociated form, %v/v of acetonitrile in the mobile phase and pH of aqueous phase before mixing with acetonitrile. After elimination of redundant variables, a nine-dimensional model is identified and its prediction ability is evaluated by external validation based on three solutes not involved in model generation and by cross-validation. A multilinear counterpart in terms of the same descriptors is seen to provide a noticeably poorer retention prediction.

  16. Differential Binding Models for Direct and Reverse Isothermal Titration Calorimetry.

    Science.gov (United States)

    Herrera, Isaac; Winnik, Mitchell A

    2016-03-10

    Isothermal titration calorimetry (ITC) is a technique to measure the stoichiometry and thermodynamics from binding experiments. Identifying an appropriate mathematical model to evaluate titration curves of receptors with multiple sites is challenging, particularly when the stoichiometry or binding mechanism is not available. In a recent theoretical study, we presented a differential binding model (DBM) to study calorimetry titrations independently of the interaction among the binding sites (Herrera, I.; Winnik, M. A. J. Phys. Chem. B 2013, 117, 8659-8672). Here, we build upon our DBM and show its practical application to evaluate calorimetry titrations of receptors with multiple sites independently of the titration direction. Specifically, we present a set of ordinary differential equations (ODEs) with the general form d[S]/dV that can be integrated numerically to calculate the equilibrium concentrations of free and bound species S at every injection step and, subsequently, to evaluate the volume-normalized heat signal (δQ(V) = δq/dV) of direct and reverse calorimetry titrations. Additionally, we identify factors that influence the shape of the titration curve and can be used to optimize the initial concentrations of titrant and analyte. We demonstrate the flexibility of our updated DBM by applying these differentials and a global regression analysis to direct and reverse calorimetric titrations of gadolinium ions with multidentate ligands of increasing denticity, namely, diglycolic acid (DGA), citric acid (CIT), and nitrilotriacetic acid (NTA), and use statistical tests to validate the stoichiometries for the metal-ligand pairs studied.

  17. Transport of monocarboxylic acids at the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Terasaki, T.; Takakuwa, S.; Moritani, S.; Tsuji, A.

    1991-01-01

    The kinetics and mechanism of the transport of monocarboxylic acids (MCAs) were studied by using primary cultured bovine brain capillary endothelial cells. Concentration-dependent uptake of acetic acid was observed, and the kinetic parameters were estimated as follows: the Michaelis constant, Kt, was 3.41 ± 1.87 mM, the maximum uptake rate, Jmax, was 144.7 ± 55.7 nmol/mg of protein/min and the nonsaturable first-order rate constant, Kd, was 6.66 ± 1.98 microliters/mg of protein/min. At medium pH below 7.0, the uptake rate of [3H]acetic acid increased markedly with decreasing medium pH, whereas pH-independent uptake was observed in the presence of 10 mM acetic acid. An energy requirement for [3H]acetic acid uptake was also demonstrated, because metabolic inhibitors (2,4-dinitrophenol and rotenone) reduced significantly the uptake rate (P less than .05). Carbonylcyanide-p-trifluoro-methoxyphenylhydrazone, a protonophore, inhibited significantly the uptake of [3H]acetic acid at medium pH of 5.0 and 6.0, whereas 4,4'-diisothiocyanostilben-2,2'-disulfonic acid did not. Several MCAs inhibited significantly the uptake rate of [3H]acetic acid, whereas di- and tricarboxylic acids did not. The uptake of [3H]acetic acid was competitively inhibited by salicylic acid, with an inhibition constant, Ki, of 3.60 mM, suggesting a common transport system between acetic acid and salicylic acid. Moreover, at the medium pH of 7.4, salicylic acid and valproic acid inhibited significantly the uptake of [3H]acetic acid, demonstrating that the transport of MCA drugs could also be ascribed to the MCA transport system at the physiologic pH

  18. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli

    Science.gov (United States)

    2013-01-01

    Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation. PMID

  19. Reversible anaesthesia of free-ranging lions (Panthera leo in Zimbabwe

    Directory of Open Access Journals (Sweden)

    A. Fahlman

    2005-06-01

    Full Text Available The combination of medetomidine-zolazepam-tiletamine with subsequent antagonism by atipamezole was evaluated for reversible anaesthesia of free-ranging lions (Panthera leo. Twenty-one anaesthetic events of 17 free-ranging lions (5 males and 12 females, body weight 105-211 kg were studied in Zimbabwe. Medetomidine at 0.027-0.055 mg / kg (total dose 4-11 mg and zolazepam-tiletamine at 0.38-1.32 mg / kg (total dose 50-275 mg were administered i.m. by dart injection. The doses were gradually decreased to improve recovery. Respiratory and heart rates, rectal temperature and relative haemoglobin oxygen saturation (SpO2 were recorded every 15 min. Arterial blood samples were collected from 5 lions for analysis of blood gases and acid-base status. For anaesthetic reversal, atipamezole was administered i.m. at 2.5 or 5 times the medetomidine dose. Induction was smooth and all lions were anaesthetised with good muscle relaxation within 3.4-9.5 min after darting. The predictable working time was a minimum of 1 h and no additional drug doses were needed. Respiratory and heart rates and SpO2 were stable throughout anaesthesia, whereas rectal temperature changed significantly over time. Atipamezole at 2.5 times the medetomidine dose was sufficient for reversal and recoveries were smooth and calm in all lions independent of the atipamezole dose. First sign of recovery was observed 3-27 min after reversal. The animals were up walking 8-26 min after reversal when zolazepamtiletamine doses <1 mg / kg were used. In practice, a total dose of 6 mg medetomidine and 80 mg zolazepam-tiletamine and reversal with 15 mg atipamezole can be used for either sex of an adult or subadult lion. The drugs and doses used in this study provided a reliable, safe and reversible anaesthesia protocol for free-ranging lions.

  20. Theory of Ion and Water Transport in Reverse-Osmosis Membranes

    Science.gov (United States)

    Oren, Y. S.; Biesheuvel, P. M.

    2018-02-01

    We present a theory for ion and water transport through reverse-osmosis (RO) membranes based on a Maxwell-Stefan framework combined with hydrodynamic theory for the reduced motion of particles in thin pores. We take into account all driving forces and frictions both on the fluid (water) and on the ions including ion-fluid friction and ion-wall friction. By including the acid-base characteristic of the carbonic acid system, the boric acid system, H3O+/OH- , and the membrane charge, we locally determine p H , the effective charge of the membrane, and the dissociation degree of carbonic acid and boric acid. We present calculation results for an experiment with fixed feed concentration, where effluent composition is a self-consistent function of fluxes through the membrane. A comparison with experimental results from literature for fluid flow vs pressure, and for salt and boron rejection, shows that our theory agrees very well with the available data. Our model is based on realistic assumptions for the effective size of the ions and makes use of a typical pore size of a commercial RO membrane.

  1. Production of α-keto acids Part I. Immobilized cells ofTrigonopsis variabilis containing D-amino acid oxidase.

    Science.gov (United States)

    Brodelius, P; Nilsson, K; Mosbach, K

    1981-12-01

    Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca(2+)-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a " trickle-bed " reactor.

  2. Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography.

    Science.gov (United States)

    Hau Fung Cheung, Rodney; Morrison, Paul D; Small, Darryl M; Marriott, Philip J

    2008-12-05

    A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).

  3. In silico cloning and bioinformatic analysis of PEPCK gene in ...

    African Journals Online (AJOL)

    Phosphoenolpyruvate carboxykinase (PEPCK), a critical gluconeogenic enzyme, catalyzes the first committed step in the diversion of tricarboxylic acid cycle intermediates toward gluconeogenesis. According to the relative conservation of homologous gene, a bioinformatics strategy was applied to clone Fusarium ...

  4. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    Directory of Open Access Journals (Sweden)

    Alam Zeb

    2017-04-01

    Full Text Available Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g, chlorophyll b′ (410.0 μg/g, chlorophyll a (162.4 μg/g, 9′-Z-neoxanthin (142.8 μg/g and all-E-violaxanthin (82.2 μg/g were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g, chlorogenic acid (28.5 mg/g, 5-O-caffeoylquinic acid (18.7 mg/g, coumaric acid (11.2 mg/g, and its derivative (33.1 mg/g were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient.

  5. Metabolic Reprogramming of Macrophages Exposed to Silk, Poly(lactic-co-glycolic acid), and Silica Nanoparticles.

    Science.gov (United States)

    Saborano, Raquel; Wongpinyochit, Thidarat; Totten, John D; Johnston, Blair F; Seib, F Philipp; Duarte, Iola F

    2017-07-01

    Monitoring macrophage metabolism in response to nanoparticle exposure provides new insights into biological outcomes, such as inflammation or toxicity, and supports the design of tailored nanomedicines. This paper describes the metabolic signature of macrophages exposed to nanoparticles ranging in diameter from 100 to 125 nm and made from silk, poly(lactic-co-glycolic acid) or silica. Nanoparticles of this size and type are currently at various stages of preclinical and clinical development for drug delivery applications. 1 H NMR analysis of cell extracts and culture media is used to quantify the changes in the intracellular and extracellular metabolomes of macrophages in response to nanoparticle exposure. Increased glycolytic activity, an altered tricarboxylic acid cycle, and reduced ATP generation are consistent with a proinflammatory phenotype. Furthermore, amino acids possibly arising from autophagy, the creatine kinase/phosphocreatine system, and a few osmolytes and antioxidants emerge as important players in the metabolic reprogramming of macrophages exposed to nanoparticles. This metabolic signature is a common response to all nanoparticles tested; however, the direction and magnitude of some variations are clearly nanoparticle specific, indicating material-induced biological specificity. Overall, metabolic reprogramming of macrophages can be achieved with nanoparticle treatments, modulated through the choice of the material, and monitored using 1 H NMR metabolomics. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    Science.gov (United States)

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  7. Reverse genetics with animal viruses. NSV reverse genetics

    International Nuclear Information System (INIS)

    Mebatsion, T.

    2005-01-01

    New strategies to genetically manipulate the genomes of several important animal pathogens have been established in recent years. This article focuses on the reverse genetics techniques, which enables genetic manipulation of the genomes of non-segmented negative-sense RNA viruses. Recovery of a negative-sense RNA virus entirely from cDNA was first achieved for rabies virus in 1994. Since then, reverse genetic systems have been established for several pathogens of medical and veterinary importance. Based on the reverse genetics technique, it is now possible to design safe and more effective live attenuated vaccines against important viral agents. In addition, genetically tagged recombinant viruses can be designed to facilitate serological differentiation of vaccinated animals from infected animals. The approach of delivering protective immunogens of different pathogens using a single vector was made possible with the introduction of the reverse genetics system, and these novel broad-spectrum vaccine vectors have potential applications in improving animal health in developing countries. (author)

  8. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans.

    Science.gov (United States)

    Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla; Lee, Tammy C; Morgan, Timothy M; Nicklas, Barbara J; Mathias, Rasika A; Chilton, Floyd H

    2016-01-28

    Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol) and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies evaluating fatty acids and their relationships with disease biomarkers or risk.

  9. Omega-3 fatty acids and mood stabilizers alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.

    Science.gov (United States)

    Gomes, Lara M; Carvalho-Silva, Milena; Teixeira, Letícia J; Rebelo, Joyce; Mota, Isabella T; Bilesimo, Rafaela; Michels, Monique; Arent, Camila O; Mariot, Edemilson; Dal-Pizzol, Felipe; Scaini, Giselli; Quevedo, João; Streck, Emilio L

    2017-04-01

    Studies have shown that oxidative stress is involved in the pathophysiology of bipolar disorder (BD). It is suggested that omega-3 (ω3) fatty acids are fundamental to maintaining the functional integrity of the central nervous system. The animal model used in this study displayed fenproporex-induced hyperactivity, a symptom similar to manic BD. Our results showed that the administration of fenproporex, in the prevent treatment protocol, increased lipid peroxidation in the prefrontal cortex (143%), hippocampus (58%) and striatum (181%), and ω3 fatty acids alone prevented this change in the prefrontal cortex and hippocampus, whereas the co-administration of ω3 fatty acids with VPA prevented the lipoperoxidation in all analyzed brain areas, and the co-administration of ω3 fatty acids with Li prevented this increase only in the prefrontal cortex and striatum. Moreover, superoxide dismutase (SOD) activity was decreased in the striatum (54%) in the prevention treatment, and the administration of ω3 fatty acids alone or in combination with Li and VPA partially prevented this inhibition. On the other hand, in the reversal treatment protocol, the administration of fenproporex increased carbonyl content in the prefrontal cortex (25%), hippocampus (114%) and striatum (91%), and in prefrontal coxter the administration of ω3 fatty acids alone or in combination with Li and VPA reversed this change, whereas in the hippocampus and striatum only ω3 fatty acids alone or in combination with VPA reversed this effect. Additionally, the administration of fenproporex resulted in a marked increase of TBARS in the hippocampus and striatum, and ω3 fatty acids alone or in combination with Li and VPA reversed this change. Finally, fenproporex administration decreased SOD activity in the prefrontal cortex (85%), hippocampus (52%) and striatum (76%), and the ω3 fatty acids in combination with VPA reversed this change in the prefrontal cortex and striatum, while the co-administration of

  10. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells

    NARCIS (Netherlands)

    Lachmandas, E.L.; Beigier-Bompadre, M.; Cheng, S.C.; Kumar, V.; Laarhoven, A. van; Wang, X.; Ammerdorffer, A.; Boutens, L.; Jong, D. de; Kanneganti, T.D.; Gresnigt, M.S.; Ottenhoff, T.H.; Joosten, L.A.; Stienstra, R.; Wijmenga, C.; Kaufmann, S.H.; Crevel, R. van; Netea, M.G.

    2016-01-01

    Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host

  11. The moonlighting function of pyruvate carboxylase resides in the non-catalytic end of the TIM barrel.

    NARCIS (Netherlands)

    Huberts, D.H.; Venselaar, H.; Vriend, G.; Veenhuis, M.; Klei, I.J. van der

    2010-01-01

    Pyruvate carboxylase is a highly conserved enzyme that functions in replenishing the tricarboxylic acid cycle with oxaloacetate. In the yeast Hansenulapolymorpha, the pyruvate carboxylase protein is also required for import and assembly of the peroxisomal enzyme alcohol oxidase. This additional

  12. The moonlighting function of pyruvate carboxylase resides in the non-catalytic end of the TIM barrel

    NARCIS (Netherlands)

    Huberts, Daphne H. E. W.; Venselaar, Hanka; Vriend, Gert; Veenhuis, Marten; van der Klei, Ida J.

    Pyruvate carboxylase is a highly conserved enzyme that functions in replenishing the tricarboxylic acid cycle with oxaloacetate. In the yeast Hansenula polymorpha, the pyruvate carboxylase protein is also required for import and assembly of the peroxisomal enzyme alcohol oxidase. This additional

  13. A rapid HPLC-APCI-MS method to detect fluoroacetate in plants

    Science.gov (United States)

    Many plant species worldwide can cause sudden death of grazing livestock. One diagnostic differential is the presence of monofluoroacetate (MFA) that is metabolised to fluorocitrate that subsequently inhibits the Kreb’s Cycle (the tricarboxylic acid cycle) leading to cellular respiration dysfunction...

  14. CO2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs

    Czech Academy of Sciences Publication Activity Database

    Alfreider, A.; Baumer, A.; Bogensperger, T.; Posch, T.; Salcher, Michaela M.; Summerer, M.

    2017-01-01

    Roč. 19, č. 7 (2017), s. 2754-2768 ISSN 1462-2912 Institutional support: RVO:60077344 Keywords : tricarboxylic-acid cycle * covered antarctic lake * fresh-water * genome sequence Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 5.395, year: 2016

  15. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from...... of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...... beta-amino alcohols through a straightforward five step sequence. The key step of this synthesis is an original anionic 4-exo-tet ring closure that forms the azetidine ring upon an intramolecular Michael addition. This reaction was proven to be reversible and to lead to a thermodynamic distribution...

  16. Depression of pyrimidine dimer excision from the aspects of U.V. reversibility of irradiated cells

    International Nuclear Information System (INIS)

    Slamenova, D.; Slezarikova, V.; Masek, F.

    1977-01-01

    Depression of pyrimidine dimer excision induced in U.V. irradiated E.coli B/r T - trp - Hcr + cells by preirradiation cultivation in conditions of starving for the essential amino acid and thymine does not increase U.V.-reversibility of irradiated cells and does not influence the time of expression of trp + reversions. The expression of mutations becomes completed in control and prestarved cells prior to restoration of postradiation division. Genetic deficiency leads up to their high sensitivity to the mutagenic activity of U.V. irradiation. Expression of trp + revertants in Hcr - type cells does not become completed until after commencement of the postradiation division of irradiated cells. Prestarved E.coli B/r T - trp - Hcr + cells exhibited depression of excision even with postradiation cultivation in the absence of an essential amino acid, which is associated with greater stability of newly synthesized DNA and overall decrease of the death rate of cells. In postradiation starvation for the essential amino acid E.coli B/r T - trp - Hcr - cells irradiated with low U.V. light doses behaved similarly. Control E.coli B/r T - trp - Hcr + cells, cultivated after irradiation without amino acid, excised pyrimidine dimers; they are characterised by high degradation of newly synthesized DNA and increased death rate of cells. (author)

  17. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  18. Ion-containing reverse osmosis membranes obtained by radiation grafting method

    International Nuclear Information System (INIS)

    Hegazy, E.-S.A.; El-Assy, N.B.; Dessouki, A.M.; Shaker, M.M.

    1989-01-01

    Cationic membranes obtained by radiation grafting of aqueous acrylic acid onto low density polyethylene films followed by alkaline treatment to confer ionic character in the graft chains, were tested for reverse osmosis desalination of saline water. Selected physical properties of such membranes were investigated. The grafted membranes possess good mechanical and electrical properties. Water uptake for the alkali-treated membrane was much higher than that of the alkali-untreated one. The effect of operation time, degree of grafting, applied pressure and feed concentration on the water flux and salt rejection for the grafted membranes was investigated. Such cationic membranes showed good durability, thermal and chemical stability, acceptable water flux and salt rejection which may make them acceptable for practical use in reverse osmosis desalination of sea water. (author)

  19. Preparation and selected properties of ion-containing reverse osmosis membranes

    International Nuclear Information System (INIS)

    Hegazy, E.S.A.; Dessouki, A.M.

    1986-01-01

    Ion-containing reverse osmosis membranes were prepared by the post radiation grafting of 4-vinylpyridine onto low density polyethylene films, followed by quaternization of the pyridine rings in the graft chains to confer ionic character to the membranes. The effect of some preparation conditions on the grafting yield was investigated. Different quaternizing agents such as methyl iodide, allyl bromide, and hydrochloric acid were used for the quaternization of the graft chains. The effect of quaternizing agent and degree of grafting on the properties of the membranes such as swelling behaviour, specific electric resistance, water flux and salt rejection, was investigated. The properties of these ionic membranes did not deteriorate with the operation time and they show a great promise for the use in the field of reverse osmosis desalination of sea water. (author)

  20. Depression of pyrimidine dimer excision from the aspects of uv reversibility of irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Slamenova, D; Slezarikova, V; Masek, F [Slovenska Akademia Vied, Bratislava (Czechoslovakia)

    1977-04-01

    Depression of pyrimidine dimer excision induced in uv-irradiated E.coli B/r T/sup -/trp/sup -/Hcr/sup +/ cells by preirradiation cultivation in conditions of starving for the essential amino acid and thymine does not increase uv-reversibility of irradiated cells and does not influence the time of expression of trp/sup +/ reversions. The expression of mutations becomes completed in control and prestarved cells prior to restoration of postradiation division. Genetic deficiency leads up to their high sensitivity to the mutagenic activity of uv irradiation. Expression of trp/sup +/ revertants in Hcr/sup -/ type cells does not become completed until after commencement of the postradiation division of irradiated cells. Prestarved E.coli B/r T/sup -/trp/sup -/Hcr/sup +/ cells exhibited depression of excision even with postradiation cultivation in the absence of an essential amino acid, which is associated with greater stability of newly synthesized DNA and overall decrease of the death rate of cells. In postradiation starvation for the essential amino acid E.coli B/r T/sup -/trp/sup -/Hcr/sup -/ cells irradiated with low uv light doses behaved similarly. Control E.coli B/r T/sup -/trp/sup -/Hcr/sup +/ cells, cultivated after irradiation without amino acid, excised pyrimidine dimers; they are characterised by high degradation of newly synthesized DNA and increased death rate of cells.

  1. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.

    Science.gov (United States)

    Wang, Xin; Khodadadi, Ehsaneh; Fakheri, Baratali; Komatsu, Setsuko

    2017-06-06

    Organ-specific analyses enrich the understanding of plant growth and development under abiotic stresses. To elucidate the cellular responses in soybean seedlings exposed to flooding and drought stresses, organ-specific analysis was performed using a gel-free/label-free proteomic technique. Physiological analysis indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were markedly increased in leaf and root of plants treated with 6days of flooding and drought stresses, respectively. Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominately affected in leaf, hypocotyl, and root in response to flooding and drought. Notably, the tricarboxylic acid cycle was suppressed in leaf and root under both stresses. Moreover, 17 proteins, including beta-glucosidase 31 and beta-amylase 5, were identified in soybean seedlings under both stresses. The protein abundances of beta-glucosidase 31 and beta-amylase 5 were increased in leaf and root under both stresses. Additionally, the gene expression of beta-amylase 5 was upregulated in leaf exposed to the flooding and drought, and the expression level was highly correlated with the protein abundance. These results suggest that beta-amylase 5 may be involved in carbohydrate mobilization to provide energy to the leaf of soybean seedlings exposed to flooding and drought. This study examined the effects of flooding and drought on soybean seedlings in different organs using a gel-free/label-free proteomic approach. Physiological responses indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were increased in leaf and root of soybean seedlings exposed to flooding and drought for 6days. Functional analysis of acquired protein profiles exhibited that proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominated affected in leaf, hypocotyl, and root

  2. A locked nucleic Acid-based nanocrawler

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Pasternak, Karol; Campbell, Meghan A

    2013-01-01

    Herein we introduce a novel fluorescent LNA/DNA machine, a nanocrawler, which reversibly moves along a directionally polar complementary road controlled by affinity-enhancing locked nucleic acid (LNA) monomers and additional regulatory strands. Polyaromatic hydrocarbon (PAH) dyes attached to 2...

  3. Modeling pH variation in reverse osmosis.

    Science.gov (United States)

    Nir, Oded; Bishop, Noga Fridman; Lahav, Ori; Freger, Viatcheslav

    2015-12-15

    The transport of hydronium and hydroxide ions through reverse osmosis membranes constitutes a unique case of ionic species characterized by uncommonly high permeabilities. Combined with electromigration, this leads to complex behavior of permeate pH, e.g., negative rejection, as often observed for monovalent ions in nanofiltration of salt mixtures. In this work we employed a rigorous phenomenological approach combined with chemical equilibrium to describe the trans-membrane transport of hydronium and hydroxide ions along with salt transport and calculate the resulting permeate pH. Starting from the Nernst-Planck equation, a full non-linear transport equation was derived, for which an approximate solution was proposed based on the analytical solution previously developed for trace ions in a dominant salt. Using the developed approximate equation, transport coefficients were deduced from experimental results obtained using a spiral wound reverse osmosis module operated under varying permeate flux (2-11 μm/s), NaCl feed concentrations (0.04-0.18 M) and feed pH values (5.5-9.0). The approximate equation agreed well with the experimental results, corroborating the finding that diffusion and electromigration, rather than a priori neglected convection, were the major contributors to the transport of hydronium and hydroxide. The approach presented here has the potential to improve the predictive capacity of reverse osmosis transport models for acid-base species, thereby improving process design/control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Paraganglioma and pheochromocytoma upon maternal transmission of SDHD mutations

    NARCIS (Netherlands)

    J.P. Bayley; R.A. Oldenburg (Rogier); J. Nuk (Jennifer); A.S. Hoekstra (Attje S.); C.A. van der Meer (Conny); E. Korpershoek (Esther); B. McGillivray (Barbara); E.P. Corssmit (Eleonora); W.N.M. Dinjens (Winand); R.R. de Krijger (Ronald); P. Devilee (Peter); J.C. Jansen (Jeroen); F.J. Hes (Frederik)

    2014-01-01

    textabstractThe SDHD gene encodes a subunit of the mitochondrial tricarboxylic acid cycle enzyme and tumor suppressor, succinate dehydrogenase. Mutations in this gene show a remarkable pattern of parent-of-origin related tumorigenesis, with almost all SDHD-related cases of head and neck

  5. Enhanced citrate production through gene insertion in Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de; Nielsen, Jens

    2007-01-01

    The effect of inserting genes involved in the reductive branch of the tricarboxylic acid (TCA) cycle on citrate production by Aspergillus niger was evaluated. Several different genes were inserted individually and in combination, i.e. malate dehydrogenase (mdh2) from Saccharomyces cerevisiae, two...

  6. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes.

    NARCIS (Netherlands)

    Diepen, van Janna A.; Hooiveld, Guido; Stienstra, Rinke; Deen, Peter M.

    2017-01-01

    Obesity induces macrophages to drive inflammation in adipose tissue, a crucial step towards the development of type 2 diabetes. The tricarboxylic acid (TCA) cycle intermediate succinate is released from cells under metabolic stress and has recently emerged as a metabolic signal induced by

  7. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes

    NARCIS (Netherlands)

    Diepen, van Janna A.; Robben, Joris H.; Hooiveld, Guido J.; Carmone, Claudia; Alsady, Mohammad; Boutens, Lily; Bekkenkamp-Grovenstein, Melissa; Hijmans, Anneke; Engelke, Udo F.H.; Wevers, Ron A.; Netea, Mihai G.; Tack, Cees J.; Stienstra, Rinke; Deen, Peter M.T.

    2017-01-01

    Aims/hypothesis: Obesity induces macrophages to drive inflammation in adipose tissue, a crucial step towards the development of type 2 diabetes. The tricarboxylic acid (TCA) cycle intermediate succinate is released from cells under metabolic stress and has recently emerged as a metabolic signal

  8. Leukotriene B4 catabolism: quantitation of leukotriene B4 and its omega-oxidation products by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Shak, S

    1987-01-01

    LTB4 and its omega-oxidation products may be rapidly, sensitively, and specifically quantitated by the methods of solid-phase extraction and reversed-phase high-performance liquid chromatography (HPLC), which are described in this chapter. Although other techniques, such as radioimmunoassay or gas chromatography-mass spectrometry, may be utilized for quantitative analysis of the lipoxygenase products of arachidonic acid, only the technique of reversed-phase HPLC can quantitate as many as 10 metabolites in a single analysis, without prior derivatization. In this chapter, we also reviewed the chromatographic theory which we utilized in order to optimize reversed-phase HPLC analysis of LTB4 and its omega-oxidation products. With this information and a gradient HPLC system, it is possible for any investigator to develop a powerful assay for the potent inflammatory mediator, LTB4, or for any other lipoxygenase product of arachidonic acid.

  9. Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus Oocytes: functional and structural implications.

    Science.gov (United States)

    Piñeros, Miguel A; Cançado, Geraldo M A; Kochian, Leon V

    2008-08-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al(3+) at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al(3+) (K(m1/2) of approximately 5 microm Al(3+) activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al(3+). The lack of change in the reversal potential (E(rev)) upon exposure to Al(3+) suggests that the "enhancement" of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the E(rev) as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the E(rev) as the extracellular Cl(-) activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl

  10. Concentration of pineapple juice by reverse osmosis: physicochemical characteristics and consumer acceptance

    Directory of Open Access Journals (Sweden)

    Daniel Simões Couto

    2011-12-01

    Full Text Available Reverse osmosis has been used for the concentration of fruit juices with promising considering the quality of the obtained products. The objective of this study was to concentrate single strength pineapple juice by reverse osmosis. The concentration was carried out with polyamide composite membranes in a 0.65 m² plate and frame module at 60 bar transmembrane pressure at 20 °C. The permeate flux was 17 L.hm-2. The total soluble solid content of the juice increased from 11 to 31 °Brix corresponding to a Volumetric Concentration Factor (VCF of 2.9. The concentration of soluble solids, total solids, and total acidity increased proportionally to FCV. The concentrated juice and three commercial concentrated pineapple juices were evaluated regarding preference and purchase intention by 79 pineapple juice consumers. The concentrated juice by reverse osmosis was the preferred among consumers. It can be concluded that this process may be considered an alternative to the pre-concentration of fruit juices.

  11. Bace1 activity impairs neuronal glucose metabolism: rescue by beta-hydroxybutyrate and lipoic acid

    Directory of Open Access Journals (Sweden)

    John A Findlay

    2015-10-01

    Full Text Available Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer’s disease (AD pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP cleaving enzyme 1 (BACE1, responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  12. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  13. Effect of the scale inhibitor on ion content in reverse osmosis system for seawater desalination

    Science.gov (United States)

    Gao, Yuhua; Liu, Zhenfa; Zhang, Lihui; Li, Haihua

    2017-09-01

    A scale inhibitor was synthesized from polysuccinimide with 2-aminoethanesulfonic acid and aspartic acid. The effect of scale inhibitor on ion content in reverse osmosis system for seawater desalination was studied. The results showed that the ion content of permeate water is lower with the scale inhibitor added in RO system for seawater desalination than without scale inhibitor. On the contrary, the ion content of concentrate water is higher when with scale inhibitor in RO system.

  14. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  15. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis

    International Nuclear Information System (INIS)

    Chang, Soo Im; Jin, Bohwan; Youn, Pilju; Park, Changbo; Park, Jung-Duck; Ryu, Doug-Young

    2007-01-01

    Oxidative stress has been suggested to be a major cause of male reproductive failure. Here, we investigated whether arsenic, which impairs male reproductive functions in rodent models, acts by inducing oxidative stress. Male 8-week-old ICR mice were given drinking water containing 20 or 40 mg/l sodium arsenite with or without 0.75 or 1.5 g/l of the antioxidant ascorbic acid for 5 weeks. The arsenic-treated mice showed decreased epididymidal sperm counts and testicular weights compared to untreated mice. These effects were reversed in mice that were co-treated with ascorbic acid. Similarly, arsenic treatment lowered the activities of testicular 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD, which play important roles in steroidogenesis, and this was reversed by co-treatment with ascorbic acid. The testicles of arsenic-treated mice had decreased glutathione (GSH) levels (which correlate inversely with the degree of cellular oxidative stress) and elevated levels of protein carbonyl (a marker of oxidative damage to tissue proteins). Ascorbic acid co-treatment reversed both of these effects. Thus, ascorbic acid blocks both the adverse effects of arsenic on male reproductive functions and the arsenic-induced testicular oxidative changes. These observations support the notion that arsenic impairs male reproductive function by inducing oxidative stress

  16. Reversible photocontrol of molecular assemblies of metal complex containing azo-amphiphiles

    International Nuclear Information System (INIS)

    Einaga, Yasuaki; Mikami, Rie; Akitsu, Takashiro; Li, Guangming

    2005-01-01

    Photo-controllable molecular systems, [M(en) 2 ][Pt(en) 2 Cl 2 ](1) 4 (M 2+ =Pt 2+ , Pd 2+ and en=ethylenediamine), have been designed by the self-assembly of chloride-bridged platinum/palladium complexes and photochromic amphiphiles of the azobenzene derivative, 4-[4-(N-methyl-N-n-dodecylamino)phenylazo]benzene sulfonic acid (designated as compound 1). Reversible structural changes caused by cis-trans photoisomerization of azo groups in compound 1 were observed by alternating illumination of UV and visible light. Visible illumination resulted in the formation of the plate-like structures, whereas UV illumination resulted in fragmentation of the assembling structures. Reversible changes were observed in the electronic states of the chloride-bridged platinum/palladium complexes; the plate-like structures exhibited charge transfer absorption of chloride-bridged platinum complexes and delocalized Pt(II)/Pt(IV) states, while the fragments of the separated complexes exhibited no charge transfer bands. As a consequence, we have discovered that the reversible structural changes in this system could be controlled by photoillumination

  17. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2016-07-01

    Full Text Available Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (citrate valve, while malate is accumulated and participates in the redox balance in different cell compartments (via malate valve. This results in malate and citrate frequently being the most accumulated acids in plants. However, the intensity of reactions linked to the conversion of these compounds can cause preferential accumulation of other organic acids, e.g., fumarate or isocitrate, in higher concentrations than malate and citrate. The secondary reactions, associated with the central metabolic pathways, in particularly with the TCA cycle, result in accumulation of other organic acids that are derived from the intermediates of the cycle. They form the additional pools of fixed carbon and stabilize the TCA cycle. Trans-aconitate is formed from citrate or cis-aconitate, accumulation of hydroxycitrate can be linked to metabolism of 2-oxoglutarate, while 4-hydroxy-2-oxoglutarate can be formed from pyruvate and glyoxylate. Glyoxylate, a product of either glycolate oxidase or isocitrate lyase, can be converted to oxalate. Malonate is accumulated at high concentrations in legume plants. Organic acids play a role in plants in providing redox equilibrium, supporting ionic gradients on membranes, and acidification of the extracellular medium.

  18. Reverse micelles as suitable microreactor for increased biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Anjana [Nanotechnology and Molecular Biology Laboratory, Centre of Biotechnology, University of Allahabad, Allahabad 211002 (India); Pandey, Ashutosh [Centre of Energy Studies, MNNIT, Allahabad 211004 (India)

    2008-01-15

    Reverse micelles have been shown to act as efficient microreactors for enzymic reactions and whole cell entrapment in organic (non-aqueous) media wherein the reactants are protected from denaturation by the surrounding organic solvent. These micelles are thermodynamically stable, micrometer sized water droplets dispersed in an organic phase by a surfactant. It has been observed that when whole cells of photosynthetic bacteria (Rhodopseudomonas sphaeroides or Rhodobacter sphaeroides 2.4.1) are entrapped inside these reverse micelles, the H{sub 2} production enhanced from 25 to 35 folds. That is, 1.71mmol(mgprotein){sup -1}h{sup -1} in case of R. sphaeroides which is 25 fold higher in benzene-sodium lauryl sulfate reverse micelles. Whereas, in case of R. sphaeroides 2.4.1 the H{sub 2} production was increased by 35 fold within AOT-isooctane reverse micelles i.e. 11.5mmol(mgprotein){sup -1}h{sup -1}. The observations indicate that the entrapment of whole cells of microbes within reverse micelles provides a novel and efficient technique to produce hydrogen by the inexhaustible biological route. The two microorganisms R. sphaeroides 2.4.1 (a photosynthetic bacteria) and Citrobacter Y19 (a facultative anaerobic bacteria) together are also entrapped within AOT-isooctane and H{sub 2} production was measured i.e. 69mmol(mgprotein){sup -1}h{sup -1}. The nitrogenase enzyme responsible for hydrogen production by R. sphaeroides/R. sphaeroides 2.4.1 cells is oxygen sensitive, and very well protected within reverse micelles by the use of combined approach of two cells (R. sphaeroides 2.4.1 and Citrobacter Y19). In this case glucose present in the medium of Citrobacter Y19 serves double roles in enhancing the sustained production rate of hydrogen. Firstly, it quenches the free O{sub 2}liberated as a side product of reaction catalyzed by nitrogenase, which is O{sub 2} labile. Secondly, organic acid produced by this reaction is utilized by the Citrobacter Y19 as organic substrate in

  19. Reversibility of female sterilization.

    Science.gov (United States)

    Siegler, A M; Hulka, J; Peretz, A

    1985-04-01

    The discussion considers the current status of reversibility of sterilization in the US and describes clinical and experimental efforts for developing techniques designed for reversibility. It focuses on regret following sterilization, reversal potential of current sterilization techniques, patient selection, current reversal techniques, results of sterilization procedures, experimental approaches to reversal of current techniques of sterilization, and sterilization procedures devised for reversibility, in humans and in animals. Request is the 1st stage of reversal, but a request for sterilization reversal (SR) does not always mean regret for a decision made at the time. Frequently it is a wish to restore fertility because life circumstances have changed after a sterilization that was ppropriate at the time it was performed. Schwyhart and Kutner reviewed 22 studies published between 1949-69 in which they found that the percentage of patients regretting the procedure ranged from 1.3-15%. Requests for reversal remain low in most countries, but if sterilization becomes a more popular method of contraception, requests will also increase. The ideal operation considered as a reversaible method of sterilization should include an easy, reliable outpatient method of tubal occlusion with miniml risk or patient discomfort that subsequently could be reversed without the need for a major surgical intervention. Endoscopic methods have progressed toward the 1st objective. A recent search of the literature uncovered few series of SR of more than 50 cases. The 767 operations found were analyzed with regard to pregnancy outcome. The precent of live births varied from 74-78.8%, and the occurance of tubal pregnancies ranged from 1.7-6.5%. All of the confounding variables in patient selection and small numbers of reported procedures preclude any conclusion about the different techniques or the number of operations that give a surgeon a level of expertise. Few authors classify their

  20. Transcriptome analysis of Pinus massoniana Lamb. microstrobili during sexual reversal

    Directory of Open Access Journals (Sweden)

    Feng Xiao

    2018-04-01

    Full Text Available The normal megastrobilli and microstrobilli before and after the sexual reversal in Pinus massoniana Lamb. were studied and classified using a transcriptomic approach. In the analysis, a total of 190,023 unigenes were obtained with an average length of 595 bp. The annotated unigenes were divided into 56 functional groups and 130 metabolic pathways involved in the physiological and biochemical processes related to ribosome biogenesis, carbon metabolism, and amino acid biosynthesis. Analysis revealed 4,758 differentially expressed genes (DEGs between the mega- and microstrobili from the polycone twig. The DEGs between the mega- and microstrobili from the normal twig were 5,550. In the polycone twig, 1,188 DEGs were identified between the microstrobili and the sexually reversed megastrobili. Concerning plant hormone signal transduction pathways, the DEGs from both the normal and polycone twigs displayed distinct male or female associated expression patterns. There were 36 common hormone-related DEGs from the two types of twigs of P. massoniana. Interestingly, expression of these DEGs was up-regulated in the bisexual strobili, which underwent the sexual reversal. A portion of MADS-box genes in the bisexual strobili were up-regulated relative to expression in microstrobili.

  1. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S

    Science.gov (United States)

    Gregory B. Lawrence; Paul W. Hazlett; Ivan J. Fernandez; Rock Ouimet; Scott W. Bailey; Walter C. Shortle; Kevin T. Smith; Michael R. Antidormi

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been...

  2. Omega-3 Fatty Acids and Mood Stabilizers Alter Behavioural and Energy Metabolism Parameters in Animals Subjected to an Animal Model of Mania Induced by Fenproporex.

    Science.gov (United States)

    Cancelier, Kizzy; Gomes, Lara M; Carvalho-Silva, Milena; Teixeira, Letícia J; Rebelo, Joyce; Mota, Isabella T; Arent, Camila O; Mariot, Edemilson; Kist, Luiza W; Bogo, Maurício R; Quevedo, João; Scaini, Giselli; Streck, Emilio L

    2017-08-01

    Studies have shown that changes in energy metabolism are involved in the pathophysiology of bipolar disorder (BD). It was suggested that omega-3 (ω3) fatty acids have beneficial properties in the central nervous system and that this fatty acid plays an important role in energy metabolism. Therefore, the study aimed to evaluate the effect of ω3 fatty acids alone and in combination with lithium (Li) or valproate (VPA) on behaviour and parameters of energy metabolism in an animal model of mania induced by fenproporex. Our results showed that co-administration of ω3 fatty acids and Li was able to prevent and reverse the increase in locomotor and exploratory activity induced by fenproporex. The combination of ω3 fatty acids with VPA was only able to prevent the fenproporex-induced hyperactivity. For the energy metabolism parameters, our results showed that the administration of Fen for the reversal or prevention protocol inhibited the activities of succinate dehydrogenase, complex II and complex IV in the hippocampus. However, hippocampal creatine kinase (CK) activity was decreased only for the reversal protocol. The ω3 fatty acids, alone and in combination with VPA or Li, prevented and reversed the decrease in complex II, IV and succinate dehydrogenase activity, whereas the decrease in CK activity was only reversed after the co-administration of ω3 fatty acids and VPA. In conclusion, our results showed that the ω3 fatty acids combined with VPA or Li were able to prevent and reverse manic-like hyperactivity and the inhibition of energy metabolism in the hippocampus, suggesting that ω3 fatty acids may play an important role in the modulation of behavioural parameters and energy metabolism.

  3. Discovering novel Alternaria solani succinate dehydrogenase inhibitors by in silico modeling and virtual screening strategies to combat early blight

    NARCIS (Netherlands)

    Iftikhar, Sehrish; Shahid, Ahmad A.; Halim, Sobia A.; Wolters, Pieter J.; Vleeshouwers, Vivianne G.A.A.; Khan, Ajmal; Al-Harrasi, Ahmed; Ahmad, Shahbaz

    2017-01-01

    Alternaria blight is an important foliage disease caused by Alternaria solani. The enzyme Succinate dehydrogenase (SDH) is a potential drug target because of its role in tricarboxylic acid cycle. Hence targeting Alternaria solani SDH enzyme could be efficient tool to design novel fungicides against

  4. Reverse Transcriptase-Containing Particles Induced in Rous Sarcoma Virus-Transformed Rat Cells by Arginine Deprivation

    Science.gov (United States)

    Kotler, Moshe; Weinberg, Eynat; Haspel, Osnat; Becker, Yechiel

    1972-01-01

    Incubation of rat cells transformed by Rous sarcoma virus (RSV) in an arginine-deficient medium resulted in accumulation of particles in the culture medium. Such particles did not appear when the transformed rat cells were incubated in a complete medium nor in the medium of primary rat cells which were incubated either in arginine-deficient or complete media. The particles which were released from the arginine-deprived transformed rat cells resemble C-type particles in their properties. These particles band in sucrose gradients at a density of 1.16 g/ml and contain 35S ribonucleic acid (RNA) molecules and a reverse transcriptase activity. Analysis of the cytoplasm of transformed and primary rat cells, deprived and undeprived of arginine, revealed the presence of reverse transcriptase-containing particles which banded in sucrose gradients at a density of 1.14 g/ml. These particles differed from the particles released into the medium by the arginine-deprived RSV-transformed rat cells. The deoxyribonucleic acid (DNA) molecules synthesized in vitro by the reverse transcriptase present in the particles isolated from the medium of arginine-deprived cells hybridized to RSV RNA, whereas the DNA synthesized by the cell-bound enzyme had no homology to RSV RNA. PMID:4116137

  5. Occurrence of Conjugated Linolenic Acids in Purified Soybean Oil

    OpenAIRE

    Kinami, Tomohisa; Horii, Naoto; Narayan, Bhaskar; Arato, Shingo; Hosokawa, Masashi; Miyashita, Kazuo; Negishi, Hironori; Ikuina, Junichi; Noda, Ryuji; Shirasawa, Seiichi

    2007-01-01

    A high-performance liquid chromatographic (HPLC) method is described for the determination of conjugated linoleic acids (CLA) and conjugated linolenic acids (CLN). Methyl esters prepared from purified lipid fractions of soybean oil were analyzed using an HPLC system equipped with photodiode-array detector to detect peaks having maximum absorption around 233 and 275 nm. These peaks were concentrated by AgNO3-silicic acid column chromatography and reversed-phase HPLC. The structural analysis, o...

  6. Constraining the reversing and non-reversing modes of the geodynamo. New insights from magnetostratigraphy.

    Science.gov (United States)

    Gallet, Y.; Pavlov, V.; Shatsillo, A.; Hulot, G.

    2015-12-01

    Constraining the evolution in the geomagnetic reversal frequency over hundreds of million years is not a trivial matter. Beyond the fact that there are long periods without reversals, known as superchrons, and periods with many reversals, the way the reversal frequency changes through time during reversing periods is still debated. A smooth evolution or a succession of stationary segments have both been suggested to account for the geomagnetic polarity time scale since the Middle-Late Jurassic. Sudden changes from a reversing mode to a non-reversing mode of the geodynamo may also well have happened, the switch between the two modes having then possibly been controlled by the thermal conditions at the core-mantle boundary. There is, nevertheless, a growing set of magnetostratigraphic data, which could help decipher a proper interpretation of the reversal history, in particular in the early Paleozoic and even during the Precambrian. Although yielding a fragmentary record, these data reveal the occurrence of both additional superchrons and periods characterized by extremely high, not to say extraordinary, magnetic reversal frequencies. In this talk, we will present a synthesis of these data, mainly obtained from Siberia, and discuss their implication for the magnetic reversal behavior over the past billion years.

  7. Treatment of low level waste water by reverse osmosis

    International Nuclear Information System (INIS)

    Li Kaijun; Zhang Chuanzhi; Xue Qinhua; Liu Meijun

    1987-11-01

    A Study on the removal of certain radioactive elements Such as 141 Ce, 51 Cr 134 Cu, 106 Ru and 131 I by Reverse Osmosis and the effect of surface activity agent on property of membrance are described in this paper. RO model is carried out to examine the treatment of actual reactor waste water and radioactive laundry waste water. The removal efficiency of total β is 98%. Three preprocessing (cloth pocket filtrator, hivefiltrator and zone) and membrane cleaning methods (acid, ozone and spongeball) are also investigated

  8. Sugar-starvation-induced changes of carbon metabolism in excised maize root tips

    International Nuclear Information System (INIS)

    Dieuaide-Noubhani, M.; Canioni, P.; Raymond, P.

    1997-01-01

    Excised maize (Zea mays L.) root tips were used to study the early metabolic effects of glucose (Glc) starvation. Root tips were prelabeled with [1-13C]Glc so that carbohydrates and metabolic intermediates were close to steady-state labeling, but lipids and proteins were scarcely labeled. They were then incubated in a sugar-deprived medium for carbon starvation. Changes in the level of soluble sugars, the respiratory quotient, and the 13C enrichment of intermediates, as measured by 13C and 1H nuclear magnetic resonance, were studied to detect changes in carbon fluxes through glycolysis and the tricarboxylic acid cycle. Labeling of glutamate carbons revealed two major changes in carbon input into the tricarboxylic acid cycle: (a) the phosphoenolpyruvate carboxylase flux stopped early after the start of Glc starvation, and (b) the contribution of glycolysis as the source of acetyl-coenzyme A for respiration decreased progressively, indicating an increasing contribution of the catabolism of protein amino acids, fatty acids, or both. The enrichment of glutamate carbons gave no evidence for proteolysis in the early steps of starvation, indicating that the catabolism of proteins was delayed compared with that of fatty acids. Labeling of carbohydrates showed that sucrose turnover continues during sugar starvation, but gave no indication for any significant flux through gluconeogenesis

  9. Charge reversible gold nanoparticles for high efficient absorption and desorption of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Wang Can; Zhuang Jiaqi; Jiang Shan; Li Jun; Yang Wensheng, E-mail: wsyang@jlu.edu.cn [Jilin University, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry (China)

    2012-10-15

    Mercaptoundecylamine and mercaptoundecanoic acid co-modified Au nanoparticles were prepared by two-step ligand exchange of 6-mercaptohexanoic acid modified gold nanoparticles. Such particles terminated by appropriate ratios of the amine and carboxyl groups (R{sub N/C}) were identified to show reversible charge on their surface, which were switchable by pH of the solution. The isoelectric point (IEP) of the particles is tunable by changing the ratios of the amine and carboxyl groups on the particle surfaces. The particles can absorb DNA effectively at pH lower than the IEP driven by the direct electrostatic interactions between DNA and the particle surface. When pH of the solutions was elevated to be higher than the IEP, the absorbed DNA can be released almost completely due to the electrostatic repulsion between the particle surface and DNA. With appropriate R{sub N/C} ratios of 0.8, the absorption and desorption efficiencies of DNA were 97 and 98%, respectively, corresponding an extraction efficiency of 95 %. Such particles with reversible surface charges allow the high efficient extraction of DNA by simply changing pH instead of by changing salt concentration in the conventional salt bridge method.Graphical Abstract.

  10. Novel Properties of the Wheat Aluminum Tolerance Organic Acid Transporter (TaALMT1) Revealed by Electrophysiological Characterization in Xenopus Oocytes: Functional and Structural Implications1[OA

    Science.gov (United States)

    Piñeros, Miguel A.; Cançado, Geraldo M.A.; Kochian, Leon V.

    2008-01-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al3+ at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al3+ (Km1/2 of approximately 5 μm Al3+ activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al3+. The lack of change in the reversal potential (Erev) upon exposure to Al3+ suggests that the “enhancement” of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the Erev as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the Erev as the extracellular Cl− activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl−, NO3−, and

  11. Rapid separation of lanthanides and actinides on small particle based reverse phase supports

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    This paper presents the results on the use of short columns (3-5 cm long) with small particle size (1.8 {mu}m) for high performance liquid chromatographic separation of individual lanthanides and uranium from plutonium as well as uranium from thorium to achieve rapid separations i.e. separation time as short as 3.6 min for individual lanthanides, 1 min for thorium-uranium and 4.2 min for uranium from plutonium. These advantages can be exploited to significantly reduce analysis time, liquid waste generation as well as dose to operator when radioactive samples are analysed e.g. burn-up determination. In the present work, a dynamic ion-exchange chromatographic separation technique was employed using camphor-10-sulfonic acid (CSA) as the ion-pairing reagent and {alpha}-hydroxy isobutyric acid ({alpha}-HIBA) as the complexing reagent for the isolation of individual lanthanides as well as the separation of uranium from thorium. Uranium was separated from Pu(III) as well as Pu(IV) by reverse phase HPLC technique. The reverse phase HPLC was also investigated for the isolation and quantitative determination of uranium from thorium as well as lanthanide group from uranium. The dynamic ion-exchange technique using small particle support was demonstrated for measuring the concentrations of lanthanide fission products such as La, Ce, Pr, Nd and Sm in the dissolver solution of fast reactor fuel. Similarly, the assay of uranium in the dissolver solution of fast reactor was carried out using reverse phase HPLC technique. The rapid separation technique using reverse phase HPLC was also demonstrated for separation of lanthanides as a group from uranium matrix; samples of LiCl-KCl eutectic salt containing chlorides of lanthanides in uranium matrix (typically 1: 2000) were analysed. (orig.)

  12. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly*

    Science.gov (United States)

    Stransky, Laura A.; Forgac, Michael

    2015-01-01

    The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K. The V-ATPase is necessary for amino acid-induced activation of mechanistic target of rapamycin complex 1 (mTORC1), which is important in controlling cell growth in response to nutrient availability and growth signals. The V-ATPase undergoes amino acid-dependent interactions with the Ragulator complex, which is involved in recruitment of mTORC1 to the lysosomal membrane during amino acid sensing. We hypothesized that changes in the V-ATPase/Ragulator interaction might involve amino acid-dependent changes in V-ATPase assembly. To test this, we measured V-ATPase assembly by cell fractionation in HEK293T cells treated with and without amino acids. V-ATPase assembly increases upon amino acid starvation, and this effect is reversed upon readdition of amino acids. Lysosomes from amino acid-starved cells possess greater V-ATPase-dependent proton transport, indicating that assembled pumps are catalytically active. Amino acid-dependent changes in both V-ATPase assembly and activity are independent of PI3K and mTORC1 activity, indicating the involvement of signaling pathways distinct from those implicated previously in controlling assembly. By contrast, lysosomal neutralization blocks the amino acid-dependent change in assembly and reactivation of mTORC1 after amino acid starvation. These results identify an important new stimulus for controlling V-ATPase assembly. PMID:26378229

  13. Chlorogenic acid in a Nicotiana plumbaginifolia cell suspension.

    Science.gov (United States)

    Gillet; Mesnard; Fliniaux; Monti; Fliniaux

    1999-11-01

    A phenylpropanoid compound has been characterized in a Nicotiana plumbaginifolia cell suspension. This compound has been isolated and purified by semi-preparative reverse phase-high performance liquid chromatography. Its structure has been identified by NMR spectroscopy as 5-O-caffeoylquinic acid, which is chlorogenic acid (CA). The influence of culture conditions on the accumulation of this metabolite by N. plumbaginifolia cell suspensions has been studied. Darkness strongly inhibits the CA accumulation. Moreover, it has been shown that feeding experiments with caffeic acid had a deleterious effect upon the CA content. This one was not influenced by a supplementation with quinic acid.

  14. De Novo Biosynthesis of Glutarate via α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli.

    Science.gov (United States)

    Wang, Jian; Wu, Yifei; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2017-10-20

    Microbial based bioplastics are promising alternatives to petroleum based synthetic plastics due to their renewability and economic feasibility. Glutarate is one of the most potential building blocks for bioplastics. The recent biosynthetic routes for glutarate were mostly based on the l-lysine degradation pathway from Pseudomonas putida that required lysine either by feeding or lysine overproduction via genetic manipulations. Herein, we established a novel glutarate biosynthetic pathway by incorporation of a "+1" carbon chain extension pathway from α-ketoglutarate (α-KG) in combination with α-keto acid decarboxylation pathway in Escherichia coli. Introduction of homocitrate synthase (HCS), homoaconitase (HA) and homoisocitrate dehydrogenase (HICDH) from Saccharomyces cerevisiae into E. coli enabled "+1" carbon extension from α-KG to α-ketoadipate (α-KA), which was subsequently converted into glutarate by a promiscuous α-keto acid decarboxylase (KivD) and a succinate semialdehyde dehydrogenase (GabD). The recombinant E. coli coexpressing all five genes produced 0.3 g/L glutarate from glucose. To further improve the titers, α-KG was rechanneled into carbon chain extension pathway via the clustered regularly interspersed palindromic repeats system mediated interference (CRISPRi) of essential genes sucA and sucB in tricarboxylic acid (TCA) cycle. The final strain could produce 0.42 g/L glutarate, which was increased by 40% compared with the parental strain.

  15. Iminoboronate Formation Leads to Fast and Reversible Conjugation Chemistry of α-Nucleophiles at Neutral pH.

    Science.gov (United States)

    Bandyopadhyay, Anupam; Gao, Jianmin

    2015-10-12

    Bioorthogonal reactions that are fast and reversible under physiological conditions are in high demand for biological applications. Herein, it is shown that an ortho boronic acid substituent makes aryl ketones rapidly conjugate with α-nucleophiles at neutral pH. Specifically, 2-acetylphenylboronic acid and derivatives were found to conjugate with phenylhydrazine with rate constants of 10(2) to 10(3) M(-1) s(-1) , comparable to the fastest bioorthogonal conjugations known to date. (11) B NMR analysis revealed the varied extent of iminoboronate formation of the conjugates, in which the imine nitrogen forms a dative bond with boron. The iminoboronate formation activates the imines for hydrolysis and exchange, rendering these oxime/hydrazone conjugations reversible and dynamic under physiological conditions. The fast and dynamic nature of the iminoboronate chemistry should find wide applications in biology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evolution and characterization of a new reversibly photoswitchable chromoprotein

    Science.gov (United States)

    Langan, Patricia

    We report the molecular engineering and spectral characterization of a new reversibly photoswitchable chromoprotein, B11 a variant of thermostable green protein (TGP) that has been evolved for favorable solubility, thermostability, and enhanced crystallization properties. Its 2.5 A joint X-ray and neutron structure shows the location of critical hydrogen atoms, and reveals the position, orientation, and protonation states of solvent molecules in the chromophore and surrounding amino acids, which have not been ascertained to date from current X-ray structures. We report 1.65 A ground state and light-induced state X-ray crystal structures of B11, which differs from TGP by four amino acids and has a weak fluorescence in its ground state, and these structures are compared to the wild-type TGP structure. These structures will enhance future engineering of new and novel fluorescent proteins.

  17. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Metabolic Engineering of TCA Cycle for Production of Chemicals

    NARCIS (Netherlands)

    Vuoristo, K.S.; Mars, A.E.; Sanders, J.P.M.; Eggink, G.; Weusthuis, R.A.

    2016-01-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical

  19. Reverse logistics - a framework

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); R. Dekker (Rommert)

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of

  20. Tubal Ligation Reversal

    Science.gov (United States)

    ... seal off the fallopian tubes, such as the Essure or Adiana systems, generally aren't reversible. Why ... electrocautery). Some types of sterilization, such as the Essure or Adiana systems, aren't considered reversible. Risks ...

  1. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet.

    Science.gov (United States)

    Wambacq, Wendy; Rybachuk, Galena; Jeusette, Isabelle; Rochus, Kristel; Wuyts, Brigitte; Fievez, Veerle; Nguyen, Patrick; Hesta, Myriam

    2016-06-28

    that guar gum and sugar beet pulp supplementation diminishes postprandial use of amino acids favoring instead the use of short-chain fatty acids as substrate for the tricarboxylic acid (TCA) cycle. Further research is warranted to investigate the amino acid sparing effect of fermentable fibres in dogs with kidney/liver disease.

  2. Synthesis and characterization of aspartic acid-capped CdS/ZnS quantum dots in reverse micelles and its application to Hg(II) determination

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Mohammad Saeid, E-mail: mshosseini1336@yahoo.com; Kamali, Mohsen

    2015-11-15

    In this work, CdS/ZnS quantum dots (QDs) coated with aspartic acid (AsA) were synthesized in reverse micelles. The synthesized QDs were characterized by XRD, TEM, IR and photoluminescence (PL) spectroscopy. It was found that the intensity of CdS/ZnS QDs coated with AsA is much greater than CdS, and CdS/ZnS QDs. The interaction of some heavy metal ions with CdS/ZnS/AsA QDs was investigated at different buffering pH media. Based on the PL quenching of the QDs in the presence of each one of the metal ions, the feasibility of their determinations was examined according to the Stern–Volmer equation. The investigations showed that Hg(II) ions can be easily determined in contaminated atmospheric environments with the detection limit of 0.05 mg m{sup −3}. The results were satisfactorily confirmed by cold vapor atomic absorption spectrometric method. - Highlights: • A new CdS/ZnS quantum dot capped with aspartic acid (DDBA) was prepared. • The prepared QDs benefit from a favorable fluorescence. • Interaction of some metal ions with the QDs was examined according to the Stern–Volmer equation. • The determination of Hg(II) is feasible in the present of many co-existence metal ions. • The method benefits from a high-speed and considerable simplicity for Hg(II) determination.

  3. The utilization of aconate and itaconate by Micrococcus sp

    Science.gov (United States)

    Cooper, R. A.; Itiaba, K.; Kornberg, H. L.

    1965-01-01

    1. An organism, identified as Micrococcus sp., was isolated by elective culture on aconate; it also grew on itaconate. 2. Washed suspensions of the aconate-grown organism readily oxidized intermediates of the tricarboxylic acid cycle, aconate and succinic semialdehyde, but not itaconate. Itaconate-grown cells oxidized tricarboxylic acid-cycle intermediates, succinic semialdehyde and itaconate, but not aconate. Succinate-grown cells oxidized neither itaconate nor aconate. 3. Extracts of aconate-grown cells catalysed the formation of succinic semialdehyde and carbon dioxide, in equimolar amounts, from aconate. In the presence of NAD or NADP, succinic semialdehyde was oxidized to succinate with concomitant reduction of the coenzyme. 4. Extracts of itaconate-grown cells catalysed the formation of pyruvate and acetyl-CoA from itaconyl-CoA. 5. Key enzymes involved in the formation of succinate from aconate, and of pyruvate and acetyl-CoA from itaconate, were distinct and inducible: their formation preceded growth on the appropriate substrate. PMID:14342240

  4. Antitumor effect of combination of the inhibitors of two new oncotargets: proton pumps and reverse transcriptase.

    Science.gov (United States)

    Lugini, Luana; Sciamanna, Ilaria; Federici, Cristina; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Fais, Stefano

    2017-01-17

    Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth.This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors.

  5. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase.

    Science.gov (United States)

    Okai, Naoko; Takahashi, Chihiro; Hatada, Kazuki; Ogino, Chiaki; Kondo, Akihiko

    2014-01-01

    Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L(-1) glucose and 0.1 mM pyridoxal 5'-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L(-1) (0.259 g L(-1) h(-1)) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol(-1).

  6. Hyperammonemia Associated with Valproic Acid Concentrations

    Directory of Open Access Journals (Sweden)

    Marta Vázquez

    2014-01-01

    Full Text Available Valproic acid, a branched short-chain fatty acid, has numerous action mechanisms which turn it into a broad spectrum anticonvulsant drug and make its use possible in some other pathologies such as bipolar disorder. It is extensively metabolized in liver, representing β-oxidation in the mitochondria one of its main metabolic route (40%. Carnitine is responsible for its entry into the mitochondria as any other fatty acid. Long-term high-dose VPA therapy or acute VPA overdose induces carnitine depletion, resulting in high levels of ammonia in blood. As a high correlation between salivary valproic acid levels and plasma ultrafiltrate levels was found in humans, saliva becomes a promising monitoring fluid in order to study valproic acid pharmacokinetics and its toxic effect. Extended-release (twice daily formulations of valproic acid or carnitine supplementation are the proposed two therapeutic strategies in order to reverse hyperammonemia.

  7. The distribution of n-caprylic acid between organic solvents and aqueous sodium sulfate solution

    International Nuclear Information System (INIS)

    Gloe, K.; Muehl, P.; Kholkin, A.I.; Gindin, L.M.

    1981-01-01

    The distribution of 14 C-labelled n-caprylic acid between n-decane, benzene, isoamyl acetate, diisopropyl ketone, isoamyl alcohol and an aqueous 0.6 molar sodium sulfate solution was studied. The distribution constants and the dimerisation constants were determined for the reactions HRsub((w)) reversible HRsub((org)) and 2 HRsub((org)) reversible (HR)sub(2(org)), respectively. Both the effect of the solvent on the acid distribution and the importance of such studies for the interpretation of liquid-liquid extraction equilibria are discussed. (author)

  8. Regulation of Carbon Flow by Nitrogen and Light in the Red Alga, Gelidium coulteri.

    Science.gov (United States)

    Macler, B A

    1986-09-01

    The red alga Gelidium coulteri Harv. photosynthetically fixed [(14)C] bicarbonate at high rates under defined conditions in unialgal laboratory culture. The fixation rate and flow of photosynthate into various end products were dependent on the nitrogen status of the tissue. Plants fed luxury levels of nitrogen (approximately 340 micromolar) showed fixation rates several-fold higher than those seen for plants starved for nitrogen. The addition of NO(3) (-) or NH(4) (+) to such starved plants further inhibited fixation over at least the first several hours after addition. The majority of (14)C after incubations of 30 minutes to 8 hours was found in the compounds floridoside, agar and floridean starch. In addition, amino acids and intermediate compounds of the reductive pentose phosphate pathway, glycolytic pathway and tricarboxylic acid cycle were detected. Nitrogen affected the partitioning of labeled carbon into these compounds. Plants under luxury nitrogen conditions had higher floridoside levels and markedly lower amounts of agar and starch than found in plants limited for nitrogen. Amino acid, phycobiliprotein and chlorophyll levels were also significantly higher in nitrogen-enriched plants. Addition of NO(3) (-) to starved plants led to an increase in floridoside, tricarboxylic acid cycle intermediates and amino acids within 1 hour and inhibited carbon flow into agar and starch. Carbon fixation in the dark was only 1 to 7% of that seen in the light. Dark fixation of [(14)C]bicarbonate yielded label primarily in tricarboxylic acid cycle intermediates, amino acids and polysaccharides. Nitrogen stimulated amino acid synthesis at the expense of agar and starch. Floridoside was only a minor component in the dark. Pulse-chase experiments, designed to show carbon turnover, indicated a 2-fold increase in labeling of agar over 96 hours of chase in the light. No increases were seen in the dark. Low molecular weight pools, including floridoside, decreased 2- to 5-fold

  9. 49 CFR 230.89 - Reverse gear.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse gear...

  10. Di- and tri-carboxylic-acid-based etches for processing high temperature superconducting thin films and related materials

    International Nuclear Information System (INIS)

    Ginley, D.S.; Barr, L.; Ashby, C.I.H.; Plut, T.A.; Urea, D.; Siegal, M.P.; Martens, J.S.; Johansson, M.E.

    1994-01-01

    The development of passive and active electronics from high-temperature superconducting thin films depends on the development of process technology capable of producing appropriate feature sizes without degrading the key superconducting properties. We present a new class of chelating etches based on di- and tri-carboxylic acids that are compatible with positive photoresists and can produce sub-micron feature sizes while typically producing increases the microwave surface resistance at 94 GHz by less than 10%. This simple etching process works well for both the Y--Ba--Cu--O and Tl--Ba--Ca--Cu--O systems. In addition, we demonstrate that the use of chelating etches with an activator such as HF allows the etching of related oxides such as LaAlO 3 , which is a key substrate material, and Pb(Zr 0.53 Ti 0.47 )O 3 (PZT) which is a key ferroelectric material for HTS and other applications such as nonvolatile memories

  11. Reversible Communicating Processes

    Directory of Open Access Journals (Sweden)

    Geoffrey Brown

    2016-02-01

    Full Text Available Reversible distributed programs have the ability to abort unproductive computation paths and backtrack, while unwinding communication that occurred in the aborted paths. While it is natural to assume that reversibility implies full state recovery (as with traditional roll-back recovery protocols, an interesting alternative is to separate backtracking from local state recovery. For example, such a model could be used to create complex transactions out of nested compensable transactions where a programmer-supplied compensation defines the work required to "unwind" a transaction. Reversible distributed computing has received considerable theoretical attention, but little reduction to practice; the few published implementations of languages supporting reversibility depend upon a high degree of central control. The objective of this paper is to demonstrate that a practical reversible distributed language can be efficiently implemented in a fully distributed manner. We discuss such a language, supporting CSP-style synchronous communication, embedded in Scala. While this language provided the motivation for the work described in this paper, our focus is upon the distributed implementation. In particular, we demonstrate that a "high-level" semantic model can be implemented using a simple point-to-point protocol.

  12. Analysis of electrophoretic soil humic acids fractions by reversed-phase high performance liquid chromatography with on-line absorbance and fluorescence detection.

    Science.gov (United States)

    Trubetskoj, Oleg A; Richard, Claire; Guyot, Ghislain; Voyard, Guillaume; Trubetskaya, Olga E

    2012-06-22

    A combination of reversed-phase high performance liquid chromatography (RP HPLC) with on-line absorbance and fluorescence detection was used for analysis of chernozem soil humic acids (HAs) and their fractions A, B and C+D with different electrophoretic mobility (EM) and molecular size (MS). Samples were injected onto the column at the identical volume and absorbance. All chromatograms exhibit the resolution of seven peaks. The estimation of relative recovery of HAs and fractions from the reverse-phase column has been done. High MS fraction A, which possesses the low EM, is essentially more hydrophobic (73% of the fraction amount remained adsorbed on the column) and aliphatic than medium MS and EM fraction B (33% of the fraction amount remained adsorbed on the column). The most hydrophilic and aromatic properties belong to low MS fraction C+D, which possess the highest EM and practically was not adsorbed on the column. The hydrophobicity of the bulk HAs lies within the range of fractions hydrophobicity. The absorption spectra of bulk HAs, electrophoretic fractions A, B, C+D and corresponding RP HPLC peaks were featureless but had differences in the values of absorbance ratio at 300 and 400 nm (A3/A4). For fractions A and B this ratio gradually decreased from peak 1 to 7 (from 3.05 to 2.80 and 3.00 to 2.40, respectively). This trend was less pronounced in HAs and practically absent in fraction C+D, where ratio A3/A4 varied within a small range. The strong relationship between fluorescence properties, EM, MS, polarity and aliphaticity/aromaticity of HAs fractions was found. Humic and protein-like fluorescence had different polarity nature. The protein-like fluorescence is located in humic material which irreversibly adsorbed on the reverse-phase column and not subjected to RP HPLC characterization. The humic-like fluorescence at Ex/Em 270/450 nm is mostly located in the hydrophilic peak of low MS fraction C+D. Taking into account that high MS fraction A consisted

  13. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications

    NARCIS (Netherlands)

    Schiphorst, ter J.; Coleman, S.; Stumpel, J.E.; Ben Azouz, A.; Diamond, D.; Schenning, A.P.H.J.

    2015-01-01

    Reversible light-responsive hydrogel valves with response characteristics compatible for microfluidics have been obtained by optimization of molecular design of spiropyran photoswitches and gel composition. Self-protonating gel formulations were exploited, wherein acrylic acid was copolymerized in

  14. The Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  15. Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation.

    Science.gov (United States)

    Cheng, J; Zhuang, W; Li, N N; Tang, C L; Ying, H J

    2017-01-01

    Normally, low d-ribose production was identified as responsible for plenty of acid formation by Bacillus subtilis due to its carbon overflow. An approach of co-feeding glucose and sodium citrate is developed here and had been proved to be useful in d-ribose production. This strategy is critical because it affects the cell concentration, the productivity of d-ribose and, especially, the formation of by-products such as acetoin, lactate and acetate. d-ribose production was increased by 59·6% from 71·06 to 113·41 g l -1 without acid formation by co-feeding 2·22 g l -1  h -1 glucose and 0·036 g l -1  h -1 sodium citrate to a 60 g l -1 glucose reaction system. Actually, the cell density was also enhanced from 11·51 to 13·84 g l -1 . These parameters revealed the importance of optimization and modelling of the d-ribose production process. Not only could zero acid formation was achieved over a wide range of co-feeding rate by reducing glycolytic flux drastically but also the cell density and d-ribose yield were elevated by increasing the hexose monophosphate pathway flux. Bacillus subtilis usually produce d-ribose accompanied by plenty of organic acids when glucose is used as a carbon source, which is considered to be a consequence of mismatched glycolytic and tricarboxylic acid cycle capacities. This is the first study to provide high-efficiency biosynthesis of d-ribose without organic acid formation in B. subtilis, which would be lower than the cost of separation and purification. The strain transketolase-deficient B. subtilis CGMCC 3720 can be potentially applied to the production of d-ribose in industry. © 2016 The Society for Applied Microbiology.

  16. Efficient reverse transcription using locked nucleic acid nucleotides towards the evolution of nuclease resistant RNA aptamers

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Edwards, Stacey L

    2012-01-01

    We found that SuperScript® III Reverse Transcriptase is an efficient enzyme for the recognition of LNA nucleotides, making it a prime candidate to be used in de novo selection of LNA containing RNA aptamers....

  17. Reversal of reflex pulmonary vasoconstriction induced by main pulmonary arterial distension.

    Science.gov (United States)

    Juratsch, C E; Grover, R F; Rose, C E; Reeves, J T; Walby, W F; Laks, M M

    1985-04-01

    Distension of the main pulmonary artery (MPA) induces pulmonary hypertension, most probably by neurogenic reflex pulmonary vasoconstriction, although constriction of the pulmonary vessels has not actually been demonstrated. In previous studies in dogs with increased pulmonary vascular resistance produced by airway hypoxia, exogenous arachidonic acid has led to the production of pulmonary vasodilator prostaglandins. Hence, in the present study, we investigated the effect of arachidonic acid in seven intact anesthetized dogs after pulmonary vascular resistance was increased by MPA distention. After steady-state pulmonary hypertension was established, arachidonic acid (1.0 mg/min) was infused into the right ventricle for 16 min; 15-20 min later a 16-mg bolus of arachidonic acid was injected. MPA distension was maintained throughout the study. Although the infusion of arachidonic acid significantly lowered the elevated pulmonary vascular resistance induced by MPA distension, the pulmonary vascular resistance returned to control levels only after the bolus injection of arachidonic acid. Notably, the bolus injection caused a biphasic response which first increased the pulmonary vascular resistance transiently before lowering it to control levels. In dogs with resting levels of pulmonary vascular resistance, administration of arachidonic acid in the same manner did not alter the pulmonary vascular resistance. It is concluded that MPA distension does indeed cause reflex pulmonary vasoconstriction which can be reversed by vasodilator metabolites of arachidonic acid. Even though this reflex may help maintain high pulmonary vascular resistance in the fetus, its function in the adult is obscure.

  18. Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance.

    Science.gov (United States)

    Ray, Jessica R; Tadepalli, Sirimuvva; Nergiz, Saide Z; Liu, Keng-Ku; You, Le; Tang, Yinjie; Singamaneni, Srikanth; Jun, Young-Shin

    2015-06-03

    Polyamide (PA) semipermeable membranes typically used for reverse osmosis water treatment processes are prone to fouling, which reduces the amount and quality of water produced. By synergistically coupling the photothermal and bactericidal properties of graphene oxide (GO) nanosheets, gold nanostars (AuNS), and hydrophilic polyethylene glycol (PEG) on PA reverse osmosis membrane surfaces, we have dramatically improved fouling resistance of these membranes. Batch fouling experiments from three classes of fouling are presented: mineral scaling (CaCO3 and CaSO4), organic fouling (humic acid), and biofouling (Escherichia coli). Systematic analyses and a variety of complementary techniques were used to elucidate fouling resistance mechanisms from each layer of modification on the membrane surface. Both mineral scaling and organic fouling were significantly reduced in PA-GO-AuNS-PEG membranes compared to other membranes. The PA-GO-AuNS-PEG membrane was also effective in killing all near-surface bacteria compared to PA membranes. In the PA-GO-AuNS-PEG membrane, the GO nanosheets act as templates for in situ AuNS growth, which then facilitated localized heating upon irradiation by an 808 nm laser inactivating bacteria on the membrane surface. Furthermore, AuNS in the membrane assisted PEG in preventing mineral scaling on the membrane surface. In flow-through flux and foulant rejection tests, PA-GO-AuNS-PEG membranes performed better than PA membranes in the presence of CaSO4 and humic acid model foulants. Therefore, the newly suggested membrane surface modifications will not only reduce fouling from RO feeds, but can improve overall membrane performance. Our innovative membrane design reported in this study can significantly extend the lifetime and water treatment efficacy of reverse osmosis membranes to alleviate escalating global water shortage from rising energy demands.

  19. Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.

    Science.gov (United States)

    Model, Camila S; Gomes, Lara M; Scaini, Giselli; Ferreira, Gabriela K; Gonçalves, Cinara L; Rezin, Gislaine T; Steckert, Amanda V; Valvassori, Samira S; Varela, Roger B; Quevedo, João; Streck, Emilio L

    2014-03-01

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. Considering these evidences, the present study aimed to investigate the effects of ω3 fatty acids on locomotor behavior and oxidative stress parameters (TBARS and protein carbonyl content) in brain of rats subjected to an animal model of mania induced by fenproporex. The fenproporex treatment increased locomotor behavior in saline-treated rats under reversion and prevention model, and ω3 fatty acids prevented fenproporex-related hyperactivity. Moreover, fenproporex increased protein carbonyls in the prefrontal cortex and cerebral cortex, and the administration of ω3 fatty acids reversed this effect. Lipid peroxidation products also are increased in prefrontal cortex, striatum, hippocampus and cerebral after fenproporex administration, but ω3 fatty acids reversed this damage only in the hippocampus. On the other hand, in the prevention model, fenproporex increased carbonyl content only in the cerebral cortex, and administration of ω3 fatty acids prevented this damage. Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder.

  20. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils.

    Science.gov (United States)

    Hogendoom, E A; Huls, R; Dijkman, E; Hoogerbrugge, R

    2001-12-14

    A screening method has been developed for the determination of acidic pesticides in various types of soils. Methodology is based on the use of microwave assisted solvent extraction (MASE) for fast and efficient extraction of the analytes from the soils and coupled-column reversed-phase liquid chromatography (LC-LC) with UV detection at 228 nm for the instrumental analysis of uncleaned extracts. Four types of soils, including sand, clay and peat, with a range in organic matter content of 0.3-13% and ten acidic pesticides of different chemical families (bentazone, bromoxynil, metsulfuron-methyl, 2,4-D, MCPA, MCPP, 2,4-DP, 2,4,5-T, 2,4-DB and MCPB) were selected as matrices and analytes, respectively. The method developed included the selection of suitable MASE and LC-LC conditions. The latter consisted of the selection of a 5-microm GFF-II internal surface reversed-phase (ISRP, Pinkerton) analytical column (50 x 4.6 mm, I.D.) as the first column in the RAM-C18 configuration in combination with an optimised linear gradient elution including on-line cleanup of sample extracts and reconditioning of the columns. The method was validated with the analysis of freshly spiked samples and samples with aged residues (120 days). The four types of soils were spiked with the ten acidic pesticides at levels between 20 and 200 microg/kg. Weighted regression of the recovery data showed for most analyte-matrix combinations, including freshly spiked samples and aged residues, that the method provides overall recoveries between 60 and 90% with relative standard deviations of the intra-laboratory reproducibility's between 5 and 25%; LODs were obtained between 5 and 50 microg/kg. Evaluation of the data set with principal component analysis revealed that the parameters (i) increase of organic matter content of the soil samples and (ii) aged residues negatively effect the recovery of the analytes.

  1. Separation of Transfer Ribonucleic Acids by Reverse Phase Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A. D.; Novelli, G. David; Stulberg, M. P.

    1965-10-01

    Numerous experimental techniques for the separation of transfer ribonucleic acids have been successful in preparing partially purified fractions of several specific t-RNAs. Many of the existing methods have depended upon the differential solubility of specific t-RNAs in complex two-phase systems (1-6) and the separation was achieved by means of counter-current extraction techniques. Column chromatography experiments using cellulose exchangers, (7,8) methylated albumin (9,10) or with solvent phases supported on inert material (11-13) have also shown partial separation of specific t-RNAs. Paper chromatographic procedures have produced partial resolutions of t-RNA.14 Methods involving chemical treatment of specific t-RNAs have been reported (15-19).

  2. Muscular activation during reverse and non-reverse chewing cycles in unilateral posterior crossbite.

    Science.gov (United States)

    Piancino, Maria Grazia; Farina, Dario; Talpone, Francesca; Merlo, Andrea; Bracco, Pietro

    2009-04-01

    The aim of this study was to characterize the kinematics and masseter muscle activation in unilateral posterior crossbite. Eighty-two children (8.6 +/- 1.3 yr of age) with unilateral posterior crossbite and 12 children (8.9 +/- 0.6 yr of age) with normal occlusion were selected for the study. Electromyography (EMG) and kinematics were concurrently recorded during mastication of a soft bolus and a hard bolus. The percentage of reverse cycles in the group of patients was 59.0 +/- 33.1% (soft bolus) and 69.7 +/- 29.7% (hard bolus) when chewing on the crossbite side. When chewing on the non-affected side, the number of reverse cycles was 16.7 +/- 24.5% (soft bolus) and 16.7 +/- 22.3% (hard bolus). The reverse cycles on the crossbite side were narrower with respect to the cycles on the non-affected side. Although both types of cycles in patients resulted in lower EMG activity of the masseter of the crossbite side than of the contralateral masseter, the activity of the non-affected side was larger for reverse than for non-reverse cycles. It was concluded that when chewing on the crossbite side, the masseter activity is reduced on the mastication side (crossbite) and is unaltered (non-reverse cycles) or increased (reverse) on the non-affected side.

  3. Evaluating the role of acidic, basic, and polar amino acids and dipeptides on a molecular electrocatalyst for H 2 oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Boralugodage, Nilusha Priyadarshani; Arachchige, Rajith Jayasingha; Dutta, Arnab; Buchko, Garry W.; Shaw, Wendy J.

    2017-01-01

    Amino acids and peptides have been shown to have a significant influence on the H2 production and oxidation reactivity of Ni(PR2NR’2)2, where PR2NR’2 = 1,5-diaza-3,7-diphosphacyclooctane, R is either phenyl (Ph) or cyclohexyl (Cy), and R’ is either an amino acid or peptide. Most recently, the Ni(PCy2Naminoacid2)2 complexes (CyAA) have shown enhanced H2 oxidation rates, water solubility, and in the case of arginine (CyArg) and phenylalanine (CyPhe), electrocatalytic reversibility. Both the backbone –COOH and side chain interactions were shown to be critical to catalytic performance. Here we further investigate the roles of the outer coordination sphere by evaluating amino acids with acidic, basic, and hydrophilic side chains, as well as dipeptides which combine multiple successful features from previous complexes. Six new complexes were prepared, three containing single amino acids: aspartic acid (CyAsp), lysine (CyLys), and serine (CySer) and three containing dipeptides: glycine-phenylalanine (Cy(GlyPhe)), phenylalanine-glycine (Cy(PheGly)), and aspartic acid-phenylananine (Cy(AspPhe)). The resulting catalytic performance demonstrates that complexes need both interactions between side chain and –COOH groups for fast, efficient catalysis. The fastest of all of the catalysts, Cy(AspPhe), had both of these features, while the other dipeptide complexes with an amide replacing the -COOH were both slower; however, the amide group was demonstrated to participate in the proton pathway when side chain interactions are present to position it. Both the hydrophilic and basic side chains, notably lacking in side chain interactions, significantly increased the overpotential, with only modest increases in TOF. Of all of the complexes, only CyAsp was reversible at room temperature, and only in water, the first of these

  4. The reversal of essential fatty acid deficiency symptoms in the cheetah

    African Journals Online (AJOL)

    Two members of the Order Carnivore (the lion and the domestic cat) are known to be Δ-6-desaturase deficient. Two anoestrous 8-year-old female cheetahs exhibiting symptoms consistent with essential fatty acid (EFA) deficiency were treated with encapsulated natural oils as supplement to their normal meat diet.

  5. The Causes of Preference Reversal.

    OpenAIRE

    Tversky, Amos; Slovic, Paul; Kahneman, Daniel

    1990-01-01

    Observed preference reversal cannot be adequately explained by violations of independence, the reduction axiom, or transitivity. The primary cause of preference reversal is the failure of procedure invariance, especially the overpricing of low-probability, high-payoff bets. This result violates regret theory and generalized (nonindependent) utility models. Preference reversal and a new reversal involving time preferences are explained by scale compatibility, which implies that payoffs are wei...

  6. Hydrogen-deuterium exchange reaction of 2-methylpyridine catalyzed by several fatty acids

    International Nuclear Information System (INIS)

    Hirata, Hirohumi; Fukuzumi, Kazuo.

    1976-01-01

    Hydrogen-deuterium exchange reaction of 2-methylpyridine has been studied by using several fatty acids as catalysts. The reaction was carried out in a sealed pyrex tube at 120 0 C, and the contents of the products were determined by mass spectrometry. Reaction of 2-methylpyridine with monodeuteroacetic acid (1 : 1, mol/mol) arrived at a equilibrium (d 0 reversible d 1 reversible d 2 reversible d 3 ) in 2 hr (d 0 41%, d 1 42%, d 2 15%, d 3 2%). No exchange was observed for the reaction of pyridine with monodeuteroacetic acid. The conversion-time curves of typical series reactions (d 0 → d 1 → d 2 → d 3 ) were obtained for the fatty acid catalyzed exchange in deuterium oxide. The effect of the fatty acid RCO 2 H (substrate : fatty acid : D 2 O=1 : 0.86 : 27.6, mol/mol/mol) on the conversion was in the order of R; C 1 --C 3 4 --C 10 , where the reaction mixtures were homogeneous in the case of C 1 --C 3 and were heterogeneous in the case of C 4 --C 10 . The effects of the initial concentration of the substrates and the catalysts (RCO 2 H) on the total conversion were studied by using some fatty acids (R; C 2 , C 4 and C 9 ) in deuterium oxide (for 2 hr). The total conversion of the substrate increases with increasing the concentration of the acids. The total conversion decreases in the case of R=C 9 , but, increases in the case of R=C 2 with increasing the concentration of the substrate. In the case of reactions with low concentrations of the substrate, the reactivity was in the order of C 9 >C 4 >C 2 , while with high concentrations, the reactivity was in the order of C 4 >C 2 >C 9 and C 9 >C 4 >C 2 with high and low concentrations of the acids, respectively. A possible reaction mechanism was proposed and discussed. (auth.)

  7. Improved production of poly-γ-glutamic acid by Bacillus subtilis D7 isolated from Doenjang, a Korean traditional fermented food, and its antioxidant activity.

    Science.gov (United States)

    Lee, Na-Ri; Lee, Sang-Mee; Cho, Kwang-Sik; Jeong, Seong-Yun; Hwang, Dae-Youn; Kim, Dong-Seob; Hong, Chang-Oh; Son, Hong-Joo

    2014-06-01

    The objectives of this study was to improve poly-γ-glutamic acid (γ-PGA) production by Bacillus subtilis D7 isolated from a Korean traditional fermented food and to assess its antioxidant activity for applications in the cosmetics and pharmaceutical industries. Strain D7 produced γ-PGA in the absence of L-glutamic acid, indicating L-glutamic acid-independent production. However, the addition of L-glutamic acid increased γ-PGA production. Several tricarboxylic acid cycle intermediates and amino acids could serve as the metabolic precursors for γ-PGA production, and the addition of pyruvic acid and D-glutamic acid to culture medium improved the yield of γ-PGA markedly. The maximum yield of γ-PGA obtained was 24.93 ± 0.64 g/l in improved medium, which was about 5.4-fold higher than the yield obtained in basal medium. γ-PGA was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (46.8 ± 1.5 %), hydroxyl radical scavenging activity (52.0 ± 1.8 %), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging activity (42.1 ± 1.8 %), nitric oxide scavenging activity (35.1 ± 1.3 %), reducing power (0.304 ± 0.008), and metal chelating activity (91.3 ± 3.5 %). These results indicate that γ-PGA has a potential use in the food, cosmetics, and biomedical industries for the development of novel products with radical scavenging activity. As far as we are aware, this is the first report to describe the antioxidant activityof γ-PGA produced by bacteria.

  8. Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein

    OpenAIRE

    Wu, Tiyun; Heilman-Miller, Susan L.; Levin, Judith G.

    2007-01-01

    HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (−) strong-stop DNA followed by reverse transcriptase (RT)-catalyzed DNA extension). In our system, destabilization of a stem-loop stru...

  9. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature...... of continuous fermentation mode and in-situ acids removal by Reverse Enhanced Electro Dialysis (REED) resulted to enhanced sugars consumption rates when 60% PHWS was fermented. Specifically, glucose and xylose consumption rate increased by a factor of 6 and 39, respectively, while butyric acid productivity...

  10. Study of acid-base properties in various water-salt and water-organic solvent mixtures; Etude de proprietes acides-bases dans divers melanges eau-sels et eau-solvants organiques

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-02-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H{sup +} + B {r_reversible} HB{sup +} in salt-water mixtures and found a relation between the pK{sub A} value, the solubility of the base and water activity. The reaction HO{sup -} + H{sup +} {r_reversible} H{sub 2}O has been investigated and a relation been found between pK{sub i} values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [French] Nous avons envisage l'etude des reactions acides-bases dans des melanges eau-sels MX et des melanges d'eau et de solvants organiques. Les uns et les autres ont ete choisis de facon a ce que la basicite du solvant ou celle de l'anion X{sup -} soit negligeable devant celle de l'eau dans les melanges consideres. Dans un premier temps nous avons etudie dans les melanges eau-sels MX les equilibres H{sup +} + B {r_reversible} HB{sup +} et HA {r_reversible} H{sup +} + A{sup -}. On montre que connaissant la valeur de la solubilite de la base B et de l'acide HA dans le melange eau-sel considere et dans l'eau pure et celle de l'activite de l'eau dans le melange, il est possible de prevoir la valeur de la constante de l'equilibre acide-base etudiee. Dans un deuxieme temps nous avons cherche a generaliser ces resultats, lorsque l'on remplace le sel MX dans le melange avec l'eau par un solvant organique. De meme que precedemment, nous avons compare les constantes d'equilibre du type HB

  11. Preparation of 6,6,1',1',6',6'-hexadeutero sucrose.

    Science.gov (United States)

    Gouy, Marie-Hélène; Danel, Mathieu; Gayral, Maud; Bouchu, Alain; Queneau, Yves

    2007-11-05

    The preparation of 6,6,1',1',6',6'-hexadeutero sucrose is reported. The synthesis is based on a triple oxidation of a protected sucrose 6,1',6'-triol to the corresponding 6,1',6'-tricarboxylic acid or ester, followed by reduction with lithium aluminium deuteride. This triple oxidation could be achieved either using cat. TEMPO-NaOCl (to the acid) or PDC-Ac(2)O-t-BuOH (to the t-butyl carboxylic ester).

  12. How and why does tomato accumulate a large amount of GABA in the fruit?

    OpenAIRE

    Takayama, Mariko; Ezura, Hiroshi

    2015-01-01

    γ-Aminobutyric acid (GABA) has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA) cycle via reactions catalysed by three enzymes: glutamate decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semialdehyde dehy...

  13. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    Science.gov (United States)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    intermediate product of the tricarboxylic acid cycle. Our results demonstrate, for the first time, that the formation of a specific clay mineral (proto-kaolinite) occurs in the presence of a specific organic compound (succinic acid). This implies that microbial species capable of excreting succinate among their EPS may promote authigenic kaolinite formation at low temperature and neutral pH. This biological degradation process might play a crucial role for the formation of authigenic kaolinite, which is a widespread clay mineral in sedimentary environments. Fiore, S., Dumontet, S., Huertas, F.J., and Pasquale, V., 2011. Bacteria-induced crystallization of kaolinite. Applied Clay Science, 53:566-571. Linares, J., and Huertas, F., 1971. Kaolinite: Synthesis at room temperature. Science 171: 896-897.

  14. A new group in the Leptospirillum clade: cultivation-independent community genomics, proteomics and transcriptomics of the new species Leptospirillum group IV UBA BS.

    Energy Technology Data Exchange (ETDEWEB)

    Goltsman, Daniela [University of California, Berkeley; Dasari, Mauna [University of California, Berkeley; Thomas, BC [University of California, Berkeley; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2013-01-01

    Leptospirillum spp. are widespread members of acidophilic microbial communities that catalyze ferrous iron oxidation, thereby increasing sulfide mineral dissolution rates. These bacteria play important roles in environmental acidification and are harnessed for bioleaching-based metal recovery. Known members of the Leptospirillum clade of the Nitrospira phylum are Leptospirillum ferrooxidans (group I), Leptospirillum ferriphilum and Leptospirillum rubarum (group II), and Leptospirillum ferrodiazotrophum (group III). In the Richmond Mine acid mine drainage (AMD) system, biofilm formation is initiated by L. rubarum; L. ferrodiazotrophum appears in later developmental stages. Here we used community metagenomic data from unusual, thick floating biofilms to identify distinguishing metabolic traits in a rare and uncultivated community member, the new species Leptospirillum group IV UBA BS. These biofilms typically also contain a variety of Archaea, Actinobacteria, and a few other Leptospirillum spp. The Leptospirillum group IV UBA BS species shares 98% 16S rRNA sequence identity and 70% average amino acid identity between orthologs with its closest relative, L. ferrodiazotrophum. The presence of nitrogen fixation and reverse tricarboxylic acid (TCA) cycle proteins suggest an autotrophic metabolism similar to that of L. ferrodiazotrophum, while hydrogenase proteins suggest anaerobic metabolism. Community transcriptomic and proteomic analyses demonstrate expression of a multicopper oxidase unique to this species, as well as hydrogenases and core metabolic genes. Results suggest that the Leptospirillum group IV UBA BS species might play important roles in carbon fixation, nitrogen fixation, hydrogen metabolism, and iron oxidation in some acidic environments.

  15. Relevance of mild ineffective oesophageal motility (IOM) and potential pharmacological reversibility of severe IOM in patients with gastro-oesophageal reflux disease.

    Science.gov (United States)

    Fornari, F; Blondeau, K; Durand, L; Rey, E; Diaz-Rubio, M; De Meyer, A; Tack, J; Sifrim, D

    2007-11-15

    Several studies showed high prevalence of ineffective oesophageal motility (IOM) in gastro-oesophageal reflux disease (GERD) and suggested an important role for ineffective oesophageal motility in increased acid exposure. However, impedance-manometric studies proposed that only severe ineffective oesophageal motility might affect oesophageal clearance. (i) To re-assess the relevance of mild IOM in GERD and (ii) to test the reversibility of IOM. Oesophageal motility, clearance and acid exposure were assessed in 191 GERD patients: 99 without IOM; 58 with mild IOM (30-80% ineffective contractions) and 34 with severe IOM (>80% ineffective contractions). In 30 patients with oesophagitis, the potential reversibility of IOM was evaluated with edrophonium intravenously. Patients with mild IOM had identical oesophageal clearance and acid exposure in comparison with those without IOM. Patients with severe IOM had a higher probability of prolonged supine clearance and acid exposure [odds ratio: 2.88 (1.16-7.17); 2.48 (0.99-6.17)]. This effect was independent of the presence of hiatal hernia and male sex. Severe IOM could be transiently reverted in 55% of patients. Mild IOM does not affect oesophageal clearance. Only severe IOM is associated with prolonged clearance and acid exposure, particularly in supine periods. The edrophonium test might be useful to predict severe IOM response to prokinetic medications.

  16. Reverse logistics policy – differences between conservative and innovative reverse logistics management

    Directory of Open Access Journals (Sweden)

    Alena Klapalová

    2013-01-01

    Full Text Available One of the of the key barriers that hampers effective and efficient management of reverse flows detected within a number of empirical surveys and case studies focused on reverse logistics and/or return management is business (organisational policy, specifically lack of policy, deficiency in existing policy or inferior policy. Despite this fact, there is a gap in literature which would show some evidence from practice that innovative reverse logistics policy both can pay off and is associated with certain aspects of reverse logistics management. Such proof can have several implications. It can support the call for better understanding and more research of the linkages of reverse logistics with other corporate functions, promote the acceptation of strategic character of reverse logistics and stress the role of RL policy within the rest of overall corporate management.The aim of this paper is to contribute and to enrich the existing body of knowledge concerning the above-mentioned gap through presentation of survey results that was realized in 2012 among managers of 244 Czech firms. The results demonstrate the statistically significant association between the innovativeness of RL policy and profitability of firms, quality of RL planning, perception of RL importance, level of RL knowledge and perception of product innovation importance for firms’ competitiveness and frequency of product innovation. They also reveal statistically significant differences between firms with conservative and innovative RL policy and the perceived existence of some barriers to manage RL.

  17. Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, J. R.

    2003-01-01

    It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.

  18. Biochemical studies on the effect of fluoride on higher plants. I. Metabolism of carbohydrates, organic acids and amino acids. [Glycine max var. Hawkeye

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S F; Miller, G W

    1963-01-01

    Metabolic processes associated with free sugars, organic acids and amino acids in higher plants subjected to fluoride fumigation were studied quantitatively. Fluoride-fumigated leaves contained more reducing sugars and less sucrose than the normal leaves. This result suggested inhibition of sucrose synthesis by fluoride. Necrotic leaves contained increased total concentrations of organic acids, which were mostly attributable to malic acid, malonic acid and citric acid. The greater increase in malic acid relative to that of citric acid was the reverse of results observed in chlorotic tissue. Necrotic leaves contained enhanced amounts of free amino acids. The greatest increase occurred in the concentration of asparagine and might be related to the increased respiratory rate of necrotic leaves. Pipecolic acid accumulated in large quantities in nicrotic tissue and was not detected in normal leaves. The accumulation of organic acids and amino acids in leaves during fluoride fumigation was evidenced by a lowered respiratory quotient.

  19. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  20. r-Universal reversible logic gates

    International Nuclear Information System (INIS)

    Vos, A de; Storme, L

    2004-01-01

    Reversible logic plays a fundamental role both in ultra-low power electronics and in quantum computing. It is therefore important to know which reversible logic gates can be used as building block for the reversible implementation of an arbitrary boolean function and which cannot

  1. Molecular cloning and characterization of glucose transporter 1 ...

    African Journals Online (AJOL)

    Glucose transporter type-1 (glut1) and citrate synthase plays crucial role in glucose transport and regulation of tricarboxylic acid cycle (TCA) cycle in mammalian energy metabolism. The present study was aimed to clone and characterize glut1 and citrate synthase cDNA in water buffalo (Bubalus bubalis). Total of 90 ...

  2. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    Science.gov (United States)

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  3. Quantum reverse hypercontractivity

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, Toby [Department of Computer Science, University College London, London, United Kingdom and Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, Cambridge (United Kingdom); Kastoryano, Michael [NBIA, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Montanaro, Ashley [School of Mathematics, University of Bristol, Bristol (United Kingdom); Temme, Kristan [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We develop reverse versions of hypercontractive inequalities for quantum channels. By generalizing classical techniques, we prove a reverse hypercontractive inequality for tensor products of qubit depolarizing channels. We apply this to obtain a rapid mixing result for depolarizing noise applied to large subspaces and to prove bounds on a quantum generalization of non-interactive correlation distillation.

  4. Introduction to reversible computing

    CERN Document Server

    Perumalla, Kalyan S

    2013-01-01

    Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever

  5. The effect of O-acetylsalicylic acid on lipid synthesis by guinea pig gastric mucosa in vitro

    International Nuclear Information System (INIS)

    Spohn, M.; McColl, I.

    1987-01-01

    The aim of this work was to investigate the involvement of lipids as possible components of the gastric mucosal barrier by studying the synthesis and secretion of lipids by the epithelial cell lining of gastric mucosa and the effect of salicylate on these processes. O-Acetylsalicylic acid reversibly reduced in vitro incorporation of (U- 14 C) and of DL-(2- 14 C) mevalonic acid into lipids by isolated epithelial cells and by intact mucosa of guinea pig stomach, indicating reversible inhibition of lipid synthesis by the tissue in the presence of the drug. Inhibition of incorporation of both precursors into total lipids, into their fatty acid components, and into cholesterol is demonstrated

  6. A Study on Reverse Logistics

    OpenAIRE

    Reddy, Dhananjaya

    2011-01-01

    In the competitive world of manufacturing, companies are often searching for new ways to improve their process, customer satisfaction and stay ahead in the game with their competitors. Reverse logistics has been considered a strategy to bring these things to life for the past decade or so. This thesis work tries to shed some light on the basics of reverse logistics and how reverse logistics can be used as a management strategy. This paper points out the fundamentals of reverse logistics and l...

  7. Role of folic acid in nitric oxide bioavailability and vascular endothelial function.

    Science.gov (United States)

    Stanhewicz, Anna E; Kenney, W Larry

    2017-01-01

    Folic acid is a member of the B-vitamin family and is essential for amino acid metabolism. Adequate intake of folic acid is vital for metabolism, cellular homeostasis, and DNA synthesis. Since the initial discovery of folic acid in the 1940s, folate deficiency has been implicated in numerous disease states, primarily those associated with neural tube defects in utero and neurological degeneration later in life. However, in the past decade, epidemiological studies have identified an inverse relation between both folic acid intake and blood folate concentration and cardiovascular health. This association inspired a number of clinical studies that suggested that folic acid supplementation could reverse endothelial dysfunction in patients with cardiovascular disease (CVD). Recently, in vitro and in vivo studies have begun to elucidate the mechanism(s) through which folic acid improves vascular endothelial function. These studies, which are the focus of this review, suggest that folic acid and its active metabolite 5-methyl tetrahydrofolate improve nitric oxide (NO) bioavailability by increasing endothelial NO synthase coupling and NO production as well as by directly scavenging superoxide radicals. By improving NO bioavailability, folic acid may protect or improve endothelial function, thereby preventing or reversing the progression of CVD in those with overt disease or elevated CVD risk. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Toxic effect of barium on germination and early growth of maize seedling and its reversal by nutrition and gibberellic acid

    International Nuclear Information System (INIS)

    Iqbal, J.; Ijaz, F.

    2002-01-01

    Maize seeds were soaked in 0-100 mM BaCl/sub 2/ for 24h followed by soaking of one batch of seeds in 100 mM GA/sub 3/ (Gibberellic acid) for 8h. Subsequently seeds were germinated and grown in four batches: Ba-treated in distilled water; Ba-treated in half strength Hoagland nutrient solution; Ba-GA/sub 3/ treated in distilled water; Ba-treated in half-strength Hoagland nutrient solution; Ba-GA/sub 3/ treated in distilled water and Ba-GA/sub 3/ treated in half strength Hoagland nutrient solution. There was a general decline in germination and inhibition of growth in seedlings raised from Ba-treated seeds, at all doses except at 0.1 mM, where a significant improvement in all growth parameters were observed. Both nutrient solution and GA/sub 3/ treatment reduced the toxic effects of Ba on germination and growth. The effects of GA/sub 3/ + nutrient solution were synergistic as maximum restoration to the effects of Ba were observed when GA/sub 3/ treated seeds were grown in nutrient medium. It is concluded that both nutrition solution and GA/sub 3/ were effective in reversing the Ba induced suppression of germination and inhibition in root-shoot length, and dry weights.(author)

  9. Detection of hepatitis A virus by the nucleic acid sequence-based amplification technique and comparison with reverse transcription-PCR.

    Science.gov (United States)

    Jean, J; Blais, B; Darveau, A; Fliss, I

    2001-12-01

    A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 x 10(2) PFU/ml) was obtained with NASBA, compared to 50 PFU (1 x 10(4) PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples.

  10. Optimized reversible binary-coded decimal adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    Abstract Babu and Chowdhury [H.M.H. Babu, A.R. Chowdhury, Design of a compact reversible binary coded decimal adder circuit, Journal of Systems Architecture 52 (5) (2006) 272-282] recently proposed, in this journal, a reversible adder for binary-coded decimals. This paper corrects and optimizes...... their design. The optimized 1-decimal BCD full-adder, a 13 × 13 reversible logic circuit, is faster, and has lower circuit cost and less garbage bits. It can be used to build a fast reversible m-decimal BCD full-adder that has a delay of only m + 17 low-power reversible CMOS gates. For a 32-decimal (128-bit....... Keywords: Reversible logic circuit; Full-adder; Half-adder; Parallel adder; Binary-coded decimal; Application of reversible logic synthesis...

  11. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  12. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.; Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen

  13. Arsenic-containing fatty acids and hydrocarbons in marine oils - determination using reversed-phase HPLC-ICP-MS and HPLC-qTOF-MS.

    Science.gov (United States)

    Sele, Veronika; Sloth, Jens J; Holmelid, Bjarte; Valdersnes, Stig; Skov, Kasper; Amlund, Heidi

    2014-04-01

    Arsenolipids are the major arsenic species present in marine oils. Several structures of arsenolipids have been elucidated the last 5 years, demonstrating the chemical complexity of this trace element in the marine environment. Several commercial fish oils and marine oils, ranging in total arsenic concentrations from 1.6 to 12.5 mg kg(-1) oil, were analyzed for arsenolipids using reversed-phase high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The arsenolipids were quantified using three different arsenic-containing calibration standards; dimethylarsinate (DMA), triphenylarsinoxide (Ph₃AsO) and a synthesized arsenic-containing hydrocarbon (AsHC) (dimethylarsinoyl nonadecane; C₂₁H₄₃AsO). The observed variation in signal intensity for arsenic during the gradient elution profile in reversed-phase HPLC was compensated for by determining the time-resolved response factors for the arsenolipids. Isotopes of germanium ((74)Ge) and indium ((115)In) were suited as internal standards for arsenic, and were used for verification of the arsenic signal response factors during the gradient elution. Dimethylarsinate was the most suitable calibration standard for the quantification of arsenolipids, with recoveries between 91% and 104% compared to total arsenic measurements in the same extracts. A range of marine oils was investigated, including oils of several fish species, cod liver and seal, as well as three commercial fish oils. The AsHCs - C₁₇H₃₈AsO, C₁₉H₄₂AsO and C₂₃H₃₈AsO - were identified as the major arsenolipids in the extracts of all oils by HPLC coupled with quadrupole time-of-flight mass spectrometry (qTOF-MS). Minor amounts of two arsenic-containing fatty acids (AsFAs) (C₂₃H₃₈AsO₃ and C₂₄H₃₈AsO₃) were also detected in the oils. The sum of the AsHCs and the AsFAs determined in the present study accounted for 17-42% of the total arsenic in the oils

  14. Metabolic flux analysis of the halophilic archaeon Haladaptatus paucihalophilus.

    Science.gov (United States)

    Liu, Guangxiu; Zhang, Manxiao; Mo, Tianlu; He, Lian; Zhang, Wei; Yu, Yi; Zhang, Qi; Ding, Wei

    2015-11-27

    This work reports the (13)C-assisted metabolic flux analysis of Haladaptatus paucihalophilus, a halophilic archaeon possessing an intriguing osmoadaption mechanism. We showed that the carbon flow is through the oxidative tricarboxylic acid (TCA) cycle whereas the reductive TCA cycle is not operative in H. paucihalophilus. In addition, both threonine and the citramalate pathways contribute to isoleucine biosynthesis, whereas lysine is synthesized through the diaminopimelate pathway and not through the α-aminoadipate pathway. Unexpected, the labeling patterns of glycine from the cells grown on [1-(13)C]pyruvate and [2-(13)C]pyruvate suggest that, unlike all the organisms investigated so far, in which glycine is produced exclusively from the serine hydroxymethyltransferase (SHMT) pathway, glycine biosynthesis in H. paucihalophilus involves different pathways including SHMT, threonine aldolase (TA) and the reverse reaction of glycine cleavage system (GCS), demonstrating for the first time that other pathways instead of SHMT can also make a significant contribution to the cellular glycine pool. Transcriptional analysis confirmed that both TA and GCS genes were transcribed in H. paucihalophilus, and the transcriptional level is independent of salt concentrations in the culture media. This study expands our understanding of amino acid biosynthesis and provides valuable insights into the metabolism of halophilic archaea. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Flux analysis of central metabolic pathways in the Fe(III)-reducing organism Geobacter metallireducens via 13C isotopiclabeling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Chakraborty, Romy; Martin, Hector Garcia; Chu,Jeannie; Hazen, Terry C.; Keasling, Jay D.

    2007-08-13

    We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The model indicated that over 90 percent of the acetate wascompletely oxidized to CO2 via a complete tricarboxylic acid (TCA) cyclewhile reducing iron. Pyruvate carboxylase and phosphoenolpyruvatecarboxykinase were present under these conditions, but enzymes in theglyoxylate shunt and malic enzyme were absent. Gluconeogenesis and thepentose phosphate pathway were mainly employed for biosynthesis andaccounted for less than 3 percent of total carbon consumption. The modelalso indicated surprisingly high reversibility in the reaction betweenoxoglutarate and succinate. This step operates close to the thermodynamicequilibrium possibly because succinate is synthesized via a transferasereaction, and its product, acetyl-CoA, inhibits the conversion ofoxoglutarate to succinate. These findings enable a better understandingof the relationship between genome annotation and extant metabolicpathways in G. metallireducens.

  16. Maternal supplementation with conjugated linoleic acid in the setting of diet-induced obesity normalises the inflammatory phenotype in mothers and reverses metabolic dysfunction and impaired insulin sensitivity in offspring.

    Science.gov (United States)

    Segovia, Stephanie A; Vickers, Mark H; Zhang, Xiaoyuan D; Gray, Clint; Reynolds, Clare M

    2015-12-01

    Maternal consumption of a high-fat diet significantly impacts the fetal environment and predisposes offspring to obesity and metabolic dysfunction during adulthood. We examined the effects of a high-fat diet during pregnancy and lactation on metabolic and inflammatory profiles and whether maternal supplementation with the anti-inflammatory lipid conjugated linoleic acid (CLA) could have beneficial effects on mothers and offspring. Sprague-Dawley rats were fed a control (CD; 10% kcal from fat), CLA (CLA; 10% kcal from fat, 1% total fat as CLA), high-fat (HF; 45% kcal from fat) or high fat with CLA (HFCLA; 45% kcal from fat, 1% total fat as CLA) diet ad libitum 10days prior to and throughout gestation and lactation. Dams and offspring were culled at either late gestation (fetal day 20, F20) or early postweaning (postnatal day 24, P24). CLA, HF and HFCLA dams were heavier than CD throughout gestation. Plasma concentrations of proinflammatory cytokines interleukin-1β and tumour necrosis factor-α were elevated in HF dams, with restoration in HFCLA dams. Male and female fetuses from HF dams were smaller at F20 but displayed catch-up growth and impaired insulin sensitivity at P24, which was reversed in HFCLA offspring. HFCLA dams at P24 were protected from impaired insulin sensitivity as compared to HF dams. Maternal CLA supplementation normalised inflammation associated with consumption of a high-fat diet and reversed associated programming of metabolic dysfunction in offspring. This demonstrates that there are critical windows of developmental plasticity in which the effects of an adverse early-life environment can be reversed by maternal dietary interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Primary and secondary kinetic isotope effects in the acid-catalyzed dehydration of 1,1'-diadamantylmethylcarbinol in aqueous acetic acid

    International Nuclear Information System (INIS)

    Lomas, J.S.

    1981-01-01

    The sulfuric acid catalyzed dehydration of 1,1'-diadamantyl-methylcarbinol in anhydrous acetic acid proceeds exclusively to 1,1'-bis(1-adamantyl)ethylene. The secondary deuterium isotope effect of 1.32 found for this reaction shows that carbonium ion formation from the protonated alcohol is rate determining. In the presence of water, however, capture of the carbonium ion competes with deprotonation, introducing a primary isotope effect. Consequently, the overall KIE rises, reaching 3.18 for 80% aqueous acetic acid. Analysis of the KIE for 80 to 100% aqueous acetic acid is consistent with a simple classical mechanism involving reversible formation of the intermediate carbonium ion. The primary isotope effect upon deprotonation is at the most 2.98, indicative of an asymmetric transition state close to the carbonium ion

  18. What do reversible programs compute?

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Glück, Robert

    2011-01-01

    Reversible computing is the study of computation models that exhibit both forward and backward determinism. Understanding the fundamental properties of such models is not only relevant for reversible programming, but has also been found important in other fields, e.g., bidirectional model...... transformation, program transformations such as inversion, and general static prediction of program properties. Historically, work on reversible computing has focussed on reversible simulations of irreversible computations. Here, we take the viewpoint that the property of reversibility itself should...... are not strictly classically universal, but that they support another notion of universality; we call this RTM-universality. Thus, even though the RTMs are sub-universal in the classical sense, they are powerful enough as to include a self-interpreter. Lifting this to other computation models, we propose r...

  19. Fundamentals of reversible flowchart languages

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2016-01-01

    Abstract This paper presents the fundamentals of reversible flowcharts. They are intended to naturally represent the structure and control flow of reversible (imperative) programming languages in a simple computation model, in the same way classical flowcharts do for conventional languages......, structured reversible flowcharts are as expressive as unstructured ones, as shown by a reversible version of the classic Structured Program Theorem. We illustrate how reversible flowcharts can be concretized with two example programming languages, complete with syntax and semantics: a low-level unstructured...... language and a high-level structured language. We introduce concrete tools such as program inverters and translators for both languages, which follow the structure suggested by the flowchart model. To further illustrate the different concepts and tools brought together in this paper, we present two major...

  20. Enzymatic mechanism of oxalate production in the TCA and glyoxylate pathways using various isolates of Antrodia radiculosa

    Science.gov (United States)

    K.M. Jenkins; S.V. Diehl; C.A. Clausen; F. Green

    2011-01-01

    Brown-rot fungi produce oxalate in large amounts; however, levels of accumulation and function vary by species. Copper-tolerant fungi, like Antrodia radiculosa, produce and accumulate high levels of oxalate in response to copper. Oxalate biosynthesis in copper-tolerant fungi has been linked to the glyoxylate and tricarboxylic acid (TCA) cycles. Within these two cycles...

  1. Hydrothermal Synthesis and Characterization of a Metal-Organic Framework by Thermogravimetric Analysis, Powder X-Ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment

    Science.gov (United States)

    Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.

    2015-01-01

    This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…

  2. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation.

    Science.gov (United States)

    Legchenko, Ekaterina; Chouvarine, Philippe; Borchert, Paul; Fernandez-Gonzalez, Angeles; Snay, Erin; Meier, Martin; Maegel, Lavinia; Mitsialis, S Alex; Rog-Zielinska, Eva A; Kourembanas, Stella; Jonigk, Danny; Hansmann, Georg

    2018-04-25

    Right ventricular (RV) heart failure is the leading cause of death in pulmonary arterial hypertension (PAH). Peroxisome proliferator-activated receptor γ (PPARγ) acts as a vasoprotective metabolic regulator in smooth muscle and endothelial cells; however, its role in the heart is unclear. We report that deletion of PPARγ in cardiomyocytes leads to biventricular systolic dysfunction and intramyocellular lipid accumulation in mice. In the SU5416/hypoxia (SuHx) rat model, oral treatment with the PPARγ agonist pioglitazone completely reverses severe PAH and vascular remodeling and prevents RV failure. Failing RV cardiomyocytes exhibited mitochondrial disarray and increased intramyocellular lipids (lipotoxicity) in the SuHx heart, which was prevented by pioglitazone. Unbiased ventricular microRNA (miRNA) arrays, mRNA sequencing, and lipid metabolism studies revealed dysregulation of cardiac hypertrophy, fibrosis, myocardial contractility, fatty acid transport/oxidation (FAO), and transforming growth factor-β signaling in the failing RV. These epigenetic, transcriptional, and metabolic alterations were modulated by pioglitazone through miRNA/mRNA networks previously not associated with PAH/RV dysfunction. Consistently, pre-miR-197 and pre-miR-146b repressed genes that drive FAO ( Cpt1b and Fabp4 ) in primary cardiomyocytes. We recapitulated our major pathogenic findings in human end-stage PAH: (i) in the pressure-overloaded failing RV (miR-197 and miR-146b up-regulated), (ii) in peripheral pulmonary arteries (miR-146b up-regulated, miR-133b down-regulated), and (iii) in plexiform vasculopathy (miR-133b up-regulated, miR-146b down-regulated). Together, PPARγ activation can normalize epigenetic and transcriptional regulation primarily related to disturbed lipid metabolism and mitochondrial morphology/function in the failing RV and the hypertensive pulmonary vasculature, representing a therapeutic approach for PAH and other cardiovascular/pulmonary diseases. Copyright

  3. Magnetic reversals from planetary dynamo waves

    DEFF Research Database (Denmark)

    Sheyko, Andrey; Finlay, Chris; Jackson, Andrew

    2016-01-01

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes ...... to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.......A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes...... place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines...

  4. The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells

    OpenAIRE

    Takahashi, Hideyuki; Matsumura, Hideo; Kawai-Yamada, Maki; Uchimiya, Hirofumi

    2008-01-01

    An elicitor derived from the cell wall of rice blast fungus (Magnaporthe grisea) causes cell death in suspension cultured cells of rice (Oryza sativa L.). To elucidate the role of M. grisea elicitor on metabolic pathway of rice cells, we performed metabolite profiling using capillary electrophoresis-mass spectrometry (CE/MS). Treatment with M. grisea elicitor increased the amounts of antioxidants and free amino acids and decreased the amount of metabolites in the tricarboxylic acid (TCA) cycl...

  5. Polarographic study of Cd(2), Pb(2), Hg(1) in anhydrous acetic acid; Etude polarographique de Cd(2), Pb(2), Hg(1) dans l'acide acetique anhydre

    Energy Technology Data Exchange (ETDEWEB)

    Conesa-Botta, M C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    Anhydrous acetic acid is a solvent which can be compared to water as far as its behaviour towards acid-base reactions is concerned. It is in fact, like water both a proton acceptor (basic) - and as such it can provoke the dissociation of acids - and a proton donor (acid). This amphoteric behaviour is characterized by the equilibrium: 2 H O Ac {r_reversible} Ac OH{sub 2}{sup +} + Ac O{sup -} with K{sub i} = |Ac O H{sub 2}|{sup +} |Ac O{sup -}| = 10{sup -14.5} analogue to 2 H{sub 2}O {r_reversible} H{sub 3}O{sup +} + HO{sup -} with K{sub i} = |H{sub 3}O{sup +}| |HO{sup -}| = 10{sup -14} The acid-base reactions can in principle be characterized by a pH scale based on a definition similar to that for the pH scale in aqueous solutions. The essential difference however between aqueous and acetic acid solutions is due to the fact that acetic acid has a low dielectric constant. {epsilon} = 6.1 (at 25 deg. C) The ions therefore remain associated, almost completely, in the form of ion-pairs produced as a result of the strong electrostatic interactions. This phenomenon requires us to modify the reasoning usually applied to aqueous solutions. The new general methods of reasoning have been established and discussed by G. CHARLOT and B. TREMILLON. We will make use of them for the particular case under consideration. In the first part, we have employed the polarographic method for the study of the acetic complexes of two elements: cadmium(II) and lead (II). In the second part we have tried to show that mercurous halides are formed in acetic acid; we have attempted to determine their stability. (author) [French] L'acide acetique anhydre est un solvant qui peut etre rapproche de l'eau par son comportement envers les reactions acides-bases. Il est en effet, comme l'eau, a la fois accepteur de protons (basique) - et comme tel agit sur la dissociation des acides - et donneur de protons (acide). Ce pouvoir amphotere est caracterise par l'equilibre: 2 H O Ac {r_reversible} Ac OH{sub 2

  6. [Determination of geniposidic acid and chlorogenic acid in male flowers and related products of Eucommia ulmoides by reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Dong, Juane; Ma, Xihan

    2007-03-01

    A simple and rapid high performance liquid chromatographic method has been developed for the determination of geniposidic acid and chlorogenic acid in the male flowers and related products of Eucommia ulmoides. Two components were separated by a Shim-pack VP-ODS column (150 mm x4.6 mm, 5 [microm) with a mobile phase of methanol-water-acetic acid (24 :75: 1, v/v) at a flow rate of 1 mL/min, column temperature of 30 93 and detection wavelength of 240 nm. Under the chromatographic conditions mentioned above, the method performance, such as the number of theoretical plate, resolution, trailing etc have all reached required level. The linear ranges were 0. 025 - 0. 400 g/L for geniposidic acid and 0. 075 - 1. 200 g/L for chlorogenic acid, with the correlation coefficients of 0. 999 7 and 0. 999 9, respectively. The average recoveries were 100. 2% and 100. 5%, and the relative standard deviations (RSDs) were 1. 47% and 1. 49% respectively. The minimum detection limits were 0. 02 microg/L for geniposidic acid, and 0. 06 microg/L for chlorogenic acid. The method developed has demonstrated the characteristics of simple mobile phase composition, short retention, good resolution, high repeatability and precision. It is suitable for the determination of the two compounds in the male flowers of E. ulmoides and related products.

  7. Reversible and irreversible conformational transitions in myoglobin: role of hydrated amino acid ionic liquid.

    Science.gov (United States)

    Sankaranarayanan, Kamatchi; Sathyaraj, Gopal; Nair, B U; Dhathathreyan, A

    2012-04-12

    Hydrated phenylalanine ionic liquid (Phe-IL) has been used to solubilize myoglobin (Mb). Structural stability of Mb in Phe-IL analyzed using fluorescence and circular dichroism spectroscopy shows that for low levels of hydration of Phe-IL there is a large red shift in the fluorescence emission wavelength and the protein transforms to complete β sheet from its native helical conformation. Rehydration or dilution reverses the β sheet to an α helix which on aging organizes to micrometer-sized fibrils. At concentrations higher than 200 μM, the protein changes from β to a more random coiled structure. Organization of the protein in Phe-IL in a Langmuir film at the air/water interface has been investigated using the surface pressure-molecular area isotherm and shows nearly the same surface tension for both pure Mb and Mb in Phe-IL. Scanning electron microscopy of the films of Mb in Phe-IL transferred using the Langmuir-Blodgett film technique show layered morphology. This study shows that the conformation of Mb is completely reversible going from β → helix → β sheet up to 200 μM of Phe-IL. Similar surface tension values for Mb in water and in Phe-IL suggests that direct ion binding interactions with the protein coupled with the change in local viscosity from the IL seems to not only alter the secondary structure of individual proteins but also drives the self-assembly of the protein molecules leading finally to fibril formation.

  8. Genotoxicity evaluation of alpha-linolenic acid-diacylglycerol oil

    Directory of Open Access Journals (Sweden)

    Hiroshi Honda

    Full Text Available The alpha-linolenic acid (ALA-diacylglycerol (DAG oil is an edible oil enriched with DAG (>80% and ALA (>50%. Although DAG oil, which mainly consists of oleic and linoleic acids has no genotoxic concerns, the fatty acid composition could affect the chemical property of DAG. Therefore, the purpose of this study was to evaluate the genotoxicity of ALA-DAG oil using standard genotoxicity tests in accordance with the OECD guidelines. ALA-DAG oil showed negative results in the bacterial reverse mutation test (Ames test and in vitro micronucleus test in cultured Chinese hamster lung cells with and without metabolic activation, and in the in vivo bone marrow micronucleus test in mice. Our results did not show any genotoxicity, suggesting that the fatty acid composition had no deleterious effects. We conclude that ALA-DAG oil had no genotoxicity concerns under the testing conditions. Keywords: Alpha-linolenic acid-rich diacylglycerol, Diacylglycerol, Alpha-linolenic acid, Fatty acid composition, Genotoxicity

  9. Enzymatic characterization and gene identification of aconitate isomerase, an enzyme involved in assimilation of trans-aconitic acid, from Pseudomonas sp. WU-0701.

    Science.gov (United States)

    Yuhara, Kahori; Yonehara, Hiromi; Hattori, Takasumi; Kobayashi, Keiichi; Kirimura, Kohtaro

    2015-11-01

    trans-Aconitic acid is an unsaturated organic acid that is present in some plants such as soybean and wheat; however, it remains unclear how trans-aconitic acid is degraded and/or assimilated by living cells in nature. From soil, we isolated Pseudomonas sp. WU-0701 assimilating trans-aconitic acid as a sole carbon source. In the cell-free extract of Pseudomonas sp. WU-0701, aconitate isomerase (AI; EC 5.3.3.7) activity was detected. Therefore, it seems likely that strain Pseudomonas sp. WU-0701 converts trans-aconitic acid to cis-aconitic acid with AI, and assimilates this via the tricarboxylic acid cycle. For the characterization of AI from Pseudomonas sp. WU-0701, we performed purification, determination of enzymatic properties and gene identification of AI. The molecular mass of AI purified from cell-free extract was estimated to be ~ 25 kDa by both SDS/PAGE and gel filtration analyses, indicating that AI is a monomeric enzyme. The optimal pH and temperature of purified AI for the reaction were 6.0 °C and 37 °C, respectively. The gene ais encoding AI was cloned on the basis of the N-terminal amino acid sequence of the protein, and Southern blot analysis revealed that only one copy of ais is located on the bacterial genome. The gene ais contains an ORF of 786 bp, encoding a polypeptide of 262 amino acids, including the N-terminal 22 amino acids as a putative periplasm-targeting signal peptide. It is noteworthy that the amino acid sequence of AI shows 90% and 74% identity with molybdenum ABC transporter substrate-binding proteins of Pseudomonas psychrotolerans and Xanthomonas albilineans, respectively. This is the first report on purification to homogeneity, characterization and gene identification of AI. The nucleotide sequence of ais described in this article is available in the DDBJ/EMBL/GenBank nucleotide sequence databases under the Accession No. LC010980. © 2015 FEBS.

  10. Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis.

    Science.gov (United States)

    Karl, J Philip; Margolis, Lee M; Murphy, Nancy E; Carrigan, Christopher T; Castellani, John W; Madslien, Elisabeth H; Teien, Hilde-Kristin; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-09-01

    Military training studies provide unique insight into metabolic responses to extreme physiologic stress induced by multiple stressor environments, and the impacts of nutrition in mediating these responses. Advances in metabolomics have provided new approaches for extending current understanding of factors modulating dynamic metabolic responses in these environments. In this study, whole-body metabolic responses to strenuous military training were explored in relation to energy balance and macronutrient intake by performing nontargeted global metabolite profiling on plasma collected from 25 male soldiers before and after completing a 4-day, 51-km cross-country ski march that produced high total daily energy expenditures (25.4 MJ/day [SD 2.3]) and severe energy deficits (13.6 MJ/day [SD 2.5]). Of 737 identified metabolites, 478 changed during the training. Increases in 88% of the free fatty acids and 91% of the acylcarnitines, and decreases in 88% of the mono- and diacylglycerols detected within lipid metabolism pathways were observed. Smaller increases in 75% of the tricarboxylic acid cycle intermediates, and 50% of the branched-chain amino acid metabolites detected were also observed. Changes in multiple metabolites related to lipid metabolism were correlated with body mass loss and energy balance, but not with energy and macronutrient intakes or energy expenditure. These findings are consistent with an increase in energy metabolism, lipolysis, fatty acid oxidation, ketogenesis, and branched-chain amino acid catabolism during strenuous military training. The magnitude of the energy deficit induced by undereating relative to high energy expenditure, rather than macronutrient intake, appeared to drive these changes, particularly within lipid metabolism pathways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. A new approach for noninvasive transdermal determination of blood uric acid levels

    Directory of Open Access Journals (Sweden)

    Ching CTS

    2014-06-01

    Full Text Available Congo Tak-Shing Ching,1,2 Kok-Khun Yong,3 Yan-Dong Yao,4 Huan-Ting Shen,3 Shiu-Man Hsieh,5 Deng-Yun Jheng,1 Tai-Ping Sun,1,6 Hsiu-Li Shieh11Department of Electrical Engineering, National Chi Nan University, Nantou, 2Department of Photonics and Communication Engineering, Asia University, Taichung, 3Department of Internal Medicine, Puli Christian Hospital, Nantou, People’s Republic of China; 4Division of Science and Technology, Hong Kong Community College, Hong Kong; 5Department of Orthopedic Surgery, Puli Christian Hospital, 6Department of Electronic Engineering, Nan Kai University of Technology, Nantou, People’s Republic of ChinaAbstract: The aims of this study were to investigate the most effective combination of physical forces from laser, electroporation, and reverse iontophoresis for noninvasive transdermal extraction of uric acid, and to develop a highly sensitive uric acid biosensor (UAB for quantifying the uric acid extracted. It is believed that the combination of these physical forces has additional benefits for extraction of molecules other than uric acid from human skin. A diffusion cell with porcine skin was used to investigate the most effective combination of these physical forces. UABs coated with ZnO2 nanoparticles and constructed in an array configuration were developed in this study. The results showed that a combination of laser (0.7 W, electroporation (100 V/cm2, and reverse iontophoresis (0.5 mA/cm2 was the most effective and significantly enhanced transdermal extraction of uric acid. A custom-designed UAB coated with ZnO2 nanoparticles and constructed in a 1×3 array configuration (UAB-1×3-ZnO2 demonstrated enough sensitivity (9.4 µA/mM for quantifying uric acid extracted by the combined physical forces of laser, electroporation, and RI. A good linear relationship (R2=0.894 was demonstrated to exist between the concentration of uric acid (0.2–0.8 mM inside the diffusion cell and the current response of the

  12. Sequence quality analysis tool for HIV type 1 protease and reverse transcriptase.

    Science.gov (United States)

    Delong, Allison K; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W; Kantor, Rami

    2012-08-01

    Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802 PR and 44,432 RT sequences) from the published literature ( http://hivdb.Stanford.edu ). Nucleic acid sequences are read into SQUAT, identified, aligned, and translated. Nucleic acid sequences are flagged if with >five 1-2-base insertions; >one 3-base insertion; >one deletion; >six PR or >18 RT ambiguous bases; >three consecutive PR or >four RT nucleic acid mutations; >zero stop codons; >three PR or >six RT ambiguous amino acids; >three consecutive PR or >four RT amino acid mutations; >zero unique amino acids; or 15% genetic distance from another submitted sequence. Thresholds are user modifiable. SQUAT output includes a summary report with detailed comments for troubleshooting of flagged sequences, histograms of pairwise genetic distances, neighbor joining phylogenetic trees, and aligned nucleic and amino acid sequences. SQUAT is a stand-alone, free, web-independent tool to ensure use of high-quality HIV PR/RT sequences in interpretation and reporting of drug resistance, while increasing awareness and expertise and facilitating troubleshooting of potentially problematic sequences.

  13. Extraction and determination of biogenic amines in fermented sausages and other meat products using reversed-phase-HPLC.

    Science.gov (United States)

    Straub, B; Schollenberger, M; Kicherer, M; Luckas, B; Hammes, W P

    1993-09-01

    A convenient method is described for the analysis of biogenic amines (BA) by means of reversed-phase-HPLC. The method is characterized by multi-channel UV detection (diodearray), subsequent post-column derivatization with o-phthaldialdehyde and 3-mercaptopropionic acid, and fluorescence detection. For the analysis of meat products and especially fermented sausages an optimized perchloric acid extraction process was introduced to determine putrescine, cadaverine, histamine, tyramine and 2-phenylethylamine. BA recoveries from meat ranged between 96 and 113% with a detection limit for amines of 0.5 mg/kg.

  14. Regulation of Carbon Flow by Nitrogen and Light in the Red Alga, Gelidium coulteri1

    Science.gov (United States)

    Macler, Bruce A.

    1986-01-01

    The red alga Gelidium coulteri Harv. photosynthetically fixed [14C] bicarbonate at high rates under defined conditions in unialgal laboratory culture. The fixation rate and flow of photosynthate into various end products were dependent on the nitrogen status of the tissue. Plants fed luxury levels of nitrogen (approximately 340 micromolar) showed fixation rates several-fold higher than those seen for plants starved for nitrogen. The addition of NO3− or NH4+ to such starved plants further inhibited fixation over at least the first several hours after addition. The majority of 14C after incubations of 30 minutes to 8 hours was found in the compounds floridoside, agar and floridean starch. In addition, amino acids and intermediate compounds of the reductive pentose phosphate pathway, glycolytic pathway and tricarboxylic acid cycle were detected. Nitrogen affected the partitioning of labeled carbon into these compounds. Plants under luxury nitrogen conditions had higher floridoside levels and markedly lower amounts of agar and starch than found in plants limited for nitrogen. Amino acid, phycobiliprotein and chlorophyll levels were also significantly higher in nitrogen-enriched plants. Addition of NO3− to starved plants led to an increase in floridoside, tricarboxylic acid cycle intermediates and amino acids within 1 hour and inhibited carbon flow into agar and starch. Carbon fixation in the dark was only 1 to 7% of that seen in the light. Dark fixation of [14C]bicarbonate yielded label primarily in tricarboxylic acid cycle intermediates, amino acids and polysaccharides. Nitrogen stimulated amino acid synthesis at the expense of agar and starch. Floridoside was only a minor component in the dark. Pulse-chase experiments, designed to show carbon turnover, indicated a 2-fold increase in labeling of agar over 96 hours of chase in the light. No increases were seen in the dark. Low molecular weight pools, including floridoside, decreased 2- to 5-fold over this period

  15. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid.

    Science.gov (United States)

    Yetisen, Ali K; Jiang, Nan; Fallahi, Afsoon; Montelongo, Yunuen; Ruiz-Esparza, Guillermo U; Tamayol, Ali; Zhang, Yu Shrike; Mahmood, Iram; Yang, Su-A; Kim, Ki Su; Butt, Haider; Khademhosseini, Ali; Yun, Seok-Hyun

    2017-04-01

    Hydrogel optical fibers are utilized for continuous glucose sensing in real time. The hydrogel fibers consist of poly(acrylamide-co-poly(ethylene glycol) diacrylate) cores functionalized with phenylboronic acid. The complexation of the phenylboronic acid and cis-diol groups of glucose enables reversible changes of the hydrogel fiber diameter. The analyses of light propagation loss allow for quantitative glucose measurements within the physiological range. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of fatty acids on self-assembly of soybean lecithin systems.

    Science.gov (United States)

    Godoy, C A; Valiente, M; Pons, R; Montalvo, G

    2015-07-01

    With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids. Copyright © 2015

  17. A functional language for describing reversible logic

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal

    2012-01-01

    Reversible logic is a computational model where all gates are logically reversible and combined in circuits such that no values are lost or duplicated. This paper presents a novel functional language that is designed to describe only reversible logic circuits. The language includes high....... Reversibility of descriptions is guaranteed with a type system based on linear types. The language is applied to three examples of reversible computations (ALU, linear cosine transformation, and binary adder). The paper also outlines a design flow that ensures garbage- free translation to reversible logic...... circuits. The flow relies on a reversible combinator language as an intermediate language....

  18. Geomagnetic Reversals during the Phanerozoic.

    Science.gov (United States)

    McElhinny, M W

    1971-04-09

    An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency.

  19. Devoluming method of acidic radioactive liquid waste and processing system therefor

    International Nuclear Information System (INIS)

    Shirai, Takamori; Honda, Tadahiro

    1998-01-01

    Radioactive liquid wastes such as liquid wastes discharged from chemical decontamination (containing free acids, metal salts dissolved in acids, not-dissolved iron rust and radioactive metals) are introduced to an acid recovering device using a diffusion permeation membrane and separated to a deacidified liquid and separated acid liquid. The separated acid liquid mainly comprising free acids is recovered to a tank for recovered acids, and used repeatedly for removing crud. The deacidified liquid mainly comprising salts is concentrated in a reverse osmosis membrane (RO) concentration device. RO concentrated liquid containing radioactive metals is dried, and salts are decomposed in a drying/salt-decomposing device and separated into metal oxides and a mixed gas of an acidic gas and steams. The gas is cooled in an acid absorbing device and recovered as free acids. The metal oxides containing radioactive metals are solidified. (I.N.)

  20. Resveratrol reverses morphine-induced neuroinflammation in morphine-tolerant rats by reversal HDAC1 expression

    Directory of Open Access Journals (Sweden)

    Ru-Yin Tsai

    2016-06-01

    Conclusion: Resveratrol restores the antinociceptive effect of morphine by reversing morphine infusion-induced spinal cord neuroinflammation and increase in TNFR1 expression. The reversal of the morphine-induced increase in TNFR1 expression by resveratrol is partially due to reversal of the morphine infusion-induced increase in HDAC1 expression. Resveratrol pretreatment can be used as an adjuvant in clinical pain management for patients who need long-term morphine treatment or with neuropathic pain.

  1. Alkyne- and 1,6-elimination- succinimidyl carbonate - terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation.

    Science.gov (United States)

    Xie, Yumei; Duan, Shaofeng; Forrest, M Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with diglycolic anhydride to generate α-alkyne-ω-carboxylic acid PEG. The reversible 1, 6-elimination linker was introduced by conjugation of a hydroxymethyl phenol followed by activation with N,N'-disuccinimidyl carbonate to generate the heterobifunctional α-alkyne-ω-SC PEG. The terminal alkyne is available for "click" conjugation to azido ligands via 1,3-dipolar cycloaddition, and the succinimidyl carbonate will form a reversible conjugate to amines (e.g. in proteins) that can release the unaltered amine after base or enzyme catalyzed cleavage of the 1,6-linker.

  2. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway

    Directory of Open Access Journals (Sweden)

    Xia-li Tang

    2017-09-01

    Full Text Available Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP and the reversal mechanism of salvianolic acid A (SAA, a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1 up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway.

  3. Principles of a reversible programming language

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    The principles of reversible programming languages are explicated and illustrated with reference to the design of a high-level imperative language, Janus. The fundamental properties for such languages include backward as well as forward determinism and reversible updates of data. The unique design...... languages, and demonstrate this for Janus. We show the practicality of the language by implementation of a reversible fast Fourier transform. Our results indicate that the reversible programming paradigm has fundamental properties that are relevant to many different areas of computer science....... features of the language include explicit post-condition assertions, direct access to an inverse semantics and the possibility of clean (i.e., garbage-free) computation of injective functions. We suggest the clean simulation of reversible Turing machines as a criterion for computing strength of reversible...

  4. An Additional Method for Analyzing the Reversible Inhibition of an 
Enzyme Using Acid Phosphatase as a Model.

    Science.gov (United States)

    Baumhardt, Jordan M; Dorsey, Benjamin M; McLauchlan, Craig C; Jones, Marjorie A

    2015-08-01

    Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent constants can be derived from this plot: K max , K min , and K inflect . K max and K min represent the substrate to inhibitor concentration ratio for complete inhibition and minimal inhibition, respectively. K inflect represents the substrate to inhibitor concentration ratio at which the enzyme-substrate complex is equal to the inhibitory complex. These constants can be interpolated from the graph or calculated using the first and second derivative of the plot. We conclude that a steeper slope and a shift of the line to the right (increased x-axis values) would indicate a better inhibitor. Since initial velocity is not a linear function of the substrate/inhibitor ratio, this means that inhibition changes more quickly with the change in the [S]/ [I] ratio. When preincubating the enzyme with substrate before the addition of inhibitor, preincubating the enzyme with inhibitor before the addition of substrate or with concurrent addition of both substrate and inhibitor, modest changes in the slopes and y-intercepts were obtained. This plot appears useful for known competitive and non-competitive inhibitors and may have general applicability.

  5. ‘Picking People to Hate’: Reversible reversals in stand-up comedy

    DEFF Research Database (Denmark)

    Keisalo, Marianna Päivikki

    2017-01-01

    Generally speaking, ritual reversals mean switching to the opposite of what is considered ‘the normal order’. Such reversals can occur, for example, in terms of social hierarchies in rites of passage, in action in carnival, or in the framing of action as ritual or performance. For comedic figures...... cultural grounds and show how the study of comedic performance can offer insights into the semiotics of performance more broadly....

  6. Periodicity and Immortality in Reversible Computing

    OpenAIRE

    Kari , Jarkko; Ollinger , Nicolas

    2008-01-01

    Additional material available on the web at http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/; We investigate the decidability of the periodicity and the immortality problems in three models of reversible computation: reversible counter machines, reversible Turing machines and reversible one-dimensional cellular automata. Immortality and periodicity are properties that describe the behavior of the model starting from arbitrary initial configurations: immortality is the property of having at le...

  7. Reversal of dopamine system dysfunction in response to high-fat diet.

    Science.gov (United States)

    Carlin, Jesselea; Hill-Smith, Tiffany E; Lucki, Irwin; Reyes, Teresa M

    2013-12-01

    To test whether high-fat diet (HFD) decreases dopaminergic tone in reward regions of the brain and evaluate whether these changes reverse after removal of the HFD. Male and female mice were fed a 60% HFD for 12 weeks. An additional group was evaluated 4 weeks after removal of the HFD. These groups were compared with control fed, age-matched controls. Sucrose and saccharin preference was measured along with mRNA expression of dopamine (DA)-related genes by Real Time-quantitative PCR (RT-qPCR). DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. DNA methylation of the dopamine transporter (DAT) promoter was measured by methylated DNA immunoprecipitation and RT-qPCR. After chronic HFD, sucrose preference was reduced, and then normalized after removal of the HFD. Decreased expression of DA genes, decreased DA content and alterations in DAT promoter methylation, was observed. Importantly, response to HFD and the persistence of changes depended on sex and brain region. These data identify diminished DA tone after early-life chronic HFD with a complex pattern of reversal and persistence that varies by both sex and brain region. Central nervous system changes that did not reverse after HFD withdrawal may contribute to the difficulty in maintaining weight-loss after diet intervention. Copyright © 2013 The Obesity Society.

  8. Enhancement of Esterification of Propionic Acid with Isopropyl Alcohol by Pervaporation Reactor

    Directory of Open Access Journals (Sweden)

    Ajit P. Rathod

    2014-01-01

    Full Text Available With increasing cost of raw materials and energy, there is an increasing inclination of chemical process industries toward new processes that result in lesser waste generation, greater efficiency, and substantial yield of the desired products. Esterification is a chemical reaction in which two reactants carboxylic acid and alcohol react to form an ester and water. This reaction is a reversible reaction and the equilibrium conversion can be altered by varying the process parameters. Pervaporation reactor can enhance the conversion by shifting the equilibrium of reversible esterification reactions. Polyvinyl alcohol-polyether sulfone composite hydrophilic membrane was used for pervaporation-assisted esterification of propionic acid with isopropyl alcohol. The experiments were carried out in the presence of sulphuric acid as a catalyst at 50°C to 80°C with various reactants ratios. The esterification was carried out for catalyst loadings of 0.089 kmol/m3 to 0.447 kmol/m3. The molar ratios of isopropyl to propionic acid used for the experiment were 1 to 1.5. Maximum conversion was obtained for the ratio of 1.4. Also effect of other parameters such as process temperature and catalyst concentration was discussed. It was found that the use of pervaporation reactor increased the conversion of the propionic acid considerably.

  9. Pyrogenicity of polyadenylic.polyuridylic acid in rabbits.

    Science.gov (United States)

    Won, S J; Lin, M T

    1991-05-01

    Polyadenylic.polyuridylic acid injected intravenously into rabbits produced a rapid-onset, monophasic fever. Pyrogenic tolerance occurred in rabbits following daily injections of polyadenylic.polyuridylic acid. However, direct injection of the agent into the preoptic anterior hypothalamic region of rabbit's brain produced a markedly different fever. After an intrahypothalamic injection of polyadenylic.polyuridylic acid, fever was delayed in onset and persisted for a longer period. At room temperature, the fever was due to both increased metabolism and cutaneous vasoconstriction. In a colder atmosphere the fever was due solely to increased metabolism, whereas in the heat the fever was due to reduction in cutaneous blood flow and respiratory evaporative heat loss. In addition, the fever induced by intravenous polyadenylic.polyuridylic acid injection was reversed by a cyclooxygenase inhibitor, but not by a protein synthesis inhibitor. Polyadenylic.polyuridylic acid was shown to stimulate PGE2 production from rabbit's hypothalamus in vitro. The results reveal that this agent is a prostaglandin-dependent pyrogen.

  10. How decision reversibility affects motivation.

    Science.gov (United States)

    Bullens, Lottie; van Harreveld, Frenk; Förster, Jens; Higgins, Tory E

    2014-04-01

    The present research examined how decision reversibility can affect motivation. On the basis of extant findings, it was suggested that 1 way it could affect motivation would be to strengthen different regulatory foci, with reversible decision making, compared to irreversible decision making, strengthening prevention-related motivation relatively more than promotion-related motivation. If so, then decision reversibility should have effects associated with the relative differences between prevention and promotion motivation. In 5 studies, we manipulated the reversibility of a decision and used different indicators of regulatory focus motivation to test these predictions. Specifically, Study 1 tested for differences in participants' preference for approach versus avoidance strategies toward a desired end state. In Study 2, we used speed and accuracy performance as indicators of participants' regulatory motivation, and in Study 3, we measured global versus local reaction time performance. In Study 4, we approached the research question in a different way, making use of the value-from-fit hypothesis (Higgins, 2000, 2002). We tested whether a fit between chronic regulatory focus and focus induced by the reversibility of the decision increased participants' subjective positive feelings about the decision outcome. Finally, in Study 5, we tested whether regulatory motivation, induced by decision reversibility, also influenced participants' preference in specific product features. The results generally support our hypothesis showing that, compared to irreversible decisions, reversible decisions strengthen a prevention focus more than a promotion focus. Implications for research on decision making are discussed.

  11. Supra-dendron Gelator Based on Azobenzene-Cyclodextrin Host-Guest Interactions: Photoswitched Optical and Chiroptical Reversibility.

    Science.gov (United States)

    Xie, Fan; Ouyang, Guanghui; Qin, Long; Liu, Minghua

    2016-12-12

    A novel amphiphilic dendron (AZOC 8 GAc) with three l-glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self-assembled into chiral-twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo-irradiation. During the photo-triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host-guest interaction with α-cyclodextrin (α-CD), designated as supra-dendron gelator AZOC 8 GAc/α-CD. The supra-dendron showed similar gelation behavior to that of AZOC 8 GAc, but with enhanced photoisomerization-transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self-assembly of the supra-dendron is a hierarchical or multi-supramolecular self-assembling process. This work has clearly illustrated that the hierarchical and multi-supramolecular self-assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  13. Garbage collection for reversible functional languages

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2015-01-01

    Reversible languages are programming languages where all programs can run both forwards and backwards. Reversible functional languages have been proposed that use symmetric pattern matching and data construction. To be reversible, these languages require linearity: Every variable must be used...

  14. Chemiluminescence from an oxidation reaction of rhodamine B with cerium(IV) in a reversed micellar medium of cetyltrimethylammonium chloride in 1-hexanol-cyclohexane/water.

    Science.gov (United States)

    Hasanin, Tamer H A; Tsunemine, Yusuke; Tsukahara, Satoshi; Okamoto, Yasuaki; Fujiwara, Terufumi

    2011-01-01

    The chemiluminescence (CL) emission, observed when rhodamine B (RB) in 1-hexanol-cyclohexane was mixed with cerium(IV) sulfate in sulfuric acid dispersed in a reversed micellar medium of cetyltrimethylammonium chloride (CTAC) in 1-hexanol-cyclohexane/water, was investigated using a flow-injection system. The CL emission from the oxidation reaction of RB with Ce(IV) was found to be stronger in the CTAC reversed micellar solution compared with an aqueous solution. Bearing on the enhancement effect of the CTAC reverse micelles on the RB-Ce(IV) CL, several studies including stopped-flow, fluorescence and electron spin resonance (ESR) spectrometries were performed. Rapid spectral changes of an intermediate in the RB-Ce(IV) reaction in the aqueous and reversed micellar solutions were successfully observed using a stopped-flow method. The effect of the experimental variables, i.e., oxidant concentration, sulfuric acid concentration, the mole fraction of 1-hexanol, water-to-surfactant molar concentration ratio, flow rate, upon the CL intensity was evaluated. Under the experimental conditions optimized for a flow-injection determination of RB based on the new reversed micellar-mediated CL reaction with Ce(IV), a detection limit of 0.08 µmol dm(-3) RB was achieved, and a linear calibration graph was obtained with a dynamic range from 0.5 to 20 µmol dm(-3). The relative standard deviation (n = 6) obtained at an RB concentration of 3 µmol dm(-3) was 3%.

  15. Sialic acid-triggered macroscopic properties switching on a smart polymer surface

    Science.gov (United States)

    Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei

    2018-01-01

    Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.

  16. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    Science.gov (United States)

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    Science.gov (United States)

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  18. END-OF-USE PRODUCTS IN REVERSE LOGISTICS

    OpenAIRE

    Marta Starostka-Patyk

    2007-01-01

    Reverse logistics is a very useful tool for enterprises which have to deal with end-of-use products. Forward logistics is not able to manage them, because they show up on the beginning of reverse supply chain. That is the reason for growing importance of reverse flows. Reverse logistics is quite new logistics system. This paper presents the idea of reverse logistics and end-of-use products problems.

  19. Reversal of subtidal dune asymmetries caused by seasonally reversing wind-driven currents in Torres Strait, northeastern Australia

    Science.gov (United States)

    Harris, Peter T.

    1991-07-01

    Large subtidal sand dunes (sandwaves) located in Adolphus Channel, Torres Strait, have been observed to reverse their asymmetric orientation between September-February. This has been attributed to a reversal in wind-driven currents, which flow westward during the SE trade season (April-November) and eastwards during the NW monsoon season [December-March: HARRIS (1989) Continental Shelf Research, 9, 981-1002]. Observations in September 1988 and February 1989 from another area of dunes in Torres Strait corroborate this asymmetry reversal pattern. The results indicate that such reversals may be common in Torres Strait and in other areas where subtidal bedforms are subject to modification by superimposed, seasonally reversing, wind-driven currents.

  20. Polarographic determination of stability constants of Eu(III) complexes with acrylic acid and crotonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A L.J.; Makhan, S [Punjabi Univ., Patiala (India). Dept. of Chemistry

    1979-07-01

    Compositions and formation constants of Eu(III) complexes with acrylic acid and crotonic acid have been studied polarographically. The reductions are reversible and diffusion-controlled. The plot of Esub(1/2) versus -log Csub(x) is linear in the case of Eu(III)-acrylic acid system. The change in number of ligands bound to europium during reduction was found to be approximately equal to 1 and ratio of dissociation constants of Eu(III) and Eu(II) was found to be 40.76 x 10sup(-2). In the case of Eu(III)-crotonic acid system, composition and formation constants have been calculated by the method of Deford and Hume. Crotonic acid forms two complex species with europium (..beta../sub 1/, 60; ..beta../sub 2/, 4.2x10sup(+2)). The percentage distribution of various complex species as a function of ligand concentration has been calculated in the case of Eu(III)-crotonic acid system. A polarographic method for the determination of micro amounts of Eu(III) in the presence of diverse ions has been developed. Under optimum conditions Eu(III) in the concentration range 4x10sup(-4)-2x10sup(-3)M can be successfully determined in various mixtures.

  1. Changes in oxidative properties of Kalanchoe blossfeldiana leaf mitochondria during development of Crassulacean acid metabolism.

    Science.gov (United States)

    Rustin, P; Queiroz-Claret, C

    1985-06-01

    Kalanchoe blossfeldiana plants grown under long days (16 h light) exhibit a C3-type photosynthetic metabolism. Switching to short days (9 h light) leads to a gradual development of Crassulacean acid metabolism (CAM). Under the latter conditions, dark CO2 fixation produces large amounts of malate. During the first hours of the day, malate is rapidly decarboxylated into pyruvate through the action of a cytosolic NADP(+)-or a mitochondrial NAD(+)-dependent malic enzyme. Mitochondria were isolated from leaves of plants grown under long days or after treatment by an increasing number of short days. Tricarboxylic acid cycle intermediates as well as exogenous NADH and NADPH were readily oxidized by mitochondria isolated from the two types of plants. Glycine, known to be oxidized by C3-plant mitochondria, was still oxidized after CAM establishment. The experiments showed a marked parallelism in the increase of CAM level and the increase in substrate-oxidation capacity of the isolated mitochondria, particularly the capacity to oxidize malate in the presence of cyanide. These simultaneous variations in CAM level and in mitochondrial properties indicate that the mitochondrial NAD(+)-malic enzyme could account at least for a part of the oxidation of malate. The studies of whole-leaf respiration establish that mitochondria are implicated in malate degradation in vivo. Moreover, an increase in cyanide resistance of the leaf respiration has been observed during the first daylight hours, when malate was oxidized to pyruvate by cytosolic and mitochondrial malic enzymes.

  2. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination

    International Nuclear Information System (INIS)

    Macko, S.A.; Fogel Estep, M.L.; Engel, M.H.; Hare, P.E.

    1986-01-01

    This study evaluates a kinetic isotope effect involving 15 N, during the transamination reactions catalyzed by glutamic oxalacetic transaminase. During the transfer of amino nitrogen from glutamic acid to oxaloacetate to form aspartic acid, 14 NH 2 reacted 1.0083 times faster than 15 NH 2 . In the reverse reaction transferring NH 2 from aspartic acid to α-ketoglutarate, 14 NH 2 was incorporated 1.0017 times faster than 15 NH 2 . Knowledge of the magnitude and sign of these isotope effects will be useful in the interpretation of the distribution of 15 N in biological and geochemical systems. (author)

  3. The effects of hyaluronic acid vaginal gel on the vaginal epithelium of ovariectomized rats.

    Science.gov (United States)

    Liu, Shuai-Bin; Liu, Shao-Li; Gan, Xiao-Ling; Zhou, Qin; Hu, Li-Na

    2015-03-01

    Hyaluronic acid is one of the best materials of water retention which can be used in vaginal atrophy. This study is to evaluate the role and mechanism of the hyaluronic acid vaginal gel (Hyalofemme) in the vaginal epithelium of ovariectomized rats. Sixty SD rats were randomly divided into control group (Sham ovariectomy, Sham-OVX), tendency group (ovariectomy, OVX), and experiment group (ovariectomy+Hyalofemme, OVX+Hyalofemme). The hyaluronic acid vaginal gel was administered local vaginal therapy to the experiment group with cytologicaly confirmed vaginal atrophy. The doses were adjusted by animal weight according to human dosage. After daily treatment for 14 days, VEGF and P-AKT activations were detected by Western blot in the experiment group. The hyaluronic acid vaginal gel proved to be very effective in the cytological reversal of vaginal atrophy but did not increase uterine weight. Vaginal microecosystem indicators were negative in the control group and the experiment group. By contrast, the indicators were positive in the tendency group. Hyaluronic acid vaginal gel is effective in the reversal of vaginal atrophy and is beneficial for improving vaginal microecosystem in the postmenopausal rat model. The hyaluronic acid vaginal gel can also improve the repair capacity of the vaginal epithelium.

  4. Effect of phenols and carboxylic acids on photochromism of 1-alkyl-2-(arylazo)imidazoles

    International Nuclear Information System (INIS)

    Gayen, Pallab; Sinha, Chittaranjan

    2012-01-01

    Light irradiated trans-to-cis isomerization of 1-alkyl-2-(arylazo)imidazole in the presence of phenol, catechol, benzoic acid and salicylic acid (called co-factors) has been studied in this work. The rate of trans→cis photoisomerization is decreased in the presence of co-factor in the medium and is dependent on the concentration of active quotient about photochrome. The decrease in rate follows catechol>benzoic acid>phenol>salicylic acid. This trend is due to the effects of dissociation ability of –O–H/–COOH, intermolecular association of the molecules etc. The reverse change, cis-to-trans, is very slow in light irradiation and has been carried out by a thermal process in the dark. The quantum yield of isomerization follows the same sequence of effects of co-factors. - Highlights: ► Photoisomerisation of 1-alkyl-2-(arylazo)imidazoles, trans-to-cis, is described in this work. ► The process is sensitive to the environment of the photochrome and the solution. ► The rate of photoisomerization decreases as catechol>benzoic acid>phenol>salicylic acid. ► The reverse isomerization, cis-to-trans is very slow with light and has been carried out with heat. ► The activation energy is less than these values when carried out in fresh solution only.

  5. Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation.

    Science.gov (United States)

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy

    2016-11-30

    Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

  6. Magnetic reversals from planetary dynamo waves.

    Science.gov (United States)

    Sheyko, Andrey; Finlay, Christopher C; Jackson, Andrew

    2016-11-24

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines by columnar convection. Here we present an example of another class of reversing-geodynamo model, which operates in a regime of comparatively low viscosity and high magnetic diffusivity. This class does not fit into the paradigm of reversal regimes that are dictated by the value of the local Rossby number (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.

  7. Multiple reversal olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  8. Reversibility: An Engineer's Point of View

    Energy Technology Data Exchange (ETDEWEB)

    Berest, Pierre [LMS, ecole Polytechnique (France)

    2012-07-01

    Reversibility is the most consistent option in a democratic country. However reversibility may also have several drawbacks which must be identified and mitigated. Reversibility of a geological repository is a relatively new idea in France. The 1991 law dedicated to nuclear waste management considered reversibility as a possible option. Fifteen years later, the 2006 law mandated that a deep repository must be reversible and that the exact content of this notion should be defined by a new law to be discussed by the Parliament in 2015. Reversibility was not a concern put forward by engineers. It clearly originated from a societal demand sponsored and formulated by the Parliament. Since 1991, the exact meaning of this mandate progressively became more precise. In the early days, reversibility meant the technical and financial capability to retrieve the wastes from the repository, at least for some period of time after being emplaced. Progressively, a broader definition, suggested by Andra, was accepted: reversibility also means that a disposal facility should be operated in such a way that a stepwise decision-making process is possible. At each step, society must be able to decide to proceed to the next step, to pause or to reverse a step. Several benefits can be expected from a reversible repository. Some technical safety concerns may be only recognised after waste emplacement. Radioactive wastes may become a resource whose recoverability is desirable. Regulations may change, alternative waste treatment or better disposal techniques may be developed, or the need to modify a component of the facility may arise. Looking back at how chemical or domestic wastes were managed some 50 years ago easily underscores that it is not unreasonable to hope for significant advances in the future. For scientists and engineers, reversibility proves to have several other merits. To design and build a good repository, time is needed. The operator of a mine or of an oil field knows that

  9. Reverse Conservation Analysis Reveals the Specificity Determining Residues of Cytochrome P450 Family 2 (CYP 2

    Directory of Open Access Journals (Sweden)

    Tai-Sung Lee

    2008-01-01

    Full Text Available The concept of conservation of amino acids is widely used to identify important alignment positions of orthologs. The assumption is that important amino acid residues will be conserved in the protein family during the evolutionary process. For paralog alignment, on the other hand, the opposite concept can be used to identify residues that are responsible for specificity. Assuming that the function-specific or ligand-specific residue positions will have higher diversity since they are under evolutionary pressure to fit the target specificity, these function-specific or ligand-specific residues positions will have a lower degree of conservation than other positions in a highly conserved paralog alignment. This study assessed the ability of reverse conservation analysis to identify function-specific and ligand-specific residue positions in closely related paralog. Reverse conservation analysis of paralog alignments successfully identified all six previously reported substrate recognition sites (SRSs in cytochrome P450 family 2 (CYP 2. Further analysis of each subfamily identified the specificity-determining residues (SDRs that have been experimentally found. New potential SDRs were also predicted and await confirmation by further experiments or modeling calculations. This concept may be also applied to identify SDRs in other protein families.

  10. Investigating the chemical changes of chlorogenic acids during coffee brewing: conjugate addition of water to the olefinic moiety of chlorogenic acids and their quinides.

    Science.gov (United States)

    Matei, Marius Febi; Jaiswal, Rakesh; Kuhnert, Nikolai

    2012-12-12

    Coffee is one of the most popular and consumed beverages in the world and is associated with a series of benefits for human health. In this study we focus on the reactivity of chlorogenic acids, the most abundant secondary metabolites in coffee, during the coffee brewing process. We report on the hydroxylation of the chlorogenic acid cinnamoyl substituent by conjugate addition of water to form 3-hydroxydihydrocaffeic acid derivatives using a series of model compounds including monocaffeoyl and dicaffeoylquinic acids and quinic acid lactones. The regiochemistry of conjugate addition was established based on targeted tandem MS experiments. Following conjugate addition of water a reversible water elimination yielding cis-cinnamoyl derivatives accompanied by acyl migration products was observed in model systems. We also report the formation of all of these derivatives during the coffee brewing process.

  11. Preparation of 2H- and 3H-labeled phaseic acid and dihydrophaseic acid as standards for determination of abscisic acid metabolites in tomato fruit

    International Nuclear Information System (INIS)

    Kubik, M.; Buta, J.G.

    1990-01-01

    There have been reports that the level of abscisic acid (ABA) increases during the cold storage of tomatoes. However, the important ABA metabolites, phaseic acid (PA) and dihydrophaseic acid (DPA) were never quantitatively determined in such a system. In order to obtain the labeled standards for quantitative determination of those compounds by GC-MS-SIM, we fed bean plants with 6,6,6-[ 2 H 3 ]-ABA (mean isotopic enrichment 60%) with addition of about 10 5 Bq per mg of [ 3 H]-ABA. After 100 hours the plants were harvested and extracted with acetone. The extract were purified by solvent partitioning and, Prep-Sep amino column and on an HPLC C 18 reverse phase column. Two major radioactive metabolites of ABA were obtained and identified by GC-MS as PA and DPA. Some results on the quantitation of ABA, PA and DPA in tomato fruit after cold storage will be presented

  12. Reversible and non-reversible enlargement of cerebral spinal fluid spaces in anorexia nervosa

    International Nuclear Information System (INIS)

    Artmann, H.; Grau, H.; Adelmann, M.; Schleiffer, R.

    1985-01-01

    Brain CT studies of 35 patients with anoxia nervosa confirmed the observations of other authors: cerebral dystrophic changes correlate with weight loss and the reversibility of these changes also correlates with the normalization of body weight. Other corroborated facts are: the most numerous and most pronounced enlargements are of the cortical sulci and the interhemispheric fissure, moderate widening affects the ventricles and the rarest and most insignificant changes are those of the cerebellum. The reversibility of the changes showed a parallel to the extent of the changes themselves and to the duration of improvement of the body weight. The reversibility of the enlargement of the cortical sulci and of the distances between the frontal horns of the lateral ventricles was more often significant than that of the abnormal measurements of the cella media. This difference is based on minimal early acquired brain damage which occurs in 60% of our patients. This high incidence of early acquired minimal brain disease in patients with anorexia nervosa is here discussed as a nonspecific predisposing factor. Although there is no exact explanation of the etiology of the reversible enlargement of cerenral spinal fluid (CSF) spaces in anorexia nervosa, the changes resemble those in alcoholics. The mechanisms of brain changes in alcoholism, as shown experimentally, seem to us to throw light on the probable mechanism of reversible dystrophic brain changes in anorexia nervosa. (orig.)

  13. Reversible and non-reversible enlargement of cerebral spinal fluid spaces in anorexia nervosa

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, H.; Grau, H.; Adelmann, M.; Schleiffer, R.

    1985-07-01

    Brain CT studies of 35 patients with anoxia nervosa confirmed the observations of other authors: cerebral dystrophic changes correlate with weight loss and the reversibility of these changes also correlates with the normalization of body weight. Other corroborated facts are: the most numerous and most pronounced enlargements are of the cortical sulci and the interhemispheric fissure, moderate widening affects the ventricles and the rarest and most insignificant changes are those of the cerebellum. The reversibility of the changes showed a parallel to the extent of the changes themselves and to the duration of improvement of the body weight. The reversibility of the enlargement of the cortical sulci and of the distances between the frontal horns of the lateral ventricles was more often significant than that of the abnormal measurements of the cella media. This difference is based on minimal early acquired brain damage which occurs in 60% of our patients. This high incidence of early acquired minimal brain disease in patients with anorexia nervosa is here discussed as a nonspecific predisposing factor. Although there is no exact explanation of the etiology of the reversible enlargement of cerenral spinal fluid (CSF) spaces in anorexia nervosa, the changes resemble those in alcoholics. The mechanisms of brain changes in alcoholism, as shown experimentally, seem to us to throw light on the probable mechanism of reversible dystrophic brain changes in anorexia nervosa.

  14. Reversal agents in anaesthesia and critical care

    Directory of Open Access Journals (Sweden)

    Nibedita Pani

    2015-01-01

    Full Text Available Despite the advent of short and ultra-short acting drugs, an in-depth knowledge of the reversal agents used is a necessity for any anaesthesiologist. Reversal agents are defined as any drug used to reverse the effects of anaesthetics, narcotics or potentially toxic agents. The controversy on the routine reversal of neuromuscular blockade still exists. The advent of newer reversal agents like sugammadex have made the use of steroidal neuromuscular blockers like rocuronium feasible in rapid sequence induction situations. We made a review of the older reversal agents and those still under investigation for drugs that are regularly used in our anaesthesia practice.

  15. The misconception of mean-reversion

    International Nuclear Information System (INIS)

    Eliazar, Iddo I; Cohen, Morrel H

    2012-01-01

    The notion of random motion in a potential well is elemental in the physical sciences and beyond. Quantitatively, this notion is described by reverting diffusions—asymptotically stationary diffusion processes which are simultaneously (i) driven toward a reversion level by a deterministic force, and (ii) perturbed off the reversion level by a random white noise. The archetypal example of reverting diffusions is the Ornstein–Uhlenbeck process, which is mean-reverting. In this paper we analyze reverting diffusions and establish that: (i) if the magnitude of the perturbing noise is constant then the diffusion's stationary density is unimodal and the diffusion is mode-reverting; (ii) if the magnitude of the perturbing noise is non-constant then, in general, neither is the diffusion's stationary density unimodal, nor is the diffusion mode-reverting. In the latter case we further establish a result asserting when unimodality and mode-reversion do hold. In particular, we demonstrate that the notion of mean-reversion, which is fundamental in economics and finance, is a misconception—as mean-reversion is an exception rather than the norm. (fast track communication)

  16. Parkinson’s disease managing reversible neurodegeneration

    Science.gov (United States)

    Hinz, Marty; Stein, Alvin; Cole, Ted; McDougall, Beth; Westaway, Mark

    2016-01-01

    Traditionally, the Parkinson’s disease (PD) symptom course has been classified as an irreversible progressive neurodegenerative disease. This paper documents 29 PD and treatment-induced systemic depletion etiologies which cause and/or exacerbate the seven novel primary relative nutritional deficiencies associated with PD. These reversible relative nutritional deficiencies (RNDs) may facilitate and accelerate irreversible progressive neurodegeneration, while other reversible RNDs may induce previously undocumented reversible pseudo-neurodegeneration that is hiding in plain sight since the symptoms are identical to the symptoms being experienced by the PD patient. Documented herein is a novel nutritional approach for reversible processes management which may slow or halt irreversible progressive neurodegenerative disease and correct reversible RNDs whose symptoms are identical to the patient’s PD symptoms. PMID:27103805

  17. Carrier effect on separation efficiency of the column in reversed-phase partition chromatography

    International Nuclear Information System (INIS)

    Pszonicka, M.; Siekierski, S.

    1972-01-01

    Chromatographic columns were filled with carriers of diatomaceous earth type (Hyflo Super Cell, and Celite 545) of large pores, and two microporous silica gels respectively. These columns were used for the separation of europium and gadolinium by reversed-phase partition chromatography in the system: stationary phase-diethylhexylphosphoric acid (HDEHP) mobile phase-0.4 N nitric acid. In each case the separation of the above mentioned elements was achieved. The plate height that characterizes separation efficiency of the column, decreases with the decrease of particle diameter of the carrier. Best columns were obtained from carriers of large pores (Hyflo Super Cell and Celite 545) for which plate hights below 0.1 mm could be achieved. Columns filled with microporous silica gels showed plate heights of 0.2-0.3 mm. (author)

  18. Redox Cycling Realized in Paper-Based Biochemical Sensor for Selective Detection of Reversible Redox Molecules Without Micro/Nano Fabrication Process.

    Science.gov (United States)

    Yamamoto, So; Uno, Shigeyasu

    2018-02-28

    This paper describes a paper-based biochemical sensor that realizes redox cycling with close interelectrode distance. Two electrodes, the generator and collector electrodes, can detect steady-state oxidation and reduction currents when suitable potential is held at each electrode. The sensor has two gold plates on both sides of a piece of chromatography paper and defines the interelectrode distance by the thickness of the paper (180 μm) without any micro-fabrication processes. Our proposed sensor geometry has successfully exhibited signatures of redox cycling. As a result, the concentration of ferrocyanide as reversible redox molecules was successfully quantified under the interference by ascorbic acid as a strong irreversible reducing agent. This was possible because the ascorbic acids are completely consumed by the irreversible reaction, while maintaining redox cycling of reversible ferrocyanide. This suggests that a sensor based on the redox cycling method will be suitable for detecting target molecules at low concentration.

  19. Batteryless photovoltaic reverse-osmosis desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, M.; Miranda, M.; Gwillim, J.; Rowbottom, A.; Draisey, I.

    2001-07-01

    The aim of this project was to design an efficient cost-effective batteryless photovoltaic-powered seawater reverse-osmosis desalination system, to deliver in the order of 3 m{sup 3} of fresh drinking water per day. The desalination of seawater to produce fresh drinking water is extremely valuable on islands and in coastal regions wherever natural freshwater is scarce. Existing small-scale desalination equipment, suitable for areas of medium and low population density, often requires a copious and constant supply of energy, either electricity or diesel. If supply of these fuels is expensive or insecure, but the area has a good solar resource, the use of photovoltaic power is an attractive option. Existing demonstrations of photovoltaic-powered desalination generally employ lead-acid batteries, which allow the equipment to operate at a constant flow, but are notoriously problematic in practice. The system developed in this project runs at variable flow, enabling it to make efficient use of the naturally varying solar resource, without need of batteries. In a sense, the freshwater tank is providing the energy storage. In this project, we have reviewed the merits of a wide variety of reverse-osmosis system configurations and component options. We have completed extensive in-house testing and characterisation of major hardware components and used the results to construct detailed software models. Using these, we have designed a system that meets the above project aim, and we have predicted its performance in detail. Our designs show that a system costing 23,055 pounds stirling will produce 1424 m{sup 3} of fresh drinking water annually - an average of just over 3.9 m{sup 3}/day. The system has no fuel costs and no batteries. The overall cost of water, including full maintenance, is 2.00 pounds stirling per m{sup 3}. The energy consumption (photovoltaic-electricity) is typically between 3.2 and 3.7 kWh/m{sup 3} depending on the solar irradiance and feed water

  20. Reversible machine code and its abstract processor architecture

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Glück, Robert; Yokoyama, Tetsuo

    2007-01-01

    A reversible abstract machine architecture and its reversible machine code are presented and formalized. For machine code to be reversible, both the underlying control logic and each instruction must be reversible. A general class of machine instruction sets was proven to be reversible, building...

  1. The extraction of zirconium (IV) from sulfuric acid solutions with high-molecular weight quaternary ammonium compound

    International Nuclear Information System (INIS)

    Sato, Taichi; Watanabe, Hiroshi

    1982-01-01

    The extraction of zirconium sulfate in aqueous sulfuric acid solutions with trioctylmethylammonium chloride (Aliquat-336; R 3 R'NCl) in organic solvents has been investigated under different conditions. In addition, the organic phases extracted sulfuric acid and zirconium sulfate were examined by IR and NMR spectroscopies. It has been found that Aliquat-336 extracts zirconium (IV) from sulfuric acid solutions according to the following ion-exchange reactions. i) The extraction of sulfuric acid is at first carried out through the equilibria, SO 4 2 - (aq) + 2R 3 R'NCl(org) reversible (R 3 R'N) 2 SO 4 (org) + 2Cl - (aq), (R 3 R'N) 2 SO 4 (org) + H + (aq) + HSO 4- (aq) reversible 2R 3 R'NHSO 4 (org). ii) The extraction of zirconium is expressed as the equilibrium reaction, Zr(SO 4 ) 3 2 - (aq) + 2xR 3 R'NHSO 4 (org) + (1-x)(R 3 R'N) 2 SO 4 (org) reversible (R 3 R'N) 2 [Zr(SO 4 ) 3 ](org) + xH 2 SO 4 (aq) + SO 4 2 - (aq), x = [R 3 R'NHSO 4 ]/(2[(R 3 R'N) 2 SO 4 ] + [R 3 R'NHSO 4 ]). Moreover, the hydrolyzed species (R 3 R'N)[ZrO(OH)(SO 4 )] is formed when zirconium is further extracted in an organic phase. (author)

  2. Determination of organophosphorus acids by thermo-spray liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Wils, E.R.J.; Hulst, A.G.

    1988-01-01

    The determination of thirteen organophosphorus acids, hydrolysis products of nerve agents and pesticides, by a combination of ion-pair liquid chromatography on a reversed-phase C18 column and thermospray mass spectrometry was investigated. Ammonium acetate and three tetraalkylammonium salts with

  3. Recovery of Picloram and 2,4-Dichlorophenoxyacetic Acid from Aqueous Samples by Reversed-Phase Solid-Phase Extraction

    Science.gov (United States)

    Martha J.M. Wells; Jerry L. Michael

    1987-01-01

    Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...

  4. Herring and chicken/pork meals lead to differences in plasma levels of TCA intermediates and arginine metabolites in overweight and obese men and women

    DEFF Research Database (Denmark)

    Vincent, Andrew; Savolainen, Otto I; Sen, Partho

    2017-01-01

    citrate, fumarate, isocitrate, glycolate, oxalate, agmatine and methyhistidine and increased asparagine, ornithine, glutamine and the hexosamine glucosamine. Modelling found that the tricarboxylic acid cycle, glyoxylate, and argininemetabolism were affected by the intervention. The effect on arginine...... metabolism was supported by an increase in blood nitric oxide in males on the herring diet. Conclusion: The results suggest that eating herring instead of chicken and lean pork leads to important metabolic effects, particularly on energy and amino acid metabolism. Our findings support the hypothesis...... that there are metabolic effects of herring intake unrelated to the long chain n-3 polyunsaturated fatty acid content....

  5. A Typology of Reverse Innovation

    DEFF Research Database (Denmark)

    von Zedtwitz, Max; Corsi, Simone; Søberg, Peder Veng

    2015-01-01

    secondary market introduction, this study expands the espoused definition of reverse innovation beyond its market-introduction focus with reversals in the flow of innovation in the ideation and product development phases. Recognizing that each phase can take place in different geographical locations...... taking place in an emerging country. This analytical framework allows recasting of current research at the intersection between innovation and international business. Of the 10 reverse innovation flows, six are new and have not been covered in the literature to date. The study addresses questions......’s portfolio of global innovation competence and capability. The implications for management are concerned with internal and external resistance to reverse innovation. Most significantly, while greater recognition and power of innovation in formerly subordinate organizational units is inconvenient to some...

  6. Elements of a Reversible Object-Oriented Language

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Axelsen, Holger Bock

    2016-01-01

    This paper presents initial ideas for the design and implementation of a reversible object-oriented language based on extending Janus with object-oriented concepts such as classes that encapsulate behavior and state, inheritance, virtual dispatching, as well as constructors. We show that virtual...... dispatching is a reversible decision mechanism easily translatable to a standard reversible programming model such as Janus, and we argue that reversible management of state can be accomplished using reversible constructors. The language is implemented in terms of translation to standard Janus programs....

  7. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    Directory of Open Access Journals (Sweden)

    Sara eDomingos

    2015-06-01

    Full Text Available Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc sprays was monitored in grapevine (Vitis vinifera L. growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid (TCA metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways.

  8. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria.

    Directory of Open Access Journals (Sweden)

    Erin L Seifert

    2010-03-01

    Full Text Available Incomplete or limited long-chain fatty acid (LCFA combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate.Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition. Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates and 9 microM palmitate plus tricarboxylic acid (TCA cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria.This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that

  9. Drift reversal capability in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Itoh, K.; Okamura, S.

    2002-10-01

    The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in experiments. (author)

  10. Drift reversal capability in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Itoh, K.; Okamura, S.; Matsuoka, K.; Nakajima, N.; Itoh, S.-I.; Neilson, G.H.; Zarnstorff, M.C.; Rewoldt, G.

    2003-01-01

    The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in experiments. (author)

  11. Kinetic Line Voronoi Operations and Their Reversibility

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Gold, Christopher

    2010-01-01

    In Geographic Information Systems the reversibility of map update operations has not been explored yet. In this paper we are using the Voronoi based Quad-edge data structure to define reversible map update operations. The reversibility of the map operations has been formalised at the lowest level...... mechanisms and dynamic map visualisations. In order to use the reversibility within the kinetic Voronoi diagram of points and open oriented line segments, we need to assure that reversing the map commands will produce exactly the changes in the map equivalent to the previous map states. To prove...... that reversing the map update operations produces the exact reverse changes, we show an isomorphism between the set of complex operations on the kinetic Voronoi diagram of points and open oriented line segments and the sets of numbers of new / deleted Voronoi regions induced by these operations, and its...

  12. QUANTITATIVE ION-PAIR EXTRACTION OF 4(5)-METHYLIMIDAZOLE FROM CARAMEL COLOR AND ITS DETERMINATION BY REVERSED-PHASE ION-PAIR LIQUID-CHROMATOGRAPHY

    DEFF Research Database (Denmark)

    Thomsen, Mohens; Willumsen, Dorthe

    1981-01-01

    A procedure for quantitative ion-pair extraction of 4(5)-methylimidazole from caramel colour using bis(2-ethylhexyl)phosphoric acid as ion-pairing agent has been developed. Furthermore, a reversed-phase ion-pair liquid chromatographic separation method has been established to analyse the content...

  13. Atrioventricular Pacemaker Lead Reversal

    Directory of Open Access Journals (Sweden)

    Mehmet K Aktas, MD

    2007-01-01

    Full Text Available During cardiac surgery temporary epicardial atrial and ventricular leads are placed in case cardiac pacing is required postoperatively. We present the first reported series of patients with reversal of atrioventricular electrodes in the temporary pacemaker without any consequent deleterious hemodynamic effect. We review the electrocardiographic findings and discuss the findings that lead to the discovery of atrioventricular lead reversal.

  14. Reversal modes in asymmetric Ni nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, B.; Pereira, A. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2012-11-15

    We have investigated the evolution of the magnetization reversal mechanism in asymmetric Ni nanowires as a function of their geometry. Circular nanowires are found to reverse their magnetization by the propagation of a vortex domain wall, while in very asymmetric nanowires the reversal is driven by the propagation of a transverse domain wall. The effect of shape asymmetry of the wire on coercivity and remanence is also studied. Angular dependence of the remanence and coercivity is also addressed. Tailoring the magnetization reversal mechanism in asymmetric nanowires can be useful for magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls. Finally, an alternative method to detect the presence of magnetic drops is proposed. - Highlights: Black-Right-Pointing-Pointer Asymmetry strongly modifies the magnetic behavior of a wire. Black-Right-Pointing-Pointer Very asymmetric nanowires reverse their magnetization by a transverse domain wall. Black-Right-Pointing-Pointer An alternative method to detect the presence of magnetic drops is proposed. Black-Right-Pointing-Pointer Tailoring the reversal mode in asymmetric nanowires can be useful for potential applications.

  15. Bile acid aspiration in suspected ventilator-associated pneumonia.

    Science.gov (United States)

    Wu, Yu-Chung; Hsu, Po-Kuei; Su, Kang-Cheng; Liu, Lung-Yu; Tsai, Cheng-Chien; Tsai, Shu-Ho; Hsu, Wen-Hu; Lee, Yu-Chin; Perng, Diahn-Warng

    2009-07-01

    The aims of this study were to measure the levels of bile acids in patients with suspected ventilator-associated pneumonia (VAP) and provide a possible pathway for neutrophilic inflammation to explain its proinflammatory effect on the airway. Bile acid levels were measured by spectrophotometric enzymatic assay, and liquid chromatography mass spectrometry was used to quantify the major bile acids. Alveolar cells were grown on modified air-liquid interface culture inserts, and bile acids were then employed to stimulate the cells. Reverse transcriptase polymerase chain reaction and Western blots were used to determine the involved gene expression and protein levels. The mean (+/- SE) concentration of total bile acids in tracheal aspirates was 6.2 +/- 2.1 and 1.1 +/- 0.4 mumol/L/g sputum, respectively, for patients with and without VAP (p VAP group (p aspiration may reduce the intensity of neutrophilic inflammation in intubated and mechanically ventilated patients in the ICU.

  16. Introduction to time reversal theory

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Theory and reaction mechanisms relevant to time reversal invariance are reviewed. Consequences of time reversal invariance are presented under the headings of CP tests, electromagnetic moments, weak emissions or absorptions, and scattering reactions. 8 refs., 4 figs

  17. Mitomycin C dissolved in a reversible thermosetting gel: target tissue concentrations in the rabbit eye.

    Science.gov (United States)

    Ichien, K; Yamamoto, T; Kitazawa, Y; Oguri, A; Ando, H; Kondo, Y

    1997-01-01

    To determine whether a new, reversible thermosetting gel enhances mitomycin C transfer to target ocular tissues in the rabbit eye. A 0.1 ml solution of mitomycin C containing 0.22 microgram, 2.9 micrograms, or 28 micrograms of the agent dissolved in a reversible thermosetting gel consisting of methylcellulose, citric acid, and polyethylene glycol was injected subconjunctivally in 30 New Zealand albino rabbits. Scleral and conjunctival tissues were excised at 0.5, 1, 2, 4, or 24 hours after the injection and mitomycin C concentrations in these tissues were determined by high performance liquid chromatography. The concentration over time was approximated to a single exponential curve, and initial mitomycin C concentrations, time constants, and half life values were determined. Finally, the areas under the curves (AUCs) between 0.5 and 24 hours were calculated. The mitomycin C concentrations in the target tissues were dose dependent and decreased rapidly over 24 hours. Both the initial mitomycin C concentrations as well as AUCs in these eyes treated with mitomycin C, dissolved in a reversible thermosetting gel, were higher than those in eyes treated similarly in a previous study in which the gel was not used. Applied subconjunctivally in the rabbit eye, mitomycin C dissolved in the reversible thermosetting gel enhanced transfer of the agent to the sclera and the conjunctiva.

  18. Extraction of Glycyrrhizic Acid and Glabridin from Licorice

    Directory of Open Access Journals (Sweden)

    Kyung Ho Row

    2008-04-01

    Full Text Available The extraction and separation conditions of glycyrrhizic acid and glabridin from licorice were investigated. By changing the different extraction solvents, procedures, times and temperature, the optimum extraction condition was established: the used of ethanol/water (30:70, v/v as an extraction solvent, and 60 min dipping time under 50°C. The extracts of licorice were separated and determined by reversed-phase high performance liquid chromatography with a methanol/water (70:30, v/v, containing 1% acetic acid as the mobile phase. Under the optimum extraction condition, 2.39 mg/g of glycyrrhizic acid and 0.92 mg/g of glabridin were extracted from Chinese licorice and the recoveries were 89.7% and 72.5% respectively.

  19. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway.

    Science.gov (United States)

    Tang, Xia-Li; Yan, Li; Zhu, Ling; Jiao, De-Min; Chen, Jun; Chen, Qing-Yong

    2017-09-01

    Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC) treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1) up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  20. Vasectomy reversal: a clinical update

    Directory of Open Access Journals (Sweden)

    Abhishek P Patel

    2016-01-01

    Full Text Available Vasectomy is a safe and effective method of contraception used by 42-60 million men worldwide. Approximately 3%-6% of men opt for a vasectomy reversal due to the death of a child or divorce and remarriage, change in financial situation, desire for more children within the same marriage, or to alleviate the dreaded postvasectomy pain syndrome. Unlike vasectomy, vasectomy reversal is a much more technically challenging procedure that is performed only by a minority of urologists and places a larger financial strain on the patient since it is usually not covered by insurance. Interest in this procedure has increased since the operating microscope became available in the 1970s, which consequently led to improved patency and pregnancy rates following the procedure. In this clinical update, we discuss patient evaluation, variables that may influence reversal success rates, factors to consider in choosing to perform vasovasostomy versus vasoepididymostomy, and the usefulness of vasectomy reversal to alleviate postvasectomy pain syndrome. We also review the use of robotics for vasectomy reversal and other novel techniques and instrumentation that have emerged in recent years to aid in the success of this surgery.

  1. Simultaneous, noninvasive, and transdermal extraction of urea and homocysteine by reverse iontophoresis

    Directory of Open Access Journals (Sweden)

    et al

    2011-02-01

    Full Text Available Congo Tak-Shing Ching1,2,3, Tzong-Ru Chou1, Tai-Ping Sun1,2, Shiow-Yuan Huang3, Hsiu-Li Shieh21Graduate Institute of Biomedicine and Biomedical Technology; 2Department of Electrical Engineering, National Chi Nan University, Nantou, Taiwan; 3Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan, Republic of ChinaBackground: Cardiovascular and kidney diseases are a global public health problem and impose a huge economic burden on health care services. Homocysteine, an amino acid, is associated with coronary heart disease, while urea is a harmful metabolic substance which can be used to reflect kidney function. Monitoring of these two substances is therefore very important. This in vitro study aimed to determine whether homocysteine is extractable transdermally and noninvasively, and whether homocysteine and urea can be extracted simultaneously by reverse iontophoresis.Methods: A diffusion cell incorporated with porcine skin was used for all experiments with the application of a direct current (dc and four different symmetrical biphasic direct currents (SBdc for 12 minutes via Ag/AgCl electrodes. The dc and the SBdc had a current density of 0.3 mA/cm2.Results: The SBdc has four different phase durations of 15 sec, 30 sec, 60 sec, and 180 sec. It was found that homocysteine can be transdermally extracted by reverse iontophoresis. Simultaneous extraction of homocysteine and urea by reverse iontophoresis is also possible.Conclusion: These results suggest that extraction of homocysteine and urea by SBdc are phase duration-dependent, and the optimum mode for simultaneous homocysteine and urea extraction is the SBdc with the phase duration of 60 sec.Keywords: reverse iontophoresis, homocysteine, urea, monitoring, noninvasive, transdermal

  2. On-line Determination of Hydrochloric Acid in Process Effluent ...

    African Journals Online (AJOL)

    Prof Van Staden

    The sample is sandwiched between two titrants in a holding coil, with the volume of the first base being twice to that of the second one and channeled by flow reversal through a reaction coil to the potentiometric sensor. A linear relationship between peak width and logarithm of the hydrochloric acid concentration was.

  3. Regulation of lipid synthesis in hepatocytes from lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Triscari, J.; Greenwood, M.R.; Sullivan, A.C.

    1981-01-01

    Fatty acid synthesis and CO 2 production were evaluated in hepatocytes from lean and obese Zucker rats in the presence of 3 H 2 O, and several carbon precursors. The incorporation of 3 H 2 O into fatty acids was greater in obese compared to lean rats in both the isolated hepatocyte and in vivo. The rates of incorporation of 3 H 2 O into fatty acids and cholesterol in hepatocytes of both lean and obese rats were linear for 2 hr, in the absence or presence of 16.7 mM glucose. Rates of fatty acid synthesis were higher in the presence of 16.7 mM glucose compared to the absence of glucose in both lean and obese while rates of cholesterol synthesis were similar. The incorporation of 3H2O into fatty acids, but not into cholesterol, was correlated with increasing glucose concentration and was 2 to three-fold higher in hepatocytes of obese compared to lean rats in the presence of several carbon precursors. Differences in CO 2 production between lean and obese rats suggested increased pentose phosphate shunt activity, decreased pyruvate dehydrogenase activity, and lower tricarboxylic acid cycle activity in obese rats. Fatty acid synthesis and CO 2 production from 3 H 2 O and [U- 14 C]glucose in hepatocytes of lean and obese rats was similarly elevated by insulin and depressed by glucagon at several concentrations, suggesting that hepatocytes of obese animals respond to these hormones. These data indicate that rates of hepatic fatty acid synthesis although higher in obese rats respond to modulation in a fashion which is similar to the response in lean rats. The present studies suggest that the oxidation of several carbon precursors in the tricarboxylic acid cycle is diminished in obese compared to lean rats, but pentose phosphate shunt activity is greater in the obese Zucker rats

  4. Molecular interaction of acetylcholinesterase with carnosic acid derivatives: a neuroinformatics study.

    Science.gov (United States)

    Merad, M; Soufi, W; Ghalem, S; Boukli, F; Baig, M H; Ahmad, K; Kamal, Mohammad A

    2014-04-01

    Alzheimer's disease is a progressive degenerative disease of the brain marked by gradual and irreversible declines in cognitive functions. Acetylcholinesterase (AChE) plays a biological role in the termination of nerve impulse transmissions at cholinergic synapses by rapid hydrolysis of its substrate, "acetylcholine". The deficit level of acetylcholine leads to deprived nerve impulse transmission. Thus the cholinesterase inhibitors would reverse the deficit in acetylcholine level and consequently may reverse the memory impairments, which is characteristic of the Alzheimer's disease. The molecular interactions between AChE and Carnosic acid, a well known antioxidant substance found in the leaves of the rosemary plant has always been an area of interest. Here in this study we have performed in silico approach to identify carnosic acid derivatives having the potential of being a possible drug candidate against AChE. The best candidates were selected on the basis of the results of different scoring functions.

  5. Reversible deep storage: reversibility options for storage in deep geological formations

    International Nuclear Information System (INIS)

    2009-01-01

    This report describes the definition approach to reversibility conditions, presents the main characteristics of high-activity and intermediate-activity long-lived wastes, describes the storage in deep geological formations (safety functions, general description of the storage centre), discusses the design options for the different types of wastes (container, storage module, handling processes, phenomenological analysis, monitoring arrangements) and the decision process in support reversibility (steering of the storage process, progressive development and step-by-step closing), and reports and discusses the researches concerning the memory of the storage site

  6. Chemical reactions in reverse micelle systems

    Science.gov (United States)

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  7. Neuroprotective evidence of alpha-lipoic acid and desvenlafaxine on memory deficit in a neuroendocrine model of depression.

    Science.gov (United States)

    de Sousa, Caren Nádia Soares; Meneses, Lucas Nascimento; Vasconcelos, Germana Silva; da Silva Medeiros, Ingridy; Silva, Márcia Calheiros Chaves; Mouaffak, Fayçal; Kebir, Oussama; da Silva Leite, Cláudio Manuel Gonçalves; Patrocinio, Manoel Cláudio Azevedo; Macedo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2018-05-07

    Cognitive impairment is present in patients with depression. We hypothesized that alpha-lipoic acid (ALA) can reduce cognitive impairment, especially when combined to antidepressants. Female mice received vehicle or corticosterone (CORT) 20 mg/kg, s.c. for 14 days. From the 15th to 21st day, the animals were divided in groups: vehicle, CORT, CORT+desvenlafaxine (DVS) 10 or 20 mg/kg, ALA 100 or 200 mg/kg, DVS10+ALA100, DVS20+ALA100, DVS10+ALA200, or DVS20+ALA200. Tail suspension (TST), social interaction (SIT), novel object recognition (NOR), and Y-maze tests were conducted. Acetylcholinesterase activity (AChE) was measured in the prefrontal cortex (PFC), hippocampus (HC), and striatum (ST). CORT caused depressive-like behavior, impairment in SIT, and cognitive deficits. Alpha-lipoic acid and DVS, alone or combined, reversed CORT effect on TST. In the NOR, ALA200 alone, DVS10+ALA100, or DVS10+ALA200 reversed the deficits in short-term memory, while DVS20 alone or DVS20+ALA200 reversed the deficits in long-term memory. In the Y-maze test, ALA200 alone, DVS20+ALA100, or DVS20+ALA200 reversed the deficits caused by CORT in the working memory. CORT increased AChE in the PFC, HC, and ST. ALA200 alone or DVS20+ALA200 reversed this effect in the PFC, while DVS20 or DVS20+ALA100 reversed this effect in the HC. In the ST, DVS10 or 20, alone or combined, and ALA100 reversed the effects of CORT. These results suggest that DVS+ALA, by reversing CORT-induced memory and social deficits, seems to be a promising therapy for the treatment of depression and reversal of cognitive impairment observed in this disorder.

  8. Status of time reversal invariance

    International Nuclear Information System (INIS)

    Henley, E.M.

    1989-01-01

    Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed. 30 refs., 2 figs., 1 tab

  9. Differential Gene Expression of Longan Under Simulated Acid Rain Stress.

    Science.gov (United States)

    Zheng, Shan; Pan, Tengfei; Ma, Cuilan; Qiu, Dongliang

    2017-05-01

    Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.

  10. High-performance liquid chromatography using reversed-phase stationary phases dynamically modified with organophosphorus compound for the separation and determination of lanthanoid elements

    International Nuclear Information System (INIS)

    Tsuyoshi, Akira; Akiba, Kenichi

    2000-01-01

    An acidic organophosphorus compound, 2-ethylhexylphosphonic acid mono-2-ethlhexyl ester (EHPA), has been applied to reversed-phase high-performance liquid chromatography (RP-HPLC). The reversed-phase stationary phase was dynamically modified with EHPA by flowing the mobile phase of an acetone-water mixture containing the extracting regent. The retention of lanthanoid elements was widely varied by changing the conditions of the mobile phase, i.e., the pH, the EHPA concentration and the acetone content. The selectivity of EHPA is well reflected to the chromatographic systems, and a precise separation of lanthanoid elements was achieved with sufficient resolution. The determination of Sm was examined in the presence of a large amount of Nd. A linear calibration graph was obtained for Sm at the level of 10 -7 mol dm -3 , in the presence of 1x10 -4 mol dm -3 of Nd. (author)

  11. Inflammation and ER Stress Regulate Branched-Chain Amino Acid Uptake and Metabolism in Adipocytes

    Science.gov (United States)

    Burrill, Joel S.; Long, Eric K.; Reilly, Brian; Deng, Yingfeng; Armitage, Ian M.; Scherer, Philipp E.

    2015-01-01

    Inflammation plays a critical role in the pathology of obesity-linked insulin resistance and is mechanistically linked to the effects of macrophage-derived cytokines on adipocyte energy metabolism, particularly that of the mitochondrial branched-chain amino acid (BCAA) and tricarboxylic acid (TCA) pathways. To address the role of inflammation on energy metabolism in adipocytes, we used high fat-fed C57BL/6J mice and lean controls and measured the down-regulation of genes linked to BCAA and TCA cycle metabolism selectively in visceral but not in subcutaneous adipose tissue, brown fat, liver, or muscle. Using 3T3-L1 cells, TNFα, and other proinflammatory cytokine treatments reduced the expression of the genes linked to BCAA transport and oxidation. Consistent with this, [14C]-leucine uptake and conversion to triglycerides was markedly attenuated in TNFα-treated adipocytes, whereas the conversion to protein was relatively unaffected. Because inflammatory cytokines lead to the induction of endoplasmic reticulum stress, we evaluated the effects of tunicamycin or thapsigargin treatment of 3T3-L1 cells and measured a similar down-regulation in the BCAA/TCA cycle pathway. Moreover, transgenic mice overexpressing X-box binding protein 1 in adipocytes similarly down-regulated genes of BCAA and TCA metabolism in vivo. These results indicate that inflammation and endoplasmic reticulum stress attenuate lipogenesis in visceral adipose depots by down-regulating the BCAA/TCA metabolism pathway and are consistent with a model whereby the accumulation of serum BCAA in the obese insulin-resistant state is linked to adipose inflammation. PMID:25635940

  12. Effect of phenols and carboxylic acids on photochromism of 1-alkyl-2-(arylazo)imidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Gayen, Pallab [Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Sinha, Chittaranjan, E-mail: c_r_sinha@yahoo.com [Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032 (India)

    2012-09-15

    Light irradiated trans-to-cis isomerization of 1-alkyl-2-(arylazo)imidazole in the presence of phenol, catechol, benzoic acid and salicylic acid (called co-factors) has been studied in this work. The rate of trans{yields}cis photoisomerization is decreased in the presence of co-factor in the medium and is dependent on the concentration of active quotient about photochrome. The decrease in rate follows catechol>benzoic acid>phenol>salicylic acid. This trend is due to the effects of dissociation ability of -O-H/-COOH, intermolecular association of the molecules etc. The reverse change, cis-to-trans, is very slow in light irradiation and has been carried out by a thermal process in the dark. The quantum yield of isomerization follows the same sequence of effects of co-factors. - Highlights: Black-Right-Pointing-Pointer Photoisomerisation of 1-alkyl-2-(arylazo)imidazoles, trans-to-cis, is described in this work. Black-Right-Pointing-Pointer The process is sensitive to the environment of the photochrome and the solution. Black-Right-Pointing-Pointer The rate of photoisomerization decreases as catechol>benzoic acid>phenol>salicylic acid. Black-Right-Pointing-Pointer The reverse isomerization, cis-to-trans is very slow with light and has been carried out with heat. Black-Right-Pointing-Pointer The activation energy is less than these values when carried out in fresh solution only.

  13. Comparative Evaluation of Three Homogenization Methods for Isolating Middle East Respiratory Syndrome Coronavirus Nucleic Acids From Sputum Samples for Real-Time Reverse Transcription PCR.

    Science.gov (United States)

    Sung, Heungsup; Yong, Dongeun; Ki, Chang Seok; Kim, Jae Seok; Seong, Moon Woo; Lee, Hyukmin; Kim, Mi Na

    2016-09-01

    Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1-35.4 with the PK-DNase method, 34.7-39.0 with the PBS method, and 33.9-38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both Phomogenizing sputum samples prior to RNA extraction.

  14. Helicase-dependent amplification of nucleic acids.

    Science.gov (United States)

    Cao, Yun; Kim, Hyun-Jin; Li, Ying; Kong, Huimin; Lemieux, Bertrand

    2013-10-11

    Helicase-dependent amplification (HDA) is a novel method for the isothermal in vitro amplification of nucleic acids. The HDA reaction selectively amplifies a target sequence by extension of two oligonucleotide primers. Unlike the polymerase chain reaction (PCR), HDA uses a helicase enzyme to separate the deoxyribonucleic acid (DNA) strands, rather than heat denaturation. This allows DNA amplification without the need for thermal cycling. The helicase used in HDA is a helicase super family II protein obtained from a thermophilic organism, Thermoanaerobacter tengcongensis (TteUvrD). This thermostable helicase is capable of unwinding blunt-end nucleic acid substrates at elevated temperatures (60° to 65°C). The HDA reaction can also be coupled with reverse transcription for ribonucleic acid (RNA) amplification. The products of this reaction can be detected during the reaction using fluorescent probes when incubations are conducted in a fluorimeter. Alternatively, products can be detected after amplification using a disposable amplicon containment device that contains an embedded lateral flow strip. Copyright © 2013 John Wiley & Sons, Inc.

  15. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism.

    Science.gov (United States)

    Mourtzakis, M; Graham, T E; González-Alonso, J; Saltin, B

    2008-08-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (PTCA cycle intermediates. In the UT thigh, peak exercise (vs. rest) induced an increase in fumarate (0.33+/-0.07 vs. 0.02+/-0.01 mmol/kg dry wt (dw), PTCA cycle, glutamate and TCA cycle intermediates do not directly affect VO2peak in either trained or untrained muscle.

  16. Towards a reversible functional language

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2012-01-01

    /equality operator also simplifies inverse computation and program inversion. We discuss the advantages of a reversible functional language using example programs, including run-length encoding. Program inversion is seen to be as lightweight as for imperative reversible languages and realized by recursive descent...

  17. How decision reversibility affects motivation

    NARCIS (Netherlands)

    Bullens, L.; van Harreveld, F.; Förster, J.; Higgins, T.E.

    2014-01-01

    The present research examined how decision reversibility can affect motivation. On the basis of extant findings, it was suggested that 1 way it could affect motivation would be to strengthen different regulatory foci, with reversible decision making, compared to irreversible decision making,

  18. Reversible networks in supramolecular polymers

    NARCIS (Netherlands)

    Havermans - van Beek, D.J.M.

    2007-01-01

    Non–covalent interactions between low molecular weight polymers form the basis of supramolecular polymers. The material properties of such polymers are determined by the strength and lifetime of the non–covalent reversible interactions. Due to the reversibility of the interactions between the low

  19. Reverse-Phase High-Performance Liquid Chromatographic Separation of Methylated and Non-Methylated Nucleic Acid Bases

    OpenAIRE

    Madyastha, Prema; Rao, Pratima; Deobagkar, DN; Madyastha, KM

    1983-01-01

    A high-performance liquid chromatographic sepration method is described for the detection of 5-methylcytosine and 6-methyladenine in nucleic acid ext. The bases were sepd. on a Waters $C18 \\mu$ Bondapak column with a water: methanol acetic acid system. Effluents were monitored by UV absorption at 254 nm. The bases were estd. by peak heights which are proportional to the amts. of the individual bases. The method is rapid, sensitive, easy to perform and reproducible.

  20. Low serum hyaluronic acid levels associated with spontaneous HBsAg clearance

    NARCIS (Netherlands)

    Harkisoen, S.; Arends, J. E.; van den Hoek, A.; van Erpecum, K. J.; Boland, G. J.; Hoepelman, A. I. M.

    2015-01-01

    Purpose The pathophysiological underlying mechanism of spontaneous HBsAg clearance in hepatitis B virus (HBV) infected patients is largely unknown. However, serum hyaluronic acid (sHA) plays a role in liver fibrosis progression and reversely could serve as a potential biomarker for HBsAg clearance.