WorldWideScience

Sample records for reverse transcription loop-mediated

  1. Detection of Enterovirus 71 gene from clinical specimens by reverse-transcription loop-mediated isothermal amplification

    OpenAIRE

    D Wang; X Wang; Y Geng; C An

    2014-01-01

    Purpose : The objective of this study was to develop a sensitive, specific and rapid approach to diagnose hand foot and mouth disease (HFMD) for an early treatment by using loop-mediated isothermal amplification (LAMP) technique. Materials and Methods : A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for detecting EV71 virus was developed, the specificity and sensitivity of RT-LAMP was tested, and the clinical specimens was assayed by the RT-LAMP comparing with conven...

  2. Visual Detection of Potato leafroll virus by One-step Reverse Transcription Loop-Mediated Isothermal Amplification of DNA with Hydroxynaphthol Blue Dye

    NARCIS (Netherlands)

    Ahmadi, S.; Almasi, A.M.; Fatehi, F.; Struik, P.C.; Moradi, A.

    2013-01-01

    Loop-mediated isothermal amplification (LAMP) assay is a novel technique for amplifying DNA under constant temperature, with high specificity, sensitivity, rapidity and efficiency. We applied reverse transcription loop-mediated isothermal amplification (RT-LAMP) to visually detect Potato leafroll

  3. Rapid detection of genetically diverse tomato black ring virus isolates using reverse transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Budzyńska, Daria; Borodynko, Natasza; Pospieszny, Henryk

    2015-12-01

    A reverse transcription loop-mediated isothermal amplification assay (RT-LAMP) has been developed for detection of tomato black ring virus (TBRV) isolates collected from different hosts. One-step RT-LAMP was performed with a set of four primers, the design of which was based on the coat protein gene. Results of RT-LAMP were visualized by direct staining of products with fluorescent dyes, agarose gel electrophoresis, and analysis of amplification curves. The sensitivity of RT-LAMP was 100-fold greater than that of RT-PCR. The RT-LAMP assay developed here is a useful and practical method for diagnosis of TBRV.

  4. Rapid detection of Prunus necrotic ringspot virus using magnetic nanoparticle-assisted reverse transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Zong, Xiaojuan; Wang, Wenwen; Wei, Hairong; Wang, Jiawei; Chen, Xin; Xu, Li; Zhu, Dongzi; Tan, Yue; Liu, Qingzhong

    2014-11-01

    Prunus necrotic ringspot virus (PNRSV) has seriously reduced the yield of Prunus species worldwide. In this study, a highly efficient and specific two-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect PNRSV. Total RNA was extracted from sweet cherry leaf samples using a commercial kit based on a magnetic nanoparticle technique. Transcripts were used as the templates for the assay. The results of this assay can be detected using agarose gel electrophoresis or by assessing in-tube fluorescence after adding SYBR Green I. The assay is highly specific for PNRSV, and it is more sensitive than reverse-transcription polymerase chain reaction (RT-PCR). Restriction enzyme digestion verified further the reliability of this RT-LAMP assay. To our knowledge, this is the first report of the application of RT-LAMP to PNRSV detection in Prunus species. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Detection of enterovirus 71 gene from clinical specimens by reverse-transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Wang, D; Wang, X; Geng, Y; An, C

    2014-01-01

    The objective of this study was to develop a sensitive, specific and rapid approach to diagnose hand foot and mouth disease (HFMD) for an early treatment by using loop-mediated isothermal amplification (LAMP) technique. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for detecting EV71 virus was developed, the specificity and sensitivity of RT-LAMP was tested, and the clinical specimens was assayed by the RT-LAMP comparing with conventional reverse-transcription polymerase chain reaction (RT-PCR) and real-time PCR. A total of 116 clinical specimens from the suspected HFMD individual were detected with the RT-LAMP. The detection rate for EV71 was 56.89% by RT-LAMP, 41.38% by real-time PCR and 34.48% by RT-PCR. The minimum detection limit of RT-LAMP was 0.01 PFU, both of RT-PCR and real-time PCR was 0.1PFU. Non-cross-reactive amplification with other enteroviruses was detected in the survey reports. The effectiveness of RT-LAMP is higher than RT-PCR and real-time PCR. The protocol is easy to operate and time saving. It was not an expensive instrument, which was needed; it is an applicable method for rapid diagnosis of the disease, especially in resource-poor countries or in developing countries.

  6. Detection of Enterovirus 71 gene from clinical specimens by reverse-transcription loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    D Wang

    2014-01-01

    Full Text Available Purpose : The objective of this study was to develop a sensitive, specific and rapid approach to diagnose hand foot and mouth disease (HFMD for an early treatment by using loop-mediated isothermal amplification (LAMP technique. Materials and Methods : A reverse-transcription loop-mediated isothermal amplification (RT-LAMP for detecting EV71 virus was developed, the specificity and sensitivity of RT-LAMP was tested, and the clinical specimens was assayed by the RT-LAMP comparing with conventional reverse-transcription polymerase chain reaction (RT-PCR and real-time PCR. Results : A total of 116 clinical specimens from the suspected HFMD individual were detected with the RT-LAMP. The detection rate for EV71 was 56.89% by RT-LAMP, 41.38% by real-time PCR and 34.48% by RT-PCR. The minimum detection limit of RT-LAMP was 0.01 PFU, both of RT-PCR and real-time PCR was 0.1PFU. Non-cross-reactive amplification with other enteroviruses was detected in the survey reports. Conclusions : The effectiveness of RT-LAMP is higher than RT-PCR and real-time PCR. The protocol is easy to operate and time saving. It was not an expensive instrument, which was needed; it is an applicable method for rapid diagnosis of the disease, especially in resource-poor countries or in developing countries.

  7. Novel reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Dukes, J.P.; King, D.P.; Alexandersen, Søren

    2006-01-01

    Speed is paramount in the diagnosis of foot-and-mouth disease (FMD) and simplicity is required if a test is to be deployed in the field. The development of a one-step, reverse transcription loop-mediated amplification (RT-LAMP) assay enables FMD virus (FMDV) to be detected in under an hour...... in a single tube without thermal cycling. A fragment of the 3D RNA polymerase gene of the virus is amplified at 65 degrees C in the presence of a primer mixture and both reverse transcriptase and Bst DNA polymerase. Compared with real-time RT-PCR, RT-LAMP was consistently faster, and ten copies of FMDV...... vesicular diseases and from that of genetically related picornaviruses. Diagnostic sensitivity was validated by the amplification of reference FMDV strains and archival material from field cases of FMD. In comparison with the performance of the established diagnostic TaqMan (R) assay, RT-LAMP appears...

  8. Detection of foot-and-mouth disease virus rna by reverse transcription loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    Chen Hao-tai

    2011-11-01

    Full Text Available Abstract A reverse transcription loop-mediated isothermal amplification (RT-LAMP assay was developed for foot-and-mouth disease virus (FMDV RNA. The amplification was able to finish in 45 min under isothermal condition at 64°C by employing a set of four primers targeting FMDV 2B. The assay showed higher sensitivity than RT-PCR. No cross reactivity was observed from other RNA viruses including classical swine fever virus, swine vesicular disease, porcine reproductive and respiratory syndrome virus, Japanese encephalitis virus. Furthermore, the assay correctly detected 84 FMDV positive samples but not 65 FMDV negative specimens. The result indicated the potential usefulness of the technique as a simple and rapid procedure for the detection of FMDV infection.

  9. Development of mRNA-based body fluid identification using reverse transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Satoh, Tetsuya; Kouroki, Seiya; Ogawa, Keita; Tanaka, Yorika; Matsumura, Kazutoshi; Iwase, Susumu

    2018-04-25

    Identifying body fluids from forensic samples can provide valuable evidence for criminal investigations. Messenger RNA (mRNA)-based body fluid identification was recently developed, and highly sensitive parallel identification using reverse transcription polymerase chain reaction (RT-PCR) has been described. In this study, we developed reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a simple, rapid assay for identifying three common forensic body fluids, namely blood, semen, and saliva, and evaluated its specificity and sensitivity. Hemoglobin beta (HBB), transglutaminase 4 (TGM4), and statherin (STATH) were selected as marker genes for blood, semen, and saliva, respectively. RT-LAMP could be performed in a single step including both reverse transcription and DNA amplification under an isothermal condition within 60 min, and detection could be conveniently performed via visual fluorescence. Marker-specific amplification was performed in each assay, and no cross-reaction was observed among five representative forensically relevant body fluids. The detection limits of the assays were 0.3 nL, 30 nL, and 0.3 μL for blood, semen, and saliva, respectively, and their sensitivities were comparable with those of RT-PCR. Furthermore, RT-LAMP assays were applicable to forensic casework samples. It is considered that RT-LAMP is useful for body fluid identification.

  10. Development of a Rapid Detection Method for Potato virus X by Reverse Transcription Loop-Mediated Isothermal Amplification

    Directory of Open Access Journals (Sweden)

    Joojin Jeong

    2015-09-01

    Full Text Available The primary step for efficient control of viral diseases is the development of simple, rapid, and sensitive virus detection. Reverse transcription loop-mediated isothermal amplification (RT-LAMP has been used to detect viral RNA molecules because of its simplicity and high sensitivity for a number of viruses. RT-LAMP for the detection of Potato virus X (PVX was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR to demonstrate its advantages over RT-PCR. RT-LAMP reactions were conducted with or without a set of loop primers since one out of six primers showed PVX specificity. Based on real-time monitoring, RT-LAMP detected PVX around 30 min, compared to 120 min for RT-PCR. By adding a fluorescent reagent during the reaction, the extra step of visualization by gel electrophoresis was not necessary. RT-LAMP was conducted using simple inexpensive instruments and a regular incubator to evaluate whether RNA could be amplified at a constant temperature instead of using an expensive thermal cycler. This study shows the potential of RT-LAMP for the diagnosis of viral diseases and PVX epidemiology because of its simplicity and rapidness compared to RT-PCR.

  11. Visual detection of the human metapneumovirus using reverse transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye

    Directory of Open Access Journals (Sweden)

    Wang Xiang

    2012-07-01

    Full Text Available Abstract Background Human metapneumovirus (hMPV is a major cause of acute respiratory infections ranging from wheezing to bronchiolitis and pneumonia in children worldwide. The objective of this study is to develop a visual reverse transcription loop-mediated isothermal amplification (RT-LAMP assay for the detection of hMPV and applied to the clinical samples. Results In this study, visual RT-LAMP assay for hMPV was performed in one step with the addition of hydroxynaphthol blue (HNB, and were used to detect respiratory samples. Six primers, including two outer primers (F3 and B3, two inner primers (FIP, BIP and two loop primers (LF and LB, were designed for hMPV N gene by the online software. Moreover, the RT-LAMP assay showed good specificity and no cross-reactivity was observed with human rhinovirus (HRV, human respiratory syncytial Virus (RSV, or influenza virus A/PR/8/34 (H1N1. The detection limit of the RT-LAMP assay was approximately ten viral RNA copies, lower than that of traditional reverse transcriptase polymerase chain reaction (RT-PCR 100 RNA copies. In the 176 nasopharyngeal samples, 23 (13.1% were conformed as hMPV positive by RT-LAMP, but 18 (10.2% positive by RT-PCR. Conclusion Compared with conventional RT-PCR, the visual hMPV RT-LAMP assay performed well in the aspect of detect time, sensitivity, specificity and visibility. It is anticipated that the RT-LAMP will be used for clinical tests in hospital or field testing during outbreaks and in emergency.

  12. Rapid typing of foot-and-mouth disease serotype Asia 1 by reverse transcription loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    Chen Hao-tai

    2011-10-01

    Full Text Available Abstract A reverse transcriptase loop-mediated isothermal amplification (RT-LAMP assay was rapidly used to detect serotype Asia 1 of foot-and-mouth disease virus (FMDV within 45 min at 61°C. All FMDV serotype Asia 1 reference strains were positive by RT-LAMP, while other viruses such as FMDV serotypes O, C, A and classical swine fever virus, swine vesicular disease virus, porcine reproductive and respiratory syndrome virus and Japanese encephalitis virus remained negative. Furthermore, FMDV sreotype Asia 1 positive samples were able to detect by RT-LAMP assay. This RT-LAMP assay may be suitable particularly for diagnosis of FMDV serotype Asia 1 infection in field stations.

  13. Application of a Real-time Reverse Transcription Loop Mediated Amplification Method to the Detection of Rabies Virus in Arctic Foxes in Greenland

    DEFF Research Database (Denmark)

    Wakeley, Philip; Johnson, Nicholas; Rasmussen, Thomas Bruun

    Reverse transcription loop mediated amplification (RT-LAMP) offers a rapid, isothermal method for amplification of virus RNA. In this study a panel of positive rabies virus samples originally prepared from arctic fox brain tissue was assessed for the presence of rabies viral RNA using a real time...... RT-LAMP. The method had previously been shown to work with samples from Ghana which clustered with cosmopolitan lineage rabies viruses but the assay had not been assessed using samples from animals infected with rabies from the arctic region. The assay is designed to amplify both cosmopolitan strains...... and arctic-like strains of classical rabies virus due to the primer design and is therefore expected to be universally applicable independent of region of the world where the virus is isolated. Of the samples tested all were found to be positive after incubation for 25 to 30 minutes. The method made use...

  14. Detection of Coconut cadang-cadang viroid (CCCVd) in oil palm by reverse transcription loop-mediated isothermal amplification (RT-LAMP).

    Science.gov (United States)

    Thanarajoo, Sathis Sri; Kong, Lih Ling; Kadir, Jugah; Lau, Wei Hongi; Vadamalai, Ganesan

    2014-06-01

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) detected Coconut cadang-cadang viroid (CCCVd) within 60 min at 60 °C in total nucleic acid extracted from oil palm leaves infected with CCCVd. Positive reactions showed colour change from orange to green in the reaction mix after the addition of fluorescent reagent, and a laddering pattern band on 2% agarose gel electrophoresis. Conventional RT-PCR with LAMP primers produced amplicons with a sequence identical to the 297-nt CCCVd oil palm variant with the primers being specific for CCCVd and not for other viroids such as PSTVd and CEVd. RT-LAMP was found to be rapid and specific for detecting oil palm CCCVd. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Establishment of reverse transcription loop-mediated isothermal amplification for rapid detection and differentiation of canine distemper virus infected and vaccinated animals.

    Science.gov (United States)

    Liu, Da-Fei; Liu, Chun-Guo; Tian, Jin; Jiang, Yi-Tong; Zhang, Xiao-Zhan; Chai, Hong-Liang; Yang, Tian-Kuo; Yin, Xiu-Chen; Zhang, Hong-Ying; Liu, Ming; Hua, Yu-Ping; Qu, Lian-Dong

    2015-06-01

    Although widespread vaccination against canine distemper virus (CDV) has been conducted for many decades, several canine distemper outbreaks in vaccinated animals have been reported frequently. In order to detect and differentiate the wild-type and vaccine strains of the CDV from the vaccinated animals, a novel reverse transcription loop-mediated isothermal amplification (RT-LAMP) method was developed. A set of four primers-two internal and two external-were designed to target the H gene for the specific detection of wild-type CDV variants. The CDV-H RT-LAMP assay rapidly amplified the target gene, within 60 min, using a water bath held at a constant temperature of 65°C. The assay was 100-fold more sensitive than conventional RT-PCR, with a detection limit of 10(-1)TCID50ml(-1). The system showed a preference for wild-type CDV, and exhibited less sensitivity to canine parvovirus, canine adenovirus type 1 and type 2, canine coronavirus, and canine parainfluenza virus. The assay was validated using 102 clinical samples obtained from vaccinated dog farms, and the results were comparable to a multiplex nested RT-PCR assay. The specific CDV-H RT-LAMP assay provides a simple, rapid, and sensitive tool for the detection of canines infected with wild-type CDV from canines vaccinated with attenuated vaccine. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Visual detection of West Nile virus using reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip

    Directory of Open Access Journals (Sweden)

    Zengguo eCao

    2016-04-01

    Full Text Available West Nile virus (WNV causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification methodfor WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF was developed to detect the envelope (E gene of WNV. The RT-LAMP-VF assay could detect 102 copies/μl ofan WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubationof the amplification product on the visualization strip, and no cross-reaction with other closely related members of theFlavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV.The assay produced sensitivities of 101.5TCID50/ml and 101.33 TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.

  17. Development of a Reverse Transcription Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Subtype H7N9 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Hongmei Bao

    2014-01-01

    Full Text Available A novel influenza A (H7N9 virus has emerged in China. To rapidly detect this virus from clinical samples, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP method for the detection of the H7N9 virus. The minimum detection limit of the RT-LAMP assay was 0.01 PFU H7N9 virus, making this method 100-fold more sensitive to the detection of the H7N9 virus than conventional RT-PCR. The H7N9 virus RT-LAMP assays can efficiently detect different sources of H7N9 influenza virus RNA (from chickens, pigeons, the environment, and humans. No cross-reactive amplification with the RNA of other subtype influenza viruses or of other avian respiratory viruses was observed. The assays can effectively detect H7N9 influenza virus RNA in drinking water, soil, cloacal swab, and tracheal swab samples that were collected from live poultry markets, as well as human H7N9 virus, in less than 30 min. These results suggest that the H7N9 virus RT-LAMP assays were efficient, practical, and rapid diagnostic methods for the epidemiological surveillance and diagnosis of influenza A (H7N9 virus from different resource samples.

  18. Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of avian influenza virus subtype H7.

    Science.gov (United States)

    Bao, Hongmei; Wang, Xiurong; Zhao, Yuhui; Sun, Xiaodong; Li, Yanbing; Xiong, Yongzhong; Chen, Hualan

    2012-01-01

    A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7 avian influenza virus (H7 AIV) isotype was developed. The minimum detection limit of the RT-LAMP assay was 0.1-0.01 PFU per reaction for H7 AIV RNA, making this assay 100-fold more sensitive than the conventional RT-PCR method. This RT-LAMP assay also has the capacity to detect both high- and low-pathogenic H7 AIV strains. Using a pool of RNAs extracted from influenza viruses corresponding to all 15 HA subtypes (in addition to other avian pathogenic viruses), the RT-LAMP system was confirmed to amplify only H7 AIV RNA. Furthermore, specific pathogen free (SPF) chickens were infected artificially with H7 AIV, throat and cloacal swabs were collected, and viral shedding was examined using viral isolation, RT-PCR and RT-LAMP. Shedding was detected following viral isolation and RT-LAMP one day after infection, whereas viral detection using RT-PCR was effective only on day 3 post-infection. These results indicate that the RT-LAMP method could facilitate epidemiological surveillance and the rapid diagnosis of the avian influenza subtype H7. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Detection of Cucurbit chlorotic yellows virus from Bemisia tabaci captured on sticky traps using reverse transcription loop-mediated isothermal amplification (RT-LAMP) and simple template preparation.

    Science.gov (United States)

    Okuda, Mitsuru; Okuda, Shiori; Iwai, Hisashi

    2015-09-01

    Cucurbit chlorotic yellows virus (CCYV) of the genus Crinivirus within the family Closteroviridae is an emerging infectious agent of cucurbits leading to severe disease and significant economic losses. Effective detection and identification methods for this virus are urgently required. In this study, a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect CCYV from its vector Bemisia tabaci. LAMP primer sets to detect CCYV were evaluated for their sensitivity and specificity, and a primer set designed from the HSP70h gene with corresponding loop primers were selected. The RT-LAMP assay was applied to detect CCYV from viruliferous B. tabaci trapped on sticky traps. A simple extraction procedure using RNAsecure™ was developed for template preparation. CCYV was detected in all of the B. tabaci 0, 1, 7 and 14 days after they were trapped. Although the rise of turbidity was delayed in reactions using RNA from B. tabaci trapped for 7 and 14 days compared with those from 0 and 1 day, the DNA amplification was sufficient to detect CCYV in all of the samples. These findings therefore present a simple template preparation method and an effective RT-LAMP assay, which can be easily and rapidly performed to monitor CCYV-viruliferous B. tabaci in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Visual detection of human enterovirus 71 subgenotype C4 and Coxsackievirus A16 by reverse transcription loop-mediated isothermal amplification with the hydroxynaphthol blue dye.

    Science.gov (United States)

    Nie, Kai; Zhang, Yong; Luo, Le; Yang, Meng-Jie; Hu, Xiu-Mei; Wang, Miao; Zhu, Shuang-Li; Han, Feng; Xu, Wen-Bo; Ma, Xue-Jun

    2011-08-01

    A sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for rapid visual detection of human enterovirus 71 subgenotype C4 (EV71-C4) and Coxsackievirus A16 (CVA16) infection, respectively. The reaction was performed in one step in a single tube at 65°C for 60 min with the addition of the hydroxynaphthol blue (HNB) dye prior to amplification. The detection limits of the RT-LAMP assay were 0.33 and 1.58 of a 50% tissue culture infective dose (TCID(50)) per reaction based on 10-fold dilutions of a titrated EV71 or CVA16 strain, respectively. No cross-reaction was observed with Coxsackievirus A (CVA) viruses (CVA2, 4, 5, 7, 9, 10, 14, and 24), Coxsackievirus B (CVB) viruses (CVB1,2,3,4, and 5) or ECHO viruses (ECHO3, 6, 11, and 19). The assay was further evaluated with 47 clinical stool specimens diagnosed previously with EV71, CVA16 or other human enterovirus infections. Virus isolates from stool samples were confirmed by virus neutralization testing and sequencing. RT-LAMP with HNB dye was demonstrated to be a sensitive and cost-effective assay for rapid visual detection of human EV71-C4 and CVA16. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP on a Chip from Whole Blood

    Directory of Open Access Journals (Sweden)

    Gregory L. Damhorst

    2015-09-01

    Full Text Available Viral load measurements are an essential tool for the long-term clinical care of human immunodeficiency virus (HIV-positive individuals. The gold standards in viral load instrumentation, however, are still too limited by their size, cost, and sophisticated operation for these measurements to be ubiquitous in remote settings with poor healthcare infrastructure, including parts of the world that are disproportionately affected by HIV infection. The challenge of developing a point-of-care platform capable of making viral load more accessible has been frequently approached but no solution has yet emerged that meets the practical requirements of low cost, portability, and ease-of-use. In this paper, we perform reverse-transcription loop-mediated isothermal amplification (RT-LAMP on minimally processed HIV-spiked whole blood samples with a microfluidic and silicon microchip platform, and perform fluorescence measurements with a consumer smartphone. Our integrated assay shows amplification from as few as three viruses in a ~ 60 nL RT-LAMP droplet, corresponding to a whole blood concentration of 670 viruses per μL of whole blood. The technology contains greater power in a digital RT-LAMP approach that could be scaled up for the determination of viral load from a finger prick of blood in the clinical care of HIV-positive individuals. We demonstrate that all aspects of this viral load approach, from a drop of blood to imaging the RT-LAMP reaction, are compatible with lab-on-a-chip components and mobile instrumentation.

  2. Reverse transcription loop-mediated isothermal amplification assays for rapid identification of eastern and western strains of bluetongue virus in India.

    Science.gov (United States)

    Maan, S; Maan, N S; Batra, K; Kumar, A; Gupta, A; Rao, Panduranga P; Hemadri, Divakar; Reddy, Yella Narasimha; Guimera, M; Belaganahalli, M N; Mertens, P P C

    2016-08-01

    Bluetongue virus (BTV) infects all ruminants, including cattle, goats and camelids, causing bluetongue disease (BT) that is often severe in naïve deer and sheep. Reverse-transcription-loop-mediated-isothermal-amplification (RT-LAMP) assays were developed to detect eastern or western topotype of BTV strains circulating in India. Each assay uses four primers recognizing six distinct sequences of BTV genome-segment 1 (Seg-1). The eastern (e)RT-LAMP and western (w)RT-LAMP assay detected BTV RNA in all positive isolates that were tested (n=52, including Indian BTV-1, -2, -3, -5, -9, -10, -16, -21 -23, and -24 strains) with high specificity and efficiency. The analytical sensitivity of the RT-LAMP assays is comparable to real-time RT-PCR, but higher than conventional RT-PCR. The accelerated eRT-LAMP and wRT-LAMP assays generated detectable levels of amplified DNA, down to 0.216 fg of BTV RNA template or 108 fg of BTV RNA template within 60-90min respectively. The assays gave negative results with RNA from foot-and-mouth-disease virus (FMDV), peste des petits ruminants virus (PPRV), or DNA from Capripox viruses and Orf virus (n=10), all of which can cause clinical signs similar to BT. Both RT-LAMP assays did not show any cross-reaction among themselves. The assays are rapid, easy to perform, could be adapted as a 'penside' test making them suitable for 'front-line' diagnosis, helping to identify and contain field outbreaks of BTV. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor

    Directory of Open Access Journals (Sweden)

    Ge Y

    2017-04-01

    Full Text Available Yiyue Ge,1 Qiang Zhou,2 Kangchen Zhao,1 Ying Chi,1 Bin Liu,3 Xiaoyan Min,4 Zhiyang Shi,1 Bingjie Zou,2 Lunbiao Cui1 1Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, 2Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, 3Department of Biomedical Engineering, Nanjing Medical University, 4Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China Abstract: Influenza virus infections represent a worldwide public health and economic problem due to the significant morbidity and mortality caused by seasonal epidemics and pandemics. Sensitive and convenient methodologies for detection of influenza viruses are essential for further disease control. Loop-mediated isothermal amplification (LAMP is the most commonly used method of nucleic acid isothermal amplification. However, with regard to multiplex LAMP, differentiating the ladder-like LAMP products derived from multiple targets is still challenging today. The requirement of specialized instruments has further hindered the on-site application of multiplex LAMP. We have developed an integrated assay coupling multiplex reverse transcription LAMP with cascade invasive reaction using nanoparticles (mRT-LAMP-CIRN as a sensor for the detection of three subtypes of influenza viruses: A/H1N1pdm09, A/H3 and influenza B. The analytic sensitivities of the mRT-LAMP-CIRN assay were 101 copies of RNA for both A/H1N1pdm09 and A/H3, and 102 copies of RNA for influenza B. This assay demonstrated highly specific detection of target viruses and could differentiate them from other genetically or clinically related viruses. Clinical specimen analysis showed the mRT-LAMP-CIRN assay had an overall sensitivity and specificity of 98.3% and 100%, respectively. In summary, the mRT-LAMP-CIRN assay is

  4. Rapid colorimetric detection of Zika virus from serum and urine specimens by reverse transcription loop-mediated isothermal amplification (RT-LAMP.

    Directory of Open Access Journals (Sweden)

    Amanda E Calvert

    Full Text Available Zika virus (ZIKV has emerged as a major global public health concern in the last two years due to its link as a causative agent of human birth defects. Its rapid expansion into the Western Hemisphere as well as the ability to be transmitted from mother to fetus, through sexual transmission and possibly through blood transfusions has increased the need for a rapid and expansive public health response to this unprecedented epidemic. A non-invasive and rapid ZIKV diagnostic screening assay that can be performed in a clinical setting throughout pregnancy is vital for prenatal care of women living in areas of the world where exposure to the virus is possible. To meet this need we have developed a sensitive and specific reverse transcriptase loop-mediated isothermal amplification (RT-LAMP assay to detect ZIKV RNA in urine and serum with a simple visual detection. RT-LAMP results were shown to have a limit of detection 10-fold higher than qRT-PCR. As little as 1.2 RNA copies/μl was detected by RT-LAMP from a panel of 178 diagnostic specimens. The assay was shown to be highly specific for ZIKV RNA when tested with diagnostic specimens positive for dengue virus (DENV and chikungunya virus (CHIKV. The assay described here illustrates the potential for a fast, reliable, sensitive and specific assay for the detection of ZIKV from urine or serum that can be performed in a clinical or field setting with minimal equipment and technological expertise.

  5. Evaluation of the reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a screening method for the detection of influenza viruses in the fecal materials of water birds.

    Science.gov (United States)

    Yoshida, Hiromi; Sakoda, Yoshihiro; Endo, Mayumi; Motoshima, Masayuki; Yoshino, Fumi; Yamamoto, Naoki; Okamatsu, Masatoshi; Soejima, Takahiro; Senba, Syouhei; Kanda, Hidetoshi; Kida, Hiroshi

    2011-06-01

    Migratory water birds are a natural reservoir for influenza A viruses. Viruses replicate in the intestines of ducks and are shed with the fecal materials. Virus isolation from collected fecal materials, therefore, is an integral part of the surveillance of avian influenza in water birds. In the present study, reverse transcription loop-mediated isothermal amplification (RT-LAMP) was assessed for its usefulness in detecting the RNA of influenza A viruses in fecal materials. It was found that, RT-LAMP specifically and sensitively detects the matrix gene of influenza A viruses. Influenza A viruses were isolated from the fecal materials in which viral RNA were detected by RT-LAMP in 35 min. The present findings indicate that RT-LAMP is useful as a high throughput screening method for field samples prior to virus isolation, allowing the processing of hundreds of samples per day.

  6. Detection of BCR-ABL Fusion mRNA Using Reverse Transcriptase Loop-mediated Isothermal Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, L C; Hall, S; Kohlgruber, A; Urbin, S; Torres, C; Wilson, P

    2011-12-08

    RT-PCR is commonly used for the detection of Bcr-Abl fusion transcripts in patients diagnosed with chronic myelogenous leukemia, CML. Two fusion transcripts predominate in CML, Br-Abl e13a2 and e14a2. They have developed reverse transcriptase isothermal loop-mediated amplification (RT-LAMP) assays to detect these two fusion transcripts along with the normal Bcr transcript.

  7. Development and Evaluation of Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) Assay Coupled with a Portable Device for Rapid Diagnosis of Ebola Virus Disease in Guinea

    Science.gov (United States)

    Kurosaki, Yohei; Magassouba, N’Faly; Oloniniyi, Olamide K.; Cherif, Mahamoud S.; Sakabe, Saori; Takada, Ayato; Hirayama, Kenji; Yasuda, Jiro

    2016-01-01

    Given the current absence of specific drugs or vaccines for Ebola virus disease (EVD), rapid, sensitive, and reliable diagnostic methods are required to stem the transmission chain of the disease. We have developed a rapid detection assay for Zaire ebolavirus based on reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and coupled with a novel portable isothermal amplification and detection platform. The RT-LAMP assay is based on primer sets that target the untranscribed trailer region or nucleoprotein coding region of the viral RNA. The test could specifically detect viral RNAs of Central and West African Ebola virus strains within 15 minutes with no cross-reactivity to other hemorrhagic fever viruses and arboviruses, which cause febrile disease. The assay was evaluated using a total of 100 clinical specimens (serum, n = 44; oral swab, n = 56) collected from suspected EVD cases in Guinea. The specificity of this diagnostic test was 100% for both primer sets, while the sensitivity was 100% and 97.9% for the trailer and nucleoprotein primer sets, respectively, compared with a reference standard RT-PCR test. These observations suggest that our diagnostic assay is useful for identifying EVD cases, especially in the field or in settings with insufficient infrastructure. PMID:26900929

  8. Rapid and sensitive detection of novel avian-origin influenza A (H7N9 virus by reverse transcription loop-mediated isothermal amplification combined with a lateral-flow device.

    Directory of Open Access Journals (Sweden)

    Yiyue Ge

    Full Text Available A severe disease in humans caused by a novel avian-origin influenza A (H7N9 virus emerged in China recently, which has caused at least 128 cases and 26 deaths. Rapid detection of the novel H7N9 virus is urgently needed to differentiate the disease from other infections, and to facilitate infection control as well as epidemiologic investigations. In this study, a reverse transcription loop-mediated isothermal amplification combined with a lateral flow device (RT-LAMP-LFD assay to rapidly detect H7N9 virus was developed and evaluated. The RT-LAMP primers were designed to target the haemagglutinin (HA and neuraminidase (NA genes of H7N9 virus. Results of 10-fold dilution series assays showed that analysis of RT-LAMP products by the LFD method was as sensitive as real-time turbidity detection, and that the analytic sensitivities of the HA and NA RT-LAMP assays were both 10 copies of synthetic RNA. Furthermore, both the assays showed 100% clinical specificity for identification of H7N9 virus. The performance characteristics of the RT-LAMP-LFD assay were evaluated with 80 clinical specimens collected from suspected H7N9 patients. The NA RT-LAMP-LFD assay was more sensitive than real time RT-PCR assay. Compared with a combination of virus culture and real-time RT-PCR, the sensitivity, specificity, positive predictive value, and negative predictive value of the RT-LAMP-LFD assay were all 100%. Overall, The RT-LAMP-LFD assay established in this study can be used as a reliable method for early diagnosis of the avian-origin influenza A (H7N9 virus infection.

  9. Preliminary validation of direct detection of foot-and-mouth disease virus within clinical samples using reverse transcription loop-mediated isothermal amplification coupled with a simple lateral flow device for detection.

    Directory of Open Access Journals (Sweden)

    Ryan A Waters

    Full Text Available Rapid, field-based diagnostic assays are desirable tools for the control of foot-and-mouth disease (FMD. Current approaches involve either; 1 Detection of FMD virus (FMDV with immuochromatographic antigen lateral flow devices (LFD, which have relatively low analytical sensitivity, or 2 portable RT-qPCR that has high analytical sensitivity but is expensive. Loop-mediated isothermal amplification (LAMP may provide a platform upon which to develop field based assays without these drawbacks. The objective of this study was to modify an FMDV-specific reverse transcription-LAMP (RT-LAMP assay to enable detection of dual-labelled LAMP products with an LFD, and to evaluate simple sample processing protocols without nucleic acid extraction. The limit of detection of this assay was demonstrated to be equivalent to that of a laboratory based real-time RT-qPCR assay and to have a 10,000 fold higher analytical sensitivity than the FMDV-specific antigen LFD currently used in the field. Importantly, this study demonstrated that FMDV RNA could be detected from epithelial suspensions without the need for prior RNA extraction, utilising a rudimentary heat source for amplification. Once optimised, this RT-LAMP-LFD protocol was able to detect multiple serotypes from field epithelial samples, in addition to detecting FMDV in the air surrounding infected cattle, pigs and sheep, including pre-clinical detection. This study describes the development and evaluation of an assay format, which may be used as a future basis for rapid and low cost detection of FMDV. In addition it provides providing "proof of concept" for the future use of LAMP assays to tackle other challenging diagnostic scenarios encompassing veterinary and human health.

  10. Simultaneous detection and differentiation of dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus by a combined reverse-transcription loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Yin Jianhua

    2011-07-01

    Full Text Available Abstract Background Rapid identification and differentiation of mosquito-transmitted flaviviruses in acute-phase sera of patients and field-caught vector mosquitoes are important for the prediction and prevention of large-scale epidemics. Results We developed a flexible reverse-transcription loop-mediated isothermal amplification (RT-LAMP unit for the detection and differentiation of dengue virus serotypes 1-4 (DENV1-4, Japanese encephalitis virus (JEV, and West Nile virus (WNV. The unit efficiently amplified the viral genomes specifically at wide ranges of viral template concentrations, and exhibited similar amplification curves as monitored by a real-time PCR engine. The detection limits of the RT-LAMP unit were 100-fold higher than that of RT-PCR in 5 of the six flaviviruses. The results on specificity indicated that the six viruses in the assay had no cross-reactions with each other. By examining 66 viral strains of DENV1-4 and JEV, the unit identified the viruses with 100% accuracy and did not cross-react with influenza viruses and hantaviruses. By screening a panel of specimens containing sera of 168 patients and 279 pools of field-caught blood sucked mosquitoes, results showed that this unit is high feasible in clinical settings and epidemiologic field, and it obtained results 100% correlated with real-time RT-PCR. Conclusions The RT-LAMP unit developed in this study is able to quickly detect and accurately differentiate the six kinds of flaviviruses, which makes it extremely feasible for screening these viruses in acute-phase sera of the patients and in vector mosquitoes without the need of high-precision instruments.

  11. Development of a reverse transcriptase loop-mediated isothermal amplification (LAMP) assay for the sensitive detection of Leishmania parasites in clinical samples

    NARCIS (Netherlands)

    Adams, Emily R.; Schoone, Gerard J.; Ageed, Al Farazdag; El Safi, Sayda; Schallig, Henk D. F. H.

    2010-01-01

    Here we describe a generic, reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) assay, for the identification of Leishmania species from clinical samples. LAMP is an isothermal reaction recently developed as a point-of-care diagnostic tool. Primers were designed in the conserved

  12. Comparison of reverse transcriptase PCR, reverse transcriptase loop-mediated isothermal amplification, and culture-based assays for Salmonella detection from pork processing environments.

    Science.gov (United States)

    Techathuvanan, Chayapa; Draughon, Frances Ann; D'Souza, Doris Helen

    2011-02-01

    Novel rapid Salmonella detection assays without the need for sophisticated equipment or labor remain in high demand. Real-time reverse transcriptase PCR (RT-PCR) assays, though rapid and sensitive, require expensive thermocyclers, while a novel RT loop-mediated isothermal amplification (RT-LAMP) method requires only a simple water bath. Our objective was to compare the detection sensitivity of Salmonella Typhimurium from the pork processing environment by RT-LAMP, RT-PCR, and culture-based assays. Carcass and surface swabs and carcass rinses were obtained from a local processing plant. Autoclaved carcass rinses (500 ml) were spiked with Salmonella Typhimurium and filtered. Filters were placed in stomacher bags containing tetrathionate broth (TTB) and analyzed with or without 10-h enrichment at 37 °C. Natural swabs were stomached with buffered peptone water, and natural carcass rinses were filtered, preenriched, and further enriched in TTB. Serially-diluted enriched samples were enumerated by spread plating on xylose lysine Tergitol 4 agar. RNA was extracted from 5 ml of enriched TTB with TRIzol. RT-LAMP assay using previously described invA primers was conducted at 62 °C for 90 min in a water bath with visual detection and by gel electrophoresis. SYBR Green I-based-real-time RT-PCR was carried out with invA primers followed by melt temperature analysis. The results of RT-LAMP detection for spiked carcass rinses were comparable to those of RT-PCR and cultural plating, with detection limits of 1 log CFU/ml, although they were obtained significantly faster, within 24 h including preenrichment and enrichment. RT-LAMP showed 4 of 12 rinse samples positive, while RT-PCR showed 1 of 12 rinse samples positive. For swabs, 6 of 27 samples positive by RT-LAMP and 5 of 27 by RT-PCR were obtained. This 1-day RT-LAMP assay shows promise for routine Salmonella screening by the pork industry. Copyright ©, International Association for Food Protection

  13. Development of one-step Loop-Mediated Isothermal Amplification (LAMP) for the detection of norovirus in oysters

    Science.gov (United States)

    The aim of this study was to develop a simple and rapid technique for detecting human norovirus (NoV). The loop-mediated isothermal amplification (LAMP) technique was evaluated and found to be sensitive, highly specific, and useful for routine oyster testing. Reverse transcription-LAMP (RT-LAMP) pri...

  14. Reverse transcription loop-mediated isothermal amplification for species-specific detection of tomato chlorotic spot orthotospovirus

    Science.gov (United States)

    Tomato chlorotic spot virus (TCSV) is an emerging tospovirus that can cause severe disease on tomato plants. There are at least four tospoviruses infecting tomato, and mixed infection of various viruses in a field crop is quite common. With similarity in the symptomatology and cross serological reac...

  15. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2015-12-01

    Full Text Available We developed a loop-mediated isothermal amplification (LAMP method to rapidly diagnose Wheat streak mosaic virus (WSMV during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections.

  16. Development of loop-mediated isothermal amplification method for ...

    African Journals Online (AJOL)

    A novel assay method to detect the highly virulent Porcine reproductive and respiratory syndrome virus (PRRSV) termed reverse transcriptase loop-mediated isothermal amplification (RT-LAMP), was reported by using hydroxynaphthol blue (HNB) as the LAMP product colorimetric judgment. By the set of special primers, ...

  17. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    Rapid and sensitive diagnostic methods based on isothermal amplification are ideal substitutes for PCR in out-of-lab settings. However, there are bottlenecks in terms of establishing low-cost and user-friendly readout methods for isothermal amplification schemes. Combining the high amplification...... efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...... nanoparticles (MNPs) resulting in a dramatical increase in the hydrodynamic size of the MNPs. This increase was measured by an optomagnetic readout system and provided quantitative information on the amount of LAMP target sequence. Our assay resulted in a limit of detection of 10 aM of target sequence...

  18. Associated technologies ensures complete loop mediated ...

    African Journals Online (AJOL)

    Loop Mediated Isothermal Amplification (LAMP) assay could be a useful adjunct diagnostic assay along with the conventional methods that would preclude the requirement of continuous maintenance of pure cultures. Moreover, LAMP assay is simple, rapid, specific and sensitive for the detection of pathogens. Having ...

  19. Comparison of multiplex reverse transcription-PCR-enzyme ...

    African Journals Online (AJOL)

    Comparison of multiplex reverse transcription-PCR-enzyme hybridization assay with immunofluorescence techniques for the detection of four viral respiratory pathogens in pediatric community acquired pneumonia.

  20. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  1. Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor

    OpenAIRE

    Ge, Yiyue; Zhou, Qiang; Zhao, Kangchen; Chi, Ying; Liu, Bin; Min, Xiaoyan; Shi, Zhiyang; Zou, Bingjie; Cui, Lunbiao

    2017-01-01

    Yiyue Ge,1 Qiang Zhou,2 Kangchen Zhao,1 Ying Chi,1 Bin Liu,3 Xiaoyan Min,4 Zhiyang Shi,1 Bingjie Zou,2 Lunbiao Cui1 1Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, 2Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, 3Department of Biomedical Engineering, Nanjing Medical University, 4Department of Geriatrics, The First Affiliated Hospi...

  2. Development of Reverse Transcription Thermostable Helicase-Dependent DNA Amplification for the Detection of Tomato Spotted Wilt Virus.

    Science.gov (United States)

    Wu, Xinghai; Chen, Chanfa; Xiao, Xizhi; Deng, Ming Jun

    2016-11-01

    A protocol for the reverse transcription-helicase-dependent amplification (RT-HDA) of isothermal DNA was developed for the detection of tomato spotted wilt virus (TSWV). Specific primers, which were based on the highly conserved region of the N gene sequence in TSWV, were used for the amplification of virus's RNA. The LOD of RT-HDA, reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP), and reverse transcriptase-polymerase chain reaction (RT-PCR) assays were conducted using 10-fold serial dilution of RNA eluates. TSWV sensitivity in RT-HDA and RT-LAMP was 4 pg RNA compared with 40 pg RNA in RT-PCR. The specificity of RT-HDA for TSWV was high, showing no cross-reactivity with other tomato and Tospovirus viruses including cucumber mosaic virus (CMV), tomato black ring virus (TBRV), tomato mosaic virus (ToMV), or impatiens necrotic spot virus (INSV). The RT-HDA method is effective for the detection of TSWV in plant samples and is a potential tool for early and rapid detection of TSWV.

  3. Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions

    NARCIS (Netherlands)

    Berkhout, B.; van Wamel, J.; Klaver, B.

    1995-01-01

    Retroviruses convert their RNA genome into a DNA form by means of reverse transcription. According to the current model of reverse transcription, two strand transfer reactions are needed to synthesize a full-length DNA genome. Because reverse transcription is initiated close to the 5' end of the RNA

  4. APOBEC3G inhibits elongation of HIV-1 reverse transcripts.

    Directory of Open Access Journals (Sweden)

    Kate N Bishop

    2008-12-01

    Full Text Available APOBEC3G (A3G is a host cytidine deaminase that, in the absence of Vif, restricts HIV-1 replication and reduces the amount of viral DNA that accumulates in cells. Initial studies determined that A3G induces extensive mutation of nascent HIV-1 cDNA during reverse transcription. It has been proposed that this triggers the degradation of the viral DNA, but there is now mounting evidence that this mechanism may not be correct. Here, we use a natural endogenous reverse transcriptase assay to show that, in cell-free virus particles, A3G is able to inhibit HIV-1 cDNA accumulation not only in the absence of hypermutation but also without the apparent need for any target cell factors. We find that although reverse transcription initiates in the presence of A3G, elongation of the cDNA product is impeded. These data support the model that A3G reduces HIV-1 cDNA levels by inhibiting synthesis rather than by inducing degradation.

  5. Properties of the reverse transcription reaction in mRNA quantification

    DEFF Research Database (Denmark)

    Ståhlberg, Anders; Håkansson, Joakim; Xian, Xiaojie

    2004-01-01

    BACKGROUND: In most measurements of gene expression, mRNA is first reverse-transcribed into cDNA. We studied the reverse transcription reaction and its consequences for quantitative measurements of gene expression. METHODS: We used SYBR green I-based quantitative real-time PCR (QPCR) to measure...... the properties of reverse transcription reaction for the beta-tubulin, glyceraldehyde-3-phosphate dehydrogenase, Glut2, CaV1D, and insulin II genes, using random hexamers, oligo(dT), and gene-specific reverse transcription primers. RESULTS: Experimental variation in reverse transcription-QPCR (RT......-QPCR) was mainly attributable to the reverse transcription step. Reverse transcription efficiency depended on priming strategy, and the dependence was different for the five genes studied. Reverse transcription yields also depended on total RNA concentration. CONCLUSIONS: RT-QPCR gene expression measurements...

  6. Comparison of polymerase chain reaction (PCR) and loop-mediated ...

    African Journals Online (AJOL)

    Comparison of polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) for diagnosis of Fusarium solani in human immunodeficiency virus (HIV) positive patients. ... The test was carried out in 1 h reaction at 65°C in a heater block. The specificity of the test was 100% and its sensitivity was a ...

  7. Loop-mediated isothermal amplification (LAMP) based detection of ...

    African Journals Online (AJOL)

    SAM

    2014-05-07

    May 7, 2014 ... 2 months for growing in a culture. Therefore, to control .... The LAMP reaction is carried out in a 25 µL reaction mixture containing ..... J. Fish Dis. 32(6):491-497. Goto M, Honda E, Ogura A, Nomoto A, Hanaki K (2009). Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy ...

  8. Development and application of a loop-mediated isothermal ...

    African Journals Online (AJOL)

    Haemophilus parasuis is the causative agent of Glässer's disease that has received much attention recently, due to the increasing economic losses this disease inflicts upon the pig industry worldwide. In this study, loop-mediated isothermal amplification method (LAMP) methodology was designed for diagnosing H.

  9. A simple and rapid identification method for newly emerged porcine Deltacoronavirus with loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    Fanfan Zhang

    2017-10-01

    Full Text Available Abstract Background Porcine Deltacoronavirus (PDCoV is a newly emerged enteropathogenic coronavirus that causes diarrhea and mortality in neonatal piglets. PDCoV has spread to many countries around the world, leading to significant economic losses in the pork industry. Therefore, a rapid and sensitive method for detection of PDCoV in clinical samples is urgently needed. Results In this study, we developed a single-tube one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP assay specific for nucleocapsid gene to diagnose and monitor PDCoV infections. The detection limit of RT-LAMP assay was 1 × 101 copies of PDCoV, which was approximately 100-fold more sensitive than gel-based one-step reverse transcription polymerase chain reaction (RT-PCR. This assay could specifically amplify PDCoV and had no cross amplification with porcine epidemic diarrhea virus (PEDV, transmissible gastroenteritis virus (TGEV, porcine kobuvirus (PKoV, porcine astrovirus (PAstV, porcine reproductive and respiratory syndrome virus (PRRSV, classic swine fever virus (CSFV, and porcine circovirus type 2 (PCV2. By screening a panel of clinical specimens (N = 192, this method presented a similar sensitivity with nested RT-PCR and was 1–2 log more sensitive than conventional RT-PCR in detection of PDCoV. Conclusions The RT-LAMP assay established in this study is a potentially valuable tool, especially in low-resource laboratories and filed settings, for a rapid diagnosis, surveillance, and molecular epidemiology investigation of PDCoV infections. To the best of our knowledge, this is the first work for detection of newly emerged PDCoV with LAMP technology.

  10. Detection of feline Coronavirus in effusions of cats with and without feline infectious peritonitis using loop-mediated isothermal amplification.

    Science.gov (United States)

    Günther, Sonja; Felten, Sandra; Wess, Gerhard; Hartmann, Katrin; Weber, Karin

    2018-06-01

    Feline infectious peritonitis (FIP) is a fatal disease in cats worldwide. The aim of this study was to test two commercially available reaction mixtures in a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to detect feline Coronavirus (FCoV) in body cavity effusions of cats with and without FIP, in order to minimize the time from sampling to obtaining results. RNA was extracted from body cavity effusion samples of 71 cats, including 34 samples from cats with a definitive diagnosis of FIP, and 37 samples of control cats with similar clinical signs but other confirmed diseases. Two reaction mixtures (Isothermal Mastermix, OptiGene Ltd.and PCRun™ Molecular Detection Mix, Biogal) were tested using the same primers, which were designed to bind to a conserved region of the FCoV membrane protein gene. Both assays were conducted under isothermal conditions (61 °C-62 °C). Using the Isothermal Mastermix of OptiGene Ltd., amplification times ranged from 4 and 39 min with a sensitivity of 35.3% and a specificity of 94.6% for the reported sample group. Using the PCRun™ Molecular Detection Mix of Biogal, amplification times ranged from 18 to 77 min with a sensitivity of 58.8% and a specificity of 97.3%. Although the RT-LAMP assay is less sensitive than real time reverse transcription PCR (RT-PCR), it can be performed without the need of expensive equipment and with less hands-on time. Further modifications of primers might lead to a suitable in-house test and accelerate the diagnosis of FIP. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Detection of Zika virus using reverse-transcription LAMP coupled with reverse dot blot analysis in saliva.

    Directory of Open Access Journals (Sweden)

    Maite Sabalza

    Full Text Available In recent years, there have been increasing numbers of infectious disease outbreaks that spread rapidly to population centers resulting from global travel, population vulnerabilities, environmental factors, and ecological disasters such as floods and earthquakes. Some examples of the recent outbreaks are the Ebola epidemic in West Africa, Middle East respiratory syndrome coronavirus (MERS-Co in the Middle East, and the Zika outbreak through the Americas. We have created a generic protocol for detection of pathogen RNA and/or DNA using loop-mediated isothermal amplification (LAMP and reverse dot-blot for detection (RDB and processed automatically in a microfluidic device. In particular, we describe how a microfluidic assay to detect HIV viral RNA was converted to detect Zika virus (ZIKV RNA. We first optimized the RT-LAMP assay to detect ZIKV RNA using a benchtop isothermal amplification device. Then we implemented the assay in a microfluidic device that will allow analyzing 24 samples simultaneously and automatically from sample introduction to detection by RDB technique. Preliminary data using saliva samples spiked with ZIKV showed that our diagnostic system detects ZIKV RNA in saliva. These results will be validated in further experiments with well-characterized ZIKV human specimens of saliva. The described strategy and methodology to convert the HIV diagnostic assay and platform to a ZIKV RNA detection assay provides a model that can be readily utilized for detection of the next emerging or re-emerging infectious disease.

  12. Strand transfer and elongation of HIV-1 reverse transcription is facilitated by cell factors in vitro.

    Directory of Open Access Journals (Sweden)

    David Warrilow

    Full Text Available Recent work suggests a role for multiple host factors in facilitating HIV-1 reverse transcription. Previously, we identified a cellular activity which increases the efficiency of HIV-1 reverse transcription in vitro. Here, we describe aspects of the activity which shed light on its function. The cellular factor did not affect synthesis of strong-stop DNA but did improve downstream DNA synthesis. The stimulatory activity was isolated by gel filtration in a single fraction of the exclusion volume. Velocity-gradient purified HIV-1, which was free of detectable RNase activity, showed poor reverse transcription efficiency but was strongly stimulated by partially purified cell proteins. Hence, the cell factor(s did not inactivate an RNase activity that might degrade the viral genomic RNA and block completion of reverse transcription. Instead, the cell factor(s enhanced first strand transfer and synthesis of late reverse transcription suggesting it stabilized the reverse transcription complex. The factor did not affect lysis of HIV-1 by Triton X-100 in the endogenous reverse transcription (ERT system, and ERT reactions with HIV-1 containing capsid mutations, which varied the biochemical stability of viral core structures and impeded reverse transcription in cells, showed no difference in the ability to be stimulated by the cell factor(s suggesting a lack of involvement of the capsid in the in vitro assay. In addition, reverse transcription products were found to be resistant to exogenous DNase I activity when the active fraction was present in the ERT assay. These results indicate that the cell factor(s may improve reverse transcription by facilitating DNA strand transfer and DNA synthesis. It also had a protective function for the reverse transcription products, but it is unclear if this is related to improved DNA synthesis.

  13. Design and optimization of reverse-transcription quantitative PCR experiments.

    Science.gov (United States)

    Tichopad, Ales; Kitchen, Rob; Riedmaier, Irmgard; Becker, Christiane; Ståhlberg, Anders; Kubista, Mikael

    2009-10-01

    Quantitative PCR (qPCR) is a valuable technique for accurately and reliably profiling and quantifying gene expression. Typically, samples obtained from the organism of study have to be processed via several preparative steps before qPCR. We estimated the errors of sample withdrawal and extraction, reverse transcription (RT), and qPCR that are introduced into measurements of mRNA concentrations. We performed hierarchically arranged experiments with 3 animals, 3 samples, 3 RT reactions, and 3 qPCRs and quantified the expression of several genes in solid tissue, blood, cell culture, and single cells. A nested ANOVA design was used to model the experiments, and relative and absolute errors were calculated with this model for each processing level in the hierarchical design. We found that intersubject differences became easily confounded by sample heterogeneity for single cells and solid tissue. In cell cultures and blood, the noise from the RT and qPCR steps contributed substantially to the overall error because the sampling noise was less pronounced. We recommend the use of sample replicates preferentially to any other replicates when working with solid tissue, cell cultures, and single cells, and we recommend the use of RT replicates when working with blood. We show how an optimal sampling plan can be calculated for a limited budget. .

  14. HIV-1 reverse transcription initiation: a potential target for novel antivirals?

    NARCIS (Netherlands)

    Abbink, Truus E. M.; Berkhout, Ben

    2008-01-01

    Reverse transcription is an essential step in the retroviral life cycle, as it converts the genomic RNA into DNA. In this review, we describe recent developments concerning the initiation step of this complex, multi-step reaction. During initiation of reverse transcription, a cellular tRNA primer is

  15. Improved detection limit in rapid detection of human enterovirus 71 and coxsackievirus A16 by a novel reverse transcription-isothermal multiple-self-matching-initiated amplification assay.

    Science.gov (United States)

    Ding, Xiong; Nie, Kai; Shi, Lei; Zhang, Yong; Guan, Li; Zhang, Dan; Qi, Shunxiang; Ma, Xuejun

    2014-06-01

    Rapid detection of human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) is important in the early phase of hand-foot-and-mouth disease (HFMD). In this study, we developed and evaluated a novel reverse transcription-isothermal multiple-self-matching-initiated amplification (RT-IMSA) assay for the rapid detection of EV71 and CVA16 by use of reverse transcriptase, together with a strand displacement DNA polymerase. Real-time RT-IMSA assays using a turbidimeter and visual RT-IMSA assays to detect EV71 and CVA16 were established and completed in 1 h, and the reported corresponding real-time reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assays targeting the same regions of the VP1 gene were adopted as parallel tests. Through testing VP1 RNAs transcribed in vitro, the real-time RT-IMSA assays exhibited better linearity of quantification, with R(2) values of 0.952 (for EV71) and 0.967 (for CVA16), than the real-time RT-LAMP assays, which had R(2) values of 0.803 (for EV71) and 0.904 (for CVA16). Additionally, the detection limits of the real-time RT-IMSA assays (approximately 937 for EV71 and 67 for CVA16 copies/reaction) were higher than those of real-time RT-LAMP assays (approximately 3,266 for EV71 and 430 for CVA16 copies/reaction), and similar results were observed in the visual RT-IMSA assays. The new approaches also possess high specificities for the corresponding targets, with no cross-reactivity observed. In clinical assessment, compared to commercial reverse transcription-quantitative PCR (qRT-PCR) kits, the diagnostic sensitivities of the real-time RT-IMSA assays (96.4% for EV71 and 94.6% for CVA16) were higher than those of the real-time RT-LAMP assays (91.1% for EV71 and 90.8% for CVA16). The visual RT-IMSA assays also exhibited the same results. In conclusion, this proof-of-concept study suggests that the novel RT-IMSA assay is superior to the RT-LAMP assay in terms of detection limit and has the potential to rapidly detect EV71

  16. Reference genes for reverse transcription quantitative PCR in canine brain tissue

    NARCIS (Netherlands)

    Stassen, Quirine E M; Riemers, Frank M; Reijmerink, Hannah; Leegwater, Peter A J; Penning, Louis C

    2015-01-01

    BACKGROUND: In the last decade canine models have been used extensively to study genetic causes of neurological disorders such as epilepsy and Alzheimer's disease and unravel their pathophysiological pathways. Reverse transcription quantitative polymerase chain reaction is a sensitive and

  17. Reversible optical transcription of supramolecular chirality into molecular chirality

    NARCIS (Netherlands)

    Jong, Jaap J.D. de; Lucas, Linda N.; Kellogg, Richard M.; Esch, Jan H. van; Feringa, Bernard

    2004-01-01

    In nature, key molecular processes such as communication, replication, and enzyme catalysis all rely on a delicate balance between molecular and supramolecular chirality. Here we report the design, synthesis, and operation of a reversible, photoresponsive, self-assembling molecular system in which

  18. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV.

    Directory of Open Access Journals (Sweden)

    Sanchita Bhadra

    Full Text Available The Middle East respiratory syndrome coronavirus (MERS-CoV, an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU (5 to 50 PFU/ml of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens.

  19. Rapid detection of Piper yellow mottle virus and Cucumber mosaic virus infecting black pepper (Piper nigrum) by loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Bhat, A I; Siljo, A; Deeshma, K P

    2013-10-01

    The loop-mediated isothermal amplification (LAMP) assay for Piper yellow mottle virus and the reverse transcription (RT) LAMP assay for Cucumber mosaic virus each consisted of a set of five primers designed against the conserved sequences in the viral genome. Both RNA and DNA isolated from black pepper were used as a template for the assay. The results were assessed visually by checking turbidity, green fluorescence and pellet formation in the reaction tube and also by gel electrophoresis. The assay successfully detected both viruses in infected plants whereas no cross-reactions were recorded with healthy plants. Optimum conditions for successful amplification were determined in terms of the concentrations of magnesium sulphate and betaine, temperature, and duration. The detection limit for both LAMP and RT-LAMP was up to 100 times that for conventional PCR and up to one-hundredth of that for real-time PCR. The optimal conditions arrived at were validated by testing field samples of infected vines of three species from different regions. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Detection of hepatitis C virus RNA using reverse transcription PCR

    International Nuclear Information System (INIS)

    Yap, S.F.

    1998-01-01

    Detection of the viral genome (HCV RNA) is by a combination of cDNA synthesis and PCR followed by gel analysis and/or hybridization assay. In principle, cDNA is synthesized using the viral RNA as template and the enzyme, reverse transcriptase. The cDNA is then amplified by PCR and the product detected. Agarose gel electrophoresis provides a rapid and simple detection method; however, it is non-quantitative. The assay protocol described in this paper is adapted from that published by Chan et al. Comments on various aspects of the assay are based on experience with the method in our laboratory

  1. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

  2. Reverse transcription using random pentadecamer primers increases yield and quality of resulting cDNA

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Dufva, I.H.; Dufva, Hans Martin

    2006-01-01

    oligonucleotides (pentadecamers) consistently, yielded at least 2 fold as much cDNA as did random hexamers using either-poly(A) RNA or an amplified version of messenger RNA (aRNA) as a template. The cDNA generated using pentadecamers did not differ in size distribution or the amount of incorporated label compared...... with cDNA generated with random hexamers. The increased efficiency of priming using random pentadecamers resulted in reverse transcription of > 80% of the template aRNA, while random hexamers induced reverse transcription of only 40% of the template aRNA. This suggests a better coverage...... that random pentadecamers can replace random hexamers in reverse transcription reactions on both poly(A) RNA and amplified RNA, resulting in higher cDNA yields and quality....

  3. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.

    Directory of Open Access Journals (Sweden)

    Clément Monot

    2013-05-01

    Full Text Available L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP first uses its endonuclease (EN to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A tail, a process known as target-primed reverse transcription (TPRT. Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.

  4. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.

    Science.gov (United States)

    Monot, Clément; Kuciak, Monika; Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël

    2013-05-01

    L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.

  5. Rapid Identification of Dengue Virus by Reverse Transcription-Polymerase Chain Reaction Using Field-Deployable Instrumentation

    National Research Council Canada - National Science Library

    McAvin, James C; Escamilla, Elizabeth M; Blow, James A; Turell, Micahel J; Quintana, Miguel; Bowles, David E; Swaby, James A; Barnes, William J; Huff, William B; Lahman, Kenton L

    2005-01-01

    ...) reverse transcription-polymerase chain reaction assays were developed for screening and seroype identification of infected mosquito vectors and human sera using a field-deployable, fluorometric thermocycler...

  6. Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription

    NARCIS (Netherlands)

    Berkhout, B.; Vastenhouw, N. L.; Klasens, B. I.; Huthoff, H.

    2001-01-01

    Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer is facilitated by terminal repeat (R) elements in the viral genome. This strand-transfer reaction depends on base pairing between the cDNA of the 5'R and the 3'R. There

  7. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  8. Exogenous reference gene normalization for real-time reverse transcription-polymerase chain reaction analysis under dynamic endogenous transcription.

    Science.gov (United States)

    Johnston, Stephen; Gallaher, Zachary; Czaja, Krzysztof

    2012-05-15

    Quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is widely used to investigate transcriptional changes following experimental manipulations to the nervous system. Despite the widespread utilization of qPCR, the interpretation of results is marred by the lack of a suitable reference gene due to the dynamic nature of endogenous transcription. To address this inherent deficiency, we investigated the use of an exogenous spike-in mRNA, luciferase, as an internal reference gene for the 2(-∆∆Ct) normalization method. To induce dynamic transcription, we systemically administered capsaicin, a neurotoxin selective for C-type sensory neurons expressing the TRPV-1 receptor, to adult male Sprague-Dawley rats. We later isolated nodose ganglia for qPCR analysis with the reference being either exogenous luciferase mRNA or the commonly used endogenous reference β-III tubulin. The exogenous luciferase mRNA reference clearly demonstrated the dynamic expression of the endogenous reference. Furthermore, variability of the endogenous reference would lead to misinterpretation of other genes of interest. In conclusion, traditional reference genes are often unstable under physiologically normal situations, and certainly unstable following the damage to the nervous system. The use of exogenous spike-in reference provides a consistent and easily implemented alternative for the analysis of qPCR data.

  9. The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells.

    Science.gov (United States)

    Froldi, Francesca; Szuperak, Milan; Weng, Chen-Fang; Shi, Wei; Papenfuss, Anthony T; Cheng, Louise Y

    2015-01-15

    Cellular dedifferentiation is the regression of a cell from a specialized state to a more multipotent state and is implicated in cancer. However, the transcriptional network that prevents differentiated cells from reacquiring stem cell fate is so far unclear. Neuroblasts (NBs), the Drosophila neural stem cells, are a model for the regulation of stem cell self-renewal and differentiation. Here we show that the Drosophila zinc finger transcription factor Nervous fingers 1 (Nerfin-1) locks neurons into differentiation, preventing their reversion into NBs. Following Prospero-dependent neuronal specification in the ganglion mother cell (GMC), a Nerfin-1-specific transcriptional program maintains differentiation in the post-mitotic neurons. The loss of Nerfin-1 causes reversion to multipotency and results in tumors in several neural lineages. Both the onset and rate of neuronal dedifferentiation in nerfin-1 mutant lineages are dependent on Myc- and target of rapamycin (Tor)-mediated cellular growth. In addition, Nerfin-1 is required for NB differentiation at the end of neurogenesis. RNA sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) analysis show that Nerfin-1 administers its function by repression of self-renewing-specific and activation of differentiation-specific genes. Our findings support the model of bidirectional interconvertibility between neural stem cells and their post-mitotic progeny and highlight the importance of the Nerfin-1-regulated transcriptional program in neuronal maintenance. © 2015 Froldi et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Reverse Transcription Errors and RNA-DNA Differences at Short Tandem Repeats.

    Science.gov (United States)

    Fungtammasan, Arkarachai; Tomaszkiewicz, Marta; Campos-Sánchez, Rebeca; Eckert, Kristin A; DeGiorgio, Michael; Makova, Kateryna D

    2016-10-01

    Transcript variation has important implications for organismal function in health and disease. Most transcriptome studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript variants, or RNA-DNA differences (RDDs). Such variation has been understudied, in part because its detection is obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base substitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have important implications for medical genomics, as STR allelic variation is associated with >40 diseases. STR nonallelic transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to evaluate the probability of disease-associated transcripts arising due to RDD. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems.

    Directory of Open Access Journals (Sweden)

    Julia K Bialek

    Full Text Available CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs, act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR, for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.

  12. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA)

    DEFF Research Database (Denmark)

    Robaczewska, Magdalena; Narayan, Ramamurthy; Seigneres, Beatrice

    2005-01-01

    BACKGROUND/AIMS: Peptide nucleic acids (PNAs) appear as promising new antisense agents, that have not yet been examined as hepatitis B virus (HBV) inhibitors. Our aim was to study the ability of PNAs targeting the duck HBV (DHBV) encapsidation signal epsilon to inhibit reverse transcription (RT...... in primary duck hepatocytes (PDH). RESULTS: Both PNAs reproducibly inhibited DHBV RT in a dose-dependent manner with IC(50) of 10nM, whereas up to 600-fold higher concentration of S-ODNs was required for similar inhibition. The PNA targeting the bulge and upper stem of epsilon appeared as more efficient RT...

  13. In situ reverse transcription-PCR for monitoring gene expression in individual Methanosarcina mazei S-6 cells

    DEFF Research Database (Denmark)

    Lange, Marianne; Tolker-Nielsen, Tim; Molin, Søren

    2000-01-01

    An in situ reverse transcription-PCR protocol for detecting specific mRNA in Methanosarcina mazei S-6 is described. This method allowed us to detect heat shock-induced increases in the intracellular levels of the transcript of the universal stress gene dnaK. The cell walls of paraformaldehyde...

  14. Rapid detection of Streptococcus uberis in raw milk by loop-mediated isothermal amplification

    NARCIS (Netherlands)

    Cornelissen, J.B.W.J.; Greeff, De A.; Heuvelink, A.E.; Swarts, M.; Smith, H.E.; Wal, Van der F.J.

    2016-01-01

    A loop-mediated isothermal amplification (LAMP) method to detect Streptococcus uberis in raw milk was developed and evaluated. Three genes (sodA, pauA, cpn60) were assessed for their suitability as targets in LAMP. The analytical sensitivity was 120, 120, and 12 fg per assay for the sodA, pauA,

  15. Loop-mediated isothermal amplification (LAMP) shield for Arduino DNA detection

    NARCIS (Netherlands)

    Velders, Aldrik H.; Schoen, Cor; Saggiomo, Vittorio

    2018-01-01

    Objective: Loop-mediated isothermal amplification (LAMP) of DNA is gaining relevance as a method to detect nucleic acids, as it is easier, faster, and more powerful than conventional Polymerase Chain Reaction. However, LAMP is still mostly used in laboratory settings, because of the lack of a cheap

  16. Frequent dual initiation of reverse transcription in murine leukemia virus-based vectors containing two primer-binding sites

    International Nuclear Information System (INIS)

    Voronin, Yegor A.; Pathak, Vinay K.

    2003-01-01

    Retroviruses package two copies of viral RNA into each virion. Although each RNA contains a primer-binding site for initiation of DNA synthesis, it is unknown whether reverse transcription is initiated on both RNAs. To determine whether a single virion is capable of initiating reverse transcription more than once, we constructed a murine leukemia virus-based vector containing a second primer-binding site (PBS) derived from spleen necrosis virus and inserted the green fluorescent protein gene (GFP) between the two PBSs. Initiation of reverse transcription at either PBS results in a provirus that expresses GFP. However, initiation at both PBSs can result in the deletion of GFP, which can be detected by flow cytometry and Southern blotting analysis. Approximately 22-29% of the proviruses formed deleted the GFP in a single replication cycle, indicating the minimum proportion of virions that initiated reverse transcription on both PBSs. These results show that a significant proportion of MLV-based vectors containing two PBSs have the capacity to initiate reverse transcription more than once

  17. Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin

    Directory of Open Access Journals (Sweden)

    Kashanchi Fatah

    2006-01-01

    Full Text Available Abstract Background The early events of the HIV-1 life cycle include entry of the viral core into target cell, assembly of the reverse transcription complex (RTCs performing reverse transcription, its transformation into integration-competent complexes called pre-integration complexes (PICs, trafficking of complexes into the nucleus, and finally integration of the viral DNA into chromatin. Molecular details and temporal organization of these processes remain among the least investigated and most controversial problems in the biology of HIV. Results To quantitatively evaluate maturation and nuclear translocation of the HIV-1 RTCs, nucleoprotein complexes isolated from the nucleus (nRTC and cytoplasm (cRTC of HeLa cells infected with MLV Env-pseudotyped HIV-1 were analyzed by real-time PCR. While most complexes completed reverse transcription in the cytoplasm, some got into the nucleus before completing DNA synthesis. The HIV-specific RNA complexes could get into the nucleus when reverse transcription was blocked by reverse transcriptase inhibitor, although nuclear import of RNA complexes was less efficient than of DNA-containing RTCs. Analysis of the RTC nuclear import in synchronized cells infected in the G2/M phase of the cell cycle showed enrichment in the nuclei of RTCs containing incomplete HIV-1 DNA compared to non-synchronized cells, where RTCs with complete reverse transcripts prevailed. Immunoprecipitation assays identified viral proteins IN, Vpr, MA, and cellular Ini1 and PML associated with both cRTCs and nRTCs, whereas CA was detected only in cRTCs and RT was diminished in nRTCs. Cytoplasmic maturation of the complexes was associated with increased immunoreactivity with anti-Vpr and anti-IN antibodies, and decreased reactivity with antibodies to RT. Both cRTCs and nRTCs carried out endogenous reverse transcription reaction in vitro. In contrast to cRTCs, in vitro completion of reverse transcription in nRTCs did not increase their

  18. Typing of Poultry Influenza Virus (H5 and H7 by Reverse Transcription- Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Cesare Bonacina

    2010-01-01

    Full Text Available The ability of the influenza Orthomixovirus to undergo to continually antigenically changes that can affect its pathogenicity and its diffusion, explains the growing seriousness of this disease and the recent epizoozies in various parts of the world. There have been 15 HA and 9 NA type A sub-types of the influenza virus identified all of which are present in birds. Until now the very virulent avian influenza viruses identified were all included to the H5 and H7 sub-types. We here show that is possible to identify the H5 and H7 sub-types with reverse transcription-polymerase chain reaction (RT-PCR by using a set of specific primers for each HA sub-type. The RT-PCR is a quick and sensitive method of identifying the HA sub-types of the influenza virus directly from homogenised organs.

  19. Application of anti-listerial bacteriocins: monitoring enterocin expression by multiplex relative reverse transcription-PCR.

    Science.gov (United States)

    Williams, D Ross; Chanos, Panagiotis

    2012-12-01

    Listeriosis is a deadly food-borne disease, and its incidence may be limited through the biotechnological exploitation of a number of anti-listerial biocontrol agents. The most widely used of these agents are bacteriocins and the Class II enterocins are characterized by their activity against Listeria. Enterocins are primarily produced by enterococci, particularly Enterococcus faecium and many strains have been described, often encoding multiple bacteriocins. The use of these strains in food will require that they are free of virulence functions and that they exhibit a high level expression of anti-listerial enterocins in fermentation conditions. Multiplex relative RT (reverse transcription)-PCR is a technique that is useful in the discovery of advantageous expression characteristics among enterocin-producing strains. It allows the levels of individual enterocin gene expression to be monitored and determination of how expression is altered under different growth conditions.

  20. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination

    OpenAIRE

    Karthik, K.; Rathore, Rajesh; Thomas, Prasad; Arun, T.R.; Viswas, K.N.; Dhama, Kuldeep; Agarwal, R.K.

    2014-01-01

    Loop mediated isothermal amplification (LAMP) assay, a promising diagnostic test, has been developed for detection of different pathogens of human as well as animals. Various positive points support its use as a field level test but the major problem is product cross contamination leading to false positive results. Different methods were adopted by various researchers to control this false positive amplification due to cross contamination but all have their own advantages and disadvantages. A...

  1. Loop-mediated isothermal amplification (LAMP): Early detection of Toxoplasma gondii infection in mice

    OpenAIRE

    Kong, Qing-Ming; Lu, Shao-Hong; Tong, Qun-Bo; Lou, Di; Chen, Rui; Zheng, Bin; Kumagai, Takashi; Wen, Li-Yong; Ohta, Nobuo; Zhou, Xiao-Nong

    2012-01-01

    Abstract Background Toxoplasmosis is a widespread zoonotic parasitic disease that occurs in both animals and humans. Traditional molecular assays are often difficult to perform, especially for the early diagnosis of Toxoplasma gondii infections. Here, we established a novel loop-mediated isothermal amplification targeting the 529 bp repeat element (529 bp-LAMP) to detect T. gondii DNA in blood samples of experimental mice infected with tachyzoites of the RH strain. Findings The assay was perf...

  2. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    Directory of Open Access Journals (Sweden)

    Sindhu Subramaniam

    Full Text Available Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2. Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation. Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for

  3. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    Science.gov (United States)

    Subramaniam, Sindhu; Sreenivas, Prethish; Cheedipudi, Sirisha; Reddy, Vatrapu Rami; Shashidhara, Lingadahalli Subrahmanya; Chilukoti, Ravi Kumar; Mylavarapu, Madhavi; Dhawan, Jyotsna

    2014-01-01

    Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts) to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2). Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation). Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for pathological

  4. Reverse transcription and polymerase chain reaction: principles and applications in dentistry.

    Science.gov (United States)

    Santos, Carlos Ferreira Dos; Sakai, Vivien Thiemy; Machado, Maria Aparecida de Andrade Moreira; Schippers, Daniela Nicole; Greene, Andrew Seth

    2004-03-01

    Various molecular biology techniques have become available in the last few years. One of the most revolutionary of these techniques regarding nucleic acid analysis is the polymerase chain reaction (PCR), which was first described in 1985. This method relies on the exponential amplification of specific DNA fragments, resulting in millions of copies that can serve as templates for different kinds of analyses. PCR can be preceded by a reverse transcription (RT) reaction in order to produce cDNA from RNA (RT-PCR). RT-PCR provides the possibility to assess gene transcription in cells or tissues. PCR and RT-PCR techniques have been instrumental in dental research, and show potential to be used for diagnosis as well as for treatment and prevention of many diseases (dental caries, periodontal disease, endodontic infections and oral cancer). Compared to other traditional methodologies, PCR and RT-PCR show many advantages including high specificity, sensitivity, and speed. Since PCR and RT-PCR are relatively new techniques and are not available to most students and professionals involved with dentistry, the aim of this work is to present the details of these techniques as well as dental literature reports in which they were used.

  5. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    Science.gov (United States)

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  6. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex.

    Science.gov (United States)

    Grigorov, Boyan; Bocquin, Anne; Gabus, Caroline; Avilov, Sergey; Mély, Yves; Agopian, Audrey; Divita, Gilles; Gottikh, Marina; Witvrouw, Myriam; Darlix, Jean-Luc

    2011-07-01

    Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.

  7. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Francesca Carlini

    Full Text Available BACKGROUND: Transposable Elements (TEs comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1 and Human Endogenous Retroviruses (HERVs that code for their own endogenous reverse transcriptase (RT. Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC, a nucleoside reverse transcription inhibitor (NRTI, on PC3 and LNCaP prostate cancer cell lines. PRINCIPAL FINDINGS: ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. CONCLUSIONS: Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications.

  8. A Simple Reverse Transcription-Polymerase Chain Reaction for Dengue Type 2 Virus Identification

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu M Figueiredo

    1997-05-01

    Full Text Available We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique

  9. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    KAUST Repository

    Lescot, Magali

    2015-11-27

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.

  10. Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures.

    Science.gov (United States)

    Bruckert, G; Vivien, D; Docagne, F; Roussel, B D

    2016-04-01

    Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.

  11. Multiplex, Quantitative, Reverse Transcription PCR Detection of Influenza Viruses Using Droplet Microfluidic Technology

    Directory of Open Access Journals (Sweden)

    Ravi Prakash

    2014-12-01

    Full Text Available Quantitative, reverse transcription, polymerase chain reaction (qRT-PCR is facilitated by leveraging droplet microfluidic (DMF system, which due to its precision dispensing and sample handling capabilities at microliter and lower volumes has emerged as a popular method for miniaturization of the PCR platform. This work substantially improves and extends the functional capabilities of our previously demonstrated single qRT-PCR micro-chip, which utilized a combination of electrostatic and electrowetting droplet actuation. In the reported work we illustrate a spatially multiplexed micro-device that is capable of conducting up to eight parallel, real-time PCR reactions per usage, with adjustable control on the PCR thermal cycling parameters (both process time and temperature set-points. This micro-device has been utilized to detect and quantify the presence of two clinically relevant respiratory viruses, Influenza A and Influenza B, in human samples (nasopharyngeal swabs, throat swabs. The device performed accurate detection and quantification of the two respiratory viruses, over several orders of RNA copy counts, in unknown (blind panels of extracted patient samples with acceptably high PCR efficiency (>94%. The multi-stage qRT-PCR assays on eight panel patient samples were accomplished within 35–40 min, with a detection limit for the target Influenza virus RNAs estimated to be less than 10 RNA copies per reaction.

  12. Detection of canine cytokine gene expression by reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Pinelli, E; van der Kaaij, S Y; Slappendel, R; Fragio, C; Ruitenberg, E J; Bernadina, W; Rutten, V P

    1999-08-02

    Further characterization of the canine immune system will greatly benefit from the availability of tools to detect canine cytokines. Our interest concerns the study on the role of cytokines in canine visceral leishmaniasis. For this purpose, we have designed specific primers using previously published sequences for the detection of canine IL-2, IFN-gamma and IL10 mRNA by reverse transcription-polymerase chain reaction (RT-PCR). For IL-4, we have cloned and sequenced this cytokine gene, and developed canine-specific primers. To control for sample-to-sample variation in the quantity of mRNA and variation in the RT and PCR reactions, the mRNA levels of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), a housekeeping gene, were determined in parallel. Primers to amplify G3PDH were designed from consensus sequences obtained from the Genbank database. The mRNA levels of the cytokines mentioned here were detected from ConA-stimulated peripheral mononuclear cells derived from Leishmania-infected dogs. A different pattern of cytokine production among infected animals was found.

  13. Detection of HCV-RNA by Reverse Transcription Polymerase Chain Reaction Using Biotinylated and Radioiodinated Primers

    International Nuclear Information System (INIS)

    Ryu, Jin Sook; Moon, Dae Hyuk; Cheon, Jun Hong; Chung, Yoon Young; Park, Hung Dong; Chung, Young Hwa; Lee, Young Sang

    1994-01-01

    This study was performed to evaluate the clinical applicability of the reverse transcription polymerase chain reaction (RT-PCR) kit of HCV-RNA using biotinylated and radioiodinated primers. Study subjects were 118 patients with positive anti-HCV. HCV-RNA in patients serum was extracted by guanidium thiocyanate method. After first amplification, the product was reamplified by primers labelled with biotin and I-125. The final amplification product was detected by counting the radioactivity after incubation in avidin coated tubes. In 51 samples, the test was repeated for evaluation of reproducibility. This new method was also compared with conventional RT-PCR methods in 34 samples from patients with chronic liver disease. The results were as follows, 1) HCV-RNA was positive in 85(97%)of 88 patients with chronic liver disease, and in 23 (73%) of 30 patients with normal liver function. 2) In comparison with conventional method, HCV-RNA was detected in 32(94%) of 34 patients with new method, whereas in 27(79% ) of the same group with conventional method 3) Repeated test with new method in 52 samples demonstrated 82% of concordant result. In conclusion, new method with biotinylated and radioiodinated primers was more sensitive than conventional method. However, great care must be taken for quality control because there were considerable interassay variation and possibility of false positivity and false negativity.

  14. Detection of Tilapia Lake Virus in Clinical Samples by Culturing and Nested Reverse Transcription-PCR.

    Science.gov (United States)

    Kembou Tsofack, Japhette Esther; Zamostiano, Rachel; Watted, Salsabeel; Berkowitz, Asaf; Rosenbluth, Ezra; Mishra, Nischay; Briese, Thomas; Lipkin, W Ian; Kabuusu, Richard M; Ferguson, Hugh; Del Pozo, Jorge; Eldar, Avi; Bacharach, Eran

    2017-03-01

    Tilapia are an important group of farmed fish that serve as a significant protein source worldwide. In recent years, substantial mortality of wild tilapia has been observed in the Sea of Galilee and in commercial ponds in Israel and Ecuador. We have identified the etiological agent of these mass die-offs as a novel orthomyxo-like virus and named it tilapia lake virus (TiLV). Here, we provide the conditions for efficient isolation, culturing, and quantification of the virus, including the use of susceptible fish cell lines. Moreover, we describe a sensitive nested reverse transcription-PCR (RT-PCR) assay allowing the rapid detection of TiLV in fish organs. This assay revealed, for the first time to our knowledge, the presence of TiLV in diseased Colombian tilapia, indicating a wider distribution of this emerging pathogen and stressing the risk that TiLV poses for the global tilapia industry. Overall, the described procedures should provide the tilapia aquaculture industry with important tools for the detection and containment of this pathogen. Copyright © 2017 American Society for Microbiology.

  15. Detection of HCV-RNA by Reverse Transcription Polymerase Chain Reaction Using Biotinylated and Radioiodinated Primers

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jin Sook; Moon, Dae Hyuk; Cheon, Jun Hong; Chung, Yoon Young; Park, Hung Dong; Chung, Young Hwa; Lee, Young Sang [Asan Medical Center, University of Ulsan, Seoul (Korea, Republic of)

    1994-07-15

    This study was performed to evaluate the clinical applicability of the reverse transcription polymerase chain reaction (RT-PCR) kit of HCV-RNA using biotinylated and radioiodinated primers. Study subjects were 118 patients with positive anti-HCV. HCV-RNA in patients serum was extracted by guanidium thiocyanate method. After first amplification, the product was reamplified by primers labelled with biotin and I-125. The final amplification product was detected by counting the radioactivity after incubation in avidin coated tubes. In 51 samples, the test was repeated for evaluation of reproducibility. This new method was also compared with conventional RT-PCR methods in 34 samples from patients with chronic liver disease. The results were as follows, 1) HCV-RNA was positive in 85(97%)of 88 patients with chronic liver disease, and in 23 (73%) of 30 patients with normal liver function. 2) In comparison with conventional method, HCV-RNA was detected in 32(94%) of 34 patients with new method, whereas in 27(79% ) of the same group with conventional method 3) Repeated test with new method in 52 samples demonstrated 82% of concordant result. In conclusion, new method with biotinylated and radioiodinated primers was more sensitive than conventional method. However, great care must be taken for quality control because there were considerable interassay variation and possibility of false positivity and false negativity.

  16. Detection of Tilapia Lake Virus in Clinical Samples by Culturing and Nested Reverse Transcription-PCR

    Science.gov (United States)

    Kembou Tsofack, Japhette Esther; Zamostiano, Rachel; Watted, Salsabeel; Berkowitz, Asaf; Rosenbluth, Ezra; Mishra, Nischay; Briese, Thomas; Lipkin, W. Ian; Kabuusu, Richard M.; Ferguson, Hugh; del Pozo, Jorge

    2016-01-01

    ABSTRACT Tilapia are an important group of farmed fish that serve as a significant protein source worldwide. In recent years, substantial mortality of wild tilapia has been observed in the Sea of Galilee and in commercial ponds in Israel and Ecuador. We have identified the etiological agent of these mass die-offs as a novel orthomyxo-like virus and named it tilapia lake virus (TiLV). Here, we provide the conditions for efficient isolation, culturing, and quantification of the virus, including the use of susceptible fish cell lines. Moreover, we describe a sensitive nested reverse transcription-PCR (RT-PCR) assay allowing the rapid detection of TiLV in fish organs. This assay revealed, for the first time to our knowledge, the presence of TiLV in diseased Colombian tilapia, indicating a wider distribution of this emerging pathogen and stressing the risk that TiLV poses for the global tilapia industry. Overall, the described procedures should provide the tilapia aquaculture industry with important tools for the detection and containment of this pathogen. PMID:27974544

  17. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    KAUST Repository

    Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Ludicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki

    2015-01-01

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.

  18. Development of Loop-Mediated Isothermal Amplification Assay for Detection of Entamoeba histolytica▿

    Science.gov (United States)

    Liang, Shih-Yu; Chan, Yun-Hsien; Hsia, Kan-Tai; Lee, Jing-Lun; Kuo, Ming-Chu; Hwa, Kuo-Yuan; Chan, Chi-Wen; Chiang, Ting-Yi; Chen, Jung-Sheng; Wu, Fang-Tzy; Ji, Dar-Der

    2009-01-01

    A novel one-step, closed-tube, loop-mediated isothermal amplification (LAMP) assay for detecting Entamoeba histolytica, one of the leading causes of morbidity in developing countries, was developed. The sensitivity of the LAMP assay is 1 parasite per reaction. A total of 130 clinical samples were analyzed, and the results compared with those of conventional nested PCR to validate the practicability of this assay. No DNA was amplified from other diarrheal pathogens, such as other Entamoeba species, bacteria, and viruses. These results indicate that LAMP is a rapid, simple, and valuable diagnostic tool for epidemiological studies of amebiasis. PMID:19321720

  19. Loop-mediated isothermal amplification (LAMP) shield for Arduino DNA detection.

    Science.gov (United States)

    Velders, Aldrik H; Schoen, Cor; Saggiomo, Vittorio

    2018-02-01

    Loop-mediated isothermal amplification (LAMP) of DNA is gaining relevance as a method to detect nucleic acids, as it is easier, faster, and more powerful than conventional Polymerase Chain Reaction. However, LAMP is still mostly used in laboratory settings, because of the lack of a cheap and easy, one-button device that can perform LAMP experiments. Here we show how to build and program an Arduino shield for a LAMP and detection of DNA. The here described Arduino Shield is cheap, easy to assemble, to program and use, it is battery operated and the detection of DNA is done by naked-eye so that it can be used in field.

  20. The RNA binding protein HuR does not interact directly with HIV-1 reverse transcriptase and does not affect reverse transcription in vitro

    Directory of Open Access Journals (Sweden)

    Gronenborn Angela M

    2010-05-01

    Full Text Available Abstract Background Lemay et al recently reported that the RNA binding protein HuR directly interacts with the ribonuclease H (RNase H domain of HIV-1 reverse transcriptase (RT and influences the efficiency of viral reverse transcription (Lemay et al., 2008, Retrovirology 5:47. HuR is a member of the embryonic lethal abnormal vision protein family and contains 3 RNA recognition motifs (RRMs that bind AU-rich elements (AREs. To define the structural determinants of the HuR-RT interaction and to elucidate the mechanism(s by which HuR influences HIV-1 reverse transcription activity in vitro, we cloned and purified full-length HuR as well as three additional protein constructs that contained the N-terminal and internal RRMs, the internal and C-terminal RRMs, or the C-terminal RRM only. Results All four HuR proteins were purified and characterized by biophysical methods. They are well structured and exist as monomers in solution. No direct protein-protein interaction between HuR and HIV-1 RT was detected using NMR titrations with 15N labeled HuR variants or the 15N labeled RNase H domain of HIV-1 RT. Furthermore, HuR did not significantly affect the kinetics of HIV-1 reverse transcription in vitro, even on RNA templates that contain AREs. Conclusions Our results suggest that HuR does not impact HIV-1 replication through a direct protein-protein interaction with the viral RT.

  1. Detection of Brazilian hantavirus by reverse transcription polymerase chain reaction amplification of N gene in patients with hantavirus cardiopulmonary syndrome

    OpenAIRE

    Marcos Lázaro Moreli; Ricardo Luiz Moro de Sousa; Luiz Tadeu Moraes Figueiredo

    2004-01-01

    We report a nested reverse transcription-polymerase chain reaction (RT-PCR) assay for hantavirus using primers selected to match high homology regions of hantavirus genomes detected from the whole blood of hantavirus cardiopulmonary syndrome (HCPS) patients from Brazil, also including the N gene nucleotide sequence of Araraquara virus. Hantavirus genomes were detected in eight out of nine blood samples from the HCPS patients by RT-PCR (88.9% positivity) and in all 9 blood samples (100% positi...

  2. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases

    Directory of Open Access Journals (Sweden)

    Pravas Ranjan Sahoo

    2016-05-01

    Full Text Available India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  3. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    Science.gov (United States)

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  4. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    Science.gov (United States)

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  5. LAVA: An Open-Source Approach To Designing LAMP (Loop-Mediated Isothermal Amplification DNA Signatures

    Directory of Open Access Journals (Sweden)

    Gardner Shea N

    2011-06-01

    Full Text Available Abstract Background We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP signature design program called LAVA (LAMP Assay Versatile Analysis. LAVA was created in response to limitations of existing LAMP signature programs. Results LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for Staphylococcus aureus created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of Mycobacterium tuberculosis. Conclusions We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at http://lava-dna.googlecode.com/.

  6. Urine sample used for detection of toxoplasma gondii infection by loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Hu, Xin; Pan, Chang-Wang; Li, Ya-Fei; Wang, Han; Tan, Feng

    2012-02-01

    In this study, a loop-mediated isothermal amplification (LAMP) assay was established to detect Toxoplasma gondii DNA in mice infected with T. gondii PRU strain. This LAMP assay was based on the sequence of highly repetitive B1 gene. The detection limit of T. gondii LAMP assay was 1 pg of T. gondii DNA, which was evaluated using 10-fold serially diluted DNA of cultured parasites. The LAMP assay was also highly specific for T. gondii and able to detect T. gondii DNA in urine of mice treated with dexamethasone at 90 day post infection (p.i.), although this assay could not detect the DNA in mice urine 2-6 days p.i. These results demonstrated that LAMP is effective for evaluation of therapy effectiveness for T. gondii infection. The established LAMP assay may represent a useful and practical tool for the routine diagnosis and therapeutic evaluation of human toxoplasmosis.

  7. Real-Time Fluorescence Loop Mediated Isothermal Amplification for the Detection of Acinetobacter baumannii

    Science.gov (United States)

    Wang, Qinqin; Zhou, Yanbin; Li, Shaoli; Zhuo, Chao; Xu, Siqi; Huang, Lixia; Yang, Ling; Liao, Kang

    2013-01-01

    Background Detection of Acinetobacter baumannii has been relying primarily on bacterial culture that often fails to return useful results in time. Although DNA-based assays are more sensitive than bacterial culture in detecting the pathogen, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. In addition, these molecular tools require expensive laboratory instruments. Therefore, establishing molecular tools for field use require simpler molecular platforms. The loop-mediated isothermal amplification method is relatively simple and can be improved for better use in a routine clinical bacteriology laboratory. A simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in the same platform has been developed in recent years. This method is referred to as real-time loop-mediated isothermal amplification. In this study, we attempted to utilize this method for rapid detection of A. baumannii. Methodology and Significant Findings Species-specific primers were designed to test the utility of this method. Clinical samples of A. baumannii were used to determine the sensitivity and specificity of this system compared to bacterial culture and a polymerase chain reaction method. All positive samples isolated from sputum were confirmed to be the species of Acinetobacter by 16S rRNA gene sequencing. The RealAmp method was found to be simpler and allowed real-time detection of DNA amplification, and could distinguish A. baumannii from Acinetobacter calcoaceticus and Acinetobacter genomic species 3. DNA was extracted by simple boiling method. Compared to bacterial culture, the sensitivity and specificity of RealAmp in detecting A. baumannii was 98.9% and 75.0%, respectively. Conclusion The RealAmp assay only requires a single unit, and the assay positivity can be verified by visual inspection. Therefore, this assay has

  8. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.

    Science.gov (United States)

    De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego

    2013-01-01

    Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.

  9. Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis.

    Science.gov (United States)

    Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk

    2011-02-01

    Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.

  10. A loop-mediated isothermal amplification assay and sample preparation procedure for sensitive detection of Xanthomonas fragariae in strawberry

    Science.gov (United States)

    Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. Asymptomatic infections are common and contribute to the difficulties in disease management. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay with a bacterial enrichment proced...

  11. Evaluation of a loop-mediated isothermal amplification (LAMP) method for rapid on-site detection of horse meat

    NARCIS (Netherlands)

    Aartse, Aafke; Scholtens-Toma, Ingrid; A, van der Hans J.G.; Boersma-Greve, Monique M.; Prins, Theo W.; Ginkel, van Leen A.; Kok, Esther J.; Bovee, Toine F.H.

    2017-01-01

    Detection of horse DNA by loop-mediated isothermal amplification (LAMP) seems one of the most promising methods to meet the criteria of fast, robust, cost efficient, specific, and sensitive on-site detection. In the present study an assessment of the specificity and sensitivity of the LAMP horse

  12. Efficient reverse transcription using locked nucleic acid nucleotides towards the evolution of nuclease resistant RNA aptamers

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Edwards, Stacey L

    2012-01-01

    We found that SuperScript® III Reverse Transcriptase is an efficient enzyme for the recognition of LNA nucleotides, making it a prime candidate to be used in de novo selection of LNA containing RNA aptamers....

  13. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, He, E-mail: herenrh@yahoo.com.cn [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Zhao, Tiansuo; Wang, Xiuchao; Gao, Chuntao; Wang, Jian; Yu, Ming [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Hao, Jihui, E-mail: jihuihao@yahoo.com [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China)

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breast cancer.

  14. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    Science.gov (United States)

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  15. Improved Detection of Lassa Virus by Reverse Transcription-PCR Targeting the 5′ Region of S RNA▿

    OpenAIRE

    Ölschläger, Stephan; Lelke, Michaela; Emmerich, Petra; Panning, Marcus; Drosten, Christian; Hass, Meike; Asogun, Danny; Ehichioya, Deborah; Omilabu, Sunday; Günther, Stephan

    2010-01-01

    The method of choice for the detection of Lassa virus is reverse transcription (RT)-PCR. However, the high degree of genetic variability of the virus poses a problem with the design of RT-PCR assays that will reliably detect all strains. Recently, we encountered difficulties in detecting some strains from Liberia and Nigeria in a commonly used glycoprotein precursor (GPC) gene-specific RT-PCR assay (A. H. Demby, J. Chamberlain, D. W. Brown, and C. S. Clegg, J. Clin. Microbiol. 32:2898-2903, 1...

  16. Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of Potato virus Y strains.

    Science.gov (United States)

    Mehle, Nataša; Dobnik, David; Ravnikar, Maja; Pompe Novak, Maruša

    2018-05-03

    RNA viruses have a great potential for high genetic variability and rapid evolution that is generated by mutation and recombination under selection pressure. This is also the case of Potato virus Y (PVY), which comprises a high diversity of different recombinant and non-recombinant strains. Consequently, it is hard to develop reverse transcription real-time quantitative PCR (RT-qPCR) with the same amplification efficiencies for all PVY strains which would enable their equilibrate quantification; this is specially needed in mixed infections and other studies of pathogenesis. To achieve this, we initially transferred the PVY universal RT-qPCR assay to a reverse transcription droplet digital PCR (RT-ddPCR) format. RT-ddPCR is an absolute quantification method, where a calibration curve is not needed, and it is less prone to inhibitors. The RT-ddPCR developed and validated in this study achieved a dynamic range of quantification over five orders of magnitude, and in terms of its sensitivity, it was comparable to, or even better than, RT-qPCR. RT-ddPCR showed lower measurement variability. We have shown that RT-ddPCR can be used as a reference tool for the evaluation of different RT-qPCR assays. In addition, it can be used for quantification of RNA based on in-house reference materials that can then be used as calibrators in diagnostic laboratories.

  17. The fidelity of reverse transcription differs in reactions primed with RNA versus DNA primers

    NARCIS (Netherlands)

    Oude Essink, B. B.; Berkhout, B.

    1999-01-01

    Reverse transcriptase enzymes (RT) convert single-stranded retroviral RNA genomes into double-stranded DNA. The RT enzyme can use both RNA and DNA primers, the former being used exclusively during initiation of minus- and plus-strand synthesis. Initiation of minus-strand DNA synthesis occurs by

  18. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay.

    Science.gov (United States)

    Zhou, Dinggang; Wang, Chunfeng; Li, Zhu; Chen, Yun; Gao, Shiwu; Guo, Jinlong; Lu, Wenying; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg(2+), 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane.

  19. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination.

    Science.gov (United States)

    Karthik, K; Rathore, Rajesh; Thomas, Prasad; Arun, T R; Viswas, K N; Dhama, Kuldeep; Agarwal, R K

    2014-01-01

    Loop mediated isothermal amplification (LAMP) assay, a promising diagnostic test, has been developed for detection of different pathogens of human as well as animals. Various positive points support its use as a field level test but the major problem is product cross contamination leading to false positive results. Different methods were adopted by various researchers to control this false positive amplification due to cross contamination but all have their own advantages and disadvantages. A new closed tube LAMP assay based on agar dye capsule was developed in the present study and this technique has some advantages over the other closed tube technique.•Agar at the concentration of 1.5% was used to sandwich SYBR green dye I with the aid of intradermal syringe. This agar dye capsule was placed over the LAMP reaction mixture before it was amplified.•To eliminate the hazardous nature of Ultra Violet (UV) light during result visualization of LAMP products, the present study demonstrates the use of Light Emitting Diode (LED) lights for result visualization.•LAMP was carried out for Brucella species detection using this modified techniques yielding good results without any cross contamination and LED showed similar fluorescence compared to UV.

  20. [Colorimetric detection of HPV6 and HPV16 by loop mediated isothermal amplification].

    Science.gov (United States)

    Lu, Chun-bin; Luo, Le; Yang, Meng-jie; Nie, Kai; Wang, Miao; Ma, Xue-Jun

    2011-01-01

    A simple, rapid and sensitive colorimetric loop mediated isothermal amplification (LAMP) method was established to detect HPV6 and HPV 16 respectively. The method employed a set of four specially designed primers that recognized six distinct sequences of HPV6-E6 or HPV16-E7 for amplification of nucleic acid under isothermal conditions at 63 degrees C for one hour. The amplification process of LAMP was monitored by the addition of HNB (hydroxy naphthol blue) dye prior to amplification. A positive reaction was indicated by a color change from violet to sky blue and confirmed by real-time turbidimeter and agarose electrophoresis. Thirteen cervical swab samples having single infection with 13 different HPV genotypes were examined to evaluate the specificity. A serial dilution of a cloned plasmid containing HPV-E6 or HPV-E7 gene was examined to evaluate the sensitivity. The results showed that no cross-reaction with other HPV genotypes was observed. The colorimetric LAMP assay could achieve a sensitivity of 1000 copies, 10-20 times lower than that of real-time PCR. The assay was further evaluated with 62 clinical specimens and consistent results were obtained compared with the detection using Kai Pu HPV Genotyping Kit. We concluded that this colorimetric LAMP assay had potential usefulness for the rapid screening of the HPV6 or HPV16 infection in the laboratories and hospitals of provincial and municipal region in China.

  1. Loop-Mediated Isothermal Amplification as a Fast Noninvasive Method of Helicobacter pylori Diagnosis.

    Science.gov (United States)

    Yari, Farideh; Abiri, Ramin; Aryan, Ehsan; Ahmadi Jouybari, Touraj; Navabi, Jafar; Alvandi, Amirhooshang

    2016-09-01

    Helicobacter pylori infection is etiologically associated with some important health problems such as gastric cancer. Because of the high clinical importance of H. pylori infection, development of a noninvasive test for the detection of H. pylori is desirable. In this study, a loop-mediated isothermal amplification (LAMP) targeted ureC of H. pylori was evaluated on 100 stool specimens and compared with a stool antigen test. Culture and rapid urease test were considered as gold standards. The overall detection rate of the fecal antigen test and LAMP was 58% and 82%, respectively. The analytical sensitivity of the fecal antigen test and LAMP was 500 and 10 H. pylori cells/g and 10 fg DNA/reaction, which is equal to six H. pylori genome. LAMP technique has been characterized by high sensitivity and low detection limit for the detection of H. pylori in stool specimen. Clinical diagnostic performance of LAMP was better than the stool antigen test. © 2015 Wiley Periodicals, Inc.

  2. Loop-mediated isothermal amplification for detection of Staphylococcus aureus in dairy cow suffering from mastitis.

    Science.gov (United States)

    Tie, Zhang; Chunguang, Wang; Xiaoyuan, Wei; Xinghua, Zhao; Xiuhui, Zhong

    2012-01-01

    To develop a rapid detection method of Staphylococcus aureus using loop-mediated isothermal amplification (LAMP), four specific primers were designed according to six distinct sequences of the nuc gene. In addition, the specificity and sensitivity of LAMP were verified and compared with those of PCR. Results showed that the LAMP reaction was completed within 45 min at 62.5°C, and ladder bands were appeared in LAMP products analyzed by gel electrophoresis. After adding 1x SYBR Green l, the positive reaction tube showed green color and the negative reaction tube remained orange, indicating that the LAMP has high specificity. The minimal detectable concentration of LAMP was 1 × 10² CFU/mL and that of PCR was 1 × 10⁴ CFU/mL, indicating that the LAMP was 100 times more sensitive than the PCR. The LAMP method for detection of Staphylococcus aureus has many advantages, such as simple operation, high sensitivity, high specificity, and rapid analysis. Therefore, this method is more suitable for the rapid on-site detection of Staphylococcus aureus.

  3. Evaluation of loop-mediated isothermal amplification assay for rapid diagnosis of Acanthamoeba keratitis

    Directory of Open Access Journals (Sweden)

    Abhishek Mewara

    2017-01-01

    Full Text Available Background: The clinical features of Acanthamoeba keratitis (AK are non-specific and closely resemble bacterial, viral and fungal keratitis. Materials and Methods: We compared loop-mediated isothermal amplification (LAMP with microscopy, non-nutrient agar (NNA culture and polymerase chain reaction (PCR in clinical suspects of AK. Results: Of 52 clinical samples (42 AK suspects and 10 proven bacterial, viral or fungal keratitis, 3 were positive by direct microscopy (sensitivity 60%, confidence interval [CI]: 17%–92.7%, and 5 by NNA culture, 18S rDNA PCR and LAMP (sensitivity 100%, CI: 46.3%–100%. The limit of detection of Acanthamoeba DNA was 1 pg/μl by both LAMP and PCR. Conclusion: PCR and LAMP assays targeting 18S rDNA gene were found particularly suitable for a rapid and accurate diagnosis of AK. LAMP assay takes 2–3 h lesser than PCR, and thus offers a rapid, highly sensitive and specific, simple and affordable diagnostic modality for patients suspected of AK, especially in resource limited settings

  4. Detection of bar transgenic sugarcane with a rapid and visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Dinggang eZhou

    2016-03-01

    Full Text Available Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg2+, 6:1 ratio of inner vs outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was ten-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100% by LAMP and 97/100 cases (97% by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable and cost-effective for detection of the bar specific transgenic sugarcane.

  5. Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA

    Directory of Open Access Journals (Sweden)

    Na Feng

    Full Text Available ABSTRACT We developed a loop-mediated isothermal amplification (LAMP assay for the detection of Y. pestis by targeting the 3a sequence on chromosome. All 11 species of the genus Yersinia were used to evaluate the specificity of LAMP and PCR, demonstrating that the primers had a high level of specificity. The sensitivity of LAMP or PCR was 2.3 or 23 CFU for pure culture, whereas 2.3 × 104 or 2.3 × 106 CFU for simulated spleen and lung samples. For simulated liver samples, the sensitivity of LAMP was 2.3 × 106 CFU, but PCR was negative at the level of 2.3 × 107 CFU. After simulated spleen and lung samples were treated with magnetic beads, the sensitivity of LAMP or PCR was 2.3 × 103 or 2.3 × 106 CFU, whereas 2.3 × 105 or 2.3 × 107 CFU for magnetic bead-treated liver samples. These results indicated that some components in the tissues could inhibit LAMP and PCR, and liver tissue samples had a stronger inhibition to LAMP and PCR than spleen and lung tissue samples. LAMP has a higher sensitivity than PCR, and magnetic bead capture of DNAs could remarkably increase the sensitivity of LAMP. LAMP is a simple, rapid and sensitive assay suitable for application in the field or poverty areas.

  6. Rapid detection of Brucella spp. using loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Chen, Shouyi; Li, Xunde; Li, Juntao; Atwill, Edward R

    2013-01-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Livestock that are most vulnerable to brucellosis include cattle, goats, and pigs. Brucella spp. cause serious health problems to humans and animals and economic losses to the livestock industry. Traditional methods for detection of Brucella spp. take 48-72 h (Kumar et al., J Commun Dis 29:131-137, 1997; Barrouin-Melo et al., Res Vet Sci 83:340-346, 2007) that do not meet the food industry's need of rapid detection. Therefore, there is an urgent need of fast, specific, sensitive, and inexpensive method for diagnosing of Brucella spp. Loop-mediated isothermal amplification (LAMP) is a method to amplify nucleic acid at constant temperatures. Amplification can be detected by visual detection, fluorescent stain, turbidity, and electrophoresis. We targeted at the Brucella-specific gene omp25 and designed LAMP primers for detection of Brucella spp. Amplification of DNA with Bst DNA polymerase can be completed at 65 °C in 60 min. Amplified products can be detected by SYBR Green I stain and 2.0% agarose gel electrophoresis. The LAMP method is feasible for detection of Brucella spp. from blood and milk samples.

  7. Loop-mediated isothermal amplification: rapid detection of Angiostrongylus cantonensis infection in Pomacea canaliculata

    Directory of Open Access Journals (Sweden)

    Zhuo MingMing

    2011-10-01

    Full Text Available Abstract Background Angiostrongylus cantonensis is a zoonotic parasite that causes eosinophilic meningitis in humans. The most common source of infection with A. cantonensis is the consumption of raw or undercooked mollusks (e.g., snails and slugs harbouring infectious third-stage larvae (L3. However, the parasite is difficult to identify in snails. The purpose of this study was to develop a quick, simple molecular method to survey for A. cantonensis in intermediate host snails. Findings We used a loop-mediated isothermal amplification (LAMP assay, which was performed using Bst DNA polymerase. Reactions amplified the A. cantonensis 18S rRNA gene and demonstrated high sensitivity; as little as 1 fg of DNA was detected in the samples. Furthermore, no cross-reactivity was found with other parasites such as Toxoplasma gondii, Plasmodium falciparum, Schistosoma japonicum, Clonorchis sinensis, Paragonimus westermani and Anisakis. Pomacea canaliculata snails were exposed to A. cantonensis first-stage larvae (L1 in the laboratory, and L3 were observed in the snails thirty-five days after infection. All nine samples were positive as determined by the LAMP assay for A. cantonensis, which was identified as positive by using PCR and microscopy, this demonstrates that LAMP is sensitive and effective for diagnosis. Conclusions LAMP is an appropriate diagnostic method for the routine identification of A. cantonensis within its intermediate host snail P. canaliculata because of its simplicity, sensitivity, and specificity. It holds great promise as a useful monitoring tool for A. cantonensis in endemic regions.

  8. Immunocapture loop-mediated isothermal amplification assays for the detection of canine parvovirus.

    Science.gov (United States)

    Sun, Yu-Ling; Yen, Chon-Ho; Tu, Ching-Fu

    2017-11-01

    A loop-mediated isothermal amplification (LAMP) assay was used for rapid canine parvovirus (CPV) diagnosis. To reduce the time required and increase the sensitivity of the assay, an immunocapture (IC) technique was developed in this study to exclude the DNA extraction step in molecular diagnostic procedures for CPV. A polyclonal rabbit anti-CPV serum was produced against VP2-EpC that was cloned via DNA recombination. The polyclonal anti-VP2-EpC serum was used for virus capture to prepare microtubes. IC-LAMP was performed to amplify a specific CPV target gene sequence from the CPV viral particles that were captured on the microtubes, and the amplicons were analyzed using agarose electrophoresis or enzyme-linked immunosorbent assay (IC-LAMP-ELISA) and lateral-flow dipstick (IC-LAMP-LFD). The detection sensitivities of IC-LAMP, IC-LAMP-ELISA, and IC-LAMP-LFD were 10 -1 , 10 -1 , and 10 -1 TCID 50 /mL, respectively. Using the IC-LAMP-ELISA and IC-LAMP-LFD assays, the complete CPV diagnostic process can be achieved within 1.5h. Both of the developed IC-LAMP-based assays are simple, direct visual and efficient techniques that are applicable to the detection of CPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip.

    Science.gov (United States)

    Kawai, Kazuhiro; Inada, Mika; Ito, Keiko; Hashimoto, Koji; Nikaido, Masaru; Hata, Eiji; Katsuda, Ken; Kiku, Yoshio; Tagawa, Yuichi; Hayashi, Tomohito

    2017-12-22

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program.

  10. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa.

    Science.gov (United States)

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2016-07-01

    In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66°C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control.

  11. Development of Loop-Mediated Isothermal Amplification for Detection of Leifsonia xyli subsp. xyli in Sugarcane

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2013-01-01

    Full Text Available Ratoon stunt, caused by the xylem-limited coryneform bacterium Leifsonia xyli subsp. xyli (Lxx, is a deep bacteriosis and prevalent in most of sugarcane-producing countries. Based on loop-mediated isothermal amplification (LAMP, we developed a method for detecting Lxx. The major advantages of the LAMP method are visual judgment by color and time saving with only 60 min for identification of Lxx and without the need for costly PCR apparatus and gel scanner. In the present study, positive and negative samples detected by the LAMP method were clearly distinguishable. When total DNA extracted from internode juice was used as the template, the sensitivity of LAMP was 10 times higher than that of the conventional PCR detection. The LAMP assay is a highly specific, rapid, and sensitive method for the diagnosis of ratoon stunt caused by Lxx in sugarcane. This is the first report of LAMP-based assay for the detection of Lxx in sugarcane.

  12. Loop-Mediated Isothermal Amplification (LAMP): Emergence As an Alternative Technology for Herbal Medicine Identification.

    Science.gov (United States)

    Li, Jing-Jian; Xiong, Chao; Liu, Yue; Liang, Jun-Song; Zhou, Xing-Wen

    2016-01-01

    Correct identification of medicinal plant ingredients is essential for their safe use and for the regulation of herbal drug supply chain. Loop-mediated isothermal amplification (LAMP) is a recently developed approach to identify herbal medicine species. This novel molecular biology technique enables timely and accurate testing, especially in settings where infrastructures to support polymerase chain reaction facilities are lacking. Studies that used this method have altered our view on the extent and complexity of herbal medicine identification. In this review, we give an introduction into LAMP analysis, covers the basic principles and important aspects in the development of LAMP analysis method. Then we presented a critical review of the application of LAMP-based methods in detecting and identifying raw medicinal plant materials and their processed products. We also provide a practical standard operating procedure (SOP) for the utilization of the LAMP protocol in herbal authentication, and consider the prospects of LAMP technology in the future developments of herbal medicine identification and the challenges associated with its application.

  13. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification.

    Science.gov (United States)

    Chen, Xiaoyun; Wang, Xiaofu; Jin, Nuo; Zhou, Yu; Huang, Sainan; Miao, Qingmei; Zhu, Qing; Xu, Junfeng

    2012-11-07

    Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP) method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB]) within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%−0.005% GM), was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB) facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.

  14. Development of a loop-mediated isothermal amplification assay for detection of Trichomonas vaginalis.

    Science.gov (United States)

    Reyes, John Carlo B; Solon, Juan Antonio A; Rivera, Windell L

    2014-07-01

    A loop-mediated isothermal amplification (LAMP) assay targeting the 2-kbp repeated DNA species-specific sequence was developed for detection of Trichomonas vaginalis, the causative agent of trichomoniasis. The analytical sensitivity and specificity of the LAMP assay were evaluated using pooled genital swab and urine specimens, respectively, spiked with T. vaginalis trophozoites. Genital secretion and urine did not inhibit the detection of the parasite. The sensitivity of the LAMP was 10-1000 times higher than the PCR performed. The detection limit of LAMP was 1 trichomonad for both spiked genital swab and urine specimens. Also, LAMP did not exhibit cross-reactivity with closely-related trichomonads, Trichomonas tenax and Pentatrichomonas hominis, and other enteric and urogenital microorganisms, Entamoeba histolytica, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. This is the first report of a LAMP assay for the detection of T. vaginalis and has prospective application for rapid diagnosis and control of trichomoniasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Loop-Mediated Isothermal Amplification Targeting Actin DNA of Trichomonas vaginalis.

    Science.gov (United States)

    Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Kong, Hyun-Hee; Lee, Won-Ki; Chung, Dong-Il; Hong, Yeonchul

    2016-06-01

    Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications.

  16. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    Science.gov (United States)

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples.

  17. Loop-mediated isothermal amplification (LAMP) based detection of Colletotrichum falcatum causing red rot in sugarcane.

    Science.gov (United States)

    Chandra, Amaresh; Keizerweerd, Amber T; Que, Youxiong; Grisham, Michael P

    2015-08-01

    Red rot, caused by Colletotrichum falcatum, is a destructive disease prevalent in most sugarcane-producing countries. Disease-free sugarcane planting materials (setts) are essential as the pathogen spreads primarily through infected setts. The present study was undertaken to develop a loop-mediated isothermal amplification (LAMP) assay for the detection of C. falcatum. C. falcatum genomic DNA was isolated from pure mycelium culture and infected tissues. Four sets of primers corresponding to a unique DNA sequence specific to C. falcatum were designed. Specificity of the LAMP test was checked with DNA of another fungal pathogen of sugarcane, Puccinia melanocephala, as well as two closely-related species, Colletotrichum fructivorum and Colletotrichum acutatum. No reaction was found with the three pathogens. When C. falcatum DNA from pure culture was used in a detection limit analysis, sensitivity of the LAMP method was observed to be ten times higher than that of conventional PCR; however, sensitivity was only 5 times higher when DNA from C. falcatum-infected tissues was used. Using the LAMP assay, C. falcatum DNA is amplified with high specificity, efficiency, and rapidity under isothermal conditions. Moreover, visual judgment of color change in <1 h without further post-amplification processing makes the LAMP method convenient, economical, and useful in diagnostic laboratories and the field.

  18. Development of a Loop Mediated Isothermal Amplification for Diagnosis of Ascaris lumbricoides in Fecal Samples

    Directory of Open Access Journals (Sweden)

    Esther A. Shiraho

    2016-01-01

    Full Text Available Ascaris lumbricoides is a nematode parasite that causes the common tropical infection ascariasis in humans. It is also considered among the neglected tropical diseases. Diagnosis relies mainly on microscopy-based methods which are laborious, are limited by low sensitivity, and require high expertise. We have developed a loop mediated isothermal amplification (LAMP for diagnosis of ascariasis in fecal samples, based on the first internal transcribed (ITS-1 spacer region of the ribosomal DNA. We used Primer Explorer V4 software to design primers. Ascaris adult and ova were obtained from naturally infected school children, whose parents/guardians gave consent for their participation in the study. Genomic DNA was extracted using alkaline lysis method and amplified by LAMP at 63°C for 45 minutes. LAMP products were visualized by naked eyes after adding SYBR Green dye and also on agarose gel. LAMP successfully and reliably detected Ascaris DNA from a single egg and in fecal samples. The assay specifically detected Ascaris DNA without amplifying DNA from ova of other parasites which commonly coexist with A. lumbricoides in feces. The developed LAMP assay has great potential for use in ascariasis diagnosis at the point of care and in low infection intensity situation that characterize control and elimination campaigns.

  19. Loop-mediated isothermal amplification assays for screening of bacterial integrons

    Directory of Open Access Journals (Sweden)

    Guangchao Yu

    2014-01-01

    Full Text Available BACKGROUND: The occurrence and prevalence of integrons in clinical microorganisms and their role played in antimicrobial resistance have been well studied recently. As screening and detection of integrons are concerned, current diagnostic methodologies are restricted by significant drawbacks and novel methods are required for integrons detection. RESULTS: In this study, three loop-mediated isothermal amplification (LAMP assays targeting on class 1, 2 and 3 integrons were implemented and evaluated. Optimization of these detection assays were performed, including studing on the reaction temperature, volume, time, sensitivity and specificity (both primers and targets. Application of the established LAMP assays were further verified on a total of 1082 isolates (previously identified to be 397 integron-positive and 685 integron-negative strains. According to the results, the indispensability of each primer had been confirmed and the optimal reaction temperature, volume and time were found to be 65°C, 45 min and 25 µL, respectively. As application was concerned, 361, 28 and 8 isolates carrying intI1, intI2 and intI3 yielded positive amplicons, respectively. Other 685 integron-negative bacteria were negative for the integron-screening LAMP assays, totaling the detection rate and specificity to be 100%. CONCLUSIONS: The intI1-, intI2- and intI3-LAMP assays established in this study were demonstrated to be the valid and rapid detection methodologies for the screening of bacterial integrons.

  20. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    Science.gov (United States)

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.

  1. Endpoint Visual Detection of Three Genetically Modified Rice Events by Loop-Mediated Isothermal Amplification

    Directory of Open Access Journals (Sweden)

    Qing Zhu

    2012-11-01

    Full Text Available Genetically modified (GM rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR, currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB] within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%–0.005% GM, was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.

  2. Rapid and sensitive detection of Bordetella bronchiseptica by loop-mediated isothermal amplification (LAMP

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.

  3. Loop-mediated isothermal amplification for rapid and convenient detection of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Li, Jiahe; Minion, F Chris; Petersen, Andrew C; Jiang, Fei; Yang, Sheng; Guo, Panpan; Li, Jinxiang; Wu, Wenxue

    2013-04-01

    Loop-mediated isothermal amplification (LAMP), a novel method of gene amplification, was employed in this study for detecting Mycoplasma hyopneumoniae in the respiratory tract or lungs of swine. The pathogen can be detected in LAMP reactions containing as few as 10 fg purified target DNA (10 copies of M. hyopneumoniae genome) within 30 min, which was comparable to real-time PCR. After 30-min reaction at 63 °C, the addition of a certain amount of dye (SYBR Green I and hydroxyl naphthol blue at a proper ratio) into the LAMP reaction system makes the results easily determined as positive or negative by visual inspection. In addition, the LAMP was able to distinguish between M. hyopneumoniae and other closely-related mycoplasma strains, indicating a high degree of specificity. The LAMP assay was more simple and cheap, since the reaction could be completed under isothermal conditions and less laboratorial infrastructure are required. And, it was proven reliable for M. hyopneumoniae diagnosis of nasal swab and lung samples from the field.

  4. Elevated OPN, IP-10, and Neutrophilia in Loop-Mediated Isothermal Amplification Confirmed Tuberculosis Patients

    Directory of Open Access Journals (Sweden)

    Beata Shiratori

    2014-01-01

    Full Text Available Tuberculosis (TB is the second most common cause of death from infectious diseases and results in high socioeconomic losses to many countries. Proper diagnosis is the first step in TB eradication. To develop a rapid, simple, and accurate diagnostic TB test and to characterize the prevalence of Mycobacterium tuberculosis (MTB genotypes and immune profiles of TB patients, a total of 37 TB patients and 30 healthy control (HC from Metro Manila were enrolled. Loop-mediated isothermal amplification (LAMP reliably detected MTB infection. Manila genotype was identified by spoligotyping method in all TB patients. Osteopontin (OPN, interferon-γ-induced protein 10 kDa (IP-10, and neutrophil counts were found to reflect the acute stage of MTB infection. The sensitivity and specificity were 94.6% and 93.3%, respectively, for both OPN and IP-10, and they were 83.8% and 78.6%, respectively, for neutrophils. The combination of OPN, IP-10, neutrophil count, IL-6, IL-8, TNF-α, MCP-1, platelets, galectin-9, and leukocyte count correctly identifies all the HC and 96.3% of TB patients. LAMP method may serve as a rapid, supportive method in addition to time-consuming culture methods. OPN, IP-10, and neutrophil counts are useful in detecting MTB infection and may have utility in monitoring the course of the disease.

  5. Accuracy of loop-mediated isothermal amplification for diagnosis of human leptospirosis in Thailand.

    Science.gov (United States)

    Sonthayanon, Piengchan; Chierakul, Wirongrong; Wuthiekanun, Vanaporn; Thaipadungpanit, Janjira; Kalambaheti, Thareerat; Boonsilp, Siriphan; Amornchai, Premjit; Smythe, Lee D; Limmathurotsakul, Direk; Day, Nicholas P; Peacock, Sharon J

    2011-04-01

    There is a lack of diagnostic tests for leptospirosis in technology-restricted settings. We developed loop-mediated isothermal amplification (LAMP) specific for the 16S ribosomal RNA gene (rrs) of pathogenic and intermediate group Leptospira species. The lower limit of detection was 10 genomic equivalents/reaction, and analytical specificity was high; we observed positive reactions for pathogenic/intermediate groups and negative reactions for non-pathogenic Leptospira species and other bacterial species. We evaluated this assay in Thailand by using a case-control study of 133 patients with laboratory-proven leptospirosis and 133 patients with other febrile illnesses. Using admission blood, we found that the rrs LAMP showed positive results in 58 of 133 cases (diagnostic sensitivity = 43.6, 95% confidence interval [CI] = 35.0-52.5) and in 22 of 133 controls (diagnostic specificity = 83.5, 95% CI = 76.0-89.3). Sensitivity was high for 39 patients who were culture positive for Leptospira spp. (84.6, 95% CI = 69.5-94.1). The rrs LAMP can provide an admission diagnosis in approximately half of patients with leptospirosis, but its clinical utility is reduced by a lower specificity.

  6. Development of a Loop-Mediated Isothermal Amplification Assay for Rapid Detection of BK Virus▿

    Science.gov (United States)

    Bista, Bipin Raj; Ishwad, Chandra; Wadowsky, Robert M.; Manna, Pradip; Randhawa, Parmjeet Singh; Gupta, Gaurav; Adhikari, Meena; Tyagi, Rakhi; Gasper, Gina; Vats, Abhay

    2007-01-01

    Loop-mediated isothermal amplification (LAMP) is a novel method for rapid amplification of DNA. Its advantages include rapidity and minimal equipment requirement. The LAMP assay was developed for BK virus (BKV), which is a leading cause of morbidity in renal transplant recipients. The characteristics of the assay, including its specificity and sensitivity, were evaluated. BKV LAMP was performed using various incubation times with a variety of specimens, including unprocessed urine and plasma samples. A ladder pattern on gel electrophoresis, typical of successful LAMP reactions, was observed specifically only for BKV and not for other viruses. The sensitivity of the assay with 1 h of incubation was 100 copies/tube of a cloned BKV fragment. Additionally, a positive reaction was visually ascertained by a simple color reaction using SYBR green dye. BKV LAMP was also successful for urine and plasma specimens without the need for DNA extraction. Due to its simplicity and specificity, the LAMP assay can potentially be developed for “point of care” screening of BKV. PMID:17314224

  7. Development of a loop-mediated isothermal amplification assay for rapid detection of BK virus.

    Science.gov (United States)

    Bista, Bipin Raj; Ishwad, Chandra; Wadowsky, Robert M; Manna, Pradip; Randhawa, Parmjeet Singh; Gupta, Gaurav; Adhikari, Meena; Tyagi, Rakhi; Gasper, Gina; Vats, Abhay

    2007-05-01

    Loop-mediated isothermal amplification (LAMP) is a novel method for rapid amplification of DNA. Its advantages include rapidity and minimal equipment requirement. The LAMP assay was developed for BK virus (BKV), which is a leading cause of morbidity in renal transplant recipients. The characteristics of the assay, including its specificity and sensitivity, were evaluated. BKV LAMP was performed using various incubation times with a variety of specimens, including unprocessed urine and plasma samples. A ladder pattern on gel electrophoresis, typical of successful LAMP reactions, was observed specifically only for BKV and not for other viruses. The sensitivity of the assay with 1 h of incubation was 100 copies/tube of a cloned BKV fragment. Additionally, a positive reaction was visually ascertained by a simple color reaction using SYBR green dye. BKV LAMP was also successful for urine and plasma specimens without the need for DNA extraction. Due to its simplicity and specificity, the LAMP assay can potentially be developed for "point of care" screening of BKV.

  8. Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal Amplification and Crystal Violet Dye.

    Science.gov (United States)

    Roy, Sharmili; Mohd-Naim, Noor Faizah; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2017-11-22

    Nucleic acid detection is of paramount importance in monitoring of microbial pathogens in food safety and infectious disease diagnostic applications. To address these challenges, a rapid, cost-effective label-free technique for nucleic acid detection with minimal instrumentations is highly desired. Here, we present paper microchip to detect and quantify nucleic acid using colorimetric sensing modality. The extracted DNA from food samples of meat as well as microbial pathogens was amplified utilizing loop-mediated isothermal amplification (LAMP). LAMP amplicon was then detected and quantified on a paper microchip fabricated in a cellulose paper and a small wax chamber utilizing crystal violet dye. The affinity of crystal violet dye toward dsDNA and positive signal were identified by changing the color from colorless to purple. Using this method, detection of Sus scrofa (porcine) and Bacillus subtilis (bacteria) DNA was possible at concentrations as low as 1 pg/μL (3.43 × 10 -1 copies/μL) and 10 pg/μL (2.2 × 10 3 copies/μL), respectively. This strategy can be adapted for detection of other DNA samples, with potential for development of a new breed of simple and inexpensive paper microchip at the point-of-need.

  9. Detection of Brucellosis in Sika Deer ( Cervus nippon ) through Loop-mediated Isothermal Amplification (LAMP).

    Science.gov (United States)

    Liu, Qianhong; Wei, Jie; Sun, Qingsong; Wang, Ben; Wang, Yuting; Hu, Ying; Wu, Wenrong

    2017-07-01

    Brucellosis (Brucella bovis) in sika deer ( Cervus nippon ) can cause enormous losses to stag breeding, especially in areas in which stag breeding has become an important industry. It also poses a threat to humans because it is a zoonotic disease. Use of the loop-mediated isothermal amplification (LAMP) assay has been poorly described in the diagnosis of brucellosis in deer. We developed a LAMP assay targeting the omp25 gene sequence to detect brucellosis in sika deer. The reaction can be completed in 60 min at 63 C and, with a detection limit of 17 pg, it was more sensitive than conventional PCR, with its detection limit of 1.7 ng. No cross-reactivity was observed with four bacteria: Escherichia coli , Salmonella enterica subsp. enterica, Clostridium pasteurianum , and Pseudomonas aeruginosa . We used 263 samples of blood to evaluate the reaction. The percentage of agreement between LAMP and PCR reached 91%; relative specificity reached 87%, and relative sensitivity reached 100%. The results indicate LAMP can be a simple and rapid diagnostic tool for detecting brucellosis in sika deer, particularly in the field, where it is essential to control brucellosis in deer with a rapid and accurate diagnosis for removal of positive animals.

  10. Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions

    OpenAIRE

    Mart?nez-Valladares, Mar?a; Rojo-V?zquez, Francisco Antonio

    2016-01-01

    Background Loop-mediated isothermal amplification (LAMP) is a very specific, efficient, and rapid gene amplification procedure in which the reaction can run at a constant temperature. In the current study we have developed a LAMP assay to improve the diagnosis of Fasciola spp. in the faeces of sheep. Findings After the optimisation of the LAMP assay we have shown similar results between this technique and the standard PCR using the outer primers of the LAMP reaction. In both cases the limit o...

  11. Detection of phytoplasma by loop-mediated isothermal amplification of DNA (LAMP).

    Science.gov (United States)

    Obura, E; Masiga, D; Wachira, F; Gurja, B; Khan, Z R

    2011-02-01

    Napier stunt phytoplasma (16SrXI and 16SrIII) in eastern Africa is a serious threat to the expansion of Napier grass (Pennisetum purpureum) farming in the region, where it is widely cultivated as fodder in zero grazing livestock systems. The grass has high potential for bio-fuel production, and has been adopted by farmers as a countermeasure to cereal stem borer Lepidoptera, since it attracts and traps the insect. Diagnosis of stunt phytoplasma have been largely by nested polymerase chain reaction (nPCR) targeting the 16S rRNA gene. However, the method is laborious, costly and technically demanding. This investigation has developed a simpler but effective phytoplasma diagnostic tool, called; loop-mediated isothermal amplification of DNA (LAMP). The assay was tested on 8 symptomatic and 8 asymptomatic plants, while its detection limit was compared to nested PCR using samples serially diluted from 3 ng/μl to 0.38 pg/μl. Molecular typing of LAMP products was determined by BsrI restriction digestion and Southern blot analysis. The assay sensitivity, positive and negative predictive values were estimated, while the specificity was tested on 11 phytoplasma groups. LAMP was specific to 5 phytoplasma groups: 16SrVI, X, XI and XVI. BsrI restriction digestion produced two predicted fragments, and there was specific binding of probe DNA to the LAMP amplicons in Southern blot analysis. The assay sensitivity was 100%, while the positive and negative predictive values were 63 and 100% respectively. LAMP was 20-fold more sensitive than nested PCR. This study validates LAMP for routine diagnosis of Napier stunt and other closely related phytoplasmas. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites

    Science.gov (United States)

    Lucchi, Naomi W.; Ljolje, Dragan; Silva-Flannery, Luciana; Udhayakumar, Venkatachalam

    2016-01-01

    Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1–8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed. PMID:26967908

  13. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites.

    Directory of Open Access Journals (Sweden)

    Naomi W Lucchi

    Full Text Available Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP, are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1-8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed.

  14. Rapid and sensitive detection of Didymella bryoniae by visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Xiefeng Yao

    2016-08-01

    Full Text Available Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB in Cucurbitaceae crops (e.g. cantaloupe, muskmelon, cucumber, and watermelon. GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462 common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR. The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL−1 of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics.

  15. Visual loop-mediated isothermal amplification (LAMP) for the rapid diagnosis of Enterocytozoon hepatopenaei (EHP) infection.

    Science.gov (United States)

    T, Sathish Kumar; A, Navaneeth Krishnan; J, Joseph Sahaya Rajan; M, Makesh; K P, Jithendran; S V, Alavandi; K K, Vijayan

    2018-05-01

    The emerging microsporidian parasite Enterocytozoon hepatopenaei (EHP), the causative agent of hepatopancreatic microsporidiosis, has been widely reported in shrimp-farming countries. EHP infection can be detected by light microscopy observation of spores (1.7 × 1 μm) in stained hepatopancreas (HP) tissue smears, HP tissue sections, and fecal samples. EHP can also be detected by polymerase chain reaction (PCR) targeting the small subunit (SSU) ribosomal RNA (rRNA) gene or the spore wall protein gene (SWP). In this study, a rapid, sensitive, specific, and closed tube visual loop-mediated isothermal amplification (LAMP) protocol combined with FTA cards was developed for the diagnosis of EHP. LAMP primers were designed based on the SSU rRNA gene of EHP. The target sequence of EHP was amplified at constant temperature of 65 °C for 45 min and amplified LAMP products were visually detected in a closed tube system by using SYBR™ green I dye. Detection limit of this LAMP protocol was ten copies. Field and clinical applicability of this assay was evaluated using 162 field samples including 106 HP tissue samples and 56 fecal samples collected from shrimp farms. Out of 162 samples, EHP could be detected in 62 samples (47 HP samples and 15 fecal samples). When compared with SWP-PCR as the gold standard, this EHP LAMP assay had 95.31% sensitivity, 98.98% specificity, and a kappa value of 0.948. This simple, closed tube, clinically evaluated visual LAMP assay has great potential for diagnosing EHP at the farm level, particularly under low-resource circumstances.

  16. Rapid screening method for male DNA by using the loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Kitamura, Masashi; Kubo, Seiji; Tanaka, Jin; Adachi, Tatsushi

    2017-08-12

    Screening for male-derived biological material from collected samples plays an important role in criminal investigations, especially those involving sexual assaults. We have developed a loop-mediated isothermal amplification (LAMP) assay targeting multi-repeat sequences of the Y chromosome for detecting male DNA. Successful amplification occurred with 0.5 ng of male DNA under isothermal conditions of 61 to 67 °C, but no amplification occurred with up to 10 ng of female DNA. Under the optimized conditions, the LAMP reaction initiated amplification within 10 min and amplified for 20 min. The LAMP reaction was sensitive at levels as low as 1-pg male DNA, and a quantitative LAMP assay could be developed because of the strong correlation between the reaction time and the amount of template DNA in the range of 10 pg to 10 ng. Furthermore, to apply the LAMP assay to on-site screening for male-derived samples, we evaluated a protocol using a simple DNA extraction method and a colorimetric intercalating dye that allows detection of the LAMP reaction by evaluating the change in color of the solution. Using this protocol, samples of male-derived blood and saliva stains were processed in approximately 30 min from DNA extraction to detection. Because our protocol does not require much hands-on time or special equipment, this LAMP assay promises to become a rapid and simple screening method for male-derived samples in forensic investigations.

  17. Loop-mediated isothermal amplification as a reliable assay for Toxocara canis infection in pet dogs.

    Science.gov (United States)

    Khoshakhlagh, Paria; Spotin, Adel; Mahami-Oskouei, Mahmoud; Shahbazi, Abbas; Ozlati, Maryam

    2017-09-01

    Keeping of infected dogs as pet results in the potential transmission risk factors for shedding helminthic infections such as toxocariasis. Lack of accurate identification of Toxocara canis eggs in non-dewormed infected pet dogs remains a diagnostic concern among researchers. In this study, dog owners were asked to fill up a questionnaire regarding their pets and their attitude towards the deworming regimen. One hundred faecal samples were collected from pet dogs (Northwest Iran) and were subsequently identified by the ZnSo4 flotation technique, PCR and loop-mediated isothermal amplification (LAMP) assays. The DNA of the recovered T. canis eggs was then extracted and amplified by LAMP and PCR. Furthermore, ITS2 amplicons were sequenced for appraisal of the phylogenetic analysis. Nine, 5 and 11% of T. canis infections were identified by microscopy, PCR and LAMP, respectively. It was detected that LAMP was 10 times (10 -10 to 10 -13  g/μl) more sensitive than PCR (10 -10 to 10 -12  g/μl). The kappa value between LAMP and PCR indicated a faint concurrence (0.463). The kappa coefficient between LAMP and flotation technique indicated a strong agreement (0.667). The highest infection rate (n = 11) was detected in non-dewormed pet dogs, particularly those less than 3 months old (P canis eggs in infected pet dogs. It was proposed that the dog holder's awareness is insufficient to implement regular deworming schedules. Additionally, regional policymakers should broadly revise anthelmintic treatment guidelines.

  18. Specific detection of Pectobacterium carotovorum by loop-mediated isothermal amplification.

    Science.gov (United States)

    Yasuhara-Bell, Jarred; Marrero, Glorimar; De Silva, Asoka; Alvarez, Anne M

    2016-12-01

    Potatoes are an important agroeconomic crop worldwide and maceration diseases caused by pectolytic bacterial pathogens result in significant pre- and post-harvest losses. Pectobacterium carotovorum shares a common host range with other Pectobacterium spp. and other members of the Enterobacteriaceae, such as Dickeya spp. As these pathogens cannot be clearly differentiated on the basis of the symptoms they cause, improved methods of identification are critical for the determination of sources of contamination. Current standardized methods for the differentiation of pectolytic species are time consuming and require trained personnel, as they rely on traditional bacteriological practices that do not always produce conclusive results. In this growing world market, there is a need for rapid diagnostic tests that can differentiate between pectolytic pathogens, as well as separate them from non-pectolytic enteric bacteria associated with soft rots of potato. An assay has been designed previously to detect the temperate pathogen Pectobacterium atrosepticum, but there is currently no recognized rapid assay for the detection of the tropical/subtropical counterpart, Pectobacterium carotovorum. This report describes the development of a loop-mediated isothermal amplification (LAMP) assay that detects P. carotovorum with high specificity. The assay was evaluated using all known species of Pectobacterium and only showed positive reactions for P. carotovorum. This assay was also tested against 15 non-target genera of plant-associated bacteria and did not produce any false positives. The LAMP assay described here can be used as a rapid test for the differentiation of P. carotovorum from other pectolytic pathogens, and its gene target can be the basis for the development of other molecular-based detection assays. © 2016 BSPP and John Wiley & Sons Ltd.

  19. Loop-mediated isothermal amplification (LAMP): early detection of Toxoplasma gondii infection in mice.

    Science.gov (United States)

    Kong, Qing-Ming; Lu, Shao-Hong; Tong, Qun-Bo; Lou, Di; Chen, Rui; Zheng, Bin; Kumagai, Takashi; Wen, Li-Yong; Ohta, Nobuo; Zhou, Xiao-Nong

    2012-01-03

    Toxoplasmosis is a widespread zoonotic parasitic disease that occurs in both animals and humans. Traditional molecular assays are often difficult to perform, especially for the early diagnosis of Toxoplasma gondii infections. Here, we established a novel loop-mediated isothermal amplification targeting the 529 bp repeat element (529 bp-LAMP) to detect T. gondii DNA in blood samples of experimental mice infected with tachyzoites of the RH strain. The assay was performed with Bst DNA polymerase at 65°C for 1 h. The detection limit of the 529 bp-LAMP assay was as low as 0.6 fg of T. gondii DNA. The sensitivity of this assay was 100 and 1000 fold higher than that of the LAMP targeting B1 gene (B1-LAMP) and nested PCR targeting 529 bp repeat element (529 bp-nested PCR), respectively. The specificity of the 529 bp-LAMP assay was determined using the DNA samples of Trypanosoma evansi, Plasmodium falciparum, Paragonimus westermani, Schistosoma japonicum, Fasciola hepatica and Angiostrongylus cantonensis. No cross-reactivity with the DNA of any parasites was found. The assay was able to detect T. gondii DNA in all mouse blood samples at one day post infection (dpi). We report the following findings: (i) The detection limit of the 529 bp-LAMP assay is 0.6 fg of T. gondii DNA; (ii) The assay does not involve any cross-reactivity with the DNA of other parasites; (iii) This is the first report on the application of the LAMP assay for early diagnosis of toxoplasmosis in blood samples from experimentally infected mice. Due to its simplicity, sensitivity and cost-effectiveness for common use, we suggest that this assay should be used as an early diagnostic tool for health control of toxoplasmosis.

  20. Simultaneous detection of four garlic viruses by multiplex reverse transcription PCR and their distribution in Indian garlic accessions.

    Science.gov (United States)

    Majumder, S; Baranwal, V K

    2014-06-01

    Indian garlic is infected with Onion yellow dwarf virus (OYDV), Shallot latent virus (SLV), Garlic common latent virus (GarCLV) and allexiviruses. Identity and distribution of garlic viruses in various garlic accessions from different geographical regions of India were investigated. OYDV and allexiviruses were observed in all the garlic accessions, while SLV and GarCLV were observed only in a few accessions. A multiplex reverse transcription (RT)-PCR method was developed for the simultaneous detection and identification of OYDV, SLV, GarCLV and Allexivirus infecting garlic accessions in India. This multiplex protocol standardized in this study will be useful in indexing of garlic viruses and production of virus free seed material. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Simultaneous detection of enteropathogenic viruses in buffalos faeces using multiplex reverse transcription-polymerase chain reaction (mRT-PCR

    Directory of Open Access Journals (Sweden)

    U. Pagnini

    2010-02-01

    Full Text Available A multiplex reverse transcription- polymerase chain reaction (mRT-PCR assay that detects Bovine Viral Diarrhoea Virus, Bovine Coronavirus, and Group A Rotaviruses in infected cell-culture fluids and clinical faecal samples is described. One hundred twenty faecal samples from buffalo calves with acute gastroenteritis were tested. The mRT-PCR was validated against simplex RT-PCR with published primers for Pestivirus, Coronavirus and Rotavirus. The multiplex RT-PCR was equally sensitive and specific in detecting viral infections compared with simplex RT-PCR. The mRT-PCR readily identified viruses by discriminating the size of their amplified gene products. This mRT-PCR may be a sensitive and rapid assay for surveillance of buffalo enteric viruses in field specimens. This novel multiplex RT-PCR is an attractive technique for the rapid, specific, and cost-effective laboratory diagnosis of acute gastroenteritis.

  2. External Quality Assessment for the Detection of Measles Virus by Reverse Transcription-PCR Using Armored RNA.

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    Full Text Available In recent years, nucleic acid tests for detection of measles virus RNA have been widely applied in laboratories belonging to the measles surveillance system of China. An external quality assessment program was established by the National Center for Clinical Laboratories to evaluate the performance of nucleic acid tests for measles virus. The external quality assessment panel, which consisted of 10 specimens, was prepared using armored RNAs, complex of noninfectious MS2 bacteriophage coat proteins encapsulated RNA of measles virus, as measles virus surrogate controls. Conserved sequences amplified from a circulating measles virus strain or from a vaccine strain were encapsulated into these armored RNAs. Forty-one participating laboratories from 15 provinces, municipalities, or autonomous regions that currently conduct molecular detection of measles virus enrolled in the external quality assessment program, including 40 measles surveillance system laboratories and one diagnostic reagent manufacturer. Forty laboratories used commercial reverse transcription-quantitative PCR kits, with only one laboratory applying a conventional PCR method developed in-house. The results indicated that most of the participants (38/41, 92.7% were able to accurately detect the panel with 100% sensitivity and 100% specificity. Although a wide range of commercially available kits for nucleic acid extraction and reverse transcription polymerase chain reaction were used by the participants, only two false-negative results and one false-positive result were generated; these were generated by three separate laboratories. Both false-negative results were obtained with tests performed on specimens with the lowest concentration (1.2 × 104 genomic equivalents/mL. In addition, all 18 participants from Beijing achieved 100% sensitivity and 100% specificity. Overall, we conclude that the majority of the laboratories evaluated have reliable diagnostic capacities for the detection

  3. Reference genes for gene expression analysis by real-time reverse transcription polymerase chain reaction of renal cell carcinoma.

    Science.gov (United States)

    Bjerregaard, Henriette; Pedersen, Shona; Kristensen, Søren Risom; Marcussen, Niels

    2011-12-01

    Differentiation between malignant renal cell carcinoma and benign oncocytoma is of great importance to choose the optimal treatment. Accurate preoperative diagnosis of renal tumor is therefore crucial; however, existing imaging techniques and histologic examinations are incapable of providing an optimal differentiation profile. Analysis of gene expression of molecular markers is a new possibility but relies on appropriate standardization to compare different samples. The aim of this study was to identify stably expressed reference genes suitable for the normalization of results extracted from gene expression analysis of renal tumors. Expression levels of 8 potential reference genes (ATP5J, HMBS, HPRT1, PPIA, TBP, 18S, GAPDH, and POLR2A) were examined by real-time reverse transcription polymerase chain reaction in tumor and normal tissue from removed kidneys from 13 patients with renal cell carcinoma and 5 patients with oncocytoma. The expression levels of genes were compared by gene stability value M, average gene stability M, pairwise variation V, and coefficient of variation CV. More candidates were not suitable for the purpose, but a combination of HMBS, PPIA, ATP5J, and TBP was found to be the best combination with an average gene stability value M of 0.9 and a CV of 0.4 in the 18 tumors and normal tissues. A combination of 4 genes, HMBS, PPIA, ATP5J, and TBP, is a possible reference in renal tumor gene expression analysis by reverse transcription polymerase chain reaction. A combination of four genes, HMBS, PPIA, ATP5J and TBP, being stably expressed in tissues from RCC is possible reference genes for gene expression analysis.

  4. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer

    Directory of Open Access Journals (Sweden)

    Liu Tiantian

    2010-05-01

    Full Text Available Abstract Background Telomerase is activated in oncogenesis, which confers an immortal phenotype to cancer cells. The AAA + ATPase Reptin is required for telomerase biogenesis by maintaining telomerase RNA (hTER stability and is aberrantly expressed in certain cancers. Given its role in chromatin remodeling and transcription regulation, we determined the effect of Reptin on the transcription of the telomerase reverse transcriptase (hTERT gene, a key component of the telomerase complex and its expression in gastric cancer. Results Knocking down Reptin or its partner Pontin using small interfering RNA in gastric and cervical cancer cells led to significant decreases in hTERT mRNA, but hTERT promoter activity was inhibited in only Reptin-depleted cells. Reptin interacted with the c-MYC oncoprotein and its stimulatory effect on the hTERTpromoter was significantly dependent on functional E-boxes in the promoter. Moreover, Reptin bound to the hTERT proximal promoter and the loss of the Reptin occupancy led to dissociation of c-MYC from the hTERT promoter in Reptin-depleted cells. Reptin inhibition dramatically impaired clonogenic potential of gastric cancer cells by inducing cell growtharrest and over-expression of Reptin was observed in primary gastric cancer specimens. Conclusions The hTERT gene is a direct target of Reptin, and hTERT transcription requires constitutive expression of Reptin and its cooperation with c-MYC. Thus, Reptin regulates telomerase at two different levels. This finding, together with the requirementof Reptin for the clonogenic potential of cancer cells and its over-expression in gastriccancer and other solid tumors, suggests that Reptin may be a putative therapeutic target.

  5. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food.

    Science.gov (United States)

    Domesle, Kelly J; Yang, Qianru; Hammack, Thomas S; Ge, Beilei

    2018-01-02

    Loop-mediated isothermal amplification (LAMP) has emerged as a promising alternative to PCR for pathogen detection in food testing and clinical diagnostics. This study aimed to validate a Salmonella LAMP method run on both turbidimetry (LAMP I) and fluorescence (LAMP II) platforms in representative animal food commodities. The U.S. Food and Drug Administration (FDA)'s culture-based Bacteriological Analytical Manual (BAM) method was used as the reference method and a real-time quantitative PCR (qPCR) assay was also performed. The method comparison study followed the FDA's microbiological methods validation guidelines, which align well with those from the AOAC International and ISO. Both LAMP assays were 100% specific among 300 strains (247 Salmonella of 185 serovars and 53 non-Salmonella) tested. The detection limits ranged from 1.3 to 28 cells for six Salmonella strains of various serovars. Six commodities consisting of four animal feed items (cattle feed, chicken feed, horse feed, and swine feed) and two pet food items (dry cat food and dry dog food) all yielded satisfactory results. Compared to the BAM method, the relative levels of detection (RLODs) for LAMP I ranged from 0.317 to 1 with a combined value of 0.610, while those for LAMP II ranged from 0.394 to 1.152 with a combined value of 0.783, which all fell within the acceptability limit (2.5) for an unpaired study. This also suggests that LAMP was more sensitive than the BAM method at detecting low-level Salmonella contamination in animal food and results were available 3days sooner. The performance of LAMP on both platforms was comparable to that of qPCR but notably faster, particularly LAMP II. Given the importance of Salmonella in animal food safety, the LAMP assays validated in this study holds great promise as a rapid, reliable, and robust method for routine screening of Salmonella in these commodities. Published by Elsevier B.V.

  6. Forced selection of a human immunodeficiency virus type 1 variant that uses a non-self tRNA primer for reverse transcription: Involvement of viral RNA sequences and the reverse transcriptase enzyme

    NARCIS (Netherlands)

    Abbink, Truus E. M.; Beerens, Nancy; Berkhout, Ben

    2004-01-01

    Human immunodeficiency virus type 1 uses the tRNA(3)(Lys) molecule as a selective primer for reverse transcription. This primer specificity is imposed by sequence complementarity between the tRNA primer and two motifs in the viral RNA genome: the primer-binding site (PBS) and the primer activation

  7. Outbreak of hepatitis E virus infection in Darfur, Sudan: effectiveness of real-time reverse transcription-PCR analysis of dried blood spots.

    Science.gov (United States)

    Mérens, Audrey; Guérin, Philippe Jean; Guthmann, Jean-Paul; Nicand, Elisabeth

    2009-06-01

    Biological samples collected in refugee camps during an outbreak of hepatitis E were used to compare the accuracy of hepatitis E virus RNA amplification by real-time reverse transcription-PCR (RT-PCR) for sera and dried blood spots (concordance of 90.6%). Biological profiles (RT-PCR and serology) of asymptomatic individuals were also analyzed.

  8. Human immunodeficiency virus uses tRNA(Lys,3) as primer for reverse transcription in HeLa-CD4+ cells

    NARCIS (Netherlands)

    Das, A. T.; Koken, S. E.; Essink, B. B.; van Wamel, J. L.; Berkhout, B.

    1994-01-01

    Significant amounts of different tRNA molecules are present in retroviral particles, but one specific tRNA species functions as primer in reverse transcription. It is generally believed that the HIV-1 virus uses the tRNA(Lys,3) molecule as primer. This is based on sequence complementarity between

  9. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification

    Science.gov (United States)

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39 °C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in ...

  10. Multiplex reverse transcription-polymerase chain reaction combined with on-chip electrophoresis as a rapid screening tool for candidate gene sets

    DEFF Research Database (Denmark)

    Wittig, Rainer; Salowsky, Rüdiger; Blaich, Stephanie

    2005-01-01

    Combining multiplex reverse transcription-polymerase chain reaction (mRT-PCR) with microfluidic amplicon analysis, we developed an assay for the rapid and reliable semiquantitative expression screening of 11 candidate genes for drug resistance in human malignant melanoma. The functionality of thi...

  11. Multiplex Reverse Transcription-Polymerase Chain Reaction untuk Deteksi Cepat Virus Flu Burung H5N1 (MULTIPLEX REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION FOR RAPID DETECTION OF H5N1 AVIAN INFLUENZA VIRUS

    Directory of Open Access Journals (Sweden)

    Raden Wasito

    2015-05-01

    Full Text Available Avian influenza virus subtype H5N1 (AIV H5N1 is highly pathogenic and fatal in poultry. The virusis still endemic with low virulence rate, although it may play a critical role in causing high morbidity andmortality rates in poultry in Indonesia. In general, diagnostic approach for AIV H5N1 is based onconventional serological and viral isolation methods that have the potential to produce consumings oftime and relatively expensive cost within the laboratory without compromising test utility. Thus, amolecular approach of multiplex reverse transcription-polymerase chain reaction (mRT-PCR was developedand applied for the detection of matrix gene type A influenza viruses, AIV subtype subtype H5hemagglutinin gene with simultaneous detection of N1 nucleoprotein gene. Thirty sera specimens fromthe diseased commercial chickens that were specifically amplified positive-RT-PCR for AIV H5N1 wereselected for mRT-PCR. The mRT-PCR products were visualized by agarose gel electrophoresis and consistedof DNA fragments of AIV of 245 bp, 545 bp and 343 bp for M, H5 and N1 genes, respectively. Thus, themRT-PCR that can rapidly differentiate simultaneously between these genes is very important for thecontrol and even eradication of AIV transmission in poultry in Indonesia.

  12. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Reverse transcription-quantitative polymerase chain reaction: description of a RIN-based algorithm for accurate data normalization

    Directory of Open Access Journals (Sweden)

    Boissière-Michot Florence

    2009-04-01

    Full Text Available Abstract Background Reverse transcription-quantitative polymerase chain reaction (RT-qPCR is the gold standard technique for mRNA quantification, but appropriate normalization is required to obtain reliable data. Normalization to accurately quantitated RNA has been proposed as the most reliable method for in vivo biopsies. However, this approach does not correct differences in RNA integrity. Results In this study, we evaluated the effect of RNA degradation on the quantification of the relative expression of nine genes (18S, ACTB, ATUB, B2M, GAPDH, HPRT, POLR2L, PSMB6 and RPLP0 that cover a wide expression spectrum. Our results show that RNA degradation could introduce up to 100% error in gene expression measurements when RT-qPCR data were normalized to total RNA. To achieve greater resolution of small differences in transcript levels in degraded samples, we improved this normalization method by developing a corrective algorithm that compensates for the loss of RNA integrity. This approach allowed us to achieve higher accuracy, since the average error for quantitative measurements was reduced to 8%. Finally, we applied our normalization strategy to the quantification of EGFR, HER2 and HER3 in 104 rectal cancer biopsies. Taken together, our data show that normalization of gene expression measurements by taking into account also RNA degradation allows much more reliable sample comparison. Conclusion We developed a new normalization method of RT-qPCR data that compensates for loss of RNA integrity and therefore allows accurate gene expression quantification in human biopsies.

  14. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    Directory of Open Access Journals (Sweden)

    Lee Yeon-Su

    2010-05-01

    Full Text Available Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. Methods We assessed the suitability of six possible reference genes, beta-actin (ACTB, glyceraldehydes-3-phosphate dehydrogenase (GAPDH, hypoxanthine phosphoribosyl transferase 1 (HPRT1, beta-2-microglobulin (B2M, ribosomal subunit L29 (RPL29 and 18S ribosomal RNA (18S rRNA in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. Results This RT-qPCR study showed that there are statistically significant (p Conclusion This study validated RPL29 and RPL29-B2M as the best single reference genes and combination, for RT-qPCR analysis of 'all stomach tissues', and B2M and B2M-GAPDH as the best single reference gene and combination, for 'stomach cancer cell lines'. Use of these validated reference genes should provide more exact interpretation of differential gene expressions at transcription level in stomach cancer.

  15. Development of a Novel Loop-Mediated Isothermal Amplification (LAMP) Assay for the Detection of Rickettsia spp.

    Science.gov (United States)

    Hanaoka, Nozomu; Matsutani, Minenosuke; Satoh, Masaaki; Ogawa, Motohiko; Shirai, Mutsunori; Ando, Shuji

    2017-01-24

    We developed a novel loop-mediated isothermal amplification (LAMP) method to detect Rickettsia spp., including Rickettsia prowazekii and R. typhi. Species-specific LAMP primers were developed for orthologous genes conserved among Rickettsia spp. The selected modified primers could detect all the Rickettsia spp. tested. The LAMP method was successfully used to detect 100 DNA copies of Rickettsia spp. within approximately 60 min at 63℃. Therefore, this method may be an excellent tool for the early diagnosis of rickettsiosis in a laboratory or in the field.

  16. LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP) FOR THE DETECTION OF SALMONELLA SPP. ISOLATED FROM DIFFERENT FOOD TYPES

    OpenAIRE

    Kostas Papanotas; Petros A. Kokkinos; Panos G. Ziros; Apostolos Vantarakis

    2012-01-01

    The objective of this study was the application and evaluation of a loop-mediated isothermal amplification (LAMP) method for the detection of Salmonella spp. strains isolated from food samples. Salmonella specific invA gene sequences (50 strains, 15 serotypes) were amplified at 65oC in 60 min. All of the strains of Salmonella subsp. Enterica were shown to be positive using the LAMP reaction assay, whereas, all other bacteria, virus and yeasts tested in this study were negative. LAMP products ...

  17. Rapid and sensitive detection of canine distemper virus by one-tube reverse transcription-insulated isothermal polymerase chain reaction.

    Science.gov (United States)

    Wilkes, Rebecca P; Tsai, Yun-Long; Lee, Pei-Yu; Lee, Fu-Chun; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2014-09-09

    Canine distemper virus (CDV) has been associated with outbreaks of canine infectious respiratory disease in shelters and boarding kennel environments. POCKITTM Nucleic Acid Analyzer is a field-deployable device capable of generating automatically interpreted insulated isothermal polymerase chain reaction (iiPCR) results from extracted nucleic acid within one hour. In this study, reverse transcription iiPCR (RT-iiPCR) was developed to facilitate point-of-need diagnosis of CDV infection. Analytical sensitivity (limit of detection 95%) of the established CDV RT-iiPCR was about 11 copies of in vitro transcribed RNA per reaction. CDV RT-iiPCR generated positive signals from CDV, but not Bordetella bronchiseptica, canine parvovirus, canine herpesvirus, canine adenovirus 2, canine influenza virus (subtype H3N8), canine parainfluenza virus, and canine respiratory coronavirus. To evaluate accuracy of the established reaction in canine distemper clinical diagnosis, 110 specimens from dogs, raccoons, and foxes suspected with CDV infection were tested simultaneously by CDV RT-iiPCR and real-time RT-PCR. CDV RT-iiPCR demonstrated excellent sensitivity (100%) and specificity (100%), compared to real-time RT-PCR. The results indicated an excellent correlation between RT-iiPCR and a reference real time RT-PCR method. Working in a lyophilized format, the established method has great potential to be used for point-of-care diagnosis of canine distemper in animals, especially in resource-limited facilities.

  18. Simultaneous Detection of Four Foodborne Viruses in Food Samples Using a One-Step Multiplex Reverse Transcription PCR.

    Science.gov (United States)

    Lee, Shin-Young; Kim, Mi-Ju; Kim, Hyun-Joong; Jeong, KwangCheol Casey; Kim, Hae-Yeong

    2018-02-28

    A one-step multiplex reverse transcription PCR (RT-PCR) method comprising six primer sets (for the detection of norovirus GI and GII, hepatitis A virus, rotavirus, and astrovirus) was developed to simultaneously detect four kinds of pathogenic viruses. The size of the PCR products for norovirus GI and GII, hepatitis A virus (VP3/VP1 and P2A regions), rotavirus, and astrovirus were 330, 164, 244, 198, 629, and 449 bp, respectively. The RT-PCR with the six primer sets showed specificity for the pathogenic viruses. The detection limit of the developed multiplex RT-PCR, as evaluated using serially diluted viral RNAs, was comparable to that of one-step single RT-PCR. Moreover, this multiplex RT-PCR was evaluated using food samples such as water, oysters, lettuce, and vegetable product. These food samples were artificially spiked with the four kinds of viruses in diverse combinations, and the spiked viruses in all food samples were detected successfully.

  19. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis.

    Science.gov (United States)

    Fox, Bridget C; Devonshire, Alison S; Baradez, Marc-Olivier; Marshall, Damian; Foy, Carole A

    2012-08-15

    Single cell gene expression analysis can provide insights into development and disease progression by profiling individual cellular responses as opposed to reporting the global average of a population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the "gold standard" for the quantification of gene expression levels; however, the technical performance of kits and platforms aimed at single cell analysis has not been fully defined in terms of sensitivity and assay comparability. We compared three kits using purification columns (PicoPure) or direct lysis (CellsDirect and Cells-to-CT) combined with a one- or two-step RT-qPCR approach using dilutions of cells and RNA standards to the single cell level. Single cell-level messenger RNA (mRNA) analysis was possible using all three methods, although the precision, linearity, and effect of lysis buffer and cell background differed depending on the approach used. The impact of using a microfluidic qPCR platform versus a standard instrument was investigated for potential variability introduced by preamplification of template or scaling down of the qPCR to nanoliter volumes using laser-dissected single cell samples. The two approaches were found to be comparable. These studies show that accurate gene expression analysis is achievable at the single cell level and highlight the importance of well-validated experimental procedures for low-level mRNA analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Reverse Transcription Polymerase Chain Reaction-based System for Simultaneous Detection of Multiple Lily-infecting Viruses

    Directory of Open Access Journals (Sweden)

    Ji Yeon Kwon

    2013-09-01

    Full Text Available A detection system based on a multiplex reverse transcription (RT polymerase chain reaction (PCR was developed to simultaneously identify multiple viruses in the lily plant. The most common viruses infecting lily plants are the cucumber mosaic virus (CMV, lily mottle virus (LMoV, lily symptomless virus (LSV. Leaf samples were collected at lily-cultivation facilities located in the Kangwon province of Korea and used to evaluate the detection system. Simplex and multiplex RT-PCR were performed using virus-specific primers to detect single-or mixed viral infections in lily plants. Our results demonstrate the selective detection of 3 different viruses (CMV, LMoV and LSV by using specific primers as well as the potential of simultaneously detecting 2 or 3 different viruses in lily plants with mixed infections. Three sets of primers for each target virus, and one set of internal control primers were used to evaluate the detection system for efficiency, reliability, and reproducibility.

  1. Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus.

    Science.gov (United States)

    Qin, Shaomin; Underwood, Darren; Driver, Luke; Kistler, Carol; Diallo, Ibrahim; Kirkland, Peter D

    2018-06-01

    We evaluated a fluorogenic probe-based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21-4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations.

  2. Reliable gene expression analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy.

    Science.gov (United States)

    Remans, Tony; Keunen, Els; Bex, Geert Jan; Smeets, Karen; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data. © 2014 American Society of Plant Biologists. All rights reserved.

  3. Reversibility of β-Cell-Specific Transcript Factors Expression by Long-Term Caloric Restriction in db/db Mouse

    Directory of Open Access Journals (Sweden)

    Chunjun Sheng

    2016-01-01

    Full Text Available Type 2 diabetes (T2D is characterized by β-cell dedifferentiation, but underlying mechanisms remain unclear. The purpose of the current study was to explore the mechanisms of β-cell dedifferentiation with and without long-term control of calorie intake. We used a diabetes mouse model (db/db to analyze the changes in the expression levels of β-cell-specific transcription factors (TFs and functional factors with long-term caloric restriction (CR. Our results showed that chronic euglycemia was maintained in the db/db mice with long-term CR intervention, and β-cell dedifferentiation was significantly reduced. The expression of Glut2, Pdx1, and Nkx6.1 was reversed, while MafA expression was significantly increased with long-term CR. GLP-1 pathway was reactivated with long-term CR. Our work showed that the course of β-cell dedifferentiation can intervene by long-term control of calorie intake. Key β-cell-specific TFs and functional factors play important roles in maintaining β-cell differentiation. Targeting these factors could optimize T2D therapies.

  4. Candidate gene biodosimeters of mice and human exposure to ionizing radiation by quantitative reverse transcription polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Hamed Rezaeejam

    2015-01-01

    Full Text Available Understanding of cellular responses to ionizing radiation (IR is essential for the development of predictive markers useful for assessing human exposure. Biological markers of exposure to IR in human populations are of great interest for assessing normal tissue injury in radiation oncology and for biodosimetry in nuclear incidents and accidental radiation exposures. Traditional radiation exposure biomarkers based on cytogenetic assays (biodosimetry, are time-consuming and do not provide results fast enough and requires highly trained personnel for scoring. Hence, the development of rapid biodosimetry methods is one of the highest priorities. Exposure of cells to IR activates multiple signal transduction pathways, which result in complex alterations in gene-expression. Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR has become the benchmark for the detection and quantification of RNA targets and is being utilized increasingly in monitoring the specific genes with more accurately and sensitively. This review evaluates the RT-qPCR as a biodosimetry method and we investigated the papers from 2000 up to now, which identified the genes-expression related the DNA repair, cell cycle checkpoint, and apoptosis induced by ionization radiation in peripheral blood and determined as biodosimeters. In conclusion, it could be say that RT-qPCR technique for determining the specific genes as biodosimeters could be a fully quantitative reliable and sensitive method. Furthermore, the results of the current review will help the researchers to recognize the most expressed genes induced by ionization radiation.

  5. A sensitive, reproducible, and economic real-time reverse transcription PCR detecting avian metapneumovirus subtypes A and B.

    Science.gov (United States)

    Franzo, G; Drigo, M; Lupini, C; Catelli, E; Laconi, A; Listorti, V; Bonci, M; Naylor, C J; Martini, M; Cecchinato, M

    2014-06-01

    Use of real-time PCR is increasing in the diagnosis of infectious disease due to its sensitivity, specificity, and speed of detection. These characteristics make it particularly suited for the diagnosis of viral infections, like avian metapneumovirus (AMPV), for which effective control benefits from continuously updated knowledge of the epidemiological situation. Other real-time reverse transcription (RT)-PCRs have been published based on highly specific fluorescent dye-labeled probes, but they have high initial cost, complex validation, and a marked susceptibility to the genetic variability of their target sequence. With this in mind, we developed and validated a SYBR Green I-based quantitative RT-PCR for the detection of the two most prevalent AMPV subtypes (i.e., subtypes A and B). The assay demonstrated an analytical sensitivity comparable with that of a previously published real-time RT-PCR and the ability to detect RNA equivalent to approximately 0.5 infectious doses for both A and B subtypes. The high efficiency and linearity between viral titer and crossing point displayed for both subtypes make it suited for viral quantification. Optimization of reaction conditions and the implementation of melting curve analysis guaranteed the high specificity of the assay. The stable melting temperature difference between the two subtypes indicated the possibility of subtyping through melting temperature analysis. These characteristics make our assay a sensitive, specific, and rapid tool, enabling contemporaneous detection, quantification, and discrimination of AMPV subtype A and B.

  6. Detection of Brazilian hantavirus by reverse transcription polymerase chain reaction amplification of N gene in patients with hantavirus cardiopulmonary syndrome

    Directory of Open Access Journals (Sweden)

    Marcos Lázaro Moreli

    2004-10-01

    Full Text Available We report a nested reverse transcription-polymerase chain reaction (RT-PCR assay for hantavirus using primers selected to match high homology regions of hantavirus genomes detected from the whole blood of hantavirus cardiopulmonary syndrome (HCPS patients from Brazil, also including the N gene nucleotide sequence of Araraquara virus. Hantavirus genomes were detected in eight out of nine blood samples from the HCPS patients by RT-PCR (88.9% positivity and in all 9 blood samples (100% positivity by nested-PCR. The eight amplicons obtained by RT-PCR (P1, P3-P9, including one obtained by nested-PCR (P-2 and not obtained by RT-PCR, were sequenced and showed high homology (94.8% to 99.1% with the N gene of Araraquara hantavirus. Although the serologic method ELISA is the most appropriate test for HCPS diagnosis, the use of nested RT-PCR for hantavirus in Brazil would contribute to the diagnosis of acute hantavirus disease detecting viral genomes in patient specimens as well as initial genomic characterization of circulating hantaviruses.

  7. Detection of SYT-SSX mutant transcripts in formalin-fixed paraffin-embedded sarcoma tissues using one-step reverse transcriptase real-time PCR.

    Science.gov (United States)

    Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M

    2016-04-01

    Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.

  8. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR RNA.

    Directory of Open Access Journals (Sweden)

    Matthew S Lalonde

    2011-05-01

    Full Text Available The RNA response element TAR plays a critical role in HIV replication by providing a binding site for the recruitment of the viral transactivator protein Tat. Using a structure-guided approach, we have developed a series of conformationally-constrained cyclic peptides that act as structural mimics of the Tat RNA binding region and block Tat-TAR interactions at nanomolar concentrations in vitro. Here we show that these compounds block Tat-dependent transcription in cell-free systems and in cell-based reporter assays. The compounds are also cell permeable, have low toxicity, and inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic L50 exhibited an IC(50 ∼250 nM. Surprisingly, inhibition of LTR-driven HIV-1 transcription could not account for the full antiviral activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic inhibition curve with the first phase occurring after HIV-1 entry into the host cell and during the initiation of HIV-1 reverse transcription. The second phase coincides with inhibition of HIV-1 transcription. Reconstituted reverse transcription assays confirm that HIV-1 (- strand strong stop DNA synthesis is blocked by L50-TAR RNA interactions in-vitro. These findings are consistent with genetic evidence that TAR plays critical roles both during reverse transcription and during HIV gene expression. Our results suggest that antiviral drugs targeting TAR RNA might be highly effective due to a dual inhibitory mechanism.

  9. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    International Nuclear Information System (INIS)

    Rho, Hyun-Wook; Lee, Byoung-Chan; Choi, Eun-Seok; Choi, Il-Ju; Lee, Yeon-Su; Goh, Sung-Ho

    2010-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. We assessed the suitability of six possible reference genes, beta-actin (ACTB), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), hypoxanthine phosphoribosyl transferase 1 (HPRT1), beta-2-microglobulin (B2M), ribosomal subunit L29 (RPL29) and 18S ribosomal RNA (18S rRNA) in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. This RT-qPCR study showed that there are statistically significant (p < 0.05) differences in the expression levels of HPRT1 and 18S rRNA in 'normal-' versus 'tumor stomach tissues'. The stability analyses by geNorm suggest B2M-GAPDH, as best reference gene combination for 'stomach cancer cell lines'; RPL29-HPRT1, for 'all stomach tissues'; and ACTB-18S rRNA, for 'all stomach cell lines and tissues'. NormFinder also identified B2M as the best reference gene for 'stomach cancer cell lines', RPL29-B2M for 'all stomach tissues', and 18S rRNA-ACTB for 'all stomach cell lines and tissues'. The comparisons of normalized expression of the target gene, GPNMB, showed different interpretation of target gene expression depend on best single reference gene or combination. This study validated RPL29 and RPL29-B2M as the best single reference

  10. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction

    International Nuclear Information System (INIS)

    Zhan Fangfang; Zhou Xiaoming; Xing Da

    2013-01-01

    Graphical abstract: In this work, we have developed and demonstrated a magnetic primer based RT-PCR assay for ECL detection of rotavirus. In the presence of two functional primers (magnetic primer and TBR-primer) and PCR reagents, cDNA from RT was amplified directly onto MPs during PCR cycles of denaturation, annealing and extension. The resulting MPs–TBR complexes were easily loaded on the electrode surface and produced a concentrated ECL signal. The figure shows the schematic illustration of magnetic primer RT-PCR based ECL assay for rotavirus detection. Highlights: ► A novel method for detection of rotavirus has been developed. ► In the presence of magnetic primer, TBR-primer and PCR reagents, cDNA form RT was amplified directly onto MPs. ► To obtain the best sensing and efficient performance, important parameters associated with the efficiency were investigated carefully. ► The proposed method will find numerous applications in food safety field and clinical diagnosis. - Abstract: A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2′-bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs–TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection. In this study, rotavirus in fecal specimens was successfully detected within 1.5 h. Experimental

  11. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Fangfang; Zhou Xiaoming [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Xing Da, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2013-01-25

    Graphical abstract: In this work, we have developed and demonstrated a magnetic primer based RT-PCR assay for ECL detection of rotavirus. In the presence of two functional primers (magnetic primer and TBR-primer) and PCR reagents, cDNA from RT was amplified directly onto MPs during PCR cycles of denaturation, annealing and extension. The resulting MPs-TBR complexes were easily loaded on the electrode surface and produced a concentrated ECL signal. The figure shows the schematic illustration of magnetic primer RT-PCR based ECL assay for rotavirus detection. Highlights: Black-Right-Pointing-Pointer A novel method for detection of rotavirus has been developed. Black-Right-Pointing-Pointer In the presence of magnetic primer, TBR-primer and PCR reagents, cDNA form RT was amplified directly onto MPs. Black-Right-Pointing-Pointer To obtain the best sensing and efficient performance, important parameters associated with the efficiency were investigated carefully. Black-Right-Pointing-Pointer The proposed method will find numerous applications in food safety field and clinical diagnosis. - Abstract: A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2 Prime -bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs-TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection

  12. Real-time reverse transcription-polymerase chain reaction assays for identification of wild poliovirus 1 & 3.

    Science.gov (United States)

    Sharma, Deepa K; Nalavade, Uma P; Deshpande, Jagadish M

    2015-10-01

    The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolated in India since 2000. The specificity of the rRT-PCR assays was evaluated using WPV1 and WPV3 of different genetic lineages, non-polio enteroviruses (NPEVs) and mixtures of wild/wild and wild/Sabin vaccine strains. The sensitivity of the assays was determined by testing serial 10-fold dilutions of wild poliovirus 1 and 3 stock suspensions of known titre. No cross-reactivity with Sabin strains, intertypic wild poliovirus isolates or 27 types of NPEVs across all the four Enterovirus species was found for both the wild poliovirus 1 and 3 rRT-PCR assays. All WPV1 and WPV3 strains isolated since 2000 were successfully amplified. The rRT-PCR assays detected 10 4.40 CCID 50 /ml of WPV1 and 10 4.00 CCID 50 /ml of WPV3, respectively either as single isolate or mixture with Sabin vaccine strains or intertypic wild poliovirus. rRT-PCR assays for WPV1 and WPV3 have been validated to detect all the genetic variations of the WPV1 and WPV3 isolated in India for the last decade. When used in combination with the current rRT-PCR assay testing was complete for confirmation of the presence of wild poliovirus in intratypic mixtures.

  13. Multiplex reverse transcription polymerase chain reaction to study the expression of virulence and stress response genes in Staphylococcus aureus.

    Science.gov (United States)

    Shrihari, Rohinishree Yadahalli; Singh, Negi Pradeep

    2012-02-01

    Staphylococcus aureus survives well in different stress conditions. The ability of this organism to adapt to various stresses is the result of a complex regulatory response, which is attributed to regulation of multiple genes. The aims of the present study were (1) to develop a multiplex PCR for the detection of genes which are involved in stress adaptation (asp23, dnaK, and groEL); alternative sigma factor (sigB) and virulence determination (entB and spa) and (2) to study the expression of these genes during stress conditions for S. aureus culture collection strains (FRI 722 and ATCC 6538) and S. aureus food isolates at mRNA level using multiplex reverse transcription polymerase chain reaction (RT-PCR). During heat shock treatment groEL, dnaK, asp23, sodA, entB, spa, and sigB genes were up regulated up to 2.58, 2.07, 2.76, 2.55, 3.55, 2.71, and 2.62- folds, respectively, whereas in acid shock treatment, sodA and groEL were up regulated; dnaK was downregulated; and entB and sigB genes were not expressed in food isolates. Multiplex PCR assay standardized in this study offers an inexpensive alternative to uniplex PCR for detection of various virulence and stress response genes. This study is relevant to rapid and accurate detection of potential pathogenic S. aureus in foods. © 2012 Institute of Food Technologists®

  14. Comparison of different methods of RNA isolation for plum pox virus detection by reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Faggioli, F; Pasquini, G; Barba, M

    1998-09-01

    The diagnosis of plum pox virus (PPV) is still considered one of the most important aspects of the "sharka" problem. In fact, different studies demonstrated an uneven distribution of the virus in infected trees due to a high variability in virus concentration. These aspects complicate the PPV diagnosis. To date, biological, serological and molecular assays have been successively developed in order to obtain sensitive and efficient PPV detection techniques. In particular, the polymerase chain reaction (PCR) technique seems to be promising and can be considered the most sensitive and reliable one. Preparation of viral RNA is still a fundamental step in reverse transcription-PCR (RT-PCR) technique, especially when applied to large scale testing, i.e., for certification purposes. In order to find the most rapid and efficient procedure, we have compared three different procedures of extraction of viral RNA to be processed RT-PCR. Their common characteristics is their capacity to extract the RNA from a small amount of plant tissue without organic solvents in the extraction fluid. The procedures were as follows: an immuno-capture (IC) method using a specific antiserum, a silica-capture (SC) method using a non-specific matrix, and a simple and rapid RNA extraction (RE) method. They all were followed by one-tube RT-PCR. The obtained results show that all the three techniques allowed a successful amplification and detection of PPV in tested samples except the SC-PCR method which proved less effective. In fact, the IC-PCR and RE-PCR methods amplified and detected PPV in all isolates tested, while the SC-PCR method was able to reveal the presence of the virus in apricot and infected control samples only.

  15. Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection.

    Directory of Open Access Journals (Sweden)

    Laurent Dacheux

    2016-07-01

    Full Text Available The definitive diagnosis of lyssavirus infection (including rabies in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR and a second reaction using an intercalating dye (SYBR Green to detect other lyssavirus species (pan-lyssa RT-qPCR. The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135 including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5% and saliva (54% samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco. This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for

  16. Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection.

    Science.gov (United States)

    Dacheux, Laurent; Larrous, Florence; Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve

    2016-07-01

    The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus

  17. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification.

    Science.gov (United States)

    Wang, Jianchang; Wang, Jinfeng; Li, Ruiwen; Liu, Libing; Yuan, Wanzhe

    2017-08-15

    Canine distemper, caused by Canine distemper virus (CDV), is a highly contagious and fatal systemic disease in free-living and captive carnivores worldwide. Recombinase polymerase amplification (RPA), as an isothermal gene amplification technique, has been explored for the molecular detection of diverse pathogens. A real-time reverse transcription RPA (RT-RPA) assay for the detection of canine distemper virus (CDV) using primers and exo probe targeting the CDV nucleocapsid protein gene was developed. A series of other viruses were tested by the RT-RPA.Thirty-two field samples were further tested by RT-RPA, and the resuts were compared with those obtained by the real-time RT-PCR. The RT-RPA assay was performed successfully at 40 °C, and the results were obtained within 3 min-12 min. The assay could detect CDV, but did not show cross-detection of canine parvovirus-2 (CPV-2), canine coronavirus (CCoV), canine parainfluenza virus (CPIV), pseudorabies virus (PRV) or Newcastle disease virus (NDV), demonstrating high specificity. The analytical sensitivity of RT-RPA was 31.8 copies in vitro transcribed CDV RNA, which is 10 times lower than the real-time RT-PCR. The assay performance was validated by testing 32 field samples and compared to real-time RT-PCR. The results indicated an excellent correlation between RT-RPA and a reference real-time RT-PCR method. Both assays provided the same results, and R 2 value of the positive results was 0.947. The results demonstrated that the RT-RPA assay offers an alternative tool for simple, rapid, and reliable detection of CDV both in the laboratory and point-of-care facility, especially in the resource-limited settings.

  18. Vpx overcomes a SAMHD1-independent block to HIV reverse transcription that is specific to resting CD4 T cells.

    Science.gov (United States)

    Baldauf, Hanna-Mari; Stegmann, Lena; Schwarz, Sarah-Marie; Ambiel, Ina; Trotard, Maud; Martin, Margarethe; Burggraf, Manja; Lenzi, Gina M; Lejk, Helena; Pan, Xiaoyu; Fregoso, Oliver I; Lim, Efrem S; Abraham, Libin; Nguyen, Laura A; Rutsch, Frank; König, Renate; Kim, Baek; Emerman, Michael; Fackler, Oliver T; Keppler, Oliver T

    2017-03-07

    Early after entry into monocytes, macrophages, dendritic cells, and resting CD4 T cells, HIV encounters a block, limiting reverse transcription (RT) of the incoming viral RNA genome. In this context, dNTP triphosphohydrolase SAM domain and HD domain-containing protein 1 (SAMHD1) has been identified as a restriction factor, lowering the concentration of dNTP substrates to limit RT. The accessory lentiviral protein X (Vpx) proteins from the major simian immunodeficiency virus of rhesus macaque, sooty mangabey, and HIV-2 (SIVsmm/SIVmac/HIV-2) lineage packaged into virions target SAMHD1 for proteasomal degradation, increase intracellular dNTP pools, and facilitate HIV cDNA synthesis. We find that virion-packaged Vpx proteins from a second SIV lineage, SIV of red-capped mangabeys or mandrills (SIVrcm/mnd-2), increased HIV infection in resting CD4 T cells, but not in macrophages, and, unexpectedly, acted in the absence of SAMHD1 degradation, dNTP pool elevation, or changes in SAMHD1 phosphorylation. Vpx rcm/mnd-2 virion incorporation resulted in a dramatic increase of HIV-1 RT intermediates and viral cDNA in infected resting CD4 T cells. These analyses also revealed a barrier limiting HIV-1 infection of resting CD4 T cells at the level of nuclear import. Single amino acid changes in the SAMHD1-degrading Vpx mac239 allowed it to enhance early postentry steps in a Vpx rcm/mnd-2-like fashion. Moreover, Vpx enhanced HIV-1 infection of SAMHD1-deficient resting CD4 T cells of a patient with Aicardi-Goutières syndrome. These results indicate that Vpx, in addition to SAMHD1, overcomes a previously unappreciated restriction for lentiviruses at the level of RT that acts independently of dNTP concentrations and is specific to resting CD4 T cells.

  19. Mutations in the catalytic core or the C-terminus of murine leukemia virus (MLV) integrase disrupt virion infectivity and exert diverse effects on reverse transcription

    International Nuclear Information System (INIS)

    Steinrigl, Adolf; Nosek, Dagmara; Ertl, Reinhard; Guenzburg, Walter H.; Salmons, Brian; Klein, Dieter

    2007-01-01

    Understanding of the structures and functions of the retroviral integrase (IN), a key enzyme in the viral replication cycle, is essential for developing antiretroviral treatments and facilitating the development of safer gene therapy vehicles. Thus, four MLV IN-mutants were constructed in the context of a retroviral vector system, harbouring either a substitution in the catalytic centre, deletions in the C-terminus, or combinations of both modifications. IN-mutants were tested for their performance in different stages of the viral replication cycle: RNA-packaging; RT-activity; transient and stable infection efficiency; dynamics of reverse transcription and nuclear entry. All mutant vectors packaged viral RNA with wild-type efficiencies and displayed only slight reductions in RT-activity. Deletion of either the IN C-terminus alone, or in addition to part of the catalytic domain exerted contrasting effects on intracellular viral DNA levels, implying that IN influences reverse transcription in more than one direction

  20. Detection of HbsAg and hATIII genetically modified goats (Caprahircus) by loop-mediated isothermal amplification.

    Science.gov (United States)

    Tao, Chenyu; Zhang, Qingde; Zhai, Shanli; Liu, Bang

    2013-11-01

    In this study, sensitive and rapid detection systems were designed using a loop-mediated isothermal amplification (LAMP) method to detect the genetically modified goats. A set of 4 primers were designed for each exogenous nucleic acids HBsAg and hATIII. The DNA samples were first amplified with the outer and inner primers and released a single-stranded DNA,of which both ends were stem-loop structure. Then one inner primer hybridized with the loop, and initiated displacement synthesis in less than 1 h. The result could be visualized by both agarose gel electrophoresis and unaided eyes directly after adding SYBR GREEN 1. The detection limit of LAMP was ten copies of target molecules, indicating that LAMP was tenfold more sensitive than the classical PCR. Furthermore, all the samples of genetically modified goats were tested positively by LAMP, and the results demonstrated that the LAMP was a rapid and sensitive method for detecting the genetically modified organism.

  1. Loop-Mediated Isothermal Amplification Assay Targeting the MOMP Gene for Rapid Detection of Chlamydia psittaci Abortus Strain

    Directory of Open Access Journals (Sweden)

    Guo-Zhen Lin, Fu-Ying Zheng, Ji-Zhang Zhou, Guang-Hua Wang, Xiao-An Cao, Xiao-Wei Gong and Chang-Qing Qiu*

    2012-05-01

    Full Text Available For rapid detection of the Chlamydia psittaci abortus strain, a loop-mediated isothermal amplification (LAMP assay was developed and evaluated in this study. The primers for the LAMP assay were designed on the basis of the main outer membrane protein (MOMP gene sequence of C. psittaci. Analysis showed that the assay could detect the abortus strain of C. psittaci with adequate specificity. The sensitivity of the test was the same as that of the nested-conventional PCR and higher than that of chick embryo isolation. Testing of 153 samples indicated that the LAMP assay could detect the genome of the C. psittaci abortus strain effectively in clinical samples. This assay is a useful tool for rapid diagnosis of C. psittaci infection in sheep, swine and cattle.

  2. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    Science.gov (United States)

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  3. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods

    Directory of Open Access Journals (Sweden)

    Gavin J. Nixon

    2014-12-01

    Full Text Available Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR. There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These ‘isothermal’ methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT, akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  4. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    Science.gov (United States)

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  5. Screening suitable reference genes for normalization in reverse transcription quantitative real-time PCR analysis in melon.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Melon (Cucumis melo. L is not only an economically important cucurbitaceous crop but also an attractive model for studying many biological characteristics. Screening appropriate reference genes is essential to reverse transcription quantitative real-time PCR (RT-qPCR, which is key to many studies involving gene expression analysis. In this study, 14 candidate reference genes were selected, and the variations in their expression in roots and leaves of plants subjected to biotic stress, abiotic stress, and plant growth regulator treatment were assessed by RT-qPCR. The stability of the expression of the selected genes was determined and ranked using geNorm and NormFinder. geNorm identified the two most stable genes for each set of conditions: CmADP and CmUBIep across all samples, CmUBIep and CmRPL in roots, CmRAN and CmACT in leaves, CmADP and CmRPL under abiotic stress conditions, CmTUA and CmACT under biotic stress conditions, and CmRAN and CmACT under plant growth regulator treatments. NormFinder determined CmRPL to be the best reference gene in roots and under biotic stress conditions and CmADP under the other experimental conditions. CmUBC2 and CmPP2A were not found to be suitable under many experimental conditions. The catalase family genes CmCAT1, CmCAT2, and CmCAT3 were identified in melon genome and used as target genes to validate the reliability of identified reference genes. The catalase family genes showed the most upregulation 3 days after inoculation with Fusarium wilt in roots, after which they were downregulated. Their levels of expression were significantly overestimated when the unsuitable reference gene was used for normalization. These results not only provide guidelines for the selection of reference genes for gene expression analyses in melons but may also provide valuable information for studying the functions of catalase family genes in stress responses.

  6. Simultaneous detection and differentiation of three genotypes of Brassica yellows virus by multiplex reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Zhang, Xiaoyan; Peng, Yanmei; Wang, Ying; Zhang, Zongying; Li, Dawei; Yu, Jialin; Han, Chenggui

    2016-11-22

    Brassica yellows virus (BrYV), proposed to be a new polerovirus species, three distinct genotypes (BrYV-A, BrYV-B and BrYV-C) have been described. This study was to develop a simple, rapid, sensitive, cost-effective method for simultaneous detection and differentiation of three genotypes of BrYV. In this study, a multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for simultaneous detection and differentiation of the three genotypes of BrYV. The three genotypes of BrYV and Tunip yellows virus (TuYV) could be differentiated simultaneously using six optimized specific oligonucleotide primers, including one universal primer for detecting BrYV, three BrYV genotype-specific primers, and a pair of primers for specific detection of TuYV. Primers were designed from conserved regions of each virus and their specificity was confirmed by sequencing PCR products. The mRT-PCR products were 278 bp for BrYV-A, 674 bp for BrYV-B, 505 bp for BrYV-C, and 205 bp for TuYV. Amplification of three target genotypes was optimized by increasing the PCR annealing temperatures to 62 °C. One to three fragments specific for the virus genotypes were simultaneously amplified from infected samples and identified by their specific molecular sizes in agarose gel electrophoresis. No specific products could be amplified from cDNAs of other viruses which could infect crucifer crops. Detection limits of the plasmids for multiplex PCR were 100 fg for BrYV-A and BrYV-B, 10 pg for BrYV-C, and 1 pg for TuYV, respectively. The mRT-PCR was applied successfully for detection of three BrYV genotypes from field samples collected in China. The simple, rapid, sensitive, and cost-effective mRT-PCR was developed successfully for detection and differentiation of the three genotypes of BrYV.

  7. Development of a novel loop-mediated isothermal amplification (LAMP) assay for the detection of Salmonella ser. Enteritidis from egg products

    Science.gov (United States)

    Salmonella ser. Enteritidis is a major public health concern worldwide. Loop-mediated isothermal amplification (LAMP) is a novel simple, easy-to-operate detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was t...

  8. Lipopolysaccharide-induced inhibition of transcription of tlr4 in vitro is reversed by dexamethasone and correlates with presence of conserved NFκB binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Camila P., E-mail: mila_bonin@yahoo.com.br [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900 (Brazil); Baccarin, Raquel Y.A., E-mail: baccarin@usp.br [Department of Clinics, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-900 (Brazil); Nostell, Katarina, E-mail: katarina.nostell@slu.se [Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07 Uppsala (Sweden); Nahum, Laila A., E-mail: laila@nahum.com.br [Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002 (Brazil); Faculdade Infórium de Tecnologia, Belo Horizonte 30130-180 (Brazil); Fossum, Caroline, E-mail: caroline.fossum@bvf.slu.se [Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, BMC, Box 588, SE 751 23 Uppsala (Sweden); Camargo, Maristela M. de, E-mail: mmcamar@usp.br [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900 (Brazil)

    2013-03-08

    Highlights: ► Chimpanzees, horses and humans have regions of similarity on TLR4 and MD2 promoters. ► Rodents have few regions of similarity on TLR4 promoter when compared to primates. ► Conserved NFkB binding sites were found in the promoters of TLR4 and MD2. ► LPS-induced inhibition of TLR4 transcription is reversed by dexamethasone. ► LPS-induced transcription of MD2 is inhibited by dexamethasone. -- Abstract: Engagement of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is a master trigger of the deleterious effects of septic shock. Horses and humans are considered the most sensitive species to septic shock, but the mechanisms explaining these phenomena remain elusive. Analysis of tlr4 promoters revealed high similarity among LPS-sensitive species (human, chimpanzee, and horse) and low similarity with LPS-resistant species (mouse and rat). Four conserved nuclear factor kappa B (NFκB) binding sites were found in the tlr4 promoter and two in the md2 promoter sequences that are likely to be targets for dexamethasone regulation. In vitro treatment of equine peripheral blood mononuclear cells (eqPBMC) with LPS decreased transcripts of tlr4 and increased transcription of md2 (myeloid differentiation factor 2) and cd14 (cluster of differentiation 14). Treatment with dexamethasone rescued transcription of tlr4 after LPS inhibition. LPS-induced transcription of md2 was inhibited in the presence of dexamethasone. Dexamethasone alone did not affect transcription of tlr4 and md2.

  9. Laboratory evaluation of a quantitative real-time reverse transcription PCR assay for the detection and identification of the four subgroups of avian metapneumovirus.

    Science.gov (United States)

    Guionie, O; Toquin, D; Sellal, E; Bouley, S; Zwingelstein, F; Allée, C; Bougeard, S; Lemière, S; Eterradossi, N

    2007-02-01

    Avian metapneumovirus (AMPV) is an important pathogen causing respiratory diseases and egg drops in several avian species. Four AMPV subgroups have been identified. The laboratory diagnosis of AMPV infections relies on serological methods, on labour-intensive virus isolation procedures, and on recently developed subgroup specific reverse transcription PCR (RT-PCR) protocols. In the present study, both the specificity and sensitivity of a commercial real-time reverse transcription PCR (RRT-PCR) for the detection and identification of the four AMPV subgroups were evaluated. Fifteen non-AMPV avian viruses belonging to 7 genera and 32 AMPV belonging to the 4 subgroups were tested. No non-AMPV virus was detected, whereas all AMPV viruses were identified in agreement with their previous molecular and antigenic subgroup assignment. The sensitivity and quantitating ability of the RRT-PCR assay were determined using serial dilutions of RNA derived either from AMPV virus stocks or from runoff transcripts. In all cases, linear dose/responses were observed. The detection limits of the different subgroups ranged from 500 to 5000 RNA copies and from 0.03 to 3.16TCID50/ml. The results were reproducible under laboratory conditions, thus showing that quantitative RRT-PCR is a new and powerful tool for the rapid and sensitive detection, identification and quantitation of AMPVs.

  10. Use of spontaneously mutated human DNA as competitive internal standard for nucleic acid quantification by reverse transcription-polymerase chain reaction (RT-PCR)

    International Nuclear Information System (INIS)

    Rudnicka, L.; Diaz, A.; Varga, J.; Jimenez, S.A.; Christiano, A.; Uitto, J.

    1995-01-01

    Quantification of gene expression is of increasing interest in many medical sciences. Methods based on reverse transcription-polymerase chain reactions (RT-PCRs) are timesaving and require only very small amounts of RNA. A limiting factor, however, is the significant fluctuation in the efficacy of reverse transcription as well in the polymerase chain reactions. Various external and internal standards have been suggested for correcting these fluctuations. We describe a novel way of creating an internal standard for assessing the expression of type VII collagen in human cells. The total RNA of a patient with hereditary 'epidermilysis bulosa dystrophica' associated with a homozygous T to A point mutation in type VII collagen gene was reverse transcribed and a 382bp fragment of type VII collagen cDNA containing the mutation was amplified. The mutated cDNA, unlike normal type VII collagen cDNA could be cleaved by 'Ear I' endonuclease into 244bp and 138bp fragments. Semiquantitative PCR was performed with the mutated cDNA as internal standard and the studied cDNA sample in the same tube in the presence of α 32 P-labelled dCTP. The reaction was followed by 'Ear I' digestion, electrophoresis on a polyacrylamide gel and exposure to a X-ray film. In conclusion, we describe a timesaving method for creating internal standards for semiquantitative RT-PCR. (author). 12 refs, 3 figs

  11. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA.

    Science.gov (United States)

    Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B

    1993-08-01

    Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.

  12. Porcine reproductive and respiratory syndrome virus: Interlaboratory ring trial to evaluate real-time reverse transcription polymerase chain reaction detection methods

    DEFF Research Database (Denmark)

    Wernike, Kerstin; Bonilauri, Paolo; Dauber, Malte

    2012-01-01

    To compare the real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays used for the diagnosis of Porcine reproductive and respiratory syndrome virus (PRRSV), a Europe-wide interlaboratory ring trial was conducted. A variety of PRRSV strains including North American...... (NA) and European (EU) genotype isolates were analyzed by the participants. Great differences regarding qualitative diagnostics as well as analytical sensitivity were observed between the individual RT-qPCR systems, especially when investigating strains from the EU genotype. None of the assays...

  13. Rapid and Sensitive Detection of sFAT-1 Transgenic Pigs by Visual Loop-Mediated Isothermal Amplification.

    Science.gov (United States)

    Tao, Chenyu; Yang, Yalan; Li, Xunbi; Zheng, Xinmin; Ren, Hongyan; Li, Kui; Zhou, Rong

    2016-07-01

    Genetically modified (GM) livestock have the potential to contribute to improving the environment and human health, with consumption of fewer resources and reduced waste production. However, the transgene process also poses risks. The safety assessment and control of transgenic animal products have drawn wide attention, and the relevant regulations and technology are being developed. Quick testing technology plays a significant role in on-site and customs sampling. Nowadays, loop-mediated isothermal amplification (LAMP) was widely applied in nucleic acid analysis because of its simplicity, rapidity, high efficiency and specificity. In this study, a specific, sensitive detection system for detecting sFAT-1 transgenic pigs was designed. A set of six primers including two loop primers was designed for the target sequence. The DNA samples were amplified in less than 1 h at the optimized temperature and detecting by both Nephelometer LA-320c and unaided eyes directly adding calcein. The detection limit of sFAT-1 LAMP was as low as 1.26 ng/μL. Furthermore, blind tests of transgenic and non-transgenic DNA samples were all correctly detected. Hence, the results in this study demonstrated that LAMP is a very useful tool for transgenic detection.

  14. Development and Assessment of Loop-Mediated Isothermal Amplification (LAMP) Assay for the Diagnosis of Human Visceral Leishmaniasis in Iran.

    Science.gov (United States)

    Ghasemian, Mehrdad; Gharavi, Mohammad Javad; Akhlaghi, Lame; Mohebali, Mehdi; Meamar, Ahmad Reza; Aryan, Ehsan; Oormazdi, Hormozd

    2014-03-01

    Parasitological methods for the diagnosis of Visceral leishmaniasis (VL) require invasive procedures, so serological and molecular approaches have been developed but are not generally applicable in the field. We evaluated a loop mediated isothermal amplification (LAMP) assay using blood from VL patients and compared it to nested PCR. Forty-seven subjects with clinical features (fever, hepatosplenomegaly and anemia) were confirmed positive for VL by the direct agglutination test (DAT) at titers >3200. Forty DAT negative individuals from non-endemic areas with no clinical signs or symptoms of VL served as controls. A LAMP assay was performed using a set of six primers targeting Leishmania infantum kinetoplast DNA (kDNA) minicircle gene under isothermal (64 °C) conditions. For nested PCR we used primers targeting the kDNA minicircle gene. The LAMP assay provided a detection limit of 1 parasite in 1 ml of peripheral blood and detected L. infantum DNA in 44 of 47 DAT-confirmed VL cases, with diagnostic sensitivity of 93.6% (95% CI). No L. infantum DNA was amplified in controls, indicating a specificity of 100%. The nested PCR yielded sensitivity of 96% (95% CI) and a specificity of 100% (95% CI). The LAMP assay gave results similar to those of nested PCR but in a shorter time. The LAMP method is simple; requires no sophisticated equipment; has a short reaction time; and results, indicated by turbidity of the reaction mixture, are observable with the naked eye.

  15. Development and Assessment of Loop-Mediated Isothermal Amplification (LAMP Assay for the Diagnosis of Human Visceral Leishmaniasis in Iran.

    Directory of Open Access Journals (Sweden)

    Mehrdad Ghasemian

    2014-03-01

    Full Text Available Parasitological methods for the diagnosis of Visceral leishmaniasis (VL require invasive procedures, so serological and molecular approaches have been developed but are not generally applicable in the field. We evaluated a loop mediated isothermal amplification (LAMP assay using blood from VL patients and compared it to nested PCR.Forty-seven subjects with clinical features (fever, hepatosplenomegaly and anemia were confirmed positive for VL by the direct agglutination test (DAT at titers >3200. Forty DAT negative individuals from non-endemic areas with no clinical signs or symptoms of VL served as controls. A LAMP assay was performed using a set of six primers targeting Leishmania infantum kinetoplast DNA (kDNA minicircle gene under isothermal (64 °C conditions. For nested PCR we used primers targeting the kDNA minicircle gene.The LAMP assay provided a detection limit of 1 parasite in 1 ml of peripheral blood and detected L. infantum DNA in 44 of 47 DAT-confirmed VL cases, with diagnostic sensitivity of 93.6% (95% CI. No L. infantum DNA was amplified in controls, indicating a specificity of 100%. The nested PCR yielded sensitivity of 96% (95% CI and a specificity of 100% (95% CI.The LAMP assay gave results similar to those of nested PCR but in a shorter time. The LAMP method is simple; requires no sophisticated equipment; has a short reaction time; and results, indicated by turbidity of the reaction mixture, are observable with the naked eye.

  16. A Portable Automatic Endpoint Detection System for Amplicons of Loop Mediated Isothermal Amplification on Microfluidic Compact Disk Platform

    Directory of Open Access Journals (Sweden)

    Shah Mukim Uddin

    2015-03-01

    Full Text Available In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD. The sensitivity test has been performed with detection limit up to 2.5 × 10−3 ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.

  17. Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Ya-Bing Duan

    Full Text Available Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP with hydroxynaphthol blue dye (HNB. The LAMP reaction was optimal at 63 °C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant pathogenic fungi did not. Results of HNB staining method were reconfirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for B. cinerea was 10(-3 ng µL(-1 of genomic DNA per reaction, which was 10-fold more sensitive than conventional PCR (10(-2 ng µL(-1. Detection of the LAMP assay for inoculum of B. cinerea was possible in the inoculated tomato and strawberry petals. In the 191 diseased samples, 180 (94.2% were confirmed as positive by LAMP, 172 (90.1% positive by the tissue separation, while 147 (77.0% positive by PCR. Because the LAMP assay performed well in aspects of sensitivity, specificity, repeatability, reliability, and visibility, it is suitable for rapid detection of B. cinerea in infected plant materials prior to storage and during transportation, such as cut flowers, fruits and vegetables.

  18. Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens.

    Science.gov (United States)

    Barkway, Christopher P; Pocock, Rebecca L; Vrba, Vladimir; Blake, Damer P

    2015-02-20

    Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm's anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable.

  19. Loop-mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on-site detection of gene doping.

    Science.gov (United States)

    Salamin, Olivier; Kuuranne, Tiia; Saugy, Martial; Leuenberger, Nicolas

    2017-11-01

    Innovation in medical research has been diverted at multiple occasions to enhance human performance. The predicted great progress in gene therapy has raised some concerns regarding its misuse in the world of sports (gene doping) for several years now. Even though there is no evidence that gene doping has ever been used in sports, the continuous improvement of gene therapy techniques increases the likelihood of abuse. Therefore, since 2004, efforts have been invested by the anti-doping community and WADA for the development of detection methods. Several nested PCR and qPCR-based strategies exploiting the absence of introns in the transgenic DNA have been proposed for the long-term detection of transgene in blood. Despite their great sensitivity, those protocols are hampered by limitations of the techniques that can be cumbersome and costly. The purpose of this perspective is to describe a new approach based on loop-mediated isothermal amplification (LAMP) for the detection of gene doping. This protocol enables a rapid and simple method to amplify nucleic acids with a high sensitivity and specificity and with a simple visual detection of the results. LAMP is already being used in clinical application for the detection of viruses or mutations. Therefore, this technique has the potential to be further developed for the detection of foreign genetic material in elite athletes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Development of loop-mediated isothermal amplification (LAMP assay for rapid and sensitive identification of ostrich meat.

    Directory of Open Access Journals (Sweden)

    Amir Abdulmawjood

    Full Text Available Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes.

  1. Loop-mediated isothermal amplification (LAMP) assays for rapid detection and differentiation of Nosema apis and N. ceranae in honeybees.

    Science.gov (United States)

    Ptaszyńska, Aneta A; Borsuk, Grzegorz; Woźniakowski, Grzegorz; Gnat, Sebastian; Małek, Wanda

    2014-08-01

    Nosemosis is a contagious disease of honeybees (Apis mellifera) manifested by increased winter mortality, poor spring build-up and even the total extinction of infected bee colonies. In this paper, loop-mediated isothermal amplifications (LAMP) were used for the first time to identify and differentiate N. apis and N. ceranae, the causative agents of nosemosis. LAMP assays were performed at a constant temperature of 60 °C using two sets of six species-specific primers, recognising eight distinct fragments of 16S rDNA gene and GspSSD polymerase with strand displacement activity. The optimal time for LAMP and its Nosema species sensitivity and specificity were assessed. LAMP only required 30 min for robust identification of the amplicons. Ten-fold serial dilutions of total DNA isolated from bees infected with microsporidia were used to determine the detection limit of N. apis and N. ceranae DNAs by LAMP and standard PCR assays. LAMP appeared to be 10(3) -fold more sensitive than a standard PCR in detecting N. apis and N. ceranae. LAMP methods developed by us are highly Nosema species specific and allow to identify and differentiate N. apis and N. ceranae. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Rapid identification and differentiation of Fasciola hepatica and Fasciola gigantica by a loop-mediated isothermal amplification (LAMP) assay.

    Science.gov (United States)

    Ai, L; Li, C; Elsheikha, H M; Hong, S J; Chen, J X; Chen, S H; Li, X; Cai, X Q; Chen, M X; Zhu, X Q

    2010-12-15

    The present study developed and validated a species-specific loop-mediated isothermal amplification (LAMP) assay for the rapid detection and discrimination of Fasciola hepatica and Fasciola gigantica. The LAMP assay is inexpensive, easy to perform and shows rapid reaction, wherein the amplification can be obtained in 45 min under isothermal conditions of 61 °C or 62 °C by employing a set of four species-specific primer mixtures and results can be checked through naked-eye visualization. The optimal assay conditions with no cross-reaction with other closely related trematodes (Clonorchis sinensis, Opisthorchis viverrini, Orientobilharzia turkestanicum and Schistosoma japonicum) as well as within the two Fasciola species were established. The assay was validated by examining F. gigantica DNA in the intermediate host snails and in faecal samples. The results indicated that the LAMP assay is approximately 10(4) times more sensitive than the conventional specific PCR assays. These findings indicate that this Fasciola species-specific LAMP assay may have a potential clinical application for detection and differentiation of Fasciola species, especially in endemic countries. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Specific detection of Angiostrongylus cantonensis in the snail Achatina fulica using a loop-mediated isothermal amplification (LAMP) assay.

    Science.gov (United States)

    Liu, Chun-Yan; Song, Hui-Qun; Zhang, Ren-Li; Chen, Mu-Xin; Xu, Min-Jun; Ai, Lin; Chen, Xiao-Guang; Zhan, Xi-Mei; Liang, Shao-Hui; Yuan, Zi-Guo; Lin, Rui-Qing; Zhu, Xing-Quan

    2011-08-01

    Angiostrongylus cantonensis, a rat lungworm, can cause eosinophilic meningitis and angiostrongyliasis in humans following ingestion of contaminated foods or intermediate/paratenic hosts with infective larvae. The snail Achatina fulica is one of the important intermediate hosts of A. cantonensis and is commonly eaten by humans in some countries. In the present study, we developed a loop-mediated isothermal amplification (LAMP) method for the specific detection of A. cantonensis in Ac. fulica. Primers for LAMP were designed based on the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA (rDNA) of A. cantonensis. Specificity tests showed that only the products of A. cantonensis were detected when DNA samples of A. cantonensis and the heterologous control samples Anisakis simplex s.s, Trichuris trichiura, Toxocara canis, Trichinella spiralis and Ascaris lumbricoides were amplified by LAMP. Sensitivity evaluation indicated that the LAMP assay is 10 times more sensitive than the conventional polymerase chain reaction (PCR) assay. The established LAMP assay is rapid, inexpensive and easy to be performed. It can be used in clinical applications for rapid and sensitive detection of A. cantonensis in snails, which has implications for the effective control of angiostrongyliasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples.

    Science.gov (United States)

    Abbasi, Ibrahim; Kirstein, Oscar D; Hailu, Asrat; Warburg, Alon

    2016-10-01

    Visceral leishmaniasis (VL), one of the most important neglected tropical diseases, is caused by Leishmania donovani eukaryotic protozoan parasite of the genus Leishmania, the disease is prevalent mainly in the Indian sub-continent, East Africa and Brazil. VL can be diagnosed by PCR amplifying ITS1 and/or kDNA genes. The current study involved the optimization of Loop-mediated isothermal amplification (LAMP) for the detection of Leishmania DNA in human blood or tissue samples. Three LAMP systems were developed; in two of those the primers were designed based on shared regions of the ITS1 gene among different Leishmania species, while the primers for the third LAMP system were derived from a newly identified repeated region in the Leishmania genome. The LAMP tests were shown to be sufficiently sensitive to detect 0.1pg of DNA from most Leishmania species. The green nucleic acid stain SYTO16, was used here for the first time to allow real-time monitoring of LAMP amplification. The advantage of real time-LAMP using SYTO 16 over end-point LAMP product detection is discussed. The efficacy of the real time-LAMP tests for detecting Leishmania DNA in dried blood samples from volunteers living in endemic areas, was compared with that of qRT-kDNA PCR. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Development of a loop-mediated isothermal amplification assay for the detection of Streptococcus agalactiae in bovine milk.

    Science.gov (United States)

    Bosward, Katrina L; House, John K; Deveridge, Amber; Mathews, Karen; Sheehy, Paul A

    2016-03-01

    Streptococcus agalactiae is a well-characterized bovine mastitis pathogen that is known to be highly contagious and capable of spreading rapidly in affected dairy herds. Loop-mediated isothermal amplification (LAMP) is a novel molecular diagnostic method that has the capability to provide rapid, cost-effective screening for pathogens to support on-farm disease control and eradication programs. In the current study, a LAMP test was developed to detect S. agalactiae in milk. The assay was validated on a bank of existing clinical mastitis milk samples that had previously been identified as S. agalactiae positive via traditional microbiological culture techniques and PCR. The LAMP assay was conducted on bacterial colonies and DNA extracted from milk in tube- and plate-based formats using multiple detection platforms. The 1-h assay conducted at 64 °C exhibited repeatability (coefficient of variation) of 2.07% (tube) and 8.3% (plate), sensitivity to ~20 pg of extracted DNA/reaction, and specificity against a panel of known bacterial mastitis pathogens. Of the 109 known S. agalactiae isolates assessed by LAMP directly from bacterial cells in culture, 108 were identified as positive, in accordance with PCR analysis. The LAMP analysis from the corresponding milk samples indicated that 104 of these milks exhibited a positive amplification curve. Although exhibiting some limitations, this assay provides an opportunity for rapid screening of milk samples to facilitate on-farm management of this pathogen. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Graphene oxide based fluorescence resonance energy transfer and loop-mediated isothermal amplification for white spot syndrome virus detection.

    Science.gov (United States)

    Waiwijit, U; Phokaratkul, D; Kampeera, J; Lomas, T; Wisitsoraat, A; Kiatpathomchai, W; Tuantranont, A

    2015-10-20

    Graphene oxide (GO) is attractived for biological or medical applications due to its unique electrical, physical, optical and biological properties. In particular, GO can adsorb DNA via π-π stacking or non-covalent interactions, leading to fluorescence quenching phenomenon applicable for bio-molecular detection. In this work, a new method for white spot syndrome virus (WSSV)-DNA detection is developed based on loop-mediated isothermal amplification (LAMP) combined with fluorescence resonance energy transfer (FRET) between GO and fluorescein isothiocyanate-labeled probe (FITC-probe). The fluorescence quenching efficiency of FITC-probe was found to increase with increasing GO concentration and reached 98.7% at a GO concentration of 50 μg/ml. The fluorescence intensity of FITC-probe was recovered after hybridization with WSSV LAMP product with an optimal hybridization time of 10 min and increased accordingly with increasing amount of LAMP products. The detection limit was estimated to be as low as 10 copies of WSSV plasmid DNA or 0.6 fg of the total DNA extracted from shrimp infected with WSSV. In addition, no cross reaction was observed with other common shrimp viral pathogens. Therefore, the GO-FRET-LAMP technique is promising for fast, sensitive and specific detection of DNAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Rapid and sensitive detection of Plesiomonas shigelloides by loop-mediated isothermal amplification of the hugA gene.

    Directory of Open Access Journals (Sweden)

    Shuang Meng

    Full Text Available Plesiomonas shigelloides is one of the causative agents of human gastroenteritis, with increasing number of reports describing such infections in recent years. In this study, the hugA gene was chosen as the target to design loop-mediated isothermal amplification (LAMP assays for the rapid, specific, and sensitive detection of P. shigelloides. The performance of the assay with reference plasmids and spiked human stools as samples was evaluated and compared with those of quantitative PCR (qPCR. No false-positive results were observed for the 32 non-P. shigelloides strains used to evaluate assay specificity. The limit of detection for P. shigelloides was approximately 20 copies per reaction in reference plasmids and 5×10(3 CFU per gram in spiked human stool, which were more sensitive than the results of qPCR. When applied in human stool samples spiked with 2 low levels of P. shigelloides, the LAMP assays achieved accurate detection after 6-h enrichment. In conclusion, the LAMP assay developed in this study is a valuable method for rapid, cost-effective, and simple detection of P. shigelloides in basic clinical and field laboratories in the rural areas of China.

  8. The development of a loop-mediated isothermal amplification assay for rapid and sensitive detection of abalone herpesvirus DNA.

    Science.gov (United States)

    Chen, M H; Kuo, S T; Renault, T; Chang, P H

    2014-02-01

    A loop-mediated isothermal amplification (LAMP) assay was developed for the detection of abalone herpesvirus DNA. Two pairs of primers were designed, based on the sequence of the DNA polymerase gene of abalone herpesvirus. The reaction temperature and time were optimized to 63°C and 60min, respectively. LAMP amplicons were analyzed by 2% agarose gel electrophoresis or by visual inspection of a colour change emitted by fluorescent dye. The method developed was specific for the detection of abalone herpesvirus, without cross-reactions with other tested herpesviruses including ostreid herpesvirus 1 (OsHV-1), European eel herpesvirus, koi herpesvirus (KHV) and an avian herpesvirus. The LAMP assay was 100 folds more sensitive than a conventional PCR and 10 folds less sensitive than a SYBR Green PCR. These results indicate that the developed LAMP assay is a simple, rapid, sensitive, specific and reliable technique for the detection of abalone herpesvirus. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Detection of Puccinia kuehnii Causing Sugarcane Orange Rust with a Loop-Mediated Isothermal Amplification-Based Assay.

    Science.gov (United States)

    Chandra, Amaresh; Keizerweerd, Amber T; Grisham, Michael P

    2016-03-01

    Puccinia kuehnii is a fungal pathogen that causes orange rust in sugarcane, which is now prevalent in many countries. At the early stage of disease, it is almost indistinguishable from brown rust, which is caused by Puccinia melanocephala. Although several PCR assays are available to detect these diseases, the loop-mediated isothermal amplification (LAMP)-based assay has been reported to be more economical and easier to perform. Under isothermal conditions, DNA is amplified with high specificity and rapidity. Moreover, visual judgment of color change without further post-amplification processing makes the method convenient. The present study was undertaken to detect P. kuehnii genomic DNA using four primers corresponding to a unique DNA sequence of P. kuehnii. The LAMP assay was found to be optimal when 8 mM MgSO4 was used and the reaction was incubated at 63 °C for 90 min. Positive samples showed a color change from orange to green upon SYBR Green I dye addition. Specificity of the LAMP test was checked with DNA of P. melanocephala, which showed no reaction. Sensitivity of the LAMP method was observed to be the same as real-time PCR at 0.1 ng, thus providing a rapid and more affordable option for early disease detection.

  10. A novel CMOS image sensor system for quantitative loop-mediated isothermal amplification assays to detect food-borne pathogens.

    Science.gov (United States)

    Wang, Tiantian; Kim, Sanghyo; An, Jeong Ho

    2017-02-01

    Loop-mediated isothermal amplification (LAMP) is considered as one of the alternatives to the conventional PCR and it is an inexpensive portable diagnostic system with minimal power consumption. The present work describes the application of LAMP in real-time photon detection and quantitative analysis of nucleic acids integrated with a disposable complementary-metal-oxide semiconductor (CMOS) image sensor. This novel system works as an amplification-coupled detection platform, relying on a CMOS image sensor, with the aid of a computerized circuitry controller for the temperature and light sources. The CMOS image sensor captures the light which is passing through the sensor surface and converts into digital units using an analog-to-digital converter (ADC). This new system monitors the real-time photon variation, caused by the color changes during amplification. Escherichia coli O157 was used as a proof-of-concept target for quantitative analysis, and compared with the results for Staphylococcus aureus and Salmonella enterica to confirm the efficiency of the system. The system detected various DNA concentrations of E. coli O157 in a short time (45min), with a detection limit of 10fg/μL. The low-cost, simple, and compact design, with low power consumption, represents a significant advance in the development of a portable, sensitive, user-friendly, real-time, and quantitative analytic tools for point-of-care diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Development of a loop-mediated isothermal amplification method for rapid mass-screening of sand flies for Leishmania infection.

    Science.gov (United States)

    Nzelu, Chukwunonso O; Gomez, Eduardo A; Cáceres, Abraham G; Sakurai, Tatsuya; Martini-Robles, Luiggi; Uezato, Hiroshi; Mimori, Tatsuyuki; Katakura, Ken; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2014-04-01

    Entomological monitoring of Leishmania infection in leishmaniasis endemic areas offers epidemiologic advantages for predicting the risk and expansion of the disease, as well as evaluation of the effectiveness of control programs. In this study, we developed a highly sensitive loop-mediated isothermal amplification (LAMP) method for the mass screening of sand flies for Leishmania infection based on the 18S rRNA gene. The LAMP technique could detect 0.01 parasites, which was more sensitive than classical PCR. The method was robust and could amplify the target DNA within 1h from a crude sand fly template without DNA purification. Amplicon detection could be accomplished by the newly developed colorimetric malachite green (MG)--mediated naked eye visualization. Pre-addition of MG to the LAMP reaction solution did not inhibit amplification efficiency. The field applicability of the colorimetric MG-based LAMP assay was demonstrated with 397 field-caught samples from the endemic areas of Ecuador and eight positive sand flies were detected. The robustness, superior sensitivity, and ability to produce better visual discriminatory reaction products than existing LAMP fluorescence and turbidity assays indicated the field potential usefulness of this new method for surveillance and epidemiological studies of leishmaniasis in developing countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Direct detection of Mycobacterium avium in environmental water and scale samples by loop-mediated isothermal amplification.

    Science.gov (United States)

    Nishiuchi, Yukiko; Tamaru, Aki; Suzuki, Yasuhiko; Kitada, Seigo; Maekura, Ryoji; Tateishi, Yoshitaka; Niki, Mamiko; Ogura, Hisashi; Matsumoto, Sohkichi

    2014-06-01

    We previously demonstrated the colonization of Mycobacterium avium complex in bathrooms by the conventional culture method. In the present study, we aimed to directly detect M. avium organisms in the environment using loop-mediated isothermal amplification (LAMP), and to demonstrate the efficacy of LAMP by comparing the results with those obtained by culture. Our data showed that LAMP analysis has detection limits of 100 fg DNA/reaction for M. avium. Using an FTA(®) elute card, DNA templates were extracted from environmental samples from bathrooms in the residences of 29 patients with pulmonary M. avium disease. Of the 162 environmental samples examined, 143 (88%) showed identical results by both methods; 20 (12%) and 123 (76%) samples were positive and negative, respectively, for M. avium. Of the remaining 19 samples (12%), seven (5%) and 12 (7%) samples were positive by the LAMP and culture methods, respectively. All samples that contained over 20 colony forming units/primary isolation plate, as measured by the culture method, were also positive by the LAMP method. Our data demonstrate that the combination of the FTA elute card and LAMP can facilitate prompt detection of M. avium in the environment.

  13. Diagnostic accuracy of a loop-mediated isothermal PCR assay for detection of Orientia tsutsugamushi during acute Scrub Typhus infection.

    Science.gov (United States)

    Paris, Daniel H; Blacksell, Stuart D; Nawtaisong, Pruksa; Jenjaroen, Kemajittra; Teeraratkul, Achara; Chierakul, Wirongrong; Wuthiekanun, Vanaporn; Kantipong, Pacharee; Day, Nicholas P J

    2011-09-01

    There is an urgent need to develop rapid and accurate point-of-care (POC) technologies for acute scrub typhus diagnosis in low-resource, primary health care settings to guide clinical therapy. In this study we present the clinical evaluation of loop-mediated isothermal PCR assay (LAMP) in the context of a prospective fever study, including 161 patients from scrub typhus-endemic Chiang Rai, northern Thailand. A robust reference comparator set comprising following 'scrub typhus infection criteria' (STIC) was used: a) positive cell culture isolate and/or b) an admission IgM titer ≥1∶12,800 using the 'gold standard' indirect immunofluorescence assay (IFA) and/or c) a 4-fold rising IFA IgM titer and/or d) a positive result in at least two out of three PCR assays. Compared to the STIC criteria, all PCR assays (including LAMP) demonstrated high specificity ranging from 96-99%, with sensitivities varying from 40% to 56%, similar to the antibody based rapid test, which had a sensitivity of 47% and a specificity of 95%. The diagnostic accuracy of the LAMP assay was similar to realtime and nested conventional PCR assays, but superior to the antibody-based rapid test in the early disease course. The combination of DNA- and antibody-based detection methods increased sensitivity with minimal reduction of specificity, and expanded the timeframe of adequate diagnostic coverage throughout the acute phase of scrub typhus.

  14. Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions.

    Science.gov (United States)

    Martínez-Valladares, María; Rojo-Vázquez, Francisco Antonio

    2016-02-05

    Loop-mediated isothermal amplification (LAMP) is a very specific, efficient, and rapid gene amplification procedure in which the reaction can run at a constant temperature. In the current study we have developed a LAMP assay to improve the diagnosis of Fasciola spp. in the faeces of sheep. After the optimisation of the LAMP assay we have shown similar results between this technique and the standard PCR using the outer primers of the LAMP reaction. In both cases the limit of detection was 10 pg; also, the diagnosis of fasciolosis was confirmed during the first week post-infection in experimental infected sheep by both techniques. In eight naturally infected sheep, the infection with F. hepatica was confirmed in all animals before a treatment with triclabendazole and on day 30 post treatment in two sheep using the LAMP assay; however, when we carried out the standard PCR with the outer primers, the results before treatment were the same but on day 30 post-treatment the infection was only confirmed in one out of the two sheep. On the other hand, the standard PCR took around 3 h to obtain a result, comparing with 1 h and 10 min for the LAMP assay. The LAMP assay described here could be a good alternative to conventional diagnostic methods to detect F. hepatica in faeces since it solves the drawbacks of the standard PCR.

  15. Evaluation of colorimetric loop-mediated isothermal amplification assay for visual detection of Streptococcus agalactiae and Streptococcus iniae in tilapia.

    Science.gov (United States)

    Suebsing, R; Kampeera, J; Tookdee, B; Withyachumnarnkul, B; Turner, W; Kiatpathomchai, W

    2013-10-01

    Streptococcus agalactiae and Strep. iniae are bacterial pathogens that cause streptococcosis in many fish species. An accelerated colorimetric loop-mediated isothermal amplification (LAMP) assay with pre-addition of calcein was established, and the transmission and detection of Strep. agalactiae and Strep. iniae in tilapia under natural aquatic environment were investigated. A positive reaction was observed by a colour change from orange to green through the naked eyes after completion at 63°C for 30 min with 10 times higher sensitivity than that of nested PCR assays and without cross-amplification with other fish bacterial pathogens. All sample types of Nile and red tilapia (broodstock, fertilized egg, fry) were Strep. agalactiae- and Strep. iniae positive by this new method, implying that they could be vertically transmitted. With its application for screening broodstock and fry before stocking and for monitoring fish health in grow-out ponds, the method would become very useful in fish farming industry. The application of colorimetric LAMP with pre-addition of calcein offers simple, rapid and sensitive technique with applicability for small field laboratories. This technique explored the possible vertical transmission mode of Strep. agalactiae and Strep. iniae under natural aquatic environment. It could be such preliminary data provided for the screening broodstock before breeding and/or the specific-pathogen-free production. © 2013 The Society for Applied Microbiology.

  16. Normalization with Corresponding Naïve Tissue Minimizes Bias Caused by Commercial Reverse Transcription Kits on Quantitative Real-Time PCR Results.

    Directory of Open Access Journals (Sweden)

    Andreas Garcia-Bardon

    Full Text Available Real-time reverse transcription polymerase chain reaction (PCR is the gold standard for expression analysis. Designed to improve reproducibility and sensitivity, commercial kits are commonly used for the critical step of cDNA synthesis. The present study was designed to determine the impact of these kits. mRNA from mouse brains were pooled to create serial dilutions ranging from 0.0625 μg to 2 μg, which were transcribed into cDNA using four different commercial reverse-transcription kits. Next, we transcribed mRNA from brain tissue after acute brain injury and naïve mice into cDNA for qPCR. Depending on tested genes, some kits failed to show linear results in dilution series and revealed strong variations in cDNA yield. Absolute expression data in naïve and trauma settings varied substantially between these kits. Normalization with a housekeeping gene failed to reduce kit-dependent variations, whereas normalization eliminated differences when naïve samples from the same region were used. The study shows strong evidence that choice of commercial cDNA synthesis kit has a major impact on PCR results and, consequently, on comparability between studies. Additionally, it provides a solution to overcome this limitation by normalization with data from naïve samples. This simple step helps to compare mRNA expression data between different studies and groups.

  17. Enteroviruses in blood of patients with type 1 diabetes detected by integrated cell culture and reverse transcription quantitative real-time PCR.

    Science.gov (United States)

    Alidjinou, Enagnon Kazali; Sane, Famara; Lefevre, Christine; Baras, Agathe; Moumna, Ilham; Engelmann, Ilka; Vantyghem, Marie-Christine; Hober, Didier

    2017-11-01

    Enteroviruses (EV) have been associated with type 1 diabetes (T1D), but EV RNA detection has been reported in only a small proportion of T1D patients. We studied whether integrated cell culture and reverse transcription real-time PCR could improve EV detection in blood samples from patients with T1D. Blood was collected from 13 patients with T1D. The presence of EV RNA in blood was investigated by using real-time RT-PCR. In addition, plasma and white blood cells (WBC) were inoculated to BGM and Vero cell line cultures. Culture supernatants and cells collected on day 7 and day 14 were tested for EV RNA by real-time RT-PCR. Enterovirus identification was performed through sequencing of the VP4/VP2 region. Enterovirus RNA was detected in blood by using real-time RT-PCR in only one out of 13 patients. The detection of EV RNA in cultures inoculated with clinical samples (plasma and/or WBC) gave positive results in five other patients. The viral loads were low, ranging from 45 to 4420 copies/ng of total RNA. One isolate was successfully identified as coxsackievirus B1. Integrated cell culture and reverse transcription real-time PCR can improve the detection rate of EV in blood samples of patients with T1D and can be useful to investigate further the relationship between EV and the disease.

  18. Asymmetric Modification of Hepatitis B Virus (HBV) Genomes by an Endogenous Cytidine Deaminase inside HBV Cores Informs a Model of Reverse Transcription.

    Science.gov (United States)

    Nair, Smita; Zlotnick, Adam

    2018-05-15

    Cytidine deaminases inhibit replication of a broad range of DNA viruses by deaminating cytidines on single-stranded DNA (ssDNA) to generate uracil. While several lines of evidence have revealed hepatitis B virus (HBV) genome editing by deamination, it is still unclear which nucleic acid intermediate of HBV is modified. Hepatitis B virus has a relaxed circular double-stranded DNA (rcDNA) genome that is reverse transcribed within virus cores from a RNA template. The HBV genome also persists as covalently closed circular DNA (cccDNA) in the nucleus of an infected cell. In the present study, we found that in HBV-producing HepAD38 and HepG2.2.15 cell lines, endogenous cytidine deaminases edited 10 to 25% of HBV rcDNA genomes, asymmetrically with almost all mutations on the 5' half of the minus strand. This region corresponds to the last half of the minus strand to be protected by plus-strand synthesis. Within this half of the genome, the number of mutations peaks in the middle. Overexpressed APOBEC3A and APOBEC3G could be packaged in HBV capsids but did not change the amount or distribution of mutations. We found no deamination on pregenomic RNA (pgRNA), indicating that an intact genome is encapsidated and deaminated during or after reverse transcription. The deamination pattern suggests a model of rcDNA synthesis in which pgRNA and then newly synthesized minus-sense single-stranded DNA are protected from deaminase by interaction with the virus capsid; during plus-strand synthesis, when enough dsDNA has been synthesized to displace the remaining minus strand from the capsid surface, the single-stranded DNA becomes deaminase sensitive. IMPORTANCE Host-induced mutation of the HBV genome by APOBEC proteins may be a path to clearing the virus. We examined cytidine-to-thymidine mutations in the genomes of HBV particles grown in the presence or absence of overexpressed APOBEC proteins. We found that genomes were subjected to deamination activity during reverse transcription

  19. Tip-enhanced fluorescence with radially polarized illumination for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA

    Science.gov (United States)

    Wei, Shih-Chung; Chuang, Tsung-Liang; Wang, Da-Shin; Lu, Hui-Hsin; Gu, Frank X.; Sung, Kung-Bin; Lin, Chii-Wann

    2015-02-01

    A tip nanobiosensor for monitoring DNA replication was presented. The effects of excitation power and polarization on tip-enhanced fluorescence (TEF) were assessed with the tip immersed in fluorescein isothiocyanate solution first. The photon count rose on average fivefold with radially polarized illumination at 50 mW. We then used polymerase-functionalized tips for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA. The amplicon-SYBR Green I complex was detected and compared to real-time loop-mediated isothermal amplification. The signals of the reaction using 4 and 0.004 ng/μl templates were detected 10 and 30 min earlier, respectively. The results showed the potential of TEF in developing a nanobiosensor for real-time DNA amplification.

  20. Microfluidic method for rapid turbidimetric detection of the DNA of Mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes

    International Nuclear Information System (INIS)

    Rafati, Adele; Gill, Pooria

    2015-01-01

    We describe a microfluidic method for rapid isothermal turbidimetric detection of the DNA of Mycobacterium tuberculosis. Loop-mediated isothermal amplification is accomplished in capillary tubes for amplifying DNA in less than 15 min, and sensitivity and specificity were compared to conventional loop-mediated isothermal amplification (LAMP). The method can detect as little as 1 pg mL −1 DNA in a sample. Results obtained with clinical specimens indicated 90 % sensitivity and 95 % specificity for microfluidic LAMP in comparison to culture methods. No interference occurred due to the presence of nonspecific DNAs. The findings demonstrate the power of the new microfluidic LAMP test for rapid molecular detection of microorganisms even when using bare eyes. (author)

  1. HYPER RECOMBINATION1 of the THO/TREX complex plays a role in controlling transcription of the REVERSION-TO-ETHYLENE SENSITIVITY1 gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Congyao Xu

    2015-02-01

    Full Text Available Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1 represses ethylene hormone responses by promoting ethylene receptor ETHYLENE RESPONSE1 (ETR1 signaling, which negatively regulates ethylene responses. To investigate the regulation of RTE1, we performed a genetic screening for mutations that suppress ethylene insensitivity conferred by RTE1 overexpression in Arabidopsis. We isolated HYPER RECOMBINATION1 (HPR1, which is required for RTE1 overexpressor (RTE1ox ethylene insensitivity at the seedling but not adult stage. HPR1 is a component of the THO complex, which, with other proteins, forms the TRanscription EXport (TREX complex. In yeast, Drosophila, and humans, the THO/TREX complex is involved in transcription elongation and nucleocytoplasmic RNA export, but its role in plants is to be fully determined. We investigated how HPR1 is involved in RTE1ox ethylene insensitivity in Arabidopsis. The hpr1-5 mutation may affect nucleocytoplasmic mRNA export, as revealed by in vivo hybridization of fluorescein-labeled oligo(dT45 with unidentified mRNA in the nucleus. The hpr1-5 mutation reduced the total and nuclear RTE1 transcript levels to a similar extent, and RTE1 transcript reduction rate was not affected by hpr1-5 with cordycepin treatment, which prematurely terminates transcription. The defect in the THO-interacting TEX1 protein of TREX but not the mRNA export factor SAC3B also reduced the total and nuclear RTE1 levels. SERINE-ARGININE-RICH (SR proteins are involved mRNA splicing, and we found that SR protein SR33 co-localized with HPR1 in nuclear speckles, which agreed with the association of human TREX with the splicing machinery. We reveal a role for HPR1 in RTE1 expression during transcription elongation and less likely during export. Gene expression involved in ethylene signaling suppression was not reduced by the hpr1-5 mutation, which indicates selectivity of HPR1 for RTE1 expression affecting the consequent ethylene response. Thus

  2. High fat diet-induced changes of mouse hepatic transcription and enhancer activity can be reversed by subsequent weight loss

    DEFF Research Database (Denmark)

    Siersbæk, Majken; Varticovski, Lyuba; Yang, Shutong

    2017-01-01

    Abstract Epigenetic factors have been suggested to play an important role in metabolic memory by trapping and maintaining initial metabolic changes within the transcriptional regulatory machinery. In this study we fed mice a high fat diet (HFD) for seven weeks followed by additional five weeks...... for efficient treatment of early obesity-associated changes to hepatic complications by simple weight loss intervention without persistent reprograming of the liver transcriptome....

  3. Rapid, simple and direct detection of Meloidogyne hapla from infected root galls using loop-mediated isothermal amplification combined with FTA technology

    OpenAIRE

    Peng, Huan; Long, Haibo; Huang, Wenkun; Liu, Jing; Cui, Jiangkuan; Kong, Lingan; Hu, Xianqi; Gu, Jianfeng; Peng, Deliang

    2017-01-01

    The northern root-knot nematode (Meloidogyne hapla) is a damaging nematode that has caused serious economic losses worldwide. In the present study, a sensitive, simple and rapid method was developed for detection of M. hapla in infested plant roots by combining a Flinders Technology Associates (FTA) card with loop-mediated isothermal amplification (LAMP). The specific primers of LAMP were designed based on the distinction of internal transcribed spacer (ITS) sequences between M. hapla and oth...

  4. Time Course of Detection of Human Male DNA from Stained Blood Sample on Various Surfaces by Loop Mediated Isothermal Amplification and Polymerase Chain Reaction

    OpenAIRE

    Panan Kanchanaphum

    2018-01-01

    This study explores determining the sex of humans from blood stains taken from different surfaces and compares the time course of detection with the conventional PCR, Conventional Loop Mediated Isothermal Amplification (LAMP), and LAMP-Lateral Flow Dipstick (LFD). For the DNA templates, 7 male and 7 female blood stained samples were extracted and added to LAMP and PCR reaction solution to amplify the SRY gene. The DNA samples were extracted from the following blood stained materials: cloth, w...

  5. Clinical evaluation of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Neisseria meningitidis in cerebrospinal fluid.

    Science.gov (United States)

    Lee, DoKyung; Kim, Eun Jin; Kilgore, Paul E; Kim, Soon Ae; Takahashi, Hideyuki; Ohnishi, Makoto; Anh, Dang Duc; Dong, Bai Qing; Kim, Jung Soo; Tomono, Jun; Miyamoto, Shigehiko; Notomi, Tsugunori; Kim, Dong Wook; Seki, Mitsuko

    2015-01-01

    Neisseria meningitidis (Nm) is a leading causative agent of bacterial meningitis in humans. Traditionally, meningococcal meningitis has been diagnosed by bacterial culture. However, isolation of bacteria from patients' cerebrospinal fluid (CSF) is time consuming and sometimes yields negative results. Recently, polymerase chain reaction (PCR)-based diagnostic methods of detecting Nm have been considered the gold standard because of their superior sensitivity and specificity compared with culture. In this study, we developed a loop-mediated isothermal amplification (LAMP) method and evaluated its ability to detect Nm in cerebrospinal fluid (CSF). We developed a meningococcal LAMP assay (Nm LAMP) that targets the ctrA gene. The primer specificity was validated using 16 strains of N. meningitidis (serogroup A, B, C, D, 29-E, W-135, X, Y, and Z) and 19 non-N. meningitidis species. Within 60 min, the Nm LAMP detected down to ten copies per reaction with sensitivity 1000-fold more than that of conventional PCR. The LAMP assays were evaluated using a set of 1574 randomly selected CSF specimens from children with suspected meningitis collected between 1998 and 2002 in Vietnam, China, and Korea. The LAMP method was shown to be more sensitive than PCR methods for CSF samples (31 CSF samples were positive by LAMP vs. 25 by PCR). The detection rate of the LAMP method was substantially higher than that of the PCR method. In a comparative analysis of the PCR and LAMP assays, the clinical sensitivity, specificity, positive predictive value, and negative predictive value of the LAMP assay were 100%, 99.6%, 80.6%, and 100%, respectively. Compared to PCR, LAMP detected Nm with higher analytical and clinical sensitivity. This sensitive and specific LAMP method offers significant advantages for screening patients on a population basis and for diagnosis in clinical settings.

  6. GMO detection using a bioluminescent real time reporter (BART of loop mediated isothermal amplification (LAMP suitable for field use

    Directory of Open Access Journals (Sweden)

    Kiddle Guy

    2012-04-01

    Full Text Available Abstract Background There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART occurs at a constant temperature and only requires a simple light detection and integration device. Results Loop mediated isothermal amplification (LAMP shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART for determination of genetically modified (GM maize target DNA at low levels of contamination (0.1-5.0% GM using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. Conclusions LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading

  7. Development of loop-mediated isothermal amplification (LAMP) assays for the rapid detection of allergic peanut in processed food.

    Science.gov (United States)

    Sheu, Shyang-Chwen; Tsou, Po-Chuan; Lien, Yi-Yang; Lee, Meng-Shiou

    2018-08-15

    Peanut is a widely and common used in many cuisines around the world. However, peanut is also one of the most important food allergen for causing anaphylactic reaction. To prevent allergic reaction, the best way is to avoid the food allergen or food containing allergic ingredient such as peanut before food consuming. Thus, to efficient and precisely detect the allergic ingredient, peanut or related product, is essential and required for maintain consumer's health or their interest. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed for the detection of allergic peanut using specifically designed primer sets. Two sets of the specific LAMP primers respectively targeted the internal transcribed sequence 1 (ITS1) of nuclear ribosomal DNA sequence regions and the ara h1 gene sequence of Arachia hypogeae (peanut) were used to address the application of LAMP for detecting peanut in processed food or diet. The results demonstrated that the identification of peanut using the newly designed primers for ITS 1 sequence is more sensitive rather than primers for sequence of Ara h1 gene when performing LAMP assay. Besides, the sensitivity of LAMP for detecting peanut is also higher than the traditional PCR method. These LAMP primers sets showed high specificity for the identification of the peanut and had no cross-reaction to other species of nut including walnut, hazelnut, almonds, cashew and macadamia nut. Moreover, when minimal 0.1% peanuts were mixed with other nuts ingredients at different ratios, no any cross-reactivity was evident during performing LAMP. Finally, genomic DNAs extracted from boiled and steamed peanut were used as templates; the detection of peanut by LAMP was not affected and reproducible. As to this established LAMP herein, not only can peanut ingredients be detected but commercial foods containing peanut can also be identified. This assay will be useful and potential for the rapid detection of peanut in practical food

  8. Development of a loop-mediated Isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Kawahara Ryuji

    2008-09-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a marine seafood-borne pathogen causing gastrointestinal disorders in humans. Thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH are known as major virulence determinants of V. parahaemolyticus. Most V. parahaemolyticus isolates from the environment do not produce TDH or TRH. Total V. parahaemolyticus has been used as an indicator for control of seafood contamination toward prevention of infection. Detection of total V. parahaemolyticus using conventional culture- and biochemical-based assays is time-consuming and laborious, requiring more than three days. Thus, we developed a novel and highly specific loop-mediated isothermal amplification (LAMP assay for the sensitive and rapid detection of Vibrio parahaemolyticus. Results The assay provided markedly more sensitive and rapid detection of V. parahaemolyticus strains than conventional biochemical and PCR assays. The assay correctly identified 143 V. parahaemolyticus strains, but did not detect 33 non-parahaemolyticus Vibrio and 56 non-Vibrio strains. Sensitivity of the LAMP assay for direct detection of V. parahaemolyticus in pure cultures and in spiked shrimp samples was 5.3 × 102 CFU per ml/g (2.0 CFU per reaction. The sensitivity of the LAMP assay was 10-fold more sensitive than that of the conventional PCR assay. The LAMP assay was markedly faster, requiring for amplification 13–22 min in a single colony on TCBS agar from each of 143 V. parahaemolyticus strains and less than 35 min in spiked shrimp samples. The LAMP assay for detection of V. parahaemolyticus required less than 40 min in a single colony on thiosulfate citrate bile salt sucrose (TCBS agar and 60 min in spiked shrimp samples from the beginning of DNA extraction to final determination. Conclusion The LAMP assay is a sensitive, rapid and simple tool for the detection of V. parahaemolyticus and will facilitate the surveillance for control of contamination of V

  9. Loop-mediated isothermal amplification (LAMP) test for specific and rapid detection of Brucella abortus in cattle.

    Science.gov (United States)

    Karthik, K; Rathore, Rajesh; Thomas, Prasad; Arun, T R; Viswas, K N; Agarwal, R K; Manjunathachar, H V; Dhama, Kuldeep

    2014-01-01

    Brucella abortus, the major causative agent of abortion in cattle and a zoonotic pathogen, needs to be diagnosed at an early stage. Loop-mediated isothermal amplification (LAMP) test is easy to perform and also promising to be adapted at field level. To develop a LAMP assay for specific and rapid detection of B. abortus from clinical samples of cattle. LAMP primers were designed targeting BruAb2_0168 region using specific software tool and LAMP was optimized. The developed LAMP was tested for its specificity with 3 Brucella spp. and 11 other non-Brucella spp. Sensitivity of the developed LAMP was also carried out with known quantity of DNA. Cattle whole blood samples and aborted fetal stomach contents were collected and used for testing with developed LAMP assay and results were compared with polymerase chain reaction (PCR). The developed LAMP assay works at 61 °C for 60 min and the detection limit was observed to be 100-fold more than the conventional PCR that is commonly used for diagnosis of B. abortus. Clinical sensitivity and specificity of the developed LAMP assay was 100% when compared with Rose Bengal plate test and standard tube agglutination test. SYB® green dye I was used to visualize the result with naked eye. The novelty of the developed LAMP assay for specifically detecting B. abortus infection in cattle along with its inherent rapidness and high sensitivity can be employed for detecting this economically important pathogen of cattle at field level as well be exploited for screening of human infections.

  10. Rapid identification of drug-type strains in Cannabis sativa using loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2017-01-01

    In Cannabis sativa L., tetrahydrocannabinol (THC) is the primary psychoactive compound and exists as the carboxylated form, tetrahydrocannabinolic acid (THCA). C. sativa is divided into two strains based on THCA content-THCA-rich (drug-type) strains and THCA-poor (fiber-type) strains. Both strains are prohibited by law in many countries including Japan, whereas the drug-type strains are regulated in Canada and some European countries. As the two strains cannot be discriminated by morphological analysis, a simple method for identifying the drug-type strains is required for quality control in legal cultivation and forensic investigation. We have developed a novel loop-mediated isothermal amplification (LAMP) assay for identifying the drug-type strains of C. sativa. We designed two selective LAMP primer sets for on-site or laboratory use, which target the drug-type THCA synthase gene. The LAMP assay was accomplished within approximately 40 min. The assay showed high specificity for the drug-type strains and its sensitivity was the same as or higher than that of conventional polymerase chain reaction. We also showed the effectiveness of melting curve analysis that was conducted after the LAMP assay. The melting temperature values of the drug-type strains corresponded to those of the cloned drug-type THCA synthase gene, and were clearly different from those of the cloned fiber-type THCA synthase gene. Moreover, the LAMP assay with simple sample preparation could be accomplished within 1 h from sample treatment to identification without the need for special devices or techniques. Our rapid, sensitive, specific, and simple assay is expected to be applicable to laboratory and on-site detection.

  11. Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Ge Beilei

    2010-02-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a leading cause of seafood-related bacterial gastroenteritis and outbreaks worldwide. Sensitive and specific detection methods are needed to better control V. parahaemolyticus infections. This study aimed at developing a highly specific and sensitive loop-mediated isothermal amplification (LAMP assay for detecting V. parahaemolyticus in oysters. A set of five LAMP primers, two outer, two inner, and one loop were designed based on the published V. parahaemolyticus toxR sequence. Specificity of the assay was evaluated using a panel of 36 V. parahaemolyticus and 39 other strains. The assay sensitivity was determined using serial dilutions of V. parahaemolyticus ATCC 27969 culture ranging from 108 CFU/ml to extinction. The assay was also tested in experimentally inoculated oyster samples. Results The toxR-based LAMP assay was able to specifically detect all of the 36 V. parahaemolyticus strains without amplification from 39 other strains. The detection limit was 47-470 cells per reaction in pure culture, up to 100-fold more sensitive than that of toxR-PCR. When applied in spiked oysters, the assay was able to detect 1.1 × 105 V. parahaemolyticus cells per gram of oyster without enrichment, up to 100-fold more sensitive than that of toxR-PCR. Standard curves generated for detecting V. parahaemolyticus in both pure culture and spiked oyster samples showed good linear relationship between cell numbers and the fluorescence or turbidity signals. Conclusions The toxR-based LAMP assay developed in this study was sensitive, specific, and quantitative, holding great potential for future field detection of V. parahaemolyticus in raw oysters.

  12. Evaluation of a loop-mediated isothermal amplification method for the detection of Listeria monocytogenes in dairy food

    Directory of Open Access Journals (Sweden)

    Erica Tirloni

    2017-12-01

    Full Text Available Objective of the present study was to test the performances of a loop-mediated isothermal amplification (LAMP-based method for the detection of Listeria monocytogenes, with particular focus on the dairy products. The specificity of the method was evaluated on 42 different Listeria spp. strains from collections, food and environmental samples. 100% (32 of 32 of the L. monocytogenes strains were correctly recognised, and none of other 10 Listeria spp. strains was misidentified. The sensitivity was evaluated on four L. monocytogenes strains from different sources. The instrument was able to detect 10-400 CFU/mL. The ability to detect low initial numbers of L. monocytogenes (0.3- 0.7 Log CFU/g was also evaluated, in duplicate, in pasteurised milk (whole and skimmed and dairy samples (fresh ricotta, crescenza, mascarpone, mozzarella, cottage cheese, cream cheese, taleggio, gorgonzola. The analysis was performed after 18, 24 and 48 h of incubation, and was coupled with the count of L. monocytogenes in the broth. Microbial loads were insufficient to achieve a positive result after 18 and 24 h in most of the samples; after 48 h, all the products, except taleggio and one gorgonzola sample, were identified as positive; the sensitivity of the method when applied to contaminated dairy foods was about 5 Log CFU/g. The LAMP method tested can be considered a very useful tool, as it is a costeffective and easy-functioning method. The preliminary data obtained should be confirmed with a validation process taking into account different food typologies.

  13. An empirical approach for quantifying loop-mediated isothermal amplification (LAMP using Escherichia coli as a model system.

    Directory of Open Access Journals (Sweden)

    Sowmya Subramanian

    Full Text Available Loop mediated isothermal amplification (LAMP is a highly efficient, selective and rapid DNA amplification technique for genetic screening of pathogens. However, despite its popularity, there is yet no mathematical model to quantify the outcome and no well-defined metric for comparing results that are available. LAMP is intrinsically complex and involves multiple pathways for gene replication, making fundamental modelling nearly intractable. To circumvent this difficulty, an alternate, empirical model is introduced that will allow one to extract a set of parameters from the concentration versus time curves. A simple recipe to deduce the time to positive, Tp--a parameter analogous to the threshold cycling time in polymerase chain reaction (PCR, is also provided. These parameters can be regarded as objective and unambiguous indicators of LAMP amplification. The model is exemplified on Escherichia coli strains by using the two gene fragments responsible for vero-toxin (VT production and tested against VT-producing (O157 and O45 and non-VT producing (DH5 alpha strains. Selective amplification of appropriate target sequences was made using well established LAMP primers and protocols, and the concentrations of the amplicons were measured using a Qubit 2.0 fluorometer at specific intervals of time. The data is fitted to a generalized logistic function. Apart from providing precise screening indicators, representing the data with a small set of numbers offers significant advantages. It facilitates comparisons of LAMP reactions independently of the sampling technique. It also eliminates subjectivity in interpretation, simplifies data analysis, and allows easy data archival, retrieval and statistical analysis for large sample populations. To our knowledge this work represents a first attempt to quantitatively model LAMP and offer a standard method that could pave the way towards high throughput automated screening.

  14. Simplified Real-Time Multiplex Detection of Loop-Mediated Isothermal Amplification Using Novel Mediator Displacement Probes with Universal Reporters.

    Science.gov (United States)

    Becherer, Lisa; Bakheit, Mohammed; Frischmann, Sieghard; Stinco, Silvina; Borst, Nadine; Zengerle, Roland; von Stetten, Felix

    2018-04-03

    A variety of real-time detection techniques for loop-mediated isothermal amplification (LAMP) based on the change in fluorescence intensity during DNA amplification enable simultaneous detection of multiple targets. However, these techniques depend on fluorogenic probes containing target-specific sequences. That complicates the adaption to different targets leading to time-consuming assay optimization. Here, we present the first universal real-time detection technique for multiplex LAMP. The novel approach allows simple assay design and is easy to implement for various targets. The innovation features a mediator displacement probe and a universal reporter. During amplification of target DNA the mediator is displaced from the mediator displacement probe. Then it hybridizes to the reporter generating a fluorescence signal. The novel mediator displacement (MD) detection was validated against state-of-the-art molecular beacon (MB) detection by means of a HIV-1 RT-LAMP: MD surpassed MB detection by accelerated probe design (MD: 10 min, MB: 3-4 h), shorter times to positive (MD 4.1 ± 0.1 min shorter than MB, n = 36), improved signal-to-noise fluorescence ratio (MD: 5.9 ± 0.4, MB: 2.7 ± 0.4; n = 15), and showed equally good or better analytical performance parameters. The usability of one universal mediator-reporter set in different multiplex assays was successfully demonstrated for a biplex RT-LAMP of HIV-1 and HTLV-1 and a biplex LAMP of Haemophilus ducreyi and Treponema pallidum, both showing good correlation between target concentration and time to positive. Due to its simple implementation it is suggested to extend the use of the universal mediator-reporter sets to the detection of various other diagnostic panels.

  15. Development of a highly sensitive loop-mediated isothermal amplification (LAMP) method for the detection of Loa loa.

    Science.gov (United States)

    Fernández-Soto, Pedro; Mvoulouga, Prosper Obolo; Akue, Jean Paul; Abán, Julio López; Santiago, Belén Vicente; Sánchez, Miguel Cordero; Muro, Antonio

    2014-01-01

    The filarial parasite Loa loa, the causative agent of loiasis, is endemic in Central and Western Africa infecting 3-13 million people. L. loa has been associated with fatal encephalopathic reactions in high Loa-infected individuals receiving ivermectin during mass drug administration programs for the control of onchocerciasis and lymphatic filariasis. In endemic areas, the only diagnostic method routinely used is the microscopic examination of mid-day blood samples by thick blood film. Improved methods for detection of L. loa are needed in endemic regions with limited resources, where delayed diagnosis results in high mortality. We have investigated the use of a loop-mediated isothermal amplification (LAMP) assay to facilitate rapid, inexpensive, molecular diagnosis of loiasis. Primers for LAMP were designed from a species-specific repetitive DNA sequence from L. loa retrieved from GenBank. Genomic DNA of a L. loa adult worm was used to optimize the LAMP conditions using a thermocycler or a conventional heating block. Amplification of DNA in the LAMP mixture was visually inspected for turbidity as well as addition of fluorescent dye. LAMP specificity was evaluated using DNA from other parasites; sensitivity was evaluated using DNA from L. loa 10-fold serially diluted. Simulated human blood samples spiked with DNA from L. loa were also tested for sensitivity. Upon addition of fluorescent dye, all positive reactions turned green while the negative controls remained orange under ambient light. After electrophoresis on agarose gels, a ladder of multiple bands of different sizes could be observed in positive samples. The detection limit of the assay was found to be as little as 0.5 ag of L. loa genomic DNA when using a heating block. We have designed, for the first time, a highly sensitive LAMP assay for the detection of L. loa which is potentially adaptable for field diagnosis and disease surveillance in loiasis-endemic areas.

  16. Field Evaluation of a High Throughput Loop Mediated Isothermal Amplification Test for the Detection of Asymptomatic Plasmodium Infections in Zanzibar.

    Directory of Open Access Journals (Sweden)

    Berit Aydin-Schmidt

    Full Text Available New field applicable diagnostic tools are needed for highly sensitive detection of residual malaria infections in pre-elimination settings. Field performance of a high throughput DNA extraction system for loop mediated isothermal amplification (HTP-LAMP was therefore evaluated for detecting malaria parasites among asymptomatic individuals in Zanzibar.HTP-LAMP performance was evaluated against real-time PCR on 3008 paired blood samples collected on filter papers in a community-based survey in 2015.The PCR and HTP-LAMP determined malaria prevalences were 1.6% (95%CI 1.3-2.4 and 0.7% (95%CI 0.4-1.1, respectively. The sensitivity of HTP-LAMP compared to PCR was 40.8% (CI95% 27.0-55.8 and the specificity was 99.9% (CI95% 99.8-100. For the PCR positive samples, there was no statistically significant difference between the geometric mean parasite densities among the HTP-LAMP positive (2.5 p/μL, range 0.2-770 and HTP-LAMP negative (1.4 p/μL, range 0.1-7 samples (p = 0.088. Two lab technicians analysed up to 282 samples per day and the HTP-LAMP method was experienced as user friendly.Although field applicable, this high throughput format of LAMP as used here was not sensitive enough to be recommended for detection of asymptomatic low-density infections in areas like Zanzibar, approaching malaria elimination.

  17. Loop-mediated isothermal amplification (LAMP) assay for the identification of Echinococcus multilocularis infections in canine definitive hosts.

    Science.gov (United States)

    Ni, Xingwei; McManus, Donald P; Yan, Hongbin; Yang, Jifei; Lou, Zhongzi; Li, Hongmin; Li, Li; Lei, Mengtong; Cai, Jinzhong; Fan, Yanlei; Li, Chunhua; Liu, Quanyuan; Shi, Wangui; Liu, Xu; Zheng, Yadong; Fu, Baoquan; Yang, Yurong; Jia, Wanzhong

    2014-05-30

    Alveolar echinococcosis, caused by the metacestode larval stage of Echinococcus multilocularis, is a zoonosis of public health significance and is highly prevalent in northwest China. To effectively monitor its transmission, we developed a new rapid and cheap diagnostic assay, based on loop-mediated isothermal amplification (LAMP), to identify canine definitive hosts infected with E. multilocularis. The primers used in the LAMP assay were based on the mitochondrial nad5 gene of E. multilocularis and were designed using Primer Explorer V4 software. The developed LAMP assay was compared with a conventional PCR assay, using DNA extracted from the feces of dogs experimentally infected with E. multilocularis, on 189 dog fecal samples collected from three E. multilocularis-endemic regions in Qinghai province, the People's Republic of China, and 30 negative control copro-samples from dogs from an area in Gansu province that had been subjected to an intensive de-worming program. Light microscopy was also used to examine the experimentally obtained and field collected dog copro-samples for the presence of E. multilocularis eggs. The E. multilocularis-positivity rates obtained for the field-collected fecal samples were 16.4% and 5.3% by the LAMP and PCR assays, respectively, and all samples obtained from the control dogs were negative. The LAMP assay was able to detect E. multilocularis DNA in the feces of experimentally infected dogs at 12 days post-infection, whereas the PCR assay was positive on the 17th day and eggs were first detectable by light microscopy at day 44 post-challenge. The earlier specific detection of an E. multilocularis infection in dog copro-samples indicates that the LAMP assay we developed is a realistic alternative method for the field surveillance of canines in echinococcosis-endemic areas.

  18. Clinical evaluation of a loop-mediated isothermal amplification (LAMP assay for rapid detection of Neisseria meningitidis in cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    DoKyung Lee

    Full Text Available Neisseria meningitidis (Nm is a leading causative agent of bacterial meningitis in humans. Traditionally, meningococcal meningitis has been diagnosed by bacterial culture. However, isolation of bacteria from patients' cerebrospinal fluid (CSF is time consuming and sometimes yields negative results. Recently, polymerase chain reaction (PCR-based diagnostic methods of detecting Nm have been considered the gold standard because of their superior sensitivity and specificity compared with culture. In this study, we developed a loop-mediated isothermal amplification (LAMP method and evaluated its ability to detect Nm in cerebrospinal fluid (CSF.We developed a meningococcal LAMP assay (Nm LAMP that targets the ctrA gene. The primer specificity was validated using 16 strains of N. meningitidis (serogroup A, B, C, D, 29-E, W-135, X, Y, and Z and 19 non-N. meningitidis species. Within 60 min, the Nm LAMP detected down to ten copies per reaction with sensitivity 1000-fold more than that of conventional PCR. The LAMP assays were evaluated using a set of 1574 randomly selected CSF specimens from children with suspected meningitis collected between 1998 and 2002 in Vietnam, China, and Korea. The LAMP method was shown to be more sensitive than PCR methods for CSF samples (31 CSF samples were positive by LAMP vs. 25 by PCR. The detection rate of the LAMP method was substantially higher than that of the PCR method. In a comparative analysis of the PCR and LAMP assays, the clinical sensitivity, specificity, positive predictive value, and negative predictive value of the LAMP assay were 100%, 99.6%, 80.6%, and 100%, respectively.Compared to PCR, LAMP detected Nm with higher analytical and clinical sensitivity. This sensitive and specific LAMP method offers significant advantages for screening patients on a population basis and for diagnosis in clinical settings.

  19. DHT selectively reverses Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells.

    Science.gov (United States)

    Song, Kyung; Wang, Hui; Krebs, Tracy L; Wang, Bingcheng; Kelley, Thomas J; Danielpour, David

    2010-10-01

    Androgens suppress TGF-β responses in the prostate through mechanisms that are not fully explored. We have recently reported that 5α-dihydrotestosterone (DHT) suppresses the ability of TGF-β to inhibit proliferation and induce apoptosis of prostatic epithelial cells and provided evidence that such suppression was fueled by transcriptional down-regulation of TGF-β receptor II (ΤβRII). We now show that androgen receptor (AR) activated by DHT suppresses the TGF-β-induced phosphorylation of Sma- and Mad-related protein (Smad)3 in LNCaP cells overexpressing TβRII under the control of a cytomegalovirus promoter, which is not regulated by DHT, suggesting that transcriptional repression of TβRII alone does not fully account for the impact of DHT on TGF-β responses. Instead, we demonstrate that such suppression occurs through loss of total Smad3, resulting from transcriptional suppression of Smad3. We provide evidence that DHT down-regulates the promoter activity of Smad3 in various prostate cancer cell lines, including NRP-154+AR, DU145+AR, LNCaP, and VCaP, at least partly through androgen-dependent inactivation of Sp1. Moreover, we show that overexpression of Smad3 reverses the ability of DHT to protect against TGF-β-induced apoptosis in NRP-154+AR, supporting our model that loss of Smad3 by DHT is involved in the protection against TGF-β-induced apoptosis. Together, these findings suggest that deregulated/enhanced expression and activation of AR in prostate carcinomas may intercept the tumor suppressor function of TGF-β through transcriptional suppression of Smad3, thereby providing new mechanistic insight into the development of castration-resistant prostate cancer.

  20. Contribution of the C-terminal tri-lysine regions of human immunodeficiency virus type 1 integrase for efficient reverse transcription and viral DNA nuclear import

    Directory of Open Access Journals (Sweden)

    Fowke Keith R

    2005-10-01

    Full Text Available Abstract Background In addition to mediating the integration process, HIV-1 integrase (IN has also been implicated in different steps during viral life cycle including reverse transcription and viral DNA nuclear import. Although the karyophilic property of HIV-1 IN has been well demonstrated using a variety of experimental approaches, the definition of domain(s and/or motif(s within the protein that mediate viral DNA nuclear import and its mechanism are still disputed and controversial. In this study, we performed mutagenic analyses to investigate the contribution of different regions in the C-terminal domain of HIV-1 IN to protein nuclear localization as well as their effects on virus infection. Results Our analysis showed that replacing lysine residues in two highly conserved tri-lysine regions, which are located within previously described Region C (235WKGPAKLLWKGEGAVV and sequence Q (211KELQKQITK in the C-terminal domain of HIV-1 IN, impaired protein nuclear accumulation, while mutations for RK263,4 had no significant effect. Analysis of their effects on viral infection in a VSV-G pseudotyped RT/IN trans-complemented HIV-1 single cycle replication system revealed that all three C-terminal mutant viruses (KK215,9AA, KK240,4AE and RK263,4AA exhibited more severe defect of induction of β-Gal positive cells and luciferase activity than an IN class 1 mutant D64E in HeLa-CD4-CCR5-β-Gal cells, and in dividing as well as non-dividing C8166 T cells, suggesting that some viral defects are occurring prior to viral integration. Furthermore, by analyzing viral DNA synthesis and the nucleus-associated viral DNA level, the results clearly showed that, although all three C-terminal mutants inhibited viral reverse transcription to different extents, the KK240,4AE mutant exhibited most profound effect on this step, whereas KK215,9AA significantly impaired viral DNA nuclear import. In addition, our analysis could not detect viral DNA integration in each C

  1. Comparison between specific and multiplex reverse transcription-polymerase chain reaction for detection of hepatitis A virus, poliovirus and rotavirus in experimentally seeded oysters

    Directory of Open Access Journals (Sweden)

    C Coelho

    2003-06-01

    Full Text Available Outbreaks of gastroenteritis have occurred among consumers of raw or undercooked shellfish harvested from faecally polluted waters. A multiplex reverse transcription-polymerase chain reaction (RT-PCR was applied for the simultaneous detection of hepatitis A virus (HAV, poliovirus (PV and simian rotavirus (RV-SA11 and compared with specific primers for each genome sequence. Three amplified DNA products representing HAV (192 bp, PV (394 bp and RV (278 bp were identified when positive controls were used. However, when tested on experimentally contaminated raw oysters, this method was not able to detect the three viruses simultaneously. This is probably due to the low concentration of viral RNAs present in oyster extract which were partially lost during the extracts preparation.

  2. Rapid Detection of Prunus Necrotic Ringspot Virus by Reverse Transcription-cross-priming Amplification Coupled with Nucleic Acid Test Strip Cassette.

    Science.gov (United States)

    Huo, Ya-Yun; Li, Gui-Fen; Qiu, Yan-Hong; Li, Wei-Min; Zhang, Yong-Jiang

    2017-11-23

    Prunus necrotic ringspot virus (PNRSV) is one of the most devastating viruses to Prunus spp. In this study, we developed a diagnostic system RT-CPA-NATSC, wherein reverse transcription-cross-priming amplification (RT-CPA) is coupled with nucleic acid test strip cassette (NATSC), a vertical flow (VF) visualization, for PNRSV detection. The RT-CPA-NATSC assay targets the encoding gene of the PNRSV coat protein with a limit of detection of 72 copies per reaction and no cross-reaction with the known Prunus pathogenic viruses and viroids, demonstrating high sensitivity and specificity. The reaction is performed on 60 °C and can be completed less than 90 min with the prepared template RNA. Field sample test confirmed the reliability of RT-CPA-NATSC, indicating the potential application of this simple and rapid detection method in routine test of PNRSV.

  3. Improved Safety for Molecular Diagnosis of Classical Rabies Viruses by Use of a TaqMan Real-Time Reverse Transcription-PCR "Double Check" Strategy

    DEFF Research Database (Denmark)

    Hoffmann, B.; Freuling, C. M.; Wakeley, P. R.

    2010-01-01

    To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus...... sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany......), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome...

  4. Detection and differentiation of wild-type and vaccine strains of canine distemper virus by a duplex reverse transcription polymerase chain reaction.

    Science.gov (United States)

    Dong, X Y; Li, W H; Zhu, J L; Liu, W J; Zhao, M Q; Luo, Y W; Chen, J D

    2015-01-01

    Canine distemper virus (CDV) is the cause of canine distemper (CD) which is a severe and highly contagious disease in dogs. In the present study, a duplex reverse transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of CDV. Four primers were designed to detect and discriminate the two viruses by generating 638- and 781-bp cDNA products, respectively. Furthermore, the duplex RT-PCR method was used to detect 67 field samples suspected of CD from Guangdong province in China. Results showed that, 33 samples were to be wild-type-like. The duplex RT-PCR method exhibited high specificity and sensitivity which could be used to effectively detect and differentiate wild-type and vaccine CDV, indicating its use for clinical detection and epidemiological surveillance.

  5. Development of field-based real-time reverse transcription-polymerase chain reaction assays for detection of Chikungunya and O'nyong-nyong viruses in mosquitoes.

    Science.gov (United States)

    Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L

    2009-10-01

    Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

  6. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, R.J.; Bobrow, M.; Roberts, R.G. [St. Thomas`s Hospitals, London (United Kingdom)

    1995-08-01

    The protein truncation test (PTT) is a mutation-detection method that monitors the integrity of the open reading frame (ORF). More than 60% of cases of Duchenne muscular dystrophy (DMD) result from gross frameshifting deletions in the dystrophin gene that are detectable by multiplex PCR system. It has become apparent that virtually all of the remaining DMD mutations also disrupt the translational reading frame, making the PTT a logical next step toward a comprehensive strategy for the identification of all DMD mutations. We report here a pilot study involving 22 patients and describe the mutations characterized. These constitute 12 point mutations or small insertions/deletions and 4 gross rearrangements. We also have a remaining five patients in whom there does not appear to be mutation in the ORF. We believe that reverse-transcription-PCR/PTT is an efficient method by which to screen for small mutations in DMD patients with no deletion. 29 refs., 2 figs., 3 tabs.

  7. Diagnosis of enzootic pneumonia in Danish cattle: reverse transcription-polymerase chain reaction assay for detection of bovine respiratory syncytial virus in naturally and experimentally infected cattle

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Tjørnehøj, Kirsten; Viuff, B.

    1999-01-01

    A reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for detection of bovine respiratory syncytial virus (BRSV) in lung tissue of naturally and experimentally infected cattle. Primers were selected from the gene coding the F fusion protein, which is relatively conserved......, in addition, 10 animals that were negative with the ELISA were positive with the RT-PCR assay. These results indicates that the RT-PCR assay can be a sensitive, reliable alternative to conventional diagnostic procedures....... among BRSV isolates. The RT-PCR assay was highly specific, it yielded positive reactions only when performed on BRSV-infected cell cultures or tissues. The detection limit of the RT-PCR assay was assessed as 5 TCID50. BRSV was detected in tissues of the respiratory tract and in the tracheobroncheal...

  8. Clinical value of IS6110-based loop-mediated isothermal amplification for detection of Mycobacterium tuberculosis complex in respiratory specimens.

    Science.gov (United States)

    Aryan, Ehsan; Makvandi, Manoochehr; Farajzadeh, Ahmad; Huygen, Kris; Alvandi, Amir-Hooshang; Gouya, Mohammad-Mehdi; Sadrizadeh, Ali; Romano, Marta

    2013-06-01

    A fundamental to global tuberculosis (TB) control is timely and accurate diagnosis of infectious cases of the disease. Among various methods, techniques based on nucleic acid amplification are the ones with promising prospects. The present study evaluates the diagnostic value of the recently developed IS6110-based loop-mediated isothermal amplification (LAMP) for detection of Mycobacterium tuberculosis complex (MTBC) in sputum specimens. In this cross-sectional study (2008-2009), IS6110-LAMP was evaluated on 101 sputum specimens from 93 highly suspected TB patients and compared to Amplicor MTB test and in-house IS6110-PCR and -nested PCR assays. Culture results or clinical recovery following anti-TB therapy was considered as a reference to prove the TB cases. The overall sensitivity of IS6110-LAMP, Amplicor, nPCR, and PCR were respectively 89.6% (69/77 specimens; 95% confidence interval [CI], 80.5-95.4%), 76.6% (59/77 specimens; CI, 65.6-85.5%), 79.2% (61/77 specimens; CI, 68.5-87.6%) and 59.7% (46/77 specimens; CI, 47.9-70.8%). The specificity and positive predictive value (PPV) were 100% for all the tests, and the negative predictive value (NPV) of IS6110-LAMP, Amplicor, nPCR, and PCR were respectively 75%, 57.1%, 60%, and 43.6%. There was an excellent overall agreement between LAMP and nPCR (k 0.828), and between LAMP and Amplicor (k 0.746), in addition to a better tolerance of IS6110-LAMP to inhibitors present in clinical specimens. The better diagnostic performance of IS6110-LAMP compared to Amplicor (p = 0.009), nPCR (p = 0.013) and PCR (p < 0.0001) besides its rapidity, simplicity, and cost-effectiveness makes it a valuable method for the detection of MTBC in clinical samples, particularly in resource-limited settings. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  9. Development of a rapid loop-mediated isothermal amplification assay for diagnosis and assessment of cure of Leishmania infection.

    Science.gov (United States)

    Verma, Sandeep; Singh, Ruchi; Sharma, Vanila; Bumb, Ram Avtar; Negi, Narendra Singh; Ramesh, V; Salotra, Poonam

    2017-03-23

    Leishmaniasis is a spectrum of diseases with great relevance to public health. Conventional diagnostic methods are time consuming, needing trained personnel. A robust, rapid and cost effective diagnostic test is warranted for on-time diagnosis and field application. We have developed a loop mediated isothermal amplification (LAMP) assay with primers (n = 6) based on Leishmania donovani kDNA for detection of Leishmania infection, using a closed tube to prevent cross-contamination. The assay was used to detect Leishmania infection in biological samples obtained from patients of visceral leishmaniasis (VL), post kala-azar dermal leishmaniasis (PKDL) and cutaneous leishmaniasis (CL). The assay was positive for L. donovani, L. tropica and L. major parasites, with the highest sensitivity towards L. donovani (1 fg DNA). The high sensitivity of the assay for detection of L. donovani was reflected in its ability to detect parasite DNA within 30 min of amplification time with a threshold detection limit of ≥25 copies per reaction. The assay detected parasite in 64 of 66 VL blood samples (sensitivity, 96.9%; 95% CI: 89.6-99.2%), 15 of 15 VL bone marrow aspirate samples (sensitivity, 100%; 95% CI:79.6-100%), 65 of 67 PKDL tissue biopsy samples (sensitivity, 97%; 95% CI:89.7-99.2%). The assay was evaluated in a few cases of CL wherein it was found positive in 8 of 10 tissue biopsies (sensitivity, 80%; 95% CI: 49-94.3%). The assay was negative in all control blood (n = 76) and tissue biopsy (n = 24) samples (specificity, 100%; 95% CI: 96.3-100%). Further, the assay was evaluated for its utility in assessment of cure in treated VL and PKDL patients. The assay detected parasite DNA in 2 of 20VL blood samples and 2 of 21 PKDL tissue samples. Out of 4 cases that were positive for parasite DNA at post treatment stage, 2 patients (1VL and 1 PKDL) returned with relapse. The study demonstrated a Leishmania genus specific closed tube LAMP assay for reliable and rapid

  10. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification.

    Science.gov (United States)

    Manjunatha, C; Sharma, Sapna; Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C; Aggarwal, Rashmi

    2018-01-01

    Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in

  11. Rapid, simple and sensitive detection of Q fever by loop-mediated isothermal amplification of the htpAB gene.

    Directory of Open Access Journals (Sweden)

    Lei Pan

    Full Text Available BACKGROUND: Q fever is the most widespread zoonosis, and domestic animals are the most common sources of transmission. It is not only difficult to distinguish from other febrile diseases because of the lack of specific clinical manifestations in humans, but it is also difficult to identify the disease in C. burnetii-carrying animals because of the lack of identifiable features. Conventional serodiagnosis requires sera from the acute and convalescent stages of infection, which are unavailable at early diagnosis. Nested PCR and real-time PCR require equipment. In this study, we developed a Loop-Mediated Isothermal Amplification (LAMP assay to identify C. burnetii rapidly and sensitively. METHODS: A universal LAMP primer set was designed to detect the repeated sequence IS1111a of the htpAB gene of C. burnetii using PrimerExplorer V4 software. The sensitivity of the LAMP assay was evaluated using known quantities of recombined reference plasmids containing the targeted genes. The specificity of the developed LAMP assay was determined using 26 members of order Rickettsiae and 18 other common pathogens. The utility of the LAMP assay was further compared with real time PCR by the examination 24 blood samples including 6 confirmed and 18 probable Q fever cases, which diagnosed by IFA serological assessment and real time PCR. In addition, 126 animal samples from 4 provinces including 97 goats, 7 cattle, 18 horses, 3 marmots and 1 deer were compared by these two methods. RESULTS: The limits of detection of the LAMP assay for the htpAB gene were 1 copy per reaction. The specificity of the LAMP assay was 100%, and no cross-reaction was observed among the bacteria used in the study. The positive rate of unknown febrile patients was 33.3%(95%CI 30.2%-36.4% for the LAMP assay and 8.3%(95%CI 7.4%-9.2% for the real time PCR(P<0.05. Similarly, the total positive rate of animals was 7.9%(95%CI 7.1%-8.7% for the LAMP assay and 0.8%(95%CI 0.7%-0.9%for the real time

  12. Regulation of p53 by reversible post-transcriptional and post-translational mechanisms in liver and skeletal muscle of an anoxia tolerant turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Zhang, Jing; Biggar, Kyle K; Storey, Kenneth B

    2013-01-15

    The red-eared slider turtle (Trachemys scripta elegans) exhibits well-developed natural anoxia tolerance that depends on multiple biochemical adaptations, including anoxia-induced hypometabolism. We hypothesized that signaling by the p53 protein could aid in establishing the hypometabolic state by arresting the cell cycle, protecting against DNA damage as well as altering pathways of energy metabolism. Immunoblotting was used to evaluate the regulation and post-transcriptional modifications of p53 in liver and skeletal muscle of red-eared slider turtles subjected to 5h or 20h of anoxic submergence. Tissue specific regulation of p53 was observed with the liver showing a more rapid activation of p53 in response to anoxia as well as differential expression of seven serine phosphorylation and two lysine acetylation sites when compared with skeletal muscle. Protein expression of MDM2, a major p53 inhibitor, was also examined but did not change during anoxia. Reverse-transcriptase PCR was used to assess transcript levels of selected p53 target genes (14-3-3σ, Gadd45α and Pgm) and one microRNA (miR-34a); results showed down-regulation of Pgm and up-regulation of the other three. These findings show an activation of p53 in response to anoxia exposure and suggest an important role for the p53 stress response pathway in regulating natural anoxia tolerance and hypometabolism in a vertebrate facultative anaerobe. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome.

    Directory of Open Access Journals (Sweden)

    Juan Roberto Rodriguez-Madoz

    Full Text Available The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications. In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272 improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC. Furthermore, we demonstrated that mechanistically, treatment with CM272 induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to OSKM refractory binding regions that are required for iPSC establishment, and enhances mesenchymal to epithelial transition during the early phase of cell reprogramming. Thus, the use of this new G9a/DNMT reversible dual inhibitor compound may represent an interesting alternative for improving cell reprogramming and human iPSC derivation for many different applications while providing interesting insights into reprogramming mechanisms.

  14. Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome.

    Science.gov (United States)

    Rodriguez-Madoz, Juan Roberto; San Jose-Eneriz, Edurne; Rabal, Obdulia; Zapata-Linares, Natalia; Miranda, Estibaliz; Rodriguez, Saray; Porciuncula, Angelo; Vilas-Zornoza, Amaia; Garate, Leire; Segura, Victor; Guruceaga, Elizabeth; Agirre, Xabier; Oyarzabal, Julen; Prosper, Felipe

    2017-01-01

    The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications. In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272) improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC. Furthermore, we demonstrated that mechanistically, treatment with CM272 induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to OSKM refractory binding regions that are required for iPSC establishment, and enhances mesenchymal to epithelial transition during the early phase of cell reprogramming. Thus, the use of this new G9a/DNMT reversible dual inhibitor compound may represent an interesting alternative for improving cell reprogramming and human iPSC derivation for many different applications while providing interesting insights into reprogramming mechanisms.

  15. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    Directory of Open Access Journals (Sweden)

    Cui Shang-jin

    2010-05-01

    Full Text Available Abstract A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV. A pair of primers (P1 and P4 specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV, canine parvovirus (CPV, canine coronavirus (CCV, rabies virus (RV, or canine adenovirus (CAV. The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance.

  16. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    Science.gov (United States)

    2010-01-01

    A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR) method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV). A pair of primers (P1 and P4) specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV), canine parvovirus (CPV), canine coronavirus (CCV), rabies virus (RV), or canine adenovirus (CAV). The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance. PMID:20433759

  17. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus.

    Directory of Open Access Journals (Sweden)

    Wei Chi

    Full Text Available The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus. How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male from the rice field eel to investigate changes in transcriptional level during the sex reversal process.Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes. These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes' expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary.This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms.

  18. Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training.

    Directory of Open Access Journals (Sweden)

    Sellamuthu S Gounder

    Full Text Available Aging promotes accumulation of reactive oxygen/nitrogen species (ROS/RNS in cardiomyocytes, which leads to contractile dysfunction and cardiac abnormalities. These changes may contribute to increased cardiovascular disease in the elderly. Inducible antioxidant pathways are regulated by nuclear erythroid 2 p45-related factor 2 (Nrf2 through antioxidant response cis-elements (AREs and are impaired in the aging heart. Whereas acute exercise stress (AES activates Nrf2 signaling and promotes myocardial antioxidant function in young mice (~2 months, aging mouse (>23 months hearts exhibit significant oxidative stress as compared to those of the young. The purpose of this study was to investigate age-dependent regulation of Nrf2-antioxidant mechanisms and redox homeostasis in mouse hearts and the impact of exercise. Old mice were highly susceptible to oxidative stress following high endurance exercise stress (EES, but demonstrated increased adaptive redox homeostasis after moderate exercise training (MET; 10m/min, for 45 min/day for ~6 weeks. Following EES, transcription and protein levels for most of the ARE-antioxidants were increased in young mice but their induction was blunted in aging mice. In contrast, 6-weeks of chronic MET promoted nuclear levels of Nrf2 along with its target antioxidants in the aging heart to near normal levels as seen in young mice. These observations suggest that enhancing Nrf2 function and endogenous cytoprotective mechanisms by MET, may combat age-induced ROS/RNS and protect the myocardium from oxidative stress diseases.

  19. Reversible reprotoxic effects of manganese through DAF-16 transcription factor activation and vitellogenin downregulation in Caenorhabditis elegans.

    Science.gov (United States)

    Gubert, Priscila; Puntel, Bruna; Lehmen, Tassia; Bornhorst, Julia; Avila, Daiana S; Aschner, Michael; Soares, Felix A A

    2016-04-15

    Vitellogenesis is the yolk production process which provides the essential nutrients for the developing embryos. Yolk is a lipoprotein particle that presents lipids and lipid-binding proteins, referred to as vitellogenins (VIT). The Caenorhabditis elegans nematode has six genes encoding VIT lipoproteins. Several pathways are known to regulate vitellogenesis, including the DAF-16 transcription factor. Some reports have shown that heavy metals, such as manganese (Mn), impair brood size in C. elegans; however the mechanisms associated with this effect have yet to be identified. Our aim was to evaluate Mn's effects on C. elegans reproduction and better understand the pathways related to these effects. Young adult larval stage worms were treated for 4h with Mn in 85mM NaCl and Escherichia coli OP50 medium. Mn reduced egg-production and egg-laying during the first 24h after the treatment, although the total number of progenies were indistinguishable from the control group levels. This delay may have occurred due to DAF-16 activation, which was noted only after the treatment and was not apparent 24h later. Moreover, the expression, protein levels and green fluorescent protein (GFP) fluorescence associated with VIT were decreased soon after Mn treatment and recovered after 24h. Combined, these data suggest that the delay in egg-production is likely regulated by DAF-16 and followed by the inhibition of VIT transport activity. Further studies are needed to clarify the mechanisms associated with Mn-induced DAF-16 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue.

    Science.gov (United States)

    Fritsch, Michael K; Bridge, Julia A; Schuster, Amy E; Perlman, Elizabeth J; Argani, Pedram

    2003-01-01

    Pediatric small round cell tumors still pose tremendous diagnostic problems. In difficult cases, the ability to detect tumor-specific gene fusion transcripts for several of these neoplasms, including Ewing sarcoma/peripheral primitive neuroectodermal tumor (ES/PNET), synovial sarcoma (SS), alveolar rhabdomyosarcoma (ARMS), and desmoplastic small round cell tumor (DSRCT) using reverse transcriptase-polymerase chain reaction (RT-PCR), can be extremely helpful. Few studies to date, however, have systematically examined several different tumor types for the presence of multiple different fusion transcripts in order to determine the specificity and sensitivity of the RT-PCR method, and no study has addressed this issue for formalin-fixed material. The objectives of this study were to address the specificity, sensitivity, and practicality of such an assay applied strictly to formalin-fixed tissue blocks. Our results demonstrate that, for these tumors, the overall sensitivity for detecting each fusion transcript is similar to that reported in the literature for RT-PCR on fresh or formalin-fixed tissues. The specificity of the assay is very high, being essentially 100% for each primer pair when interpreting the results from visual inspection of agarose gels. However, when these same agarose gels were examined using Southern blotting, a small number of tumors also yielded reproducibly detectable weak signals for unexpected fusion products, in addition to a strong signal for the expected fusion product. Fluorescence in situ hybridization (FISH) studies in one such case indicated that a rearrangement that would account for the unexpected fusion was not present, while another case was equivocal. The overall specificity for each primer pair used in this assay ranged from 94 to 100%. Therefore, RT-PCR using formalin-fixed paraffin-embedded tissue sections can be used to detect chimeric transcripts as a reliable, highly sensitive, and highly specific diagnostic assay. However, we

  1. A loop-mediated isothermal amplification method for a differential identification of Taenia tapeworms from human: application to a field survey.

    Science.gov (United States)

    Nkouawa, Agathe; Sako, Yasuhito; Li, Tiaoying; Chen, Xingwang; Nakao, Minoru; Yanagida, Tetsuya; Okamoto, Munehiro; Giraudoux, Patrick; Raoul, Francis; Nakaya, Kazuhiro; Xiao, Ning; Qiu, Jiamin; Qiu, Dongchuan; Craig, Philip S; Ito, Akira

    2012-12-01

    In this study, we applied a loop-mediated isothermal amplification method for identification of human Taenia tapeworms in Tibetan communities in Sichuan, China. Out of 51 proglottids recovered from 35 carriers, 9, 1, and 41 samples were identified as Taenia solium, Taenia asiatica and Taenia saginata, respectively. Same results were obtained afterwards in the laboratory, except one sample. These results demonstrated that the LAMP method enabled rapid identification of parasites in the field surveys, which suggested that this method would contribute to the control of Taenia infections in endemic areas. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. A Closed-tube Loop-Mediated Isothermal Amplification Assay for the Visual Endpoint Detection of Brucella spp. and Mycobacterium avium subsp. paratuberculosis.

    Science.gov (United States)

    Trangoni, Marcos D; Gioffré, Andrea K; Cravero, Silvio L

    2017-01-01

    LAMP (loop-mediated isothermal amplification) is an isothermal nucleic acid amplification technique that is characterized by its efficiency, rapidity, high yield of final product, robustness, sensitivity, and specificity, with the blueprint that it can be implemented in laboratories of low technological complexity. Despite the conceptual complexity underlying the mechanistic basis for the nucleic acid amplification, the technique is simple to use and the amplification and detection can be carried out in just one step. In this chapter, we present a protocol based on LAMP for the rapid identification of isolates of Brucella spp. and Mycobacterium avium subsp. paratuberculosis, two major bacterial pathogens in veterinary medicine.

  3. A rapid molecular diagnosis of cutaneous leishmaniasis bycolorimetric malachite green-loop-mediated isothermal amplification(LAMP) combined with an FTA card as a direct sampling tool

    OpenAIRE

    Nzelu, Chukwunonso O.; Cáceres, Abraham G.; Guerrero-Quincho, Silvia; Tineo-Villafuerte, Edwin; Rodriquez-Delfin, Luis; Mimori, Tatsuyuki; Uezato, Hiroshi; Katakura, Ken; Gomez, Eduardo A.; Guevara, Angel G.; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2015-01-01

    Leishmaniasis remains one of the world's most neglected diseases, and early detection of the infectious agent, especially in developing countries, will require a simple and rapid test. In this study, we established a quick, one-step, single-tube, highly sensitive loop-mediated isothermal amplification (LAMP) assay for rapid detection of Leishmania DNA from tissue materials spotted on an FTA card. An FTA-LAMP with pre-added malachite green was performed at 64 degrees C for 60 mm using a heatin...

  4. Numeric definition of the clinical performance of the nested reverse transcription-PCR for detection of hematogenous epithelial cells and correction for specific mRNA of non-target cell origin as evaluated for prostate cancer cells

    NARCIS (Netherlands)

    Schamhart, Denis; Swinnen, Johannes; Kurth, Karl-Heinz; Westerhof, Alex; Kusters, Ron; Borchers, Holger; Sternberg, Cora

    2003-01-01

    Background: Inappropriate quality management,of reverse transcription-PCR (RT-PCR) assays for the detection of blood-borne prostate cancer (PCa) cells hampers clinical conclusions. Improvement of the RT-PCR-methodology for prostate-specific, antigen (PSA) mRNA should focus on an appropriate numeric.

  5. A field based detection method for Rose rosette virus using isothermal probe-based Reverse transcription-recombinase polymerase amplification assay.

    Science.gov (United States)

    Babu, Binoy; Washburn, Brian K; Ertek, Tülin Sarigül; Miller, Steven H; Riddle, Charles B; Knox, Gary W; Ochoa-Corona, Francisco M; Olson, Jennifer; Katırcıoğlu, Yakup Zekai; Paret, Mathews L

    2017-09-01

    Rose rosette disease, caused by Rose rosette virus (RRV; genus Emaravirus) is a major threat to the rose industry in the U.S. The only strategy currently available for disease management is early detection and eradication of the infected plants, thereby limiting its potential spread. Current RT-PCR based diagnostic methods for RRV are time consuming and are inconsistent in detecting the virus from symptomatic plants. Real-time RT-qPCR assay is highly sensitive for detection of RRV, but it is expensive and requires well-equipped laboratories. Both the RT-PCR and RT-qPCR cannot be used in a field-based testing for RRV. Hence a novel probe based, isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA) assay, using primer/probe designed based on the nucleocapsid gene of the RRV has been developed. The assay is highly specific and did not give a positive reaction to other viruses infecting roses belonging to both inclusive and exclusive genus. Dilution assays using the in vitro transcript showed that the primer/probe set is highly sensitive, with a detection limit of 1 fg/μl. In addition, a rapid technique for the extraction of viral RNA (rose varieties, collected from different states in the U.S. The entire process, including the extraction can be completed in 25min, with less sophisticated equipments. The developed assay can be used with high efficiency in large scale field testing for rapid detection of RRV in commercial nurseries and landscapes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Yeast tRNAPhe expressed in human cells can be selected by HIV-1 for use as a reverse transcription primer

    International Nuclear Information System (INIS)

    Kelly, Nathan J.; Morrow, Casey D.

    2003-01-01

    All naturally occurring human immune deficiency viruses (HIV-1) select and use tRNA Lys,3 as the primer for reverse transcription. Studies to elucidate the mechanism of tRNA selection from the intracellular milieu have been hampered due to the difficulties in manipulating the endogenous levels of tRNA Lys,3 . We have previously described a mutant HIV-1 with a primer binding site (PBS) complementary to yeast tRNA Phe (psHIV-Phe) that relies on transfection of yeast tRNA Phe for infectivity. To more accurately recapitulate the selection process, a cDNA was designed for the intracellular expression of the yeast tRNA Phe . Increasing amounts of the plasmid encoding tRNA Phe resulted in a corresponding increase in levels of yeast tRNA Phe in the cell. The yeast tRNA Phe isolated from cells transfected with the cDNA for yeast tRNA Phe , or in the cell lines expressing yeast tRNA Phe , were aminoacylated, indicating that the expressed yeast tRNA Phe was incorporated into tRNA biogenesis pathways and translation. Increasing the cytoplasmic levels of tRNA Phe resulted in increased encapsidation of tRNA Phe in viruses with a PBS complementary to tRNA Phe (psHIV-Phe) or tRNA Lys,3 (wild-type HIV-1). Production of infectious psHIV-Phe was dependent on the amount of cotransfected tRNA Phe cDNA. Increasing amounts of plasmids encoding yeast tRNA Phe produced an increase of infectious psHIV-Phe that plateaued at a level lower than that from the transfection of the wild-type genome, which uses tRNA Lys,3 as the primer for reverse transcription. Cell lines were generated that expressed yeast tRNA Phe at levels approximately 0.1% of that for tRNA Lys,3 . Even with this reduced level of yeast tRNA Phe , the cell lines complemented psHIV-Phe over background levels. The results of these studies demonstrate that intracellular levels of primer tRNA can have a direct effect on HIV-1 infectivity and further support the role for PBS-tRNA complementarity in the primer selection process

  7. Detection and identification of dengue virus isolates from Brazil by a simplified reverse transcription - polymerase chain reaction (RT-PCR method

    Directory of Open Access Journals (Sweden)

    FIGUEIREDO Luiz Tadeu Moraes

    1997-01-01

    Full Text Available We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination

  8. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP(®) using reverse transcription-recombinase polymerase amplification.

    Science.gov (United States)

    Zhang, Shulu; Ravelonandro, Michel; Russell, Paul; McOwen, Nathan; Briard, Pascal; Bohannon, Seven; Vrient, Albert

    2014-10-01

    Plum pox virus (PPV) causes the most destructive viral disease known as plum pox or Sharka disease in stone fruit trees. As an important regulated pathogen, detection of PPV is thus of critical importance to quarantine and eradication of the spreading disease. In this study, the innovative development of two AmplifyRP(®) tests is reported for a rapid isothermal detection of PPV using reverse transcription-recombinase polymerase amplification. In an AmplifyRP(®) test, all specific recombination and amplification reactions occur at a constant temperature without thermal cycling and the test results are either recorded in real-time with a portable fluorescence reader or displayed using a lateral flow strip contained inside an amplicon detection chamber. The major improvement of this assay is that the entire test from sample preparation to result can be completed in as little as 20min and can be performed easily both in laboratories and in the field. The results from this study demonstrated the ability of the AmplifyRP(®) technique to detect all nine PPV strains (An, C, CR, D, EA, M, Rec, T, or W). Among the economic benefits to pathogen surveys is the higher sensitivity of the AmplifyRP(®) to detect PPV when compared to the conventional ELISA and ImmunoStrip(®) assays. This is the first report describing the use of such an innovative technique to detect rapidly plant viruses affecting perennial crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints.

    Science.gov (United States)

    Felske, A; Akkermans, A D; De Vos, W M

    1998-11-01

    A novel approach was developed to quantify rRNA sequences in complex bacterial communities. The main bacterial 16S rRNAs in Drentse A grassland soils (The Netherlands) were amplified by reverse transcription (RT)-PCR with bacterium-specific primers and were separated by temperature gradient gel electrophoresis (TGGE). The primer pair used (primers U968-GC and L1401) was found to amplify with the same efficiency 16S rRNAs from bacterial cultures containing different taxa and cloned 16S ribosomal DNA amplicons from uncultured soil bacteria. The sequence-specific efficiency of amplification was determined by monitoring the amplification kinetics by kinetic PCR. The primer-specific amplification efficiency was assessed by competitive PCR and RT-PCR, and identical input amounts of different 16S rRNAs resulted in identical amplicon yields. The sequence-specific detection system used for competitive amplifications was TGGE, which also has been found to be suitable for simultaneous quantification of more than one sequence. We demonstrate that this approach can be applied to TGGE fingerprints of soil bacteria to estimate the ratios of the bacterial 16S rRNAs.

  10. Evaluation of Appropriate Reference Genes for Reverse Transcription-Quantitative PCR Studies in Different Tissues of a Desert Poplar via Comparision of Different Algorithms

    Directory of Open Access Journals (Sweden)

    Hou-Ling Wang

    2015-08-01

    Full Text Available Despite the unshakable status of reverse transcription-quantitative PCR in gene expression analysis, it has certain disadvantages, including that the results are highly dependent on the reference genes selected for data normalization. Since inappropriate endogenous control genes will lead to inaccurate target gene expression profiles, the validation of suitable internal reference genes is essential. Given the increasing interest in functional genes and genomics of Populus euphratica, a desert poplar showing extraordinary adaptation to salt stress, we evaluated the expression stability of ten candidate reference genes in P. euphratica roots, stems, and leaves under salt stress conditions. We used five algorithms, namely, ΔCt, NormFinder, geNorm, GrayNorm, and a rank aggregation method (RankAggreg to identify suitable normalizers. To support the suitability of the identified reference genes and to compare the relative merits of these different algorithms, we analyzed and compared the relative expression levels of nine P. euphratica functional genes in different tissues. Our results indicate that a combination of multiple reference genes recommended by GrayNorm algorithm (e.g., a combination of Actin, EF1α, GAPDH, RP, UBQ in root should be used instead of a single reference gene. These results are valuable for research of gene identification in different P. euphratica tissues.

  11. Detection by hemi-nested reverse transcription polymerase chain reaction and genetic characterization of wild type strains of Canine distemper virus in suspected infected dogs.

    Science.gov (United States)

    Di Francesco, Cristina E; Di Francesco, Daniela; Di Martino, Barbara; Speranza, Roberto; Santori, Domenico; Boari, Andrea; Marsilio, Fulvio

    2012-01-01

    A new highly sensitive and specific hemi-nested reverse transcription polymerase chain reaction (RT-PCR) assay was applied to detect nucleoprotein (NP) gene of Canine distemper virus (CDV) in samples collected from dogs showing respiratory, gastrointestinal, and neurological signs. Thirty-eight out of 86 samples were positive suggesting that despite the vaccination, canine distemper may still represent a high risk to the canine population. The 968 base pair (bp) fragments from the hemagglutinin (H) gene of 10 viral strains detected in positive samples were amplified and analyzed by restriction fragment length polymorphism (RFLP) using AluI and PsiI enzymes in order to differentiate among vaccine and wild-type CDV strains and to characterize the field viral strains. The products of the both enzymatic digestions allowed identification all viruses as wild strains of CDV. In addition, the RFLP analysis with AluI provided additional information about the identity level among the strains analyzed on the basis of the positions of the cleavage site in the nucleotide sequences of the H gene. The method could be a more useful and simpler method for molecular studies of CDV strains.

  12. Reverse transcription PCR-based detection of Crimean-Congo hemorrhagic fever virus isolated from ticks of domestic ruminants in Kurdistan province of Iran.

    Science.gov (United States)

    Fakoorziba, Mohammad Reza; Golmohammadi, Parvaneh; Moradzadeh, Rahmatollah; Moemenbellah-Fard, Mohammad Djaefar; Azizi, Kourosh; Davari, Behrooz; Alipour, Hamzeh; Ahmadnia, Sara; Chinikar, Sadegh

    2012-09-01

    Crimean-Congo hemorrhagic fever (CCHF) is a potentially fatal viral vector-borne zoonosis which has a mortality rate of up to 30% without treatment in humans. CCHF virus is transmitted to humans by ticks, predominantly from the Hyalomma genus. Following the report of two confirmed and one suspected death due to CCHF virus in Kurdistan province of Iran in 2007, this study was undertaken to determine the fauna of hard ticks on domestic ruminants (cattle, sheep, and goats) and their possible infection with CCHF virus using reverse transcription PCR technique. This is the first detection of CCHF virus in ticks from the Kurdistan province of Iran. Overall, 414 ixodid ticks were collected from two districts in this province. They represented four genera from which 10 separate species were identified. The Hyalomma genus was the most abundant tick genus (70%). It was the only genus shown to be infected with the CCHF virus using RT-PCR technique. The number of ticks positive for CCHF virus was 5 out of 90 (5.6%) adult ticks. The three remaining genera (Haemaphysalis, Rhipicephalus, and Dermacentor) were all negative following molecular survey. Four of the five virally-infected ticks were from cattle mainly in the Sanandaj district. We concluded that CCHF virus is present in the Hyalomma ticks on domestic ruminants (cattle) in Kurdistan province of Iran.

  13. Comparison of two methods for the detection of hepatitis A virus in clam samples (Tapes spp.) by reverse transcription-nested PCR.

    Science.gov (United States)

    Suñén, Ester; Casas, Nerea; Moreno, Belén; Zigorraga, Carmen

    2004-03-01

    The detection of hepatitis A virus in shellfish by reverse transcription-nested polymerase chain reaction (RT-nested PCR) is hampered mainly by low levels of virus contamination and PCR inhibitors in shellfish. In this study, we focused on getting a rapid and sensitive processing procedure for the detection of HAV by RT-nested PCR in clam samples (Tapes spp.). Two previously developed processing methods for virus concentration in shellfish have been improved upon and compared. The first method involves acid adsorption, elution, polyethylene glycol (PEG) precipitation, chloroform extraction and PEG precipitation. The second method is based on elution with a glycine buffer at pH 10, chloroform extraction and concentration by ultracentrifugation. Final clam concentrates were processed by RNA extraction or immunomagnetic capture of viruses (IMC) before the RT-nested PCR reaction. Both methods of sample processing combined with the RNA extraction from the concentrates were very efficient when they were assayed in seeded and naturally contaminated samples. The results show that the first method was more effective in removal inhibitors and the second was simpler and faster. The IMC of HAV from clam concentrates processed by method 1 was revealed to be a very effective method of simultaneously removing residual PCR inhibitors and of concentrating the virus.

  14. Variation in Bluetongue virus real-time reverse transcription polymerase chain reaction assay results in blood samples of sheep, cattle, and alpaca.

    Science.gov (United States)

    Brito, Barbara P; Gardner, Ian A; Hietala, Sharon K; Crossley, Beate M

    2011-07-01

    Bluetongue is a vector-borne viral disease that affects domestic and wild ruminants. The epidemiology of this disease has recently changed, with occurrence in new geographic areas. Various real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) assays are used to detect Bluetongue virus (BTV); however, the impact of biologic differences between New World camelids and domestic ruminant samples on PCR efficiency, for which the BTV real-time qRT-PCR was initially validated are unknown. New world camelids are known to have important biologic differences in whole blood composition, including hemoglobin concentration, which can alter PCR performance. In the present study, sheep, cattle, and alpaca blood were spiked with BTV serotypes 10, 11, 13, and 17 and analyzed in 10-fold dilutions by real-time qRT-PCR to determine if species affected nucleic acid recovery and assay performance. A separate experiment was performed using spiked alpaca blood subsequently diluted in 10-fold series in sheep blood to assess the influence of alpaca blood on performance efficiency of the BTV real-time qRT-PCR assay. Results showed that BTV-specific nucleic acid detection from alpaca blood was consistently 1-2 logs lower than from sheep and cattle blood, and results were similar for each of the 4 BTV serotypes analyzed.

  15. Establishment of a sensitive system for analysis of human vaginal microbiota on the basis of rRNA-targeted reverse transcription-quantitative PCR.

    Science.gov (United States)

    Kurakawa, Takashi; Ogata, Kiyohito; Tsuji, Hirokazu; Kado, Yukiko; Takahashi, Takuya; Kida, Yumi; Ito, Masahiro; Okada, Nobuhiko; Nomoto, Koji

    2015-04-01

    Ten specific primer sets, for Lactobacillus gasseri, Lactobacillus crispatus, Atopobium vaginae, Gardnerella vaginalis, Mobiluncus curtisii, Chlamydia trachomatis/muridarum, Bifidobacterium longum subsp. longum, Bifidobacterium longum subsp. infantis, Bifidobacterium adolescentis, and Bifidobacterium angulatum, were developed for quantitative analysis of vaginal microbiota. rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) analysis of the vaginal samples from 12 healthy Japanese volunteers using the new primer sets together with 25 existing primer sets revealed the diversity of their vaginal microbiota: Lactobacilli such as L. crispatus, L. gasseri, Lactobacillus jensenii, Lactobacillus iners, and Lactobacillus vaginalis, as the major populations at 10(7) cells/ml vaginal fluid, were followed by facultative anaerobes such as Streptococcus and strict anaerobes at lower population levels of 10(4) cells/ml or less. Certain bacterial vaginosis (BV)-related bacteria, such as G. vaginalis, A. vaginae, M. curtisii, and Prevotella, were also detected in some subjects. Especially in one subject, both G. vaginalis and A. vaginae were detected at high population levels of 10(8.8) and 10(8.9) cells/ml vaginal fluid, suggesting that she is an asymptomatic BV patient. These results suggest that the RT-qPCR system is effective for accurate analysis of major vaginal commensals and diagnosis of several vaginal infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Detection of hepatitis A virus by the nucleic acid sequence-based amplification technique and comparison with reverse transcription-PCR.

    Science.gov (United States)

    Jean, J; Blais, B; Darveau, A; Fliss, I

    2001-12-01

    A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 x 10(2) PFU/ml) was obtained with NASBA, compared to 50 PFU (1 x 10(4) PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples.

  17. Comparison of reverse-transcription real-time PCR and immunohistochemistry for the detection of canine distemper virus infection in raccoons in Ontario, Canada.

    Science.gov (United States)

    Nemeth, Nicole M; Oesterle, Paul T; Campbell, G Douglas; Ojkic, Davor; Jardine, Claire M

    2018-03-01

    Canine distemper virus (CDV) is a widespread morbillivirus that causes subclinical to fatal infections in domestic and wild carnivores. Raccoons ( Procyon lotor) are CDV reservoirs and suffer from associated disease. Aspects of pathogenesis may lead to difficulty in the interpretation of commonly used testing modalities, such as reverse-transcription real-time (RT-rt)PCR and immunohistochemistry (IHC). The reliance upon such tests is greater for wildlife, which are often submitted as carcasses with no clinical history. We compared CDV RT-rtPCR results to immunohistochemistry (the gold standard) in tissues from 74 raccoons. These tests had high kappa agreement (lymph node: 0.9335; lung: 0.8671) and a negative correlation between IHC score and threshold cycle (Ct) value for lymph node and lung (Spearman rank correlation coefficient [ r s ] = -0.8555 and -0.8179, respectively; p < 0.00001). An RT-rtPCR Ct value of 30 in lung and lymph node with sensitivity and specificity of 92.3 and 92.6% and 86.8 and 96.4%, respectively, was suitable for determining CDV involvement. Conjunctival swabs provide an alternative for distemper diagnosis, as there was a strong correlation between Ct values of conjunctival swabs and tissues ( r s = -0.8498, p < 0.00001, n = 46). This information will aid in more efficient and accurate diagnoses in individuals, small-scale outbreaks, and epidemiologic investigations in wildlife.

  18. Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.).

    Science.gov (United States)

    Galeano, Esteban; Vasconcelos, Tarcísio Sales; Ramiro, Daniel Alves; De Martin, Valentina de Fátima; Carrer, Helaine

    2014-07-22

    Teak (Tectona grandis L.f.) is currently the preferred choice of the timber trade for fabrication of woody products due to its extraordinary qualities and is widely grown around the world. Gene expression studies are essential to explore wood formation of vascular plants, and quantitative real-time reverse transcription PCR (qRT-PCR) is a sensitive technique employed for quantifying gene expression levels. One or more appropriate reference genes are crucial to accurately compare mRNA transcripts through different tissues/organs and experimental conditions. Despite being the focus of some genetic studies, a lack of molecular information has hindered genetic exploration of teak. To date, qRT-PCR reference genes have not been identified and validated for teak. Identification and cloning of nine commonly used qRT-PCR reference genes from teak, including ribosomal protein 60s (rp60s), clathrin adaptor complexes medium subunit family (Cac), actin (Act), histone 3 (His3), sand family (Sand), β-Tubulin (Β-Tub), ubiquitin (Ubq), elongation factor 1-α (Ef-1α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Expression profiles of these genes were evaluated by qRT-PCR in six tissue and organ samples (leaf, flower, seedling, root, stem and branch secondary xylem) of teak. Appropriate gene cloning and sequencing, primer specificity and amplification efficiency was verified for each gene. Their stability as reference genes was validated by NormFinder, BestKeeper, geNorm and Delta Ct programs. Results obtained from all programs showed that TgUbq and TgEf-1α are the most stable genes to use as qRT-PCR reference genes and TgAct is the most unstable gene in teak. The relative expression of the teak cinnamyl alcohol dehydrogenase (TgCAD) gene in lignified tissues at different ages was assessed by qRT-PCR, using TgUbq and TgEf-1α as internal controls. These analyses exposed a consistent expression pattern with both reference genes. This study proposes a first broad

  19. Detection of live Salmonella enterica in fresh-cut vegetables by a TaqMan-based one-step reverse transcription real-time PCR.

    Science.gov (United States)

    Miao, Y J; Xiong, G T; Bai, M Y; Ge, Y; Wu, Z F

    2018-05-01

    Fresh-cut produce is at greater risk of Salmonella contamination. Detection and early warning systems play an important role in reducing the dissemination of contaminated products. One-step Reverse Transcription Polymerase Chain Reaction (RT-qPCR) targeting Salmonella tmRNA with or without a 6-h enrichment was evaluated for the detection of Salmonella in fresh-cut vegetables after 6-h storage. LOD of one-step RT-qPCR was 1·0 CFU per ml (about 100 copies tmRNA per ml) by assessed 10-fold serially diluted RNA from 10 6 CFU per ml bacteria culture. Then, one-step RT-qPCR assay was applied to detect viable Salmonella cells in 14 fresh-cut vegetables after 6-h storage. Without enrichment, this assay could detect 10 CFU per g for fresh-cut lettuce, cilantro, spinach, cabbage, Chinese cabbage and bell pepper, and 10 2 CFU per g for other vegetables. With a 6-h enrichment, this assay could detect 10 CFU per g for all fresh-cut vegetables used in this study. Moreover, this assay was able to discriminate viable cells from dead cells. This rapid detection assay may provide potential processing control and early warning method in fresh-cut vegetable processing to strengthen food safety assurance. Significance and Impact of the Study: Fresh-cut produce is at greater risk of Salmonella contamination. Rapid detection methods play an important role in reducing the dissemination of contaminated products. One-step RT-qPCR assay used in this study could detect 10 CFU per g Salmonella for 14 fresh-cut vegetables with a 6-h short enrichment. Moreover, this assay was able to discriminate viable cells from dead cells. This rapid detection assay may provide potential processing control and early warning method in fresh-cut vegetable processing to strengthen food safety assurance. © 2018 The Society for Applied Microbiology.

  20. Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains.

    Science.gov (United States)

    Wilkes, Rebecca P; Sanchez, Elena; Riley, Matthew C; Kennedy, Melissa A

    2014-01-01

    Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.

  1. Detection of Canine Distemper Virus Nucleoprotein RNA by Reverse Transcription-PCR Using Serum, Whole Blood, and Cerebrospinal Fluid from Dogs with Distemper

    Science.gov (United States)

    Frisk, A. L.; König, M.; Moritz, A.; Baumgärtner, W.

    1999-01-01

    Reverse transcription-PCR (RT-PCR) was used to detect canine distemper virus (CDV) nucleoprotein (NP) RNA in serum, whole blood, and cerebrospinal fluid (CSF) samples from 38 dogs with clinically suspected distemper. Results were correlated to clinical findings, anti-CDV neutralizing antibody titers, postmortem findings, and demonstration of CDV NP antigen by immunohistochemistry. The specificity of the RT-PCR was ensured by amplification of RNA from various laboratory CDV strains, restriction enzyme digestion, and Southern blot hybridization. In 29 of 38 dogs, CDV infection was confirmed by postmortem examination and immunohistochemistry. The animals displayed the catarrhal, systemic, and nervous forms of distemper. Seventeen samples (serum, whole blood, or CSF) from dogs with distemper were tested with three sets of primers targeted to different regions of the NP gene of the CDV Onderstepoort strain. Expected amplicons were observed in 82, 53, and 41% of the 17 samples, depending upon the primer pair used. With the most sensitive primer pair (primer pair I), CDV NP RNA was detected in 25 of 29 (86%) serum samples and 14 of 16 (88%) whole blood and CSF samples from dogs with distemper but not in body fluids from immunohistochemically negative dogs. Nucleotide sequence analysis of five RT-PCR amplicons from isolates from the field revealed few silent point mutations. These isolates exhibited greater homology to the Rockborn (97 to 99%) than to the Onderstepoort (95 to 96%) CDV strain. In summary, although the sensitivity of the RT-PCR for detection of CDV is strongly influenced by the location of the selected primers, this nucleic acid detection system represents a highly specific and sensitive method for the antemortem diagnosis of distemper in dogs, regardless of the form of distemper, humoral immune response, and viral antigen distribution. PMID:10523566

  2. Detection and differentiation of field and vaccine strains of canine distemper virus using reverse transcription followed by nested real time PCR (RT-nqPCR) and RFLP analysis.

    Science.gov (United States)

    Fischer, Cristine Dossin Bastos; Ikuta, Nilo; Canal, Cláudio Wageck; Makiejczuk, Aline; Allgayer, Mariangela da Costa; Cardoso, Cristine Hoffmeister; Lehmann, Fernanda Kieling; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2013-12-01

    Canine distemper virus (CDV) is the cause of a severe and highly contagious disease in dogs. Practical diagnosis of canine distemper based on clinical signs and laboratory tests are required to confirm CDV infection. The present study aimed to develop a molecular assay to detect and differentiate field and vaccine CDV strains. Reverse transcription followed by nested real time polymerase chain reaction (RT-nqPCR) was developed, which exhibited analytical specificity (all the samples from healthy dogs and other canine infectious agents were not incorrectly detected) and sensitivity (all replicates of a vaccine strain were positive up to the 3125-fold dilution - 10(0.7) TCID50). RT-nqPCR was validated for CDV detection on different clinical samples (blood, urine, rectal and conjunctival swabs) of 103 animals suspected to have distemper. A total of 53 animals were found to be positive based on RT-nqPCR in at least one clinical sample. Blood resulted in more positive samples (50 out of 53, 94.3%), followed by urine (44/53, 83.0%), rectal (38/53, 71%) and conjunctival (27/53, 50.9%) swabs. A commercial immunochromatography (IC) assay had detected CDV in only 30 conjunctival samples of these positive dogs. Nucleoprotein (NC) gene sequencing of 25 samples demonstrated that 23 of them were closer to other Brazilian field strains and the remaining two to vaccine strains. A single nucleotide sequences difference, which creates an Msp I restriction enzyme digestion, was used to differentiate between field and vaccine CDV strains by restriction fragment length polymorphism (RFLP) analysis. The complete assay was more sensitive than was IC for the detection of CDV. Blood was the more frequently positive specimen and the addition of a restriction enzyme step allowed the differentiation of vaccine and Brazilian field strains. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Evaluation of Reference Genes for Reverse Transcription Quantitative PCR Studies of Physiological Responses in the Ghost Moth, Thitarodes armoricanus (Lepidoptera, Hepialidae.

    Directory of Open Access Journals (Sweden)

    Guiqing Liu

    Full Text Available Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is the sensitive method to quantify the expression levels of target genes on the basis of endogenous control. An appropriate reference gene set for normalization is essential for reliable results. The ghost moth, Thitarodes armoricanus, a host species of a medicinal fungus, Ophiocordyceps sinensis, is an economically important member of the Lepidoptera. Recent studies have focused on the mechanism of adaptation of this species to its high-altitude environment and host immune response to O. sinensis infection and RT-qPCR is commonly used in these studies to decipher the genetic basis of physiological functions. However, a thorough assessment of candidate reference genes in the genus Thitarodes is lacking. Here, the expression levels of eight candidate reference genes (ACT, EF, EIF4A, GAPDH, G6PDH, RPL13A, TUB and 18S in T. armoricanus at different developmental stages and in different body parts of the seventh instar larvae were analyzed, along with larvae kept under low temperatures, larvae exposed to two fungal infections and larvae fed different diets. Three established software programs-Bestkeeper, geNorm and NormFinder-were employed to calculate variation among the treatments. The results revealed that the best-suited reference genes differed across the treatments, with EF, EIF4A and GAPDH found to be the best suited for the different developmental stages and larvae body parts; EF, EIF4A and RPL13A found to be the best suited for low-temperature challenge; and EF, EIF4A and TUB found to be the best suited for the fungal infections and dietary treatments. This study thus further contributes to the establishment of an accurate method for normalizing RT-qPCR results for T. armoricanus and serves as a reference for gene expression studies of related insect species.

  4. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  5. Investigations on the frequency of norovirus contamination of ready-to-eat food items in Istanbul, Turkey, by using real-time reverse transcription PCR.

    Science.gov (United States)

    Yilmaz, Aysun; Bostan, Kamil; Altan, Eda; Muratoglu, Karlo; Turan, Nuri; Tan, Derya; Helps, Christopher; Yilmaz, Huseyin

    2011-05-01

    Investigation of norovirus (NoV) contamination of food items is important because many outbreaks occur after consumption of contaminated shellfish, vegetables, fruits, and water. The frequency of NoV contamination in food items has not previously been investigated in Turkey. The aim of this study was to investigate the frequency of human NoV genogroups (G) I and II in ready-to-eat tomatoes, parsley, green onion, lettuce, mixed salads, and cracked wheat balls. RNA was extracted with the RNeasy Mini Kit, and a real-time reverse transcription (RT) PCR assay was performed using primers specific for NoV GI and GII. Among the 525 samples analyzed, NoV GII was detected in 1 green onion sample and 1 tomato sample by both SYBR Green and TaqMan real-time RT-PCR assays; no GI virus was detected. The Enterobactericaeae and Escherichia coli levels in the NoV-positive green onion were 6.56 and 1.28 log CFU/g, and those in the tomato were 5.55 and 1.30 log CFU/g, respectively. No significant difference in the bacterial levels was found between the NoV-positive and NoV-negative samples. This study is the first in which NoV GII was found in ready-to-eat food collected from Istanbul, Turkey; thus, these foods may be considered a risk to human health. Epidemiological studies and measures to prevent NoV infection should be considered.

  6. A comparative study of microbial diversity and community structure in marine sediments using poly(A tailing and reverse transcription PCR

    Directory of Open Access Journals (Sweden)

    Tatsuhiko eHoshino

    2013-06-01

    Full Text Available To obtain a better understanding of metabolically active microbial communities, we tested a molecular ecological approach using poly(A tailing of environmental 16S rRNA, followed by full-length complementary DNA (cDNA synthesis and sequencing to eliminate potential biases caused by mismatching of PCR primer sequences. The RNA pool tested was extracted from marine sediments of the Yonaguni Knoll IV hydrothermal field in the southern Okinawa Trough. The sequences obtained using the ploy(A tailing method were compared statistically and phylogenetically with those obtained using conventional reverse transcription-polymerase chain reaction (RT-PCR with published domain-specific primers. Both methods indicated that Deltaproteobacteria are predominant in sediment (>85% of the total sequence read. The poly(A tailing method indicated that Desulfobacterales were the predominant deltaproteobacteria, while most of the sequences in libraries constructed using RT-PCR were derived from Desulfuromonadales. This discrepancy may have been due to low coverage of Desulfobacterales by the primers used. A comparison of library diversity indices indicated that the poly(A tailing method retrieves more phylogenetically diverse sequences from the environment. The four archaeal 16S rRNA sequences that were obtained using the poly(A tailing method formed deeply branching lineages that were related to Candidatus Parvarchaeum and the Ancient Archaeal Group. These results clearly demonstrate that poly(A tailing followed by cDNA sequencing is a powerful and less biased molecular ecological approach for the study of metabolically active microbial communities.

  7. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae using reverse-transcription quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Miao Yuan

    Full Text Available The brown planthopper (BPH, Nilaparvata lugens (Hemiptera, Delphacidae, is one of the most important rice pests. Abundant genetic studies on BPH have been conducted using reverse-transcription quantitative real-time PCR (qRT-PCR. Using qRT-PCR, the expression levels of target genes are calculated on the basis of endogenous controls. These genes need to be appropriately selected by experimentally assessing whether they are stably expressed under different conditions. However, such studies on potential reference genes in N. lugens are lacking. In this paper, we presented a systematic exploration of eight candidate reference genes in N. lugens, namely, actin 1 (ACT, muscle actin (MACT, ribosomal protein S11 (RPS11, ribosomal protein S15e (RPS15, alpha 2-tubulin (TUB, elongation factor 1 delta (EF, 18S ribosomal RNA (18S, and arginine kinase (AK and used four alternative methods (BestKeeper, geNorm, NormFinder, and the delta Ct method to evaluate the suitability of these genes as endogenous controls. We examined their expression levels among different experimental factors (developmental stage, body part, geographic population, temperature variation, pesticide exposure, diet change, and starvation following the MIQE (Minimum Information for publication of Quantitative real time PCR Experiments guidelines. Based on the results of RefFinder, which integrates four currently available major software programs to compare and rank the tested candidate reference genes, RPS15, RPS11, and TUB were found to be the most suitable reference genes in different developmental stages, body parts, and geographic populations, respectively. RPS15 was the most suitable gene under different temperature and diet conditions, while RPS11 was the most suitable gene under different pesticide exposure and starvation conditions. This work sheds light on establishing a standardized qRT-PCR procedure in N. lugens, and serves as a starting point for screening for reference genes for

  8. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.

    Science.gov (United States)

    Wang, Jing; Dong, Hailiang; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils

  9. Simultaneous detection of the three ilarviruses affecting stone fruit trees by nonisotopic molecular hybridization and multiplex reverse-transcription polymerase chain reaction.

    Science.gov (United States)

    Saade, M; Aparicio, F; Sánchez-Navarro, J A; Herranz, M C; Myrta, A; Di Terlizzi, B; Pallás, V

    2000-12-01

    ABSTRACT The three most economically damaging ilarviruses affecting stone fruit trees on a worldwide scale are the related Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), and Apple mosaic virus (ApMV). Nonisotopic molecular hybridization and multiplex reverse-transcription polymerase chain reaction (RT-PCR) methodologies were developed that could detect all these viruses simultaneously. The latter technique was advantageous because it was discriminatory. For RT-PCR, a degenerate antisense primer was designed which was used in conjunction with three virus-specific sense primers. The amplification efficiencies for the detection of the three viruses in the multiplex RT-PCR reaction were identical to those obtained in the single RT-PCR reactions for individual viruses. This cocktail of primers was able to amplify sequences from all of the PNRSV, ApMV, and PDV isolates tested in five Prunus spp. hosts (almond, apricot, cherry, peach, and plum) occurring naturally in single or multiple infections. For ApMV isolates, differences in the electrophoretic mobilities of the PCR products were observed. The nucleotide sequence of the amplified products of two representative ApMV isolates was determined, and comparative analysis revealed the existence of a 28-nucleotide deletion in the sequence of isolates showing the faster electrophoretic mobility. To our knowledge, this is the first report on the simultaneous detection of three plant viruses by multiplex RT-PCR in woody hosts. This multiplex RT-PCR could be a useful time and cost saving method for indexing these three ilarviruses, which damage stone fruit tree yields, and for the analysis of mother plants in certification programs.

  10. Comparative Evaluation of Three Homogenization Methods for Isolating Middle East Respiratory Syndrome Coronavirus Nucleic Acids From Sputum Samples for Real-Time Reverse Transcription PCR.

    Science.gov (United States)

    Sung, Heungsup; Yong, Dongeun; Ki, Chang Seok; Kim, Jae Seok; Seong, Moon Woo; Lee, Hyukmin; Kim, Mi Na

    2016-09-01

    Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1-35.4 with the PK-DNase method, 34.7-39.0 with the PBS method, and 33.9-38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both Phomogenizing sputum samples prior to RNA extraction.

  11. Development, Evaluation, and Integration of a Quantitative Reverse-Transcription Polymerase Chain Reaction Diagnostic Test for Ebola Virus on a Molecular Diagnostics Platform.

    Science.gov (United States)

    Cnops, Lieselotte; Van den Eede, Peter; Pettitt, James; Heyndrickx, Leo; De Smet, Birgit; Coppens, Sandra; Andries, Ilse; Pattery, Theresa; Van Hove, Luc; Meersseman, Geert; Van Den Herrewegen, Sari; Vergauwe, Nicolas; Thijs, Rein; Jahrling, Peter B; Nauwelaers, David; Ariën, Kevin K

    2016-10-15

     The 2013-2016 Ebola epidemic in West Africa resulted in accelerated development of rapid diagnostic tests for emergency outbreak preparedness. We describe the development and evaluation of the Idylla™ prototype Ebola virus test, a fully automated sample-to-result molecular diagnostic test for rapid detection of Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV).  The Idylla™ prototype Ebola virus test can simultaneously detect EBOV and SUDV in 200 µL of whole blood. The sample is directly added to a disposable cartridge containing all reagents for sample preparation, RNA extraction, and amplification by reverse-transcription polymerase chain reaction analysis. The performance was evaluated with a variety of sample types, including synthetic constructs and whole blood samples from healthy volunteers spiked with viral RNA, inactivated virus, and infectious virus.  The 95% limits of detection for EBOV and SUDV were 465 plaque-forming units (PFU)/mL (1010 copies/mL) and 324 PFU/mL (8204 copies/mL), respectively. In silico and in vitro analyses demonstrated 100% correct reactivity for EBOV and SUDV and no cross-reactivity with relevant pathogens. The diagnostic sensitivity was 97.4% (for EBOV) and 91.7% (for SUDV), the specificity was 100%, and the diagnostic accuracy was 95.9%.  The Idylla™ prototype Ebola virus test is a fast, safe, easy-to-use, and near-patient test that meets the performance criteria to detect EBOV in patients with suspected Ebola. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Development of a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction assay for the differential diagnosis of Feline leukemia virus vaccine and wild strains.

    Science.gov (United States)

    Ho, Chia-Fang; Chan, Kun-Wei; Yang, Wei-Cheng; Chiang, Yu-Chung; Chung, Yang-Tsung; Kuo, James; Wang, Chi-Young

    2014-07-01

    A multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) was developed for the differential diagnosis of Feline leukemia virus (FeLV) vaccine and wild-type strains based on a point mutation between the vaccine strain (S) and the wild-type strain (T) located in the p27 gene. This system was further upgraded to obtain a real-time ARMS RT-PCR (ARMS qRT-PCR) with a high-resolution melt analysis (HRMA) platform. The genotyping of various strains of FeLV was determined by comparing the HRMA curves with the defined wild-type FeLV (strain TW1), and the results were expressed as a percentage confidence. The detection limits of ARMS RT-PCR and ARMS qRT-PCR combined with HRMA were 100 and 1 copies of transcribed FeLV RNA per 0.5 ml of sample, respectively. No false-positive results were obtained with 6 unrelated pathogens and 1 feline cell line. Twelve FeLV Taiwan strains were correctly identified using ARMS qRT-PCR combined with HRMA. The genotypes of the strains matched the defined FeLV wild-type strain genotype with at least 91.17% confidence. A higher degree of sequence polymorphism was found throughout the p27 gene compared with the long terminal repeat region. In conclusion, the current study describes the phylogenetic relationship of the FeLV Taiwan strains and demonstrates that the developed ARMS RT-PCR assay is able to be used to detect the replication of a vaccine strain that has not been properly inactivated, thus acting as a safety check for the quality of FeLV vaccines.

  13. Comparison of the Diagnostic Value Between Real-Time Reverse Transcription-Polymerase Chain Reaction Assay and Histopathologic Examination in Sentinel Lymph Nodes for Patients With Gastric Carcinoma.

    Science.gov (United States)

    Kwak, Yoonjin; Nam, Soo Kyung; Shin, Eun; Ahn, Sang-Hoon; Lee, Hee Eun; Park, Do Joong; Kim, Woo Ho; Kim, Hyung-Ho; Lee, Hye Seung

    2016-05-01

    Sentinel lymph node (SLN)-based diagnosis in gastric cancers has shown varied sensitivities and false-negative rates in several studies. Application of the reverse transcription-polymerase chain reaction (RT-PCR) in SLN diagnosis has recently been proposed. A total of 155 SLNs from 65 patients with cT1-2, N0 gastric cancer were examined. The histopathologic results were compared with results obtained by real-time RT-PCR for detecting molecular RNA (mRNA) of cytokeratin (CK)19, carcinoembryonic antigen (CEA), and CK20. The sensitivity and specificity of the multiple marker RT-PCR assay standardized against the results of the postoperative histological examination were 0.778 (95% confidence interval [CI], 0.577-0.914) and 0.781 (95% CI, 0.700-0.850), respectively. In comparison, the sensitivity and specificity of intraoperative diagnosis were 0.819 (95% CI, 0.619-0.937) and 1.000 (95% CI, 0.972-1.000), respectively. The positive predictive value of the multiple-marker RT-PCR assay was 0.355 (95% CI, 0.192-0.546) for predicting non-SLN metastasis, which was lower than that of intraoperative diagnosis (0.813, 95% CI, 0.544-0.960). The real-time RT-PCR assay could detect SLN metastasis in gastric cancer. However, the predictive value of the real-time RT-PCR assay was lower than that of precise histopathologic examination and did not outweigh that of our intraoperative SLN diagnosis. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Field-Deployable Reverse Transcription-Insulated Isothermal PCR (RT-iiPCR) Assay for Rapid and Sensitive Detection of Foot-and-Mouth Disease Virus.

    Science.gov (United States)

    Ambagala, A; Fisher, M; Goolia, M; Nfon, C; Furukawa-Stoffer, T; Ortega Polo, R; Lung, O

    2017-10-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals, which can decimate the livestock industry and economy of countries previously free of this disease. Rapid detection of foot-and-mouth disease virus (FMDV) is critical to containing an FMD outbreak. Availability of a rapid, highly sensitive and specific, yet simple and field-deployable assay would support local decision-making during an FMDV outbreak. Here we report validation of a novel reverse transcription-insulated isothermal PCR (RT-iiPCR) assay that can be performed on a commercially available, compact and portable POCKIT ™ analyser that automatically analyses data and displays '+' or '-' results. The FMDV RT-iiPCR assay targets the 3D region of the FMDV genome and was capable of detecting 9 copies of in vitro-transcribed RNA standard with 95% confidence. It accurately identified 63 FMDV strains belonging to all seven serotypes and showed no cross-reactivity with viruses causing similar clinical diseases in cloven-hoofed animals. The assay was able to identify FMDV RNA in multiple sample types including oral, nasal and lesion swabs, epithelial tissue suspensions, vesicular and oral fluid samples, even before the appearance of clinical signs. Clinical sensitivity of the assay was comparable or slightly higher than the laboratory-based real-time RT-PCR assay in use. The assay was able to detect FMDV RNA in vesicular fluid samples without nucleic acid extraction. For RNA extraction from more complex sample types, a commercially available taco ™ mini transportable magnetic bead-based, automated extraction system was used. This assay provides a potentially useful field-deployable diagnostic tool for rapid detection of FMDV in an outbreak in FMD-free countries or for routine diagnostics in endemic countries with less structured laboratory systems. © 2016 Her Majesty the Queen in Right of Canada.

  15. Evaluation and optimization of SYBR Green real-time reverse transcription polymerase chain reaction as a tool for diagnosis of the Flavivirus genus in Brazil

    Directory of Open Access Journals (Sweden)

    Marilia Farignoli Romeiro

    2016-06-01

    Full Text Available Abstract: INTRODUCTION: The genus Flavivirus includes several pathogenic species that cause severe illness in humans. Therefore, a rapid and accurate molecular method for diagnosis and surveillance of these viruses would be of great importance. Here, we evaluate and optimize a quantitative real-time reverse transcription polymerase chain reaction (RT-PCR method for the diagnosis of the Flavivirus genus. METHODS: We evaluated different commercial kits that use the SYBR Green system for real-time RT-PCR with a primer set that amplifies a fragment of the NS5 flavivirus gene. The specificity and sensitivity of the assay were tested using twelve flaviviruses and ribonucleic acid (RNA transcribed from the yellow fever virus. Additionally, this assay was evaluated using the sera of 410 patients from different regions of Brazil with acute febrile illness and a negative diagnosis for the dengue virus. RESULTS: The real-time RT-PCR amplified all flaviviruses tested at a melting temperature of 79.92 to 83.49°C. A detection limit of 100 copies per ml was determined for this assay. Surprisingly, we detected dengue virus in 4.1% (17/410 of samples from patients with febrile illness and a supposedly negative dengue infection diagnosis. The viral load in patients ranged from 2.1×107to 3.4×103copies per ml. CONCLUSIONS: The real-time RT-PCR method may be very useful for preliminary diagnoses in screenings, outbreaks, and other surveillance studies. Moreover, this assay can be easily applied to monitor viral activity and to measure viral load in pathogenesis studies.

  16. Preliminary results on ghrelin mRNA quantification in buffalo calves during fasting and refeeding by real-time reverse transcription PCR assay

    Directory of Open Access Journals (Sweden)

    G. Neglia

    2010-02-01

    Full Text Available The aim of this trial was to evaluate ghrelin response to milk administration in 20 days old buffalo calves. The trial was carried out on 5 female buffalo calves with a mean age of 21.2±2.8 days. Five blood samples were collected from each animal into EDTA tubes, starting at 07.00 until 15.00, at 2-h intervals. At 09.00, after the second blood sample, replaced milk was administered to the calves. Blood samples were immediately placed at 4°C until processing, which was performed on the same day. We used real-time reverse transcription PCR system to detect the expression of ghrelin mRNA levels in blood of buffalo calves. Two calves showed a low ghrelin concentration at the start of the trial (Group A = low ghrelin concentration and three calves a high ghrelin concentration (Group B = high ghrelin concentration. Ghrelin expression was significantly higher either two hours (P<0.01 and just before feeding (P<0.05 in Group B vs. Group A. However, in both cases, a significant (P<0.05 difference was observed within each group between -2 and 6 hours after feeding. Therefore, ghrelin concentration tended to increase in animals that showed low levels and, similarly, it lowered in animals that showed high concentration. If these results will be confirmed, may represent the evidence that also in buffalo calves the ghrelin system may affect feed intake. Further studies are needed in order to better evaluate the ghrelin system in buffalo calves.

  17. Detection of feline coronavirus in cheetah (Acinonyx jubatus) feces by reverse transcription-nested polymerase chain reaction in cheetahs with variable frequency of viral shedding.

    Science.gov (United States)

    Gaffney, Patricia M; Kennedy, Melissa; Terio, Karen; Gardner, Ian; Lothamer, Chad; Coleman, Kathleen; Munson, Linda

    2012-12-01

    Cheetahs (Acinonyx jubatus) are a highly threatened species because of habitat loss, human conflict, and high prevalence of disease in captivity. An epidemic of feline infectious peritonitis and concern for spread of infectious disease resulted in decreased movement of cheetahs between U.S. zoological facilities for managed captive breeding. Identifying the true feline coronavirus (FCoV) infection status of cheetahs is challenging because of inconsistent correlation between seropositivity and fecal viral shedding. Because the pattern of fecal shedding of FCoV is unknown in cheetahs, this study aimed to assess the frequency of detectable fecal viral shedding in a 30-day period and to determine the most efficient fecal sampling strategy to identify cheetahs shedding FCoV. Fecal samples were collected from 16 cheetahs housed at seven zoological facilities for 30 to 46 consecutive days; the samples were evaluated for the presence of FCoV by reverse transcription-nested polymerase chain reaction (RT-nPCR). Forty-four percent (7/16) of cheetahs had detectable FCoV in feces, and the proportion of positive samples for individual animals ranged from 13 to 93%. Cheetahs shed virus persistently, intermittently, or rarely over 30-46 days. Fecal RT-nPCR results were used to calculate the probability of correctly identifying a cheetah known to shed virus given multiple hypothetical fecal collection schedules. The most efficient hypothetical fecal sample collection schedule was evaluation of five individual consecutive fecal samples, resulting in a 90% probability of identifying a known shedder. Demographic and management risk factors were not significantly associated (P cheetahs shed virus intermittently to rarely, fecal sampling schedules meant to identify all known shedders would be impractical with current tests and eradication of virus from the population unreasonable. Managing the captive population as endemically infected with FCoV may be a more feasible approach.

  18. Design and optimization of a novel reverse transcription linear-after-the-exponential PCR for the detection of foot-and-mouth disease virus.

    Science.gov (United States)

    Pierce, K E; Mistry, R; Reid, S M; Bharya, S; Dukes, J P; Hartshorn, C; King, D P; Wangh, L J

    2010-07-01

    A novel molecular assay for the detection of foot-and-mouth disease virus (FMDV) was developed using linear-after-the-exponential polymerase chain reaction (LATE-PCR). Pilot experiments using synthetic DNA targets demonstrated the ability of LATE-PCR to quantify initial target concentration through endpoint detection. A two-step protocol involving reverse transcription (RT) followed by LATE-PCR was then used to confirm the ability of the assay to detect FMDV RNA. Finally, RT and LATE-PCR were combined in a one-step duplex assay for co-amplification of an FMDV RNA segment and an internal control comprised of an Armored RNA. In that form, each of the excess primers in the reaction mixture hybridize to their respective RNA targets during a short pre-incubation, then generate cDNA strands during a 3-min RT step at 60°C, and the resulting cDNA is amplified by LATE-PCR without intervening sample processing. The RT-LATE-PCR assay generates fluorescent signals at endpoint that are proportional to the starting number of RNA targets and can detect a range of sequence variants using a single mismatch-tolerant probe. In addition to offering improvements over current laboratory-based molecular diagnostic assays for FMDV, this new assay is compatible with a novel portable ('point-of-care') device, the BioSeeq II, designed for the rapid diagnosis of FMD in the field. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  19. Detection of Viral Hemorrhagic Septicemia Virus by Quantitative Reverse Transcription Polymerase Chain Reaction from Two Fish Species at Two Sites in Lake Superior

    Science.gov (United States)

    Cornwell, Emily R.; Eckerlin, Geofrey E.; Getchell, Rodman G.; Groocock, Geoffrey H.; Thompson, Tarin M.; Batts, William N.; Casey, Rufina N.; Kurath, Gael; Winton, James R.; Bowser, Paul R.; Bain, Mark B.; Casey, James W.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV) was first detected in the Laurentian Great Lakes in 2005 during a mortality event in the Bay of Quinte, Lake Ontario. Subsequent analysis of archived samples determined that the first known isolation of VHSV in the Laurentian Great Lakes was from a muskellunge Esox masquinongy collected in Lake St. Clair in 2003. By the end of 2008, mortality events and viral isolations had occurred in all of the Laurentian Great Lakes except Lake Superior. In 2009, a focused disease surveillance program was designed to determine whether VHSV was also present in Lake Superior. In this survey, 874 fish from 7 sites along the U.S. shoreline of Lake Superior were collected during June 2009. Collections were focused on nearshore species known to be susceptible to VHSV. All fish were dissected individually by using aseptic techniques and were tested for the presence of VHSV genetic material by use of a quantitative reverse transcription (qRT) polymerase chain reaction (PCR) targeting the viral nucleoprotein gene. Seventeen fish from two host species at two different sites tested positive at low levels for VHSV. All attempts to isolate virus in cell culture were unsuccessful. However, the presence of viral RNA was confirmed independently in five fish by using a nested PCR that targeted the glycoprotein (G) gene. Partial G gene sequences obtained from three fish were identical to the corresponding sequence from the original 2003 VHSV isolate (MI03) from muskellunge. These detections represent the earliest evidence for the presence of VHSV in Lake Superior and illustrate the utility of the highly sensitive qRT-PCR assay for disease surveillance in aquatic animals.

  20. Loop-mediated isothermal amplification assay for rapid and sensitive detection of sheep pox and goat pox viruses in clinical samples.

    Science.gov (United States)

    Venkatesan, G; Balamurugan, V; Bhanuprakash, V; Singh, R K; Pandey, A B

    2016-06-01

    A Loop-mediated isothermal amplification (LAMP) assay targeting the highly conserved DNA polymerase gene of capripox virus genome was developed and evaluated for rapid detection of sheep pox and goat pox viruses. The optimized LAMP assay is found specific and sensitive for amplification of target DNA with a diagnostic sensitivity and specificity of 96.6% and 100% respectively compared to quantitative PCR. The detection rate of LAMP, PCR and Q-PCR assays is found to be 81.5%, 67% and 83% respectively. This LAMP assay has the potential for rapid clinical diagnosis and surveillance of sheep pox and goat pox in field diagnostic laboratories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples

    DEFF Research Database (Denmark)

    Sun, Yi; Than Linh, Quyen; Hung, Tran Quang

    2015-01-01

    was capable to detect Salmonella at concentration of 50 cells per test within 40 min. The simple design, together with high level of integration, isothermal amplification, and quantitative analysis of multiple samples in short time will greatly enhance the practical applicability of the LOC system for rapid...... amplification (LAMP) for rapid and quantitative detection of Salmonella spp. in food samples. The whole diagnostic procedures including DNA isolation, isothermal amplification, and real-time detection were accomplished in a single chamber. Up to eight samples could be handled simultaneously and the system...... and usually take a few hours to days to complete. In response to the demand for rapid on line or at site detection of pathogens, in this study, we describe for the first time an eight-chamber lab-on-a-chip (LOC) system with integrated magnetic beads-based sample preparation and loop-mediated isothermal...

  2. Loop-mediated isothermal amplification (LAMP) assay-A rapid detection tool for identifying red fox (Vulpes vulpes) DNA in the carcasses of harbour porpoises (Phocoena phocoena).

    Science.gov (United States)

    Heers, Teresa; van Neer, Abbo; Becker, André; Grilo, Miguel Luca; Siebert, Ursula; Abdulmawjood, Amir

    2017-01-01

    Carcasses of wild animals are often visited by different scavengers. However, determining which scavenger caused certain types of bite marks is particularly difficult and knowledge thereof is lacking. Therefore, a loop-mediated isothermal amplification (LAMP) assay (target sequence cytochrome b) was developed to detect red fox DNA in carcasses of harbour porpoises. The MSwab™ method for direct testing without prior DNA isolation was validated. As a detection device, the portable real-time fluorometer Genie® II was used, which yields rapid results and can be used in field studies without huge laboratory equipment. In addition to in vitro evaluation and validation, a stranded and scavenged harbour porpoise carcass was successfully examined for red fox DNA residues. The developed LAMP method is a valuable diagnostic tool for confirming presumable red fox bite wounds in harbour porpoises without further DNA isolation steps.

  3. Loop mediated isothermal amplification assay using hydroxy naphthol blue, conventional polymerase chain reaction and real-time PCR in the diagnosis of intraocular tuberculosis

    Directory of Open Access Journals (Sweden)

    P K Balne

    2015-01-01

    Full Text Available This study is a comparative evaluation (Chi-square test of a closed tube loop mediated isothermal amplification assay using hydroxy naphthol blue dye (HNB-LAMP, real-time polymerase chain reaction (PCR and conventional PCR in the diagnosis of intraocular tuberculosis. Considering clinical presentation as the gold standard in 33 patients, the sensitivity of HNB-LAMP assay (75.8% was higher (not significant, P value 0.2 than conventional PCR (57.6% and lower than real-time PCR (90.9%. Specificity was 100% by all three methods. No amplification was observed in negative controls (n = 20 by all three methods. The cost of the HNB-LAMP assay was Rs. 500.00 and it does not require thermocycler, therefore, it can be used as an alternative to conventional PCR in resource-poor settings.

  4. Evaluation of two loop-mediated isothermal amplification methods for the detection of Salmonella Enteritidis and Listeria monocytogenes in artificially contaminated ready-to-eat fresh products

    Directory of Open Access Journals (Sweden)

    Angeliki Birmpa

    2015-08-01

    Full Text Available In the present study, the effectiveness of two loop-mediated isothermal amplification (LAMP assays was evaluated. Samples of romaine lettuce, strawberries, cherry tomatoes, green onions and sour berries were inoculated with known dilutions (100-108 CFU/g of produce of S. Enteritidis and L. monocytogenes. With LAMP assay, pathogens can be detected in less than 60 min. The limits of detection of S. Enteritidis and L. monocytogenes depended on the food sample tested and on the presence of enrichment step. After enrichment steps, all food samples were found positive even at low initial pathogen levels. The developed LAMP, assays, are expected to become a valuable, robust, innovative, powerful, cheap and fast monitoring tool, which can be extensively used for routine analysis, and screening of contaminated foods by the food industry and the Public Food Health Authorities.

  5. Biochip for Real-Time Monitoring of Hepatitis B Virus (HBV) by Combined Loop-Mediated Isothermal Amplification and Solution-Phase Electrochemical Detection

    Science.gov (United States)

    Tien, Bui Quang; Ngoc, Nguyen Thy; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2017-06-01

    Accurate in situ diagnostic tests play a key role in patient management and control of most infectious diseases. To achieve this, use of handheld biochips that implement sample handling, sample analysis, and result readout together is an ideal approach. We present herein a fluid-handling biochip for real-time electrochemical monitoring of nucleic acid amplification based on loop-mediated isothermal amplification and real-time electrochemical detection on a microfluidic platform. Intercalation between amplifying DNA and free redox probe in solution phase was used to monitor the number of DNA copies. The whole diagnostic process is completed within 70 min. Our platform offers a fast and easy tool for quantification of viral pathogens in shorter time and with limited risk of all potential forms of cross-contamination. Such diagnostic tools have potential to make a huge difference to the lives of millions of people worldwide.

  6. On-site detection of Xylella fastidiosa in host plants and in “spy insects” using the real-time loop-mediated isothermal amplification method

    Directory of Open Access Journals (Sweden)

    Thaer YASEEN

    2015-12-01

    Full Text Available A recent severe outbreak of Xylella fastidiosa associated with ‘olive quick decline syndrome’ (OQDS was reported in Apulia (Southern Italy. In this study an on-site real-time loop-mediated isothermal amplification (real-time LAMP was developed for detecting X. fastidiosa in host plants and insects. A marked simplification of the DNA extraction procedure was obtained by heating the samples in a portable Smart-Dart device and using an optimized enhancer reaction buffer. The connection to a tablet or Smartphone allowed to visualize the results of the reaction in real time. Compared to PCR and ELISA, with which it showed comparable results in terms of sensitivity and reliability in the X. fastidiosa detection, this simplified real-time LAMP procedure proved to be “user friendly”, displaying the advantages to be an on-site detection method of easy handling, rapid execution and low cost.

  7. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    Science.gov (United States)

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs.

  8. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Deguo Wang

    2015-05-01

    Full Text Available Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  9. Detection of early and single infections of Schistosoma japonicum in the intermediate host snail, Oncomelania hupensis, by PCR and loop-mediated isothermal amplification (LAMP) assay.

    Science.gov (United States)

    Kumagai, Takashi; Furushima-Shimogawara, Rieko; Ohmae, Hiroshi; Wang, Tian-Ping; Lu, Shaohong; Chen, Rui; Wen, Liyong; Ohta, Nobuo

    2010-09-01

    Polymerase chain reaction (PCR) with the specific primer set amplifying 28S ribosomal DNA (rDNA) of Schistosoma japonicum was able to detect genomic DNA of S. japonicum, but not S. mansoni, at 100 fg. This procedure enabled us to detect the DNA from a single miracidium and a snail infected with one miracidium at just 1 day after infection. We compared these results with those from loop-mediated isothermal amplification (LAMP) targeting 28S rDNA and found similar results. The LAMP could amplify the specific DNA from a group of 100 normal snails mixed with one infected snail A PCR screening of infected snails from endemic regions in Anhui Province revealed schistosomal DNA even in snails found negative by microscopy. PCR and LAMP show promise for monitoring the early infection rate in snails, and they may be useful for predicting the risk of infection in the endemic places.

  10. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    Science.gov (United States)

    Wang, Deguo; Liu, Yanhong

    2015-05-26

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  11. Detection and differentiation of Fusarium oxysporum f. sp. lycopersici race 1 using loop-mediated isothermal amplification with three primer sets.

    Science.gov (United States)

    Ayukawa, Y; Komatsu, K; Kashiwa, T; Akai, K; Yamada, M; Teraoka, T; Arie, T

    2016-09-01

    Fusarium oxysporum f. sp. lycopersici (Fol) causes tomato wilt. Based on the difference in pathogenicity towards tomato cultivars, Fol is classified into three races. In this study, a rapid method is developed for the detection and discrimination of Fol race 1 using a loop-mediated isothermal amplification (LAMP) assay with two primer sets targeting a region of the nucleotide sequence of the SIX4 gene specific for race 1 and a primer set targeting the SIX5 gene, conserved in all known Fol isolates. Upon LAMP reaction, amplification using all three primer sets was observed only when DNA of Fol race 1 was used as a template, and not when DNA of other Fol races or other fungal species was used. This method could detect 300 fg of Fol race 1 DNA, a 100-fold higher sensitivity than that obtained by conventional PCR. The method can also detect DNA extracted from soil artificially infested with Fol race 1. It is now possible to detect Fol race 1 in colonies and infected tomato stems without DNA isolation. This method is a rapid and simple tool for discrimination of Fol race 1. This study developed a loop-mediated isothermal amplification (LAMP) assay for detection and differentiation of Fusarium oxysporum f. sp. lycopersici (Fol) race 1 by using three primer sets targeting for the SIX4 and SIX5 genes. These genes are present together only in Fol race 1. This method can detect Fol race 1 in infected tomato stems without DNA extraction, affording an efficient diagnosis of Fusarium wilt on tomatoes in the field. © 2016 The Society for Applied Microbiology.

  12. Detection of Tumor Cell-Specific mRNA in the Peripheral Blood of Patients with Breast Cancer — Evaluation of Several Markers with Real-Time Reverse Transcription-PCR

    Directory of Open Access Journals (Sweden)

    Ulrich Andergassen

    2013-01-01

    Full Text Available It is widely known that cells from epithelial tumors, e.g., breast cancer, detach from their primary tissue and enter blood circulation. We show that the presence of circulating tumor cells (CTCs in samples of patients with primary and metastatic breast cancer can be detected with an array of selected tumor-marker-genes by reverse transcription real-time PCR. The focus of the presented work is on detecting differences in gene expression between healthy individuals and adjuvant and metastatic breast cancer patients, not an accurate quantification of these differences. Therefore, total RNA was isolated from blood samples of healthy donors and patients with primary or metastatic breast cancer after enrichment of mononuclear cells by density gradient centrifugation. After reverse transcription real-time PCR was carried out with a set of marker genes (BCSP, CK8, Her2, MGL, CK18, CK19. B2M and GAPDH were used as reference genes. Blood samples from patients with metastatic disease revealed increased cytokine gene levels in comparison to normal blood samples. Detection of a single gene was not sufficient to detect CTCs by reverse transcription real-time PCR. Markers used here were selected based on a recent study detecting cancer cells on different protein levels. The combination of such a marker array leads to higher and more specific discovery rates, predominantly in metastatic patients. Identification of CTCs by PCR methods may lead to better diagnosis and prognosis and could help to choose an adequate therapy.

  13. Microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse-transcription polymerase chain reaction for the rapid detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens.

    Science.gov (United States)

    Jia, Ruan; Chengjun, Sun; Heng, Chen; Chen, Zhou; Yuanqian, Li; Yongxin, Li

    2015-07-01

    Enterovirus 71 and Coxsackievirus A16 are the main pathogens causing hand-foot-mouth disease. In this paper, microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse transcript-polymerase chain reaction has been developed for the detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens. The specific reverse transcription-polymerase chain reaction amplicons labeled with SYBR Orange were separated by microchip capillary electrophoresis and detected by laser induced fluorescence detector within 7 min. The intraday and interday relative standard deviation of migration time for DNA Marker was in the range of 1.36-2.94 and 2.78-3.96%, respectively. The detection limits were as low as 2.06 × 10(3) copies/mL for Enterovirus 71 and 5 × 10(3) copies/mL for Coxsackievirus A16. No cross-reactivity was observed with rotavirus, astrovirus, norovirus, and adenovirus, which showed good specificity of the method. This assay was validated using 100 throat swab specimens that were detected by real-time reverse-transcript polymerase chain reaction in parallel and the two methods produced the same results. This study provided a rapid, sensitive and specific method for the detection of Enterovirus 71 and Coxsackievirus A16, which make a contribution to significant time and cost saving for the identification and treatment of patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selective suppression of autocatalytic caspase-3 driven by two-step transcriptional amplified human telomerase reverse transcriptase promoter on ovarian carcinoma growth in vitro and in mice.

    Science.gov (United States)

    Song, Yue; Xin, Xing; Xia, Zhijun; Zhai, Xingyue; Shen, Keng

    2014-07-01

    The objective of our study was to construct recombinant adenovirus (rAd) AdHTVP2G5-rev-casp3, which expresses autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter (hTERTp) with a two-step transcription amplification (TSTA) system and investigate its antitumor effects on ovarian cancer in vitro and in vivo. Fluorescent detection was used to detect EGFP expression in various cells. Cell viabilities were determined using the Cell Counting Kit-8 and flow cytometry. RT-PCR and immunoblotting assays were used to detect cellular apoptotic activities. Tumor growth and survival of tumor-bearing mice were studied. The hTERTp-TSTA system showed the strongest activity in hTERT-positive cancer cells when compared with hTERTp and cytomeglovirus promoter (CMVp). In contrast, it showed no activity in hTERT‑negative HUVECs. AdHTVP2G5‑rev-casp3 markedly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 17.8 ± 3.5% at an MOI of 70, which was significantly lower than that by AdHT-rev-casp3 and Ad-rev-casp3 (rAds which express rev-caspase-3 driven by hTERTp and CMVp, respectively). In contrast, AdHTVP2G5‑rev-casp3 induced little HUVEC death with a viability rate of 92.7 ± 5.2% at the same MOI. Additionally, AdHTVP2G5-rev-casp3 (MOI=70) caused significant apoptosis in AO cells with an apoptotic rate of 42%. The tumor growth suppression rate of AdHTVP2G5-rev-casp3 was 81.52%, significantly higher than that of AdHT-rev-casp3 (54.94%) or Ad-rev-casp3 (21.35%). AdHTVP2G5-rev-casp3 significantly improved the survival of tumor-bearing mice with little liver damage, with a mean survival of 258 ± 28 days. These results showed that AdHTVP2G5-rev-casp3 caused effective apoptosis with significant tumor selectivity, strongly suppressed tumor growth and improved mouse survival with little liver toxicity. It can be a potent therapeutic agent for tumor targeted treatment of ovarian cancer.

  15. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill.

    Science.gov (United States)

    de Almeida, Márcia R; Ruedell, Carolina M; Ricachenevsky, Felipe K; Sperotto, Raul A; Pasquali, Giancarlo; Fett-Neto, Arthur G

    2010-09-20

    Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs identified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression

  16. Identification of Suitable Reference Genes for Investigating Gene Expression in Anterior Cruciate Ligament Injury by Using Reverse Transcription-Quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Leal

    Full Text Available The anterior cruciate ligament (ACL is one of the most frequently injured structures during high-impact sporting activities. Gene expression analysis may be a useful tool for understanding ACL tears and healing failure. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR has emerged as an effective method for such studies. However, this technique requires the use of suitable reference genes for data normalization. Here, we evaluated the suitability of six reference genes (18S, ACTB, B2M, GAPDH, HPRT1, and TBP by using ACL samples of 39 individuals with ACL tears (20 with isolated ACL tears and 19 with ACL tear and combined meniscal injury and of 13 controls. The stability of the candidate reference genes was determined by using the NormFinder, geNorm, BestKeeper DataAssist, and RefFinder software packages and the comparative ΔCt method. ACTB was the best single reference gene and ACTB+TBP was the best gene pair. The GenEx software showed that the accumulated standard deviation is reduced when a larger number of reference genes is used for gene expression normalization. However, the use of a single reference gene may not be suitable. To identify the optimal combination of reference genes, we evaluated the expression of FN1 and PLOD1. We observed that at least 3 reference genes should be used. ACTB+HPRT1+18S is the best trio for the analyses involving isolated ACL tears and controls. Conversely, ACTB+TBP+18S is the best trio for the analyses involving (1 injured ACL tears and controls, and (2 ACL tears of patients with meniscal tears and controls. Therefore, if the gene expression study aims to compare non-injured ACL, isolated ACL tears and ACL tears from patients with meniscal tear as three independent groups ACTB+TBP+18S+HPRT1 should be used. In conclusion, 3 or more genes should be used as reference genes for analysis of ACL samples of individuals with and without ACL tears.

  17. Detection of negative and positive RNA strand of poliovirus Sabin 1 and echovirus E19 by a stem-loop reverse transcription PCR.

    Science.gov (United States)

    Fikatas, A; Dimitriou, T G; Kyriakopoulou, Z; Moschonas, G D; Amoutzias, G D; Mossialos, D; Gartzonika, C; Levidiotou-Stefanou, S; Markoulatos, P

    2017-09-01

    In this report a strand specific RT-PCR was established for the detection of the replicative negative RNA strand of poliovirus sabin 1 (Sabin1) and Echovirus 19 (E19) strains. The key for the successful conduction of the assay was the use of a specific reverse transcription primer targeting the 5'-UTR of enteroviruses that consisted of a stem-loop structure at the 5'-end and an enteroviral-specific sequence at the 3'-end. The stem loop RT-PCR was found to be an accurate and sensitive method, detecting even 10 -2 CCID 50 of poliovirus sabin 1 (Sabin1) and E19 strains 6 h postinfection (p.i.), while CPE appeared 3 days later. This assay was also validated in SiHa and Caski cell lines that are not used for the detection of enteroviruses. The negative RNA strand was detected 6 h and 12 h p.i. in SiHa and Caski cells, when these cell lines were inoculated with 10 5 and 1 CCID 50 respectively, whereas CPE was observed 5 days p.i for SiHa cells and 8 days p.i for Caski cells and that only at 10 5 CCID 50 . The results show that this approach may be used for replacing the time-consuming cell cultures in order to detect the active replication of enteroviruses. Enteroviruses are positive stranded RNA viruses that may cause severe diseases. The conventional method for detection of active viral replication involves virus isolation in sensitive cell cultures followed by titration and seroneutralization. In this report, we describe the use of a stem-loop secondary structured oligonucleotide in RT-PCR assay for the detection of the replicative negative strand of the positive-stranded RNA of poliovirus sabin 1 and E19 strains. This approach proved to be a useful tool that may be used for replacing the time-consuming cell culture assays in order to detect the active replication of enteroviruses. © 2017 The Society for Applied Microbiology.

  18. Reverse transcription quantitative real-time polymerase chain reaction reference genes in the spared nerve injury model of neuropathic pain: validation and literature search.

    Science.gov (United States)

    Piller, Nicolas; Decosterd, Isabelle; Suter, Marc R

    2013-07-10

    The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process

  19. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid screening of ticks and fleas for spotted fever group rickettsia.

    Science.gov (United States)

    Noden, Bruce H; Martin, Jaclyn; Carrillo, Yisel; Talley, Justin L; Ochoa-Corona, Francisco M

    2018-01-01

    The importance of tick and flea-borne rickettsia infections is increasingly recognized worldwide. While increased focus has shifted in recent years to the development of point-of-care diagnostics for various vector-borne diseases in humans and animals, little research effort has been devoted to their integration into vector surveillance and control programs, particularly in resource-challenged countries. One technology which may be helpful for large scale vector surveillance initiatives is loop-mediated isothermal amplification (LAMP). The aim of this study was to develop a LAMP assay to detect spotted fever group (SFG) rickettsia DNA from field-collected ticks and fleas and compare with published end-point PCR results. A Spotted Fever Group rickettsia-specific loop-mediated isothermal amplification (SFGR-LAMP) assay was developed using primers based on a region of the R. rickettsii 17kDa protein gene. The sensitivity, specificity, and reproducibility of the assay were evaluated. The assay was then compared with the results of end-point PCR assays for pooled tick and flea samples obtained from field-based surveillance studies. The sensitivity of the SFGR-LAMP assay was 0.00001 ng/μl (25μl volume) which was 10 times more sensitive than the 17kDa protein gene end-point PCR used as the reference method. The assay only recognized gDNA from SFG and transitional group (TRG) rickettsia species tested but did not detect gDNA from typhus group (TG) rickettsia species or closely or distantly related bacterial species. The SFGR-LAMP assay detected the same positives from a set of pooled tick and flea samples detected by end-point PCR in addition to two pooled flea samples not detected by end-point PCR. To our knowledge, this is the first study to develop a functional LAMP assay to initially screen for SFG and TRG rickettsia pathogens in field-collected ticks and fleas. With a high sensitivity and specificity, the results indicate the potential use as a field

  20. Loop-Mediated Isothermal Amplification Assay for Detection of Generic and Verocytotoxin-Producing Escherichia coli among Indigenous Individuals in Malaysia

    Directory of Open Access Journals (Sweden)

    Cindy Shuan Ju Teh

    2014-01-01

    Full Text Available We have successfully developed a Loop-mediated isothermal amplification (LAMP assay that could specifically detect generic Escherichia coli (E. coli. This assay was tested on 85 bacterial strains and successfully identified 54 E. coli strains (average threshold time, Tt = 21.26. The sensitivity of this assay was evaluated on serial dilutions of bacterial cultures and spiked faeces. The assay could detect 102 CFU/mL for bacterial culture with Tt = 33.30 while the detection limit for spiked faeces was 103 CFU/mL (Tt = 31.12. We have also detected 46 generic E. coli from 50 faecal samples obtained from indigenous individuals with 16% of the positive samples being verocytotoxin-producing E. coli (VTEC positive. VT1/VT2 allele was present in one faecal sample while the ratio of VT1 to VT2 was 6 : 1. Overall, our study had demonstrated high risk of VTEC infection among the indigenous community and most of the asymptomatic infection occurred among those aged below 15 years. The role of asymptomatic human carriers as a source of dissemination should not be underestimated. Large scale screening of the VTEC infection among indigenous populations and the potential contamination sources will be possible and easy with the aid of this newly developed rapid and simple LAMP assay.

  1. Identification of ochratoxin A producing Aspergillus carbonarius and A. niger clade isolated from grapes using the loop-mediated isothermal amplification (LAMP) reaction.

    Science.gov (United States)

    Storari, M; von Rohr, R; Pertot, I; Gessler, C; Broggini, G A L

    2013-04-01

    To develop two assays based on the loop-mediated isothermal amplification (LAMP) of DNA for the quick and specific identification of Aspergillus carbonarius and ochratoxigenic strains of the Aspergillus niger clade isolated from grapes. Two sets of primers were designed based on the polyketide synthase genes involved or putatively involved in ochratoxin A (OTA) biosynthesis in A. carbonarius and A. niger clade. Hydroxynaphthol blue was used as indirect method to indicate DNA amplification. The limit of detection of both assays was comparable to that of a PCR reaction. Specificities of the reactions were tested using DNA from different black aspergilli isolated from grapes. The two LAMP assays were then used to identify A. carbonarius and ochratoxigenic A. niger and A. awamori grown in pure cultures without a prior DNA extraction. The two LAMP assays permitted to quickly and specifically identify DNA from OTA-producing black aspergilli, as well as isolates grown in pure culture. Monitoring vineyards for the presence of OTA-producing strains is part of the measures to minimize the occurrence of OTA in grape products. The two LAMP assays developed here could be potentially used to speed the screening process of vineyards for the presence of OTA-producing black aspergilli. © 2013 The Society for Applied Microbiology.

  2. An Optimized Protocol for DNA Extraction from Wheat Seeds and Loop-Mediated Isothermal Amplification (LAMP to Detect Fusarium graminearum Contamination of Wheat Grain

    Directory of Open Access Journals (Sweden)

    Mohamed Moslem

    2011-06-01

    Full Text Available A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  3. Rapid authentication of the precious herb saffron by loop-mediated isothermal amplification (LAMP) based on internal transcribed spacer 2 (ITS2) sequence.

    Science.gov (United States)

    Zhao, Mingming; Shi, Yuhua; Wu, Lan; Guo, Licheng; Liu, Wei; Xiong, Chao; Yan, Song; Sun, Wei; Chen, Shilin

    2016-05-05

    Saffron is one of the most expensive species of Chinese herbs and has been subjected to various types of adulteration because of its high price and limited production. The present study introduces a loop-mediated isothermal amplification (LAMP) technique for the differentiation of saffron from its adulterants. This novel technique is sensitive, efficient and simple. Six specific LAMP primers were designed on the basis of the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA of Crocus sativus. All LAMP amplifications were performed successfully, and visual detection occurred within 60 min at isothermal conditions of 65 °C. The results indicated that the LAMP primers are accurate and highly specific for the discrimination of saffron from its adulterants. In particular, 10 fg of genomic DNA was determined to be the limit for template accuracy of LAMP in saffron. Thus, the proposed novel, simple, and sensitive LAMP assay is well suited for immediate on-site discrimination of herbal materials. Based on the study, a practical standard operating procedure (SOP) for utilizing the LAMP protocol for herbal authentication is provided.

  4. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay.

    Science.gov (United States)

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-06-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical. © The American Society of Tropical Medicine and Hygiene.

  5. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay

    Science.gov (United States)

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-01-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical. PMID:27044566

  6. An optimized protocol for DNA extraction from wheat seeds and Loop-Mediated Isothermal Amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain.

    Science.gov (United States)

    Abd-Elsalam, Kamel; Bahkali, Ali; Moslem, Mohamed; Amin, Osama E; Niessen, Ludwig

    2011-01-01

    A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs) were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP) procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  7. Visual Detection of Canine Parvovirus Based on Loop-Mediated Isothermal Amplification Combined with Enzyme-Linked Immunosorbent Assay and with Lateral Flow Dipstick

    Science.gov (United States)

    SUN, Yu-Ling; YEN, Chon-Ho; TU, Ching-Fu

    2013-01-01

    ABSTRACT Loop-mediated isothermal amplification (LAMP) combined with enzyme-linked immunosorbent assay (LAMP–ELISA) and with lateral flow dipstick (LAMP–LFD) are rapid, sensitive and specific methods for the visual detection of clinical pathogens. In this study, LAMP–ELISA and LAMP–LFD were developed for the visual detection of canine parvovirus (CPV). For LAMP, a set of four primers (biotin-labeled forward inner primers) was designed to specifically amplify a region of the VP2 gene of CPV. The optimum time and temperature for LAMP were 60 min and 65°C, respectively. The specific capture oligonucleotide probes, biotin-labeled CPV probe for LAMP–ELISA and fluorescein isothiocyanate-labeled CPV probe for LAMP–LFD were also designed for hybridization with LAMP amplicons on streptavidin-coated wells and LFD strips, respectively. For the comparison of detection sensitivity, conventional PCR and LAMP for CPV detection were also performed. The CPV detection limits by PCR, PCR–ELISA, LAMP, LAMP–ELISA and LAMP–LFD were 102, 102, 10−1, 10−1 and 10−1 TCID50/ml, respectively. In tests using artificially contaminated dog fecal samples, the samples with CPV inoculation levels of ≥1 TCID50/ml gave positive results by both LAMP–ELISA and LAMP–LFD. Our data indicated that both LAMP–ELISA and LAMP–LFD are promising as rapid, sensitive and specific methods for an efficient diagnosis of CPV infection. PMID:24334855

  8. Loop-Mediated Isothermal Amplification untuk Mendeteksi Gen blaTEM sebagai Penyandi Extended-Spectrum Beta-Lactamase pada Isolat Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Bayu A. P. Wilopo

    2015-12-01

    Full Text Available Extended-spectrum beta-lactamase (ESBL is a beta-lactamase enzyme that is capable of hydrolyzing penicillin, cephalosporin, and monobactam, and can be inhibited by clavulanic acid. This enzyme is encoded by multiple genes, one of them is blaTEM. Polymerase chain reaction (PCR is one of the DNA amplification methods that are frequently used; however, there are other methods that can be used including, among others, loop-mediated isothermal amplification (LAMP. LAMP requires simple equipment with quicker and easy-to-read results compared to PCR. This study was a diagnostic test to explore the sensitivity and specificity of LAMP method compared to PCR in detecting blaTEM gene. Furthermore, the concordance between LAMP and PCR methods was assessed. A total of 92 Enterobacteriaceae isolates were examined by PCR and LAMP methods and compared. The result showed that the LAMP method had a sensitivity of 91.4% and a specificity of 91.2% with a concordance value (kappa of 85.4%. In conclusion, LAMP method has a good validity and a very good conformity compared to the PCR method. Therefore, LAMP method can be used as an alternative diagnostic test, especially in limited settings.

  9. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP Assay for the Detection of Bacterial Meningitis Pathogens

    Directory of Open Access Journals (Sweden)

    Owen Higgins

    2018-02-01

    Full Text Available Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  10. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens

    Science.gov (United States)

    Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert

    2018-01-01

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology. PMID:29425124

  11. Utility of loop-mediated isothermal amplification assay, polymerase chain reaction, and elisa for diagnosis of leptospirosis in South Indian patients

    Directory of Open Access Journals (Sweden)

    Mallika Sengupta

    2017-01-01

    Full Text Available Background: Leptospirosis is a zoonotic disease which requires laboratory diagnosis for confirmation. Materials and Methods: In this study serum samples from adults with acute undifferentiated fever (duration ≤15 days were tested for IgM antibodies to Leptospira by ELISA, PCR for rrs gene and loop-mediated isothermal amplification (LAMP assay for LipL32 and LipL41. Results: Among the 150 sera tested, three were positive by PCR, LAMP and IgM ELISA/modified Faines' criteria, two by only PCR; seven only by LAMP assay and forty fulfilled modified Faine's criteria (illness clinically compatible and IgM ELISA positive for leptospirosis. Clinical correlation revealed renal compromise, low platelet count and severe jaundice were significantly related to leptospirosis (P < 0.05. Conclusion: This study suggests that LAMP assay could be useful for diagnosis of leptospirosis during the 1st week of illness whereas IgM ELISA forms the mainstay of diagnosis from the 2nd week onward. Further studies especially community based, comparing ELISA, PCR, LAMP, culture and microscopic agglutination test are required to evaluate the veracity of these findings.

  12. Precipitation of PEG/Carboxyl-Modified Gold Nanoparticles with Magnesium Pyrophosphate: A New Platform for Real-Time Monitoring of Loop-Mediated Isothermal Amplification.

    Science.gov (United States)

    Qin, Ailin; Fu, Lok Tin; Wong, Jacky K F; Chau, Li Yin; Yip, Shea Ping; Lee, Thomas M H

    2017-03-29

    Gold nanoparticles have proven to be promising for decentralized nucleic acid testing by virtue of their simple visual readout and absorbance-based quantification. A major challenge toward their practical application is to achieve ultrasensitive detection without compromising simplicity. The conventional strategy of thermocycling amplification is unfavorable (because of both instrumentation and preparation of thermostable oligonucleotide-modified gold nanoparticle probes). Herein, on the basis of a previously unreported co-precipitation phenomenon between thiolated poly(ethylene glycol)/11-mercaptoundecanoic acid co-modified gold nanoparticles and magnesium pyrophosphate crystals (an isothermal DNA amplification reaction byproduct), a new ultrasensitive and simple DNA assay platform is developed. The binding mechanism underlying the co-precipitation phenomenon is found to be caused by the complexation of carboxyl and pyrophosphate with free magnesium ions. Remarkably, poly(ethylene glycol) does not hinder the binding and effectively stabilizes gold nanoparticles against magnesium ion-induced aggregation (without pyrophosphate). In fact, a similar phenomenon is observed in other poly(ethylene glycol)- and carboxyl-containing nanomaterials. When the gold nanoparticle probe is incorporated into a loop-mediated isothermal amplification reaction, it remains as a red dispersion for a negative sample (in the absence of a target DNA sequence) but appears as a red precipitate for a positive sample (in the presence of a target). This results in a first-of-its-kind gold nanoparticle-based DNA assay platform with isothermal amplification and real-time monitoring capabilities.

  13. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    Directory of Open Access Journals (Sweden)

    Tian-Min Qiao

    2016-10-01

    Full Text Available Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP were developed for detection of C. scoparium based on factor 1-alpha (tef1 and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  14. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    Science.gov (United States)

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  15. A rapid molecular diagnosis of cutaneous leishmaniasis by colorimetric malachite green-loop-mediated isothermal amplification (LAMP) combined with an FTA card as a direct sampling tool.

    Science.gov (United States)

    Nzelu, Chukwunonso O; Cáceres, Abraham G; Guerrero-Quincho, Silvia; Tineo-Villafuerte, Edwin; Rodriquez-Delfin, Luis; Mimori, Tatsuyuki; Uezato, Hiroshi; Katakura, Ken; Gomez, Eduardo A; Guevara, Angel G; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2016-01-01

    Leishmaniasis remains one of the world's most neglected diseases, and early detection of the infectious agent, especially in developing countries, will require a simple and rapid test. In this study, we established a quick, one-step, single-tube, highly sensitive loop-mediated isothermal amplification (LAMP) assay for rapid detection of Leishmania DNA from tissue materials spotted on an FTA card. An FTA-LAMP with pre-added malachite green was performed at 64°C for 60min using a heating block and/or water bath and DNA amplification was detected immediately after incubation. The LAMP assay had high detection sensitivity down to a level of 0.01 parasites per μl. The field- and clinic-applicability of the colorimetric FTA-LAMP assay was demonstrated with 122 clinical samples collected from patients suspected of having cutaneous leishmaniasis in Peru, from which 71 positives were detected. The LAMP assay in combination with an FTA card described here is rapid and sensitive, as well as simple to perform, and has great potential usefulness for diagnosis and surveillance of leishmaniasis in endemic areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Rapid, simple and direct detection of Meloidogyne hapla from infected root galls using loop-mediated isothermal amplification combined with FTA technology.

    Science.gov (United States)

    Peng, Huan; Long, Haibo; Huang, Wenkun; Liu, Jing; Cui, Jiangkuan; Kong, Lingan; Hu, Xianqi; Gu, Jianfeng; Peng, Deliang

    2017-04-03

    The northern root-knot nematode (Meloidogyne hapla) is a damaging nematode that has caused serious economic losses worldwide. In the present study, a sensitive, simple and rapid method was developed for detection of M. hapla in infested plant roots by combining a Flinders Technology Associates (FTA) card with loop-mediated isothermal amplification (LAMP). The specific primers of LAMP were designed based on the distinction of internal transcribed spacer (ITS) sequences between M. hapla and other Meloidogyne spp. The LAMP assay can detect nematode genomic DNA at concentrations low to 1/200 000, which is 100 times more sensitive than conventional PCR. The LAMP was able to highly specifically distinguish M. hapla from other closely related nematode species. Furthermore, the advantages of the FTA-LAMP assay to detect M. hapla were demonstrated by assaying infected root galls that were artificially inoculated. In addition, M. hapla was successfully detected from six of forty-two field samples using FTA-LAMP technology. This study was the first to provide a simple diagnostic assay for M. hapla using the LAMP assay combined with FTA technology. In conclusion, the new FTA-LAMP assay has the potential for diagnosing infestation in the field and managing the pathogen M. hapla.

  17. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms.

    Science.gov (United States)

    Zhang, Miao; Liu, Yinan; Chen, Lili; Quan, Sheng; Jiang, Shimeng; Zhang, Dabing; Yang, Litao

    2013-01-02

    Quickness, simplicity, and effectiveness are the three major criteria for establishing a good molecular diagnosis method in many fields. Herein we report a novel detection system for genetically modified organisms (GMOs), which can be utilized to perform both on-field quick screening and routine laboratory diagnosis. In this system, a newly designed inexpensive DNA extraction device was used in combination with a modified visual loop-mediated isothermal amplification (vLAMP) assay. The main parts of the DNA extraction device included a silica gel membrane filtration column and a modified syringe. The DNA extraction device could be easily operated without using other laboratory instruments, making it applicable to an on-field GMO test. High-quality genomic DNA (gDNA) suitable for polymerase chain reaction (PCR) and isothermal amplification could be quickly isolated from plant tissues using this device within 15 min. In the modified vLAMP assay, a microcrystalline wax encapsulated detection bead containing SYBR green fluorescent dye was introduced to avoid dye inhibition and cross-contaminations from post-LAMP operation. The system was successfully applied and validated in screening and identification of GM rice, soybean, and maize samples collected from both field testing and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) proficiency test program, which demonstrated that it was well-adapted to both on-field testing and/or routine laboratory analysis of GMOs.

  18. Development and application of loop-mediated isothermal amplification methods targeting the seM gene for detection of Streptococcus equi subsp. equi.

    Science.gov (United States)

    Hobo, Seiji; Niwa, Hidekazu; Oku, Kazuomi

    2012-03-01

    Loop-mediated isothermal amplification (LAMP) constitutes a potentially valuable diagnostic tool for rapid diagnosis of contagious diseases. In this study, we developed a novel LAMP method (seM-LAMP) to detect the seM gene of Streptococcus equi subsp. equi (S. equi), the causative agent of strangles in equids. The seM-LAMP successfully amplified the target sequence of the seM gene at 63°C within 60 min. The sensitivity of the seM-LAMP was slightly lower than the 2nd reaction of the seM semi-nested PCR. To evaluate the species specificity of the seM-LAMP, we tested 100 S. equi and 189 non-S. equi strains. Significant amplification of the DNA originating from S. equi was observed within 60 min incubation, but no amplification of non-S. equi DNA occurred. The results were identical to those of seM semi-nested PCR. To investigate the clinical usefulness of the methods, the seM-LAMP and the seM semi-nested PCR were used to screen 590 nasal swabs obtained during an outbreak of strangles. Both methods showed that 79 and 511 swabs were S. equi positive and negative, respectively, and the results were identical to those of the culture examination. These results indicate that the seM-LAMP is potentially useful for the reliable routine diagnosis of Streptococcus equi subsp. equi infections.

  19. Rapid and Quantitative Detection of Vibrio parahemolyticus by the Mixed-Dye-Based Loop-Mediated Isothermal Amplification Assay on a Self-Priming Compartmentalization Microfluidic Chip.

    Science.gov (United States)

    Pang, Bo; Ding, Xiong; Wang, Guoping; Zhao, Chao; Xu, Yanan; Fu, Kaiyue; Sun, Jingjing; Song, Xiuling; Wu, Wenshuai; Liu, Yushen; Song, Qi; Hu, Jiumei; Li, Juan; Mu, Ying

    2017-12-27

    Vibrio parahemolyticus (VP) mostly isolated from aquatic products is one of the major causes of bacterial food-poisoning events worldwide, which could be reduced using a promising on-site detection method. Herein, a rapid and quantitative method for VP detection was developed by applying a mixed-dye-loaded loop-mediated isothermal amplification (LAMP) assay on a self-priming compartmentalization (SPC) microfluidic chip, termed on-chip mixed-dye-based LAMP (CMD-LAMP). In comparison to conventional approaches, CMD-LAMP was advantageous on the limit of detection, which reached down to 1 × 10 3 CFU/mL in food-contaminated samples without the pre-enrichment of bacteria. Additionally, as a result of the use of a mixed dye and SPC chip, the quantitative result could be easily acquired, avoiding the requirement of sophisticated instruments and tedious operation. Also, CMD-LAMP was rapid and cost-effective. Conclusively, CMD-LAMP has great potential in realizing the on-site quantitative analysis of VP for food safety.

  20. Determining putative vectors of the Bogia Coconut Syndrome phytoplasma using loop-mediated isothermal amplification of single-insect feeding media

    Science.gov (United States)

    Lu, Hengyu; Wilson, Bree A. L.; Ash, Gavin J.; Woruba, Sharon B.; Fletcher, Murray J.; You, Minsheng; Yang, Guang; Gurr, Geoff M.

    2016-01-01

    Phytoplasmas are insect vectored mollicutes responsible for disease in many economically important crops. Determining which insect species are vectors of a given phytoplasma is important for managing disease but is methodologically challenging because disease-free plants need to be exposed to large numbers of insects, often over many months. A relatively new method to detect likely transmission involves molecular testing for phytoplasma DNA in sucrose solution that insects have fed upon. In this study we combined this feeding medium method with a loop-mediated isothermal amplification (LAMP) assay to study 627 insect specimens of 11 Hemiptera taxa sampled from sites in Papua New Guinea affected by Bogia coconut syndrome (BCS). The LAMP assay detected phytoplasma DNA from the feeding solution and head tissue of insects from six taxa belonging to four families: Derbidae, Lophopidae, Flatidae and Ricaniidae. Two other taxa yielded positives only from the heads and the remainder tested negative. These results demonstrate the utility of combining single-insect feeding medium tests with LAMP assays to identify putative vectors that can be the subject of transmission tests and to better understand phytoplasma pathosystems. PMID:27786249

  1. Colorimetric Method of Loop-Mediated Isothermal Amplification with the Pre-Addition of Calcein for Detecting Flavobacterium columnare and its Assessment in Tilapia Farms.

    Science.gov (United States)

    Suebsing, Rungkarn; Kampeera, Jantana; Sirithammajak, Sarawut; Withyachumnarnkul, Boonsirm; Turner, Warren; Kiatpathomchai, Wansika

    2015-03-01

    Flavobacterium columnare, the causative agent of columnaris disease in fish, affects many economically important freshwater fish species. A colorimetric method of loop-mediated isothermal amplification with the pre-addition of calcein (LAMP-calcein) was developed and used to detect the presence of F. columnare in farmed tilapia (Nile Tilapia Oreochromis niloticus and red tilapia [Nile Tilapia × Mozambique Tilapia O. mossambicus]) and rearing water. The detection method, based on a change in color from orange to green, could be performed within 45 min at 63°C. The method was highly specific, as it had no cross-detections with 14 other bacterial species, including other fish pathogens and two Flavobacterium species. The method has a minimum detection limit of 2.2 × 10(2) F. columnare CFU; thus, it is about 10 times more sensitive than conventional PCR. With this method, F. columnare was detected in gonad, gill, and blood samples from apparently healthy tilapia broodstock as well as in samples of fertilized eggs, newly hatched fry, and rearing water. The bacteria isolated from the blood were further characterized biochemically and found to be phenotypically identical to F. columnare. The amplified products from the LAMP-calcein method had 97% homology with the DNA sequence of F. columnare.

  2. Development of loop-mediated isothermal amplification and SYBR green real-time PCR methods for the detection of Citrus yellow mosaic badnavirus in citrus species.

    Science.gov (United States)

    Anthony Johnson, A M; Dasgupta, I; Sai Gopal, D V R

    2014-07-01

    Citrus yellow mosaic badnavirus (CMBV) is an important pathogen in southern India spread by infected citrus propagules. One of the measures to arrest the spread of CMBV is to develop methods to screen and certify citrus propagules as CMBV-free. The methods loop-mediated isothermal amplification (LAMP) and SYBR green real-time PCR (SGRTPCR) have been developed for the efficient detection of CMBV in citrus propagules. This paper compares the sensitivities of LAMP and SGRTPCR with polymerase chain reaction (PCR) for the detection of CMBV. Whereas PCR and LAMP were able to detect CMBV from a minimum of 10 ng of total DNA of infected leaf samples, SGRTPCR could detect the same from 1 ng of total DNA. Using SGRTPCR, the viral titres were estimated to be the highest in rough lemon and lowest in Nagpur Mandarin of the five naturally infected citrus species tested. The results will help in designing suitable strategies for the sensitive detection of CMBV from citrus propagules. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Loop-Mediated Isothermal Amplification on Crude DNA as a Point-of-Care Test for the Diagnosis of Mycoplasma-Related Vaginitis During Early Pregnancy.

    Science.gov (United States)

    Wang, Yichao; Zhang, Bumei; Sun, Yan; Liu, Yunde; Gu, Yajun

    2017-12-20

    Mycoplasma-related vaginitis gradually has been growing as a threat in adults-genitourinary infection contributes to funisitis, spontaneous abortion, and low birth weight. Until now, use of loop-mediated isothermal amplification (LAMP) to detect Ureaplasma urealyticum (UU), Mycoplasma hominis (MH), or Mycoplasma genitalium (MG) has been reported by some researchers. However, previous studies focused on purified DNA as the template for LAMP assay, which is usually extracted via commercial kit. We developed a LAMP assay for rapid detection of UU, MH, and MG genital mycoplasmas using a simple boiling method for DNA extraction, in a cohort of pregnant women with mycoplasma-related vaginitis. We monitored amplicons with the naked eye using SYBR Green I. The cohort in our study showed a prevalence of 22.6% in pregnant women, as detected by UU-LAMP assay. Compared to the polymerase chain reaction (PCR) test with purified DNA, the sensitivity of the UU-LAMP in clinical specimens with crude DNA was 87.5% (95% confidence interval [CI], 64.6%->99.9). For crude DNA specimens, UU-LAMP was more sensitive and reliable than PCR, with a higher agreement rate (96.8%) and Youden index value (0.88). As a point-of-care test, LAMP is a useful, specific, and efficient way to detect genital mycoplasmas in resource-limited settings, especially for crude DNA. © American Society for Clinical Pathology 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. A rapid and sensitive loop-mediated isothermal amplification procedure (LAMP) for Mycoplasma hyopneumoniae detection based on the p36 gene.

    Science.gov (United States)

    Liu, M J; Du, G M; Bai, F F; Wu, Y Z; Xiong, Q Y; Feng, Z X; Li, B; Shao, G Q

    2015-05-04

    The aim of this study was to establish a method for sensitive and rapid diagnosis of Mycoplasma hyopneumoniae in clinical specimens. To this effect, we employed three sets of primers specifically designed for amplification of nucleic acids under isothermal conditions. After optimization of reaction conditions, M. hyopneumoniae could be successfully detected at 63°C in 45 min through use of the loop-mediated isothermal amplification (LAMP) assay. A positive reaction was identified visually as white precipitate and confirmed by gel electrophoresis. The detection limit for this assay was 10 copies/μL, as observed by electrophoretic analysis. The accuracy of the LAMP reaction was confirmed by restriction endonuclease digestion as well as by direct sequencing of the amplified product. This method can specifically detect M. hyopneumoniae; other species with high homology and other bacterial and virus strains gave negative results. To test the utility of this procedure, the LAMP assay was applied to 40 clinical samples collected from swine lung tissues experimentally challenged with M. hyopneumoniae isolates, and compared to the results from a real-time polymerase chain reaction (PCR) assay. A concordance of 100% was observed between the two assays. In conclusion, the results from our study demonstrated that the LAMP assay provided a rapid reaction and was inexpensive to perform, with no need of complex instruments or systems such as Geneamp PCR. The LAMP assay may therefore be applied in routine diagnosis in the clinical laboratory and for in-field detection of M. hyopneumoniae infection.

  5. Direct duplex real-time loop mediated isothermal amplification assay for the simultaneous detection of cow and goat species origin of milk and yogurt products for field use.

    Science.gov (United States)

    Kim, Mi-Ju; Kim, Hae-Yeong

    2018-04-25

    A multiple loop-mediated isothermal amplification (LAMP) method was developed to detect cow and goat milk in the field using a portable fluorescence device. For rapid on-site detection, this duplex LAMP assay was used in combination with direct amplification, without DNA extraction. The cow- and goat-specific LAMP primer sets were designed based on the mitochondrial cytochrome b gene, and showed specificity against 13 other animal species in the reactions. The sensitivity of the duplex LAMP assay for cow and goat was 0.1 and 1 pg, respectively. The detection limit for both target species in milk mixtures was 2%. This assay successfully amplified and identified the two target species in 24 samples of commercial milk and yogurt products, with 30 min sampling-to-result analysis time. Therefore, this direct duplex real-time LAMP assay is useful for on-site simultaneous detection of cow and goat milk in commercial products, a capability needed to confirm accurate labeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Giardia and Cryptosporidium spp. dissemination during wastewater treatment and comparative detection via immunofluorescence assay (IFA), nested polymerase chain reaction (nested PCR) and loop mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Gallas-Lindemann, Carmen; Sotiriadou, Isaia; Plutzer, Judit; Noack, Michael J; Mahmoudi, Mohammad Reza; Karanis, Panagiotis

    2016-06-01

    Environmental water samples from the Lower Rhine area in Germany were investigated via immunofluorescence assays (IFAs), nested polymerase chain reaction (nested PCR) and loop-mediated isothermal amplification (LAMP) to detect the presence of Giardia spp. (n=185) and Cryptosporidium spp. (n=227). The samples were concentrated through filtration or flocculation, and oocysts were purified via centrifugation through a sucrose density gradient. For all samples, IFA was performed first, followed by DNA extraction for the nested PCR and LAMP assays. Giardia cysts were detected in 105 samples (56.8%) by IFA, 62 samples (33.5%) by nested PCR and 79 samples (42.7%) by LAMP. Cryptosporidium spp. were detected in 69 samples (30.4%) by IFA, 95 samples (41.9%) by nested PCR and 99 samples (43.6%) by LAMP. According to these results, the three detection methods are complementary for monitoring Giardia and Cryptosporidium in environmental waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    Science.gov (United States)

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  8. Direct bacterial loop-mediated isothermal amplification detection on the pathogenic features of the nosocomial pathogen - Methicillin resistant Staphylococcus aureus strains with respiratory origins.

    Science.gov (United States)

    Lin, Qun; Xu, Pusheng; Li, Jiaowu; Chen, Yin; Feng, Jieyi

    2017-08-01

    Loop-mediated isothermal amplification based detection assays using bacterial culture or colony for direct detection of methicillin resistant Staphylococcus aureus(MRSA) had been developed and evaluated, followed by its extensive application on a large scale of clinical MRSA isolated from respiratory origins, including nasal swabs and sputums. Six primers, including outer primers, inner primers and loop primers, were specifically designed for recognizing eight distinct sequences on four targets: 16SrRNA, femA, mecA and orfX. Twenty-seven reference strains were used to develop, evaluate and optimize this assay. Then, a total of 532 clinical MRSA isolates were employed for each detected targets. And the results were determined through both visual observation of the color change by naked eye and electrophoresis. The specific of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 40 min. The limit of detections (LOD) of bacteria culture LAMP assays were determined to be 10 4  CFU/ml for 16S rRNA, femA, as well as orfX and 10 5  CFU/ml for mecA, respectively. The established novel assays on MRSA detection may provide new strategies for rapid detection of foodborne pathogens. Copyright © 2017. Published by Elsevier Ltd.

  9. Classical swine fever virus detection: results of a real-time reverse transcription polymerase chain reaction ring trial conducted in the framework of the European network of excellence for epizootic disease diagnosis and control

    DEFF Research Database (Denmark)

    Hoffmann, Bernd; Blome, Sandra; Bonilauri, Paolo

    2011-01-01

    and specificity values. Nevertheless, some in-house systems had unspecific reactions or suboptimal sensitivity with only a single CSFV genotype. Follow-up actions involved either improvement of suboptimal assays or replacement of specific laboratory assays with the FLI protocol, with or without modifications......The current study reports on a real-time reverse transcription polymerase chain reaction (real-time RT-PCR) ring trial for the detection of Classical swine fever virus (CSFV) genomic RNA undertaken by 10 European laboratories. All laboratories were asked to use their routine in-house real-time RT...

  10. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II.

    Science.gov (United States)

    Steurer, Barbara; Marteijn, Jurgen A

    2017-10-27

    The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Genetic variability and discrimination of low doses of Toxocara spp. from public areas soil inferred by loop-mediated isothermal amplification assay as a field-friendly molecular tool

    OpenAIRE

    Ozlati, Maryam; Spotin, Adel; Shahbazi, Abbas; Mahami-Oskouei, Mahmoud; Hazratian, Teimour; Adibpor, Mohammad; Ahmadpour, Ehsan; Dolatkhah, Afsaneh; Khoshakhlagh, Paria

    2016-01-01

    Abstract: Aim: One of the main diagnostic problems of conventional polymerase chain reaction (PCR) is indiscrimination of low parasitic loads in soil samples. The aim of this study is to determine the genetic diversity and identification of Toxocara spp. from public areas soil inferred by loop-mediated isothermal amplification (LAMP) assay. Materials and Methods: A total of 180 soil samples were collected from various streets and public parks of northwest Iran. The DNA of recovered Toxocara e...

  12. A loop-mediated isothermal amplification (LAMP assay for early detection of Schistosoma mansoni in stool samples: a diagnostic approach in a murine model.

    Directory of Open Access Journals (Sweden)

    Pedro Fernández-Soto

    2014-09-01

    Full Text Available Human schistosomiasis, mainly due to Schistosoma mansoni species, is one of the most prevalent parasitic diseases worldwide. To overcome the drawbacks of classical parasitological and serological methods in detecting S. mansoni infections, especially in acute stage of the disease, development of cost-effective, simple and rapid molecular methods is still needed for the diagnosis of schistosomiasis. A promising approach is the loop-mediated isothermal amplification (LAMP technology. Compared to PCR-based assays, LAMP has the advantages of reaction simplicity, rapidity, specificity, cost-effectiveness and higher amplification efficiency. Additionally, as results can be inspected by the naked eye, the technique has great potential for use in low-income countries.A sequence corresponding to a mitochondrial S. mansoni minisatellite DNA region was selected as a target for designing a LAMP-based method to detect S. mansoni DNA in stool samples. We used a S. mansoni murine model to obtain well defined stool and sera samples from infected mice with S. mansoni cercariae. Samples were taken weekly from week 0 to 8 post-infection and the Kato-Katz and ELISA techniques were used for monitoring the infection. Primer set designed were tested using a commercial reaction mixture for LAMP assay and an in house mixture to compare results. Specificity of LAMP was tested using 16 DNA samples from different parasites, including several Schistosoma species, and no cross-reactions were found. The detection limit of our LAMP assay (SmMIT-LAMP was 1 fg of S. mansoni DNA. When testing stool samples from infected mice the SmMIT-LAMP detected S. mansoni DNA as soon as 1 week post-infection.We have developed, for the first time, a cost-effective, easy to perform, specific and sensitive LAMP assay for early detection of S. mansoni in stool samples. The method is potentially and readily adaptable for field diagnosis and disease surveillance in schistosomiasis-endemic areas.

  13. Using detergent to enhance detection sensitivity of African trypanosomes in human CSF and blood by loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Grab, Dennis J; Nikolskaia, Olga V; Inoue, Noboru; Thekisoe, Oriel M M; Morrison, Liam J; Gibson, Wendy; Dumler, J Stephen

    2011-08-01

    The loop-mediated isothermal amplification (LAMP) assay, with its advantages of simplicity, rapidity and cost effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number of parasites present in the volume of sample assayed; i.e. 1 per µL or 10(3) per mL. We hypothesized that clinical sensitivities that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to the samples prior to LAMP assay. For proof of principle we used two different LAMP assays capable of detecting 0.1 fg genomic DNA (0.001 parasite). The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei rhodesiense in human cerebrospinal fluid (CSF) or blood with or without the addition of the detergent Triton X-100 and 60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for live intact parasites using 1 µL of CSF as the source of template was at best 10(3) parasites/mL. Remarkably, detergent enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards. This simple procedure for the enhanced detection of live African trypanosomes in biological fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan parasites and microorganisms that cause diseases that plague the developing world.

  14. Development of Loop-Mediated Isothermal Amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris - wilt pathogen of chickpea.

    Science.gov (United States)

    Ghosh, Raju; Nagavardhini, Avuthu; Sengupta, Anindita; Sharma, Mamta

    2015-02-11

    Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt is a devastating pathogen of chickpea. In chickpea, various soil borne pathogens produce (s) similar symptoms, therefore cannot be distinguished easily at field level. There is real need for a rapid, inexpensive, and easy to operate and maintain genotyping tool to facilitate accurate disease diagnosis and surveillance for better management of Fusarium wilt outbreaks. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay targeting the elongation factor 1 alpha gene sequence for visual detection of Foc. The LAMP reaction was optimal at 63°C for 60 min. When hydroxynaphthol blue (HNB) was added before amplification, samples with Foc DNA developed a characteristic sky blue colour but those without DNA or with the DNA of six other plant pathogenic fungi did not. Results obtained with LAMP and HNB were confirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for Foc was 10 fg of genomic DNA per reaction, while that of conventional PCR was 100 pg. In conclusion, it was found that a LAMP assay combined with HNB is simple, rapid, sensitive, and specific. The LAMP assay does not require specialized equipment, hence can be used in the field for the rapid detection of Foc. This is the first report of the use of LAMP assay for the detection of Foc. The presented LAMP method provides a specific, sensitive and rapid diagnostic tool for the distinction of Foc, with the potential to be standardized as a detection method for Foc in endemic areas and will be very useful for monitoring the disease complex in the field further suggesting the management strategies.

  15. Loop-mediated isothermal amplification assay for rapid detection of Streptococcus agalactiae (group B streptococcus) in vaginal swabs - a proof of concept study.

    Science.gov (United States)

    McKenna, James Patrick; Cox, Ciara; Fairley, Derek John; Burke, Rachael; Shields, Michael D; Watt, Alison; Coyle, Peter Valentine

    2017-03-01

    Neonatal sepsis caused by Streptococcus agalactiae [group B streptococcus (GBS)] is a life-threatening condition, which is preventable if colonized mothers are identified and given antibiotic prophylaxis during labour. Conventional culture is time consuming and unreliable, and many available non-culture diagnostics are too complex to implement routinely at point of care. Loop-mediated isothermal amplification (LAMP) is a method that, enables the rapid and specific detection of target nucleic acid sequences in clinical materials without the requirement for extensive sample preparation. A prototype LAMP assay targeting GBS sip gene is described. The assay was 100 % specific for GBS, with a limit of detection of 14 genome copies per reaction. The clinical utility of the LAMP assay for rapid direct molecular detection of GBS was determined by testing a total of 157 vaginal swabs with minimal sample processing using a rapid lysis solution. Compared to a reference quantitative real-time PCR assay, the direct LAMP protocol had a sensitivity and specificity of 95.4 and 100 %, respectively, with positive and negative predictive values of 100 and 98.3 %, respectively. Positive and negative likelihood ratios were infinity and 0.05, respectively. The direct LAMP method required a mean time of 45 min from the receipt of a swab to generation of a confirmed result, compared to 2 h 30 min for the reference quantitative real-time PCR test. The direct LAMP protocol described is easy to perform, facilitating rapid and accurate detection of GBS in vaginal swabs. This test has a potential for use at point of care.

  16. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira.

    Science.gov (United States)

    Nurul Najian, A B; Engku Nur Syafirah, E A R; Ismail, Nabilah; Mohamed, Maizan; Yean, Chan Yean

    2016-01-15

    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10(-1) genomic equivalent ml(-1). An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Time Course of Detection of Human Male DNA from Stained Blood Sample on Various Surfaces by Loop Mediated Isothermal Amplification and Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Panan Kanchanaphum

    2018-01-01

    Full Text Available This study explores determining the sex of humans from blood stains taken from different surfaces and compares the time course of detection with the conventional PCR, Conventional Loop Mediated Isothermal Amplification (LAMP, and LAMP-Lateral Flow Dipstick (LFD. For the DNA templates, 7 male and 7 female blood stained samples were extracted and added to LAMP and PCR reaction solution to amplify the SRY gene. The DNA samples were extracted from the following blood stained materials: cloth, wood, clay, and tile. Then, the samples were stored at room temperature for 1, 7, 30, and 60 day(s. After the DNA amplification, the gel electrophoresis process was applied to detect LAMP product. The LFD was combined with the LAMP to detect LAMP product on the male cloth samples. For the male samples, the time course of detection on the first and seventh days indicated positive for both LAMP and PCR products on all the surfaces while no DNA amplification was found on any of the female samples. On day 30, positive LAMP product was still found on all the male samples. However, it had faded on the tiles. Moreover, all the male samples, which had tested positive for PCR product, were blurred and unclear. On day 60, LAMP product was still found on all the male samples. Conversely, the PCR method resulted in no bands showing for any of the male samples. However, the LAMP-LFD method detected product on all the male samples of cloth. The results show that the LAMP is an effective, practical, and reliable molecular-biological method. Moreover, the LFD can increase the efficiency and sensitivity of the LAMP, making it more suitable for field studies because gel electrophoresis apparatus is not required.

  18. Loop-mediated isothermal amplification as an emerging technology for detection of Yersinia ruckeri the causative agent of enteric red mouth disease in fish

    Directory of Open Access Journals (Sweden)

    Soliman Hatem

    2008-08-01

    Full Text Available Abstract Background Enteric Redmouth (ERM disease also known as Yersiniosis is a contagious disease affecting salmonids, mainly rainbow trout. The causative agent is the gram-negative bacterium Yersinia ruckeri. The disease can be diagnosed by isolation and identification of the causative agent, or detection of the Pathogen using fluorescent antibody tests, ELISA and PCR assays. These diagnostic methods are laborious, time consuming and need well trained personnel. Results A loop-mediated isothermal amplification (LAMP assay was developed and evaluated for detection of Y. ruckeri the etiological agent of enteric red mouth (ERM disease in salmonids. The assay was optimised to amplify the yruI/yruR gene, which encodes Y. ruckeri quorum sensing system, in the presence of a specific primer set and Bst DNA polymerase at an isothermal temperature of 63°C for one hour. Amplification products were detected by visual inspection, agarose gel electrophoresis and by real-time monitoring of turbidity resulted by formation of LAMP amplicons. Digestion with HphI restriction enzyme demonstrated that the amplified product was unique. The specificity of the assay was verified by the absence of amplification products when tested against related bacteria. The assay had 10-fold higher sensitivity compared with conventional PCR and successfully detected Y. ruckeri not only in pure bacterial culture but also in tissue homogenates of infected fish. Conclusion The ERM-LAMP assay represents a practical alternative to the microbiological approach for rapid, sensitive and specific detection of Y. ruckeri in fish farms. The assay is carried out in one hour and needs only a heating block or water bath as laboratory furniture. The advantages of the ERM-LAMP assay make it a promising tool for molecular detection of enteric red mouth disease in fish farms.

  19. Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples.

    Science.gov (United States)

    Rahman, S M Mazidur; Song, Hyun Beom; Jin, Yan; Oh, Jin-Kyoung; Lim, Min Kyung; Hong, Sung-Tae; Choi, Min-Ho

    2017-10-01

    Clonorchiasis is prevalent in the Far East, and a major health problem in endemic areas. Infected persons may experience, if not treated, serious complications such as bile stone formation, pyogenic cholangitis, and even cholangiocarcinoma. Early diagnosis and treatment are important to prevent serious complications and, therefore, the simple and reliable diagnostic method is necessary to control clonorchiasis in endemic areas, where resources for the diagnosis are limited. The loop-mediated isothermal amplification (LAMP) assay has been applied for the detection of Clonorchis sinensis DNA. Six primers targeting eight locations on the cytochrome c oxidase subunit 1 gene of C. sinensis were designed for species-specific amplification using the LAMP assay. The LAMP assay was sensitive enough to detect as little as 100 fg of C. sinensis genomic DNA and the detection limit in 100 mg of stool was as low as one egg. The assay was highly specific because no cross-reactivity was observed with the DNA of other helminths, protozoa or Escherichia coli. Then, LAMP assay was applied to human fecal samples collected from an endemic area of clonorchiasis in Korea. Using samples showing consistent results by both Kato-Katz method and real-time PCR as reference standards, the LAMP assay showed 97.1% (95% CI, 90.1-99.2) of sensitivity and 100% (95% CI, 92.9-100) of specificity. In stool samples with more than 100 eggs per gram of feces, the sensitivity achieved 100%. To detect C. sinensis in human fecal samples, the LAMP assay was applied and achieved high sensitivity and specificity. The LAMP assay can be utilized in field laboratories as a powerful tool for diagnosis and epidemiological survey of clonorchiasis.

  20. Application of a loop-mediated isothermal amplification (LAMP assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples.

    Directory of Open Access Journals (Sweden)

    S M Mazidur Rahman

    2017-10-01

    Full Text Available Clonorchiasis is prevalent in the Far East, and a major health problem in endemic areas. Infected persons may experience, if not treated, serious complications such as bile stone formation, pyogenic cholangitis, and even cholangiocarcinoma. Early diagnosis and treatment are important to prevent serious complications and, therefore, the simple and reliable diagnostic method is necessary to control clonorchiasis in endemic areas, where resources for the diagnosis are limited.The loop-mediated isothermal amplification (LAMP assay has been applied for the detection of Clonorchis sinensis DNA. Six primers targeting eight locations on the cytochrome c oxidase subunit 1 gene of C. sinensis were designed for species-specific amplification using the LAMP assay. The LAMP assay was sensitive enough to detect as little as 100 fg of C. sinensis genomic DNA and the detection limit in 100 mg of stool was as low as one egg. The assay was highly specific because no cross-reactivity was observed with the DNA of other helminths, protozoa or Escherichia coli. Then, LAMP assay was applied to human fecal samples collected from an endemic area of clonorchiasis in Korea. Using samples showing consistent results by both Kato-Katz method and real-time PCR as reference standards, the LAMP assay showed 97.1% (95% CI, 90.1-99.2 of sensitivity and 100% (95% CI, 92.9-100 of specificity. In stool samples with more than 100 eggs per gram of feces, the sensitivity achieved 100%.To detect C. sinensis in human fecal samples, the LAMP assay was applied and achieved high sensitivity and specificity. The LAMP assay can be utilized in field laboratories as a powerful tool for diagnosis and epidemiological survey of clonorchiasis.

  1. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available Accurate detection of filarial parasites in humans is essential for the implementation and evaluation of mass drug administration programs to control onchocerciasis and lymphatic filariasis. Determining the infection levels in vector populations is also important for assessing transmission, deciding when drug treatments may be terminated and for monitoring recrudescence. Immunological methods to detect infection in humans are available, however, cross-reactivity issues have been reported. Nucleic acid-based molecular assays offer high levels of specificity and sensitivity, and can be used to detect infection in both humans and vectors. In this study we developed loop-mediated isothermal amplification (LAMP tests to detect three different filarial DNAs in human and insect samples using pH sensitive dyes for enhanced visual detection of amplification. Furthermore, reactions were performed in a portable, non-instrumented nucleic acid amplification (NINA device that provides a stable heat source for LAMP. The efficacy of several strand displacing DNA polymerases were evaluated in combination with neutral red or phenol red dyes. Colorimetric NINA-LAMP assays targeting Brugia Hha I repeat, Onchocerca volvulus GST1a and Wuchereria bancrofti LDR each exhibit species-specificity and are also highly sensitive, detecting DNA equivalent to 1/10-1/5000th of one microfilaria. Reaction times varied depending on whether a single copy gene (70 minutes, O. volvulus or repetitive DNA (40 min, B. malayi and W. bancrofti was employed as a biomarker. The NINA heater can be used to detect multiple infections simultaneously. The accuracy, simplicity and versatility of the technology suggests that colorimetric NINA-LAMP assays are ideally suited for monitoring the success of filariasis control programs.

  2. Loop-mediated isothermal amplification: Rapid and sensitive detection of the antibiotic resistance gene ISAba1-blaOXA-51-like in Acinetobacter baumannii.

    Science.gov (United States)

    Mu, Xiaoqin; Nakano, Ryuichi; Nakano, Akiyo; Ubagai, Tsuneyuki; Kikuchi-Ueda, Takane; Tansho-Nagakawa, Shigeru; Kikuchi, Hirotoshi; Kamoshida, Go; Endo, Shiro; Yano, Hisakazu; Ono, Yasuo

    2016-02-01

    Carbapenem-resistant Acinetobacter baumannii, which are mainly induced by the production of OXA-type β-lactamases, are among the leading causes of nosocomial infections worldwide. Among the β-lactamase genes, the presence of the OXA-51-like gene carrying the upstream insertion sequence, ISAba1, was found to be one of the most prevalent carbapenem resistance mechanisms utilized by these bacteria. Consequently, it is necessary to develop a rapid detection method for ISAba1-blaOXA-51-like sequence for the timely and appropriate antibiotic treatment of A. baumannii infection. In this study, a loop-mediated isothermal amplification (LAMP) assay was optimized for ISAba1-blaOXA-51-like detection. The LAMP primer set was designed to recognize distinct sequences in the ISAba1-blaOXA-51-like gene and could amplify the gene within 25 min at an isothermal temperature of 60°C. This LAMP assay was able to detect the ISAba1-blaOXA-51-like gene with high specificity; in addition, no cross-reactivity was observed for other types of β-lactamase producers (OXA-23-like, OXA-40-like, OXA-58-like, and IMP-1), as indicated by the absence of false positive or false negative results. The detection limit for this assay was found to be 10(0)CFU per tube which was 100-fold more sensitive than a polymerase chain reaction assay for ISAba1-blaOXA-51-like detection. Furthermore, the LAMP assay provided swift detection of the ISAba1-blaOXA-51-like gene, even directly from clinical specimens. In summary, we have described a new, rapid assay for the detection of the ISAba1-blaOXA-51-like gene from A. baumannii that could be useful in a clinical setting. This method might facilitate epidemiological studies and allow monitoring of the emergence of drug resistant strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Diagnostic accuracy of loop-mediated isothermal amplification (LAMP for screening patients with imported malaria in a non-endemic setting

    Directory of Open Access Journals (Sweden)

    Ponce Camille

    2017-01-01

    Full Text Available Background: Sensitive and easy-to-perform methods for the diagnosis of malaria are not yet available. Improving the limit of detection and following the requirements for certification are issues to be addressed in both endemic and non-endemic settings. The aim of this study was to test whether loop-mediated isothermal amplification of DNA (LAMP may be an alternative to microscopy or real-time PCR for the screening of imported malaria cases in non-endemic area. Results: 310 blood samples associated with 829 suspected cases of imported malaria were tested during a one year period. Microscopy (thin and thick stained blood slides, reference standard was used for the diagnosis. Real-time PCR was used as a standard of truth, and LAMP (Meridian Malaria Plus was used as an index test in a prospective study conducted following the Standards for Reporting Diagnosis Accuracy Studies. In the 83 positive samples, species identification was P. falciparum (n = 66, P. ovale (n = 9, P. vivax (n = 3 P. malariae (n = 3 and 2 co-infections with P. falciparum + P.malariae. Using LAMP methods, 93 samples gave positive results, including 4 false-positives. Sensitivity, specificity, positive predictive value and negative predictive value for LAMP tests were 100%, 98.13%, 95.51%, and 100% compared to PCR. Conclusion: High negative predictive value, and limit of detection suggest that LAMP can be used for screening of imported malaria cases in non-endemic countries when expert microscopists are not immediately available. However, the rare occurrence of non-valid results and the need for species identification and quantification of positive samples preclude the use of LAMP as a single reference method.

  4. Development and Application of Loop-Mediated Isothermal Amplification Assays for Rapid Visual Detection of cry2Ab and cry3A Genes in Genetically-Modified Crops

    Directory of Open Access Journals (Sweden)

    Feiwu Li

    2014-08-01

    Full Text Available The cry2Ab and cry3A genes are two of the most important insect-resistant exogenous genes and had been widely used in genetically-modified crops. To develop more effective alternatives for the quick identification of genetically-modified organisms (GMOs containing these genes, a rapid and visual loop-mediated isothermal amplification (LAMP method to detect the cry2Ab and cry3A genes is described in this study. The LAMP assay can be finished within 60 min at an isothermal condition of 63 °C. The derived LAMP products can be obtained by a real-time turbidimeter via monitoring the white turbidity or directly observed by the naked eye through adding SYBR Green I dye. The specificity of the LAMP assay was determined by analyzing thirteen insect-resistant genetically-modified (GM crop events with different Bt genes. Furthermore, the sensitivity of the LAMP assay was evaluated by diluting the template genomic DNA. Results showed that the limit of detection of the established LAMP assays was approximately five copies of haploid genomic DNA, about five-fold greater than that of conventional PCR assays. All of the results indicated that this established rapid and visual LAMP assay was quick, accurate and cost effective, with high specificity and sensitivity. In addition, this method does not need specific expensive instruments or facilities, which can provide a simpler and quicker approach to detecting the cry2Ab and cry3A genes in GM crops, especially for on-site, large-scale test purposes in the field.

  5. Development and application of loop-mediated isothermal amplification assays for rapid visual detection of cry2Ab and cry3A genes in genetically-modified crops.

    Science.gov (United States)

    Li, Feiwu; Yan, Wei; Long, Likun; Qi, Xing; Li, Congcong; Zhang, Shihong

    2014-08-27

    The cry2Ab and cry3A genes are two of the most important insect-resistant exogenous genes and had been widely used in genetically-modified crops. To develop more effective alternatives for the quick identification of genetically-modified organisms (GMOs) containing these genes, a rapid and visual loop-mediated isothermal amplification (LAMP) method to detect the cry2Ab and cry3A genes is described in this study. The LAMP assay can be finished within 60 min at an isothermal condition of 63 °C. The derived LAMP products can be obtained by a real-time turbidimeter via monitoring the white turbidity or directly observed by the naked eye through adding SYBR Green I dye. The specificity of the LAMP assay was determined by analyzing thirteen insect-resistant genetically-modified (GM) crop events with different Bt genes. Furthermore, the sensitivity of the LAMP assay was evaluated by diluting the template genomic DNA. Results showed that the limit of detection of the established LAMP assays was approximately five copies of haploid genomic DNA, about five-fold greater than that of conventional PCR assays. All of the results indicated that this established rapid and visual LAMP assay was quick, accurate and cost effective, with high specificity and sensitivity. In addition, this method does not need specific expensive instruments or facilities, which can provide a simpler and quicker approach to detecting the cry2Ab and cry3A genes in GM crops, especially for on-site, large-scale test purposes in the field.

  6. Loop-Mediated Isothermal Amplification for Detection of Endogenous Sad1 Gene in Cotton: An Internal Control for Rapid Onsite GMO Testing.

    Science.gov (United States)

    Singh, Monika; Bhoge, Rajesh K; Randhawa, Gurinderjit

    2018-04-20

    Background : Confirming the integrity of seed samples in powdered form is important priorto conducting a genetically modified organism (GMO) test. Rapid onsite methods may provide a technological solution to check for genetically modified (GM) events at ports of entry. In India, Bt cotton is the commercialized GM crop with four approved GM events; however, 59 GM events have been approved globally. GMO screening is required to test for authorized GM events. The identity and amplifiability of test samples could be ensured first by employing endogenous genes as an internal control. Objective : A rapid onsite detection method was developed for an endogenous reference gene, stearoyl acyl carrier protein desaturase ( Sad1 ) of cotton, employing visual and real-time loop-mediated isothermal amplification (LAMP). Methods : The assays were performed at a constant temperature of 63°C for 30 min for visual LAMP and 62ºC for 40 min for real-time LAMP. Positive amplification was visualized as a change in color from orange to green on addition of SYBR ® Green or detected as real-time amplification curves. Results : Specificity of LAMP assays was confirmed using a set of 10 samples. LOD for visual LAMP was up to 0.1%, detecting 40 target copies, and for real-time LAMP up to 0.05%, detecting 20 target copies. Conclusions : The developed methods could be utilized to confirm the integrity of seed powder prior to conducting a GMO test for specific GM events of cotton. Highlights : LAMP assays for the endogenous Sad1 gene of cotton have been developed to be used as an internal control for onsite GMO testing in cotton.

  7. Loop-mediated isothermal DNA amplification for asymptomatic malaria detection in challenging field settings: Technical performance and pilot implementation in the Peruvian Amazon.

    Directory of Open Access Journals (Sweden)

    Elisa Serra-Casas

    Full Text Available Loop-mediated isothermal DNA amplification (LAMP methodology offers an opportunity for point-of-care (POC molecular detection of asymptomatic malaria infections. However, there is still little evidence on the feasibility of implementing this technique for population screenings in isolated field settings.Overall, we recruited 1167 individuals from terrestrial ('road' and hydric ('riverine' communities of the Peruvian Amazon for a cross-sectional survey to detect asymptomatic malaria infections. The technical performance of LAMP was evaluated in a subgroup of 503 samples, using real-time Polymerase Chain Reaction (qPCR as reference standard. The operational feasibility of introducing LAMP testing in the mobile screening campaigns was assessed based on field-suitability parameters, along with a pilot POC-LAMP assay in a riverine community without laboratory infrastructure.LAMP had a sensitivity of 91.8% (87.7-94.9 and specificity of 91.9% (87.8-95.0, and the overall accuracy was significantly better among samples collected during road screenings than riverine communities (p≤0.004. LAMP-based diagnostic strategy was successfully implemented within the field-team logistics and the POC-LAMP pilot in the riverine community allowed for a reduction in the turnaround time for case management, from 12-24 hours to less than 5 hours. Specimens with haemolytic appearance were regularly observed in riverine screenings and could help explaining the hindered performance/interpretation of the LAMP reaction in these communities.LAMP-based molecular malaria diagnosis can be deployed outside of reference laboratories, providing similar performance as qPCR. However, scale-up in remote field settings such as riverine communities needs to consider a number of logistical challenges (e.g. environmental conditions, labour-intensiveness in large population screenings that can influence its optimal implementation.

  8. The development and evaluation of a loop-mediated isothermal amplification (LAMP) method for detection of Babesia spp. infective to sheep and goats in China.

    Science.gov (United States)

    Guan, Guiquan; Chauvin, Alain; Luo, Jianxun; Inoue, Noboru; Moreau, Emmanuelle; Liu, Zhijie; Gao, Jinliang; Thekisoe, Oriel M M; Ma, Miling; Liu, Aihong; Dang, Zhisheng; Liu, Junlong; Ren, Qiaoyun; Jin, Yurong; Sugimoto, Chihiro; Yin, Hong

    2008-09-01

    The loop-mediated isothermal amplification (LAMP) reaction is a method that amplifies with high sensitivity, efficiency, and rapidity, deoxyribonucleic acid (DNA) under isothermal condition in simple incubators. Two primer sets for the LAMP method were designed using the nucleotide sequences of 18S rRNA gene of Babesia sp. BQ1 (Lintan) and Babesia sp. Xinjiang-2005 isolated in China. The primers were used to detect parasite DNA extracted from infected blood and purified parasites by LAMP. The specific ladder bands were amplified from the autologous genomic DNA of two Babesia species, respectively, and did not cross-react with the genomic DNA of Theileria sp. China 1, Theileria sp. China 2, B. bovis, Theileria sp. (Japan) and sheep. The LAMP was sensitive enough to detect 0.02 pg and 0.2 pg genomic DNA of Babesia sp. BQ1 (Lintan) and Babesia sp. Xinjiang-2005, respectively, from 10-fold serially diluted samples corresponding to the amount of DNA present in 50 microl of 0.000002% and 0.00002% parasitemic erythrocytes. Furthermore, DNA extracted from blood of intact (non-splenectomized) sheep experimentally infected with Babesia sp. BQ1 (Lintan) and Babesia sp. Xinjiang-2005 was amplified by the LAMP from week 1 to 9 and week 2 and 3 post-infection, respectively, demonstrating the high sensitivity of these primers. Of 365 samples collected from Gansu province, 14.3% (52/365) were positively detected by the LAMP. Of 145 samples collected on filter papers (Whatman) from the grazing sheep in Xinjiang province, 3.5% (5/145) were positive. These results show that the LAMP could be an alternative diagnostic tool for the detection of babesial infection in sheep and goats.

  9. Detection of natural infection of infectious spleen and kidney necrosis virus in farmed tilapia by hydroxynapthol blue-loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Suebsing, R; Pradeep, P J; Jitrakorn, S; Sirithammajak, S; Kampeera, J; Turner, W A; Saksmerprome, V; Withyachumnarnkul, B; Kiatpathomchai, W

    2016-07-01

    Infectious spleen and kidney necrosis virus (ISKNV) has recently been recognized as a causative agent of serious systemic disease in tilapia. Our objective was to establish a new colorimetric loop-mediated isothermal amplification (LAMP) assay with pre-addition of hydroxynapthol blue (blue-LAMP) to investigate ISKNV transmission in tilapia. The blue-LAMP, targeting a major capsid protein gene of ISKNV, was conducted at 65°C for 45 min, allowing unaided visual detection of the pathogen based on colour change without cross-amplification of other known fish pathogens tested. Comparison of blue-LAMP and PCR assays revealed a higher detection level for blue-LAMP assay (41·33%) in a population of farmed tilapia infected with ISKNV. The investigation of ISKNV transmission pattern in farmed red tilapia using the blue-LAMP revealed a possible matroclinical form. The presence of ISKNV in the gonad samples was confirmed by in situ LAMP assay. Positive signals only appeared in ovarian follicles, and not in oocytes. Moreover, tissue tropism assay revealed that the brain was the main target organ in both farmed red tilapia (40%) and Nile tilapia (20%). The developed blue-LAMP assay has the potential to be used as a viable tool for screening covert and natural infections of ISKNV in tilapia. The evidence of vertical transmission of ISKNV infection in tilapia indicates the seriousness of this disease and will require a close attention and collaboration between tilapia hatcheries and disease experts in order to find a solution. The new blue-LAMP assay is a time-saving and economically viable detection tool, which allows unaided visual detection for ISKNV in tilapia, and it could be applicable for field applications. Evidence on the vertical transmission of ISKNV in farmed tilapia suggests a need for developing farm management practices to control the spread of virus in aquaculture industries. © 2016 The Society for Applied Microbiology.

  10. Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) Using Simultaneous Detection of mecA, nuc, and femB by Loop-Mediated Isothermal Amplification (LAMP).

    Science.gov (United States)

    Chen, Changguo; Zhao, Qiangyuan; Guo, Jianwei; Li, Yanjun; Chen, Qiuyuan

    2017-08-01

    The aim of this study was to develop a rapid detection assay to identify methicillin-resistant Staphylococcus aureus by simultaneous testing for the mecA, nuc, and femB genes using the loop-mediated isothermal amplification (LAMP) method. LAMP primers were designed using online bio-software ( http://primerexplorer.jp/e/ ), and amplification reactions were performed in an isothermal temperature bath. The products were then examined using 2% agarose gel electrophoresis. MecA, nuc, and femB were confirmed by triplex TaqMan real-time PCR. For better naked-eye inspection of the reaction result, hydroxy naphthol blue (HNB) was added to the amplification system. Within 60 min, LAMP successfully amplified the genes of interest under isothermal conditions at 63 °C. The results of 2% gel electrophoresis indicated that when the Mg 2+ concentration in the reaction system was 6 μmol, the amplification of the mecA gene was relatively good, while the amplification of the nuc and femB genes was better at an Mg 2+ concentration of 8 μmol. Obvious color differences were observed by adding 1 μL (3.75 mM) of HNB into 25 μL reaction system. The LAMP assay was applied to 128 isolates cases of methicillin-resistant Staphylococcus aureus, which were separated from the daily specimens and identified by Vitek microbial identification instruments. The results were identical for both LAMP and PCR. LAMP offers an alternative detection assay for mecA, nuc, and femB and is faster than other methods.

  11. Rapid and sensitive detection of Bartonella bacilliformis in experimentally infected sand flies by loop-mediated isothermal amplification (LAMP of the Pap31 gene.

    Directory of Open Access Journals (Sweden)

    Nasikarn Angkasekwinai

    2014-12-01

    Full Text Available Carrion' disease, caused by Bartonella bacilliformis, remains truly neglected due to its focal geographical nature. A wide spectrum of clinical manifestations, including asymptomatic bacteremia, and lack of a sensitive diagnostic test can potentially lead to a spread of the disease into non-endemic regions where competent sand fly vectors may be present. A reliable test capable of detecting B. bacilliformis is urgently needed. Our objective is to develop a loop-mediated isothermal amplification (LAMP assay targeting the pap31 gene to detect B. bacilliformis.The sensitivity of the LAMP was evaluated in comparison to qPCR using plasmid DNA containing the target gene and genomic DNA in the absence and presence of human or sand fly DNA. The detection limit of LAMP was 1 to 10 copies/µL, depending on the sample metrics. No cross-reaction was observed when testing against a panel of various closely related bacteria. The utility of the LAMP was further compared to qPCR by the examination of 74 Lutzomyia longipalpis sand flies artificially fed on blood spiked with B. bacilliformis and harvested at days (D 1, 3, 5, 7 and 9 post feeding. Only 86% of sand flies at D1 and 63% of flies at D3 were positive by qPCR. LAMP was able to detect B. bacilliformis in all those flies confirmed positive by qPCR. However, none of the flies after D3 were positive by either LAMP or qPCR. In addition to demonstrating the sensitivity of the LAMP assay, these results suggest that B. bacilliformis cannot propagate in artificially fed L. longipalpis.The LAMP assay is as sensitive as qPCR for the detection of B. bacilliformis and could be useful to support diagnosis of patients in low-resource settings and also to identify B. bacilliformis in the sand fly vector.

  12. The hsp 16 Gene of the Probiotic Lactobacillus acidophilus Is Differently Regulated by Salt, High Temperature and Acidic Stresses, as Revealed by Reverse Transcription Quantitative PCR (qRT-PCR Analysis

    Directory of Open Access Journals (Sweden)

    Daniela Fiocco

    2011-08-01

    Full Text Available Small heat shock proteins (sHsps are ubiquitous conserved chaperone-like proteins involved in cellular proteins protection under stressful conditions. In this study, a reverse transcription quantitative PCR (RT-qPCR procedure was developed and used to quantify the transcript level of a small heat shock gene (shs in the probiotic bacterium Lactobacillus acidophilus NCFM, under stress conditions such as heat (45 °C and 53 °C, bile (0.3% w/v, hyperosmosis (1 M and 2.5 M NaCl, and low pH value (pH 4. The shs gene of L. acidophilus NCFM was induced by salt, high temperature and acidic stress, while repression was observed upon bile stress. Analysis of the 5' noncoding region of the hsp16 gene reveals the presence of an inverted repeat (IR sequence (TTAGCACTC-N9-GAGTGCTAA homologue to the controlling IR of chaperone expression (CIRCE elements found in the upstream regulatory region of Gram-positive heat shock operons, suggesting that the hsp16 gene of L. acidophilus might be transcriptionally controlled by HrcA. In addition, the alignment of several small heat shock proteins identified so far in lactic acid bacteria, reveals that the Hsp16 of L. acidophilus exhibits a strong evolutionary relationship with members of the Lactobacillus acidophilus group.

  13. Human Sex Determination at the Edge of Ambiguity: INHERITED XY SEX REVERSAL DUE TO ENHANCED UBIQUITINATION AND PROTEASOMAL DEGRADATION OF A MASTER TRANSCRIPTION FACTOR.

    Science.gov (United States)

    Racca, Joseph D; Chen, Yen-Shan; Yang, Yanwu; Phillips, Nelson B; Weiss, Michael A

    2016-10-14

    A general problem is posed by analysis of transcriptional thresholds governing cell fate decisions in metazoan development. A model is provided by testis determination in therian mammals. Its key step, Sertoli cell differentiation in the embryonic gonadal ridge, is initiated by SRY, a Y-encoded architectural transcription factor. Mutations in human SRY cause gonadal dysgenesis leading to XY female development (Swyer syndrome). Here, we have characterized an inherited mutation compatible with either male or female somatic phenotypes as observed in an XY father and XY daughter, respectively. The mutation (a crevice-forming substitution at a conserved back surface of the SRY high mobility group box) markedly destabilizes the domain but preserves specific DNA affinity and induced DNA bend angle. On transient transfection of diverse human and rodent cell lines, the variant SRY exhibited accelerated proteasomal degradation (relative to wild type) associated with increased ubiquitination; in vitro susceptibility to ubiquitin-independent ("default") cleavage by the 20S core proteasome was unchanged. The variant's gene regulatory activity (as assessed in a cellular model of the rat embryonic XY gonadal ridge) was reduced by 2-fold relative to wild-type SRY at similar levels of mRNA expression. Chemical proteasome inhibition restored native-like SRY expression and transcriptional activity in association with restored occupancy of a sex-specific enhancer element in principal downstream gene Sox9, demonstrating that the variant SRY exhibits essentially native activity on a per molecule basis. Our findings define a novel mechanism of impaired organogenesis, accelerated ubiquitin-directed proteasomal degradation of a master transcription factor leading to a developmental decision poised at the edge of ambiguity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Detection of infectious bursal disease virus in various lymphoid tissues of experimentally infected specific pathogen free chickens by different reverse transcription polymerase chain reaction assays

    DEFF Research Database (Denmark)

    Kabell, Susanne; Handberg, Kurt; Kusk, Mette

    2005-01-01

    Infectious bursal disease (IBD) is a worldwide distributed immunosuppressive viral disease in young chickens, controlled by vaccination. Emergence of several strains of IBD virus (IBDV) has created a demand for strain-specific diagnostic tools. In the present experiment, five different reverse...... included vaccine strain D78, classical strain Faragher 52/70, and the very virulent Danish strain DK01 The presence of the virus infection was confirmed by histopathologic evaluation of bursa lesions. The largest number of positive samples was obtained with a strain-specific two-step multiplex (MPX) RT...

  15. The Development and Evaluation of a Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Salmonella enterica serovar Typhi.

    Directory of Open Access Journals (Sweden)

    Fenxia Fan

    Full Text Available Typhoid fever remains a public health threat in many countries. A positive result in traditional culture is a gold-standard for typhoid diagnosis, but this method is time consuming and not sensitive enough for detection of samples containing a low copy number of the target organism. The availability of the loop-mediated isothermal amplification (LAMP assay, which offers high speed and simplicity in detection of specific targets, has vastly improved the diagnosis of numerous infectious diseases. However, little research efforts have been made on utilizing this approach for diagnosis of Salmonella enterica serovar Typhi by targeting a single and specific gene. In this study, a LAMP assay for rapid detection of S. Typhi based on a novel marker gene, termed STY2879-LAMP, was established and evaluated with real-time PCR (RT-PCR. The specificity tests showed that STY2879 could be amplified in all S. Typhi strains isolated in different years and regions in China, whereas no amplification was observable in non-typhoidal strains covering 34 Salmonella serotypes and other pathogens causing febrile illness. The detection limit of STY2879-LAMP for S. Typhi was 15 copies/reaction in reference plasmids, 200 CFU/g with simple heat-treatment of DNA extracted from simulated stool samples and 20 CFU/ml with DNA extracted from simulated blood samples, which was 10 fold more sensitive than the parallel RT-PCR control experiment. Furthermore, the sensitivity of STY2879-LAMP and RT-PCR combining the traditional culture enrichment method for simulated stool and blood spiked with lower S. Typhi count during the 10 h enrichment time was also determined. In comparison with LAMP, the positive reaction time for RT-PCR required additional 2-3 h enrichment time for either simulated stool or blood specimens. Therefore, STY2879-LAMP is of practical value in the clinical settings and has a good potential for application in developing regions due to its easy-to-use protocol.

  16. Using detergent to enhance detection sensitivity of African trypanosomes in human CSF and blood by loop-mediated isothermal amplification (LAMP.

    Directory of Open Access Journals (Sweden)

    Dennis J Grab

    2011-08-01

    Full Text Available The loop-mediated isothermal amplification (LAMP assay, with its advantages of simplicity, rapidity and cost effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number of parasites present in the volume of sample assayed; i.e. 1 per µL or 10(3 per mL. We hypothesized that clinical sensitivities that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to the samples prior to LAMP assay.For proof of principle we used two different LAMP assays capable of detecting 0.1 fg genomic DNA (0.001 parasite. The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei rhodesiense in human cerebrospinal fluid (CSF or blood with or without the addition of the detergent Triton X-100 and 60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for live intact parasites using 1 µL of CSF as the source of template was at best 10(3 parasites/mL. Remarkably, detergent enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards.This simple procedure for the enhanced detection of live African trypanosomes in biological fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan parasites and microorganisms that cause diseases that plague the developing world.

  17. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira

    International Nuclear Information System (INIS)

    Nurul Najian, A.B.; Engku Nur Syafirah, E.A.R.; Ismail, Nabilah; Mohamed, Maizan; Yean, Chan Yean

    2016-01-01

    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10 −1 genomic equivalent ml −1 . An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device. - Highlights: • We develop multiplex LAMP label-based lateral flow dipstick biosensor for detection of pathogenic Leptospira. • We design primers for multiplex LAMP targeting the conserved LipL32 gene of pathogenic Leptospira and LAMP internal

  18. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira

    Energy Technology Data Exchange (ETDEWEB)

    Nurul Najian, A.B.; Engku Nur Syafirah, E.A.R.; Ismail, Nabilah [Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Mohamed, Maizan [Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, Locked Bag 36, 16100 Kota Bharu, Kelantan (Malaysia); Yean, Chan Yean, E-mail: yeancyn@yahoo.com [Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2016-01-15

    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10{sup −1} genomic equivalent ml{sup −1}. An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device. - Highlights: • We develop multiplex LAMP label-based lateral flow dipstick biosensor for detection of pathogenic Leptospira. • We design primers for multiplex LAMP targeting the conserved LipL32 gene of pathogenic Leptospira and LAMP

  19. Detection of Panton-Valentine Leukocidin DNA from methicillin-resistant Staphylococcus aureus by resistive pulse sensing and loop-mediated isothermal amplification with gold nanoparticles

    International Nuclear Information System (INIS)

    Yang, Alice Kar Lai; Lu, Haifei; Wu, Shu Yuen; Kwok, Ho Chin; Ho, Ho Pui; Yu, Samuel; Cheung, Anthony Ka Lun; Kong, Siu Kai

    2013-01-01

    Graphical abstract: -- Highlights: •A novel diagnostic assay is developed to detect the MRSA's Panton-Valentine Leukocidin toxin. •Detection is based on target DNA amplification at one single temperature at 65 °C by LAMP. •Amplicons are then hybridized with 2 Au-nanoparticles with specific DNA probes for sensing. •The supra-assemblies are subsequently sensed by resistive pulse sensing. •Detection limit: ∼200 copies of DNA; time for detection: completed within 2 h. -- Abstract: This report describes a novel diagnostic assay for rapid detection of the Panton-Valentine Leukocidin (PVL) toxin of methicillin-resistant Staphylococcus aureus (MRSA) utilizing resistive pulse sensing (RPS), loop-mediated isothermal DNA amplification (LAMP) in combination with gold nanoparticles (AuNPs). The PVL DNA from MRSA was specifically amplified by LAMP using four primers at one temperature (65 °C). The DNA products with biotin were then conjugated to a first AuNP1 (55 ± 2 nm) through biotin–avidin binding. A second AuNP2 (30 ± 1.5 nm) coated with a specific DNA probe hybridized with the LAMP DNA products at the loop region to enhance assay sensitivity and specificity, to generate supra-AuNP1-DNA-AuNP2 assemblies. Scanning electron microscopy confirmed the presence of these supra-assemblies. Using RPS, detection and quantitation of the agglomerated AuNPs were performed by a tunable fluidic nanopore sensor. The results demonstrate that the LAMP-based RPS sensor is sensitive and rapid for detecting the PVL DNA. This technique could achieve a limit of detection (LOD) up to about 500 copies of genomic DNA from the bacteria MRSA MW2 and the detection can be completed within two hours with a straightforward signal-to-readout setup. It is anticipated that this LAMP-based AuNP RPS may become an effective tool for MRSA detection and a potential platform in clinical laboratory to report the presence or absence of other types of infectious agents

  20. Application of loop-mediated isothermal amplification for malaria diagnosis during a follow-up study in São Tomé.

    Science.gov (United States)

    Lee, Pei-Wen; Ji, Dar-Der; Liu, Chia-Tai; Rampao, Herodes S; do Rosario, Virgilio E; Lin, I-Feng; Shaio, Men-Fang

    2012-12-06

    A reliable and simple test for the detection of malaria parasite is crucial in providing effective treatment and therapeutic follow-up, especially in malaria elimination programmes. A comparison of four methods, including nested polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) were used for the malaria diagnosis and treatment follow-up in São Tomé and Príncipe, during a successful pre-elimination campaign. During the period September to November 2009, blood samples from 128 children (five to 14 years old) with temperature ≥38°C (tympanic) in the District of Agua Grande were examined using four different methods, i.e., histidine-rich protein 2 (HRP-2) based rapid diagnostic tests (HRP-2-RDTs), optical microscopy, nested PCR, and LAMP. First-line treatment with artesunate-amodiaquine was given for uncomplicated malaria and intravenous quinine was given for complicated malaria. Children with persistent positivity for malaria by microscopy, or either by nested PCR, or by LAMP on day 7 were given second-line treatment with artemether-lumefantrine. Treatment follow-up was made weekly, for up to four weeks. On day 0, positive results for HRP-2-RDTs, microscopy, nested PCR, and LAMP, were 68(53%), 47(37%), 64(50%), and 65(51%), respectively. When nested PCR was used as a reference standard, only LAMP was comparable; both HRP-2-RDTs and microscopy had moderate sensitivity; HRP-2-RDTs had poor positive predictive value (PPV) and a moderate negative predictive value (NPV) for the treatment follow-up. Seventy-one children with uncomplicated malaria and eight children with complicated falciparum malaria were diagnosed based on at least one positive result from the four tests as well as clinical criteria. Twelve of the 79 children receiving first-line treatment had positive results by nested PCR on day 7 (nested PCR-corrected day 7 cure rate was 85%). After the second-line treatment, nested PCR/LAMP-corrected day 28 cure rate was 83% for

  1. Diagnostic performance of a novel loop-mediated isothermal amplification (LAMP) assay targeting the apicoplast genome for malaria diagnosis in a field setting in sub-Saharan Africa.

    Science.gov (United States)

    Oriero, Eniyou C; Okebe, Joseph; Jacobs, Jan; Van Geertruyden, Jean-Pierre; Nwakanma, Davis; D'Alessandro, Umberto

    2015-10-09

    New diagnostic tools to detect reliably and rapidly asymptomatic and low-density malaria infections are needed as their treatment could interrupt transmission. Isothermal amplification techniques are being explored for field diagnosis of malaria. In this study, a novel molecular tool (loop-mediated isothermal amplification-LAMP) targeting the apicoplast genome of Plasmodium falciparum was evaluated for the detection of asymptomatic malaria-infected individuals in a rural setting in The Gambia. A blood was collected from 341 subjects (median age 9 years, range 1-68 years) screened for malaria. On site, a rapid diagnostic test (RDT, SD Bioline Malaria Antigen P.f) was performed, thick blood films (TBF) slides for microscopy were prepared and dry blood spots (DBS) were collected on Whatman(®) 903 Specimen collection paper. The TBF and DBS were transported to the field laboratory where microscopy and LAMP testing were performed. The latter was done on DNA extracted from the DBS using a crude (methanol/heating) extraction method. A laboratory-based PCR amplification was done on all the samples using DNA extracted with the Qiagen kit and its results were taken as reference for all the other tests. Plasmodium falciparum malaria prevalence was 37 % (127/341) as detected by LAMP, 30 % (104/341) by microscopy and 37 % (126/341) by RDT. Compared to the reference PCR method, sensitivity was 92 % for LAMP, 78 % for microscopy, and 76 % for RDT; specificity was 97 % for LAMP, 99 % for microscopy, and 88 % for RDT. Area under the receiver operating characteristic (ROC) curve in comparison with the reference standard was 0.94 for LAMP, 0.88 for microscopy and 0.81 for RDT. Turn-around time for the entire LAMP assay was approximately 3 h and 30 min for an average of 27 ± 9.5 samples collected per day, compared to a minimum of 10 samples an hour per operator by RDT and over 8 h by microscopy. The LAMP assay could produce reliable results the same day of the screening. It could

  2. Reverse transcription-polymerase chain reaction (RT-PCR based detection and economic impact of foot-and-mouth disease in District Faisalabad, Pakistan during the year 2015

    Directory of Open Access Journals (Sweden)

    W. Ali

    2017-06-01

    Full Text Available The aim of this study was to evaluate the economic impact of the disease by using milk production records and to determine the serotypes circulating in the region during 2015. Sampling was done from different outbreaks initially on the basis of clinical signs and later reverse transcriptase-polymerase chain reaction (RT-PCR was employed for the conformation of FMDV genome. Out of total 88 samples, 73 were found positive which were then serotyped into type O (n=44, Asia1 (n=18 and A (n=06. The economic impact was analyzed by recording milk loss at four affected farms. Their average milk yield was observed 9.2 liters before the onset of disease that decreased dramatically after the disease. Milk loss of 225 and 195 liters was recorded for buffalo and cattle respectively, during 70 days of the study period.

  3. Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA

    DEFF Research Database (Denmark)

    Munch, M.; Nielsen, L.P.; Handberg, Kurt

    2001-01-01

    A. A panel of reference influenza strains from various hosts including avian species, human, swine and horse were evaluated in a one tube RT-PCR using primers designed for the amplification of a 218 bp fragment of the NP gene. The PCR products were detected by PCR-ELISA by use of an internal......Avian influenza virus infections are a major cause of morbidity and rapid identification of the virus has important clinical, economical and epidemiological implications. We have developed a one-tube Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for the rapid diagnosis of avian influenza...... catching probe confirming the NP influenza A origin. The PCR-ELISA was about 100 times more sensitive than detection of PCR products by agarose gel electrophoresis. RT-PCR and detection by PCR-ELISA is comparable in sensitivity to virus propagation in eggs. We also designed primers for the detection...

  4. Detection of alveolar rhabdomyosarcoma in pleural fluid with immunocytochemistry on cell block and determination of PAX/FKHR fusion mRNA by reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Sawangpanich, Ruchchadol; Larbcharoensub, Noppadol; Jinawath, Artit; Pongtippan, Atcharaporn; Anurathapan, Usanarat; Hongeng, Suradej

    2011-11-01

    Alveolar rhabdomyosarcoma is a primitive malignant round cell neoplasm, which shows skeletal muscle differentiation. Although their histopathologic and immunohistochemical findings are well known, the cytology, immunocytochemistry and molecular study on pleural effusion have not been well documented. To apply molecular method in the diagnosis and monitoring of alveolar rhabdomyosarcoma. The case of a 14-year-old Thai male, who presented with dyspnea and left pleural effusion. Computed tomography of the chest and abdomen showed a huge heterogeneous enhancing mass at the left retroperitoneum. Pleural fluid cytology showed malignant small round blue cells. Immunocytochemical stains on cell block material showed positive reactivity to vimentin, sarcomeric actin, desmin, MyoD1, myogenin, and CD56 in round cell tumor Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated PAX/FKHR fusion transcript. The patient received chemotherapeutic regimen for advanced-stage rhabdomyosarcoma. Finally, he succumbed to the disease, thirteen months after the diagnosis. Immunocytochemistry on cell block in conjunction with determination of PAX/FKHR fusion mRNA by RT-PCR is a molecular method in the diagnosis and monitoring of alveolar rhabdomyosarcoma inpleural fluid.

  5. Chronic vitamin A-enriched diet feeding regulates hypercholesterolaemia through transcriptional regulation of reverse cholesterol transport pathway genes in obese rat model of WNIN/GR-Ob strain

    Directory of Open Access Journals (Sweden)

    Shanmugam M Jeyakumar

    2016-01-01

    Full Text Available Background & objectives: Hepatic scavenger receptor class B1 (SR-B1, a high-density lipoprotein (HDL receptor, is involved in the selective uptake of HDL-associated esterified cholesterol (EC, thereby regulates cholesterol homoeostasis and improves reverse cholesterol transport. Previously, we reported in euglycaemic obese rats (WNIN/Ob strain that feeding of vitamin A-enriched diet normalized hypercholesterolaemia, possibly through hepatic SR-B1-mediated pathway. This study was aimed to test whether it would be possible to normalize hypercholesterolaemia in glucose-intolerant obese rat model (WNIN/GR/Ob through similar mechanism by feeding identical vitamin A-enriched diet. Methods: In this study, 30 wk old male lean and obese rats of WNIN/GR-Ob strain were divided into two groups and received either stock diet or vitamin A-enriched diet (2.6 mg or 129 mg vitamin A/kg diet for 14 wk. Blood and other tissues were collected for various biochemical analyses. Results: Chronic vitamin A-enriched diet feeding decreased hypercholesterolaemia and normalized abnormally elevated plasma HDL-cholesterol (HDL-C levels in obese rats as compared to stock diet-fed obese groups. Further, decreased free cholesterol (FC and increased esterified cholesterol (EC contents of plasma cholesterol were observed, which were reflected in higher EC to FC ratio of vitamin A-enriched diet-fed obese rats. However, neither lecithin-cholesterol acyltransferase (LCAT activity of plasma nor its expression (both gene and protein in the liver were altered. On the contrary, hepatic cholesterol levels significantly increased in vitamin A-enriched diet fed obese rats. Hepatic SR-B1 expression (both mRNA and protein remained unaltered among groups. Vitamin A-enriched diet fed obese rats showed a significant increase in hepatic low-density lipoprotein receptor mRNA levels, while the expression of genes involved in HDL synthesis, namely, ATP-binding cassette protein 1 (ABCA1 and

  6. Estrogen- and progesterone-receptor status in ECOG 2197: comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory.

    Science.gov (United States)

    Badve, Sunil S; Baehner, Frederick L; Gray, Robert P; Childs, Barrett H; Maddala, Tara; Liu, Mei-Lan; Rowley, Steve C; Shak, Steven; Perez, Edith A; Perez, Edith D; Shulman, Lawrence J; Martino, Silvana; Davidson, Nancy E; Sledge, George W; Goldstein, Lori J; Sparano, Joseph A

    2008-05-20

    Central and local laboratory concordance for hormone receptor measurement is therapeutically important. This study compares estrogen receptor (ER) and progesterone receptor (PR) measured by local laboratory immunohistochemistry (IHC), central IHC, and central reverse-transcriptase polymerase chain reaction (RT-PCR) using a proprietary 21-gene assay. A case-control sample of 776 breast cancer patients from Eastern Cooperative Oncology Group (ECOG) study E2197 was evaluated. Central IHC Allred score for ER and PR was obtained using tissue microarrays and 1D5 ER antibody and 636 PR antibody. Quantitative RT-PCR for ER and PR in whole sections was performed using the 21-gene assay. For ER, the concordance between local and central IHC was 90% (95% CI, 88% to 92%), between local IHC and central RT-PCR was 91% (95% CI, 89% to 93%), and between central IHC and central RT-PCR was 93% (95% CI, 91% to 95%). For PR, the concordance between local IHC and central IHC was 84% (95% CI, 82% to 87%), between local IHC and central RT-PCR was 88% (95% CI, 85% to 90%), and between central IHC and central RT-PCR was 90% (95% CI, 88% to 92%). Although concordance was high, IHC ER-negative cases that were RT-PCR positive were more common than IHC ER-positive cases that were RT-PCR negative. In ER-positive patients, ER expression by central IHC Allred score was marginally associated with recurrence (P = .091), and ER expression by central RT-PCR was significantly associated with recurrence (P = .014). However, recurrence score, which incorporates additional genes/pathways, was a highly significant predictor of recurrence (P < .0001). There is a high degree of concordance among local IHC, central IHC, and central RT-PCR by the proprietary gene assay for ER and PR status. Although ER expression is marginally associated with relapse in ER-positive patients treated with chemohormonal therapy, recurrence score is a highly significant predictor of recurrence.

  7. Significance of detecting circulating hepatocellular carcinoma cells in peripheral blood of hepatocellular carcinoma patients by nested reverse transcription-polymerase chain reaction and its clinical value: a retrospective study.

    Science.gov (United States)

    Liu, Yang; Wang, Yue-ru; Wang, Long; Song, Rui-mei; Zhou, Bo; Song, Zhen-shun

    2014-01-01

    Circulating hepatocellular carcinoma cells may be detected by reverse transcription-polymerase chain reaction. We investigated the relationship between circulating hepatocellular carcinoma cells and hepatoma patient survival after different managements and survival periods. Peripheral vein blood (5 ml) samples were obtained from 113 patients with hepatocellular carcinoma and from 33 control subjects (9 with liver cirrhosis after hepatitis B, 14 with chronic hepatitis B, 10 healthy individuals) between January 1, 2009, and December 31, 2013. To detect circulating hepatocellular carcinoma cells in peripheral blood, alpha-fetoprotein messenger RNA was amplified from total RNA extracted from whole blood by reverse transcription-polymerase chain reaction. Alpha-fetoprotein messenger RNA was detected in 59 blood samples from the hepatocellular carcinoma patients (59/113, 52.2%). In contrast, there were no clinical control subjects whose samples showed detectable alpha-fetoprotein messenger RNA. The presence of alpha-fetoprotein messenger RNA in blood seemed to be correlated with the stage (by TNM classification) of hepatocellular carcinoma, serum alpha-fetoprotein value, and the presence of intrahepatic metastasis, portal vein thrombosis, tumor diameter and/or distant metastasis. In addition, alpha-fetoprotein messenger RNA was detected in the blood of 25 patients showing distant metastasis at extrahepatic organs (100%), in contrast to 32 of 88 cases without metastasis (36.4%). All the patients with hepatocellular carcinoma were followed. Seventeen patients with resection of a T 2 stage hepatocellular carcinoma had a survival of 3.2 years after surgical management, 38 cases with resection of a T3 stage hepatocellular carcinoma had a 1.3-year survival, and only 37 cases with T4 stage disease after different treatments except surgery survived for 0.6 years (P <0.01). The presence of alpha-fetoprotein messenger RNA in peripheral blood may be an indicator of circulating

  8. Two RNAs or DNAs May Artificially Fuse Together at a Short Homologous Sequence (SHS) during Reverse Transcription or Polymerase Chain Reactions, and Thus Reporting an SHS-Containing Chimeric RNA Requires Extra Caution

    Science.gov (United States)

    Xie, Bingkun; Yang, Wei; Ouyang, Yongchang; Chen, Lichan; Jiang, Hesheng; Liao, Yuying; Liao, D. Joshua

    2016-01-01

    Tens of thousands of chimeric RNAs have been reported. Most of them contain a short homologous sequence (SHS) at the joining site of the two partner genes but are not associated with a fusion gene. We hypothesize that many of these chimeras may be technical artifacts derived from SHS-caused mis-priming in reverse transcription (RT) or polymerase chain reactions (PCR). We cloned six chimeric complementary DNAs (cDNAs) formed by human mitochondrial (mt) 16S rRNA sequences at an SHS, which were similar to several expression sequence tags (ESTs).These chimeras, which could not be detected with cDNA protection assay, were likely formed because some regions of the 16S rRNA are reversely complementary to another region to form an SHS, which allows the downstream sequence to loop back and anneal at the SHS to prime the synthesis of its complementary strand, yielding a palindromic sequence that can form a hairpin-like structure.We identified a 16S rRNA that ended at the 4th nucleotide(nt) of the mt-tRNA-leu was dominant and thus should be the wild type. We also cloned a mouse Bcl2-Nek9 chimeric cDNA that contained a 5-nt unmatchable sequence between the two partners, contained two copies of the reverse primer in the same direction but did not contain the forward primer, making it unclear how this Bcl2-Nek9 was formed and amplified. Moreover, a cDNA was amplified because one primer has 4 nts matched to the template, suggesting that there may be many more artificial cDNAs than we have realized, because the nuclear and mt genomes have many more 4-nt than 5-nt or longer homologues. Altogether, the chimeric cDNAs we cloned are good examples suggesting that many cDNAs may be artifacts due to SHS-caused mis-priming and thus greater caution should be taken when new sequence is obtained from a technique involving DNA polymerization. PMID:27148738

  9. Differentiation of canine distemper virus isolates in fur animals from various vaccine strains by reverse transcription-polymerase chain reaction-restriction fragment length polymorphism according to phylogenetic relations in china

    Directory of Open Access Journals (Sweden)

    Zhao Jianjun

    2011-02-01

    Full Text Available Abstract In order to effectively identify the vaccine and field strains of Canine distemper virus (CDV, a new differential diagnostic test has been developed based on reverse transcription-polymerase chain reaction (RT-PCR and restriction fragment length polymorphism (RFLP. We selected an 829 bp fragment of the nucleoprotein (N gene of CDV. By RFLP analysis using BamHI, field isolates were distinguishable from the vaccine strains. Two fragments were obtained from the vaccine strains by RT-PCR-RFLP analysis while three were observed in the field strains. An 829 nucleotide region of the CDV N gene was analyzed in 19 CDV field strains isolated from minks, raccoon dogs and foxes in China between 2005 and 2007. The results suggest this method is precise, accurate and efficient. It was also determined that three different genotypes exist in CDV field strains in fur animal herds of the north of China, most of which belong to Asian type. Mutated field strains, JSY06-R1, JSY06-R2 and JDH07-F1 also exist in Northern China, but are most closely related to the standard virulent strain A75/17, designated in Arctic and America-2 genetype in the present study, respectively.

  10. Enzyme-Linked Immunosorbent Assay Testing of Shoots Grown In Vitro and the Use of Immunocapture-Reverse Transcription-Polymerase Chain Reaction Improve the Detection of Prunus necrotic ringspot virus in Rose.

    Science.gov (United States)

    Moury, B; Cardin, L; Onesto, J P; Candresse, T; Poupet, A

    2000-05-01

    We developed and evaluated two different methods to improve the detection of the most prevalent virus of rose in Europe, Prunus necrotic ring-spot virus (PNRSV). Immunocapture-reverse transcription-polymerase chain reaction was estimated to be about 100 times more sensitive than double-antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) and showed an equivalent specificity. Based on the observation that PNRSV multiplies actively in young growing tissues (axillary shoots and cuttings), an in vitro culture method allowing rapid (about 15 days) and homogeneous development of dormant axillary buds with high virus titers was standardized. ELISA tests of these young shoots showed, in some cases, a 10(4) to 10(5) increase in sensitivity in comparison to adjacent leaf tissues from the rose mother plants. Between 21 and 98% (depending on the season) more samples were identified as positive by using ELISA on samples from shoot tips grown in vitro rather than on leaves collected directly from the PNRSV-infected mother plants. This simple method of growing shoot tips in vitro improved the confidence in the detection of PNRSV and eliminated problems in sampling appropriate tissues.

  11. Application and Comparative Evaluation of Fluorescent Antibody, Immunohistochemistry and Reverse Transcription Polymerase Chain Reaction Tests for the Detection of Rabies Virus Antigen or Nucleic Acid in Brain Samples of Animals Suspected of Rabies in India

    Directory of Open Access Journals (Sweden)

    K. Nithin Prabhu

    2018-02-01

    Full Text Available Accurate and early diagnosis of animal rabies is critical for undertaking public health measures. Whereas the direct fluorescent antibody (DFA technique is the recommended test, the more convenient, direct rapid immunochemistry test (dRIT, as well as the more sensitive, reverse transcription polymerase chain reaction (RT-PCR, have recently been employed for the laboratory diagnosis of rabies. We compared the three methods on brain samples from domestic (dog, cat, cattle, buffalo, horse, pig and goat and wild (leopard, wolf and jackal animals from various parts of India. Of the 257 samples tested, 167 were positive by all the three tests; in addition, 35 of the 36 decomposed samples were positive by RT-PCR. This is the first study in which such large number of animal samples have been subjected to the three tests simultaneously. The results confirm 100% corroboration between DFA and dRIT, buttress the applicability of dRIT in the simple and rapid diagnosis of rabies in animals, and reaffirm the suitability of RT-PCR for samples unfit for testing either by DFA or dRIT.

  12. Clinical Usefulness of a One-Tube Nested Reverse Transcription Quantitative Polymerase Chain Reaction Assay for Evaluating Human Epidermal Growth Factor Receptor 2 mRNA Overexpression in Formalin-Fixed and Paraffin-Embedded Breast Cancer Tissue Samples.

    Science.gov (United States)

    Wang, Hye-Young; Ahn, Sungwoo; Park, Sunyoung; Kim, SeungIl; Lee, Hyeyoung

    2017-01-01

    Currently, the two main methods used to analyze human epidermal growth factor receptor 2 (HER2) amplification or overexpression have a limited accuracy and high costs. These limitations can be overcome by the development of complementary quantitative methods. In this study, we analyzed HER2 mRNA expression in clinical formalin-fixed and paraffin-embedded (FFPE) samples using a one-tube nested reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. We measured expression relative to 3 reference genes and compared the results to those obtained by conventional immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays with 226 FFPE breast cancer tissue samples. The one-tube nested RT-qPCR assay proved to be highly sensitive and specific based on comparisons with IHC (96.9 and 97.7%, respectively) and FISH (92.4 and 92.9%, respectively) obtained with the validation set. Comparisons with clinicopathological data revealed significant associations between HER2 overexpression and TNM stage (p < 0.01), histological type (p < 0.01), ER status (p < 0.001), PR status (p < 0.05), HER2 status (p < 0.001), and molecular subtypes (p < 0.001). Based on these findings, our one-tube nested RT-qPCR assay is a potentially useful and complementary screening tool for the detection of HER2 mRNA overexpression. © 2016 S. Karger AG, Basel.

  13. Broadly reactive pan-paramyxovirus reverse transcription polymerase chain reaction and sequence analysis for the detection of Canine distemper virus in a case of canine meningoencephalitis of unknown etiology

    Science.gov (United States)

    Schatzberg, Scott J.; Li, Qiang; Porter, Brian F.; Barber, Renee M.; Claiborne, Mary Kate; Levine, Jonathan M.; Levine, Gwendolyn J.; Israel, Sarah K.; Young, Benjamin D.; Kiupel, Matti; Greene, Craig; Ruone, Susan; Anderson, Larry; Tong, Suxiang

    2016-01-01

    Despite the immunologic protection associated with routine vaccination protocols, Canine distemper virus (CDV) remains an important pathogen of dogs. Antemortem diagnosis of systemic CDV infection may be made by reverse transcription polymerase chain reaction (RT-PCR) and/or immunohistochemical testing for CDV antigen; central nervous system infection often requires postmortem confirmation via histopathology and immunohistochemistry. An 8-month-old intact male French Bulldog previously vaccinated for CDV presented with multifocal neurologic signs. Based on clinical and postmortem findings, the dog’s disease was categorized as a meningoencephalitis of unknown etiology. Broadly reactive, pan-paramyxovirus RT-PCR using consensus-degenerate hybrid oligonucleotide primers, combined with sequence analysis, identified CDV amplicons in the dog’s brain. Immunohistochemistry confirmed the presence of CDV antigens, and a specific CDV RT-PCR based on the phosphoprotein gene identified a wild-type versus vaccinal virus strain. This case illustrates the utility of broadly reactive PCR and sequence analysis for the identification of pathogens in diseases with unknown etiology. PMID:19901287

  14. Postnatal changes of gene expression for tissue inhibitors of metalloproteinase-1 and -2 and cystatins S and C, in rat submandibular gland demonstrated by quantitative reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Nishiura, T; Abe, K

    1999-01-01

    The rat submandibular gland is not fully developed at birth and definitive differentiation takes place postnatally. The steady-state mRNA expression for the four proteinase inhibitor molecules, tissue inhibitors of metalloproteinase (TIMP)-1 and -2, and cystatins S and C, and for a housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), in rat submandibular glands was measured by quantitative competitive reverse transcription-polymerase chain reaction (RT-PCR) at different stages of postnatal development. The gene-expression patterns of TIMP-1 and -2 relative to G3PDH were similar to each other. The TIMP-2 and cystatin C genes were more highly expressed than those of TIMP-1 and cystatin S at all stages. Moreover, the gene expressions of TIMP-1 and -2, and of cystatins S and C, were predominant between 1 and 7, and 7 and 12 weeks of age, respectively, and coincided developmentally with the regression of terminal tubule cells and the differentiation of granular convoluted tubule cells, respectively. Quantitative competitive RT-PCR allowed accurate measurement of small changes in the steady-state concentrations of these proteinase-inhibitor mRNA molecules.

  15. Application and Comparative Evaluation of Fluorescent Antibody, Immunohistochemistry and Reverse Transcription Polymerase Chain Reaction Tests for the Detection of Rabies Virus Antigen or Nucleic Acid in Brain Samples of Animals Suspected of Rabies in India.

    Science.gov (United States)

    Prabhu, K Nithin; Isloor, Shrikrishna; Veeresh, B Hanchinal; Rathnamma, Doddamane; Sharada, R; Das, Lekshmi J; Satyanarayana, M L; Hegde, Nagendra R; Rahman, Sira Abdul

    2018-02-28

    Accurate and early diagnosis of animal rabies is critical for undertaking public health measures. Whereas the direct fluorescent antibody (DFA) technique is the recommended test, the more convenient, direct rapid immunochemistry test (dRIT), as well as the more sensitive, reverse transcription polymerase chain reaction (RT-PCR), have recently been employed for the laboratory diagnosis of rabies. We compared the three methods on brain samples from domestic (dog, cat, cattle, buffalo, horse, pig and goat) and wild (leopard, wolf and jackal) animals from various parts of India. Of the 257 samples tested, 167 were positive by all the three tests; in addition, 35 of the 36 decomposed samples were positive by RT-PCR. This is the first study in which such large number of animal samples have been subjected to the three tests simultaneously. The results confirm 100% corroboration between DFA and dRIT, buttress the applicability of dRIT in the simple and rapid diagnosis of rabies in animals, and reaffirm the suitability of RT-PCR for samples unfit for testing either by DFA or dRIT.

  16. Reverse Algols

    Science.gov (United States)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  17. Reverse Logistics

    OpenAIRE

    Kulikova, Olga

    2016-01-01

    This thesis was focused on the analysis of the concept of reverse logistics and actual reverse processes which are implemented in mining industry and finding solutions for the optimization of reverse logistics in this sphere. The objective of this paper was the assessment of the development of reverse logistics in mining industry on the example of potash production. The theoretical part was based on reverse logistics and mining waste related literature and provided foundations for further...

  18. Proteins mediating DNA loops effectively block transcription.

    Science.gov (United States)

    Vörös, Zsuzsanna; Yan, Yan; Kovari, Daniel T; Finzi, Laura; Dunlap, David

    2017-07-01

    Loops are ubiquitous topological elements formed when proteins simultaneously bind to two noncontiguous DNA sites. While a loop-mediating protein may regulate initiation at a promoter, the presence of the protein at the other site may be an obstacle for RNA polymerases (RNAP) transcribing a different gene. To test whether a DNA loop alters the extent to which a protein blocks transcription, the lac repressor (LacI) was used. The outcome of in vitro transcription along templates containing two LacI operators separated by 400 bp in the presence of LacI concentrations that produced both looped and unlooped molecules was visualized with scanning force microscopy (SFM). An analysis of transcription elongation complexes, moving for 60 s at an average of 10 nt/s on unlooped DNA templates, revealed that they more often surpassed LacI bound to the lower affinity O2 operator than to the highest affinity Os operator. However, this difference was abrogated in looped DNA molecules where LacI became a strong roadblock independently of the affinity of the operator. Recordings of transcription elongation complexes, using magnetic tweezers, confirmed that they halted for several minutes upon encountering a LacI bound to a single operator. The average pause lifetime is compatible with RNAP waiting for LacI dissociation, however, the LacI open conformation visualized in the SFM images also suggests that LacI could straddle RNAP to let it pass. Independently of the mechanism by which RNAP bypasses the LacI roadblock, the data indicate that an obstacle with looped topology more effectively interferes with transcription. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  19. Evaluation of the PrimerDesign™ genesig real-time reverse transcription-polymerase chain reaction assay and the INFINITI® Respiratory Viral Panel Plus assay for the detection of human metapneumovirus in Kuwait.

    Science.gov (United States)

    Al-Turab, Mariam; Chehadeh, Wassim; Al-Mulla, Fahd; Al-Nakib, Widad

    2012-04-01

    Human metapneumovirus (hMPV) is a respiratory pathogen that was discovered in 2001 and is considered a major cause of both upper and lower respiratory tract infections. A sensitive, fast, and high-throughput diagnostic test is needed for the detection of hMPV that may assist in the clinical management as well as in the reduction of inappropriate therapy. Therefore, a comparison assessment was performed in this study between the PrimerDesign™ genesig real-time reverse transcription-polymerase chain reaction (RT-PCR) Assay and the INFINITI(®) Respiratory Viral Panel Plus Assay (RVP-Plus) for the detection of hMPV infection in patients with respiratory tract infections. A total of 200 respiratory samples were collected from 185 hospitalized patients, during the winter season in Kuwait. Of 185 patients, 10 (5.4%) were positive for hMPV RNA by the in-house RT-PCR assay, while 7 (4%) were positive for hMPV RNA by the real-time RT-PCR assay and 9 (5%) were positive for hMPV RNA by the INFINITI(®) RVP-Plus assay. The high incidence rate (60%) of hMPV infection was in January 2011. The sensitivity of the real-time RT-PCR and INFINITI(®) RVP-Plus assays was 70% and 90%, respectively, with specificity of 100% for both assays. hMPV types A and B could be identified in this study; however, discordant genotyping results were found between the direct sequencing method and the INFINITI(®) RVP-Plus assay in 33% of hMPV-positive patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Detection of African swine fever, classical swine fever, and foot-and-mouth disease viruses in swine oral fluids by multiplex reverse transcription real-time polymerase chain reaction.

    Science.gov (United States)

    Grau, Frederic R; Schroeder, Megan E; Mulhern, Erin L; McIntosh, Michael T; Bounpheng, Mangkey A

    2015-03-01

    African swine fever (ASF), classical swine fever (CSF), and foot-and-mouth disease (FMD) are highly contagious animal diseases of significant economic importance. Pigs infected with ASF and CSF viruses (ASFV and CSFV) develop clinical signs that may be indistinguishable from other diseases. Likewise, various causes of vesicular disease can mimic clinical signs caused by the FMD virus (FMDV). Early detection is critical to limiting the impact and spread of these disease outbreaks, and the ability to perform herd-level surveillance for all 3 diseases rapidly and cost effectively using a single diagnostic sample and test is highly desirable. This study assessed the feasibility of simultaneous ASFV, CSFV, and FMDV detection by multiplex reverse transcription real-time polymerase chain reaction (mRT-qPCR) in swine oral fluids collected through the use of chewing ropes. Animal groups were experimentally infected independently with each virus, observed for clinical signs, and oral fluids collected and tested throughout the course of infection. All animal groups chewed on the ropes readily before and after onset of clinical signs and before onset of lameness or serious clinical signs. ASFV was detected as early as 3 days postinoculation (dpi), 2-3 days before onset of clinical disease; CSFV was detected at 5 dpi, coincident with onset of clinical disease; and FMDV was detected as early as 1 dpi, 1 day before the onset of clinical disease. Equivalent results were observed in 4 independent studies and demonstrate the feasibility of oral fluids and mRT-qPCR for surveillance of ASF, CSF, and FMD in swine populations. © 2015 The Author(s).

  1. Sensitivity and specificity of real-time reverse transcription polymerase chain reaction, histopathology, and immunohistochemical labeling for the detection of Rift Valley fever virus in naturally infected cattle and sheep.

    Science.gov (United States)

    Odendaal, Lieza; Fosgate, Geoffrey T; Romito, Marco; Coetzer, Jacobus A W; Clift, Sarah J

    2014-01-01

    Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), histopathology, and immunohistochemical labeling (IHC) were performed on liver specimens from 380 naturally infected cattle and sheep necropsied during the 2010 Rift Valley fever (RVF) epidemic in South Africa. Sensitivity (Se) and specificity (Sp) of real-time RT-PCR, histopathology, and IHC were estimated in a latent-class model using a Bayesian framework. The Se and Sp of real-time RT-PCR were estimated as 97.4% (95% confidence interval [CI] = 95.2-98.8%) and 71.7% (95% CI = 65-77.9%) respectively. The Se and Sp of histopathology were estimated as 94.6% (95% CI = 91-97.2%) and 92.3% (95% CI = 87.6-95.8%), respectively. The Se and Sp of IHC were estimated as 97.6% (95% CI = 93.9-99.8%) and 99.4% (95% CI = 96.9-100%), respectively. Decreased Sp of real-time RT-PCR was ascribed to cross-contamination of samples. Stratified analysis of the data suggested variations in test accuracy with fetuses and severely autolyzed specimens. The Sp of histopathology in fetuses (83%) was 9.3% lower than the sample population (92.3%). The Se of IHC decreased from 97.6% to 81.5% in the presence of severe autolysis. The diagnostic Se and Sp of histopathology was higher than expected, confirming the value of routine postmortem examinations and histopathology of liver specimens. Aborted fetuses, however, should be screened using a variety of tests in areas endemic for RVF, and results from severely autolyzed specimens should be interpreted with caution. The most feasible testing option for countries lacking suitably equipped laboratories seems to be routine histology in combination with IHC.

  2. Reverse Osmosis

    Indian Academy of Sciences (India)

    many applications, one of which is desalination of seawater. The inaugural Nobel Prize in Chemistry was awarded in 1901 to van 't Hoff for his seminal work in this area. The present article explains the principle of osmosis and reverse osmosis. Osmosis and Reverse Osmosis. As the name suggests, reverse osmosis is the ...

  3. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    . Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t......RNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal...

  4. Reverse transcription and polymerase chain reaction: principles and applications in dentistry Transcrição reversa e reação em cadeia da polimerase: princípios e aplicações em odontologia

    Directory of Open Access Journals (Sweden)

    Carlos Ferreira dos Santos

    2004-03-01

    Full Text Available Various molecular biology techniques have become available in the last few years. One of the most revolutionary of these techniques regarding nucleic acid analysis is the polymerase chain reaction (PCR, which was first described in 1985. This method relies on the exponential amplification of specific DNA fragments, resulting in millions of copies that can serve as templates for different kinds of analyses. PCR can be preceded by a reverse transcription (RT reaction in order to produce cDNA from RNA (RT-PCR. RT-PCR provides the possibility to assess gene transcription in cells or tissues. PCR and RT-PCR techniques have been instrumental in dental research, and show potential to be used for diagnosis as well as for treatment and prevention of many diseases (dental caries, periodontal disease, endodontic infections and oral cancer. Compared to other traditional methodologies, PCR and RT-PCR show many advantages including high specificity, sensitivity, and speed. Since PCR and RT-PCR are relatively new techniques and are not available to most students and professionals involved with dentistry, the aim of this work is to present the details of these techniques as well as dental literature reports in which they were used.Várias técnicas de biologia molecular têm sido disponibilizadas nos últimos anos. Uma que revolucionou a análise de ácidos nucléicos foi a reação em cadeia da polimerase (PCR, descrita pela primeira vez em 1985. Esta técnica baseia-se na possibilidade de amplificação exponencial de fragmentos específicos de DNA, com a criação de milhões de cópias que servirão como matéria-prima para diferentes tipos de análises. A PCR pode ser precedida por uma reação de transcrição reversa (RT para a obtenção de cDNA a partir de RNA (RT-PCR, representando, por exemplo, uma possibilidade de análise de expressão gênica em células ou tecidos. As técnicas de PCR e RT-PCR têm sido utilizadas em pesquisas odontológicas como

  5. Application of a Receptor-Binding Capture Quantitative Reverse Transcription-PCR Assay To Concentrate Human Norovirus from Sewage and To Study the Distribution and Stability of the Virus

    Science.gov (United States)

    Yang, David; Pan, Liangwen; Mandrell, Robert

    2012-01-01

    Water is an important route for human norovirus (HuNoV) transmission. Using magnetic beads conjugated with blood group-like antigens (HuNoV receptors), we developed a simple and rapid receptor-binding capture and magnetic sequestration (RBCMS) method and compared it to the existing negatively charged membrane absorption/elution (NCMAE) method for concentrating HuNoV from sewage effluent. RBCMS required 6-fold-less sample volume than the NCMAE method and also resulted in a significantly higher yield of HuNoV. The NCMAE and RBCMS concentrations of genogroup I (GI) HuNoV measured by quantitative reverse transcription-PCR (qRT-PCR) resulted in average threshold cycle (CT) values of 34.68 (8.68 copies, 252-fold concentration) versus 34.07 (13.05 copies, 477-fold concentration), respectively; the NCMAE and RBCMS concentrations of genogroup II (GII) HuNoV were measured as average CT values of 33.32 (24.7 copies, 239-fold concentration) versus 32.38 (46.9 copies, 333-fold concentration), respectively. The specificity of qRT-PCR was confirmed by traditional RT-PCR and an RNase I protection assay. The qRT-PCR signal from RBCMS-concentrated HuNoV treated with RNase I indicated that it was from encapsidated RNA and, probably, viable virus. In contrast, the qRT-PCR signal from NCMAE-concentrated HuNoV was not protected from RNase I and, likely, degradation. Both GI and GII HuNoV were detected from sewage effluent samples collected between April and July with average concentrations of 7.8 × 103 genomic copies per liter (gc/liter) and 4.3 × 104 gc/liter, respectively. No GI and sewage samples stored at room temperature for 4 weeks. We conclude that RBCMS requires less sample volume, has better recovery and sensitivity, and is faster than NCMAE for detection of HuNoV in sewage. PMID:22101044

  6. Comparison of DNA Microarray, Loop-Mediated Isothermal Amplification (LAMP) and Real-Time PCR with DNA Sequencing for Identification of Fusarium spp. Obtained from Patients with Hematologic Malignancies.

    Science.gov (United States)

    de Souza, Marcela; Matsuzawa, Tetsuhiro; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Busso-Lopes, Ariane Fidelis; Levin, Anna Sara Shafferman; Schreiber, Angélica Zaninelli; Mikami, Yuzuru; Gonoi, Tohoru; Kamei, Katsuhiko; Moretti, Maria Luiza; Trabasso, Plínio

    2017-08-01

    The performance of three molecular biology techniques, i.e., DNA microarray, loop-mediated isothermal amplification (LAMP), and real-time PCR were compared with DNA sequencing for properly identification of 20 isolates of Fusarium spp. obtained from blood stream as etiologic agent of invasive infections in patients with hematologic malignancies. DNA microarray, LAMP and real-time PCR identified 16 (80%) out of 20 samples as Fusarium solani species complex (FSSC) and four (20%) as Fusarium spp. The agreement among the techniques was 100%. LAMP exhibited 100% specificity, while DNA microarray, LAMP and real-time PCR showed 100% sensitivity. The three techniques had 100% agreement with DNA sequencing. Sixteen isolates were identified as FSSC by sequencing, being five Fusarium keratoplasticum, nine Fusarium petroliphilum and two Fusarium solani. On the other hand, sequencing identified four isolates as Fusarium non-solani species complex (FNSSC), being three isolates as Fusarium napiforme and one isolate as Fusarium oxysporum. Finally, LAMP proved to be faster and more accessible than DNA microarray and real-time PCR, since it does not require a thermocycler. Therefore, LAMP signalizes as emerging and promising methodology to be used in routine identification of Fusarium spp. among cases of invasive fungal infections.

  7. Development of an allele-specific, loop-mediated, isothermal amplification method (AS-LAMP to detect the L1014F kdr-w mutation in Anopheles gambiae s. l.

    Directory of Open Access Journals (Sweden)

    Badolo Athanase

    2012-07-01

    Full Text Available Abstract Background Malaria control relies heavily on treated bed nets and indoor residual spraying with pyrethroid insecticides. Unfortunately, the resistance to pyrethroid insecticides, mainly due to the kdr mutation, is spreading in the main malaria vector Anopheles gambiae s.l., decreasing the insecticides’ efficacy. To manage the insecticide resistance rapidly and flexibly, simple and effective tools for the early detection of resistant mosquitoes are needed. This study aimed to develop an allele-specific, loop-mediated, isothermal amplification (AS-LAMP method to detect the West African-type kdr mutation (kdr-w; L1014F in field-collected mosquitoes. Methods DNA fragments of the wild-type and the mutated kdr gene were used to select the primers and develop the method. The primers were designed with the mutation at the 5’ end of the backward inner primer (BIP. The AS-LAMP method was compared to the AS-PCR method using the genomic DNA of 120 field-collected mosquitoes. Results The AS-LAMP method could discriminate between the wild-type homozygote, the heterozygote, and the kdr-w homozygote within 75 min. The AS-LAMP method has the advantage of being faster and at least as sensitive and specific as the AS-PCR method. Conclusions The AS-LAMP method can be used to detect the kdr mutation for quick decision-making, even in less well-equipped laboratories.

  8. One-tube loop-mediated isothermal amplification combined with restriction endonuclease digestion and ELISA for colorimetric detection of resistance to isoniazid, ethambutol and streptomycin in Mycobacterium tuberculosis isolates.

    Science.gov (United States)

    Lee, Mei-Feng; Chen, Yen-Hsu; Hsu, Hui-Jine; Peng, Chien-Fang

    2010-10-01

    In this study, we designed a simple and rapid colorimetric detection method, a one-tube loop-mediated isothermal amplification (LAMP)-PCR-hybridization-restriction endonuclease-ELISA [one-tube LAMP-PCR-HY-RE-ELISA] system, to detect resistance to isoniazid, ethambutol and streptomycin in strains of Mycobacterium tuberculosis isolated from clinical specimens. The clinical performance of this method for detecting isoniazid-resistant, ethambutol-resistant and streptomycin-resistant isolates of M. tuberculosis showed 98.9%, 94.3% and 93.8%, respectively. This assay is rapid and convenient that can be performed within one working day. One-tube LAMP-PCR-HY-RE-ELISA system was designed based on hot spot point mutations in target drug-resistant genes, using LAMP-PCR, hybridization, digestion with restriction endonuclease and colorimetric method of ELISA. In this study, LAMP assay was used to amplify DNA from drug-resistant M. tuberculosis, and ELISA was used for colorimetrical determination. This assay will be a useful tool for rapid diagnosis of mutant codons in strains of M. tuberculosis for isoniazid at katG 315 and katG 463, ethambutol at embB 306 and embB 497, and streptomycin at rpsL 43. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  9. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia.

    Science.gov (United States)

    Fallahi, Shirzad; Seyyed Tabaei, Seyyed Javad; Pournia, Yadollah; Zebardast, Nozhat; Kazemi, Bahram

    2014-07-01

    Toxoplasmosis diagnosis constitutes an important measure for disease prevention and control. In this paper, a newly described DNA amplification technique, loop-mediated isothermal amplification (LAMP), and nested-PCR targeting the repeated element (RE) and B1 gene, were compared to each other for the detection of Toxoplasma gondii DNA in blood samples of children with leukaemia. One hundred ten blood samples from these patients were analyzed by LAMP and nested-PCR. Out of 50 seropositive samples (IgM+, IgG+), positive results were obtained with 92% and 86% on RE, B1-LAMP and 82% and 68% on RE, B1-nested PCR analyses, respectively. Of the 50 seronegative samples, three, two and one samples were detected positive by RE-LAMP, B1-LAMP and RE-nested PCR assays, respectively, while none were detected positive by B1-nested PCR. None of the 10 IgM-, IgG+ samples was detected positive after testing LAMP and nested-PCR assays in duplicate. This is the first report of a study in which the LAMP method was applied with high sensitivity and efficacy for the diagnosis of T. gonii in blood samples of children with leukaemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals.

    Science.gov (United States)

    Zhou, Qian-Jin; Wang, Lei; Chen, Jiong; Wang, Rui-Na; Shi, Yu-Hong; Li, Chang-Hong; Zhang, De-Min; Yan, Xiao-Jun; Zhang, Yan-Jun

    2014-09-01

    Rapid, low-cost, and user-friendly strategies are urgently needed for early disease diagnosis and timely treatment, particularly for on-site screening of pathogens in aquaculture. In this study, we successfully developed a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP), which was capable of simultaneously detecting 10 pathogenic bacteria in aquatic animals, i.e., Nocardia seriolae, Pseudomonas putida, Streptococcus iniae, Vibrio alginolyticus, Vibrio anguillarum, Vibrio fluvialis, Vibrio harveyi, Vibrio parahaemolyticus, Vibrio rotiferianus, and Vibrio vulnificus. The assay provided a nearly-automated approach, with only a single pipetting step per chip for sample dispensing. This technique could achieve limits of detection (LOD) ranging from 0.40 to 6.42pg per 1.414μL reaction in less than 30 min. The robust reproducibility was demonstrated by a little variation among duplications for each bacterium with the coefficient of variation (CV) for time to positive (Tp) value less than 0.10. The clinical sensitivity and specificity of this on-chip LAMP assay in detecting field samples were 96.2% and 93.8% by comparison with conventional microbiological methods. Compared with other well-known techniques, on-chip LAMP assay provides low sample and reagent consumption, ease-of-use, accelerated analysis, multiple bacteria and on-site detection, and high reproducibility, indicating that such a technique would be applicable for on-site detection and routine monitoring of multiple pathogens in aquaculture. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Evaluation of commercial kit based on loop-mediated isothermal amplification for rapid detection of low levels of uninjured and injured Salmonella on duck meat, bean sprouts, and fishballs in Singapore.

    Science.gov (United States)

    Lim, Hazel Sin Yue; Zheng, Qianwang; Miks-Krajnik, Marta; Turner, Matthew; Yuk, Hyun-Gyun

    2015-06-01

    The objective of this study was to evaluate performance of the commercial kit based on loop-mediated isothermal amplification (LAMP) in comparison with the International Organization for Standardization method for detecting uninjured and sublethally injured Salmonella cells artificially inoculated at levels of 10(0) and 10(1) CFU/25 g on raw duck wing, raw mung bean sprouts, and processed fishballs. Injured cells were prepared by a heat treatment for duck wings and fishball samples and a chlorine treatment for bean sprout samples. Additionally, a validation study was performed on naturally contaminated food samples sold in Singapore. A total of 110 samples of each commodity were analyzed in this study. Regardless of inoculum levels, the detection by the commercial LAMP kit showed 100% sensitivity and specificity for both inoculated and uninoculated samples compared with the International Organization for Standardization method, with the exception of bean sprout samples. Only 20% of bean sprout samples inoculated with 10(0) CFU/25 g injured Salmonella cells were positive by using the commercial LAMP-based kit. However, all negative samples became positive following a secondary enrichment in Rappaport-Vassiliadis medium with soy broth or after concentration by centrifugation. These results suggest that secondary enrichment or centrifugation should be considered as an additional step to increase the sensitivity of the commercial LAMP-based kit with low numbers of injured target cells in samples with high background microflora (such as mung bean sprouts). The validation study also showed that the commercial LAMP-based kit provided 91% sensitivity and 95% specificity for naturally contaminated samples. Thus, this study demonstrates that the commercial LAMP-based kit might be a cost-effective method, as this system could provide rapid, accurate detection of both uninjured and injured Salmonella cells on raw duck wings, raw mung bean sprouts, and processed fishballs in

  12. Assessing the performance of a Loop Mediated Isothermal Amplification (LAMP) assay for the detection and subtyping of high-risk suptypes of Human Papilloma Virus (HPV) for Oropharyngeal Squamous Cell Carcinoma (OPSCC) without DNA purification.

    Science.gov (United States)

    Rohatensky, Mitchell G; Livingstone, Devon M; Mintchev, Paul; Barnes, Heather K; Nakoneshny, Steven C; Demetrick, Douglas J; Dort, Joseph C; van Marle, Guido

    2018-02-08

    Oropharyngeal Squamous Cell Carcinoma (OPSCC) is increasing in incidence despite a decline in traditional risk factors. Human Papilloma Virus (HPV), specifically subtypes 16, 18, 31 and 35, has been implicated as the high-risk etiologic agent. HPV positive cancers have a significantly better prognosis than HPV negative cancers of comparable stage, and may benefit from different treatment regimens. Currently, HPV related carcinogenesis is established indirectly through Immunohistochemistry (IHC) staining for p16, a tumour suppressor gene, or polymerase chain reaction (PCR) that directly tests for HPV DNA in biopsied tissue. Loop mediated isothermal amplification (LAMP) is more accurate than IHC, more rapid than PCR and is significantly less costly. In previous work we showed that a subtype specific HPV LAMP assay performed similar to PCR on purified DNA. In this study we examined the performance of this LAMP assay without DNA purification. We used LAMP assays using established primers for HPV 16 and 18, and new primers for HPV 31 and 35. LAMP reaction conditions were tested on serial dilutions of plasmid HPV DNA to confirm minimum viral copy number detection thresholds. LAMP was then performed directly on different human cell line samples without DNA purification. Our LAMP assays could detect 10 5 , 10 3 , 10 4 , and 10 5 copies of plasmid DNA for HPV 16, 18, 31, and 35, respectively. All primer sets were subtype specific, with no cross-amplification. Our LAMP assays also reliably amplified subtype specific HPV DNA from samples without requiring DNA isolation and purification. The high risk OPSCC HPV subtype specific LAMP primer sets demonstrated, excellent clinically relevant, minimum copy number detection thresholds with an easy readout system. Amplification directly from samples without purification illustrated the robust nature of the assay, and the primers used. This lends further support HPV type specific LAMP assays, and these specific primer sets and assays

  13. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    Science.gov (United States)

    Zhang, Xin; Zhang, He; Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3) spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China.

  14. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    Full Text Available Fusarium oxysporum f. sp. cubense (Foc, the causal agent of Fusarium wilt (Panama disease, is one of the most devastating diseases of banana (Musa spp.. The Foc tropical race 4 (TR4 is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3 spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05. Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China.

  15. (PCR) and loop-mediated isothermal amplification

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... Einsele H, Herbart H, Roller G (1997). Detection and identification of fungal pathogens in blood by using molecular probes. J. Clin. Microbiol. 35:1353-60. PMid:9163443 PMCid:PMC229748. Eljaschewitsch J, Sandfort J, Tintelnot K, Horbach I, Ruf B (1996).Port- a-cath-related Fusariumoxysporum infection ...

  16. Genetic variability and discrimination of low doses of Toxocara spp. from public areas soil inferred by loop-mediated isothermal amplification assay as a field-friendly molecular tool

    Directory of Open Access Journals (Sweden)

    Maryam Ozlati

    2016-12-01

    Full Text Available Aim: One of the main diagnostic problems of conventional polymerase chain reaction (PCR is indiscrimination of low parasitic loads in soil samples. The aim of this study is to determine the genetic diversity and identification of Toxocara spp. from public areas soil inferred by loop-mediated isothermal amplification (LAMP assay. Materials and Methods: A total of 180 soil samples were collected from various streets and public parks of northwest Iran. The DNA of recovered Toxocara eggs were extracted and amplified by PCR and LAMP following ZnSO4 flotation technique. The amplicons of internal transcribed spacer-2 gene were sequenced to reveal the heterogeneity traits of Toxocara spp. In addition, Toxocara canis sequences of southwest Iran were directly retrieved to compare gene flow between two distinct populations. Results: Toxocara spp. eggs were found in 57, 14 and 77 of soil samples using the microscopy, PCR and LAMP (detection limit 1-3 eggs/200 g soil, respectively. 7.7% of isolates were identified as T. canis by PCR method, while LAMP was able to detect 27.2%, 15.5% and 12.2% as Toxocara cati, T. canis and mixed infections, respectively. The kappa coefficient between LAMP and microscopy indicated a strong agreement (0.765 but indicated a faint agreement among LAMP-PCR (0.203 and PCR-microscopy (0.308 methods. A pairwise fixation index (Fst as a degree of gene flow was generally low (0.02156 among Toxocara populations of northwest and southwest Iran. Conclusions: The statistically significant Fst value indicates that the T. canis populations are not genetically well differentiated between northwest and southwest Iran. This shows that here is possibly an epidemiological drift due to the transfer of alleles. The LAMP assay because of its shorter reaction time, more sensitivity, and simultaneous detection of environmental contamination to be appears as valuable field diagnosis compared to PCR. Therefore, the detection of low Toxocara spp. loads

  17. Genetic variability and discrimination of low doses of Toxocara spp. from public areas soil inferred by loop-mediated isothermal amplification assay as a field-friendly molecular tool.

    Science.gov (United States)

    Ozlati, Maryam; Spotin, Adel; Shahbazi, Abbas; Mahami-Oskouei, Mahmoud; Hazratian, Teimour; Adibpor, Mohammad; Ahmadpour, Ehsan; Dolatkhah, Afsaneh; Khoshakhlagh, Paria

    2016-12-01

    Aim: One of the main diagnostic problems of conventional polymerase chain reaction (PCR) is indiscrimination of low parasitic loads in soil samples. The aim of this study is to determine the genetic diversity and identification of Toxocara spp. from public areas soil inferred by loop-mediated isothermal amplification (LAMP) assay. A total of 180 soil samples were collected from various streets and public parks of northwest Iran. The DNA of recovered Toxocara eggs were extracted and amplified by PCR and LAMP following ZnSO 4 flotation technique. The amplicons of internal transcribed spacer-2 gene were sequenced to reveal the heterogeneity traits of Toxocara spp. In addition, Toxocara canis sequences of southwest Iran were directly retrieved to compare gene flow between two distinct populations. Toxocara spp. eggs were found in 57, 14 and 77 of soil samples using the microscopy, PCR and LAMP (detection limit 1-3 eggs/200 g soil), respectively. 7.7% of isolates were identified as T. canis by PCR method, while LAMP was able to detect 27.2%, 15.5% and 12.2% as Toxocara cati , T. canis and mixed infections, respectively. The kappa coefficient between LAMP and microscopy indicated a strong agreement (0.765) but indicated a faint agreement among LAMP-PCR (0.203) and PCR-microscopy (0.308) methods. A pairwise fixation index ( F st) as a degree of gene flow was generally low (0.02156) among Toxocara populations of northwest and southwest Iran. The statistically significant F st value indicates that the T. canis populations are not genetically well differentiated between northwest and southwest Iran. This shows that here is possibly an epidemiological drift due to the transfer of alleles. The LAMP assay because of its shorter reaction time, more sensitivity, and simultaneous detection of environmental contamination to be appears as valuable field diagnosis compared to PCR. Therefore, the detection of low Toxocara spp. loads from public area soils will help to expand

  18. Yes-associated protein and WW-containing transcription regulator 1 regulate the expression of sex-determining genes in Sertoli cells, but their inactivation does not cause sex reversal.

    Science.gov (United States)

    Levasseur, Adrien; Paquet, Marilène; Boerboom, Derek; Boyer, Alexandre

    2017-07-01

    Yes-associated protein (YAP) and WW-containing transcription regulator 1 (WWTR1) are two functionally redundant transcriptional regulators that are downstream effectors of the Hippo signaling pathway, and that act as major regulators of cell growth and differentiation. To elucidate their role in Sertoli cells, primary Sertoli cell culture from Yapflox/flox; Wwtr1flox/flox animals were infected with a Cre recombinase-expressing adenovirus. Concomitant inactivation of Yap and Wwtr1 resulted in a decrease in the mRNA levels of the male sex differentiation genes Dhh, Dmrt1, Sox9, and Wt1, whereas those of genes involved in female differentiation (Wnt4, Rspo1, and Foxl2) were induced. SOX9, FOXL2, and WNT4 proteins were regulated in the same manner as their mRNAs in response to loss of YAP and WWTR1. To further characterize the role of YAP and WWTR1 in Sertoli cells, we generated a mouse model (Yapflox/flox; Wwtr1flox/flox; Amhcre/+) in which Yap and Wwtr1 were conditionally deleted in Sertoli cells. An increase in the number of apoptotic cells was observed in the seminiferous tubules of 4 dpp mutant mice, leading to a reduction in testis weights and a decrease in the number of Sertoli cells in adult animals. Gene expression analyses of testes from 4 dpp Yapflox/flox; Wwtr1flox/flox; Amhcre/+ mice showed that Sertoli cell differentiation is initially altered, as Dhh, Dmrt1, and Sox9 mRNA levels were downregulated, whereas Wnt4 mRNA levels were increased. However, expression of these genes was not changed in older animals. Together, these results suggest a novel role of the Hippo signaling pathway in the mechanisms of sex differentiation. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Keeping your armour intact: how HIV-1 evades detection by the innate immune system: HIV-1 capsid controls detection of reverse transcription products by the cytosolic DNA sensor cGAS.

    Science.gov (United States)

    Maelfait, Jonathan; Seiradake, Elena; Rehwinkel, Jan

    2014-07-01

    HIV-1 infects dendritic cells (DCs) without triggering an effective innate antiviral immune response. As a consequence, the induction of adaptive immune responses controlling virus spread is limited. In a recent issue of Immunity, Lahaye and colleagues show that intricate interactions of HIV capsid with the cellular cofactor cyclophilin A (CypA) control infection and innate immune activation in DCs. Manipulation of HIV-1 capsid to increase its affinity for CypA results in reduced virus infectivity and facilitates access of the cytosolic DNA sensor cGAS to reverse transcribed DNA. This in turn induces a strong host response. Here, we discuss these findings in the context of recent developments in innate immunity and consider the implications for disease control and vaccine design. © 2014 The Authors. Bioessays published by WILEY Periodicals, Inc.

  20. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...

  1. A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter

    Directory of Open Access Journals (Sweden)

    Gao Chen

    2012-02-01

    Full Text Available Abstract Background The human papillomavirus (HPV E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells. Results CAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2. Conclusions These results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation.

  2. SYBR green-based real-time reverse transcription-PCR for typing and subtyping of all hemagglutinin and neuraminidase genes of avian influenza viruses and comparison to standard serological subtyping tests

    Science.gov (United States)

    Tsukamoto, K.; Javier, P.C.; Shishido, M.; Noguchi, D.; Pearce, J.; Kang, H.-M.; Jeong, O.M.; Lee, Y.-J.; Nakanishi, K.; Ashizawa, T.

    2012-01-01

    Continuing outbreaks of H5N1 highly pathogenic (HP) avian influenza virus (AIV) infections of wild birds and poultry worldwide emphasize the need for global surveillance of wild birds. To support the future surveillance activities, we developed a SYBR green-based, real-time reverse transcriptase PCR (rRT-PCR) for detecting nucleoprotein (NP) genes and subtyping 16 hemagglutinin (HA) and 9 neuraminidase (NA) genes simultaneously. Primers were improved by focusing on Eurasian or North American lineage genes; the number of mixed-base positions per primer was set to five or fewer, and the concentration of each primer set was optimized empirically. Also, 30 cycles of amplification of 1:10 dilutions of cDNAs from cultured viruses effectively reduced minor cross- or nonspecific reactions. Under these conditions, 346 HA and 345 NA genes of 349 AIVs were detected, with average sensitivities of NP, HA, and NA genes of 10 1.5, 10 2.3, and 10 3.1 50% egg infective doses, respectively. Utility of rRT-PCR for subtyping AIVs was compared with that of current standard serological tests by using 104 recent migratory duck virus isolates. As a result, all HA genes and 99% of the NA genes were genetically subtyped, while only 45% of HA genes and 74% of NA genes were serologically subtyped. Additionally, direct subtyping of AIVs in fecal samples was possible by 40 cycles of amplification: approximately 70% of HA and NA genes of NP gene-positive samples were successfully subtyped. This validation study indicates that rRT-PCR with optimized primers and reaction conditions is a powerful tool for subtyping varied AIVs in clinical and cultured samples. Copyright ?? 2012, American Society for Microbiology. All Rights Reserved.

  3. Identifying salt stress-responsive transcripts from Roselle ( Hibiscus ...

    African Journals Online (AJOL)

    Hibiscus sabdariffa L.). Identifying the potentially novel transcripts responsible for salt stress tolerance in roselle will increase knowledge of the molecular mechanism underlying salt stress responses. In this study, differential display reverse ...

  4. Human epidermal growth factor receptor 2 assessment in a case-control study: comparison of fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction performed by central laboratories.

    Science.gov (United States)

    Baehner, Frederick L; Achacoso, Ninah; Maddala, Tara; Shak, Steve; Quesenberry, Charles P; Goldstein, Lynn C; Gown, Allen M; Habel, Laurel A

    2010-10-01

    The optimal method to assess human epidermal growth factor receptor 2 (HER2) status remains highly controversial. Before reporting patient HER2 results, American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines mandate that laboratories demonstrate ≥ 95% concordance to another approved laboratory or methodology. Here, we compare central laboratory HER2 assessed by fluorescence in situ hybridization (FISH) and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) using Oncotype DX in lymph node-negative, chemotherapy-untreated patients from a large Kaiser Permanente case-control study. Breast cancer specimens from the Kaiser-Genomic Health study were examined. Central FISH assessment of HER2 amplification and polysomy 17 was conducted by PhenoPath Laboratories (ratios > 2.2, 1.8 to 2.2, and < 1.8 define HER2 positive, HER2 equivocal, and HER2 negative, respectively). HER2 expression by RT-PCR was conducted using Oncotype DX by Genomic Health (normalized expression units ≥ 11.5, 10.7 to < 11.5, and < 10.7 define HER2 positive, HER2 equivocal, and HER2 negative, respectively). Concordance analyses followed ASCO/CAP guidelines. HER2 concordance by central FISH and central RT-PCR was 97% (95% CI, 96% to 99%). Twelve percent (67 of 568 patients) and 11% (60 of 568 patients) of patients were HER2 positive by RT-PCR and FISH, respectively. HER2-positive patients had increased odds of dying from breast cancer compared with HER2-negative patients. Polysomy 17 was demonstrated in 12.5% of all patients and 33% of FISH-positive patients. Nineteen of 20 FISH-positive patients with polysomy 17 were also RT-PCR HER2 positive. Although not statistically significantly different, HER2-positive/polysomy 17 patients tended to have the worst prognosis, followed by HER2-positive/eusomic, HER2-negative/polysomy 17, and HER2-negative/eusomic patients. There is a high degree of concordance between central FISH and quantitative RT

  5. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein coding...... regions, the map of transcripts is very complex due to small transcripts from the flanking ends of the transcription unit, the use of multiple start and stop sites for the main transcript, production of multiple functional RNA molecules from the same primary transcript, and RNA molecules made...... by independent transcription from within the unit. In genomic regions separating those that encode proteins or highly abundant RNA molecules with known function, transcripts are generally of low abundance and short-lived. In most of these cases, it is unclear to what extent a function is related to transcription...

  6. Managing Reverse Logistics or Reversing Logistics Management?

    OpenAIRE

    Brito, Marisa

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse logistics. The thesis brings insights on reverse logistics decision-making and it lays down theoretical principles for reverse logistics as a research field.In particular it puts together a framework ...

  7. Comparison of multiplex reverse transcription-PCR-enzyme ...

    African Journals Online (AJOL)

    Mervat Gamal Eldin Mansour

    for the detection of four viral respiratory pathogens (Influenza viruses A & B and Respiratory Syncitial. Viruses A .... quently extracted using a MagNA Pure Compact system with .... for RSV infections (Ribavirin and RSV hyper-immune globulin).

  8. Design and Optimization of Reverse-Transcription Quantitative PCR Experiments

    Czech Academy of Sciences Publication Activity Database

    Tichopád, A.; Kitchen, R.; Riedmaier, I.; Becker, Ch.; Ståhlberg, A.; Kubista, Mikael

    2009-01-01

    Roč. 55, č. 10 (2009), s. 1816-1823 ISSN 0009-9147 Institutional research plan: CEZ:AV0Z50520701 Keywords : Design * optimization * RT qPCR Subject RIV: EG - Zoology Impact factor: 6.263, year: 2009

  9. In situ reverse transcription: the magic of strength and anonymity

    Czech Academy of Sciences Publication Activity Database

    Ligasová, Anna; Koberna, Karel

    2010-01-01

    Roč. 38, č. 16 (2010), e167-e178 ISSN 0305-1048 R&D Projects: GA ČR GA204/09/0973; GA AV ČR KJB500390701; GA AV ČR KAN200520801 Institutional research plan: CEZ:AV0Z50390512 Keywords : nucleic acids * DNA-RNA Subject RIV: EA - Cell Biology Impact factor: 7.836, year: 2010

  10. Colon cancer associated transcripts in human cancers.

    Science.gov (United States)

    Chen, Yincong; Xie, Haibiao; Gao, Qunjun; Zhan, Hengji; Xiao, Huizhong; Zou, Yifan; Zhang, Fuyou; Liu, Yuchen; Li, Jianfa

    2017-10-01

    Long non-coding RNAs serve as important regulators in complicated cellular activities, including cell differentiation, proliferation and death. Dysregulation of long non-coding RNAs occurs in the formation and progression of cancers. The family of colon cancer associated transcripts, long non-coding RNAs colon cancer associated transcript-1 and colon cancer associated transcript-2 are known as oncogenes involved in various cancers. Colon cancer associated transcript-1 is a novel lncRNA located in 8q24.2, and colon cancer associated transcript-2 maps to the 8q24.21 region encompassing rs6983267. Colon cancer associated transcripts have close associations with clinical characteristics, such as lymph node metastasis, high TNM stage and short overall survival. Knockdown of them can reverse the malignant phenotypes of cancer cells, including proliferation, migration, invasion and apoptosis. Moreover, they can increase the expression level of c-MYC and oncogenic microRNAs via activating a series of complex mechanisms. In brief, the family of colon cancer associated transcripts may serve as potential biomarkers or therapeutic targets for human cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Managing Reverse Logistics or Reversing Logistics Management?

    NARCIS (Netherlands)

    M.P. de Brito (Marisa)

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse

  12. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  13. Semi-Nested Real-Time Reverse Transcription Polymerase Chain Reaction Methods for the Successful Quantitation of Cytokeratin mRNA Expression Levels for the Subtyping of Non-Small-Cell Lung Carcinoma Using Paraffin-Embedded and Microdissected Lung Biopsy Specimens

    International Nuclear Information System (INIS)

    Nakanishi, Yoko; Shimizu, Tetsuo; Tsujino, Ichiro; Obana, Yukari; Seki, Toshimi; Fuchinoue, Fumi; Ohni, Sumie; Oinuma, Toshinori; Kusumi, Yoshiaki; Yamada, Tsutomu; Takahashi, Noriaki; Hashimoto, Shu; Nemoto, Norimichi

    2013-01-01

    In patients with inoperable advanced non-small cell lung carcinomas (NSCLCs), histological subtyping using small-mount biopsy specimens was often required to decide the indications for drug treatment. The aim of this study was to assess the utility of highly sensitive mRNA quantitation for the subtyping of advanced NSCLC using small formalin fixing and paraffin embedding (FFPE) biopsy samples. Cytokeratin (CK) 6, CK7, CK14, CK18, and thyroid transcription factor (TTF)-1 mRNA expression levels were measured using semi-nested real-time quantitative (snq) reverse-transcribed polymerase chain reaction (RT-PCR) in microdissected tumor cells collected from 52 lung biopsies. Our results using the present snqRT-PCR method showed an improvement in mRNA quantitation from small FFPE samples, and the mRNA expression level using snqRT-PCR was correlated with the immunohistochemical protein expression level. CK7, CK18, and TTF-1 mRNA were expressed at significantly higher levels (P<0.05) in adenocarcinoma (AD) than in squamous cell carcinoma (SQ), while CK6 and CK14 mRNA expression was significantly higher (P<0.05) in SQ than in AD. Each histology-specific CK, particularly CK18 in AD and CK6 in SQ, were shown to be correlated with a poor prognosis (P=0.02, 0.02, respectively). Our results demonstrated that a quantitative CK subtype mRNA analysis from lung biopsy samples can be useful for predicting the histology subtype and prognosis of advanced NSCLC

  14. Tubal Ligation Reversal

    Science.gov (United States)

    ... seal off the fallopian tubes, such as the Essure or Adiana systems, generally aren't reversible. Why ... electrocautery). Some types of sterilization, such as the Essure or Adiana systems, aren't considered reversible. Risks ...

  15. Reverse logistics - a framework

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); R. Dekker (Rommert)

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of

  16. Transcriptional regulation by competing transcription factor modules.

    Directory of Open Access Journals (Sweden)

    Rutger Hermsen

    2006-12-01

    Full Text Available Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.

  17. Reversible flowchart languages and the structured reversible program theorem

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    Many irreversible computation models have reversible counterparts, but these are poorly understood at present. We introduce reversible flowcharts with an assertion operator and show that any reversible flowchart can be simulated by a structured reversible flowchart using only three control flow...... operators. Reversible flowcharts are r- Turing-complete, meaning that they can simuluate reversible Turing machines without garbage data. We also demonstrate the injectivization of classical flowcharts into reversible flowcharts. The reversible flowchart computation model provides a theoretical...

  18. WRKY transcription factors

    Science.gov (United States)

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  19. Introduction to reversible computing

    CERN Document Server

    Perumalla, Kalyan S

    2013-01-01

    Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever

  20. Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters

    DEFF Research Database (Denmark)

    Chen, Yun; Pai, Athma A; Herudek, Jan

    2016-01-01

    Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation s...... suggest that basic building blocks of divergently transcribed core promoter pairs, in combination with the wealth of TSSs in mammalian genomes, provide a framework with which evolution shapes transcriptomes.......Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation...

  1. Reversibility of female sterilization.

    Science.gov (United States)

    Siegler, A M; Hulka, J; Peretz, A

    1985-04-01

    The discussion considers the current status of reversibility of sterilization in the US and describes clinical and experimental efforts for developing techniques designed for reversibility. It focuses on regret following sterilization, reversal potential of current sterilization techniques, patient selection, current reversal techniques, results of sterilization procedures, experimental approaches to reversal of current techniques of sterilization, and sterilization procedures devised for reversibility, in humans and in animals. Request is the 1st stage of reversal, but a request for sterilization reversal (SR) does not always mean regret for a decision made at the time. Frequently it is a wish to restore fertility because life circumstances have changed after a sterilization that was ppropriate at the time it was performed. Schwyhart and Kutner reviewed 22 studies published between 1949-69 in which they found that the percentage of patients regretting the procedure ranged from 1.3-15%. Requests for reversal remain low in most countries, but if sterilization becomes a more popular method of contraception, requests will also increase. The ideal operation considered as a reversaible method of sterilization should include an easy, reliable outpatient method of tubal occlusion with miniml risk or patient discomfort that subsequently could be reversed without the need for a major surgical intervention. Endoscopic methods have progressed toward the 1st objective. A recent search of the literature uncovered few series of SR of more than 50 cases. The 767 operations found were analyzed with regard to pregnancy outcome. The precent of live births varied from 74-78.8%, and the occurance of tubal pregnancies ranged from 1.7-6.5%. All of the confounding variables in patient selection and small numbers of reported procedures preclude any conclusion about the different techniques or the number of operations that give a surgeon a level of expertise. Few authors classify their

  2. Quantum reverse hypercontractivity

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, Toby [Department of Computer Science, University College London, London, United Kingdom and Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, Cambridge (United Kingdom); Kastoryano, Michael [NBIA, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Montanaro, Ashley [School of Mathematics, University of Bristol, Bristol (United Kingdom); Temme, Kristan [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We develop reverse versions of hypercontractive inequalities for quantum channels. By generalizing classical techniques, we prove a reverse hypercontractive inequality for tensor products of qubit depolarizing channels. We apply this to obtain a rapid mixing result for depolarizing noise applied to large subspaces and to prove bounds on a quantum generalization of non-interactive correlation distillation.

  3. Atrioventricular Pacemaker Lead Reversal

    Directory of Open Access Journals (Sweden)

    Mehmet K Aktas, MD

    2007-01-01

    Full Text Available During cardiac surgery temporary epicardial atrial and ventricular leads are placed in case cardiac pacing is required postoperatively. We present the first reported series of patients with reversal of atrioventricular electrodes in the temporary pacemaker without any consequent deleterious hemodynamic effect. We review the electrocardiographic findings and discuss the findings that lead to the discovery of atrioventricular lead reversal.

  4. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  5. Reverse transcriptase-quantitative polymerase chain reaction (RT ...

    African Journals Online (AJOL)

    The reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a highly specific polymerase chain reaction (PCR) method that allows one to detect very low transcription levels of functional gene(s) in soil. RT-qPCR helps us to know the active members of the microbial community, and their activities can be ...

  6. Sex reversal in vertebrates

    OpenAIRE

    2016-01-01

    This special topic issue of Sexual Development gives an overview of sex reversal in vertebrates, from fishes naturally changing their sex, to rodents escaping the mammalian SRY-determining system. It offers eight up-to-date reviews on specific subjects in sex reversal, considering fishes, amphibians, reptiles, birds, marsupials, and placental mammals, including humans. The broad scope of represented animals makes this ideal for students and researchers, especially those interested in the...

  7. Characterization of human mesothelin transcripts in ovarian and pancreatic cancer

    International Nuclear Information System (INIS)

    Muminova, Zhanat E; Strong, Theresa V; Shaw, Denise R

    2004-01-01

    Mesothelin is an attractive target for cancer immunotherapy due to its restricted expression in normal tissues and high level expression in several tumor types including ovarian and pancreatic adenocarcinomas. Three mesothelin transcript variants have been reported, but their relative expression in normal tissues and tumors has been poorly characterized. The goal of the present study was to clarify which mesothelin transcript variants are commonly expressed in human tumors. Human genomic and EST nucleotide sequences in the public databases were used to evaluate sequences reported for the three mesothelin transcript variants in silico. Subsequently, RNA samples from normal ovary, ovarian and pancreatic carcinoma cell lines, and primary ovarian tumors were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and nucleotide sequencing to directly identify expressed transcripts. In silico comparisons of genomic DNA sequences with available EST sequences supported expression of mesothelin transcript variants 1 and 3, but there were no sequence matches for transcript variant 2. Newly-derived nucleotide sequences of RT-PCR products from tissues and cell lines corresponded to mesothelin transcript variant 1. Mesothelin transcript variant 2 was not detected. Transcript variant 3 was observed as a small percentage of total mesothelin amplification products from all studied cell lines and tissues. Fractionation of nuclear and cytoplasmic RNA indicated that variant 3 was present primarily in the nuclear fraction. Thus, mesothelin transcript variant 3 may represent incompletely processed hnRNA. Mesothelin transcript variant 1 represents the predominant mature mRNA species expressed by both normal and tumor cells. This conclusion should be important for future development of cancer immunotherapies, diagnostic tests, and gene microarray studies targeting mesothelin

  8. Application of loop-mediated isothermal amplification (LAMP) of the ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... evaluate the RIME - LAMP for the detection of T. evansi in naturally infected camels in Sudan. MATERIALS AND METHODS. Study design. Cross sectional ... from each camel using 5 ml disposable syringe. Three drops of the fresh collected blood were immediately placed in FTA card. (Whatman classic ...

  9. Development of a loop-mediated isothermal amplification assay for ...

    African Journals Online (AJOL)

    Administrator

    2011-09-28

    Sep 28, 2011 ... The assay specifically amplified only M. bovis; no cross-reactivity ... in a clinical setting. ... It causes major economic ... reduced weight gain in calves; mastitis in cows; and ..... and Mycoplasma agalactiae based on the uvrC genes by PCR. ... bovis infection: epidemiological and clinical survey of dairy cattle.

  10. LOOP mediated isothermal AMPlification (LAMP) in diagnosis of ...

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... Due to disadvantages of known ... advantages, as compared to traditional diagnostic methods like ... Products of LAMP reaction are DNA fragments with stemloop ..... "Differentiation of Cryptococcus neoformans varieties and.

  11. LOOP mediated isothermal AMPlification (LAMP) in diagnosis of ...

    African Journals Online (AJOL)

    We collected a quantity of 35 serum samples of HIVpositive patients and a number of 107 cerebrospinal fluid (CSF) samples of patients who had shown symptoms of meningitis. We designed target specific primers for PCR and LAMP techniques to trace C. neoformans and C. gattii. From the total 142 clinical specimens, five ...

  12. Loop-mediated isothermal amplification (LAMP) based detection of ...

    African Journals Online (AJOL)

    Various diseases are caused by pathogenic bacteria and their diagnosis depends on accurate detection of pathogen from clinical samples. Several molecular methods have been developed including PCR, Real Time PCR or multiplex PCR which detects the pathogen accurately. However, every method has some ...

  13. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells.

    Directory of Open Access Journals (Sweden)

    Zach Hensel

    Full Text Available DNA looping mediated by transcription factors plays critical roles in prokaryotic gene regulation. The "genetic switch" of bacteriophage λ determines whether a prophage stays incorporated in the E. coli chromosome or enters the lytic cycle of phage propagation and cell lysis. Past studies have shown that long-range DNA interactions between the operator sequences O(R and O(L (separated by 2.3 kb, mediated by the λ repressor CI (accession number P03034, play key roles in regulating the λ switch. In vitro, it was demonstrated that DNA segments harboring the operator sequences formed loops in the presence of CI, but CI-mediated DNA looping has not been directly visualized in vivo, hindering a deep understanding of the corresponding dynamics in realistic cellular environments. We report a high-resolution, single-molecule imaging method to probe CI-mediated DNA looping in live E. coli cells. We labeled two DNA loci with differently colored fluorescent fusion proteins and tracked their separations in real time with ∼40 nm accuracy, enabling the first direct analysis of transcription-factor-mediated DNA looping in live cells. Combining looping measurements with measurements of CI expression levels in different operator mutants, we show quantitatively that DNA looping activates transcription and enhances repression. Further, we estimated the upper bound of the rate of conformational change from the unlooped to the looped state, and discuss how chromosome compaction may impact looping kinetics. Our results provide insights into transcription-factor-mediated DNA looping in a variety of operator and CI mutant backgrounds in vivo, and our methodology can be applied to a broad range of questions regarding chromosome conformations in prokaryotes and higher organisms.

  14. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  15. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators

    DEFF Research Database (Denmark)

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei

    2015-01-01

    Reversible phosphorylation of bacterial transcriptional regulators (TRs) belonging to the family of two-component systems (TCSs) is a well-established mechanism for regulating gene expression. Recent evidence points to the fact that reversible phosphorylation of bacterial TRs on other types...

  16. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written......ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  17. Reversible Communicating Processes

    Directory of Open Access Journals (Sweden)

    Geoffrey Brown

    2016-02-01

    Full Text Available Reversible distributed programs have the ability to abort unproductive computation paths and backtrack, while unwinding communication that occurred in the aborted paths. While it is natural to assume that reversibility implies full state recovery (as with traditional roll-back recovery protocols, an interesting alternative is to separate backtracking from local state recovery. For example, such a model could be used to create complex transactions out of nested compensable transactions where a programmer-supplied compensation defines the work required to "unwind" a transaction. Reversible distributed computing has received considerable theoretical attention, but little reduction to practice; the few published implementations of languages supporting reversibility depend upon a high degree of central control. The objective of this paper is to demonstrate that a practical reversible distributed language can be efficiently implemented in a fully distributed manner. We discuss such a language, supporting CSP-style synchronous communication, embedded in Scala. While this language provided the motivation for the work described in this paper, our focus is upon the distributed implementation. In particular, we demonstrate that a "high-level" semantic model can be implemented using a simple point-to-point protocol.

  18. Economic impact of reversion

    International Nuclear Information System (INIS)

    2005-01-01

    Estimations of the Norwegian hydropower production and various reversion models' market value have been made. The value of the Norwegian hydropower production until 01.01.2007 is estimated to about Nok 289 billion after taxes, or about 2,42 Nok/kWh medium production, given an expected future electricity price of around 0,25 Nok/kWh and a discount rate at 6,5 percent in nominal terms after taxes. The estimate is slightly above the level of prices for Norwegian hydropower plants in the last 8-10 years. The value of reversion in private plants which today have a limited licence time is estimated to Nok 5,5 billion. The value of reversion in public-owned Norwegian hydropower plants are about Nok 21 billion with a 60 year licence period from 01.01.2007, and about 12 billion for 75 years (ml)

  19. Reversible deep disposal

    International Nuclear Information System (INIS)

    2009-10-01

    This presentation, given by the national agency of radioactive waste management (ANDRA) at the meeting of October 8, 2009 of the high committee for the nuclear safety transparency and information (HCTISN), describes the concept of deep reversible disposal for high level/long living radioactive wastes, as considered by the ANDRA in the framework of the program law of June 28, 2006 about the sustainable management of radioactive materials and wastes. The document presents the social and political reasons of reversibility, the technical means considered (containers, disposal cavities, monitoring system, test facilities and industrial prototypes), the decisional process (progressive development and blocked off of the facility, public information and debate). (J.S.)

  20. Basal transcription machinery

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... The holoenzyme of prokaryotic RNA polymerase consists of the core enzyme, made of two , , ' and subunits, which lacks promoter selectivity and a sigma () subunit which enables the core enzyme to initiate transcription in a promoter dependent fashion. A stress sigma factor s, in prokaryotes ...

  1. Machine Dictation and Transcription.

    Science.gov (United States)

    Harvey, Evelyn; And Others

    This instructional package contains both an instructor's manual and a student's manual for a course in machine dictation and transcription. The instructor's manual contains an overview with tips on teaching the course, letters for dictation, and a key to the letters. The student's manual contains an overview of the course and of the skills needed…

  2. Transcriptional Regulation in Haematopoiesis:

    DEFF Research Database (Denmark)

    Lauridsen, Felicia K B

    with the capacity to both self-renew and differentiate. This thesis is built upon two studies, which investigate two different aspects of the haematopoietic system; heterogeneity within the HSC compartment (presented in manuscript I), and the interplay between transcription factors controlling granulocyte/ monocyte...

  3. Thermosensory reversal effect quantified

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.

    2008-01-01

    At room temperature, some materials feel colder than others due to differences in thermal conductivity, heat capacity and geometry. When the ambient temperature is well above skin temperature, the roles of 'cold' and 'warm' materials are reversed. In this paper, this effect is quantified by

  4. Thermosensory reversal effect quantified

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.

    2008-01-01

    At room temperature, some materials feel colder than others due to differences in thermal conductivity, heat capacity and geometry. When the ambient temperature is well above skin temperature, the roles of ‘cold’ and ‘warm’ materials are reversed. In this paper, this effect is quantified by

  5. Time reversal communication system

    Science.gov (United States)

    Candy, James V.; Meyer, Alan W.

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  6. Engineering Encounters: Reverse Engineering

    Science.gov (United States)

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  7. Sex Reversal in Birds.

    Science.gov (United States)

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in verteb