WorldWideScience

Sample records for reverse pulse electrodeposition

  1. Synthesis of ZnTe nanowires onto TiO2 nanotubular arrays by pulse-reverse electrodeposition

    International Nuclear Information System (INIS)

    Gandhi, T.; Raja, K.S.; Misra, M.

    2009-01-01

    Growth of ZnTe nanowires using a pulse-reverse electrodeposition technique from a non-aqueous solution is reported. ZnTe nanowires were grown on to an ordered nanotubular TiO 2 template in a propylene carbonate solution at 130 o C inside a controlled atmosphere glove box. The pulse-reverse electro deposition process consisted of a cathodic pulse at - 0.62 V and an anodic pulse at 0.75 V Vs Zn 2+ /Zn. Stoichiometry growth of crystalline ZnTe nanowires was observed in the as-deposited condition. The anodic pulse cycle of the pulse-reverse electrodeposition process presumably introduced zinc vacancies as deep level acceptors at an energy level of E v + 0.47 eV. The resultant ZnTe nanowires showed p-type semiconductivity with a resistivity of 7.8 x 10 4 Ω cm and a charge carrier density of 1.67 x 10 14 cm -3 . Annihilation of the defects occurred upon thermal annealing that resulted in marginal decrease in the defect density.

  2. Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying.

    Science.gov (United States)

    Cherevko, Serhiy; Kulyk, Nadiia; Chung, Chan-Hwa

    2012-01-21

    Hydrogen evolution assisted electrodeposition is a new bottom-up technique allowing the fast and simple synthesis of nanometals. Electrochemical dealloying is a top-down approach with the same purpose. In this work, we show that a combination of these two methods in sequence by pulse-reverse electrodeposition can be used to prepare high-surface-area nanostructured metals. Highly porous adherent platinum is obtained by the deposition of CuPt alloy during the cathodic cycles and the selective dissolution of copper during the anodic cycles. The convection created by the movement of the hydrogen bubbles increases the deposition rate and removes the dissolved copper ions from the diffusion layer, which ensures the deposition of a film with the same stoichiometry throughout the whole process. Due to the relatively high ratio of copper atoms on the surface in the as-deposited layer, it is proposed that the dealloying kinetics is significantly higher than that usually observed during the dealloying process in a model system. The proposed approach has several advantages over other methods, such as a very high growth rate and needlessness of any post-treatment processes. A detailed analysis of the effect of pulse-reverse waveform parameters on the properties of the films is presented. Mesoporous platinum with pores and ligaments having characteristic sizes of less than 10 nm, an equivalent surface area of up to ca. 220 m(2) cm(-3), and a roughness factor of more than 1000 is fabricated.

  3. Long Silver Nanowires Synthesis by Pulsed Electrodeposition

    Directory of Open Access Journals (Sweden)

    M.R. Batevandi

    2015-09-01

    Full Text Available Silver nanowires were pulse electrodeposited into nanopore anodic alumina oxide templates. The effects of continuous and pulse electrodeposition waveform on the microstructure properties of the nanowire arrays were studied. It is seen that the microstructure of nanowire is depend to pulse condition. The off time duration of pulse waveform enables to control the growth direction of Ag nanowires.

  4. Preparation of metastable CoFeNi alloys with ultra-high magnetic saturation (Bs = 2.4-2.59 T) by reverse pulse electrodeposition

    Science.gov (United States)

    Tabakovic, Ibro; Venkatasamy, Venkatram

    2018-04-01

    The results of reverse pulse electrodeposition of CoFeNi films with ultra-high magnetic saturation, i.e. Bs values between 2.4 and 2.59 T, are presented in this work. Based on valence-bond theory (Hund's rule) it was assumed that the electronic configuration of MOH obtained by one electron reduction of electroactive intermediate (MOH+ads + e → MOHads) or oxidation of metal (M - e + HOH → MOH + H+) would result with larger number of spins per atom for each of transition metals in MOH-precipitated in CoFeNi deposit- with one more spin than their respective neutral metal in the order: Fe > Co > Ni. The experimental results showed that the increase of Bs value above Slater-Pauling curve was not observed for CoFe alloys, thus FeOH and CoOH compounds were not present in deposit. However, the increase of the Bs values above the Slater-Pauling curve (Bs = 2.4-2.59 T) was observed, for CoFeNi films obtained by reverse pulse electrodeposition. Therefore, NiOH as a stable compound is probably formed in a one-electron oxidation step during anodic pulse oxidation reaction precipitated presumably at the grain boundaries, giving rise to the ultra-high magnetic saturation of CoFeNi films. The effects of experimental conditions on elemental composition, magnetic properties, crystal structure, and thermal stability of CoFeNi films were studied.

  5. Microstructure and surface mechanical properties of pulse electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Hamid, A., E-mail: anwar@kfupm.edu.sa [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Dafalla, H.; Quddus, A.; Saricimen, H.; Al-Hadhrami, L.M. [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2011-09-01

    The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.

  6. Influence of pulse electrodeposition parameters on microhardness ...

    Indian Academy of Sciences (India)

    duty cycle on the microhardness and grain size of nanocomposite coatings that produced through the pulse current ... prepared by blowing inert metallic gas on a cold substrate in which fast gas .... were produced by a power supply.

  7. Pulse electrodeposition of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Adelkhani, H.

    2000-01-01

    Pulse Electroplating is a relativity new technique in electrodeposition of pure metals and alloys which has resulted in a number of improvement over the traditional direct current method. Among these are a better composition control, lower porosity, reduction of internal stresses and hydrogen content as well as other impurities. In this work Pulse plating of Fe-Ni-Cr alloys has been investigated by using a series of planned experiments. A domain of Pulse parameters, such a pulse frequency, pulse duration, current density and batch condition such as Ph, temperature and has been defined where the coating quality is optimal. The result obtained were Compared with those of D C electroplating and finally a number of recommendations are made for future works towards a semi-industrial process

  8. Iron Fibers Arrays Prepared by Electrodepositing in Reverse Liquid Crystalline

    Institute of Scientific and Technical Information of China (English)

    ZHAO Suling; LIN Dong; GUAN Jianguo; ZHANG Lianmeng

    2006-01-01

    Ordered iron fiber arrays were electrodeposited on the surface of zinc foils using "FeSO4 solution-sodium caprylate-Decanol" 3-component reverse hexagonal liquid crystal as soft templates. The structure of the soft templates and the synthesized iron fibers were characterized by polarizing microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis etc. The experimental results show that the synthesized iron fibers with α crystal phase grew up in the form of fiber clusters of about 200 nm along the direction perpendicular to the cathode surface. Each cluster was composed of several tens of fibers. The fibers had almost the same length of more than 10 μm with a diameter of about 50 nm.

  9. Insights into pulsed electrodeposition of GMR multilayered nanowires

    International Nuclear Information System (INIS)

    Pullini, D.; Busquets, D.; Ruotolo, A.; Innocenti, G.; Amigo, V.

    2007-01-01

    In this work, Co/Cu nanowires are fabricated by pulsed electrodeposition from a single bath solution containing both Co and Cu ions. Alternate Co and Cu layers are deposited into the nanopores of track etched polycarbonate templates. Although the feasibility of this process is generally recognized, some important issues such as process reproducibility and how structural defects affect the nanowires arrays' sensing performances are still open; conditions necessary to turn a this made system into a magnetic field sensor. The present work aims at pushing forward knowledge concerning the nanowires fabrication and defining the best growth parameters; in particular, a tight control of the growth process parameters such as single metal deposition potentials and single cycle deposition durations have been carried out for nanowires of 80 nm diameter and correlated to the system magneto-electric response

  10. Electrocatalysis of the hydrogen evolution reaction by rhenium oxides electrodeposited by pulsed-current

    International Nuclear Information System (INIS)

    Vargas-Uscategui, Alejandro; Mosquera, Edgar; Chornik, Boris; Cifuentes, Luis

    2015-01-01

    Highlights: • Rhenium oxides were produced by means of pulsed current electrodeposition over ITO. • The electrocatalytic behavior of rhenium oxides electrodeposited over ITO was studied. • Electrodeposited rhenium oxides showed electrocatalytic behavior increasing the rate of the hydrogen evolution reaction. • The electrocatalysis behavior was explained considering the relative abundance of Re species on the surface of the electrodeposited material. - Abstract: Rhenium oxides are materials of interest for applications in the catalysis of reactions such as those occurring in fuel cells and photoelectrochemical cells. This research work was devoted to the production of rhenium oxide by means of pulsed current electrodeposition for the electrocatalysis of the hydrogen evolution reaction (HER). Rhenium oxides were electrodeposited over a transparent conductive oxide substrate (Indium Tin-doped Oxide – ITO) in an alkaline aqueous electrolyte. The electrodeposition process allowed the production of rhenium oxides islands (200–600 nm) with the presence of three oxidized rhenium species: Re"I"V associated to ReO_2, Re"V"I associated to ReO_3 and Re"V"I"I associated to H(ReO_4)H_2O. Electrodeposited rhenium oxides showed electrocatalytic behavior over the HER and an increase of one order of magnitude of the exchange current density was observed compared to the reaction taking place on the bare substrate. The electrocatalytic behavior varied with the morphology and relative abundance of oxidized rhenium species in the electrodeposits. Finally, two mechanisms of electrocatalysis were proposed to explain experimental results.

  11. Magnetotransport and magnetization reversal of electrodeposited multilayer nanowires

    Science.gov (United States)

    Tang, Xueti

    2007-12-01

    Electrodeposited magnetic multilayer nanowires are ideal materials to study nanoscale magnetism and the giant magnetoresistance (GMR) in the current-perpendicular-to-plane (CPP) geometry. This is because the diameter of each nanowire is uniform, the surface of the nanowire is smooth, and the thickness of both the magnetic and non-magnetic layers can be varied to either larger or smaller than the spin diffusion length which is an important parameter in magnetotransport study. In addition, the aspect ratio (layer-thickness/diameter) that is related to shape anisotropy can be varied for magnetization reversal study. There has been little understanding in the magnetization reversal mechanism of multilayer nanowires, which is complicated due to the dipolar interactions between magnetic layers in each nanowire and between nanowires. The objective of this work is to study the magnetization reversal mechanism of multilayer nanowires using a vibrating sample magnetometer (VSM), where various dipolar interactions are taken into account. Although multilayer nanowires are ideal for the study of the CPP-GMR effect, there remains technical difficulty in making an electrical contact with individual nanowires for the CPP-GMR measurements. In this work, a point-contact method using a conductive plunger tip was developed in-house, that enabled us to measure the CPP-GMR of selected multilayer nanowires in an array of vertically aligned nanowires in each sample. To examine the CPP-GMR and compare the results with theoretical models, the CPP-GMR data were systematically obtained from samples with various magnetic and non-magnetic layer thicknesses. It was found from VSM measurement that the magnetization reversal mode in electrodeposited CoNi/Cu multilayer nanowires depends on the shape and thickness of the CoNi layers where the mode in rod-shaped thick CoNi layers is different from that in disk-shaped thin CoNi layers. The reversal mode in coherent rotation or curling was determined

  12. Characterization of Pulse Reverses Electroforming on Hard Gold Coating.

    Science.gov (United States)

    Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon

    2018-03-01

    Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.

  13. Triboelectric-generator-driven pulse electrodeposition for micropatterning.

    Science.gov (United States)

    Zhu, Guang; Pan, Caofeng; Guo, Wenxi; Chen, Chih-Yen; Zhou, Yusheng; Yu, Ruomeng; Wang, Zhong Lin

    2012-09-12

    By converting ambient energy into electricity, energy harvesting is capable of at least offsetting, or even replacing, the reliance of small portable electronics on traditional power supplies, such as batteries. Here we demonstrate a novel and simple generator with extremely low cost for efficiently harvesting mechanical energy that is typically present in the form of vibrations and random displacements/deformation. Owing to the coupling of contact charging and electrostatic induction, electric generation was achieved with a cycled process of contact and separation between two polymer films. A detailed theory is developed for understanding the proposed mechanism. The instantaneous electric power density reached as high as 31.2 mW/cm(3) at a maximum open circuit voltage of 110 V. Furthermore, the generator was successfully used without electric storage as a direct power source for pulse electrodeposition (PED) of micro/nanocrystalline silver structure. The cathodic current efficiency reached up to 86.6%. Not only does this work present a new type of generator that is featured by simple fabrication, large electric output, excellent robustness, and extremely low cost, but also extends the application of energy-harvesting technology to the field of electrochemistry with further utilizations including, but not limited to, pollutant degradation, corrosion protection, and water splitting.

  14. The Technology and Properties of Digital Double Pulse Electrodepositing Ni-HA Composite Coating of Bioceramics

    Institute of Scientific and Technical Information of China (English)

    DONG He-yan; WANG Zhou; SHI Gu-guizhi; FU Chuan-qi; CHEN Wei-rong; JIN Zhong-hong; LI Yan

    2004-01-01

    This article discusses and analyses the technology, the surface image, microstructure and ability of digital double pulse electrodepositing Ni-HA composite coatings of bioceramics made on 1Crl8Ni9Ti substrate by SEM ,XRD and so on. The results shows that ( 1 ) the HA particles exit in substrate uniformly; (2) XRD result shows that there are HA peaks at 78. 023 ° ,43. 246°and 73. 120°differently; (3) The microhardnees of the composite coatings is increased with the rise of content of HA particles, and on the same conditions the microhardnees value is greater than that of common non-pulse electrodepositing Ni-HA composite coatings of bioceramics. (4) The grain size of digital double pulse electrodepositing Ni-HA composite coatings of bioceramics is much thinner than that of common D. C.

  15. Fabrication of Sn–Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: Effects of duty cycle

    Energy Technology Data Exchange (ETDEWEB)

    Uysal, Mehmet, E-mail: mehmetu@sakarya.edu.tr; Cetinkaya, Tugrul; Alp, Ahmet; Akbulut, Hatem

    2015-04-15

    Highlights: • Sn–Ni/MWCNT composite electrodes prepared by pulse electrodeposition at different duty cycle. • The effect of duty cycle studied on electrochemical properties of composite electrodes. • A high reversible capacity, and good cyclability were achieved for Sn–Ni/MWNT (75% duty cycle). - Abstract: Nanocrystalline Sn–Ni/MWCNT composite was prepared by ultrasonic-pulse electrodeposition on a copper substrate in a pyrophosphate bath at different duty cycles. Surface morphology of produced Sn–Ni/MWCNT composites were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) was conducted to understand the elemental surface composition of composites. X-ray diffraction analysis (XRD) was carried out to investigate structure of Sn–Ni/MWCNT composites. The electrochemical performance of Sn–Ni/MWCNT composite electrodes were investigated by charge/discharge tests and cyclic voltammetric experiments. The cells discharge capacities were determined by cyclic testing by a battery tester at a constant current in voltage range between 0.02 V and 1.5 V. The duty cycle was shown to be a crucial factor to improve Sn–Ni/MWCNT composite anodes for cyclability and reversible capacity.

  16. Correlation between crystallographic texture, microstructure and magnetic properties of pulse electrodeposited nanocrystalline Nickel–Cobalt alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amit; Chhangani, Sumit; Madhavan, R.; Suwas, Satyam, E-mail: satyamsuwas@materials.iisc.ernet.in

    2017-07-15

    Highlights: • Nano-crystalline Ni–Co materials with varying composition has been deposited by pulse electrodeposition. • Overall weakening of <1 1 1> texture and strengthening of <2 0 0> fibre texture is observed with increasing cobalt content. • Higher thermal stability of Ni–70Co is interpreted in terms of low mobility twins and texture. • A clear transition from soft to hard magnetic character is observed with an increase cobalt content. - Abstract: This paper reports the evolution of microstructure and texture in Nickel–Cobalt electrodeposits fabricated by pulse electrodeposition (PED) technique and the correlation of these attributes with the magnetic properties. The structural and microstructural investigation using X-ray diffraction and transmission electron microscopic studies indicate the presence of nanocrystalline grains and nano-twins in the electrodeposits. Convoluted Multiple Whole profile fitting reveals an increase in dislocation density and twin density with increasing cobalt content in the as-deposited samples. Strengthening of <1 1 1> fibre texture and weakening of <2 0 0> fibre texture with increasing cobalt concentration has been observed with X-ray texture analysis. A corresponding significant increase in the saturation magnetization and coercivity observed with increasing cobalt content. A significant improvement in the soft magnetic character in the electrodeposits in terms of increase in saturation magnetization and decrease in coercivity has been observed with thermal annealing.

  17. Non-Cyanide Electrodeposited Ag–PTFE Composite Coating Using Direct or Pulsed Current Deposition

    Directory of Open Access Journals (Sweden)

    Raymond Sieh

    2016-07-01

    Full Text Available The effects of FC-4 cationic surfactant on electrodeposited Ag–PTFE composite coating using direct or pulsed currents were studied using scanning electron microscope (SEM, energy dispersive X-ray (EDS, optical microscope, and a linear tribometer. FC-4:PTFE in various ratios were added to a non-cyanide succinimide silver complex bath. Direct or pulsed current method was used at a constant current density to enable comparison between both methods. A high incorporation rate of PTFE was successfully achieved, with pulsed current being highly useful in increasing the amount of PTFE in the composite coating. The study of coating wear under sliding showed that a large majority of the electrodeposited coatings still managed to adhere to the substrate, even after 10 wear cycles of sliding tests. Performance improvements were achieved on all the samples with a coefficient of friction (CoF between 0.06 and 0.12.

  18. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis

    Science.gov (United States)

    Park, Hyanjoo; Choe, Seunghoe; Kim, Hoyoung; Kim, Dong-Kwon; Cho, GeonHee; Park, YoonSu; Jang, Jong Hyun; Ha, Don-Hyung; Ahn, Sang Hyun; Kim, Soo-Kil

    2018-06-01

    Pt catalysts for water electrolysis were prepared on carbon paper by using both direct current and pulse electrodeposition. Controlling the mass transfer of Pt precursor in the electrolyte by varying the deposition potential enables the formation of various Pt particle shapes such as flower-like and polyhedral particles. Further control of the deposition parameters for pulse electrodeposition resulted in changes to the particle size and density. In particular, the upper potential of pulse was found to be the critical parameter controlling the morphology of the particles and their catalytic activity. In addition to the typical electrochemical measurements, Pt samples deposited on carbon paper were used as cathodes for a proton exchange membrane water electrolyser. This single cell test revealed that our Pt particle samples have exceptional mass activity while being cost effective.

  19. Ultra-long Fe nanowires by pulsed electrodeposition with full filling of alumina templates

    International Nuclear Information System (INIS)

    Azevedo, J; Sousa, C T; Ventura, J; Apolinario, A; Araujo, J P; Mendes, A

    2014-01-01

    With the increasing demand for high quality methods for the fast fabrication of extremely high aspect ratio nanoparticles, the research for efficient, low-cost and simple techniques has become fundamental. A promising approach on the synthesis of these materials is here addressed. Pulsed electrodeposition in porous anodic alumina templates was improved enabling, for the first time, a simple and cost effective fabrication method for vertically aligned nanomaterials with aspect ratios never reported with this method. Iron nanowires were electrodeposited and the effect of electrolyte molar concentration, temperature and stirring, pulse shape and barrier layer thickness on the deposition quality was investigated to potentially increase the template filling and the nanowires length. The electrodeposition temperature and current density were also found to be determinant parameters affecting NWs crystallography. A methodology of surface response design of experiment was conducted to retrieve the optimum values for the deposition parameters. With the determined optimized process, we were able to obtain filling ratios up to 93% and aspect ratios over 10 times higher than previous reports for an alternating current method. The high deposition homogeneity combined with the simplicity of the pulsed deposition method, can open new opportunities for the nanofabrication of nanowires. (paper)

  20. Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zarghami, V. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Ghorbani, M., E-mail: Ghorbani@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)

    2014-06-15

    Highlights: • Preparing Ni/SiC coatings on the Cu substrate by using of rotating disk electrode. • Optimizing of pulse current density parameters. • Optimizing of SiC content in the bath. • Investigation the effect of codeposited SiC amount on the properties of coatings. - Abstract: Nickel/silicon carbide composite electrodeposits were prepared on a rotating disk electrode (RDE), under pulse current condition. The effect of pulse parameters, current density, SiC content in the electrolyte on the codeposition of SiC were studied. Afterwards, the effect of codeposited SiC amount was investigated on electrochemical behavior and nanomechanical properties of coatings. The coatings were analyzed with Scanning Electron Microscopy (SEM), linear polarization, nanoindentation and Atomic Force Microscopy (AFM). The Ni–SiC electrocomposites, prepared at optimum conditions, exhibited improved nanomechanical properties in comparison to pure nickel electrodeposits. With increasing current density the morphology changed from flat surface to cauliflower structure. The Ni–SiC electrocomposites exhibited improved nanomechanical properties and corrosion resistances in comparison to pure nickel electrodeposits and these properties were improving with increasing codeposited SiC particles in electrocomposites.

  1. Microstructure and tribological property of nanocrystalline Co–W alloy coating produced by dual-pulse electrodeposition

    International Nuclear Information System (INIS)

    Su Fenghua; Huang Ping

    2012-01-01

    Highlights: ► The nanocrystalline Co–W alloy coating were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate. ► The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of electrodeposited Co–W alloy coatings were established. ► By careful control of the electrodeposition condition and the bath composition, the Co–W alloy coating excellent performance of microhardness and tribological properties, can exhibit excellent performances of microhardness and tribological properties. - Abstract: The nanocrystalline Co–W alloy coatings were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate (Na 2 WO 4 ). Influence of the current density and Na 2 WO 4 concentration in bath on the microstructure, morphology and hardness of the Co–W alloy coatings were investigated using an X-ray diffraction, a scanning electronic microscope and a Vickers hardness tester, respectively. In addition, the friction and wear properties of the Co–W alloy coating electrodeposited under different condition were evaluated with a ball-on-disk UMT-3MT tribometer. The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of the deposited Co–W alloy coatings were discussed in detail. The results showed that the microhardness of the deposited Co–W alloy coating was significantly affected by its average grain size, W content and crystal orientation. Smaller grain size, higher W content and strong hcp (1 0 0) orientation favor the improvement of the hardness for Co–W alloy coatings. The deposited Co–W alloy coating could obtain the maximum microhardness over 1000 kgf mm −2 by careful control of the electrodeposition conditions. The tribological properties of the electrodeposited Co–W alloy coating were greatly

  2. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  3. Electrodeposition of Chromium with Periodic Reverse and Pulsed Current

    Science.gov (United States)

    1976-04-01

    o c m O *-» flj in 3 O a. u - «) — o cc c Q OC Z U < O LU o ui <j or LU a _) z <•*- ui < O m *J r ID...c 3 m C V U h 4-< m (0 in 3 tu m a. O — *- O L. T3 41 V- flJ C u u c r ig > U O. u — m ft) m...c o XI TD V 0 L. O TJ l- 1- (A U Q. 0) u l_ £ in CC ft) ft) > •o ft) x a. i_ x: o c > 4J c ft) 4-1 T) ft) T) QJ O en 2

  4. Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Rajib, E-mail: rajibju4@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Sengupta, Srijan [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Das, Karabi; Das, Siddhartha [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-12-01

    The orthopaedic implants for human body are generally made of different biomaterials like stainless steels or Ti based alloys. However, it has been found that from surface properties point of view, none of these materials is attractive for fast tissue or cell growth on the surface of implant. This is one of the most important criteria to assure quick bonding between implant and body tissues vis-à-vis minimum recovery time for the patient. Keeping in view of the above facts, this work involves the pulsed electro-deposition coating of biocompatible hydroxyapatite and its group compounds from a diluted bath of calcium and phosphate salt at various current densities over the biomaterial sheet of SS316. SEM study confirms different morphologies of the coatings at different current densities. Characterization techniques like X-ray diffraction, SEM with EDX and FTIR have been used to confirm the phase and percentage quantity of hydroxyapatite compound in the depositions. This coating can serve as a medium for faster tissue growth over the metallic implants. - Highlights: • Composite coatings of CaHPO{sub 4} and hydroxyapatite for biomedical application through pulsed electro-deposition. • Achieved optimum phase composition in view of crystallinity of both the phases. • Overall coating crystallinity of around 70% in view better bio compatibility. • In cyclic voltammetry it is observed that the deposition reaction is completely irreversible. • The deposited coating consists of nano-crystalline hydroxyapatite similar to human bone; which exhibits better bio-compatibility.

  5. Uniaxial Magnetization Performance of Textured Fe Nanowire Arrays Electrodeposited by a Pulsed Potential Deposition Technique

    Science.gov (United States)

    Neetzel, C.; Ohgai, T.; Yanai, T.; Nakano, M.; Fukunaga, H.

    2017-11-01

    Textured ferromagnetic Fe nanowire arrays were electrodeposited using a rectangular-pulsed potential deposition technique into anodized aluminum oxide nanochannels. During the electrodeposition of Fe nanowire arrays at a cathodic potential of - 1.2 V, the growth rate of the nanowires was ca. 200 nm s-1. The aspect ratio of Fe nanowires with a diameter of 30 ± 5 nm reached ca. 2000. The long axis of Fe nanowires corresponded with the direction when a large overpotential during the on-time pulse was applied, whereas it orientated to the direction under the potentiostatic condition with a small overpotential. By shifting the on-time cathode potential up to - 1.8 V, the texture coefficient for the (200) plane, TC200, reached up to 1.94. Perpendicular magnetization performance was observed in Fe nanowire arrays. With increasing TC200, the squareness of Fe nanowire arrays increased up to 0.95 with the coercivity maintained at 1.4 kOe at room temperature. This research result has opened a novel possibility of Fe nanowire arrays that can be applied for a new permanent magnetic material without rare-earth metals.

  6. Synthesis and Performance Evaluation of Pulse Electrodeposited Ni-AlN Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Kamran Ali

    2018-01-01

    Full Text Available This research work presents the microscopic analysis of pulse electrodeposited Ni-AlN nanocomposite coatings using SEM and AFM techniques and their performance evaluation (mechanical and electrochemical by employing nanoindentation and electrochemical methods. The Ni-AlN nanocomposite coatings were developed by pulse electrodeposition. The nickel matrix was reinforced with various amounts of AlN nanoparticles (3, 6, and 9 g/L to develop Ni-AlN nanocomposite coatings. The effect of reinforcement concentration on structure, surface morphology, and mechanical and anticorrosion properties was studied. SEM and AFM analyses indicate that Ni-AlN nanocomposite coatings have dense, homogenous, and well-defined pyramid structure containing uniformly distributed AlN particles. A decent improvement in the corrosion protection performance is also observed by the addition of AlN particles to the nickel matrix. Corrosion current was reduced from 2.15 to 1.29 μA cm−2 by increasing the AlN particles concentration from 3 to 9 g/L. It has been observed that the properties of Ni-AlN nanocomposite coating are sensitive to the concentration of AlN nanoparticles used as reinforcement.

  7. The chemistry and structure of nickel–tungsten coatings obtained by pulse galvanostatic electrodeposition

    International Nuclear Information System (INIS)

    Argañaraz, M.P. Quiroga; Ribotta, S.B.; Folquer, M.E.; Zelaya, E.; Llorente, C.; Ramallo-López, J.M.; Benítez, G.; Rubert, A.; Gassa, L.M.; Vela, M.E.; Salvarezza, R.C.

    2012-01-01

    A detailed characterization of electrodeposited Ni-W coatings prepared by pulse electrodeposition on steel and copper substrates is presented. The coatings were obtained at high current pulse frequency and show high microhardness and absence of brittleness. The surface of the coating consists of nanometer sized crystals forming a cauliflower-like structure protected by a mixture of nickel and tungsten oxides. The cauliflower structure is preserved into the bulk coating that exhibits an average composition ≈70 at% Ni-30 at% W. Different phases are observed in the bulk structure: a W-rich amorphous phase (≈40%) and Ni-rich crystalline phases (≈60%). The crystalline phases consist of crystalline domains ≈7 nm in size of Ni(W) (fcc) solid solution (12 at% W content) and a minor Ni 4 W component (less than 10%). The amorphous phase exhibits a less compact Ni-W structure where some amount of C could also be present. Oxidized W species cannot be detected in the bulk coating, thus discarding the presence of significant amounts of tungsten carbide, tungstates or citrate–tungsten complexes. Our results shed light on controversial points related to the chemical composition and demonstrate the complex structure of this system.

  8. Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Liu, Jianwei; Li, Jun [Department of Chemistry, Kansas State University, Manhattan, KS 66506 (United States); Yu, Deok Jin; Wicksted, James P. [Department of Physics, Oklahoma State University, Stillwater, OK 74078 (United States); Kalkan, Kaan; Topal, C. Ozge [Department of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Flanders, Bret N. [Department of Physics, Kansas State University, Manhattan, KS 66506 (United States); Wu, Judy [Department of Physics, University of Kansas, Manhattan, KS 66044 (United States)

    2010-01-15

    Self-supported supercapacitor electrodes with remarkably high specific capacitance have been developed by homogeneously coating polypyrrole (PPy) on multi-walled carbon nanotube (MWCNT) membranes. Polypyrrole can be deposited around the individual MWCNTs in a uniform manner throughout the MWCNT membrane via a pulsed electrochemical deposition method. This approach optimizes the pseudocapacitance of the membrane. Electrochemical data and Raman spectra indicate that the high specific capacitance is not only due to more uniform PPy coating, but also higher redox activity that is likely associated with a more ordered PPy packing. Such composite membranes can be directly used as supercapacitor electrodes without backing metal films or binders. A remarkable specific capacitance of 427 F g{sup -1} has been achieved using 5-s electrodeposition pulses. This technique provides a viable solution for developing high-performance electrical energy storage devices. (author)

  9. Active and inactive buffering effect on the electrochemical behavior of Sn–Ni/MWCNT composite anodes prepared by pulse electrodeposition for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Uysal, Mehmet, E-mail: mehmet_uys@yahoo.com; Cetinkaya, Tugrul; Alp, Ahmet; Akbulut, Hatem

    2015-10-05

    Highlights: • Sn–Ni/MWCNT anodes were produced by pulse electrodeposition. • The effect of MWCNT studied on electrochemical properties of composite electrodes. • A high reversible capacity, and good cyclability were achieved for Sn–Ni/MWCNT (10 g L{sup −1}). - Abstract: Cycling stability of pure tin electrodes was aimed to improve by using suitable combination of nickel and multiwalled carbon nanotubes (MWCNTs). Nanocrystalline Sn–Ni/MWCNT composite was prepared by ultrasonic-pulse electrodeposition on a copper substrate in a pyrophosphate bath containing different concentrations of multi-walled carbon nanotubes. Surface morphology of produced Sn–Ni/MWCNT composites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) was conducted to understand the elemental surface composition of composites. X-ray diffraction analysis was carried out to investigate structure of Sn–Ni/MWCNT composites. The electrochemical performances of Sn–Ni/MWCNT composite electrodes have been investigated by charge/discharge tests, cyclic voltammetric experiments and the ac impedance technique. These cells discharge capacity cyclically tested by a battery tester at a constant current in voltage range between 0.02 V and 1.5 V. The concentrations of MWCNTs were shown to be a crucial factor to improve Sn–Ni/MWCNT composite anodes for cyclability and reversible capacity.

  10. Laminar iridium coating produced by pulse current electrodeposition from chloride molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Li’an, E-mail: mr_zla@163.com; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2013-10-01

    Due to the unique physical and chemical properties, Iridium (Ir) is one of the most promising oxidation-resistant coatings for refractory materials above 1800 °C in aerospace field. However, the Ir coatings prepared by traditional methods are composed of columnar grains throughout the coating thickness. The columnar structure of the coating is considered to do harm to its oxidation resistance. The laminar Ir coating is expected to have a better high-temperature oxidation resistance than the columnar Ir coating does. The pulse current electrodeposition, with three independent parameters: average current density (J{sub m}), duty cycle (R) and pulse frequency (f), is considered to be a promising method to fabricate layered Ir coating. In this study, laminar Ir coatings were prepared by pulse current electrodeposition in chloride molten salt. The morphology, roughness and texture of the coatings were determined by scanning electron microscope (SEM), profilometer and X-ray diffraction (XRD), respectively. The results showed that the laminar Ir coatings were composed of a nucleation layer with columnar structure and a growth layer with laminar structure. The top surfaces of the laminar Ir coatings consisted of cauliflower-like aggregates containing many fine grains, which were separated by deep grooves. The laminar Ir coating produced at the deposition condition of 20 mA/cm{sup 2} (J{sub m}), 10% (R) and 6 Hz (f) was quite smooth (R{sub a} 1.01 ± 0.09 μm) with extremely high degree of preferred orientation of 〈1 1 1〉, and its laminar structure was well developed with clear boundaries and uniform thickness of sub-layers.

  11. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties.

    Science.gov (United States)

    Drevet, Richard; Benhayoune, Hicham

    2013-10-01

    Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM. © 2013.

  12. Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition

    International Nuclear Information System (INIS)

    Youssef, Kh.M.S.; Koch, C.C.; Fedkiw, P.S.

    2004-01-01

    Pulse electrodeposition was used to produce nanocrystalline (nc) zinc from zinc chloride electrolyte with polyacrylamide and thiourea as additives. Field emission scanning electron microscopy (FESEM) was used to study the grain size and surface morphology of the deposits and X-ray diffraction was used to examine their preferred orientation. Corrosion behavior of the electrodeposited nc zinc in comparison with electrogalvanized (EG) steel in de-aerated 0.5 N NaOH solution was studied using potentiodynamic polarization and impedance measurements. A scanning electron microscope (SEM) was used to characterize the surface morphology of the EG steel before corrosion testing. Surface morphologies of nc zinc deposits and EG steel were also studied after potentiondynamic polarization by SEM. Nanocrystalline zinc (56 nm) with random orientation was produced. The estimated corrosion rate of nc zinc was found to be about 60% lower than that of EG steel, 90 and 229 μA/cm 2 , respectively. The surface morphology of corroded nc zinc was characterized by discrete etch pits, however, uniform corrosion was obtained after potentiodynamic polarization of EG steel. The passive film formed on the nc zinc surface seems to be a dominating factor for the corrosion behavior observed

  13. The properties of chromium electrodeposited with programmed currents. Part II. Reversing current

    Directory of Open Access Journals (Sweden)

    TANJA M. KOSTIC

    2000-01-01

    Full Text Available The electrodeposition of chromium in programmed reversing current (RC, was investigated in the regime of high cathodic current density (77 A dm-2 and anodic current density (55 A dm-2. The ratio of the cathodic and anodic time (60 : 1 was used. Chromium was deposed on a steel substrate from a chromic-sulphuric acid solution, during one hour. Anode and cathode were suited in a system of parallel plates. Basic properties of deposits, like thickness, morphology, microhardness, brightness were examined. Surface distribution of the deposits was obtained from the measurements of the thicknesses of the deposits (between 32 and 67 µm. A ferromagnetic non-destructive method was used in the measurements. Based on the results, graphic models of deposit surface distribution were made. Two ranges of the thickness could be seen on the model (range 1 - average thickness 35.1 µm and range 2 - average thickness 57.81 µm. These results were statisticaly analysed by colums, rows and by the whole surface. For the whole specimens, the average thickness was 45.39 µm with a coefficient of variation of 0.2582. The basic properties of the deposits did not change with a variation of the thickness. Because of this, the coatings deposited with the reversing current could be much more considered reliable in wear and corrosion protection systems than ones deposited by direct current.

  14. Characterization of manganese dioxide electrodeposited by pulse and direct current for electrochemical capacitor

    International Nuclear Information System (INIS)

    Adelkhani, H.; Ghaemi, M.

    2010-01-01

    This paper describes the electrochemical capacitor behavior of manganese dioxide (MD, MnO 2 ) samples that were prepared by direct current (DCMD) and pulse current (PCMD) electrodeposition. The capacitive characteristics of the samples were studied in 0.5 M aqueous Na 2 SO 4 solution using the cyclic voltammetry (CV) method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), chemical composition analyses and the Barrett-Joyner-Halenda (BJH) method were employed to characterize the samples. In the study of the effect of scan rate on capacitance, it was revealed that PCMD displayed higher capacities than DCMD for all scan rates. The higher capacitive performance of PCMD was attributed to its porosity (specific surface area, pore volume, and pore-size distribution), chemical composition and structural properties.

  15. Pulse electrodeposition of self-lubricating Ni–W/PTFE nanocomposite coatings on mild steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, S. [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Kalaignan, G. Paruthimal, E-mail: pkalaignan@yahoo.com [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Anthuvan, J. Tennis [M. Kumarasamy College of Engineering, Karur, Tamil Nadu (India)

    2015-12-30

    Graphical abstract: - Highlights: • PTFE polymer inclusion on Ni–W alloy matrix was electrodeposited by pulse current method. • Tribological properties and electrochemical characterizations of the nanocomposite coatings were analyzed. • The hydrophobic behaviour of Ni–W/PTFE nanocomposite coating was measured. • Ni–W/PTFE nanocomposite coatings have showed superior tribological properties and corrosion resistance relative to that of the Ni–W alloy matrix. - Abstract: Ni–W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni–W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni–W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni–W/PTFE nanocomposite coating has better corrosion resistance than the Ni–W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni–W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  16. In vitro biological performance of minerals substituted hydroxyapatite coating by pulsed electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Gopi, Dhanaraj, E-mail: dhanaraj_gopi@yahoo.com [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Karthika, Arumugam; Nithiya, Subramani [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Kavitha, Louis [Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India)

    2014-03-01

    The present study deals with the optimization of minerals (Sr, Mg and Zn) substituted hydroxyapatite coatings (M-HAP) at different pulse on and off time (1 s, 2 s, 3 s and 4 s) by pulsed electrodeposition method. The formation of M-HAP coating was investigated using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction studies (XRD). The morphological features and the content of Sr, Mg and Zn ions in M-HAP coated Ti–6Al–4V were investigated by high resolution scanning electron microscopy (HRSEM) and energy dispersive X-ray analysis (EDAX). The electrochemical studies were performed for M-HAP coated Ti–6Al–4V in simulated body fluid which exhibited better corrosion resistance at the prolonged pulse off time. The in vitro cell adhesion test revealed that the M-HAP coating is found appropriate for the formation of new cell growth which proves the enhanced biocompatible nature of the coating. Thus the M-HAP coating will serve as a potential candidate in orthopedic applications. - Highlights: • We successfully achieved minerals substituted HAP coatings on Ti alloy by PED method. • The M-HAP coated Ti alloy exhibited better bioresistivity in SBF. • The as-coated sample showed antimicrobial activity and better cell viability. • The in vitro test displayed the formation of new cell growth. • The M-HAP coating can serve as a better candidate in orthopedic applications.

  17. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings

    International Nuclear Information System (INIS)

    Sajjadnejad, M.; Mozafari, A.; Omidvar, H.; Javanbakht, M.

    2014-01-01

    Highlights: • Zn and Zn–SiC coatings were obtained under different electrodeposition pulse conditions. • Effects of duty cycle, pulse frequency and applied current on SiC incorporation were investigated. • Potentiodynamic polarization tests were conducted to investigate corrosion behavior of coatings. • SiC incorporation enhances coatings corrosion behavior by filling gaps and defects. • Increasing pulse frequency and decreasing applied current favors SiC incorporation. - Abstract: Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic polarization technique in 1 M NaCl solution. It was established that presence of well-dispersed nanoparticles significantly improves corrosion resistance of the zinc by filling gaps and defects between zinc flakes and leading to a smoother surface. However, presence of the SiC nanoparticles led to a mixed microstructure with fine and coarse zinc flakes in some coatings, which presented a weak corrosion behavior. Incorporation of SiC nanoparticles enhanced hardness of the Zn coatings by fining deposit structure and through the dispersion hardening effect

  18. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  19. Effect of Carbon Nanotubes on Corrosion and Tribological Properties of Pulse-Electrodeposited Co-W Composite Coatings

    Science.gov (United States)

    Edward Anand, E.; Natarajan, S.

    2015-01-01

    Cobalt-Tungsten (Co-W) alloy coatings possessing high hardness and wear/corrosion resistance, due to their ecofriendly processing, have been of interest to the researchers owing to its various industrial applications in automobile, aerospace, and machine parts. This technical paper reports Co-W alloy coatings dispersed with multiwalled carbon nanotubes (MWCNTs) produced by pulse electrodeposition from aqueous bath involving cobalt sulfate, sodium tungstate, and citric acid on stainless steel substrate (SS316). Studies on surface morphology through SEM, microhardness by Vickers method, microwear by pin-on-disk method, and corrosion behavior through potentiodynamic polarization method for the Co-W-CNT coatings were reported. Characterization studies were done by SEM and EDX analysis. The results showed that the corrosion and tribological properties of the pulse-electrodeposited Co-W-CNT alloy coatings were greatly influenced by its morphology, microhardness, %W, and MWCNT content in the coatings.

  20. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been...

  1. Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni-Co films

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C.K., E-mail: ckchung@mail.ncku.edu.t [Department of Mechanical Engineering, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China); Chang, W.T. [Department of Mechanical Engineering, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China)

    2009-07-01

    Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel-cobalt (Ni-Co) films has been investigated. The composition, morphology, phase and hardness of the Ni-Co alloy films were examined by scanning electron microscope with an attached energy dispersive X-ray spectroscope, X-ray diffraction and nanoindentation techniques, respectively. The different Co composition of the Ni-Co films codeposited from the fixed sulfamate-chloride bath is subject to the pulse frequencies and current densities. The frequencies varied from 0 to 100 Hz and current densities varied from 1 to 20 ASD (ampere per square decimeter). The Co composition has no significant variation in pulse electrodeposition but it is greatly influenced by current densities from 22.53% at 1 ASD decreased to 13.39% at 20 ASD under DC codeposition. The mean hardness of Ni-Co films has no eminent change at a pulse frequency of 10-100 Hz but it decreases with current densities from 8.72 GPa (1 ASD) to 7.13 GPa (20 ASD). The smoother morphology can be obtained at higher pulse frequency or lower current density. Good Ni-Co films with high hardness and smooth morphology can be obtained by reducing current density and increasing pulse frequency.

  2. Pulse current electrodeposition of tungsten coatings on V–4Cr–4Ti alloy

    International Nuclear Information System (INIS)

    Jiang, Fan; Zhang, Yingchun; Li, Xuliang

    2015-01-01

    Highlights: • Tungsten coatings were successfully electroplated on vanadium alloy substrate. • Tungsten coatings consisted of two sub-layers. • Tungsten coatings plated at lower duty cycle has a better surface quality. • High heat flux property of tungsten coatings was investigated. • Helium ion irradiation property of tungsten coatings was investigated. - Abstract: Tungsten coatings with high (2 2 0)-orientation were formed on V alloy substrate by pulse current electrodeposition in air atmosphere. The coatings’ microstructure, crystal structure and adhesive strength between coatings and substrates were investigated. It could be observed the tungsten coatings consisted of two sub-layers with the inner tooth-like layer, and the outer columnar layer. The tungsten coatings deposited at lower duty cycle have a better surface quality with a little change in the adhesive strength. The tungsten coating was exposed to electron beam with power density of 200 MW/m 2 in the thermal shock test, the tungsten crystal grain surface melt, the microcracks are found among the crystal grains. Exfoliation, flaking and dense needle-like holes were observed on the tungsten coating after irradiation with helium ions at an energy of 65 keV and an implanted dose of 22.67 × 10 18 cm −2

  3. Structural, optical and electrical studies on pulse electrodeposited CdIn2S4 thin films

    International Nuclear Information System (INIS)

    Kokate, A.V.; Asabe, M.R.; Shelake, S.B.; Hankare, P.P.; Chougule, B.K.

    2007-01-01

    CdIn 2 S 4 thin films were prepared by pulse electrodeposition technique over F:SnO 2 glass and stainless steel substrates in galvanostatic mode from an aqueous acidic bath containing CdSO 4 , InCl 3 and Na 2 S 2 O 3 . The growth kinetics of the film has been studied and the deposition parameters such as electrolyte bath concentration, bath temperature, time of deposition, deposition current and pH of the bath are optimized. X-ray diffraction (XRD) analysis of the as deposited and annealed films shows polycrystalline nature. Energy dispersive analysis by X-ray (EDAX) confirms nearly stoichiometric CdIn 2 S 4 nature of the film. Scanning electron microscope (SEM) studies show that, the deposited films are well adherent and grains are uniformly distributed over the surface of the substrate. The optical transmission spectra show a direct band gap of 2.16 eV. Conductivity measurements have been carried out at different temperatures and electrical parameters such as activation energy, trapped energy state and barrier heights etc. have been determined

  4. Properties of pulsed electrodeposited CdIn2S4 thin film

    International Nuclear Information System (INIS)

    Hankare, P.P.; Kokate, A.V.; Asabe, M.R.; Delekar, S.D.; Chougule, B.K.

    2006-01-01

    CdIn 2 S 4 thin films are prepared by pulsed electrodeposition technique over F:SnO 2 glass and stainless steel substrates in galvanostatic mode from an aqueous acidic bath containing CdSO 4 , InCl 3 and Na 2 S 2 O 3 . The growth kinetics of the film was studied and the deposition parameters such as electrolyte bath concentration, bath temperature, time of deposition, deposition current, and pH of the electrolyte bath are optimized. X-ray diffraction (XRD) analysis of the as deposited and annealed films showed the presence of polycrystalline nature. Energy dispersive analysis (EDAX) spectrum of the surface composition confirms the nearly stoichiometric CdIn 2 S 4 nature of the film. Surface morphology studies by scanning electron microscope (SEM) shows that, the deposited films are well adherent and grains are uniformly distributed over the surface of substrate. The optical transmission spectra show a direct band gap value of 2.16 eV

  5. Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Huei-Yu [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Hsieh, Chien-Kuo [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Tsai, Ming-Chi; Wei, Yu-Hsuan; Yeh, Tsung-Kuang [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tsai, Chuen-Horng, E-mail: tsai@aec.gov.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2015-06-01

    In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts. - Highlights: • Pulse-electrodeposition of Pt or Pt–Ru nanoparticles on carbon nanotubes • Carbon nanotubes used as a catalyst-supporting material • Citric acid used as reducing agent in the aqueous electrodeposition solutions • Electrochemical activity for methanol oxidation improved by a factor of 1.46 to 2.77.

  6. Synthesis of MnO2-graphene composites with enhanced supercapacitive performance via pulse electrodeposition under supergravity field

    International Nuclear Information System (INIS)

    Liu, Tingting; Shao, Guangjie; Ji, Mingtong; Wang, Guiling

    2014-01-01

    A method of pulse electrodeposition under supergravity field was proposed to synthesize MnO 2 -graphene composites. Supergravity is very efficient for promoting mass transfer and decreasing concentration polarization during the electrodeposition process. The synthesis was conducted on our homemade supergravity equipment. The strength of supergravity field depended on the rotating speed of the ring electrode. 3D flower like MnO 2 spheres composed of nanoflakes were acquired when the rotating speed was 3000 rpm. Graphene nanosheets play as a role of conductive substrates for MnO 2 growing. The composites are evaluated as electrode materials for supercapacitors. Electrochemical results show that the maximum specific capacitance of the MnO 2 -graphene composite is 595.7 F g −1 at a current density of 0.5 A g −1 . In addition, the composite exhibits excellent cycle stability with no capacitance attenuation after 1000 cycles. The approach provides new ideas for developing supercapacitor electrode materials with high performance. - Graphical abstract: 3D flower like MnO 2 spheres composed of nanoflakes were acquired at 3000 rpm. - Highlights: • MnO 2 -graphene composites were prepared by pulse electrodeposition under supergravity. • 3D flower like MnO 2 spheres are anchored on the graphene nanosheets. • The MnO 2 -graphene electrode exhibits a specific capacitance of 595.7 F g −1

  7. Preparation of Gd2O3 Ultrafine Nanoparticles by Pulse Electrodeposition Followed by Heat-treatment Method

    Directory of Open Access Journals (Sweden)

    Mustafa Aghazadeh

    2016-12-01

    Full Text Available Gd2O3 nanoparticles were prepared by a two–step process; cathodic electrodeposition followed by heat-treatment method. First, Gd(OH3 nanoparticles was galvanostatically deposited from nitrate bath on the steel substrate by pulse current (PC mode. The deposition experiments was conducted at a typical on-time and off-time (ton=1ms and toff=1ms for 60 min. The electrodeposited precursor was then heat-treated at 600 oC for 3h to obtain oxide product (i.e. Gd2O3. The morphological and structural analyses confirmed that the gadolinium hydroxynitrate nanoparticles with composition of [Gd(OH2.5(NO30.5 yH2O] and uniform size about 10 nm have been prepared during pulse cathodic electrodeposition process. Furthermore, mechanism of the gadolinium hydroxynitrate nanoparticles was explained based on the base (OH– electrogeneration process on the cathode surface. The morphological observations by SEM and TEM, and structural analyses via XRD and FT-IR revealed that the oxide product is composed of well-dispersed Gd2O3 nanoparticles with pure cubic crystalline structure. It was observed that the calcination process has no effect on the morphology of the Gd2O3 nanoparticles. Mechanism of oxide formation during heat-treatment step was investigated by DSC-TG analysis and discussed in detail. The results of this work showed that pulse current deposition followed by heat–treatment can be recognized as an easy and facile method for preparation of the Gd2O3 fine nanoparticles.

  8. Effect of complexing agents and pH on microstructure and tribological properties of Co-W coatings produced by double pulse electrodeposition

    International Nuclear Information System (INIS)

    Su Fenghua; Liu Cansen; Huang Ping

    2012-01-01

    The Co-W coatings were produced by double pulse electrodeposition from aqueous bath with cobalt sulphate and sodium tungstate. Effect of complexing agent and pH value in the plating bath on the microstructure, morphology and hardness of the electrodeposited Co-W coatings were investigated using an X-ray diffraction (XRD), scanning electron microscope (SEM) and a Vickers hardness tester, respectively. The friction and wear properties of the Co-W coatings deposited from different baths were evaluated with a ball-on-disk UMT-3MT tribometer. The correlation among the electrodepositing condition that varied with the complexing agent or pH value, the microstructure and the tribological properties of the deposited Co-W coatings were discussed. The results show that the complexing agent and pH value significantly affect the microstructure and tribological properties of the electrodeposited Co-W coatings. The sodium citrate is the best complexing agent to improve the tribological properties of the electrodeposited Co-W coatings at pH 6.0, followed by the sodium gluconate. The Co-W coatings electrodeposited from the near neutral bath can obtain better tribological properties than those deposited from strong acid or strong alkaline bath. The differences of the tribological properties for Co-W coatings from different baths were attributed to their different hardness, crystal structure and morphological characterizations, which can be optimized by the electrodepositing condition, i.e., the complexing agent and pH value in bath.

  9. Structure and properties of nanostructured ZnO arrays and ZnO/Ag nanocomposites fabricated by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Kopach, V. R.; Klepikova, K. S.; Klochko, N. P., E-mail: klochko-np@mail.ru; Khrypunov, G. S.; Korsun, V. E.; Lyubov, V. M.; Kirichenko, M. V.; Kopach, A. V. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine)

    2017-03-15

    We investigate the structure, surface morphology, and optical properties of nanostructured ZnO arrays fabricated by pulsed electrodeposition, Ag nanoparticles precipitated from colloidal solutions, and a ZnO/Ag nanocomposite based on them. The electronic and electrical parameters of the ZnO arrays and ZnO/Ag nanocomposites are analyzed by studying the I–V and C–V characteristics. Optimal modes for fabricating the ZnO/Ag heterostructures with the high stability and sensitivity to ultraviolet radiation as promising materials for use in photodetectors, gas sensors, and photocatalysts are determined.

  10. A Study on Zinc-Iron Alloy Electrodeposition from a Chloride Electrolyte

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl

    1998-01-01

    The electrodeposition of zinc-iron alloys from a chloride-based electrolyte has been studied using electrochemical polarisation techniques, Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDXA) and Computer Assisted Pulse Plating (CAPP...... this system ideal for production of compositional modulated alloy (CMA) electrodeposits. Chloride content, pH and agitation of the electrolyte have been observed to have a strong influence on the reaction at the cathode surface, just as the use of pulse reversal current during electrodeposition. A theory...

  11. Effect of various additives on morphological and structural characteristics of pulse electrodeposited tin coatings from stannous sulfate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ashutosh, E-mail: stannum.ashu@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Das, Karabi [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Fecht, Hans-J. [Institut für Mikro- und Nanomaterialien, Universität Ulm, D-89081 Ulm (Germany); Das, Siddhartha [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2014-09-30

    Graphical abstract: - Highlights: • PEG and thiourea act as grain refiners, and Triton X-100 acts as brightener in bath. • Additives refine the crystallite size and modify the orientation of lattice planes. • Dendritic and nodular growths are reduced when additives are used in combination. - Abstract: The pulse electrodeposited tin coatings are synthesized from an acidic electrolyte (stannous sulfate, SnSO{sub 4}30 g/L and sulfuric acid, H{sub 2}SO{sub 4}—200 g/L) containing various additives (polyethylene glycol (PEG), thiourea and Triton X-100). The effect of the additives on surface morphology, preferred orientation of grains, grain size, and surface roughness has been studied. The final coatings are characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and surface profilometry. In the absence of additives, tin deposition is associated with prominent hydrogen evolution reaction giving rise to rough deposits. Both PEG and thiourea act as grain refiner while Triton X-100 acts as a brightener in the electrolyte. The cathodic polarization on the reduction of the tin (II) ions is more pronounced when a combination of additives is used and further, fine-grained, smooth and shiny electrodeposits of tin are obtained due to a synergistic effect of the adsorbed species.

  12. Pulse reverse plating for integrated magnetics on Si

    International Nuclear Information System (INIS)

    Roy, S.; Connell, A.; Ludwig, M.; Wang, N.; O'Donnell, T.; Brunet, M.; McCloskey, P.; OMathuna, C.; Barman, A.; Hicken, R.J.

    2005-01-01

    Thin film microtransformers have been fabricated on silicon with Ni 45 Fe 55 as a core material. Fractal/dendritic growths are observed in the patterned cores in DC electroplating due to the enhancement of localized current density at defect/nucleation sites. A 'pulser' device was made in house to produce forward and reverse current of the required amplitude for a particular duration. The combination of a low amplitude long (millisecond) forward pulse and a short (microsecond) high-amplitude reverse pulse gave dendrite-free plated cores with a uniform thickness and alloy composition over a 3D topology of a microrough substrate surface. Finally, we characterized the material in situ by small signal electrical measurements, and with MOKE hysteresis loops measured on a complete device

  13. Strontium and magnesium substituted dicalcium phosphate dehydrate coating for carbon/carbon composites prepared by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shou-jie, E-mail: jlliushoujie@126.com; Li, He-jun, E-mail: lihejun@nwpu.edu.cn; Zhang, Lei-lei, E-mail: zhangleilei@nwpu.edu.cn; Feng, Lei, E-mail: fengleijinan@163.com; Yao, Pei, E-mail: 1113923884@qq.com

    2015-12-30

    Graphical abstract: The potentiodynamic polarization curve shows that the SM-DCPD coating can dramatically enhance the corrosion potential (E{sub corr}) value and meanwhile decrease the corrosion current density (I{sub corr}) of C/C composites. - Highlights: • Strontium and magnesium substituted dicalcium phosphate dehydrate coatings for carbon/carbon composites were synthesized by pulsed eletrodeposition. • Strontium and magnesium substituted dicalcium phosphate dehydrate coated carbon/carbon composites exhibited excellent bioactivity in vivo. • Strontium and magnesium substituted dicalcium phosphate dehydrate coated carbon/carbon composites showed lower corrosion rate with the comparison to pure carbon/carbon composites. - Abstract: Trace elements substituted apatite coatings have received a lot of interest recently as they have many benefits. In this work, strontium and magnesium substituted DCPD (SM-DCPD) coatings were deposited on carbon/carbon (C/C) composites by pulsed electrodeposition method. The morphology, microstructure, corrosion resistance and in vitro bioactivity of the SM-DCPD coatings are analyzed. The results show that the SM-DCPD coatings exhibit a flake-like morphology with dense and uniform structure. The SM-DCPD coatings could induce the formation of apatite layers on their surface in simulated body fluid. The electrochemical test indicates that the SM-DCPD coatings can evidently decrease the corrosion rate of the C/C composites in simulated body fluid. The SM-DCPD has potential application as the bioactive coatings.

  14. Pulse-electrodeposited PtSn nanocatalyst on pedot/graphene-based electrode for direct ethanol fuel cell application

    International Nuclear Information System (INIS)

    Mendoza, Maria Krisandra L.; Tongol, Bernard John V.

    2015-01-01

    Fuel cells are one of the most promising sources of renewable and clean energy because it offers higher energy densities and energy efficiencies. Improvements of catalyst material and catalyst preparation method have been one of the major topics studied on fuel cell technology. In this research, a method was optimized for the synthesis of PtSn nanocatalyst on PEDOT-modified graphene-based electrodes for direct ethanol fuel cells. The preparation of the electrode was done in three steps. First, a 20μL electrochemically exfoliated graphene (0.5 mg/mL) was dispersed on the surface of glassy carbon electrode and the electrode was dried at 60°C. Second, potentiodynamic electropolymerization of ethylenedioxythiophene (EDOT) was done using 0.01 M EDOT and 0.10 M HClO 4 on the graphene-based electrode at a potential range from 0 to 1.10 V (vs. Ag/AgCl) for 20 cycles at a scan rate of 50 mV/s. Lastly, pulse deposition of PtSn on the PEDOT/graphene electrode was done using 10 mM H 2 PtCl 6 ·6H 2 O in 0.10 M H 2 SO 4 solution and 10 mM SnCl 2 ·2H 2 O in 0.10 M HCl. Pulse deposition of PtSn nanoparticles was carried out using the following optimized parameters: -1.235 V of pulse potential for Pt and -0.362 V of pulse potential for Sn, with t o n/t o ff ratio of 0.1/5 s at 175 pulses. Electrocatalytic activity of the prepared nanocomposites was evaluated and compared towards ethanol oxidation using 1.0 M ethanol in 0.10 M H 2 SO 4 electrolyte solution from E= 0.0 V to E= 0.90 V (vs. Ag/AgCl) at a scan rate of 100 mV·s -1 . Atomic Force Microscopy (AFM) characterization is carried out for the pulse electrodeposited Pt nanocatalyst on glassy carbon electrode and PEDOT and on host matrices, i.e. PEDOT and graphene. AFM image of Pt nanoparticles on glassy carbon electrode shows bright particles that are uniformly distributed with average diameter of around 30-40 nm. Structural and physical characterization of the composites will be done using Energy Dispersive X-ray (EDX

  15. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    International Nuclear Information System (INIS)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-01-01

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E_c_o_r_r) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO_4 and SiO_2.

  16. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Swarnima; Sribalaji, M. [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India); Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G. [International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI) Hyderabad, Balapur P.O., Hyderabad, Andhra Pradesh 500005 (India); Singh, Raghuvir [CSIR-National Metallurgical Laboratory, Jamshedpur, Jharkhand 831007 (India); Keshri, Anup Kumar, E-mail: anup@iitp.ac.in [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E{sub corr}) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO{sub 4} and SiO{sub 2}.

  17. Optimization of electrodeposited p-doped Sb{sub 2}Te{sub 3} thermoelectric films by millisecond potentiostatic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Christian; Akinsinde, Lewis; Zastrow, Sebastian; Heiderich, Sonja; Toellner, William; Nielsch, Kornelius; Bachmann, Julien [Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg (Germany); Reinsberg, Klaus G.; Broekaert, Jose A.C. [Institute of Applied and Inorganic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Rampelberg, Geert; Detavernier, Christophe [Department of Solid State Sciences, University of Ghent, Krijgslaan 281/S1, 9000 Ghent (Belgium)

    2012-03-15

    A systematic optimization of p-type Sb{sub 2}Te{sub 3} thermoelectric films made by potentiostatic electrodeposition on Au and stainless steel substrates is presented. The influence of the preparative parameters of deposition voltage, concentration, and the deposition method are investigated in a nitric acid solution. As a postdeposition step, the influence of annealing the films is investigated. The use of a potential-controlled millisecond-pulsed deposition method could improve both the morphology and the composition of the films. The samples are characterized in terms of composition, crystallinity, Seebeck coefficient, and electrical resistivity. Pulsed-deposited films exhibit Seebeck coefficients of up to 160 {mu}V K{sup -1} and an electrical conductivity of 280 S cm{sup -1} at room temperature, resulting in power factors of about 700 {mu}W m{sup -1} K{sup -2}. After annealing, power factors of maximum 852 {mu}W m{sup -1} K{sup -2} are achieved. Although the annealing of DC-deposited films significantly increased the power factor, they do not reach the values of the pulsed-deposited films in the preannealing state. Structural analysis is performed with X-ray diffraction and shows the crystalline structure of Sb{sub 2}Te{sub 3} films. The performance is tuned by annealing of deposited films up to 300 C under He atmosphere while performing in-situ X-ray diffraction and resistivity measurements. The chemical analysis of the films is performed by inductively coupled plasma optical emission spectroscopy (ICP-OES) as well as scanning electron microscope energy dispersive X-ray analysis (SEM-EDX). (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Composition controlled preparation of Cu–Zn–Sn precursor films for Cu{sub 2}ZnSnS{sub 4} solar cells using pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Wenping; Ren, Xiaodong; Zi, Wei; Jia, Lujian [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023 (China)

    2015-11-25

    A pulsed electrodeposition technique is developed to prepare Cu–Zn–Sn (CZT) precursor films for the Cu{sub 2}ZnSnS{sub 4} (CZTS) solar cells. The CZT precursor films are co-deposited on Mo-coated substrate using a cyanide-free electrolyte containing Zn (II) and Sn (II) salts. During the deposition, CuSO{sub 4} solution is supplied at controlled rate using a peristaltic pump to effectively regulate Cu{sup 2+} concentration. In addition, C{sub 6}H{sub 5}Na{sub 3}O{sub 7} is used as a coordination ligand to further balance activities of the Cu{sup 2+}, Sn{sup 2+} and Zn{sup 2+}. The CZTS films are then prepared using a sulfurization process to convert the electrodeposited CZT precursors at 580 °C in a sulphur atmosphere. The annealed thin films are characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), EDAX and X-ray photoelectron spectroscopy (XPS) techniques for their structural, morphological, compositional and chemical properties. It is found that the addition rate of Cu (II) has significant effects on the properties of the CZTS thin films. The CZTS film prepared using the optimized copper addition rate (0.15 ml/min) shows pure kesterite phase, Cu-poor and Zn-rich composition, compact morphology and good band gap ∼1.45 eV. Solar cells using the structure glass/Mo/CZTS/CdS/i-ZnO/ZnO:Al achieves a respectable external quantum efficiency and solar cell efficiency. - Highlights: • Developed a composition controlled pulsed electrodeposition for CZTS solar cells. • Electrochemistry and CZT composition regulated by measured Cu supply rate. • Complex chemistry used to regulate ion activities and electrodeposition. • Achieved a respectable CZTS solar cell quantum efficiency.

  19. Electrooxidation of aliphatic alcohols on palladium oxide catalyst prepared by pulsed electrodeposition technique

    International Nuclear Information System (INIS)

    Casella, Innocenzo G.

    2009-01-01

    Palladium film can be deposited on gold polycrystalline electrodes, from a deoxygenated alkaline solution containing 50 mM NaOH plus 0.5 mM K 2 Pd(CN) 4 . A multipulse sequence of potentials of equal amplitude and duration was used for the palladium deposition process. In particular, an optimized waveform of potentials of E 1 = 1.0 V vs. SCE and E 2 = -1.0 V vs. SCE for the relevant pulse duration of t 1 = 0.05 s and t 2 = 0.05 s, for 30 s, was used. Cyclic voltammetry and scanning electron microscopy (SEM) were employed to characterize the gold-palladium modified electrode (Au-Pd) towards the electrooxidation of aliphatic alcohols in alkaline solutions. The voltammetric study suggests that the kinetics involved in the alcohol electrooxidation at the Pd-Au electrode are sensibly higher than those observed on the bare Pd and Au electrodes. In addition, the most interesting aspect of the electrooxidation of aliphatic alcohols at the Au-Pd electrode was that as the number of methylene groups on the homologous series of aliphatic alcohols increased, the molar response also increased. Under pulsed chronoamerometric conditions (PCC), using an optimized triple pulse waveform of potentials the modified electrode exhibits interesting catalytic currents without any apparent poisoning effects during the oxidation of aliphatic alcohols.

  20. Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology

    International Nuclear Information System (INIS)

    Pagnanelli, Francesca; Altimari, Pietro; Bellagamba, Marco; Granata, Giuseppe; Moscardini, Emanuela; Schiavi, Pier Giorgio; Toro, Luigi

    2015-01-01

    Cobalt nanoparticles were synthesized by pulsed electrodeposition on copper substrate. Scanning electron microscopy and image analysis were used to determine morphology and particle size distribution of nanoparticle populations obtained in different operating conditions. After preliminary tests, t on and t off were set at 50 and 300 ms respectively to obtain distinct nanoparticles and avoid dendritic structures. Experimental tests were performed according to two partially superimposed factorial designs with two factors at two levels. First factorial design investigated the effect of current density (I = 10 and 50 mA/cm 2 ) and discharged cobalt (Q = 2.5 × 10 −3 and 1.0 × 10 −2 C); second factorial design investigated the effect of cobalt concentration (C 0 = 0.01 and 0.1 M) for the same two levels of Q. For optimized value of t on /t off , square and hexagonal shaped nanoparticles were obtained. Statistical analysis evidenced that, for C 0 = 0.1 mol/L, current density is the most influencing factor on mean size: increasing I from 10 to 50 mA/cm 2 determined a diminution of mean size of 240 nm. For the same cobalt concentration, increasing the deposition time (Q) determined an increase of mean size of 60 nm. Diminishing the initial cobalt concentration from 0.1 to 0.01 mol/L determined an increase of mean size from 10 nm to 36 nm. For C 0 = 0.01 mol/L nanoparticles grow reaching an optimal size (36 nm) and then, increasing the time of deposition, optimal sized subunits tend to aggregate. As for polydispersity of nanoparticles, statistical tests denoted that increasing I determined significant reduction of variance, while increasing the time of deposition determined a significant increase of variance

  1. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel-tungsten composite coatings

    Science.gov (United States)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-02-01

    Silicon carbide (SiC) reinforced nickel-tungsten (Ni-W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni-W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni-W-5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni-W-5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, Ecorr) compared to Ni-W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni-W-5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO4 and SiO2.

  2. Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

    Directory of Open Access Journals (Sweden)

    Ina Schubert

    2015-06-01

    Full Text Available Background: Multicomponent heterostructure nanowires and nanogaps are of great interest for applications in sensorics. Pulsed electrodeposition in ion-track etched polymer templates is a suitable method to synthesise segmented nanowires with segments consisting of two different types of materials. For a well-controlled synthesis process, detailed analysis of the deposition parameters and the size-distribution of the segmented wires is crucial.Results: The fabrication of electrodeposited AuAg alloy nanowires and segmented Au-rich/Ag-rich/Au-rich nanowires with controlled composition and segment length in ion-track etched polymer templates was developed. Detailed analysis by cyclic voltammetry in ion-track membranes, energy-dispersive X-ray spectroscopy and scanning electron microscopy was performed to determine the dependency between the chosen potential and the segment composition. Additionally, we have dissolved the middle Ag-rich segments in order to create small nanogaps with controlled gap sizes. Annealing of the created structures allows us to influence their morphology.Conclusion: AuAg alloy nanowires, segmented wires and nanogaps with controlled composition and size can be synthesised by electrodeposition in membranes, and are ideal model systems for investigation of surface plasmons.

  3. Electrodeposition of mesoscopic Pt-Ru on reticulated vitreous carbon from reverse emulsions and microemulsions: Application to methanol electro-oxidation

    International Nuclear Information System (INIS)

    Cheng, Tommy T.; Gyenge, Elod L.

    2006-01-01

    High surface area Pt-Ru (between 120 and 400 cm 2 mg -1 ) meso-sized particles and mesoporous coatings were electrodeposited on reticulated vitreous carbon (RVC) three-dimensional electrodes using reverse emulsions and microemulsions. The organic phase of the colloidal media was composed of cyclohexane, Triton X-100 non-ionic surfactant and tetrabutylammonium perchlorate (for ionic conductivity) while the aqueous phase contained H 2 PtCl 6 and RuCl 3 (or (NH 4 ) 2 RuCl 6 ). For microemulsification to occur isopropanol was also added as co-surfactant. The catalytic activity for the electro-oxidation of methanol was assessed by cyclic voltammetry and chronopotentiometry in conjunction with surface area measurement by Cu underpotential deposition. The composition and morphology of the Pt-Ru deposit was analyzed by inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy, respectively. The effects on the catalytic activity of the deposition current density, temperature, RVC pretreatment and plating bath composition are presented. It was found that the electrodeposition of Pt-Ru in reverse microemulsion yielded the highest specific surface area (400 cm 2 mg -1 ) and catalytic activity toward CH 3 OH electro-oxidation as shown, for example, by a 50-200 mV more negative anode potential determined by chronopotentiometry compared to a catalyst obtained by pure aqueous and emulsion electroplating

  4. Electrodeposition of mesoscopic Pt-Ru on reticulated vitreous carbon from reverse emulsions and microemulsions: Application to methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Tommy T. [2360 East Mall, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Gyenge, Elod L. [2360 East Mall, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada)]. E-mail: egyenge@chml.ubc.ca

    2006-05-20

    High surface area Pt-Ru (between 120 and 400 cm{sup 2} mg{sup -1}) meso-sized particles and mesoporous coatings were electrodeposited on reticulated vitreous carbon (RVC) three-dimensional electrodes using reverse emulsions and microemulsions. The organic phase of the colloidal media was composed of cyclohexane, Triton X-100 non-ionic surfactant and tetrabutylammonium perchlorate (for ionic conductivity) while the aqueous phase contained H{sub 2}PtCl{sub 6} and RuCl{sub 3} (or (NH{sub 4}){sub 2}RuCl{sub 6}). For microemulsification to occur isopropanol was also added as co-surfactant. The catalytic activity for the electro-oxidation of methanol was assessed by cyclic voltammetry and chronopotentiometry in conjunction with surface area measurement by Cu underpotential deposition. The composition and morphology of the Pt-Ru deposit was analyzed by inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy, respectively. The effects on the catalytic activity of the deposition current density, temperature, RVC pretreatment and plating bath composition are presented. It was found that the electrodeposition of Pt-Ru in reverse microemulsion yielded the highest specific surface area (400 cm{sup 2} mg{sup -1}) and catalytic activity toward CH{sub 3}OH electro-oxidation as shown, for example, by a 50-200 mV more negative anode potential determined by chronopotentiometry compared to a catalyst obtained by pure aqueous and emulsion electroplating.

  5. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    Science.gov (United States)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  6. Nickel Coatings and Electroforming Using Pulse Reversal Plating

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Dylmer, Henrik; Møller, Per

    1995-01-01

    Introducing pulse plating brings new life and possibilities to one the oldest groups of electroplating processes. Nickel coatings and electroforming are used in a great variety of products, from oil valves to optical discs, and for many applications such as corrosion protection and micro-mechanic......Introducing pulse plating brings new life and possibilities to one the oldest groups of electroplating processes. Nickel coatings and electroforming are used in a great variety of products, from oil valves to optical discs, and for many applications such as corrosion protection and micro...

  7. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition.

    Science.gov (United States)

    Fathyunes, Leila; Khalil-Allafi, Jafar; Sheykholeslami, Seyed Omid Reza; Moosavifar, Maryam

    2018-06-01

    In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO 2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3‑(4,5‑dimethylthiazolyl‑2)‑2, 5‑diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effects of spin-polarized current on pulse field-induced precessional magnetization reversal

    Directory of Open Access Journals (Sweden)

    Guang-fu Zhang

    2012-12-01

    Full Text Available We investigate effects of a small DC spin-polarized current on the pulse field-induced precessional magnetization reversal in a thin elliptic magnetic element by micromagnetic simulations. We find that the spin-polarized current not only broadens the time window of the pulse duration, in which a successful precessional reversal is achievable, but also significantly suppresses the magnetization ringing after the reversal. The pulse time window as well as the decay rate of the ringing increase with increasing the current density. When a spin-polarized current with 5 MA/cm2 is applied, the time window increases from 80 ps to 112 ps, and the relaxation time of the ringing decreases from 1.1 ns to 0.32 ns. Our results provide useful information to achieve magnetic nanodevices based on precessional switching.

  9. High amplitude ultrasound pulse generation using time-reversal through a multiple scattering medium

    OpenAIRE

    ARNAL , Bastien; Pernot , Mathieu; Fink , Mathias; Tanter , Mickaël

    2012-01-01

    International audience; In histotripsy, soft tissues can be fragmented using very high pressure ultrasound pulses. Using time-reversal cavity is a way to generate high pressure pulses with a limited number of acoustic sources. The principle was already demonstrated by Montaldo et al. using a solid metal cavity, but low transmission coefficient was obtained due to the strong impedance mismatch at the metal/water interface. We propose here to use a waveguide filled with water containing a 2D mu...

  10. High performance electrode material for supercapacitors based on α-Co(OH)2 nano-sheets prepared through pulse current cathodic electro-deposition (PC-CED)

    Science.gov (United States)

    Aghazadeh, Mustafa; Rashidi, Amir; Ganjali, Mohammad Reza

    2018-01-01

    In this paper, the well-defined nano-sheets of α-Co(OH)2 were prepared through the cathodic electrosynthesis from an additive-free aqueous cobalt nitrate bath. The pulse current cathodic electro-deposition (PC-CED) was used as the means for the controlling the OH- electrogeneration on the cathode surface. The characteristics and electrochemical behavior of the prepared cobalt hydroxide were also assessed through SEM, TEM, XRD, BET, and IR. The results proved the product to be composed of crystalline pure α phase of cobalt hydroxide with sheet-like morphology at nanoscale. Evaluations of the electrochemical behaviour of the α-Co(OH)2 nano-sheets revealed that they are capable to delivering the specific capacitance of 1122 F g-1 at a discharge load of 3 A g-1 and SC retention of 84% after 4000 continues discharging cycles, suggesting the nano-sheets as promising candidates for use in electrochemical supercapacitors. Further, the method used for the preparation of the compounds enjoys the capability of being scaled up. [Figure not available: see fulltext.

  11. Lead-Free Sn-Ce-O Composite Coating on Cu Produced by Pulse Electrodeposition from an Aqueous Acidic Sulfate Electrolyte

    Science.gov (United States)

    Sharma, Ashutosh; Das, Karabi; Das, Siddhartha

    2017-10-01

    Pulse-electrodeposited Sn-Ce-O composite solder coatings were synthesized on a Cu substrate from an aqueous acidic solution containing stannous sulfate (SnSO4·3H2O), sulfuric acid (H2SO4), and Triton X-100 as an additive. The codeposition was achieved by adding nano-cerium oxide powder in varying concentrations from 5 g/L to 20 g/L into the electrolytic bath. Microstructural characterization was carried out using x-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD analysis showed that the deposits consist mainly of tetragonal β (Sn) with reduced cerium oxide species. The composite coatings thus obtained exhibit a smaller grain size, possess higher microhardness, and a lower melting point than the monolithic Sn coating. The electrical resistivity of the developed composites increases, however, but lies within the permissible limits for current lead-free solder applications. Also, an optimum balance of properties in terms of microhardness, adhesion, melting point and resistivity can be obtained with 0.9 wt.% cerium oxide in the Sn matrix, which enables potential applications in solder joints and packaging.

  12. Fabrications of Polyaniline Films by Pulse Electrodeposition in Acidic Solutions with Different Anions and Their Thermoelectric Performances

    Science.gov (United States)

    Yang, Weifang; Xu, Han; Li, Yuanyuan; Wang, Wei

    2017-08-01

    Polymerization of aniline was prepared by the pulse potentiostatic method in H3PO4, HClO4 and H2SO4 acidic solutions. The morphologies and thermoelectric performances were analyzed by scanning electron microscopy, Seebeck coefficient ( S) and resistivity ( R) measurements. The results show that flake polyaniline (PANI) films can be obtained in H3PO4 and HClO4 acidic solutions, and porous PANI films with nanofiber-overlapped structures can be prepared in H2SO4 solution under the same pulse parameters. PANI films prepared in the three solutions are all p-type thermoelectric materials. PANI films polymerized in H2SO4 solution possess the highest S (30.2 μV K-1) and lowest R (1.6 × 10-3 Ω m) compared with those prepared in H3PO4 and HClO4 solutions, indicating that nanofiber-overlapped structures formed in H2SO4 solution contribute better thermoelectric performance. In addition, the effects of pulse parameters (anodic potential φ a, anodic pulse duration t a and cathodic pulse duration t c) on the surface morphologies and thermoelectric performances of PANI films were systematically investigated.

  13. Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating

    International Nuclear Information System (INIS)

    Gu, Changdong; Zhang, Tong-Yi; Xu, Hui

    2009-01-01

    This study aims to fabricate high aspect ratio through-wafer copper interconnects by a simple reverse pulse electroplating technique. High aspect-ratio (∼18) through-wafer holes obtained by a two-step deep reactive ion etching (DRIE) process exhibit a taper profile, which might automatically optimize the local current density distribution during the electroplating process, thereby achieving void-free high aspect-ratio copper vias

  14. New hybrid reverse differential pulse position width modulation scheme for wireless optical communication

    Science.gov (United States)

    Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun

    2014-05-01

    In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.

  15. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  16. Impact of ultrafast demagnetization process on magnetization reversal in L10 FePt revealed using double laser pulse excitation

    Science.gov (United States)

    Shi, J. Y.; Tang, M.; Zhang, Z.; Ma, L.; Sun, L.; Zhou, C.; Hu, X. F.; Zheng, Z.; Shen, L. Q.; Zhou, S. M.; Wu, Y. Z.; Chen, L. Y.; Zhao, H. B.

    2018-02-01

    Ultrafast laser induced magnetization reversal in L10 FePt films with high perpendicular magnetic anisotropy was investigated using single- and double-pulse excitations. Single-pulse excitation beyond 10 mJ cm-2 caused magnetization (M) reversal at the applied fields much smaller than the static coercivity of the films. For double-pulse excitation, both coercivity reduction and reversal percentage showed a rapid and large decrease with the increasing time interval (Δt) of the two pulses in the range of 0-2 ps. In this Δt range, the maximum demagnetization (ΔMp) was also strongly attenuated, whereas the integrated demagnetization signals over more than 10 ps, corresponding to the average lattice heat effect, showed little change. These results indicate that laser induced M reversal in FePt films critically relies on ΔMp. Because ΔMp is determined by spin temperature, which is higher than lattice temperature, utilizing an ultrafast laser instead of a continuous-wave laser in laser-assisted M reversal may reduce the overall deposited energy and increase the speed of recording. The effective control of M reversal by slightly tuning the time delay of two laser pulses may also be useful for ultrafast spin manipulation.

  17. Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kim, Seok-Soon; Nah, Yoon-Chae; Noh, Yong-Young; Jo, Jang; Kim, Dong-Yu

    2006-01-01

    Pt electrodes were prepared by direct and pulse current electrodeposition for use as counter electrodes in dye-sensitized solar cells. Scanning electron microscope and transmission electron microscope images confirmed the formation of uniform Pt nanoclusters of ∼40 nm composed of 3 nm nanoparticles, when the pulse current electrodeposition method was used, as opposed to the dendritic growth of Pt by the results from direct current electrodeposition. By applying pulse electrodeposited Pt which has a 1.86 times higher surface area compared to direct current electrodeposited Pt, short-circuit current and conversion efficiency were increased from 10.34 to 14.11 mA/cm 2 and from 3.68 to 5.03%, respectively. In addition, a flexible solar cell with a pulse current electrodeposited Pt counter electrode with a conversion efficiency of 0.86% was demonstrated

  18. Electrodeposition of nickel particles and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G. T. [Centro de Investigacion en Quimica Aplicada, Laboratorio de Microscopia. Blvd. Enrique Reyna No. 140, Saltillo 25253, Coahuila (Mexico); Zavala, G.; Videa, M. [ITESM, Campus Monterrey, Depto. de Fisica, Av. Garza Sada 2501 Sur, Monterrey 64849, N. L. (Mexico)], e-mail: gtadeo@ciqa.mx

    2009-07-01

    Electrodeposition of nickel particles on ITO substrates is achieved by current pulse reduction. A comparison between potential pulse and current pulse experiments presents differences in particle size and particle size distribution. The latter shows smaller particle size dispersion than what is found with potential pulses. Characterization of the particles carried out by Atomic Force Microscopy shows particles with average sizes between 100 to 300 nm. Magnetic characterization by Magnetic Force Microscopy and SQUID shows that particles of {approx} 300 nm were ferromagnetic with a coercive field of 200 Oe and a saturation magnetization of 40 x 10{sup -6} emu at 300 K. (Author)

  19. Quantum control of a chiral molecular motor driven by femtosecond laser pulses: Mechanisms of regular and reverse rotations

    International Nuclear Information System (INIS)

    Yamaki, M.; Hoki, K.; Kono, H.; Fujimura, Y.

    2008-01-01

    Rotational mechanisms of a chiral molecular motor driven by femtosecond laser pulses were investigated on the basis of results of a quantum control simulation. A chiral molecule, (R)-2-methyl-cyclopenta-2,4-dienecarboaldehyde, was treated as a molecular motor within a one-dimensional model. It was assumed that the motor is fixed on a surface and driven in the low temperature limit. Electric fields of femtosecond laser pulses driving both regular rotation of the molecular motor with a plus angular momentum and reverse rotation with a minus one were designed by using a global control method. The mechanism of the regular rotation is similar to that obtained by a conventional pump-dump pulse method: the direction of rotation is the same as that of the initial wave packet propagation on the potential surface of the first singlet (nπ*) excited state S 1 . A new control mechanism has been proposed for the reverse rotation that cannot be driven by a simple pump-dump pulse method. In this mechanism, a coherent Stokes pulse creates a wave packet localized on the ground state potential surface in the right hand side. The wave packet has a negative angular momentum to drive reverse rotation at an early time

  20. A high voltage pulse generator based on silicon-controlled rectifier for field-reversed configuration experiment.

    Science.gov (United States)

    Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan

    2017-08-01

    A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.

  1. Microstructure and properties of manganese dioxide films prepared by electrodeposition

    International Nuclear Information System (INIS)

    Jacob, G. Moses; Zhitomirsky, I.

    2008-01-01

    Nanostructured manganese dioxide films were obtained by galvanostatic, pulse and reverse pulse electrodeposition from 0.01 to 0.1 M KMnO 4 solutions. The deposition yield was investigated by in situ monitoring the deposit mass using a quartz crystal microbalance (QCM). Obtained films were studied by electron microscopy, X-ray diffraction analysis, energy dispersive spectroscopy, thermogravimetric and differential thermal analysis. The QCM and electron microscopy data were utilized for the investigation of deposition kinetics and film formation mechanism. It was shown that the deposition rate and film microstructure could be changed by variation of deposition conditions. The method allowed the fabrication of dense or porous films. The thickness of dense films was limited to ∼0.1 μm due to the insulating properties of manganese dioxide and film cracking, attributed to drying shrinkage. Porous and crack-free 1-2 μm films were obtained using galvanostatic or reverse pulse deposition from 0.02 M KMnO 4 solutions. It was shown that film porosity is beneficial for the charge transfer during deposition and crack prevention in thick films. Moreover, porous nanostructured films showed good capacitive behavior for applications in electrochemical supercapacitors. The porous nanostructured films prepared in the reverse pulse regime showed higher specific capacitance (SC) compared to the SC of the galvanostatic films. The highest SC of 279 F/g in a voltage window of 1 V was obtained in 0.1 M Na 2 SO 4 solutions at a scan rate of 2 mV/s

  2. Morphologically Aligned Cation-Exchange Membranes by a Pulsed Electric Field for Reverse Electrodialysis.

    Science.gov (United States)

    Lee, Ju-Young; Kim, Jae-Hun; Lee, Ju-Hyuk; Kim, Seok; Moon, Seung-Hyeon

    2015-07-21

    A low-resistance ion-exchange membrane is essential to achieve the high-performance energy conversion or storage systems. The formation methods for low-resistance membranes are various; one of the methods is the ion channel alignment of an ion-exchange membrane under a direct current (DC) electric field. In this study, we suggest a more effective alignment method than the process with the DC electric field. First, an ion-exchange membrane was prepared under a pulsed electric field [alternating current (AC) mode] to enhance the effectiveness of the alignment. The membrane properties and the performance in reverse electrodialysis (RED) were then examined to assess the membrane resistance and ion selectivity. The results show that the membrane electrical resistance (MER) had a lower value of 0.86 Ω cm(2) for the AC membrane than 2.13 Ω cm(2) observed for the DC membrane and 4.30 Ω cm(2) observed for the pristine membrane. Furthermore, RED achieved 1.34 W/m(2) of maximum power density for the AC membrane, whereas that for the DC membrane was found to be 1.14 W/m(2) [a RED stack assembled with CMX, used as a commercial cation-exchange membrane (CEM), showed 1.07 W/m(2)]. Thereby, the novel preparation process for a remarkable low-resistance membrane with high ion selectivity was demonstrated.

  3. Reverse Monte Carlo simulations of light pulse propagation in nonhomogeneous media

    International Nuclear Information System (INIS)

    Lu Xiaodong; Hsu Peifeng

    2005-01-01

    This paper presents a follow-up study of our previous work on the reverse Monte Carlo solution of transient radiation transport in the homogeneous media. In this study, the method is extended to consider nonhomogeneous media, which exist in many practical problems. The transport process of ultra-short light pulse propagation inside the non-emitting, absorbing, and anisotropically scattering multi-layer media is studied. Although only one-dimensional geometry is treated here, the method is applicable and easy to extend to multi-dimensional geometries. In multi-layer media, the time-resolved reflectance exhibits a direct correlation between the signal magnitude and the travel time to the layer interface if the ballistic photons encounter a strongly scattering layer. Furthermore, it is found that even with a symmetric radiative property distribution in a three-layer medium, the reflectance and transmittance signals do not converge at long time when the mid-layer is optically thick. The long time slope of the temporal signal does not provide the specificity required for an inverse analysis parameter as stipulated by earlier studies

  4. Electrodeposition of Radium

    International Nuclear Information System (INIS)

    Crespo, M.T.; Jimenez, A.S.

    1996-01-01

    A study of different electrodeposition methods of radium for its measurement by alpha-spectrometry is presented. The recommended procedure uses an aqueous solution of ammonium oxalate and nitric acid in the presence of microgram amounts of platinum as electrolyte

  5. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2013-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...

  6. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K 2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO 3 melts carbonate ions seems to be reduced to carbon ...

  7. Synthesis of shape memory alloys using electrodeposition

    Science.gov (United States)

    Hymer, Timothy Roy

    Shape memory alloys are used in a variety of applications. The area of micro-electro-mechanical systems (MEMS) is a developing field for thin film shape memory alloys for making actuators, valves and pumps. Until recently thin film shape memory alloys could only be made by rapid solidification or sputtering techniques which have the disadvantage of being "line of sight". At the University of Missouri-Rolla, electrolytic techniques have been developed that allow the production of shape memory alloys in thin film form. The advantages of this techniques are in-situ, non "line of sight" and the ability to make differing properties of the shape memory alloys from one bath. This research focused on the electrodeposition of In-Cd shape memory alloys. The primary objective was to characterize the electrodeposited shape memory effect for an electrodeposited shape memory alloy. The effect of various operating parameters such as peak current density, temperature, pulsing, substrate and agitation were investigated and discussed. The electrodeposited alloys were characterized by relative shape memory effect, phase transformation, morphology and phases present. Further tests were performed to optimize the shape memory by the use of a statistically designed experiment. An optimized shape memory effect for an In-Cd alloy is reported for the conditions of the experiments.

  8. Pulse mitigation and heat transfer enhancement techniques. Volume 3: Liquid sodium heat transfer facility and transient response of sodium heat pipe to pulse forward and reverse heat load

    Science.gov (United States)

    Chow, L. C.; Hahn, O. J.; Nguyen, H. X.

    1992-08-01

    This report presents the description of a liquid sodium heat transfer facility (sodium loop) constructed to support the study of transient response of heat pipes. The facility, consisting of the loop itself, a safety system, and a data acquisition system, can be safely operated over a wide range of temperature and sodium flow rate. The transient response of a heat pipe to pulse heat load at the condenser section was experimentally investigated. A 0.457 m screen wick, sodium heat pipe with an outer diameter of 0.127 m was tested under different heat loading conditions. A major finding was that the heat pipe reversed under a pulse heat load applied at the condenser. The time of reversal was approximately 15 to 25 seconds. The startup of the heat pipe from frozen state was also studied. It was found that during the startup process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all of the working fluid in the heat pipe was molten.

  9. Behavior of impurity ion velocities during the pulsed poloidal current drive in the Madison symmetric torus reversed-field pinch

    International Nuclear Information System (INIS)

    Sakakita, Hajime; Craig, Darren; Anderson, Jay K.; Chapman, Brett E.; Den-Hartog, Daniel J.; Prager, Stewart C.; Biewer, Ted M.; Terry, Stephen D.

    2003-01-01

    We report on passive measurements of impurity ion velocities during the pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed-field pinch. During PPCD, the electron temperature increased and a sudden reduction of magnetic fluctuations was observed. For this change, we have studied whether plasma velocity is affected. Plasma rotation is observed to decrease during PPCD. From measurements of line intensities for several impurities at 10 poloidal chords, it is found that the impurity line emission shifts outward. The ion temperature of impurities is reasonably connected to that measured by charge exchange recombination spectroscopy from core to edge. (author)

  10. Recent Advances in Superhydrophobic Electrodeposits

    Directory of Open Access Journals (Sweden)

    Jason Tam

    2016-03-01

    Full Text Available In this review, we present an extensive summary of research on superhydrophobic electrodeposits reported in the literature over the past decade. As a synthesis technique, electrodeposition is a simple and scalable process to produce non-wetting metal surfaces. There are three main categories of superhydrophobic surfaces made by electrodeposition: (i electrodeposits that are inherently non-wetting due to hierarchical roughness generated from the process; (ii electrodeposits with plated surface roughness that are further modified with low surface energy material; (iii composite electrodeposits with co-deposited inert and hydrophobic particles. A recently developed strategy to improve the durability during the application of superhydrophobic electrodeposits by controlling the microstructure of the metal matrix and the co-deposition of hydrophobic ceramic particles will also be addressed.

  11. Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang, Wei-Yan; Ting, Pan-Ning; Luo, Shu-Hui; Lin, Jeng-Yu

    2014-01-01

    Highlights: • MWCNT/PPy composite was incorporated in Pt-free DSCs. • Evenly coating of PPy on MWCNT was achieved by using pulse-reversal technique. • The DSC with theMWCNT/PPy composite reached an efficiency of 6.21%. - Abstract: In this current work, we proposed a modified two-step method to prepare multiwalled carbon nanotube/polypyrrol (MWCNT/PPy) composite counter electrodes (CEs) toward triiodide reduction in dye-sensitized solar cells (DSCs). MWCNTs were deposited onto the surface of fluorinated tin oxide (FTO) glass substrates by electrophoretic deposition, and then subjected to the PPy electropolymerization by using a pulse-reversal technique. With regard to the electropolymerization of PPy on the MWCNTs-coated FTO substrate by conventional cyclic voltammetry (CV) method (designated as MWCNT/PPy-CV CE), the MWCNT/PPy-PR CE still retrained the mesoporous morphology originating from the MWCNT conductive framework and the PPy thin film was found to be evenly coated on the MWCNT surface. According to the extensive electrochemical analyses, the mesoporous nanostructure of the MWCNT/PPy-PR CE provided increased active surface area for I 3 - reduction and facilitated the electron transport at the interface of CE/electrolyte and the redox electrolyte penetration within the CE. As a result, the DSC assembled with the MWCNT/PPy-PR CE reaches a comparable photovoltaic efficiency of 6.21% to that of the DSC based on the Pt CE (6.66%)

  12. Corrosion resistance and mechanical properties of pulse electrodeposited Ni-TiO{sub 2} composite coating for sintered NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Li Qing, E-mail: liqingd@swu.edu.c [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China); Zhang Liang; Wang Juping; Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2009-08-12

    Ni-TiO{sub 2} composite coating which was prepared under pulse current conditions was successfully performed on sintered NdFeB magnet. As a comparison, pure nickel coating was also prepared. The phase structure, the surface morphology, the chemical composition, the anti-corrosion performance of the coatings for magnets, the microhardness and the wearing resistance performance of the coatings were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), electrochemical technique, Vickers hardness tester and ball-on-disc tribometer, respectively. The results revealed that Ni-TiO{sub 2} composite coating provided excellent anti-corrosion performance for the magnets, and showed higher microhardness and better anti-wear performance.

  13. Reversal of progressive necrotizing vasculitis with intravenous pulse cyclophosphamide and methylprednisolone.

    Science.gov (United States)

    Fort, J G; Abruzzo, J L

    1988-09-01

    We describe a patient with polyarteritis nodosa who, despite therapy with daily doses of oral prednisone and cyclophosphamide, developed acute renal failure. Renal histopathologic examination demonstrated crescentic glomerulonephritis. Treatment with intravenous pulse cyclophosphamide and methylprednisolone resulted in clinical improvement and significant recovery of renal function.

  14. A simple, rapid and green method based on pulsed potentiostatic electrodeposition of reduced graphene oxide on glass carbon electrode for sensitive voltammetric detection of sophoridine

    International Nuclear Information System (INIS)

    Wang, Fei; Wu, Yanju; Lu, Kui; Gao, Lin; Ye, Baoxian

    2014-01-01

    Graphical abstract: A simple, rapid and green method, based on graphene nanosheets directly deposited onto a glassy carbon electrode by pulsed potentiostatic reduction of a graphene oxide colloidal solution, to build sensitive voltammetric sensor for the determination of sophoridine was presented. - Highlights: • A simple, rapid and green method to build sensitive voltammetric sensor was presented. • The proposed sensor has a high electrochemical sensitivity for determination of sophoridine. • The proposed sensor exhibited an excellent selectivity. - Abstract: A simple, rapid and green method was described for sensitive voltammetric detection of sophoridine based on graphene nanosheets directly deposited onto a glassy carbon electrode (GCE) by pulsed potentiostatic reduction of a graphene oxide (GO) colloidal solution. The resulting electrodes (PP-ERGO/GCE) were characterized by electrochemical methods and scanning electron microscopy. Moreover, the electrochemical behaviors of sophoridine at the modified electrode were investigated in detail by cyclic voltammetry (CV), chronoamperometry (CA) and chronocoulometry (CC). Compared with the bare GCE and the preparation of reduced graphene oxide (RGO) films by potentiostatic method (PM) modified GCE, PP-ERGO/GCE could intensively enhance the oxidation peak currents and decrease the overpotential of sophoridine. Under the selected conditions, the modified electrode showed a linear voltammetric response to sophoridine within the concentration range of 8.0 × 10 −7 ∼ 1.0 × 10 −4 mol L −11 , with the detection limit of 2.0 × 10 −7 mol L −1 . And, the method was also applied to detect sophoridine in spiked human urine with wonderful satisfactory

  15. Reversal of Flux Closure States in Cobalt Nanoparticle Rings With Coaxial Magnetic Pulses

    DEFF Research Database (Denmark)

    Kasama, T; Dunin-Borkowski, Rafal E.; Scheinfein, MR

    2008-01-01

    Bistable flux closure (FC) states in Co nanoparticle rings can be switched reversibly by applying a coaxial magnetic field (H-z). The FC switching phenomena can be reproduced by micromagnetics simulations, which also reveal novel magnetic states at intermediate applied field strengths.......Bistable flux closure (FC) states in Co nanoparticle rings can be switched reversibly by applying a coaxial magnetic field (H-z). The FC switching phenomena can be reproduced by micromagnetics simulations, which also reveal novel magnetic states at intermediate applied field strengths....

  16. Cold pulse and rotation reversals with turbulence spreading and residual stress

    DEFF Research Database (Denmark)

    Hariri, F.; Naulin, Volker; Rasmussen, Jens Juul

    2016-01-01

    and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable...

  17. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    Science.gov (United States)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  18. Residual stress in Ni-W electrodeposits

    DEFF Research Database (Denmark)

    Mizushima, Io; Tang, Peter Torben; Hansen, Hans Nørgaard

    2006-01-01

    In the present work, the residual stress in Ni–W layers electrodeposited from electrolytes based on NiSO4 and Na2WO4, is investigated. Citrate, glycine and triethanolamine were used as complexing agents, enabling complex formation between the nickel ion and tungstate. The results show that the type...... of complexing agent and the current efficiency have an influence on the residual stress. In all cases, an increase in tensile stress in the deposit with time after deposition was observed. Pulse plating could improve the stress level for the electrolyte containing equal amounts of citrate...

  19. Skin Effect of Reversely Switched Dynistor in Short Pulse Discharge Application

    Institute of Scientific and Technical Information of China (English)

    Lin Liang; Yue-Hui Yu

    2009-01-01

    The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.

  20. Re-activation of degraded nickel cermet anodes - Nano-particle formation via reverse current pulses

    Science.gov (United States)

    Hauch, A.; Marchese, M.; Lanzini, A.; Graves, C.

    2018-02-01

    The Ni/yttria-stabilized-zirconia (YSZ) cermet is the most commonly applied fuel electrode for solid oxide cells (SOCs). Loss of Ni/YSZ electrode activity is a key life-time limiting factor of the SOC. Developing means to mitigate this loss of performance or re-activate a fuel electrode is therefore important. In this work, we report a series of five tests on state-of-the-art Ni/YSZ-YSZ-CGObarrier-LSC/CGO cells. All cells were deliberately degraded via gas stream impurities in CO2/CO or harsh steam electrolysis operation. The cells were re-activated via a variety of reverse current treatments (RCTs). Via electrochemical impedance spectroscopy, we found that the Ni/YSZ electrode performance could be recovered via RCT, but not via constant fuel cell operation. For optimized RCT, we obtained a lower Ni/YSZ electrode resistance than the initial resistance. E.g. at 700 °C we measured fuel electrode resistance of 180 mΩ cm2, 390 mΩ cm2, and 159 mΩ cm2 before degradation, after degradation and after re-activation via RCT, respectively. Post-test SEM revealed that the RCT led to formation of nano-particles in the fuel electrode. Besides the remarkable improvement, the results also showed that RCTs can weaken Ni/YSZ interfaces and the electrode/electrolyte interface. This indicates that finding an optimum RCT profile is crucial for achieving maximum benefit.

  1. Electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xueliang [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zou, Xingli, E-mail: xinglizou@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xionggang, E-mail: luxg@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Changyuan; Cheng, Hongwei; Xu, Qian [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhou, Zhongfu [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)

    2016-11-01

    Graphical abstract: Micro/nanostructured Zn and Cu–Zn alloy films have been electrodeposited directly from ZnO/CuO precursors in ChCl/urea-based DES, the typical nucleation-growth mechanism and the micro/nanostructures-formation process are determined. Display Omitted - Highlights: • Micro/nanostructured Zn films have been electrodeposited directly from ZnO precursor in deep eutectic solvent (DES). • The morphology of the Zn electrodeposits depends on the cathodic potential and temperature. • The electrodeposited Zn films exhibit homogeneous morphologies with controllable particle sizes and improved corrosion resistance. • Cu–Zn alloy films have also been electrodeposited directly from their metal oxides precursors in DES. - Abstract: The electrodeposition of Zn and Cu–Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu–Zn alloy films have also been electrodeposited directly from CuO–ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu–Zn alloy depends on the electrodeposition potential.

  2. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  3. Co{sub 100−x}Fe{sub x} magnetic thick films prepared by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, M. del C., E-mail: carmenaguirre@famaf.unc.edu.ar [Instituto de Física Enrique Gaviola-Conicet-Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Farías, E. [Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Abraham, J.; Urreta, S.E. [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina)

    2015-04-05

    Highlights: • Low iron containing films are compact, with rounded, relatively uniform surfaces. • Larger Fe contents exhibit nanowall networks covering the surface. • Coercivity in the out of plane configuration is larger than in the easy axis direction. • Co-rich films nucleate and grow by a 3DP diffusion controlled mechanism. • For equiatomic Fe{sub 50}Co{sub 50} films, nucleation tends to become instantaneous. - Abstract: Co–Fe films are grown onto plane pre-treated Cu foils; the effects of the alloy composition on the morphology and the crystal texture of the electrodeposited films and their anisotropic magnetic hysteresis properties are explored. Nucleation and crystallization mechanisms in these Co-rich layers are also investigated with pulse-reverse plating techniques, using the first cathodic pulse current–time transients. In the diffusion controlled regime the deposition mechanism is found to involve progressive nucleation with three-dimensional (3D) growth, except for the equiatomic Fe{sub 50}Co{sub 50} solution where nucleation tends to become instantaneous. The different morphologies and size scales observed are described and correlated with coercivity. The films are electrodeposited onto electrochemically pre-treated Cu substrates from feeds of nominal Fe/Co mol ratios between 0/100 and 50/50. The composition of the deposited layers, as determined by energy dispersive X-ray spectroscopy, are quite close to the nominal values. Cyclic voltammetry determinations exhibit only a single reduction process on the cathode, indicating that a unique (Co{sub 100−x}Fe{sub x}) phase grows. Depending on composition and on the substrate pre-treatment, these layers exhibit textures with features of different sizes. X ray diffraction patterns indicate that the nanostructures with Fe contents above 20 at.% crystallize in a body-centered cubic cell, while samples with Fe contents below this value are fcc. Regarding the effect of composition on the

  4. The Effect of Local Irradiation in Prevention and Reversal of Acute Rejection of Transplanted Kidney with High-dose Steroid Pulse

    International Nuclear Information System (INIS)

    Kim, I. H.; Ha, S. W.; Park, C. I.; Kim, S. T.

    1986-01-01

    From 1979 to 1984, 39 local allograft irradiations were given to 29 patients: 10 irradiations were administered for prevention and 29 for reversal of acute rejection of transplanted kidney. Three doses of 150 cGy every other day were combined with high-dose of methylprednisolone pulse (1 gm/day) for 3 days. For prevention of acute rejection, local irradiation was delivered on the days 1, 3, and 5 after the transplantation, and for reversal, irradiation started after the diagnosis of acute rejection. Eight out of 10 patients irradiated for prevention had acute allograft rejection, and, what is more, there was no surviving graft at 15 months after transplantation. Reversal of acute rejection was achieved in 71%. When the pre-irradiation level of serum creatinine was below 5.5 mg%, the reversal rate was 93%, but above 5.5 mg% the reversal rate was only 17% (p<0.01). Reirradiation after failure was not successful. Among 15 reversed patients, 7 (47%) had subsequent rejection (s). The functional graft survivals at 6 month, 1, 2, and 3 year were 70%, 65%, 54%, and 65%, respectively. Therapeutic irradiation resulted in better graft survival when serum creatinine was below 5.5 mg% (p<0.001) or when irradiation started within 15 days after the diagnosis of acute rejection (p<0.001)

  5. Single potential electrodeposition of nanostructured battery materials for lithium-ion batteries

    Science.gov (United States)

    Mosby, James Matthew

    different sizes, shapes, and surface areas. This is advantageous because high surface area materials benefit from improved kinetics for solid state transformations and from decreases in mechanical degradation that occurs during the lithiation and delithiation of battery materials. Intermetallic materials are an alternative to conventional anode materials because they have high capacities and react reversibly with lithium at potentials that hinder the dendrite formation of metallic lithium. Unfortunately, the volume expansion associated with the lithiation and delithiation of intermetallic materials is usually large (over 300%). With this in mind a procedure for the electrodeposition of Cu2Sb from aqueous solutions was developed and is presented in this thesis. Cu2Sb is an intermetallic that lithiates at potentials more positive than the potential needed to plate lithium metal, and has a volume expansion less than 100%. Electrodeposition of an intermetallic with a relatively small volume expansion and with high surface area morphology should dramatically reduce material degradation during battery cycling, thus promoting the life of the material. To electrodeposit Cu2Sb from aqueous solutions, soluble salts of Cu2+ and Sb3+ were needed. There are many Cu2+ salts that are highly soluble in water, but most Sb 3+ salts cause formation of Sb2O3 in aqueous solutions. To obtain Sb3+ in aqueous solutions, citric acid was used as a complexing agent. The results presented in this dissertation show that solution speciation plays an important role in the electrochemistry of aqueous citrate solutions of both copper and antimony. The cyclic voltammograms (CVs) presented here show that the reduction potential of Cu2+ shifted in the negative direction and the reduction potential of Sb 3+ shifted in the positive direction with an increase in pH. Also, Cu2Sb films were deposited at a single potential (-1050 mV vs. SSCE) from aqueous solutions at pH 6. We determined that the deposition

  6. ''Positive'' and ''negative'' electric-pulse-induced reversible resistance switching effect in Pr0.7Ca0.3MnO3 films

    International Nuclear Information System (INIS)

    Wang, Q.; Chen, L.D.; Li, X.M.; Shang, D.S.; Wu, Z.H.

    2007-01-01

    ''Negative'' electric-pulse-induced reversible resistance (EPIR) switching phenomenon was found in In/PCMO/Pt sandwich, in which the high resistance can be written with positive voltage pulses, and the low resistance can be reset using negative voltage pulses (the positive voltage direction is defined as going from the top electrode to the bottom electrode). This is just the opposite from the ''positive'' EPIR effect in Ag/PCMO/Pt sandwich, in which the high resistance can be written only with negative voltage pulses, and the low resistance can be reset using positive voltage pulses. The I-V hysteresis curves of In/PCMO/Pt and Ag/PCMO/Pt sandwiches also show opposite directions, i.e., counterclockwise and clockwise under a negative voltage region for indium and Ag electrode systems, respectively. C-V characteristics show that the barrier does not exist in Ag/PCMO/Pt sandwich, while In/PCMO/Pt sandwich exhibits an obvious Schottky-like barrier. We suggest that in the negative EPIR behavior in In/PCMO/Pt structure, the resistance states are mainly controlled changing the Schottky-like barrier at the interface with the weak effect of carrier trapping process, while the positive EPIR behavior in Ag/PCMO/Pt sandwich mainly depends on the carrier trapping process at the interface. (orig.)

  7. Niobium electrodeposition from molten fluorides

    International Nuclear Information System (INIS)

    Sartori, A.F.

    1987-01-01

    Niobium electrodeposition from molten alkali fluorides has been studied aiming the application of this technic to the processes of electrorefining and galvanotechnic of this metal. The effects of current density, temperature, niobium concentration in the bath, electrolysis time, substrate nature, ratio between anodic and cathodic areas, electrodes separation and the purity of anodes were investigated in relation to the cathodic current efficiency, electrorefining, electroplating and properties of the deposit and the electrolytic solution. The work also gives the results of the conctruction and operation of a pilot plant for refractory metals electrodeposition and shows the electrorefining and electroplating compared to those obtained at the laboratory scale. (author) [pt

  8. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  9. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin; Gemma, Ryota; Al-Kassab, Talaat

    2016-01-01

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  10. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  11. ELECTRODEPOSITION OF NICKEL ON URANIUM

    Science.gov (United States)

    Gray, A.G.

    1958-08-26

    A method is described for preparing uranium objects prior to nickel electroplating. The process consiats in treating the surface of the uranium with molten ferric chloride hexahydrate, at a slightiy elevated temperature. This treatment etches the metal surface providing a structure suitable for the application of adherent electrodeposits and at the same time plates the surface with a thin protective film of iron.

  12. Electrodeposition of engineering alloy coatings

    DEFF Research Database (Denmark)

    Christoffersen, Lasse

    Nickel based electrodeposited alloys were investigated with respect to their deposition process, heat treatment, hardness, corrosion resistance and combined wear-corrosion resistance. The investigated alloys were Ni-B, Ni-P and Ni-W, which are not fully developed for industrial utilisation...... are written in brackets). Temperature and especially pH influenced the cathodic efficiency of the electrodeposition processes for Ni-W and Ni-P. Mass balance problems of the development alloy processes are identified.Heat treatment for one hour at approx. 350°C, 400°C and 600°C of electrodeposited Ni-B, Ni......-P and Ni-W, respectively, resulted in hardness values of approx. 1000 HV0.1 in the case of Ni-P(6), approx. 1100 HV0.1 in the case of Ni-W(40-53) and approx. 1300 HV0.1 in the case of Ni-B(5). Cracks, which emerged during electrodeposition and heat treatment, were observed on Ni-W and Ni-B.The corrosion...

  13. Reduction of reversed micelle entrapped cytochrome c and cytochrome c3 by electrons generated by pulse radiolysis or by pyrene photoionization

    International Nuclear Information System (INIS)

    Vlsser, A.J.W.G.; Fendler, J.H.

    1982-01-01

    Horse heart cytochrome c and cytochrome c 3 , isolated from Desulfovibrio vulgaris, have been incorporated in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) entrapped water pools in heptane. The absorption spectra of the cytochromes have been found to be strongly dependent on the water to AOT concentration ratios. The proteins solubilized in heptane by the AOT reversed micelles have retained their ability to mediate electron transfer. They reacted very rapidly with hydrated electrons, generated pulse radiolytically or, alternatively, formed in the laser photoionization of pyrene

  14. Electrodeposition in capillaries: Bottom-up micro and nanopatterning of functional materials on conductive substrates

    NARCIS (Netherlands)

    George, A.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    A cost-effective and versatile methodology for bottom-up patterned growth of inorganic and metallic materials on the micro- and nanoscale is presented. Pulsed electrodeposition was employed to deposit arbitrary patterns of Ni, ZnO, and FeO(OH) of high quality, with lateral feature sizes down to

  15. Electrodeposition: Principles, Applications and Methods

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Ying, K.K.; Khuan, N.I.

    2011-01-01

    Electrodeposition technique has been around for a very long time. It is a process of coating a thin layer of one metal on top of a different metal to modify its surface properties, by donating electrons to the ions in a solution. This bottom-up fabrication technique is versatile and can be applied to a wide range of potential applications. Electrodeposition is gaining popularity in recent years due to its capability in fabricating one-dimensional nano structures such as nano rods, nao wires and nano tubes. In this paper, we present an overview on the fabrication and characterization of high aspect ratio nano structures prepared using the nano electrochemical deposition system set up in our laboratory. (author)

  16. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Binyan; Lu, Shixiang, E-mail: shixianglu@bit.edu.cn; Xu, Wenguo, E-mail: wenguoxu60@bit.edu.cn; Cheng, Yuanyuan

    2016-01-01

    Graphical abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching, electrodeposition of ZnO coatings and annealing. Such superhydrophobic surfaces offer possibilities for chemical, biological, electronic and microfluidic applications. - Highlights: • Superhydrophobic surface was fabricated via electrodeposition of ZnO and annealing. • The ZnO hierarchical micro/nanostructures contribute to the surface superhydrophobicity. • Surface wettability and morphology can be controlled by varying process conditions. • The anti-icing properties and reversible wetting behaviors of the ZnO coatings were studied. - Abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at −1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH{sub 3}COO){sub 2} concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH{sub 3}COO){sub 2} concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and

  17. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    International Nuclear Information System (INIS)

    Zhang, Binyan; Lu, Shixiang; Xu, Wenguo; Cheng, Yuanyuan

    2016-01-01

    Graphical abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching, electrodeposition of ZnO coatings and annealing. Such superhydrophobic surfaces offer possibilities for chemical, biological, electronic and microfluidic applications. - Highlights: • Superhydrophobic surface was fabricated via electrodeposition of ZnO and annealing. • The ZnO hierarchical micro/nanostructures contribute to the surface superhydrophobicity. • Surface wettability and morphology can be controlled by varying process conditions. • The anti-icing properties and reversible wetting behaviors of the ZnO coatings were studied. - Abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at −1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH_3COO)_2 concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH_3COO)_2 concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and reversibly switched

  18. Electrodeposition of lead on ITO electrode: influence of copper as an additive

    International Nuclear Information System (INIS)

    Avellaneda, Cesar O.; Napolitano, Marcos A.; Kaibara, Evandro K.; Bulhoes, Luis O.S.

    2005-01-01

    The reversible electrodeposition of metallic lead onto indium-tin oxide coated glass (ITO) was investigated and the influence of Cu(NO 3 ) 2 ·3H 2 O as additive was evaluated. The presence of Cu 2+ in the electrolytic solution produces a higher variation in the optical transmissivity. The optical response of the system changes from 85 to 10% relative to the ITO coated substrate. The kinetics of the electroreduction process of the Pb 2+ and Cu 2+ from the electrolytes has been determined by electrochemical impedance spectroscopy (EIS) at different electrodeposition potentials. This system may be a promising candidate for electrochromic materials

  19. Zinc Electrodeposition from Chloride Solutions onto Glassy Carbon Electrode

    OpenAIRE

    Mendoza-Huízar, Luis Humberto; Rios-Reyes, Clara Hilda; Gómez-Villegas, María Guadalupe

    2009-01-01

    An electrochemical study of zinc deposition was carried out in baths containing 0.5 M ZnCl2 and 0.4 M H3BO3. From the voltammetric study it was found that, in our experimental conditions, zinc electrodeposition is quasi-reversible and occurs under charge transfer control. The average coefficient diffusion calculated was D = 7.14 × 10-6 cm²s-1 while the standard constant at electrode charge was 8.78 × 10-3 cms-1. The nucleation and growth parameters determined from the potentiostatic study sho...

  20. Fabrication of a metallic roll stamp with low internal stress and high hardness for large area display applications by a pulse reverse current electroforming process

    International Nuclear Information System (INIS)

    Kim, Joongeok; Han, Jungjin; Kim, Taekyung; Kang, Shinill

    2014-01-01

    With the increasing demand for large scale micro/nano components in the fields of display, energy and electrical devices, etc, the establishment of a roll imprinting process has become a priority. The fabrication of a roll stamp with high dimensional accuracy and uniformity is one of the key issues in the roll imprinting process, because the roll stamp determines the properties of the replicated micro/nano structures. In this study, a method to fabricate a metallic roll stamp with low internal stress, high flatness, and high hardness was proposed by a pulse reverse current (PRC) electroforming process. The effects of PRC electroforming processes on the internal stress, hardness, and grain size of the electroformed stamp were examined, and the optimum process conditions were suggested. As a practical example of the proposed method, various micro-patterns for electronic circuits were fabricated via the roll imprinting process using a PRC electroformed stamp. (paper)

  1. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    Science.gov (United States)

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  2. Kinetics of the magnetization reversal in permalloy-niobium microstrips under the effect of a pulsed magnetic field and an electric current

    Science.gov (United States)

    Egorov, S. V.; Uspenskaya, L. S.

    2016-02-01

    The kinetics of magnetization reversal in bilayer permalloy-niobium microstrips under the effect of both a pulsed magnetic field and an electric current has been experimentally studied. These two cases turn out to be fundamentally different in the types of arising magnetic structures and in the dynamic characteristics of the processes. Such difference is especially striking at low temperatures. An anomalously high rate of the processes under study is observed. According to the suggested qualitative explanation, this effect is due to nonlinear excitations appearing in front of the moving domain wall if the applied electric current lowers the barriers for its motion. For achieving the final conclusions, more accurate quantitative analysis is needed.

  3. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  4. Electrochemical corrosion measurements on noble electrodeposits

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1998-01-01

    Novel electrodeposits are compared with hard chrome and electroless Ni-P with respect to production, corrosion resistance and hardness.......Novel electrodeposits are compared with hard chrome and electroless Ni-P with respect to production, corrosion resistance and hardness....

  5. Theory and practice of metal electrodeposition

    CERN Document Server

    Gamburg, Yuliy D

    2011-01-01

    fills the gap between modern developments in electrochemistry and outdated information on metals electrodeposition currently available in competing titles essential information on the theoretical and practical electrochemistry necessary to investigate modern metal deposition is provided part of the growing literature on electrodeposition

  6. Electrodeposition of thin Pd-Ag films

    International Nuclear Information System (INIS)

    Hasler, P.; Allmendinger, T.

    1993-01-01

    Thin Pd-Ag layers were electroplated preferably on brass and on nickel substrates using a two-compartment cell separated by an anion exchange membrane. The weakly alkaline electrolyte contained glycine-glycinate as the major complexing agents. The plating experiments were usually carried out without stirring, at different potentials and temperatures and in the absence or in the presence of sodium benzaldehyde-2,4-disulphonate (BDS). The samples were characterized by scanning electron microscopy and light microscopy. Their compositions were determined analytically by the inductively coupled plasma technique. In addition, the film porosity was tested. Electrodeposition in almost limiting current conditions for both components and without simultaneous hydrogen evolution led to deposits with compositions being in good agreement with the molar metal ratio in the electrolyte (77:23). The best results were achieved between 0 and -50 mV with respect to a reversible hydrogen electrode at 0 C in the presence of BDS. These deposits were bright, had good adherence and exhibited no pores at a film thickness of 1.2 μm. At too negative potentials, the deposits became black and powdery. (orig.)

  7. Thermodynamics of gallium arsenide electrodeposition

    International Nuclear Information System (INIS)

    Perrault, G.G.

    1986-01-01

    Gallium Arsenide is well known as a very interesting compound for photoelectrical devices. Up to now, it has been prepared mostly by high temperature technology, and the authors considered that it might be of interest to set up an electrodeposition technique suitable to prepare thin layers of this compound. A reaction sequence similar to the one observed for Cadmium Sulfide or Cadmium Telluride could be considered. In these cases, the metal chalcogenide is obtained from the precipitation of the metal ions dissolved in the solutions by the reduction product of the metalloidic compound

  8. Structure investigations of electrodeposited nickel

    International Nuclear Information System (INIS)

    Vertes, A.; Czako-Nagy, I.; Lakatos-Varsanyi, M.; Brauer, G.; Leidheiser, H. Jr

    1981-01-01

    Electrodeposited nickel samples were investigated by positron annihilation (lifetime and Doppler-broadening), Moessbauer effect and X-ray diffraction measurements. Two-component positron lifetime spectra were obtained. The first component is thought to result from bulk annihilation and trapping at single trapping centres (TC), their concentrations are obtained from the trapping model. The second one possibly denotes annihilation at voids, the number of which is dependent on the stress in the deposit. The Moessbauer results show differences in the magnetic orientation in the three samples examined. (author)

  9. Zinc electrodeposition from alkaline zincate solution by pulsating overpotentials

    Directory of Open Access Journals (Sweden)

    MILOS V. SIMICIC

    2000-09-01

    Full Text Available It is well known that smooth zinc deposits cannot be obtained from alkaline zincate using constant overpotential and current rate. During prolonged metal deposition, spongy and dendritic deposits are formed. It has been shown that the deposits are less agglomerated in the case of square-wave pulsating overpotentials regime than the ones obtained in case of constant overpotential regime. This is explained in a semiquantitative way by two phenomena: selective anodic dissolution during overpotentials “off” period and decreasing diffusion control. These effects is more pronounced at higher pause-to-pulse ratio. Increasing the pause-to-pulse ratio causes a reduction of the ratio between diffusion and activation overpotential, resulting in a more compact deposit. Confirmation of the proposed semiquantitative mathematical model was obtained by zinc electrodeposition onto a copper wire from a 0.1 M zincate solution in 1.0 M KOH at room temperature.

  10. Electrodeposition of textured Bi27Sb28Te45 nanowires with enhanced electrical conductivity

    International Nuclear Information System (INIS)

    Hasan, Maksudul; Gautam, Devendraprakash; Enright, Ryan

    2016-01-01

    This work presents the template based pulsed potential electrodeposition technique of highly textured single crystalline bismuth antimony telluride (Bi 1-x Sb x ) 2 Te 3 nanowires from a single aqueous electrolyte. Cyclic voltammetry was used as an electroanalytical tool to assess the effect of the precursor concentrations on the composition of the deposits and to determine the deposition potential for each element. Pulsed potential electrodeposition was then applied on a gold-coated anodised alumina template to examine the effect of the pulse parameters on the composition and texture of Bi 27 Sb 28 Te 45 nanowires. The nanowires are cylindrical in shape formed during the deposition inside the porous template and highly textured as they are decorated with sparse distribution of small crystal domains. The electrical conductivity (24.1 × 10 4  S m −1 ) of a single nanowire was measured using a four-point probe technique implemented on a custom fabricated test chip. In this work, we demonstrated that crystal orientation with respect to the transport direction controlled by tuning the pulsed electrodeposition parameters. This allowed us to realise electrical conductivities ∼2.5 times larger than Sb doped bismuth-tellurium based ternary material systems and similar to what is typically seen in binary systems. - Highlights: • Pulsed electrodeposition is described towards fabrication of (Bi 1-x Sb x ) 2 Te 3 nanowires. • The adopted method is compatible with existing CMOS process. • The nanowires were fabricated as highly textured to enhance phonon scattering. • The electrical conductivity is ∼2.5 times larger than the current ternary materials.

  11. Preparation of 235U target by electrodeposition

    International Nuclear Information System (INIS)

    Chen Qiping; Zhong Wenbin; Li Yougen

    2004-12-01

    A target for the production of fission 99 Mo in a nuclear reactor is composed of an enclosed, cylindrical vessel. Preferable vessel is comprised of stainless steel, having a thin, continuous, uniform layer of 235 U integrally bonded to its inner walls. Two processes are introduced for electrodepositing uranium on to the inner walls of the vessel. One processes is electrodepositing UO 2 from UO 2 (NO 3 ) 2 -(NH 4 ) 2 CO 4 ·H 2 O solution; the other is electrodepositing pure uranium metal from molten salt. Its plating efficiency and plating quantity from a molten bath is higher than UO 2 from the aqueous system. (authors)

  12. The electrodeposition of niobium on tungsten

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1977-03-01

    The electrodeposition of niobium on a tungsten substrate has been demonstrated by electrolysis of an alkali metal fluoride melt. The deposit produced was non-porous, coherent and formed a good bond to the substrate. (author)

  13. Electrodeposition and surface finishing fundamentals and applications

    CERN Document Server

    Djokic, Stojan

    2014-01-01

    This volume of Modern Aspects of Electrochemistry has contributions from significant individuals in electrochemistry. This 7 chapter book discusses electrodeposition and the characterization of alloys and composite materials, the mechanistic aspects of lead electrodeposition, electrophoretic deposition of ceramic materials onto metal surfaces and the fundamentals of metal oxides for energy conversion and storage technologies. This volume also has a chapter devoted to the anodization of aluminum, electrochemical aspects of chemical and mechanical polishing, and surface treatments prior to metal

  14. Electrodeposited nanoparticles: properties and photocatalytic applications

    OpenAIRE

    Sheridan, Eoin E.

    2009-01-01

    The work presented in this thesis reports on fundamental studies into electrodeposition of gold and silver nanoparticulate spheroids on a conducting substrate, Fluorine-doped tin-oxide, and the manipulation of the electrodeposition conditions in order to influence and control the size and surface concentration of spheroids. Methods to control the deposition included chemical modification of the surface with an adsorbed monolayer of 3-aminopropyldimethylmethoxysilane, and manipulation of...

  15. Apparatus for eliminating electrodeposition of radioactive nuclide

    International Nuclear Information System (INIS)

    Inomata, Ichiro; Ishibe, Tadao; Matsunaga, Masaaki; Konuki, Ryoichi; Suzuki, Kazunori; Watanabe, Minoru; Tomoshige, Shozo; Kondo, Kozo.

    1990-01-01

    In a conventional device for eliminating by radioactive nuclides electrodeposition, a liquid containing radioactive nuclides is electrolyzed under a presence of non-radioactive heavy metals and removing radioactive nuclides by electrodepositing them together with the heavy metals. Two anode plates are opposed in an electrolysis vessel of this device. A plurality (4 to 6) of cathode plates are arranged between the anodes in parallel with them and the cathode surfaces opposed to the anodes are insulated. Further, such a plurality of cathode plates are grouped into respective units. Alternatively, the anode plate is made of platinum-plated titanium material and the cathode plate is made of stainless steel. In the thus constituted electrodeposition eliminating device, since the cathode surface directed to the anodes on both ends are insulated, all of electric current from the anode reach the core cathode after flowing around the cathodes at both ends. As a result, there is no substantial difference in the flowing length of the electrolyzing current to each of the cathodes and these is neither difference in the electrodeposition amount. The electrodeposited products are adhered uniformly and densely to the electrodes and, simultaneously, Co-60 and Mn-54, etc. are also electrodeposited. (I.S.)

  16. Effects of pulse ON and OFF time and electrode types on the material removal rate and tool wear rate of the Ti-6Al-4V Alloy using EDM machining with reverse polarity

    Science.gov (United States)

    Praveen, L.; Geeta Krishna, P.; Venugopal, L.; Prasad, N. E. C.

    2018-03-01

    Electrical Discharge Machining (EDM) is an unconventional metal removal process that is extensively used for removing the difficult-to-machine metal such as Ti alloys, super alloys and metal matrix composites. This paper investigates the effects of pulse (ON/OFF) time on EDM machining characteristics of Ti-6Al-4V alloy using copper and graphite as electrodes in reverse polarity condition. Full factorial design method was used to design the experiments. Two variables (Pulse On and OFF) with three levels are considered. The output variables are the tool wear rate and the material removal rate. The important findings from the present work are: (1) the material removal rate (MRR) increases gradually with an increase of the Pulse ON time whereas the change is insignificant with an increase of the Pulse OFF time, (2) Between copper and graphite electrodes, the copper electrode is proved to be good in terms of MRR, (3) a combination of high pulse ON time and OFF time is desirable for high MRR rate in the Cu electrode whereas for the graphite electrode, a combination of high pulse ON time and low pulse OFF time is desirable for high MRR rate, (4) the tool wear rate (TWR) reduces with the Pulse On or OFF time, the rate of TWR is uniform for the graphite electrode in contrast to abrupt decrease from 25 to 50 μs (pulse ON time) in the copper electrode, (5) In order to keep the TWR as minimum possible, it is desirable to have a combination of high pulse ON time and OFF time for both the copper and the graphite electrode.

  17. Controllable Growth of Ga Film Electrodeposited from Aqueous Solution and Cu(In,Ga)Se2 Solar Cells.

    Science.gov (United States)

    Bi, Jinlian; Ao, Jianping; Gao, Qing; Zhang, Zhaojing; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Zhang, Yi

    2017-06-07

    Electrodepositon of Ga film is very challenging due to the high standard reduction potential (-0.53 V vs SHE for Ga 3+ ). In this study, Ga film with compact structure was successfully deposited on the Mo/Cu/In substrate by the pulse current electrodeposition (PCE) method using GaCl 3 aqueous solution. A high deposition rate of Ga 3+ and H + can be achieved by applying a large overpotential induced by high pulse current. In the meanwhile, the concentration polarization induced by cation depletion can be minimized by changing the pulse frequency and duty cycle. Uniform and smooth Ga film was fabricated at high deposition rate with pulse current density 125 mA/cm 2 , pulse frequency 5 Hz, and duty cycle 0.25. Ga film was then selenized together with electrodeposited Cu and In films to make a CIGSe absorber film for solar cells. The solar cell based on the Ga film presents conversion efficiency of 11.04%, fill factor of 63.40%, and V oc of 505 mV, which is much better than those based on the inhomogeneous and rough Ga film prepared by the DCE method, indicating the pulse current electrodeposition process is promising for the fabrication of CIGSe solar cell.

  18. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-01-01

    of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid

  19. Potentiostatic electro-deposition of 241Am using room temperature ionic liquids

    International Nuclear Information System (INIS)

    Sankhe, R.H.; Mirashi, N.N.; Arijit Sengupta; Murali, M.S.

    2015-01-01

    An attempt was made for the potentiostatic electrodeposition of 241 Am using six different room temperature ionic liquids (RTILs). Effect of electrodeposition time on the % of electrodeposition of 241 Am, pH change of the solution and the temperature change of the systems were investigated. It was observed that for water immiscible RTILs, the least viscous RTIL gave the best yield (when mixed with iso-propanol), while for water miscible RTILs, reverse trend was observed (when mixed with water). Out of all water immiscible RTILs under consideration for the present case, the octyl-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide (C 8 mpyNTf 2 ) in isopropanol was found to yield almost quantitative (99.6 %) electrodeposition of 241 Am within 45 min whereas the most effective system was found to be C 8 mimBr with ∼90 % of 241 Am deposited on the electrode for water miscible RTILs. To the best of our knowledge, this is the first approach ever been reported in the literature. (author)

  20. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films

    International Nuclear Information System (INIS)

    Samardak, Alexander; Sukovatitsina, Ekaterina; Ognev, Alexey; Stebliy, Maksim; Davydenko, Alexander; Chebotkevich, Ludmila; Keun Kim, Young; Nasirpouri, Forough; Janjan, Seyed-Mehdi; Nasirpouri, Farzad

    2014-01-01

    Magnetic states of nickel nanogranular films were studied in two distinct structures of individual and agglomerated granules electrodeposited on n-type Si(1 1 1) surface from a modified Watts bath at a low pH of 2. Magnetic force microscopy and micromagnetic simulations revealed three-dimensional out-of-plane magnetic vortex states in stand-alone hemispherical granules and their arrays, and multi-domain patterns in large agglomerates and integrated films. Once the granules coalesce into small chains or clusters, the coercivity values increased due to the reduction of inter-granular spacing and strengthening of the magnetostatic interaction. Further growth leads to the formation of a continuous granulated film which strongly affected the coercivity and remanence. This was characterized by the domain wall nucleation and propagation leading to a stripe domain pattern. Magnetoresistance measurements as a function of external magnetic field are indicative of anisotropic magnetoresistance (AMR) for the continuous films electrodeposited on Si substrate. - Highlights: • Magnetic states of electrodeposited nickel in isolated spherical and agglomerated nanogranules, and a continuous film. • Preferential magnetization reversal mechanism in isolated granules is vortex state. • Micromagnetic simulations confirm the three-dimensional vortex. • Transition between the vortex state and multi-domain magnetic pattern causes a significant decrease in the coercive force. • Continuous nickel films electrodeposited on silicon substrate exhibit AMR whose magnitude increases with the film thickness

  1. Cathodic processes during ruthenium electrodeposition from a chloride melt

    International Nuclear Information System (INIS)

    Sokol'skij, D.V.

    1985-01-01

    Cathodic processes occurring during the electrolysis of chloride melts in the presence of oxygen-containing impurities were studied. The experiments were carried out at 500, 550 600 and 680 deg C, ruthenium ions concentration in KCl-NaCl-CsCl eutectic melt being 0.4-1.5 mol% and BaO additions 4.8x10 -2 mol%. Temperature dependence of Ru(3) ion diffusion coefficient in the chloride melt (lg D=3.25-1508/T+-0.02) and activation energy of the diffusion process (6.9 k cal/mol) were determined. It is shown that changes of the shape of E, t-curve and the deviation of values determined in the cause of chronopotentiometric investigations from the corresponding values of reversable processes are related in many respects to the participation of oxygen-containing compounds in the cathodic process. Irreversibility of the cathodic process is also connected with metal crystallization during electrodeposition

  2. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  3. Investigation of duty cycle effect on corrosion properties of electrodeposited calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Azem, Funda Ak, E-mail: funda.ak@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Buca, 35390 Izmir (Turkey); Delice, Tulay Koc, E-mail: tulaykocdelice@gmail.com [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca, 35390 Izmir (Turkey); Ungan, Guler, E-mail: gulerungan@hotmail.com [Es Group, Izmir (Turkey); Cakir, Ahmet, E-mail: ahmet.cakir@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Buca, 35390 Izmir (Turkey)

    2016-11-01

    The bioceramic calcium phosphate (CaP) is frequently used for improving bone fixation in titanium medical implants and thus increasing lifetime of the implant. It is known that the application of CaP coatings on metallic implant devices offers the possibility of combining the strength of the metals and the bioactivity of the ceramic materials. Many different techniques are available for producing CaP coatings. Electrochemical deposition method is widely used because of its ease of operation parameters, low temperature requirement, reproducibility and suitability for coating complex structures. This technique allows obtaining CaP coatings which promote bone in growth during the first healing period leading to permanent fixation. Electrochemical pulse technique is an alternative to calcium phosphate deposition techniques usually employed to cover orthopedic or dental titanium implant surfaces. Additionally, pulse electrodeposition technique can produce more uniform and denser CaP coatings on metallic implants. In this study, CaP based coatings were produced by electrochemical pulse technique on Ti6Al4V substrates. The resulting CaP deposits were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Corrosion properties of the CaP coatings were also investigated. The results showed that various duty cycle ranges have remarkably effect on morphology, crystallinity and corrosion properties of the produced CaP coatings. - Highlights: • Electrodeposited CaP based coating were produced by pulse deposition technique. • The pulsed electrodeposited coatings produced under 30% and 50% duty cycles were exhibited better corrosion resistance. • Produced coatings consist of irregular flake-like structure and compact network with fine needles.

  4. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives

    International Nuclear Information System (INIS)

    Pasquale, M.A.; Gassa, L.M.; Arvia, A.J.

    2008-01-01

    Copper electrodeposition on copper from still plating solutions of different compositions was investigated utilising electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and scanning electron microscopy (SEM). An acid copper sulphate plating base solution was employed either with or without sodium chloride in the presence of a single additive, either polyethylene glycol (PEG) or 3-mercapto-2-propanesulphonic acid (MPSA), and their mixture. Thallium underpotential deposition/anodic stripping was employed to determine the adsorption capability of additives on copper. In the absence of chloride ions, MPSA shows a moderate adsorption on copper, whereas PEG is slightly adsorbed. At low cathodic overpotentials, the simultaneous presence of MPSA and chloride ions accelerates copper electrodeposition through the formation of an MPSA-chloride ion complex in the solution, particularly for about 220 μM sodium chloride. The reverse effect occurs in PEG-sodium chloride plating solutions. In this case, from EIS data the formation of a film that interferes with copper electrodeposition can be inferred. At higher cathodic overpotentials, when copper electrodeposition is under mass transport control, the cathode coverage by a PEG-copper chloride-mediated film becomes either partially or completely detached as the concentration of chloride ions at the negatively charged copper surface diminishes. The copper cathode grain topography at the μm scale depends on the cathodic overpotential, plating solution composition and average current density. Available data about the solution constituents and their adsorption on copper make it possible to propose a likely complex mechanism to understand copper electrodeposition from these media, including the accelerating effect of MPSA and the dynamics of PEG-copper chloride complex adsorbate interfering with the surface mobility of depositing copper ad-ions/ad-atoms

  5. The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents

    International Nuclear Information System (INIS)

    Vieira, L.; Schennach, R.; Gollas, B.

    2016-01-01

    Highlights: • Mechanistic insight into zinc electrodeposition from deep eutectic solvents. • Overpotential for hydrogen evolution affects the electrodeposition of zinc. • Electrodeposited zinc forms surface alloys on Cu, Au, and Pt. • In situ PM-IRRAS of a ZnCl_2 containing deep eutectic solvent on glassy carbon. - Abstract: The voltammetric behaviour of the ZnCl_2 containing deep eutectic solvent choline chloride/ethylene glycol 1:2 was investigated on glassy carbon, stainless steel, Au, Pt, Cu, and Zn electrodes. While cyclic voltammetry on glassy carbon and stainless steel showed a cathodic peak for zinc electrodeposition only in the anodic reverse sweep, a cathodic peak was found also in the cathodic forward sweep on Au, Pt, Cu, and Zn. This behaviour is in agreement with the proposed mechanism of zinc deposition from an intermediate species Z, whose formation depends on the cathodic reduction potential of the solvent. The voltammetric reduction of the electrolyte involves hydrogen evolution and as a result the formation of Z and its reduction to zinc depend on the hydrogen overpotential for each electrode material. On Au, Pt, and Cu also the anodic stripping was different from that on glassy carbon and steel due to the formation of surface zinc alloys with the three former metals. The morphology of the zinc layers on Cu has been characterised by scanning electron microscopy and focussed ion beam. X-ray diffraction confirmed the presence of crystalline zinc and a Cu_4Zn phase. Spectroelectrochemistry by means of polarization modulation reflection-absorption spectroscopy (PM-IRRAS) on a glassy carbon electrode in the ZnCl_2 containing deep eutectic solvent showed characteristic potential dependent changes. The variation of band intensities at different applied potentials correlate with the voltammetry and suggest the formation of a compact blocking layer on the electrode surface, which inhibits the electrodeposition of zinc at sufficiently negative

  6. Quantitative texture analysis of electrodeposited line patterns

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A.J.

    2005-01-01

    Free-standing line patterns of Cu and Ni were manufactured by electrochemical deposition into lithographically prepared patterns. Electrodeposition was carried out on top of a highly oriented Au-layer physically vapor deposited on glass. Quantitative texture analysis carried out by means of x......-ray diffraction for both the substrate layer and the electrodeposits yielded experimental evidence for epitaxy between Cu and Au. An orientation relation between film and substrate was discussed with respect to various concepts of epitaxy. While the conventional mode of epitaxy fails for the Cu...

  7. Corrosion and wear behaviour of multilayer pulse electrodeposited ...

    Indian Academy of Sciences (India)

    Department of Materials Science, Faculty of Engineering, Tarbiat Modares University, Tehran 1411713116, Iran ... Modern coating industry demands that the coatings for high ... which can act as the barriers of dislocation motion, lead.

  8. Electrodeposition of textured Bi{sub 27}Sb{sub 28}Te{sub 45} nanowires with enhanced electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Maksudul, E-mail: maksudul.hasan@tyndall.ie [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Gautam, Devendraprakash [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Enright, Ryan [Thermal Management Research Group, Efficient Energy Transfer Department, Bell Labs Ireland, Alcatel-Lucent Ireland Ltd., Dublin (Ireland)

    2016-04-15

    This work presents the template based pulsed potential electrodeposition technique of highly textured single crystalline bismuth antimony telluride (Bi{sub 1-x}Sb{sub x}){sub 2}Te{sub 3} nanowires from a single aqueous electrolyte. Cyclic voltammetry was used as an electroanalytical tool to assess the effect of the precursor concentrations on the composition of the deposits and to determine the deposition potential for each element. Pulsed potential electrodeposition was then applied on a gold-coated anodised alumina template to examine the effect of the pulse parameters on the composition and texture of Bi{sub 27}Sb{sub 28}Te{sub 45} nanowires. The nanowires are cylindrical in shape formed during the deposition inside the porous template and highly textured as they are decorated with sparse distribution of small crystal domains. The electrical conductivity (24.1 × 10{sup 4} S m{sup −1}) of a single nanowire was measured using a four-point probe technique implemented on a custom fabricated test chip. In this work, we demonstrated that crystal orientation with respect to the transport direction controlled by tuning the pulsed electrodeposition parameters. This allowed us to realise electrical conductivities ∼2.5 times larger than Sb doped bismuth-tellurium based ternary material systems and similar to what is typically seen in binary systems. - Highlights: • Pulsed electrodeposition is described towards fabrication of (Bi{sub 1-x}Sb{sub x}){sub 2}Te{sub 3} nanowires. • The adopted method is compatible with existing CMOS process. • The nanowires were fabricated as highly textured to enhance phonon scattering. • The electrical conductivity is ∼2.5 times larger than the current ternary materials.

  9. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  10. Defect structure of electrodeposited chromium layers

    International Nuclear Information System (INIS)

    Marek, T.; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U.

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  11. Defect structure of electrodeposited chromium layers

    Energy Technology Data Exchange (ETDEWEB)

    Marek, T. E-mail: marek@para.chem.elte.hu; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U

    2000-06-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  12. Electrodeposition of some metals and niobium superconducting alloys from molten fluorides

    International Nuclear Information System (INIS)

    Cohen, U.

    1978-01-01

    The major goal of this thesis was to study the feasibility of electrodeposition from molten fluorides of the pure elements niobium, aluminium, tin, germanium and silicon, and the niboium superconducting intermetallic compounds with these elements, and to prepare and study films of these materials in the form of coherent and uniform coatings. Decomposition potential measurements with a gold anode were carried out on the alkali fluoride solvent and the fluoride salt solutions of niobium, aluminum, tin, and germanium to provide important initial thermodynamic data. Attempts to codeposit niobium and aluminum invariably failed, niobium being the exclusive deposit in all cases. Codeposition of niobium--tin alloys was demonstrated. Of the four intermetallic compounds of the niobium--germanium system, three were obtained as single-phase coatings. The superconducting compound (A15 phase) was not successfully electrodeposited in a single-phase form. It was obtained, however, in phase-mixture coatings. Application of alternating square wave pulses produced substantial changes in the morphology of niobium deposits. Silicon electrocrystallization epitaxy (ECE) was demonstrated for the first time. Uniform, coherent, and well adherent coatings of polycrystalline Si with a grain diameter of up to 40 to 50 μm were plated onto nonalloying metal substrates, such as silver and tungsten.These processes offer some attractive features for both integrated circuit technology and silicon solar cell fabrication. Aluminum, tin, and germanium were also electrodeposited from molten fluorides

  13. The mechanism of cathodic electrodeposition of epoxy coatings and the corrosion behaviour of the electrodeposited

    Directory of Open Access Journals (Sweden)

    VESNA B. MISKOVIC-STANKOVIC

    2002-05-01

    Full Text Available The model of organic film growth on a cathode during electrodeposition process proposes the current density-time and film thickness-time relationships and enables the evaluation of the rate contants for the electrochemical reaction of OH– ion evolution and for the chemical reaction of organic film deposition. The dependences of film thickness and rate constants on the applied voltage, bath temperature and resin concentration in the electrodeposition bath have also been obtained. The deposition parameters have a great effect on the cathodic electrodeposition process and on the protective properties of the obtained electrodeposited coatings. From the time dependences of the pore resistance, coating capacitance and relative permittivity, obtained from impedance measurements, the effect of applied voltage, bath temperature and resin concentration on the protective properties of electrodeposited coatings has been shown. Using electrochemical impedance spectroscopy, thermogravimetric analysis, gravimetric liquid sorption experiments, differential scanning calorimetry and optical miscroscopy, the corrosion stability of epoxy coatings was investigated. A mechanism for the penetration of electrolyte through an organic coating has been suggested and the shape and dimensions of the conducting macropores have been determined. It was shown that conduction through a coating depends only on the conduction through the macropores, although the quantity of electrolyte in the micropores of the polymer net is about one order of magnitude greater than that inside the conducting macropores.

  14. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  15. Electrodeposition of Actinide and Lanthanide Elements

    International Nuclear Information System (INIS)

    Baerring, N.E.

    1966-02-01

    Some deposition parameters for the quantitative electrodeposition of hydrolysis products of plutonium were qualitatively studied at trace concentrations of plutonium. The hydrogen ion concentration, the current and the electrolysis time proved to be the determining factors in the quantitative electrolytic precipitation of plutonium, while other factors such as cathode material, the pretreatment of the cathode surface, the nature of the electrolytic anion, and the oxidation state of plutonium in the starting solution were found to be of less importance. The conditions selected for quantitative electrodeposition of plutonium from slightly acid nitrate solutions on a stainless steel cathode were successfully tried also with uranium, neptunium, americium, cerium and thulium. Details of a procedure used for plating mg amounts of plutonium and neptunium on small stainless steel cylinders are also given

  16. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  17. Electrodeposition of Actinide and Lanthanide Elements

    Energy Technology Data Exchange (ETDEWEB)

    Baerring, N E

    1966-02-15

    Some deposition parameters for the quantitative electrodeposition of hydrolysis products of plutonium were qualitatively studied at trace concentrations of plutonium. The hydrogen ion concentration, the current and the electrolysis time proved to be the determining factors in the quantitative electrolytic precipitation of plutonium, while other factors such as cathode material, the pretreatment of the cathode surface, the nature of the electrolytic anion, and the oxidation state of plutonium in the starting solution were found to be of less importance. The conditions selected for quantitative electrodeposition of plutonium from slightly acid nitrate solutions on a stainless steel cathode were successfully tried also with uranium, neptunium, americium, cerium and thulium. Details of a procedure used for plating mg amounts of plutonium and neptunium on small stainless steel cylinders are also given.

  18. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution

    International Nuclear Information System (INIS)

    Wang Liping; Zhang Junyan; Gao Yan; Xue Qunji; Hu Litian; Xu Tao

    2006-01-01

    Effects of grain size reduction on the electrochemical corrosion behavior of nanocrystalline Ni produced by pulse electrodeposition were characterized using potentiodynamic polarization testing and electrochemical impedance spectroscopy; X-ray photoelectron spectroscopy were used to confirm the electrochemical measurements and the suggested mechanisms. The corrosion resistance of Ni coatings in alkaline solutions considerably increased as the grain size decreased from microcrystalline to nanocrystalline. The higher corrosion resistance of NC Ni may be due to the more rapid formation of continuous Ni(OH) 2 passive films compared with coarse-grained Ni coatings

  19. Phosphorus introduction mechanism in electrodeposited cobalt films

    International Nuclear Information System (INIS)

    Kravtchenko, Jean-Francois

    1973-01-01

    The cathodic reduction of hypophosphite, phosphite and phosphate ions was studied using chrono-potentiometry and voltammetry. Then cobalt was deposited at constant current from a bath containing one of these three compounds. The current, while giving an electrodeposition of cobalt, also enhances at the same time a chemical deposition of cobalt. It is shown that high coercive forces in cobalt films are much more related to this chemical deposition than to the simple fact that the films contain some phosphorus. (author) [fr

  20. The Electrodeposition of Rhenium and Its Alloys

    Science.gov (United States)

    2015-09-18

    did not have benefit. A combination of vanillin, sodium lauryl sulfate, and gelatin , and equal concentrations of Ni2+ and ReO4 - yielded a coating...substrate, thus facilitating good bonding between the coating and substrate. Similar phenomenon would occur between a silver substrate and...electrodeposited metal coating. Historically, this is why most successful electroplating process used copper, brass (copper-zinc alloy), and silver as substrates

  1. Acidic aqueous uranium electrodeposition for target fabrication

    International Nuclear Information System (INIS)

    Saliba-Silva, A.M.; Oliveira, E.T.; Garcia, R.H.L.; Durazzo, M.

    2013-01-01

    Direct irradiation of targets inside nuclear research or multiple purpose reactors is a common route to produce 99 Mo- 99m Tc radioisotopes. The electroplating of low enriched uranium over nickel substrate might be a potential alternative to produce targets of 235 U. The electrochemistry of uranium at low temperature might be beneficial for an alternative route to produce 99 Mo irradiation LEU targets. Electrodeposition of uranium can be made using ionic and aqueous solutions producing uranium oxide deposits. The performance of uranium electrodeposition is relatively low because a big competition with H 2 evolution happens inside the window of electrochemical reduction potential. This work explores possibilities of electroplating uranium as UO 2 2+ (Uranium-VI) in order to achieve electroplating uranium in a sufficient amount to be commercially irradiated in the future Brazilian RMB reactor. Electroplated nickel substrate was followed by cathodic current electrodeposition from aqueous UO 2 (NO 3 ) 2 solution. EIS tests and modeling showed that a film formed differently in the three tested cathodic potentials. At the lower level, (-1.8V) there was an indication of a double film formation, one overlaying the other with ionic mass diffusion impaired at the interface with nickel substrate as showed by the relatively lower admittance of Warburg component. (author)

  2. Bipolar pulse generator for intense pulsed ion beam accelerator

    International Nuclear Information System (INIS)

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-01

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time

  3. Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes

    NARCIS (Netherlands)

    Maijenburg, A.W.

    2014-01-01

    This thesis is entitled “Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes”. Templated electrodeposition is the synthesis technique that was used throughout this thesis, and it comprises the use of a template with specific shape and dimensions for the

  4. Electrodeposition route to synthesize cigs films – an economical way ...

    African Journals Online (AJOL)

    Electrodeposition route to synthesize cigs films – an economical way to harness solar energy. ... for solar cells, how the charge separation in this nano scale photovoltaic (PV) materials occurs which help in absorption of radiation, and the electro-deposition route, a low cost one, produces thin film solar cells are analyzed.

  5. Conductance quantization in magnetic nanowires electrodeposited in nanopores

    DEFF Research Database (Denmark)

    Elhoussine, F.; Mátéfi-Tempfli, Stefan; Encinas, A.

    2002-01-01

    Magnetic nanocontacts have been prepared by a templating method that involves the electrodeposition of Ni within the pores of track-etched polymer membranes. The nanocontacts are made at the extremity of a single Ni nanowire either inside or outside the pores. The method is simple, flexible...... degeneracy. Our fabrication method enables future investigation of ballistic spin transport phenomena in electrodeposited magnetic nanocontacts....

  6. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ningbo; Zhang, Yingchun, E-mail: zycustb@163.com; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-15

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na{sub 2}WO{sub 4}–WO{sub 3} molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  7. Deuterium retention in molten salt electrodeposition tungsten coatings

    International Nuclear Information System (INIS)

    Zhou, Hai-Shan; Xu, Yu-Ping; Sun, Ning-Bo; Zhang, Ying-Chun; Oya, Yasuhisa; Zhao, Ming-Zhong; Mao, Hong-Min; Ding, Fang; Liu, Feng; Luo, Guang-Nan

    2016-01-01

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  8. Deuterium retention in molten salt electrodeposition tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xu, Yu-Ping [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Sun, Ning-Bo; Zhang, Ying-Chun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Mao, Hong-Min [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Ding, Fang; Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of Chinese Academy of Science, Hefei (China)

    2016-12-15

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  9. Architectural Growth of Cu Nanoparticles Through Electrodeposition

    Directory of Open Access Journals (Sweden)

    Cheng Ching-Yuan

    2009-01-01

    Full Text Available Abstract Cu particles with different architectures such as pyramid, cube, and multipod have been successfully fabricated on the surface of Au films, which is the polycrystalline Au substrate with (111 domains, using the electrodeposition technique in the presence of the surface-capping reagents of dodecylbenzene sulfonic acid and poly(vinylpyrrolidone. Further, the growth evolution of pyramidal Cu nanoparticles was observed for the first time. We believe that our method might open new possibilities for fabricating nanomaterials of non-noble transition metals with various novel architectures, which can then potentially be utilized in applications such as biosensors, catalysis, photovoltaic cells, and electronic nanodevices.

  10. Electrodeposited zinc/nickel coatings. A review

    Energy Technology Data Exchange (ETDEWEB)

    Shoeib, Madiha A. [Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo (Egypt). Surface Coating Dept.

    2011-10-15

    In recent years, the use of electrodeposited zinc-nickel coatings has significantly increased, mainly because of their superior corrosion resistance as compared with zinc. An additional strength of the process is that the proportion of the two metals, and thus the coating properties, can be varied. Initially, these alloy deposits were relatively brittle, with a tendency to crack-formation. More recently, ductile coatings have been developed. Now, as in the past, the emphasis has been on the cathodic corrosion protection which these coatings provide. Their properties can be further enhanced by post-treatment where additional developments have taken place. (orig.)

  11. Nanocrystalline growth and grain-size effects in Au-Cu electrodeposits

    International Nuclear Information System (INIS)

    Jankowski, Alan F.; Saw, Cheng K.; Harper, Jennifer F.; Vallier, Bobby F.; Ferreira, James L.; Hayes, Jeffrey P.

    2006-01-01

    The processing-structure-property relationship is investigated for electrodeposited foils of the gold-copper alloy system. A model is presented that relates the deposition process parameters to the nanocrystalline grain size. An activation energy of 1.52 eV atom -1 for growth is determined for a long-pulse (> 10 msec) mode, and is 0.16 eV atom -1 for short pulses ( 6 nm) is observed for Au-Cu samples with 1-12 wt.% Cu as tested in cross-section. The hardness increases three-fold from a rule-of-mixtures value < 1 GPa to a maximum of 2.9 GPa

  12. Electrodeposition of germanium from supercritical fluids.

    Science.gov (United States)

    Ke, Jie; Bartlett, Philip N; Cook, David; Easun, Timothy L; George, Michael W; Levason, William; Reid, Gillian; Smith, David; Su, Wenta; Zhang, Wenjian

    2012-01-28

    Several Ge(II) and Ge(IV) compounds were investigated as possible reagents for the electrodeposition of Ge from liquid CH(3)CN and CH(2)F(2) and supercritical CO(2) containing as a co-solvent CH(3)CN (scCO(2)) and supercritical CH(2)F(2) (scCH(2)F(2)). For Ge(II) reagents the most promising results were obtained using [NBu(n)(4)][GeCl(3)]. However the reproducibility was poor and the reduction currents were significantly less than the estimated mass transport limited values. Deposition of Ge containing films was possible at high cathodic potential from [NBu(n)(4)][GeCl(3)] in liquid CH(3)CN and supercritical CO(2) containing CH(3)CN but in all cases they were heavily contaminated by C, O, F and Cl. Much more promising results were obtained using GeCl(4) in liquid CH(2)F(2) and supercritical CH(2)F(2). In this case the reduction currents were consistent with mass transport limited reduction and bulk electrodeposition produced amorphous films of Ge. Characterisation by XPS showed the presence of low levels of O, F and C, XPS confirmed the presence of Ge together with germanium oxides, and Raman spectroscopy showed that the as deposited amorphous Ge could be crystallised by the laser used in obtaining the Raman measurements.

  13. Neutron reflectivity of electrodeposited thin magnetic films

    International Nuclear Information System (INIS)

    Cooper, Joshaniel F.K.; Vyas, Kunal N.; Steinke, Nina-J.; Love, David M.; Kinane, Christian J.; Barnes, Crispin H.W.

    2014-01-01

    Highlights: • Electrodeposited magnetic bi-layers were measured by polarised neutron reflectivity. • When growing a CoNiCu alloy from a single bath a Cu rich region is initially formed. • This Cu rich region is formed in the first layer but not subsequent ones. • Ni deposition is inhibited in thin film growth and Co deposits anomalously. • Alloy magnetism and neutron scattering length give a self-consistent model. - Abstract: We present a polarised neutron reflectivity (PNR) study of magnetic/non-magnetic (CoNiCu/Cu) thin films grown by single bath electrodeposition. We find that the composition is neither homogeneous with time, nor consistent with bulk values. Instead an initial, non-magnetic copper rich layer is formed, around 2 nm thick. This layer is formed by the deposition of the dilute, but rapidly diffusing, Cu 2+ ions near the electrode surface at the start of growth, before the region is depleted and the deposition becomes mass transport limited. After the region has been depleted, by growth etc., this layer does not form and thus may be prevented by growing a copper buffer layer immediately preceding the magnetic layer growth. As has been previously found, cobalt deposits anomalously compared to nickel, and even inhibits Ni deposition in thin films. The layer magnetisation and average neutron scattering length are fitted independently but both depend upon the alloy composition. Thus these parameters can be used to check for model self-consistency, increasing confidence in the derived composition

  14. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  15. Preparation of uranium electrodeposited target in aqueous system

    International Nuclear Information System (INIS)

    Chen Qiping; Li Yougen; Zhong Wenbin

    2006-03-01

    The main factors affecting uranium electrodeposition were tested and discussed. In the primary experiment about preparation of uranium isotopic target by electrodeposition, a stainless steel disk has been chosen as the target material, the electrolytic bath is comprised of UO 2 (NO 3 ) 2 and (NH 4 ) 2 C 2 O 4 , which has been adjusted to a pH of 2-3. Composition of the lost electrolytic bath was analysed by spectrophotometer. The thickness of resulting film is about 8-10 mg/cm 2 , the target having a thin, continuous, uniform layer of uranium, and its electrodeposited rate is more than 80%. (authors)

  16. Preliminary results about Electrodeposition of Cobalt at laboratory level

    International Nuclear Information System (INIS)

    Cornejo, N.

    1992-01-01

    As of an organic compound, an extraction and Cobalt electrodeposition method had been developed as a part of fabrication aim of a sealed radioactive source with objective to the construction of density meter prototype. It was performed preliminary test of electrodeposition in the laboratory level in a simple cell. The used electrolyte had been a sulphate solution obtained by extraction of an organic solution. It is obtained a Co film by electrodeposition at 55 o C temperature and with an approximately Co concentration in 70 g/lt. (Author) 3 refs., 1 fig., 1 tab

  17. Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process

    International Nuclear Information System (INIS)

    Flamini, D.O.; Saidman, S.B.; Bessone, J.B.

    2007-01-01

    The electrodeposition of gallium and/or zinc on aluminium, aluminium-zinc alloy and vitreous carbon electrodes in chloride solutions is analysed. The electrodissolution of the formed interfaces is also described and discussed. For this purpose, potentiodynamic and potentiostatic techniques and open circuit potential measurements were employed and surface characterisation was performed by scanning electron microscopy and energy dispersive X-ray analysis. The presence of zinc, electrodeposited from the solution or as an alloying component, facilitates gallium enrichment at the interface and improves the wetting on the aluminium oxide. These conditions ensure the formation of a surface Ga-Al amalgam. As a result, the dissolution process occurs at potentials which are more active than those observed for aluminium or aluminium-zinc alloy in halide solutions

  18. Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process

    Energy Technology Data Exchange (ETDEWEB)

    Flamini, D.O. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Saidman, S.B. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)], E-mail: ssaidman@criba.edu.ar; Bessone, J.B. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2007-07-31

    The electrodeposition of gallium and/or zinc on aluminium, aluminium-zinc alloy and vitreous carbon electrodes in chloride solutions is analysed. The electrodissolution of the formed interfaces is also described and discussed. For this purpose, potentiodynamic and potentiostatic techniques and open circuit potential measurements were employed and surface characterisation was performed by scanning electron microscopy and energy dispersive X-ray analysis. The presence of zinc, electrodeposited from the solution or as an alloying component, facilitates gallium enrichment at the interface and improves the wetting on the aluminium oxide. These conditions ensure the formation of a surface Ga-Al amalgam. As a result, the dissolution process occurs at potentials which are more active than those observed for aluminium or aluminium-zinc alloy in halide solutions.

  19. A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits

    Science.gov (United States)

    Sengupta, Srijan; Patra, Arghya; Jena, Sambedan; Das, Karabi; Das, Siddhartha

    2018-03-01

    In this study, the electrodeposition of nickel foam by dynamic hydrogen bubble-template method is optimized, and the effects of key deposition parameters (applied voltage and deposition time) and bath composition (concentration of Ni2+, pH of the bath, and roles of Cl- and SO4 2- ions) on pore size, distribution, and morphology and crystal structure are studied. Nickel deposit from 0.1 M NiCl2 bath concentration is able to produce the honeycomb-like structure with regular-sized holes. Honeycomb-like structure with cauliflower morphology is deposited at higher applied voltages of 7, 8, and 9 V; and a critical time (>3 minutes) is required for the development of the foamy structure. Compressive residual stresses are developed in the porous electrodeposits after 30 seconds of deposition time (-189.0 MPa), and the nature of the residual stress remains compressive upto 10 minutes of deposition time (-1098.6 MPa). Effect of pH is more pronounced in a chloride bath compared with a sulfate bath. The increasing nature of pore size in nickel electrodeposits plated from a chloride bath (varying from 21 to 48 μm), and the constant pore size (in the range of 22 to 24 μm) in deposits plated from a sulfate bath, can be ascribed to the striking difference in the magnitude of the corresponding current-time profiles.

  20. Reverse Algols

    Science.gov (United States)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  1. Electrodeposition of tantalum on carbon black in non-aqueous solution and its electrocatalytic properties

    International Nuclear Information System (INIS)

    Jo, Ara; Lee, Youngmi; Lee, Chongmok

    2016-01-01

    In this work, we synthesized tantalum (Ta) nanoclusters on carbon black (Ta/CB) via simple electrodeposition in non-aqueous solvent, acetonitrile (ACN) at ambient temperature. Transmission electron microscopy (TEM) images showed that the electrodeposited Ta nanoclusters consisted of tiny Ta nanoparticles. X-ray photoelectron spectroscopy (XPS) result represented that the outermost Ta formed the native oxide on Ta/CB due to its ambient exposure to air. Electrochemical catalytic properties of prepared Ta/CB on glassy carbon electrode (Ta/CB/GC) were investigated toward reductions of oxygen and hydrogen peroxide, and oxidations of ascorbic acid and dopamine. For oxygen reduction reaction (ORR) in acid, Ta/CB/GC represented a decent electrocatalytic performance which was better or comparable to bare Pt. The operational stability in acidic condition was maintained up to 500 repetitive potential cycles presumably due to the protective native Ta oxide layer. Ta/CB/GC also showed high amperometric sensitivity (4.5 (±0.1_6) mA mM"−"1 cm"−"2, n = 5) for reduction of hydrogen peroxide in 0.1 M phosphate buffer solution (PBS, pH 7.4). In addition, Ta/CB/GC was demonstrated for the possibility of simultaneous detection of ascorbic acid and dopamine using differential pulse voltammetry (DPV). - Highlights: • We electrodeposited Ta nanoclusters (Ta/CB/GC) in acetonitrile at room temperature. • The Ta/CB/GC showed better or comparable performance to bare Pt for ORR. • The Ta/CB/GC showed high sensitivity for reduction of hydrogen peroxide at pH 7.4. • The Ta/CB/GC showed possible simultaneous detection of ascorbic acid and dopamine. • We extended the applicability of Ta electrode material for various electrocatalytic reactions.

  2. Electrodeposition of tantalum on carbon black in non-aqueous solution and its electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Ara; Lee, Youngmi, E-mail: youngmilee@ewha.ac.kr; Lee, Chongmok, E-mail: cmlee@ewha.ac.kr

    2016-08-24

    In this work, we synthesized tantalum (Ta) nanoclusters on carbon black (Ta/CB) via simple electrodeposition in non-aqueous solvent, acetonitrile (ACN) at ambient temperature. Transmission electron microscopy (TEM) images showed that the electrodeposited Ta nanoclusters consisted of tiny Ta nanoparticles. X-ray photoelectron spectroscopy (XPS) result represented that the outermost Ta formed the native oxide on Ta/CB due to its ambient exposure to air. Electrochemical catalytic properties of prepared Ta/CB on glassy carbon electrode (Ta/CB/GC) were investigated toward reductions of oxygen and hydrogen peroxide, and oxidations of ascorbic acid and dopamine. For oxygen reduction reaction (ORR) in acid, Ta/CB/GC represented a decent electrocatalytic performance which was better or comparable to bare Pt. The operational stability in acidic condition was maintained up to 500 repetitive potential cycles presumably due to the protective native Ta oxide layer. Ta/CB/GC also showed high amperometric sensitivity (4.5 (±0.1{sub 6}) mA mM{sup −1} cm{sup −2}, n = 5) for reduction of hydrogen peroxide in 0.1 M phosphate buffer solution (PBS, pH 7.4). In addition, Ta/CB/GC was demonstrated for the possibility of simultaneous detection of ascorbic acid and dopamine using differential pulse voltammetry (DPV). - Highlights: • We electrodeposited Ta nanoclusters (Ta/CB/GC) in acetonitrile at room temperature. • The Ta/CB/GC showed better or comparable performance to bare Pt for ORR. • The Ta/CB/GC showed high sensitivity for reduction of hydrogen peroxide at pH 7.4. • The Ta/CB/GC showed possible simultaneous detection of ascorbic acid and dopamine. • We extended the applicability of Ta electrode material for various electrocatalytic reactions.

  3. Reverse Logistics

    OpenAIRE

    Kulikova, Olga

    2016-01-01

    This thesis was focused on the analysis of the concept of reverse logistics and actual reverse processes which are implemented in mining industry and finding solutions for the optimization of reverse logistics in this sphere. The objective of this paper was the assessment of the development of reverse logistics in mining industry on the example of potash production. The theoretical part was based on reverse logistics and mining waste related literature and provided foundations for further...

  4. Electrodeposition route to synthesize cigs films – an economical way ...

    African Journals Online (AJOL)

    user

    Unlike binary conductors CIGS film preparation needs highly ... This argument also holds well in forming a hetero-junction partner CdS ..... successfully electrodeposited onto indium tin oxide substrate and it is recently reported (Li et al., 2010).

  5. Bulk Copper Electrodeposition on Gold Imaged by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Møller, Per

    1996-01-01

    Electrochemical measurements were carried out simultaneously with acquisition of in situ STM images of copper electrodeposition at low cathodic overpotentials and subsequent dissolution from the underlying polycrystalline gold surfaces. The morphologies of the copper deposits were examined...

  6. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  7. Effect of condensation product on electrodeposition of zinc on mild ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. Electrodeposition of zinc on steel was obtained from acid chloride bath containing condensation products (CP) of 3,4 ..... nucleation number and hence smaller grain size. The ... thesis, Bangalore University, Bangalore. Venkatesha ...

  8. Rapid Synthesis of Gold Nano-Particles Using Pulse Waved Potential in a Non-Aqueous Electrolyte

    Directory of Open Access Journals (Sweden)

    Jang J.G.

    2017-06-01

    Full Text Available Rapid synthesis of gold nanoparticles (AuNPs by pulsed electrodeposition was investigated in the non-aqueous electrolyte, 1-ethyl-3-methyl-imidazoliumbis(trifluoro-methanesulfonylimide ([EMIM]TFSI with gold trichloride (AuCl3. To aid the dissolution of AuCl3, 1-ethyl-3-methyl-imidazolium chloride ([EMIM]Cl was used as a supporting electrolyte in [EMIM]TFSI. Cyclic voltammetry experiments revealed a cathodic reaction corresponding to the reduction of gold at −0.4 V vs. Pt-QRE. To confirm the electrodeposition process, potentiostatic electrodeposition of gold in the non-aqueous electrolyte was conducted at −0.4 V for 1 h at room temperature. To synthesize AuNPs, pulsed electrodeposition was conducted with controlled duty factor, pulse duration, and overpotential. The composition, particle-size distribution, and morphology of the AuNPs were confirmed by field-emission scanning electron microscopy (FE-SEM, energy-dispersive spectroscopy (EDS, and transmission electron microscopy (TEM. The electrodeposited AuNPs were uniformly distributed on the platinum electrode surface without any impurities arising from the non-aqueous electrolyte. The size distribution of AuNPs could be also controlled by the electrodeposition conditions.

  9. Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes

    OpenAIRE

    Maijenburg, A.W.

    2014-01-01

    This thesis is entitled “Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes”. Templated electrodeposition is the synthesis technique that was used throughout this thesis, and it comprises the use of a template with specific shape and dimensions for the formation of different types of nanostructures. Throughout this thesis, three different nanostructures were made: nanowires (Chapters 2 to 6), nanotubes (Chapters 2 and 5) and nanocubes (Chapters 7 and ...

  10. Structural defects in electrodeposited Ni studied by positron annihilation

    International Nuclear Information System (INIS)

    Vertes, A.; Szeles, C.; Czako-Nagy, I.; Lakatos-Varsanyi, M.

    1982-01-01

    Structural investigation of electrodeposited Ni was carried out by positron annihilation (PA) technique. Additional Moessbauer effect and X-ray diffraction measurements were also performed. The samples were produced under different plating conditions resulting in stress in the range -100 to +600 N/mm 2 . From the positron lifetime measurements it seems that the defect pattern of electrodeposited Ni samples might be substantially different from sample to sample with different deposition and plating conditions. (Auth.)

  11. Electrodeposition of nanostructured Sn-Zn coatings

    Science.gov (United States)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  12. Separation and electrodeposited of 210 Po

    International Nuclear Information System (INIS)

    Ordonez R, E.; Iturbe G, J.L.

    1991-12-01

    Presently work it was determined the selective separation of the 210 Po that is in an uraniferous mineral, by means of acid leaching of the mineral and the purification was carried out by means of partition chromatography whose stationary phase is 2-ethylhexyl phosphoric acid (D 2 EHPA), it has been possible to isolate the 210 Po of the rest of the radioactive elements that conform the family 4 N +2 , the optimal elutriation conditions of this element were settled down of manner of not dragging other radioelements. Another of the achievements presented in this communication has been the electrodeposition of this element has more than enough stainless steel discs with a superior yield to 95%. (Author)

  13. Development of Novel Methodologies for the Electrodeposition of Polypyrrole-based Films in Controlled Morphologies with Potential Application in Nitrate Sensing.

    OpenAIRE

    McCarthy, Conor P.

    2013-01-01

    In this thesis the novel electrochemical deposition of poly[N-(2-cyanoethyl)pyrrole] (PPyEtCN) into nanowire and microtube morphologies is reported. Cyclic and pulsed electrochemical techniques were employed to electrodeposit copper micro and nano particles at PPyEtCN and polypyrrole (PPy) surfaces. A PPy nanowire/copper modified electrode was investigated for its effectiveness as an electrochemical sensor for the detection of the nitrate ion. To produce PPyEtCN in a nanowir...

  14. Method of recovering phosphoric acid type decontaminating electrolytes by electrodeposition

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Wada, Koichi; Kobayashi, Toshio.

    1985-01-01

    Purpose: To recoving phosphoric acid type highly concentrated decontaminating liquid used for the electrolytic decontamination of contaminated equipments, components, etc in nuclear power plants or the like through electrodeposition by diaphragm electrolysis. Method: Before supplying phosphoric acid decontaminating liquid at high concentration used in the electrolytic decontaminating step to an electrodeposition recovering tank, phosphoric acid in the decontaminating electrolyte is extracted with solvents and decomposed liquid extracts (electrolyte reduced with the phosphoric acid component) are supplied to the cathode chamber of the electrodeposition recovering tank, where phosphoric acid is back-extracted with water from the solvents after extraction of phosphoric acid. Then, the back-extracted liquids (aqueous phosphoric acid solution scarcely containing metal ions) are sent to the anode chamber of the electrodeposition recovering tank. Metal ions in the liquid are captured by electrodeposition in the cathode chamber, as well as phosphoric acid in the liquids is concentrated to the initial concentration of the electrolyte in the anode chamber for reuse as the decontaminating electrolyte. As the phosphoric acid extracting agent used in the electrodeposition recovering step for the decontaminating electrolyte, water-insoluble and non-combustible tributyl phosphate (TBP) is most effective. (Horiuchi, T.)

  15. Electrodeposition of amine-terminatedpoly(ethylene glycol) to titanium surface

    International Nuclear Information System (INIS)

    Tanaka, Yuta; Doi, Hisashi; Iwasaki, Yasuhiko; Hiromoto, Sachiko; Yoneyama, Takayuki; Asami, Katsuhiko; Imai, Hachiro; Hanawa, Takao

    2007-01-01

    The immobilization of poly(ethylene glycol), PEG, to a solid surface is useful to functionalize the surface, e.g., to prevent the adsorption of proteins. No successful one-stage technique for the immobilization of PEG to base metals has ever been developed. In this study, PEG in which both terminals or one terminal had been modified with amine bases was immobilized onto a titanium surface using electrodeposition. PEG was dissolved in a NaCl solution, and electrodeposition was carried out at 310 K with - 5 V for 300 min. The thickness of the deposited PEG layer was evaluated using ellipsometry, and the bonding manner of PEG to the titanium surface was characterized using X-ray photoelectron spectroscopy after electrodeposition. The results indicated that a certain amount of PEG was adsorbed on titanium through both electrodeposition and immersion when PEG was terminated by amine. However, terminated amines existed at the surface of titanium and were combined with titanium oxide as N-HO by electrodeposition, while amines randomly existed in the molecule and showed an ionic bond with titanium oxide by immersion. The electrodeposition of PEG was effective for the inhibition of albumin adsorption. This process is useful for materials that have electroconductivity and a complex morphology

  16. Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni-Co/WC nano-composite coatings.

    Science.gov (United States)

    Amadeh, A; Ebadpour, R

    2013-02-01

    Metal-ceramic composite coatings are widely used in automotive and aerospace industries as well as micro-electronic systems. Electrodeposition is an economic method for application of these coatings. In this research, nickel-cobalt coatings reinforced by nano WC particles were applied on carbon steel substrate by pulse electrodeposition from modified Watts bath containing different amounts of cobalt sulphate as an additive. Saccharin and sodium dodecyl sulphate (SDS) were also added to electroplating bath as grain refiner and surfactant, respectively. The effect of cobalt content on wear and corrosion behavior of the coatings was investigated. Wear and corrosion properties were assessed by pin-on-disk and potentiodynamic polarization methods, respectively. Phase analysis was performed by X-ray diffraction (XRD) using CuK(alpha) radiation and the worn surfaces were studied by means of Scanning Electron Microscopy (SEM). The results showed that the addition of cobalt improved the wear resistance of the coatings. In the presence of 18 g/L cobalt in electrodeposition bath, the wear rate of the coating decreased to 0.002 mg/m and the coefficient of friction reduced to 0.695 while they were 0.004 mg/m and 0.77 in the absence of cobalt, respectively. This improvement in wear properties can be attributed to the formation of hcp phase in metallic matrix. Meanwhile, the corrosion resistance of the coatings slightly reduced because cobalt is more active metal with respect to nickel.

  17. Electrodeposited reduced-graphene oxide/cobalt oxide electrodes for charge storage applications

    Energy Technology Data Exchange (ETDEWEB)

    García-Gómez, A. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Eugénio, S., E-mail: s.eugenio@tecnico.ulisboa.pt [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Duarte, R.G. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ESTBarreiro, Instituto Politécnico de Setúbal, Setúbal (Portugal); Silva, T.M. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ADEM, GI-MOSM, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa (Portugal); Carmezim, M.J. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ESTSetúbal, Instituto Politécnico de Setúbal, Setúbal (Portugal); Montemor, M.F. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal)

    2016-09-30

    Highlights: • Electrochemically reduced graphene/CoOx composites were successfully produced by electrodeposition. • The composite material presents a specific capacitance of about 430 F g{sup −1}. • After heat treatment, the capacitance retention of the composite was 76% after 3500 cycles. - Abstract: In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 °C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g{sup −1} at 1 A g{sup −1} and presenting long-term cycling stability.

  18. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    International Nuclear Information System (INIS)

    Liu, Y.H.; Zhang, Y.C.; Jiang, F.; Fu, B.J.; Sun, N.B.

    2013-01-01

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na 2 WO 4 –WO 3 binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%

  19. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. H. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); State Nuclear Power Research Institute, Xicheng District, Beijing (China); Zhang, Y.C., E-mail: zycustb@163.com [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); Jiang, F.; Fu, B. J.; Sun, N. B. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China)

    2013-11-15

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na{sub 2}WO{sub 4}–WO{sub 3} binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%.

  20. Electro-deposition metallic tungsten coatings in a Na{sub 2}WO{sub 4}-WO{sub 3} melt on copper based alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.H., E-mail: dreamerhong77@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Y.C.; Liu, Q.Z.; Li, X.L.; Jiang, F. [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The tungsten coating (>1 mm) was obtained by electro-deposition method in molten salt. Black-Right-Pointing-Pointer Different thickness tungsten coatings were obtained by using different durations. Black-Right-Pointing-Pointer Good performance of coating was obtained when pulse parameters were modulated. - Abstract: The tungsten coating was prepared by electro-deposition technique on copper alloy substrate in a Na{sub 2}WO{sub 4}-WO{sub 3} melt. The coating's surface and cross-section morphologies as well as its impurities were investigated by XPS, SEM and line analysis. Various plating durations were investigated in order to obtain an optimal coating's thickness. The results demonstrated that the electro-deposited coating was compact, voidless, crackless and free from impurities. The tungsten coating's maximum Vickers hardness was measured to be 520 HV. The tungsten coating's minimum oxygen content was determined to be 0.018 wt%. Its maximum thickness was measured to be 1043.67 {mu}m when the duration of electrolysis was set to 100 h. The result of this study has demonstrated the feasibility of having thicker tungsten coatings on copper alloy substrates. These electrodeposited tungsten coatings can be potentially implemented as reliable armour for the medium heat flux plasma facing component (PFC).

  1. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    Sun, Wei; Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong; Wang, Wencheng; Wang, Lei

    2014-01-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E 0′ ) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H 2 O 2 . Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  2. Multimode pulse counter

    International Nuclear Information System (INIS)

    Natanzon, D.D.

    1982-01-01

    A pulse counter with code conversion is described. The counter is based on the integrated circuits of direct-counting devices of medium integration. The counter ensures various modes of pulse counting depending on the logical control signals: reversible, two-channel summing, one-channel summing binary, summing with ''storage'' signal code fixation without interrupting pulse counting. Arrangement of the suggested structure as a microcircuit of medium integration might contribute to reduction in the counter type nomenclature in digital families of widely used integrated circuits

  3. Reverse Osmosis

    Indian Academy of Sciences (India)

    many applications, one of which is desalination of seawater. The inaugural Nobel Prize in Chemistry was awarded in 1901 to van 't Hoff for his seminal work in this area. The present article explains the principle of osmosis and reverse osmosis. Osmosis and Reverse Osmosis. As the name suggests, reverse osmosis is the ...

  4. Phosphate tuned copper electrodeposition and promoted formic acid selectivity for carbon dioxide reduction

    DEFF Research Database (Denmark)

    Zhao, Jian; Sun, Libo; Canepa, Silvia

    2017-01-01

    Fabrication of catalytically active electrodes by electrodeposition is attractive due to its in situ nature, easy controllability, and large-scale operation capability. Most recently, modifying the electrodes with phosphate ligands through electrodepositing electrode materials has shown promising...

  5. Self-assembly with orthogonal-imposed stimuli to impart structure and confer magnetic function to electrodeposited hydrogels.

    Science.gov (United States)

    Li, Ying; Liu, Yi; Gao, Tieren; Zhang, Boce; Song, Yingying; Terrell, Jessica L; Barber, Nathan; Bentley, William E; Takeuchi, Ichiro; Payne, Gregory F; Wang, Qin

    2015-05-20

    A magnetic nanocomposite film with the capability of reversibly collecting functionalized magnetic particles was fabricated by simultaneously imposing two orthogonal stimuli (electrical and magnetic). We demonstrate that cathodic codeposition of chitosan and Fe3O4 nanoparticles while simultaneously applying a magnetic field during codeposition can (i) organize structure, (ii) confer magnetic properties, and (iii) yield magnetic films that can perform reversible collection/assembly functions. The magnetic field triggered the self-assembly of Fe3O4 nanoparticles into hierarchical "chains" and "fibers" in the chitosan film. For controlled magnetic properties, the Fe3O4-chitosan film was electrodeposited in the presence of various strength magnetic fields and different deposition times. The magnetic properties of the resulting films should enable broad applications in complex devices. As a proof of concept, we demonstrate the reversible capture and release of green fluorescent protein (EGFP)-conjugated magnetic microparticles by the magnetic chitosan film. Moreover, antibody-functionalized magnetic microparticles were applied to capture cells from a sample, and these cells were collected, analyzed, and released by the magnetic chitosan film, paving the way for applications such as reusable biosensor interfaces (e.g., for pathogen detection). To our knowledge, this is the first report to apply a magnetic field during the electrodeposition of a hydrogel to generate magnetic soft matter. Importantly, the simple, rapid, and reagentless fabrication methodologies demonstrated here are valuable features for creating a magnetic device interface.

  6. The development of a micropatterned electrode for studies of zinc electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Sutija, Dave P. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States); Tobias, Charles W. [Univ. of California, Berkeley, CA (United States)

    1986-12-01

    A micropatterned electrode was prepared for the study of electrocrystallization. Using microphotolithography, in conjunction with evaporation and pulse electrodeposition of thin films, a set of artificially roughened electrodes with hemispherical surface features five microns in diameter was developed. Voltammetric studies were conducted to determine the best electrode material. Gold, platinum, and various carbon surfaces were evaluated for zinc nucleation density and hydrogen overpotential. Surface homogeneity was examined by both light and scanning electron microscopy. Gold was determined to possess the best combination of material properties: chemical inertness, low melting point, and a high work function allowing underpotential deposition of zinc which reduces the rate of hydrogen evolution. Stripping coulometry was employed to determine zinc limiting currents, and evaluate effective diffusion coefficients in concentrated zinc chloride solutions. Although the method worked well for dilute zinc chloride and copper sulfate solutions, it failed at higher current densities; the emergence of surface roughness obscured actual limiting current plateaus.

  7. Electrodeposition in capillaries: bottom-up micro- and nanopatterning of functional materials on conductive substrates.

    Science.gov (United States)

    George, Antony; Maijenburg, A Wouter; Maas, Michiel G; Blank, Dave H A; Ten Elshof, Johan E

    2011-09-01

    A cost-effective and versatile methodology for bottom-up patterned growth of inorganic and metallic materials on the micro- and nanoscale is presented. Pulsed electrodeposition was employed to deposit arbitrary patterns of Ni, ZnO, and FeO(OH) of high quality, with lateral feature sizes down to 200-290 nm. The pattern was defined by an oxygen plasma-treated patterned PDMS mold in conformal contact with a conducting substrate and immersed in an electrolyte solution, so that the solid phases were deposited from the solution in the channels of the patterned mold. It is important that the distance between the entrance of the channels, and the location where deposition is needed, is kept limited. The as-formed patterns were characterized by high resolution scanning electron microscope, energy-dispersive X-ray analysis, atomic force microscopy, and X-ray diffraction.

  8. Electrolyte influence on the Cu nanoparticles electrodeposition onto boron doped diamond electrode

    International Nuclear Information System (INIS)

    Matsushima, Jorge Tadao; Santos, Laura Camila Diniz; Couto, Andrea Boldarini; Baldan, Mauricio Ribeiro; Ferreira, Neidenei Gomes

    2012-01-01

    This paper presents the electrolyte influence on deposition and dissolution processes of Cu nanoparticles on boron doped diamond electrodes (DDB). Morphological, structural and electrochemical analysis showed BDD films with good reproducibility, quality and reversible in a specific redox system. Electrodeposition of Cu nanoparticles on DDB electrodes in three different solutions was influenced by pH and ionic strength of the electrolytic medium. Analyzing the process as function of the scan rate, it was verified a better efficiency in 0,5 mol L -1 Na 2 SO 4 solution. Under the influence of the pH and ionic strength, Cu nanoparticles on DDB may be obtained with different morphologies and it was important for defining the desired properties. (author)

  9. Preparation and characterization of electrodeposited cobalt nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2014-10-24

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl{sub 2}Ðœ‡6H2O salt solution was used, which was buffered with H{sub 3}BO{sub 3} and acidified by dilute H{sub 2}SO{sub 4} to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  10. Preparation and characterization of electrodeposited cobalt nanowires

    International Nuclear Information System (INIS)

    Irshad, M. I.; Mohamed, N. M.; Ahmad, F.; Abdullah, M. Z.

    2014-01-01

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl 2 Ðœ‡6H2O salt solution was used, which was buffered with H 3 BO 3 and acidified by dilute H 2 SO 4 to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications

  11. Preparation of uranium electrodeposited target in aqueous system

    Energy Technology Data Exchange (ETDEWEB)

    Qiping, Chen; Yougen, Li; Wenbin, Zhong [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2006-03-15

    The main factors affecting uranium electrodeposition were tested and discussed. In the primary experiment about preparation of uranium isotopic target by electrodeposition, a stainless steel disk has been chosen as the target material, the electrolytic bath is comprised of UO{sub 2}(NO{sub 3}){sub 2} and (NH{sub 4}){sub 2}C{sub 2}O{sub 4}, which has been adjusted to a pH of 2-3. Composition of the lost electrolytic bath was analysed by spectrophotometer. The thickness of resulting film is about 8-10 mg/cm{sup 2}, the target having a thin, continuous, uniform layer of uranium, and its electrodeposited rate is more than 80%. (authors)

  12. Use of carriers for to electrodeposited radium 226

    International Nuclear Information System (INIS)

    Iturbe, J.L.

    1991-10-01

    The form of the energy distribution of a monoenergetic alpha particle starting from some emitting source of these particles, it depends on the quantity of material that its cross before being detected. Some authors deposit to the radium-226 by means of direct evaporation of the solution on metallic supports, on millipore paper and by electrodeposition. Some other ones place the radium solution in scintillation liquid, to quantify it by this technique. The objective of the present work is using carriers with the same oxidation state of the radium, that is to say of 2 + , for treating to be electrodeposited to the radium-226 with the biggest possible percentage for later use the alpha spectroscopy technique to quantify it. The carriers that have been used until its they are barium and zinc in form of barium chloride, zinc nitrate and zinc sulfate. The first results indicate that with the zinc solution a yield of 40% of electrodeposited radium has been reached. (Author)

  13. Electrodeposition of Metal on GaAs Nanowires

    Science.gov (United States)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  14. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres

    International Nuclear Information System (INIS)

    Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang

    2007-01-01

    In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results

  15. Electrodeposition of polyfluorene on a carbon nanotube electrode

    International Nuclear Information System (INIS)

    Valentini, L; Mengoni, F; Mattiello, L; Kenny, J M

    2007-01-01

    Electrophoretically deposited single-walled carbon nanotube (SWCNT) films on a transparent conducting surface are used as electrodes for the electrodeposition of a π-conjugated polymer formed by the oxidative coupling of fluorene units. This method provides a uniform coverage of the conducting surface with respect to SWCNTs chemically assembled on a gold substrate. Electron microscopy reveals the formation of a polymer-SWCNT nanostructure which imparts distinct electrical properties from those of the polymer electrodeposited on the neat electrode. By combining the attractive properties of SWCNTs and polyfluorene, these nanocomposites open up new opportunities to achieve electrical contacts in nano- to micro-devices

  16. Morphology selection for cupric oxide thin films by electrodeposition.

    Science.gov (United States)

    Dhanasekaran, V; Mahalingam, T; Chandramohan, R

    2011-10-01

    Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.

  17. Effect of pretreatments on electrodeposited epoxy coatings for electronic industries

    Directory of Open Access Journals (Sweden)

    Sironmani Palraj

    2016-02-01

    Full Text Available Waterborne epoxy coatings were prepared on aluminium (Al surfaces by cathodic electro-deposition on the pretreated surface of pickling, phosphating, chromating and anodizing. The electro-deposition experiments were done at two different voltages, 15 V and 25 V at room temperature in 10% epoxy coating formulations. Corrosion and thermal behavior of these coatings were investigated using electrochemical impedance spectroscopy (EIS and thermo gravimetric analysis (TGA. The coating exhibits better corrosion resistance in anodized Al surface than the other. But, TGA studies show that the thermal stability is higher in anodized and chromated Al surfaces. The surface morphology of these coatings were analyzed by SEM and AFM studies.

  18. Morphological and magnetic properties of cobalt nanoclusters electrodeposited onto HOPG

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2008-01-01

    In this work, the morphological and magnetic properties of cobalt nanoclusters obtained from two different sulphate electrolyte solutions were studied. The aggregates were electrodeposited onto highly oriented pyrolytic graphite electrodes in overpotential conditions, in order to investigate the cationic influence on the final properties of the aggregates. In both cases, scanning electron microscopy and atomic force microscopy showed random isolated clusters on the electrode surface, where size variations were determined by the electrolyte solution. By using magnetic force microscopy, the distribution of the electrodeposited magnetic material was more clearly observed which gave some insights on the growth mechanism of these aggregates.

  19. Microstructure stability of silver electrodeposits at room temperature

    International Nuclear Information System (INIS)

    Hansen, Karsten; Pantleon, Karen

    2008-01-01

    In situ quantitative X-ray diffraction analysis was used to investigate the kinetics of microstructure evolution at room temperature (self-annealing) in an electrodeposited silver layer. As a function of time at room temperature the as-deposited nanocrystalline microstructure evolved considerably: orientation-dependent grain growth and changes of the preferred grain orientation occurred. It is demonstrated for the first time that self-annealing occurs for electrodeposited silver layers and, hence, is not a unique feature of copper as often suggested

  20. Investigation of CuInSe2 nanowire arrays with core-shell structure electrodeposited at various duty cycles into anodic alumina templates

    Science.gov (United States)

    Cheng, Yu-Song; Wang, Na-Fu; Tsai, Yu-Zen; Lin, Jia-Jun; Houng, Mau-Phon

    2017-02-01

    Copper indium selenide (CuInSe2) nanowire (NW) arrays were prepared at various electrolyte duty cycles by filling anodic alumina templates through the pulsed electrodeposition technique. X-ray diffraction and scanning electron microscopy (SEM) images showed that the nucleation mechanism of CuInSe2 NW arrays was affected by the electrodeposition duty cycle. Moreover, SEM images showed that the diameter and length of the NWs were 80 nm and 2 μm, respectively. Furthermore, PEDOT/CuInSe2 NW core-shell arrays were fabricated using surfactant-modified CuInSe2 NW surfaces showing the lotus effect. Transmission electron microscopy images confirmed that a core-shell structure was achieved. Current-voltage plots revealed that the CuInSe2 NW arrays were p-type semiconductors; moreover, the core-shell structure improved the diode ideality factor from 3.91 to 2.63.

  1. Electrodeposited silk coatings for functionalized implant applications

    Science.gov (United States)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was

  2. Electrodeposition of rhenium-tin nanowires

    International Nuclear Information System (INIS)

    Naor-Pomerantz, Adi; Eliaz, Noam; Gileadi, Eliezer

    2011-01-01

    Highlights: → Rhenium-tin nanowires were formed electrochemically, without using a template. → The nanowires consisted of a crystalline-Sn-core/amorphous-Re-shell structure. → The effects of bath composition and operating conditions were investigated. → A mechanism is suggested for the formation of the core/shell structure. → The nanowires may be attractive for a variety of applications. - Abstract: Rhenium (Re) is a refractory metal which exhibits an extraordinary combination of properties. Thus, nanowires and other nanostructures of Re-alloys may possess unique properties resulting from both Re chemistry and the nanometer scale, and become attractive for a variety of applications, such as in catalysis, photovoltaic cells, and microelectronics. Rhenium-tin coatings, consisting of nanowires with a core/shell structure, were electrodeposited on copper substrates under galvanostatic or potentiostatic conditions. The effects of bath composition and operating conditions were investigated, and the chemistry and structure of the coatings were studied by a variety of analytical tools. A Re-content as high as 77 at.% or a Faradaic efficiency as high as 46% were attained. Ranges of Sn-to-Re in the plating bath, applied current density and applied potential, within which the nanowires could be formed, were determined. A mechanism was suggested, according to which Sn nanowires were first grown on top of Sn micro-particles, and then the Sn nanowires reduced the perrhenate chemically, thus forming a core made of crystalline Sn-rich phase, and a shell made of amorphous Re-rich phase. The absence of mutual solubility of Re and Sn may be the driving force for this phase separation.

  3. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  4. Morphological instability during steady electrodeposition at overlimiting currents

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2015-01-01

    We present a linear stability analysis of a planar metal electrode during steady electrodeposition. We extend the previous work of Sundstrom and Bark by accounting for the extended space-charge density, which develops at the cathode once the applied voltage exceeds a few thermal voltages...

  5. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects.

    Science.gov (United States)

    Zhitomirsky, I

    2002-03-29

    Electrodeposition of ceramic materials can be performed by electrophoretic (EPD) or electrolytic (ELD) deposition. Electrophoretic deposition is achieved via motion of charged particles towards an electrode under an applied electric field. Electrolytic deposition produces colloidal particles in cathodic reactions for subsequent deposition. Various electrochemical strategies and deposition mechanisms have been developed for electrodeposition of ceramic and organoceramic films, and are discussed in the present article. Electrode-position of ceramic and organoceramic materials includes mass transport, accumulation of particles near the electrode and their coagulation to form a cathodic deposit. Various types of interparticle forces that govern colloidal stability in the absence and presence of processing additives are discussed. Novel theoretical contributions towards an interpretation of particle coagulation near the electrode surface are reviewed. Background information is given on the methods of particle charging, stabilization of colloids in aqueous and non-aqueous media, electrophoretic mobility of ceramic particles and polyelectrolytes, and electrode reactions. This review also covers recent developments in the electrodeposition of ceramic and organoceramic materials.

  6. Identification of an anomalous phase in Ni–W electrodeposits

    DEFF Research Database (Denmark)

    Mizushima, Io; Tang, Peter Torben; Somers, Marcel A. J.

    2008-01-01

    In the present work Ni–W layers electrodeposited from electrolytes based on NiSO4, Na2WO4, citrate, glycine and triethanolamine are characterized with glow discharge optical emission spectroscopy (GD-OES) and X-ray diffraction analysis (XRD). XRD showed the occurrence of an anomalous phase...

  7. Textural and morphological studies on zinc-iron alloy electrodeposits

    Indian Academy of Sciences (India)

    Zinc-iron alloy electrodeposits have industrial significance, since they provide better corrosion resistance and with improved mechanical properties when compared to pure zinc coatings. This is due to the unique phase structure of the alloy formed. But this deposition belongs to anomalous deposition, where the ...

  8. Electrodeposited Cu2ZnSnS4 thin films

    CSIR Research Space (South Africa)

    Valdes, M

    2014-05-01

    Full Text Available Cu(sub2)ZnSnS(sub4)(CZTS) thin films have been prepared using Electrochemical Atomic Layer Deposition (EC-ALD)and also by one-step conventional constant potential electrodeposition. Optimal deposition conditionswere investigated using cyclic...

  9. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Shu, Jonathan; Archer, Lynden A.

    2015-01-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide

  10. The fabrication of short metallic nanotubes by templated electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Chienwen, Huang; Hao Yaowu, E-mail: yhao@uta.ed [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX 76051 (United States)

    2009-11-04

    Template-based electrochemical synthesis has widely been used to produce metal nanowires and nanorods. Commercially available filtration membranes, such as anodic aluminum oxide (AAO) and polycarbonate track etch membranes, have commonly been utilized as hard templates for this purpose. In this process, a thick metal film is usually sputtered or vacuum evaporated onto one side of the membrane to block the pores and serve as the working electrode for the subsequent electrodeposition. Here, we show that during the deposition of the metal electrode for AAO membranes, the electrode metal diffuses into the pores and is deposited on the pore walls which leads to preferential electrodeposition of metal on the walls and therefore forms metal tubes. This phenomenon has been utilized to fabricate short nanotubes by carefully controlling the electrodeposition conditions. The process is a straightforward method for any electroplatable materials to form nanoscale tubular structures. The effects of working electrodes and electrodeposition conditions on the formation of tubular structures are discussed in detail. A new mechanism based on this simple fact is proposed to explain the formation of Ni tubes by Ni-Cu co-deposition. Also, we demonstrate how to distinguish magnetic nanotubes from nanorods by a simple magnetic measurement.

  11. The fabrication of short metallic nanotubes by templated electrodeposition

    International Nuclear Information System (INIS)

    Huang Chienwen; Hao Yaowu

    2009-01-01

    Template-based electrochemical synthesis has widely been used to produce metal nanowires and nanorods. Commercially available filtration membranes, such as anodic aluminum oxide (AAO) and polycarbonate track etch membranes, have commonly been utilized as hard templates for this purpose. In this process, a thick metal film is usually sputtered or vacuum evaporated onto one side of the membrane to block the pores and serve as the working electrode for the subsequent electrodeposition. Here, we show that during the deposition of the metal electrode for AAO membranes, the electrode metal diffuses into the pores and is deposited on the pore walls which leads to preferential electrodeposition of metal on the walls and therefore forms metal tubes. This phenomenon has been utilized to fabricate short nanotubes by carefully controlling the electrodeposition conditions. The process is a straightforward method for any electroplatable materials to form nanoscale tubular structures. The effects of working electrodes and electrodeposition conditions on the formation of tubular structures are discussed in detail. A new mechanism based on this simple fact is proposed to explain the formation of Ni tubes by Ni-Cu co-deposition. Also, we demonstrate how to distinguish magnetic nanotubes from nanorods by a simple magnetic measurement.

  12. Effect of electrodeposition potential on composition and morphology ...

    Indian Academy of Sciences (India)

    The underpotential deposition mechanism of Cu–Se and In–Se phases was observed in ... Thin films; cyclic voltammetry; CuInGaSe (CIGS); solar cell; electrodeposition. 1. ... trode was a Pt spiral wire and the working electrode was. 735 ...

  13. Metal-organic framework templated electrodeposition of functional gold nanostructures

    International Nuclear Information System (INIS)

    Worrall, Stephen D.; Bissett, Mark A.; Hill, Patrick I.; Rooney, Aidan P.; Haigh, Sarah J.; Attfield, Martin P.; Dryfe, Robert A.W.

    2016-01-01

    Highlights: • Electrodeposition of anisotropic Au nanostructures templated by HKUST-1. • Au nanostructures replicate ∼1.4 nm pore spaces of HKUST-1. • Encapsulated Au nanostructures active as SERS substrate for 4-fluorothiophenol. - Abstract: Utilizing a pair of quick, scalable electrochemical processes, the permanently porous MOF HKUST-1 was electrochemically grown on a copper electrode and this HKUST-1-coated electrode was used to template electrodeposition of a gold nanostructure within the pore network of the MOF. Transmission electron microscopy demonstrates that a proportion of the gold nanostructures exhibit structural features replicating the pore space of this ∼1.4 nm maximum pore diameter MOF, as well as regions that are larger in size. Scanning electron microscopy shows that the electrodeposited gold nanostructure, produced under certain conditions of synthesis and template removal, is sufficiently inter-grown and mechanically robust to retain the octahedral morphology of the HKUST-1 template crystals. The functionality of the gold nanostructure within the crystalline HKUST-1 was demonstrated through the surface enhanced Raman spectroscopic (SERS) detection of 4-fluorothiophenol at concentrations as low as 1 μM. The reported process is confirmed as a viable electrodeposition method for obtaining functional, accessible metal nanostructures encapsulated within MOF crystals.

  14. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  15. Order/disorder in electrodeposited aluminum-titanium alloys

    Directory of Open Access Journals (Sweden)

    Stafford G.R.

    2003-01-01

    Full Text Available The composition, morphology, and crystallographic microstructure of Al-Ti alloys electrodeposited from two different chloroaluminate molten salt electrolytes were examined. Alloys containing up to 28 % atomic fraction Ti were electrodeposited at 150 °C from 2:1 AlCl3-NaCl with controlled additions of Ti2+. The apparent limit on alloy composition is proposed to be due to a mechanism by which Al3Ti forms through the reductive decomposition of [Ti(AlCl43]-. The composition of Al-Ti alloys electrodeposited from the AlCl3-EtMeImCl melt at 80 °C is limited by the diffusion of Ti2+ to the electrode surface. Alloys containing up to 18.4 % atomic fraction Ti are only obtainable at high Ti2+ concentrations in the melt and low current densities. Alloys electrodeposited from the higher temperature melt have an ordered L12 crystal structure while alloys of similar composition but deposited at lower temperature are disordered fcc. The appearance of antiphase boundaries in the ordered alloys suggests that the deposit may be disordered initially and then orders in the solid state, subsequent to the charge transfer step and adatom incorporation into the lattice. This is very similar to the disorder-trapping observed in rapidly solidified alloys. The measured domain size is consistent with a mechanism of diffusion-controlled doman growth at the examined deposition temperatures and times.

  16. Electrodeposited Germanium/Carbon Composite as an Anode Material for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Kim, Sang-Wan; Ngo, Duc Tung; Heo, Jaeyeong; Park, Choong-Nyeon; Park, Chan-Jin

    2017-01-01

    Highlights: • Electrodeposition was applied for the synthesis of Ge/C composite. • High coulombic efficiency of ∼85% in the first cycle was attained for Ge/C composite. • Full cell of Ge/C-LiCoO 2 exhibits excellent electrochemical performance, without pre-lithiation of Ge/C. - Abstract: We demonstrate the synthesis of nano Ge/C composite using a facile and cost-effective electrochemical deposition method, and its application as an anode material in Li-ion batteries. Nano Ge/C composite is electrodeposited directly on Cu foil in ethylene glycol containing GeCl 4 and carbon black. The Ge particles with an average size of ∼20 nm are uniformly covered with carbon. Compared with the pure Ge electrode, the Ge/C electrode exhibits a higher first reversible capacity of 1224 mA g −1 , and maintains a capacity of 1095 mAh g −1 at 0.1C over 50 cycles. Even at the high rate of 2C, the capacity of the Ge/C electrode is still high at 972 mAh g −1 . The presence of carbon black and pores in the Ge/C electrode improves the conductivity of the electrode, and mitigates the stress inside the electrode by supplying buffer volume, leading to the enhanced electrochemical characteristics of the electrode. Further, the full Li-ion cell composed of Ge/C anode and LiCoO 2 cathode exhibits good cyclability, rate capability, and coulombic efficiency.

  17. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Echendu, O.K., E-mail: oechendu@yahoo.com; Fauzi, F.; Weerasinghe, A.R.; Dharmadasa, I.M.

    2014-04-01

    CdS/CdTe and ZnS/CdTe n–n heterojunction solar cells have been fabricated using all-electrodeposited semiconductors. The best devices show remarkable high short-circuit current densities of 38.5 mAcm{sup −2} and 47.8 mAcm{sup −2}, open-circuit voltages of 630 mV and 646 mV and conversion efficiencies of 8.0% and 12.0% respectively. The major strength of these device structures lies in the combination of n–n heterojunction with a large Schottky barrier at the n-CdTe/metal back contact which provides the required band bending for the separation of photo-generated charge carriers. This is in addition to the use of a high quality n-type CdTe absorber layer with high electron mobility. The potential barrier heights estimated for these devices from the current–voltage characteristics exceed 1.09 eV and 1.13 eV for CdS/CdTe and ZnS/CdTe cells respectively. The diode rectification factors of both devices are in excess of four orders of magnitude with reverse saturation current densities of 1.0 × 10{sup −7} Acm{sup −2} and 4.0 × 10{sup −7} Acm{sup −2} respectively. These all-electrodeposited solar cell device structures are currently being studied and developed as an alternative to the well-known p–n junction structures which utilise chemical bath-deposited CdS. The preliminary material growth, device fabrication and assessment results are presented in this paper. - Highlights: • Two-electrode deposition. • High J{sub sc} Schottky barrier solar cells. • CdCl{sub 2} + CdF{sub 2} treatment.

  18. In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces

    Science.gov (United States)

    Wu, Yimin A.; Yin, Zuwei; Farmand, Maryam; Yu, Young-Sang; Shapiro, David A.; Liao, Hong-Gang; Liang, Wen-I.; Chu, Ying-Hao; Zheng, Haimei

    2017-02-01

    We report the study of Mg cathodic electrochemical deposition on Ti and Au electrode using a multimodal approach by examining the sample area in-situ using liquid cell transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM) and X-ray absorption spectroscopy (XAS). Magnesium Aluminum Chloride Complex was synthesized and utilized as electrolyte, where non-reversible features during in situ charging-discharging cycles were observed. During charging, a uniform Mg film was deposited on the electrode, which is consistent with the intrinsic non-dendritic nature of Mg deposition in Mg ion batteries. The Mg thin film was not dissolvable during the following discharge process. We found that such Mg thin film is hexacoordinated Mg compounds by in-situ STXM and XAS. This study provides insights on the non-reversibility issue and failure mechanism of Mg ion batteries. Also, our method provides a novel generic method to understand the in situ battery chemistry without any further sample processing, which can preserve the original nature of battery materials or electrodeposited materials. This multimodal in situ imaging and spectroscopy provides many opportunities to attack complex problems that span orders of magnitude in length and time scale, which can be applied to a broad range of the energy storage systems.

  19. Electrochemical performance of Sn-Sb-Cu film anodes prepared by layer-by-layer electrodeposition

    International Nuclear Information System (INIS)

    Jiang Qianlei; Xue Ruisheng; Jia Mengqiu

    2012-01-01

    A novel layer-by-layer electrodeposition and heat-treatment approach was attempted to obtain Sn-Sb-Cu film anode for lithium ion batteries. The preparation of Sn-Sb-Cu anodes started with galvanostatic electrochemically depositing antimony and tin sequentially on the substrate of copper foil collector. Sn-Sb and Cu-Sb alloys were formed when heated. The SEM analysis showed that the crystalline grains become bigger and the surface of the Sn-Sb-Cu anode becomes more denser after annealing. The energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis showed the antimony, tin and copper were alloyed to form SnSb and Cu 2 Sb after heat treatment. The X-ray photoelectron spectroscopy (XPS) analysis showed the surface of the Sn-Sb-Cu electrode was covered by a thin oxide layer. Electrochemical measurements showed that the annealed Sn-Sb-Cu anode has high reversible capacity and good capacity retention. It exhibited a reversible capacity of about 962 mAh/g in the initial cycle, which still remained 715 mAh/g after 30 cycles.

  20. Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition

    International Nuclear Information System (INIS)

    Lehr, I.L.; Saidman, S.B.

    2012-01-01

    This work is a study of the electrodeposition of zinc onto SAE 4140 steel electrodes using solutions containing zinc sulfate and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). The influence of different parameters such as electrolyte concentration, electrodeposition time and temperature on the morphology of the electrodeposits was analyzed. The deposits were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction. The variation of open circuit potential over time in chloride solutions was also evaluated. The nucleation-growth process and consequently the morphology of the electrodeposits are modified in the presence of AOT. The surfactant induces the formation of a porous deposit.

  1. Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition

    Science.gov (United States)

    Lehr, I. L.; Saidman, S. B.

    2012-03-01

    This work is a study of the electrodeposition of zinc onto SAE 4140 steel electrodes using solutions containing zinc sulfate and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). The influence of different parameters such as electrolyte concentration, electrodeposition time and temperature on the morphology of the electrodeposits was analyzed. The deposits were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction. The variation of open circuit potential over time in chloride solutions was also evaluated. The nucleation-growth process and consequently the morphology of the electrodeposits are modified in the presence of AOT. The surfactant induces the formation of a porous deposit.

  2. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  3. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    Science.gov (United States)

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.

  4. Electro-deposition of nickel, on reactor seal discs

    International Nuclear Information System (INIS)

    Vernekar, R.B.; Bhide, G.K.

    1977-01-01

    The effect of plating variables, acidity, current density and temperature on hardness of nickel deposited from purified nickel sulfamate bath has been investigated and optimum conditions for electrodeposition of nickel plating of hardness 160-170 VHN on reactor seal discs are established. Sodium lauryl sulfate was added as a wetting agent to the bath to overcome pitting tendency of the deposit. Factors affecting hydrogen absorption by electrodeposited nickel are also discussed. It is observed that : (1) at a pH 3.5 - 4.0 the decomposition rate of sulfamate salt is almost negligible and is the best value for bath operation, (2) at 15 A/dm 2 the hardness value is consistently around 160-170 VHN, (3) the temperatures less than 50 0 C give harder deposits and the bath is best operated at temperature 50-60 0 C and (4) annealing of the plated discs substantially reduces the hardness. (M.G.B.)

  5. Chirality of magneto-electrodeposited metal film electrodes

    International Nuclear Information System (INIS)

    Mogi, Iwao; Watanabe, Kazuo

    2008-01-01

    The chiral electrode behaviors of magneto-electrodeposited (MED) Ag and Cu films were examined for the electrochemical reactions of D-glucose, L-glucose and L-cysteine. The Ag and Cu films were electrodeposited under a magnetic field of 2 T parallel (+2 T) or antiparallel (-2 T) to the faradaic current. For MED films of both Ag and Cu, the oxidation current of L-glucose was larger than that of D-glucose on the +2 T-film electrodes, and the results were opposite on the - 2 T-film electrodes. These facts demonstrate that the MED metal films possess the ability of chiral recognition for D- and L-glucoses. The MED Ag film electrodes also exhibited chiral behavior for the oxidation of L-cysteine

  6. The properties of electrodeposited Zn-Co coatings

    Science.gov (United States)

    Mahieu, J.; de Wit, K.; de Cooman, B. C.; de Boeck, A.

    1999-10-01

    The possibility of increasing the corrosion resistance of automotive sheet steel by electrodepositing with Zn-Co alloy coatings was investigated. Process variables during electrodeposition such as current density, electrolyte flow rate, and pH were varied in order to examine their influence on the electroplating process. Cobalt contents varying from 0.2 to 7 wt% were easily obtained. The influence of these process parameters on the characteristics of the coating could be related to the hydroxide suppression mechanism for anomalous codeposition. The structure and the morphology of the coatings were determined using SEM and XRD analysis. Application properties important for coating systems used in the automotive industry, such as friction behavior, adhesion, and corrosion behavior, were investigated on coatings with varying cobalt content. The corrosion resistance of the Zn-Co alloy layers was found to be better than that of pure zinc coatings.

  7. Silver electrodeposition on nanostructured gold: from nanodots to nanoripples

    International Nuclear Information System (INIS)

    Claro, P C dos Santos; Fonticelli, M; BenItez, G; Azzaroni, O; Schilardi, P L; Luque, N B; Leiva, E; Salvarezza, R C

    2006-01-01

    Silver nanodots and nanoripples have been grown on nanocavity-patterned polycrystalline Au templates by controlled electrodeposition. The initial step is the growth of a first continuous Ag monolayer followed by preferential deposition at nanocavities. The Ag-coated nanocavities act as preferred sites for instantaneous nucleation and growth of the three-dimensional metallic centres. By controlling the amount of deposited Ag, dots of ∼50 nm average size and ∼4 nm average height can be grown with spatial and size distributions dictated by the template. The dots are in a metastable state. Further Ag deposition drives the dot surface structure to nanoripple formation. Results show that electrodeposition on nanopatterned electrodes can be used to prepare a high density of nanostructures with a narrow size distribution and spatial order

  8. Electrodepositing of Au on hollow PS micro-spheres

    International Nuclear Information System (INIS)

    Sun Jingyuan; Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zhang Wei; Zhang Lin; Chen Jing

    2010-01-01

    Using the self-regulating new micro-sphere electrodepositing device, the techniques of electrodepositing gold on hollow PS micro-spheres were established. The experiment was carried out under the following conditions: voltage was about 0.7 ∼ 0.8 V, current density was 2.0 mA · cm -2 , the temperature was 45 degree C, cathode rotating rate was 250 r · min -1 , flow rate of the solution was 7 mL · min -1 · cm -2 . Hollow gold-plated micro-spheres were prepared with well spherical symmetry, uniform thickness and surface smoothness under 500 nm. The speed of the gold depositing was 6 μm · h -1 . (authors)

  9. Metal electrodeposition and electron transfer studies of uranium compounds in room temperature ionic liquids

    International Nuclear Information System (INIS)

    Stoll, M.E.; Oldham, W.J.; Costa, D.A.

    2004-01-01

    Room temperature ionic liquids (RTIL's) comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and one of several anions such as PF 6 - , BF 4 - , or - N(SO 2 CF 3 ) 2 , represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. Part of the intrigue with RTIL's stems from some of their inherent solvent properties including negligible vapor pressure, good conductivity, high chemical and thermal stability, and non-flammability. Additionally, a substantial number of RTIL's can be envisioned simply by combining different cation and anion pairs, thereby making them attractive for specific application needs. We are interested in learning more about the possible use of RTIL's within the nuclear industry. In this regard our research team has been exploring the electron transfer behavior of simple metal ions in addition to coordination and organometallic complexes in these novel solvents. Results from our research have also provided us with insight into the bonding interactions between our current anion of choice, bis(trifluoromethylsulfonyl)imide = NTf 2 , and open coordination sites on actinide and transition metal fragments. This presentation will focus on recent results in two areas: the electrodeposition of electropositive metal ions from RTIL solutions and the electron transfer behavior for several uranium complexes. Details concerning the cathodic electrodeposition and anodic stripping of alkali metals (Na, K) from various working electrode surfaces (Pt, Au, W, Glassy Carbon) will be discussed. Figure 1 displays typical behavior for the electrodeposition of potassium metal from an RTIL containing potassium ions produced through the reaction of KH with H[NTf 2 ]. Our efforts with other metal ions, including our results to date with uranium electrodeposition, will be covered during the presentation. The electron transfer behavior for a number of uranium complexes have been studied with various

  10. Processing and properties of electrodeposited layered surface coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    1998-01-01

    Hard chromium, produced by conventional dir ect curl ent (DC) electrodeposition, cannot be deposited to thicknesses gl enter than about 5 mu m because of the buildup of processing stresses which cause channel cracks in the coating. Much thicker chromium coatings map be produced by depositing a la...... geometry is almost always analogous to bending, and fracture resistance is provided through deviation of the channel crack by weak interfaces, resulting in 'terrace cracking'....

  11. Electrodeposition of uranium in stirred liquid cadmium cathode

    International Nuclear Information System (INIS)

    Koyama, T.; Tanaka, H.

    1997-01-01

    The electrodeposition of U in a liquid Cd cathode was known to be hampered by the formation of dendritic U on the Cd surface. Electrotransports of uranium to the stirred liquid Cd cathode were carried out at 773 K for different cathode current densities and different Reynolds number of stirring. The maximum amount of U taken in the liquid Cd cathode without forming dendrites was found to increase with an increasing Reynolds number of stirring and decrease with increasing cathode current density. (orig.)

  12. Quantum conductance in electrodeposited nanocontacts and magnetoresistance measurements

    DEFF Research Database (Denmark)

    Elhoussine, F.; Encinas, A.; Mátéfi-Tempfli, Stefan

    2003-01-01

    The conductance and magnetoresistance measurements in magnetic Ni-Ni and Co-Ni nanocontacts prepared by electrodeposition within the pores of a track of track-etched polymer membrane were discussed. At room temperature, Ni-Ni constrictions were found to show broad quantization plateaus of conduct...... of conductance during their dissolution in units of e/h, as expected for ferromagnetic ballistic nanocontacts. The measurement of the positive and negative magnetoresistance in Co-Ni nanocontacts was also elaborated....

  13. Possible origin of superior corrosion resistance for electrodeposited nanocrystalline Ni

    International Nuclear Information System (INIS)

    Roy, I.; Yang, H.W.; Dinh, L.; Lund, I.; Earthman, J.C.; Mohamed, F.A.

    2008-01-01

    We present here for the first time observations that grain boundaries in electrodeposited (ED) nanocrystalline (nc) Ni are predominantly of Σ3 character. The results presented are based on orientation imaging microscopy (OIM) performed to produce electron backscatter diffraction (EBSD) maps. This large volume fraction of coherent low sigma coincidence site lattice (CSL) boundaries appears to be consistent with the superior corrosion resistance of ED nc-Ni in comparison with its coarse-grained counterpart

  14. Electrodeposition of epitaxial CdSe on (111) gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Cachet, H.; Cortes, R.; Froment, M. [Universite Pierre et Marie Curie, Paris (France). Phys. des Liquides et Electrochimie; Etcheberry, A. [Institut Lavoisier (IREM) UMR CNRS C0173, Universite de Versailles- St Quentin en Yvelynes, 45 Avenue des Etats Unis, 78035, Versailles (France)

    2000-02-21

    Epitaxial growth of CdSe has been achieved on GaAs(111) by electrodeposition from an aqueous electrolyte. The structure of the film corresponds to the cubic modification of CdSe. The quality of epitaxy has been investigated by reflection high energy electron diffraction, transmission electron microscopy and X-ray diffraction techniques. By XPS measurements the chemistry of the CdSe/GaAs interface and the composition of CdSe are determined. (orig.)

  15. Electrodeposition of niobium and titanium in molten salts

    International Nuclear Information System (INIS)

    Sartori, A.F.; Chagas, H.C.

    1988-01-01

    The electrodeposition of niobium and titanium in molten fluorides from the additions of fluorine niobates and fluorine titanates of potassium is described in laboratory and pilot scale. The temperature influence, the current density and the time deposition over the current efficiency, the deposits structure and the deposits purity are studied. The conditions for niobium coating over copper and carbon steel and for titanium coating over carbon steel are also presented. (C.G.C.) [pt

  16. Naphthalocyanine-based time reversal mirror at 800 nm

    International Nuclear Information System (INIS)

    Galaup, Jean-Pierre; Fraigne, Sebastien; Le Goueet, Jean-Louis; Likforman, Jean-Pierre; Joffre, Manuel

    2004-01-01

    We performed pulse shaping and time reversal experiments using spectral holography based on persistent spectral hole burning in free-base naphthalocyanine-doped films. The application of a new pulse re-compression scheme based on a programmable hole burning material acting as a time reversal mirror is considered. In this work, we adapted the Fourier transform spectral interferometry technique for measuring the amplitude and phase of photon echo signals produced by diffraction of femtosecond pulses on a spectral hologram. We therefore demonstrated that we could control the pulses diffracted from the hologram by shaping and then characterizing these pulses in both amplitude and phase by spectral interferometry

  17. Electrodeposition of quaternary alloys in the presence of magnetic field

    Science.gov (United States)

    2010-01-01

    Electrodeposition of Ni-Co-Fe-Zn alloys was done in a chloride ion solution with the presence and absence of a Permanent Parallel Magnetic Field (PPMF). The PPMF was applied parallel to the cathode surface. The deposition profile was monitored chronoamperometrically. It was found that the electrodeposition current was enhanced in the presence of PPMF (9 T) compared to without PPMF. The percentage of current enhancement (Γ%) was increased in the presence of PPMF, with results of Γ% = 11.9%, 16.7% and 18.5% at -1.1, -1.2 and -1.3 V respectively for a 2400 sec duration. In chronoamperometry, the Composition Reference Line (CRL) for Ni was around 57%, although the nobler metals (i.e. Ni, Co) showed anomalous behaviour in the presence of Zn and Fe. The anomalous behaviour of the Ni-Co-Fe-Zn electrodeposition was shown by the Energy Dispersive X-Ray (EDX) results. From Atomic Force Microscopy (AFM) measurements, it was found that the surface roughness of the Ni-Co-Fe-Zn alloy films decreased in the presence of a PPMF. PMID:20604934

  18. 2010 ELECTRODEPOSITION GORDON RESEARCH CONFERENCE, AUGUST 1-6, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Peter Searson

    2010-08-06

    The 2010 Gordon Conference on Electrodeposition will present cutting-edge research on electrodeposition with emphasis on (i) advances in basic science, (ii) developments in next-generation technologies, and (iii) new and emerging areas. The Conference will feature a wide range of topics, from atomic scale processes, nucleation and growth, thin film deposition, and electrocrystallization, to applications of electrodeposition in devices including microelectronics, solar energy, and power sources. The Conference will bring together investigators from a wide range of scientific disciplines, including chemical engineering, materials science and engineering, physics, and chemistry. The Conference will feature invited speakers at the forefront of the field, and a late-breaking news session that will provide the opportunity for graduate students, post-docs, and junior faculty to participate. The collegial atmosphere of this Conference, with scientific talks and poster sessions, as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to discuss current issues and promotes cross-disciplinary collaborations in the various research areas represented. The Conference will be held at Colby-Sawyer College, located in the Mt. Kearsarge-Lake Sunapee Region of New Hampshire. The surrounding mountains, forests, and lakes provide a beautiful setting for this conference. The attendance is limited so early application is strongly advised.

  19. Super Nonlinear Electrodeposition-Diffusion-Controlled Thin-Film Selector.

    Science.gov (United States)

    Ji, Xinglong; Song, Li; He, Wei; Huang, Kejie; Yan, Zhiyuan; Zhong, Shuai; Zhang, Yishu; Zhao, Rong

    2018-03-28

    Selector elements with high nonlinearity are an indispensable part in constructing high density, large-scale, 3D stackable emerging nonvolatile memory and neuromorphic network. Although significant efforts have been devoted to developing novel thin-film selectors, it remains a great challenge in achieving good switching performance in the selectors to satisfy the stringent electrical criteria of diverse memory elements. In this work, we utilized high-defect-density chalcogenide glass (Ge 2 Sb 2 Te 5 ) in conjunction with high mobility Ag element (Ag-GST) to achieve a super nonlinear selective switching. A novel electrodeposition-diffusion dynamic selector based on Ag-GST exhibits superior selecting performance including excellent nonlinearity (<5 mV/dev), ultra-low leakage (<10 fA), and bidirectional operation. With the solid microstructure evidence and dynamic analyses, we attributed the selective switching to the competition between the electrodeposition and diffusion of Ag atoms in the glassy GST matrix under electric field. A switching model is proposed, and the in-depth understanding of the selective switching mechanism offers an insight of switching dynamics for the electrodeposition-diffusion-controlled thin-film selector. This work opens a new direction of selector designs by combining high mobility elements and high-defect-density chalcogenide glasses, which can be extended to other materials with similar properties.

  20. The effect of cysteine on electrodeposition of gold nanoparticle

    International Nuclear Information System (INIS)

    Dolati, A.; Imanieh, I.; Salehi, F.; Farahani, M.

    2011-01-01

    Highlights: → Cysteine was found as an appropriate additive for electrodeposition of gold nanoparticles. → The deposition mechanism of gold nanoparticle was determined as instantaneous nucleation. → Oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits. - Abstract: The most applications of gold nanoparticles are in the photo-electronical accessories and bio-chemical sensors. Chloride solution with cysteine additive was used as electrolyte in gold nanoparticles electrodeposition. The nucleation and growing mechanism were studied by electrochemical techniques such as cyclic voltammetry and chronoamperometry, in order to obtain a suitable nano structure. The deposition mechanism was determined as instantaneous nucleation and the dimension of particles was controlled in nanometric particle size range. Atomic Force Microscope was used to evaluate the effect of cysteine on the morphology and topography of gold nanoparticles. Finally the catalytic property of gold nanoparticle electrodeposited was studied in KOH solution, where oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits.

  1. SILVER RECYCLING FROM PHOTO-PROCESSING WASTE USING ELECTRODEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Mochammad Feri Hadiyanto

    2010-06-01

    Full Text Available Silver electrodeposition of photo-processing waste and without addition of KCN 1,0 M has been studied for silver recycling. Photo procesing waste containing silver in form of [Ag(S2O32]3- was electrolysed at constant potential and faradic efficiency was determined at various of electrolysis times. Electrolysis of 100 mL photo processing waste without addition of KCN 1,0 M was carried out at constant potential 1.20 Volt, while electrolysis 100 mL photo procesing waste with addition of 10 mL KCN 1,0 M electrolysis was done at 1.30 Volt.The results showed that for silver electrodeposition from photo processing waste with addition of KCN 1,0 M was more favorable with faradic efficiency respectively were 93,16; 87,02; 74,74 and 78,35% for 30; 60; 90 and 120 minutes of electrolysis.   Keywords: Silver extraction, electrodeposition, photo-processing waste

  2. Atomistic minimal model for estimating profile of electrodeposited nanopatterns

    Science.gov (United States)

    Asgharpour Hassankiadeh, Somayeh; Sadeghi, Ali

    2018-06-01

    We develop a computationally efficient and methodologically simple approach to realize molecular dynamics simulations of electrodeposition. Our minimal model takes into account the nontrivial electric field due a sharp electrode tip to perform simulations of the controllable coating of a thin layer on a surface with an atomic precision. On the atomic scale a highly site-selective electrodeposition of ions and charged particles by means of the sharp tip of a scanning probe microscope is possible. A better understanding of the microscopic process, obtained mainly from atomistic simulations, helps us to enhance the quality of this nanopatterning technique and to make it applicable in fabrication of nanowires and nanocontacts. In the limit of screened inter-particle interactions, it is feasible to run very fast simulations of the electrodeposition process within the framework of the proposed model and thus to investigate how the shape of the overlayer depends on the tip-sample geometry and dielectric properties, electrolyte viscosity, etc. Our calculation results reveal that the sharpness of the profile of a nano-scale deposited overlayer is dictated by the normal-to-sample surface component of the electric field underneath the tip.

  3. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying

    2015-04-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide (LiBr) salt additives in a common liquid electrolyte (i.e. propylene carbonate (PC)) on the stability of lithium electrodeposition. From galvanostatic cycling measurements, we find that the presence of LiBr in PC provides more than 20-fold enhancement in cell lifetime over the control LiTFSI/PC electrolyte. Batteries containing 30 mol% LiBr additive in the electrolytes are able to cycle stably for at least 1.8 months with no observations of cell failure. From galvanostatic polarization measurements, an electrolyte containing 30 mol% LiBr shows a maximum improvement in lifetime. The formation of uneven lithium electrodeposits is significantly suppressed by the Br-containing SEI layers, evidenced by impedance spectra, post-mortem SEM and XPS analyses. The study also concludes that good solubility of halogenated salts is not necessary for achieving the observed improvements in cell lifetime.

  4. Electrodeposited cadmium selenide films for solar cells; Electrodeposition de couches minces de CdSe: Application a la conversion photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Bnamar, E.; Rami, M.; Fahoume, M.; Chraibi, F.; Ennaoui, A. [Universite Mohammed 5, Rabat (Morocco). Faculte des Sciences; Fahoume, M. [Universite Ibn Tofail, Faculte des Sciences, Kenitra (Morocco)

    1998-01-01

    Solar cells based on II-IV semiconductors are among the leading candidates for low-cost photovoltaic conversion of solar energy due to their high absorption coefficients and therefore the low materials consumption for their production. The synthesis of polycrystalline Cd Se thin films by cathodic electrodeposition on conducting substrates is described in this paper. Electrodeposition involves potentiostatic reduction from an acid aqueous bath. The influence of bath temperature and deposition potential on the crystallinity is discussed. For optimized deposition parameters, the XRD patterns reveal cubic and hexagonal Cd Se. Electron probe microanalysis shows an excess of Se in the samples. Photoelectrochemical studies of the films in aqueous polysulfide allowed us to determine the photovoltaic properties e.g.: semiconducting type, short-circuit current, open circuit voltage and fill factor. (authors) 5 refs.

  5. Parameter dependence of resonant spin torque magnetization reversal

    International Nuclear Information System (INIS)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H.W.

    2012-01-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  6. Parameter dependence of resonant spin torque magnetization reversal

    Science.gov (United States)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H. W.

    2012-04-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  7. Investigation of the pulsed electrochemical deposition of ZnO

    International Nuclear Information System (INIS)

    Dunkel, Christian; Lüttich, Franziska; Graaf, Harald; Oekermann, Torsten; Wark, Michael

    2012-01-01

    The influence of pulse parameters on the morphology of ZnO prepared by pulsed cathodic electrodeposition from oxygen-saturated aqueous ZnCl 2 solution on ITO (indium tin oxide)/glass substrates was investigated. It was found that the ratio between the pulse and the pause duration has a crucial influence on the crystal growth, reaching the highest density of the films with pause/pulse-ratios between 0.25 and 1. Longer pauses cause an Ostwald-like ripening of the ZnO crystals and therewith a strong change in the crystal morphology from roundly shaped to hexagonal. Also the hydrophilicity of the substrate resulting from pre-treatment has a crucial influence on the deposited films, leading to films only consisting of few large and separately grown ZnO crystals for highly hydrophilic substrates and an increasing fraction of small densely grown ZnO crystals with increasing hydrophobicity.

  8. Alloy formation during chromium electrodeposition at niobium cathode in molten salts

    International Nuclear Information System (INIS)

    Kuznetsov, S.A.; Glagolevskaya, A.L.

    1993-01-01

    Alloy formation during electrodeposition of chromium at niobium cathode is studied in salt melts. It is shown that during chromium electrodeposition at niobium support intermetallic compound Cr 2 Nb is formed. Thermodynamic characteristics of Cr 0.66 Nb 0.33 alloy are determined. 10 refs., 1 fig

  9. Electrodeposition of Zn-Co and Zn-Co-Fe alloys from acidic chloride electrolytes

    NARCIS (Netherlands)

    Lodhi, Z.F.; Mol, J.M.C.; Hovestad, A.; Terryn, H.; Wit, J.H.W. de

    2007-01-01

    The electrodeposition operating conditions for Zn-Co and Zn-Co-Fe alloys from chloride baths were studied. The electrodeposition was performed on a high strength steel substrate, under galvanostatic conditions, for a range of current densities at varying Co2+ and Fe2+ bath concentrations and at

  10. Electro-deposition as a repair method for embedded metal grids

    Energy Technology Data Exchange (ETDEWEB)

    Oostra, A. Jolt [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (Netherlands); Reddy, Anil; Smits, Edsger C.P.; Abbel, Robert; Groen, Wilhelm A. [Holst Centre/TNO, High Tech Campus 31, 5605 KN Eindhoven (Netherlands); Blom, Paul W.M. [Max Planck Institute für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Michels, Jasper J., E-mail: michels@mpip-mainz.mpg.de [Holst Centre/TNO, High Tech Campus 31, 5605 KN Eindhoven (Netherlands); Max Planck Institute für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany)

    2016-03-31

    A method is presented to self-repair cracks in embedded silver grid structures used in large area organic electronics. The repair procedure is based on electro-deposition, incited by the application of a moderate DC voltage across the crack. During this process the organic anode that is in direct electrical contact with the silver grid, functions as an appropriate medium for ion migration. Restoration of conductivity is achieved by the formation of dendritic metal structures that connect the cathodic to the anodic side of the crack. The metal dendrites decrease the gap resistance by one order of magnitude. Subsequently, another three orders of magnitude are gained upon sintering the dendrites using a high voltage pulse, yielding restored conductance levels nearly within one order of magnitude difference from native track conductance. - Highlights: • An innovative method to repair cracks in embedded silver electrodes is presented. • The method targets application in flexible hybrid- and organic electronics. • The mechanism relies on dendritic growth of metallic structures. • Sintering yields restored conductivity levels approaching the original value.

  11. A microelectrode array electrodeposited with reduced graphene oxide and Pt nanoparticles for norepinephrine and electrophysiological recordings

    Science.gov (United States)

    Wang, Li; Song, Yilin; Zhang, Yu; Xu, Shengwei; Xu, Huiren; Wang, Mixia; Wang, Yang; Cai, Xinxia

    2017-11-01

    Norepinephrine (NE), a common neurotransmitter released by locus coeruleus neurons, plays an essential role in the communication mechanism of the mammalian nervous system. In this work, a microelectrode array (MEA) was fabricated by micro-electromechanical system (MEMS) technology to provide a rapid, sensitive and reliable method for the direct determination in NE dynamic secretion. To improve the electrical performance, the MEA was electrodeposited with the reduced graphene oxide and Pt nanoparticles (rGOPNps). rGOPNps-MEA was investigated using scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy, differential pulse voltammetry exhibited remarkably electrocatalytic properties towards NE. Calibration results showed a sensitivity of 1.03 nA µM-1 to NE with a detection limit of 0.08 µM. In Particular, the MEA was successfully used for measuring dynamic extracellular NE secretion from the locus coeruleus brain slice, as well as monitoring spike firing from the hippocampal brain slice. This fabricated device has potential in studies of spatially resolved delivery of trace neurochemicals and electrophysiological activities of a variety of biological tissues in vitro.

  12. Influences of magnetic field on the fractal morphology in copper electrodeposition

    Science.gov (United States)

    Sudibyo; How, M. B.; Aziz, N.

    2018-01-01

    Copper magneto-electrodeposition (MED) is used decrease roughening in the copper electrodeposition process. This technology plays a vital role in electrodeposition process to synthesize metal alloy, thin film, multilayer, nanowires, multilayer nanowires, dot array and nano contacts. The effects of magnetic fields on copper electrodeposition are investigated in terms of variations in the magnetic field strength and the electrolyte concentration. Based on the experimental results, the mere presence of magnetic field would result in a compact deposit. As the magnetic field strength is increased, the deposit grows denser. The increment in concentration also leads to the increase the deposited size. The SEM image analysis showed that the magnetic field has a significant effect on the surface morphology of electrodeposits.

  13. Morphology of uranium electrodeposits on cathode in electrorefining process: A phase-field simulation

    International Nuclear Information System (INIS)

    Shibuta, Yasushi; Sato, Takumi; Suzuki, Toshio; Ohta, Hirokazu; Kurata, Masaki

    2013-01-01

    Morphology of uranium electrodeposits on cathode with respect to applied voltage, zirconium concentration in the molten salt and the size of primary deposit during pyroprocessing is systematically investigated by the phase-field simulation. It is found that there is a threshold zirconium concentration in the molten salt demarcating planar and cellular/needle-like electrodeposits, which agrees with experimental results. In addition, the effect of size of primary deposits on the morphology of electrodeposits is examined. It is then confirmed that cellular/needle-like electrodeposits are formed from large primary deposits at all applied voltages considered, whereas both the planar and cellular/needle-like electrodeposits are formed from the primary deposits of 10 μm and less

  14. Magnetic and magnetoresistance studies of nanometric electrodeposited Co films and Co/Cu layered structures: Influence of magnetic layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Zsurzsa, S., E-mail: zsurzsa.sandor@wigner.mta.hu; Péter, L.; Kiss, L.F.; Bakonyi, I.

    2017-01-01

    The magnetic properties and the magnetoresistance behavior were investigated for electrodeposited nanoscale Co films, Co/Cu/Co sandwiches and Co/Cu multilayers with individual Co layer thicknesses ranging from 1 nm to 20 nm. The measured saturation magnetization values confirmed that the nominal and actual layer thicknesses are in fairly good agreement. All three types of layered structure exhibited anisotropic magnetoresistance for thick magnetic layers whereas the Co/Cu/Co sandwiches and Co/Cu multilayers with thinner magnetic layers exhibited giant magnetoresistance (GMR), the GMR magnitude being the largest for the thinnest Co layers. The decreasing values of the relative remanence and the coercive field when reducing the Co layer thickness down to below about 3 nm indicated the presence of superparamagnetic (SPM) regions in the magnetic layers which could be more firmly evidenced for these samples by a decomposition of the magnetoresistance vs. field curves into a ferromagnetic and an SPM contribution. For thicker magnetic layers, the dependence of the coercivity (H{sub c}) on magnetic layer thickness (d) could be described for each of the layered structure types by the usual equation H{sub c}=H{sub co}+a/d{sup n} with an exponent around n=1. The common value of n suggests a similar mechanism for the magnetization reversal by domain wall motion in all three structure types and hints also at the absence of coupling between magnetic layers in the Co/Cu/Co sandwiches and Co/Cu multilayers. - Highlights: • Electrodeposited nanoscale Co films and Co/Cu layered structures. • Co layer thickness (d) dependence of coercivity (H{sub c}) and magnetoresistance. • H{sub c} depends on Co layer thickness according to H{sub c}=H{sub co}+a/d{sup n} with n around 1. • The common n value suggests a similar mechanism of magnetization reversal. • The common n value suggests the absence of coupling between magnetic layers.

  15. Reverse photoacoustic standoff spectroscopy

    Science.gov (United States)

    Van Neste, Charles W [Kingston, TN; Senesac, Lawrence R [Knoxville, TN; Thundat, Thomas G [Knoxville, TN

    2011-04-12

    A system and method are disclosed for generating a reversed photoacoustic spectrum at a greater distance. A source may emit a beam to a target and a detector measures signals generated as a result of the beam being emitted on the target. By emitting a chopped/pulsed light beam to the target, it may be possible to determine the target's optical absorbance by monitoring the intensity of light collected at the detector at different wavelengths. As the wavelength of light is changed, the target may absorb or reject each optical frequency. Rejection may increase the intensity at the sensing element and absorption may decrease the intensity. Accordingly, an identifying spectrum of the target may be made with the intensity variation of the detector as a function of illuminating wavelength.

  16. Preparation of tungsten coatings on graphite by electro-deposition via Na2WO4–WO3 molten salt system

    International Nuclear Information System (INIS)

    Sun, Ning-bo; Zhang, Ying-chun; Jiang, Fan; Lang, Shao-ting; Xia, Min

    2014-01-01

    Highlights: • Tungsten coatings on graphite were firstly obtained by electro-deposition method via Na 2 WO 4 –WO 3 molten salt system. • Uniform and dense tungsten coatings could be easily prepared in each face of the sample, especially the complex components. • The obtained tungsten coatings are with high purity, ultra-low oxygen content (about 0.022 wt%). • Modulate pulse parameters can get tungsten coatings with different thickness and hardness. - Abstract: Tungsten coating on graphite substrate is one of the most promising candidate materials as the ITER plasma facing components. In this paper, tungsten coatings on graphite substrates were fabricated by electro-deposition from Na 2 WO 4 –WO 3 molten salt system at 1173 K in atmosphere. Tungsten coatings with no impurities were successfully deposited on graphite substrates under various pulsed current densities in an hour. By increasing the current density from 60 mA cm −2 to 120 mA cm −2 an increase of the average size of tungsten grains, the thickness and the hardness of tungsten coatings occurs. The average size of tungsten grains can reach 7.13 μm, the thickness of tungsten coating was in the range of 28.8–51 μm, and the hardness of coating was higher than 400 HV. No cracks or voids were observed between tungsten coating and graphite substrate. The oxygen content of tungsten coating is about 0.022 wt%

  17. Electrodeposition of gold templated by patterned thiol monolayers

    Energy Technology Data Exchange (ETDEWEB)

    She, Zhe [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom); Di Falco, Andrea [SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS (United Kingdom); Hähner, Georg [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom); Buck, Manfred, E-mail: mb45@st-andrews.ac.uk [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom)

    2016-06-15

    Graphical abstract: - Highlights: • First demonstration of electrodeposition/lift-off of gold using thiol monolayers. • Microelectrode structures with large length to width ratio were generated. • Performance of two different patterning techniques was investigated. • Conditions for achieving good contrast in the electrodeposition were established. - Abstract: The electrochemical deposition of Au onto Au substrates modified by self-assembled monolayers (SAMs) was studied by linear sweep voltammetry (LSV), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Patterned SAMs exhibiting electrochemical contrast were prepared by two different methods. One used microcontact printing (μCP) to generate a binary SAM of ω-(4′-methyl-biphenyl-4-yl)-propane thiol (CH{sub 3}-C{sub 6}H{sub 4}-C{sub 6}H{sub 4}-(CH{sub 2}){sub 3}-SH, MBP3) and octadecane thiol (CH{sub 3}(CH{sub 2}){sub 17}SH, ODT). Templated by the SAM, a gold microelectrode structure was electrodeposited featuring a line 15 μm wide and 3 mm long. After transfer to an epoxy substrate the structure proved to be electrically conductive across the full length. The other patterning method applied electron beam lithography (EBL) where electrochemical contrast was achieved by crosslinking molecules in a single component SAM of MBP3. An electron dose above 250 mC/cm{sup 2} results in a high deposition contrast. The choice of parameters for the deposition/lift-off process is found to be more critical for Au compared to Cu studied previously. The origin of the differences and implications for nanoscale patterning are discussed.

  18. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...

  19. Microgravimetric Studies of Selenium Electrodeposition Onto Different Substrates

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2014-10-01

    Full Text Available The mechanism of selenium electrodeposition from sulfuric acid solution on different substrates was studied with the electrochemical techniques. The cyclic voltammetry was combined with the quartz crystal microbalance technique to analyze selenium deposition process. The electrochemical reduction of selenous acid on gold, silver and copper electrodes was investigated. It was found that reduction of selenous acid is a very complex process and it strongly depends from the applied substrate. The voltammetric measurements indicate the range of potentials in which the process of reduction of selenous acids on the applied substrate is possible. Additionally, the microgravimetric data confirm the deposition of selenium and they reveal the mechanism of the deposition process.

  20. Synthesis of tin oxide nanoparticle film by cathodic electrodeposition.

    Science.gov (United States)

    Kim, Seok; Lee, Hochun; Park, Chang Min; Jung, Yongju

    2012-02-01

    Three-dimensional SnO2 nanoparticle films were deposited onto a copper substrate by cathodic electrodeposition in a nitric acid solution. A new formation mechanism for SnO2 films is proposed based on the oxidation of Sn2+ ion to Sn4+ ion by NO+ ion and the hydrolysis of Sn4+. The particle size of SnO2 was controlled by deposition potential. The SnO2 showed excellent charge capacity (729 mAh/g) at a 0.2 C rate and high rate capability (460 mAh/g) at a 5 C rate.

  1. Zinc-nickel alloy electrodeposits for water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheela, G.; Pushpavanam, Malathy; Pushpavanam, S. [Central Electrochemical Research Inst., Karaikudi (India)

    2002-06-01

    Electrodeposited zinc-nickel alloys of various compositions were prepared. A suitable electrolyte and conditions to produce alloys of various compositions were identified. Alloys produced on electroformed nickel foils were etched in caustic to leach out zinc and to produce the Raney type, porous electro catalytic surface for hydrogen evolution. The electrodes were examined by polarisation measurements, to evaluate their Tafel parameters, cyclic voltammetry, to test the change in surface properties on repeated cycling, scanning electron microscopy to identify their microstructure and X-ray diffraction. The catalytic activity as well as the life of the electrode produced from 50% zinc alloy was found to be better than others. (Author)

  2. Electrodeposition of Asphaltenes. 2. Effect of Resins and Additives

    DEFF Research Database (Denmark)

    Khvostichenko, Daria S; Andersen, Simon Ivar

    2010-01-01

    Electrodeposition of asphaltenes from oil/heptane, asphaltene/heptane, and asphaltene/heptane/additive mixtures has been investigated. Toluene, native petroleum resins, and a synthetic asphaltene dispersant, p-nonylphenol, were used as additives. The addition of these components led to partial...... dissolution of asphaltenes in heptane. The charge of asphaltenic particles was found to be negative in oil/heptane mixtures and positive in asphaltene/heptane mixtures. In asphaltene/heptane/toluene systems, the charge of the deposit varied from positive to neutral to negative, depending upon the method...

  3. The electrodeposition of thorium in natural materials for alpha spectrometry

    International Nuclear Information System (INIS)

    Roman, D.

    1980-01-01

    A technique has been developed for the electrodeposition of thorium on stainless steel planchettes following standard radiochemical separation and uptake in acetate buffer. The method has been used on over 130 samples including calcrete, clay, granite and shell matrices. To assess the efficiency at ultra low levels, three solutions of carrier free 228 Th ( -7 μg in 5 ml electrolyte) and four solutions of 229 Th (4.4x10 -4 μg in 5 ml) were studied. The efficiencies of the former averaged 66 per cent; those of the 229 Th varied from 41 to 91%. (author)

  4. 2008 Gordon Research Conference on Electrodeposition [Conference summary report

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Thomas P.; Gray, Nancy Ryan

    2009-01-01

    Electrodeposition melds key aspects of electrochemistry and materials science. In the last decade the advent of a variety of remarkable in situ characterization methods combined with the ever expanding application of wet chemical processing in high end technological endeavors has transformed the nature of the field. The 'old black magic' is giving way to the rigors of science as the electrodeposition process plays a central role in the fabrication of state-of-the-art ULSI and MEMS devices as well as being a key tool in the fabrication of novel materials and nanostructures. This year the conference will consider several timely issues such as how electrodeposition can contribute to the effective production of energy conversion devices, ranging from solar collectors to fuel cell electrocatalysts. Likewise, the challenge of building contacts and interconnects for next generation electronics will be examined over length scales ranging from individual atoms or molecules to chip stacking. Electrochemical fabrication of magnetic materials and devices as well as composite materials will also be discussed. Nucleation and growth phenomena underlie all aspect of electrochemical deposition and this year's meeting will consider the effect of both adsorbates and stress state on morphological evolution during thin film growth. A variety of new measurement methods for studying the growing electrode/electrolyte interface will also be detailed. In addition to the scheduled talks a session of short talks on late breaking news will be held Wednesday evening. There will also be at least two lively poster sessions that are essential elements of the conference and to which all attendees are encouraged to contribute. This will be 7th Electrodeposition GRC and based on past experience it is the premier 'mixing bowl' where young investigators and international experts have an extended opportunity to interact in a fun and collegial atmosphere. The afternoons provide

  5. High-temperature ductility of electro-deposited nickel

    Science.gov (United States)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  6. Characterization of nickel nanocones routed by electrodeposition without any template.

    Science.gov (United States)

    Hang, Tao; Li, Ming; Fei, Qin; Mao, Dali

    2008-01-23

    This work reports the synthesis of Ni nanocones by a one-step electrodeposition method without any template. With the addition of ethylenediamine dihydrochloride (EDA·2HCl) in the nickel plating solution, the novel Ni conical structure can be easily deposited onto different metal surfaces. The as-prepared nickel nanocones grow preferentially along [Formula: see text] directions with very sharp tips. The conical structures are single crystalline without any disruption of the lattice planes. In addition, the Ni nanocone structure is demonstrated to show magnetocrystalline anisotropy and enhance the magnetic properties when compared with other Ni nanostructures.

  7. Electrodeposition and properties of Zn-Ni-CNT composite coatings

    International Nuclear Information System (INIS)

    Praveen, B.M.; Venkatesha, T.V.

    2009-01-01

    Zn-Ni-CNT composite coatings were prepared by electrodeposition from a sulphate bath. The effect of CNTs on the corrosion behavior, wear resistance and hardness of the composite coatings was investigated. Their corrosion properties were evaluated by polarization, impedance, weight loss and salt spray tests. The CNT particles inclusion improved the corrosion resistance, hardness and wear resistance of the coating. The grain size of the composite coating was smaller than that of a pure Zn-Ni coating with the same Zn/Ni ratio. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature.

  8. Effect of non-stationary current regimes on the morphology of silver electrodeposits

    OpenAIRE

    Dimitrov, Aleksandar; Paunovic, Perica; Popovski, Orce

    2009-01-01

    Abstract: This work is concerned with the use of reverse current regimes in order to form small-grained and compact silver deposits during the electrorefining process. Several parameters were varied, i.e., i) anodic overpotential,ii) cathodic vs. anodic time ratio and iii) duration of the anodic pulse. After optimization of these parameters, phosphate ions were added and the electrolyte was stirred. The effects of a rise of the anodic overpotential on the grain sizes of the silver depos...

  9. Nickel coating on high strength low alloy steel by pulse current deposition

    Science.gov (United States)

    Nigam, S.; Patel, S. K.; Mahapatra, S. S.; Sharma, N.; Ghosh, K. S.

    2015-02-01

    Nickel is a silvery-white metal mostly used to enhance the value, utility, and lifespan of industrial equipment and components by protecting them from corrosion. Nickel is commonly used in the chemical and food processing industries to prevent iron from contamination. Since the properties of nickel can be controlled and varied over broad ranges, nickel plating finds numerous applications in industries. In the present investigation, pulse current electro-deposition technique has been used to deposit nickel on a high strength low alloy (HSLA) steel substrate.Coating of nickel is confirmed by X-ray diffraction (XRD) and EDAX analysis. Optical microscopy and SEM is used to assess the coating characteristics. Electrochemical polarization study has been carried out to study the corrosion behaviour of nickel coating and the polarisation curves have revealed that current density used during pulse electro-deposition plays a vital role on characteristics of nickel coating.

  10. Material reliability of Ni alloy electrodeposition for steam generator tube repair

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Kim, Myong Jin; Kim, Joung Soo; Kim, Hong Pyo

    2007-01-01

    Due to the occasional occurrences of Stress Corrosion Cracking (SCC) in steam generator tubing (Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube dose not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electroforming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a Primary Water Stress Corrosion Cracking (PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance

  11. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  12. Influence of titanium oxide films on copper nucleation during electrodeposition

    International Nuclear Information System (INIS)

    Chang, Hyun K.; Choe, Byung-Hak; Lee, Jong K.

    2005-01-01

    Copper electrodeposition has an important industrial role because of various interconnects used in electronic devices such as printed wire boards. With an increasing trend in device miniaturization, in demand are void-free, thin copper foils of 10 μm thick or less with a very low surface profile. In accordance, nucleation kinetics of copper was studied with titanium cathodes that were covered with thin, passive oxide films of 2-3 nm. Such an insulating oxide layer with a band gap of 3 eV is supposed to nearly block charge transfer from the cathode to the electrolyte. However, significant nucleation rates of copper were observed. Pipe tunneling mechanism along a dislocation core is reasoned to account for the high nucleation kinetics. A dislocation core is proposed to be a high electron tunneling path with a reduced energy barrier and a reduced barrier thickness. In supporting the pipe tunneling mechanism, both 'in situ' and 'ex situ' scratch tests were performed to introduce extra dislocations into the cathode surface, that is, more high charge paths via tunneling, before electrodeposition

  13. Molybdenum carbide coating electrodeposited from molten fluoride bath

    International Nuclear Information System (INIS)

    Topor, D.C.; Selman, J.R.

    1987-01-01

    Molybdenum carbide has been recently considered as a candidate material for the protection of common steel-based substrates in high-temperature high-sulfur activity applications. Methods to produce coatings of materials such as Mo/sub 2/C are scarce and only the electrodeposition from molten salts can yield dense, pore-free layers on various metallic profiles. Recently Stern reported the deposition of a Mo/sub 2/C coating on nickel substrate form, FLINAK + K/sub 2/MoCl/sub 6/ + Na/sub 2/CO/sub 3/ mixture at 850 0 C. Electrodeposition of Mo/sub 2/C on a cathode surface proceeds according to a rather complicated mechanism which may involve simultaneous reduction of carbonate to C, of molybdate to Mo and a subsequent chemical reaction between both species. The deposit grows further as a coherent coating. Reduction of CO/sub 2/ or carbonate to carbon in a fused salt medium could follow different paths but Li/sup +/ ions or other highly polarizing ions must be present. A similar situation in which a polyatomic anion discharges at the cathode is encountered when molybdates are used as source of molybdenum. In fluoride melts the chemistry of Mo(VI) species is considered to be much simpler due to the hard fluoride ions. These ions form strong complexes with molybdenum and the resulting solution is more stable

  14. Electrodeposition properties of modified cational epoxy resin-type photoresist

    International Nuclear Information System (INIS)

    Yong He; Yunlong Zhang; Feipeng Wu; Miaozhen Li; Erjian Wang

    1999-01-01

    Multi-component cationic epoxy and acrylic resin system for ED photoresist was used in this work, since they can provide better storage stability for ED emulsion and better physical and chemical properties of deposited film than one-component system. The cationic main resin (AE) was prepared from amine modified epoxy resins and then treated with acetic acid. The amination degree was controlled as required. The synthetic procedure of cationic main resins is described in scheme I. The ED photoresist (AME) is composed of cationic main resin (AE) and nonionic multifunctional acrylic crosslinkers (PETA), in combination with suitable photo-initiator. They can easily be dispersed in deionized water to form a stable ED emulsion. The exposed part of deposited film upon UV irradiation occurs crosslinking to produce an insoluble semi-penetrating network and the unexposed part remains good solubility in the acidic water solution. It is readily utilized for fabrication of fine micropattern. The electrodeposition are carried out on Cu plate at room temperature. To evaluate the electrodeposition properties of ED photoresist (AME), the different influences are examined

  15. A MEMS lamination technology based on sequential multilayer electrodeposition

    International Nuclear Information System (INIS)

    Kim, Minsoo; Kim, Jooncheol; Herrault, Florian; Schafer, Richard; Allen, Mark G

    2013-01-01

    A MEMS lamination technology based on sequential multilayer electrodeposition is presented. The process comprises three main steps: (1) automated sequential electrodeposition of permalloy (Ni 80 Fe 20 ) structural and copper sacrificial layers to form multilayer structures of significant total thickness; (2) fabrication of polymeric anchor structures through the thickness of the multilayer structures and (3) selective removal of copper. The resulting structure is a set of air-insulated permalloy laminations, the separation of which is sustained by insulating polymeric anchor structures. Individual laminations have precisely controllable thicknesses ranging from 500 nm to 5 µm, and each lamination layer is electrically isolated from adjacent layers by narrow air gaps of similar scale. In addition to air, interlamination insulators based on polymers are investigated. Interlamination air gaps with very high aspect ratio (>1:100) can be filled with polyvinylalcohol and polydimethylsiloxane. The laminated structures are characterized using scanning electron microscopy and atomic force microscopy to directly examine properties such as the roughness and the thickness uniformity of the layers. In addition, the quality of the electrical insulation between the laminations is evaluated by quantifying the eddy current within the sample as a function of frequency. Fabricated laminations are comprised of uniform, smooth (surface roughness <100 nm) layers with effective electrical insulation for all layer thicknesses and insulator approaches studied. Such highly laminated structures have potential uses ranging from energy conversion to applications where composite materials with highly anisotropic mechanical or thermal properties are required. (paper)

  16. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Yar, A., E-mail: asfandyarhargan@gmail.com [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2015-07-22

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO{sub 4.}6H{sub 2}O buffered with H{sub 3}BO{sub 3} and acidized by dilute H{sub 2}SO{sub 4}. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (∼ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  17. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  18. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2013-11-01

    Full Text Available We report the crystallization of electrodeposited germanium (Ge thin films on n-silicon (Si (100 by rapid melting process. The electrodeposition was carried out in germanium (IV chloride: propylene glycol (GeCl4:C3H8O2 electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  19. Studies on photoinduced effects in pulse-electrodeposited Ag/Hg ...

    Indian Academy of Sciences (India)

    D D SHIVAGAN, P M SHIRAGE and S H PAWAR. ∗. School of ... deficient materials it has been shown that illumination with visible light [8] or ultra-violet light [9] induces persistent photoconductivity [10] and photoinduced superconductivity. [11]. A sharp ... Hence, for metal–superconductor junction in particular, it is difficult to.

  20. Pulse electrodeposition and corrosion properties of Ni–Si3N4 ...

    Indian Academy of Sciences (India)

    Administrator

    Smooth composite deposits containing well-distributed silicon nitride particles were ... The micro hardness of the composite coatings (720 HV) was higher than that of pure nickel. (310 HV) due to ... compared to pure metal or alloy (Jeon et al 2008). Nano- ... Among these factors, the type of applied cu- rrent is one of the most ...

  1. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor.

    Science.gov (United States)

    Grimshaw, Pengpeng; Calo, Joseph M; Shirvanian, Pezhman A; Hradil, George

    2011-08-17

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well.

  2. Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-08-01

    We generalize the conditions for stable electrodeposition at isotropic solid-solid interfaces using a kinetic model which incorporates the effects of stresses and surface tension at the interface. We develop a stability diagram that shows two regimes of stability: a previously known pressure-driven mechanism and a new density-driven stability mechanism that is governed by the relative density of metal in the two phases. We show that inorganic solids and solid polymers generally do not lead to stable electrodeposition, and provide design guidelines for achieving stable electrodeposition.

  3. Phase-Change Memory Properties of Electrodeposited Ge-Sb-Te Thin Film

    Science.gov (United States)

    Huang, Ruomeng; Kissling, Gabriela P.; Jolleys, Andrew; Bartlett, Philip N.; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. `Kees'

    2015-11-01

    We report the properties of a series of electrodeposited Ge-Sb-Te alloys with various compositions. It is shown that the Sb/Ge ratio can be varied in a controlled way by changing the electrodeposition potential. This method opens up the prospect of depositing Ge-Sb-Te super-lattice structures by electrodeposition. Material and electrical characteristics of various compositions have been investigated in detail, showing up to three orders of magnitude resistance ratio between the amorphous and crystalline states and endurance up to 1000 cycles.

  4. Electrodeposition of Iridium Oxide by Cyclic Voltammetry: Application of Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kakooei Saeid

    2014-07-01

    Full Text Available The effects of scan rate, temperature, and number of cycles on the coating thickness of IrOX electrodeposited on a stainless steel substrate by cyclic voltammetry were investigated in a statistical system. The central composite design, combined with response surface methodology, was used to study condition of electrodeposition. All fabricated electrodes were characterized using electrochemical methods. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy were performed for IrOX film characterization. Results showed that scan rate significantly affects the thickness of the electrodeposited layer. Also, the number of cycles has a greater effect than temperature on the IrOX thickness.

  5. Magnetic properties of CoP alloys electrodeposited at room temperature

    International Nuclear Information System (INIS)

    Lucas, I.; Perez, L.; Aroca, C.; Sanchez, P.; Lopez, E.; Sanchez, M.C.

    2005-01-01

    CoP alloys have been electrodeposited at room temperature from electrolytes with different pH values and their magnetic properties have been studied. Cracks and fractures appear when using stiff substrates, showing that high internal stresses, due to hydrogen evolution, are involved in the electrodeposition process. Samples electrodeposited onto flexible substrates do not show cracks on the surface. We also report an increment in the coercivity of the alloys when the pH of the electrolyte decreases, and therefore, the hydrogen evolution and the internal stresses increase

  6. Nanosecond bipolar pulse generators for bioelectrics.

    Science.gov (United States)

    Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R

    2018-04-26

    Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Evaluation of bipolar pulse generator for high-purity pulsed ion beam

    International Nuclear Information System (INIS)

    Ito, H.; Kitamura, I.; Masugata, K.

    2008-01-01

    A new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the experimental results of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PEL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. At present the bipolar pulse generator is installed in the B y type magnetically insulated ion diode and we carry out the experiment on the production of an intense pulsed ion beam by the bipolar pulse accelerator. (author)

  8. Influence of alcohol additives in the preparation of electrodeposited Pt-Ru catalysts on oxidized graphite cloths

    International Nuclear Information System (INIS)

    Sieben, Juan Manuel; Duarte, Marta M.E.; Mayer, Carlos E.

    2011-01-01

    Research highlights: → Pt-Ru catalysts were prepared by potential pulse electrodeposition from solutions containing EtOH or EG at pH 2 and 5. → The catalyst particle size, loading and dispersion were influenced by solution pH and alcohol addition. → The deposits prepared at pH 2 exhibited large irregular agglomerates while those prepared at pH 5 presented smaller globular particles. → Pt-Ru system prepared using EG at pH 5 exhibited the best performance for CH 3 OH oxidation. - Abstract: Carbon supported Pt-Ru catalysts were prepared by multiple cycles of potentiostatic pulses from aqueous diluted chloroplatinic acid and ruthenium chloride solutions in the presence of ethanol or ethylene glycol at pH 2 and 5. SEM images showed that the metallic deposit prepared at pH 2 consisted of large irregular agglomerates, whereas smaller globular particles were obtained at pH 5. In addition, the average particle size was considerably decreased in the presence of the stabilizers. The supported Pt-Ru alloys were tested as catalysts for methanol electro-oxidation in acid media. Electrocatalytic activity measurements indicated that the most active electrode was obtained with ethylene glycol as additive at pH 5.

  9. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xun [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Tan, LiLi [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Fan, XinMin [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China)

    2014-03-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca–P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. - Highlights: • A Si-doped calcium phosphate coating was achieved via pulse ED on AZ31 alloy. • The coating was composed of a porous lamellar-like layer and outer block-like apatite. • The coating showed slow degradation rate and better biomineralization property. • The coating improved cell proliferation and activity of osteogenic marker ALP.

  10. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition

    International Nuclear Information System (INIS)

    Qiu, Xun; Wan, Peng; Tan, LiLi; Fan, XinMin; Yang, Ke

    2014-01-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca–P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. - Highlights: • A Si-doped calcium phosphate coating was achieved via pulse ED on AZ31 alloy. • The coating was composed of a porous lamellar-like layer and outer block-like apatite. • The coating showed slow degradation rate and better biomineralization property. • The coating improved cell proliferation and activity of osteogenic marker ALP

  11. The influence of different electrodeposition E/t programs on the photoelectrochemical properties of α-Fe2O3 thin films

    International Nuclear Information System (INIS)

    Schrebler, Ricardo S.; Altamirano, Hernan; Grez, Paula; Herrera, Francisco V.; Munoz, Eduardo C.; Ballesteros, Luis A.; Cordova, Ricardo A.; Gomez, Humberto; Dalchiele, Enrique A.

    2010-01-01

    In this work morphological, structural and photoelectrochemical properties of n-type α-Fe 2 O 3 (hematite) thin films synthetized by means of two different electrochemical procedures: potential cycling electrodeposition (PC) and potential pulsed electrodeposition (PP) have been studied. The X-ray diffraction measurements showed that the films obtained after a thermal treatment at 520 o C present a nanocrystalline character. Scanning electron microscopy allowed finding that hematite films obtained by PP technique exhibit nanostructured morphology. The electrochemical and capacitance (Mott-Schottky and parallel capacitance) measurements showed that when in the PC and PP procedures the anodic limit E λ,A is being made more anodic, a decrease of the majority carriers concentration (N D ) and the surface states number has been observed. The photovoltammetry measurements indicated that the hematite films formed with the PP technique present a photocurrent one order of magnitude higher than the ones exhibited by the iron oxide films formed by PC. For instance, PP hematite films exhibit photovoltaic conversion efficiencies of 0.96% which are 2.5 times higher than the corresponding to the PC ones (0.38%). The maximum incident photon-to-current efficiency measured at λ = 370 and 600 nm was observed for hematite films grown by the PP procedure. By means of the photocurrent transient technique a decrease in the recombination process for those samples synthesized by PP was observed. The results obtained are discussed considering the influence of the anodic limit of the potential employed during the preparation of the iron oxyhydroxide (β-FeOOH) precursor film, all of this related to a decrease of the oxygen defects in this material and to a decrease of Fe(II) amount that is formed during the electrodeposition process.

  12. One-step electrodeposition process of CuInSe2: Deposition time effect

    Indian Academy of Sciences (India)

    Administrator

    CuInSe2 thin films were prepared by one-step electrodeposition process using a simplified two- electrodes system. ... homojunctions or heterojunctions (Rincon et al 1983). Efficiency of ... deposition times onto indium thin oxide (ITO)-covered.

  13. Nucleation and growth mechanism of Co–Pt alloy nanowires electrodeposited within alumina template

    Energy Technology Data Exchange (ETDEWEB)

    Srivastav, Ajeet K., E-mail: srivastav.ajeet.kumar@gmail.com, E-mail: mm09d004@smail.iitm.ac.in [Indian Institute of Technology Madras, Department of Metallurgical and Materials Engineering (India); Shekhar, Rajiv [Indian Institute of Technology Kanpur, Department of Materials Science and Engineering (India)

    2015-01-15

    Co–Pt alloy nanowires were electrodeposited by direct current electrodeposition within nanoporous alumina templates with varying deposition potentials. The effect of deposition potential on nucleation and growth mechanisms during electrodeposition of Co–Pt alloy nanowires was investigated. The less negative deposition potential (−0.9 V) favours the instantaneous nucleation mechanism. The positive deviation from theoretical instantaneous and progressive nucleation mechanisms occurs at higher negative deposition potentials. The hysteresis behaviour and magnetic properties of electrodeposited Co–Pt alloy nanowires altered with varying deposition potential. The easy magnetization direction was in direction perpendicular to the wire axis. The deposition potential dependent change in hysteresis behaviour with increased coercivity and scattered remanence ratio was observed. This is attributed to better crystallinity with reduced defect density and hydrogen evolution causing structural changes at more negative deposition potentials.

  14. Interfacial electronic structure of electrodeposited Ag nanoparticles on iron oxide nanorice particles

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Ku [Dept. of Chemistry, Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-12-15

    A bimetallic hybrid nanostructure of uni- formly electrodeposited Ag NPs on an Fe oxide nanorice particle template was developed. Figure 6 schematically illustrates uniform electrodeposition of Ag NPs on Fe oxide nanorice supported on a Si substrate. According to Ar + ion depth-probling XPS spectra, the electrodeposited Ag NPs are metallic, and the Fe oxide nanorice particles consist of a metallic shell covered by ultrathin FeOOH or Fe 2 O 3 shells. When the template was functionalized with 1,4-diisocyanobenzene, one terminal NC group was bridge- bonded as in the N C form on the Fe surface. The newly developed selective facial electrodeposition method will be very useful for facial fabrication of bimetallic hybrid systems for diverse application areas.

  15. Regulating the electrodeposition of zinc and cadmium coatings with mixtures of o-oxyazomethyne derivatives

    International Nuclear Information System (INIS)

    Grigor'ev, V.P.; Shpan'ko, S.P.; Dymnikova, O.V.; Popov, L.D.

    2000-01-01

    The results of electrodeposition of zinc and cadmium metals from the sulfate electrolyte in presence of the organic compounds of the oxyazomethine reaction series are described. It is shown that the current dependences retardation coefficient and cathode polarization of electrodeposited zinc and cadmium are described by equations, following from the principle of the reaction and activation free energy linearity. The character of these dependence for the negatively charged zinc and positively charged cadmium cathodes is similar [ru

  16. Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery

    Science.gov (United States)

    2011-11-01

    Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery Johanna K. Star 1 , Yi Ding 2 , and Paul A. Kohl ,1, * 1...Journal Article 3. DATES COVERED 01-11-2011 to 01-11-2011 4. TITLE AND SUBTITLE DENDRITE-FREE ELECTRODEPOSITION AND REOXIDATION OF LITHIUM-SODIUM...can short circuit the anode and cathode . Anode- cathode short circuits are especially dangerous when a flammable organic solvent is used as the

  17. Vapour and electro-deposited metal films on copper: structure and reactivity

    OpenAIRE

    McEvoy, Thomas F.

    2004-01-01

    The systems studied involve deposition of metals of a larger atomic diameter on a Cu{100} single crystal surface under vacuum and determining the structures formed along with the effect on the Cu{100} substrate. Cu microelectrodes were fabricated and characterised with Indium electrodeposited on the electrode surface. The In on Cu{ 100} growth mode is compared with the growth mode of electrodeposited Indium on Cu microelectrodes. The Cu{100}/In system has been studied for the In coverage ...

  18. Electrodeposited binder-free NiCo2O4@carbon nanofiber as a high performance anode for lithium ion batteries

    Science.gov (United States)

    Zhang, Jie; Chu, Ruixia; Chen, Yanli; Jiang, Heng; Zhang, Ying; Huang, Nay Ming; Guo, Hang

    2018-03-01

    Binder-free nickel cobaltite on a carbon nanofiber (NiCo2O4@CNF) anode for lithium ion batteries was prepared via a two-step procedure of electrospinning and electrodeposition. The CNF was obtained by annealing electrospun poly-acrylonitrile (PAN) in nitrogen (N2). The NiCo2O4 nanostructures were then grown on the CNF by electrodeposition, followed by annealing in air. Experimental results showed that vertically aligned NiCo2O4 nanosheets had uniformly grown on the surface of the CNF, forming an interconnected network. The NiCo2O4@CNF possessed considerable lithium storage capacity and cycling stability. It exhibited a high reversible capacity of 778 mAhg-1 after 300 cycles at a current density of 0.25 C (1 C = 890 mAg-1) with an average capacity loss rate of 0.05% per cycle. The NiCo2O4@CNF had considerable rate capacities, delivering a capacity of 350 mAhg-1 at a current density of 2.0 C. The outstanding electrochemical performance can be mainly attributed to the following: (1) The nanoscale structure of NiCo2O4 could not only shorten the diffusion path of lithium ions and electrons but also increase the specific surface area, providing more active sites for electrochemical reactions. (2) The CNF with considerable mechanical strength and electrical conductivity could function as an anchor for the NiCo2O4 nanostructure and ensure an efficient electron transfer. (3) The porous structure resulted in a high specific surface area and an effective buffer for the volume changes during the repeated charge-discharge processes. Compared with a conventional hydrothermal method, electrodeposition could significantly simplify the preparation of NiCo2O4, with a shorter preparation period and lower energy consumption. This work provides an alternative strategy to obtain a high performance anode for lithium ion batteries.

  19. Influence of lead ions on the macromorphology of electrodeposited zinc

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Tetsuaki [Univ. of California, Berkeley, CA (United States); Tobias, Charles W. [Univ. of California, Berkeley, CA (United States)

    1981-09-01

    The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth of initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.

  20. Studies on zinc nodules electrodeposited from acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Rolfe [Univ. of California, Berkeley, CA (United States); Tobias, Charles W. [Univ. of California, Berkeley, CA (United States)

    1984-12-01

    The development of morphology of electrodeposited zinc was investigated by studying the initial stages of deposition. Zinc was deposited galvanostatically from 1.0 M ZnCl2 electrolyte (0.7 < pH < 4.6) on rotating disc electrodes at current densities from 5 to 130 ma/cm2. Pine glassy carbon, Union Carbide pyrolytic graphite, Gould pyrolytic graphite, Exxon graphite loaded polymer, and platinum substrates were used. The number densities of nodules (diameter greater than 1 μm), typically encountered during incipient morphological development, were measured using scanning electron microscopy and image analysis. Nodule densities up to 7 x 104 nodules/mm2 were measured.

  1. Potentiostatic current and galvanostatic potential oscillations during electrodeposition of cadmium.

    Science.gov (United States)

    López-Sauri, D A; Veleva, L; Pérez-Ángel, G

    2015-09-14

    Cathodic current and potential oscillations were observed during electrodeposition of cadmium from a cyanide electrolyte on a vertical platinum electrode, in potentiostatic and galvanostatic experiments. Electrochemical impedance spectroscopy experiments revealed a region of negative real impedance in a range of non-zero frequencies, in the second descending branch with a positive slope of the N-shape current-potential curve. This kind of dynamical behaviour is characteristic of the HN-NDR oscillators (oscillators with the N-Shape current-potential curve and hidden negative differential resistance). The oscillations could be mainly attributed to the changes in the real active cathodic area, due to the adsorption of hydrogen molecules and their detachment from the surface. The instabilities of the electrochemical processes were characterized by time series, Fast Fourier Transforms and 2-D phase portraits showing quasi-periodic oscillations.

  2. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sasaki, T.; Meguro, S.; Asami, K.

    2004-01-01

    Tailoring active nickel alloy cathodes for hydrogen evolution in a hot concentrated hydroxide solution was attempted by electrodeposition. The carbon addition to Ni-Mo alloys decreased the nanocrystalline grain size and remarkably enhanced the activity for hydrogen evolution, changing the mechanism of hydrogen evolution. The Tafel slope of hydrogen evolution was about 35 mV per decade. This suggested that the rate-determining step is desorption of adsorbed hydrogen atoms by recombination. As was distinct from the binary Ni-Mo alloys, after open circuit immersion, the overpotential, that is, the activity of nanocrystalline Ni-Mo-C alloys for hydrogen evolution was not changed, indicating the sufficient durability in the practical electrolysis

  3. Efficient production of ultrapure manganese oxides via electrodeposition.

    Science.gov (United States)

    Cheney, Marcos A; Joo, Sang Woo; Banerjee, Arghya; Min, Bong-Ki

    2012-08-01

    A new process for the production of electrolytic amorphous nanomanganese oxides (EAMD) with uniform size and morphology is described. EAMD are produced for the first time by cathodic deposition from a basic aqueous solution of potassium permanganate at a constant temperature of 16°C. The synthesized materials are characterized by XRD, SEM, TEM, and HRTEM. The materials produced at 5.0 V at constant temperature are amorphous with homogeneous size and morphology with an average particle size around 20 nm, which appears to be much lesser than the previously reported anodic EAMD. A potentiostatic electrodeposition with much lesser deposition rate (with respect to previously reported anodic depositions) is considered to be the reason behind the very low and homogenous particle size distribution due to the lesser agglomeration of our as-synthesized nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Tin electrodeposition from sulfate solution containing a benzimidazolone derivative

    Directory of Open Access Journals (Sweden)

    Said BAKKALI

    2016-11-01

    Full Text Available Tin electrodeposition in an acidic medium in the presence of N,N’-1,3-bis-[N-3-(6-deoxy-3-O-methyl-D-glucopyranose-6-yl-2-oxobenzimidazol-1-yl]-2-tetradecyloxypropane as an additive was investigated in this work. The adequate current density and the appropriate additive concentration were determined by gravimetric measurements. Chronopotentiometric curves showed that the presence of the additive caused an increase in the overpotential of tin reduction. The investigations by cyclic voltammetry technique revealed that, in the presence and in absence of the additive, there were two peaks, one in the cathodic side attributed to the reduction of Sn2+ and the other one in the anodic side assigned to the oxidation of tin previously formed during the cathodic scan. The surface morphology of the tin deposits was studied by scanning electron microscopy (SEM and XRD.

  5. Electrodeposited highly-ordered manganese oxide nanowire arrays for supercapacitors

    Science.gov (United States)

    Liu, Haifeng; Lu, Bingqiang; Wei, Shuiqiang; Bao, Mi; Wen, Yanxuan; Wang, Fan

    2012-07-01

    Large arrays of well-aligned Mn oxide nanowires were prepared by electrodeposition using anodic aluminum oxide templates. The sizes of nanowires were tuned by varying the electrotype solution involved and the MnO2 nanowires with 10 μm in length were obtained in a neutral KMnO4 bath for 1 h. MnO2 nanowire arrays grown on conductor substance save the tedious electrode-making process, and electrochemical characterization demonstrates that the MnO2 nanowire arrays electrode has good capacitive behavior. Due to the limited mass transportation in narrow spacing, the spacing effects between the neighbor nanowires have show great influence to the electrochemical performance.

  6. Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

    KAUST Repository

    Tu, Zhengyuan

    2015-11-17

    © 2015 American Chemical Society. ConspectusSecondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum.Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost

  7. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.

    Science.gov (United States)

    Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D; Archer, Lynden A

    2015-11-17

    Secondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum. Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the

  8. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    International Nuclear Information System (INIS)

    Zhang, Dezhong; Tang, Yang; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-01-01

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  9. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dezhong; Tang, Yang, E-mail: tangyang@nicenergy.com; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-04-30

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  10. Nonequilibrium fluctuations in micro-MHD effects on electrodeposition

    International Nuclear Information System (INIS)

    Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki

    2010-01-01

    In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.

  11. Characterisation of a thiosulphate-sulphite gold electrodeposition process

    International Nuclear Information System (INIS)

    J-Liew, M.; Sobri, S.; Roy, S.

    2005-01-01

    Electrodeposition of soft gold is an important process in the fabrication of micro devices for electronics, optics etc. Traditional gold electroplating is based on a gold cyanide process which is not applicable for the stringent requirements in state of the art micro device manufacture. Newcastle University has been involved in the development of an industrial process based on a mixed ligand electrolyte-the gold thiosulphate-sulphite system. Here we present methods for the formulation of this electrolyte in the laboratory which ensure bath stability and process compatibility. In addition, we have carried out spectrophotometry to elucidate the possible reasons of its chemical stability. Standard rotating disk and cyclic voltammetry has been carried out to determine the electrochemical behaviour of the gold thiosulphate-sulphite system. The changes in electrochemical behaviour as the bath ages are also discussed

  12. Electrical conductivity of chromate conversion coating on electrodeposited zinc

    International Nuclear Information System (INIS)

    Tencer, Michal

    2006-01-01

    For certain applications of galvanized steel protected with conversion coatings it is important that the surface is electrically conductive. This is especially important with mating surfaces for electromagnetic compatibility. This paper addresses electrical conductivity of chromate conversion coatings. A cross-matrix study using different zinc plating techniques by different labs showed that the main deciding factor is the type of zinc-plating bath used rather than the subsequent chromating process. Thus, chromated zinc plate electrodeposited from cyanide baths is non-conductive while that from alkaline (non-cyanide) and acid baths is conductive, even though the plate from all the bath types is conductive before conversion coating. The results correlate well with the microscopic structure of the surfaces as observed with scanning electron microscopy (SEM) and could be further corroborated and rationalized using EDX and Auger spectroscopies

  13. Oriented hydroxyapatite single crystals produced by the electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.A. dos, E-mail: euler@ufs.br [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Moldovan, M.S. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Jacomine, L. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); Mateescu, M. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Werckmann, J. [IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Anselme, K. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Mille, P.; Pelletier, H. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France)

    2010-05-25

    We propose here the use of cathodic electrodeposition as tool to fabricate implant coatings consisting in nano/micro single crystals of hydroxyapatite (HA), preferentially orientated along the c-axis. Coating characterization is the base of this work, where we discuss the mechanisms related to the deposition of oriented hydroxyapatite thin films. It is shown that when deposited on titanium alloys, the HA coating is constituted by two distinct regions with different morphologies: at a distance of few microns from the substrate, large HA single crystals are oriented along the c-axis and appear to grow up from a base material, consisting in an amorphous HA. This organized system has a great importance for cell investigation once the variables involved in the cell/surface interaction are reduced. The use of such systems could give a new insight on the effect of particular HA orientation on the osteoblast cells.

  14. Mechanical Properties of Electrolyte Jet Electrodeposited Nickel Foam

    Directory of Open Access Journals (Sweden)

    Jinsong Chen

    2013-07-01

    Full Text Available Principles of the preparation of nickel foam by electrolyte jet electrodeposition were introduced, Nickel foam samples with different porosity were fabricated. Effect of different porosity on microhardness and uniaxial tensile properties of nickel foam was discussed. The results show that the microhardness of nickel foam is 320~400 HV, lower than entitative metal clearly. The lower the porosity of nickel foam, the higher the microhardness is. During the process of uniaxial tensile, nickel foam is characterized by three distinct regions, e.g. elastic deforming region, plastic plateau region and densification region. The higher the porosity of nickel foam, the lower the plastic plateau and the poorer the strength of nickel foam, accordingly

  15. Indium doped zinc oxide thin films obtained by electrodeposition

    International Nuclear Information System (INIS)

    Machado, G.; Guerra, D.N.; Leinen, D.; Ramos-Barrado, J.R.; Marotti, R.E.; Dalchiele, E.A.

    2005-01-01

    Indium doped ZnO thin films were obtained by co-electrodeposition (precursor and dopant) from aqueous solution. XRD analysis showed typical patterns of the hexagonal ZnO structure for both doped and undoped films. No diffraction peaks of any other structure such as In 2 O 3 or In(OH) 3 were found. The incorporation of In into the ZnO film was verified by both EDS and XPS measurements. The bandgap energy of the films varied from 3.27 eV to 3.42 eV, increasing with the In concentration in the solution. This dependence was stronger for the less cathodic potentials. The incorporation of In into the film occurs as both, an In donor state in the ZnO grains and as an amorphous In 2 O 3 at the grain boundaries

  16. Growth of uranyl hydroxide nanowires and nanotubes with electrodeposition method

    International Nuclear Information System (INIS)

    Wang Lin; Yuan Liyong; Chai Zhifang; Shi Weiqun

    2013-01-01

    Actinides nanomaterials have great potential applications in fabrication of novel nuclear fuel and spent fuel reprocessing in advanced nuclear energy system. However, the relative research so far still lacks systematic investigation on the synthetic methods for actinides nanomaterials. In this work, we use track-etched membranes as hard templates to synthesize uranium based nanomaterials with novel structures by electrodeposition method. Through electrochemical behavior investigations and subsequent product characterizations such as energy dispersive spectrometer (EDS), fourier transform infrared spectroscopy (FTIR), the chemical composition of deposition products have been confirmed as the uranyl hydroxide. More importantly, accurate control of morphology and structures (nanowires and nanotubes) could be achieved by carefully adjusting the growth parameters such as deposition time and deposition current density. It was found that the preferred morphology of electrodeposition products is nanowire when a low current density was applied, whereas nanotubes could be formed only under conditions of high current density and the short deposition time. The mechanism for the formation of nanowires in track-etched membranes is based on the precipitation of uranyl hydroxide from uranyl nitrate solution, according to the previous researches about obtaining nanostructures of hydroxides from nitrate salt solutions. And we have concluded that the formation of nanotubes is attributed to the hydrogen bubbles generated by water electrolysis under the condition of over-potential electro-reduction. The conveying of hydrogen bubbles plays the role of dynamic template which can prevent the complete filling of uranyl hydroxide in the channels. Additionally, we transform the chemical composition of deposition products from uranyl hydroxide to triuranium octoxide by calcining them at 500 and 800 degree centigrade, respectively, and SEM results show the morphologies of nanowires and

  17. Characterisation of electrodeposited and heat-treated Ni-Mo-P coatings

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Regis L.; Casciano, Paulo N.S.; Correia, Adriana N.; Lima-Neto, Pedro de, E-mail: pln@ufc.br [Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, Fortaleza, CE (Brazil)

    2012-07-01

    The electrodeposition, hardness and corrosion resistance properties of Ni-Mo-P coatings were investigated. Characterisations of the electrodeposited coatings were carried out using scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis techniques. Corrosion tests were performed at room temperature in 10-1 mol dm-3 NaCl solutions and by potentiodynamic linear polarisation. Amorphous Ni-Mo-P coatings were successfully obtained by electrodeposition using direct current. The coating composition showed to be dependent on the bath composition, current density and bath temperature. Both P and Mo contents contribute for the hardness properties of the Ni-Mo-P coatings and the absence of cracks is a requirement to produce electrodeposited Ni-Mo-P coatings with good hardness properties. The hardness values increase with heat-treatment temperature due to the precipitation of Ni, Ni{sub 3}P and NiMo phases during the heat treatment. The corrosion resistance of the electrodeposited Ni-Mo-P amorphous coatings increases with P content in the layer. Among the electrodeposited Ni-Mo-P amorphous coatings, Ni{sub 78}Mo{sub 10}P{sub 12} presented the best hardness and corrosion-resistance properties. The results showed that the addition of P is beneficial for the hardness and corrosion resistance properties of the Ni-Mo-based coatings. (author)

  18. Pulse cleaning flow models and numerical computation of candle ceramic filters.

    Science.gov (United States)

    Tian, Gui-shan; Ma, Zhen-ji; Zhang, Xin-yi; Xu, Ting-xiang

    2002-04-01

    Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one-dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.

  19. Preliminary study on auto-electrodeposition of copper, cadmium, nickel, and cobalt in acid and glycerol medium

    Directory of Open Access Journals (Sweden)

    S.G. Viswanath

    2013-12-01

    Full Text Available Electrodeposition can be carried out even without corresponding metal ions in the solution, but the respective metal electrode acts as anode. This process is called auto-electrodeposition. It occurs under similar conditions applied for electrowinning or electrodeposition. The electrochemical mechanism of electrowinning and autoelectrodeposition is suggested. Hydroxyl ions play very important role in this process. In this process, a black loss deposit is formed on the anode metal. The autoelectrodeposition is combination of electrodissolution process and electrowinning process.

  20. Effect of Electrodeposition Potential on Composition of CuIn1−xGaxSe2 Absorber Layer for Solar Cell by One-Step Electrodeposition

    OpenAIRE

    You, Rui-Wei; Lew, Kar-Kit; Fu, Yen-Pei

    2014-01-01

    CIGS polycrystalline thin films were successfully fabricated by one-step cathodic electrodeposition on Mo-coated glass. In this study, we applied a galvanometry mode with three-electrode potentiostatic systems to produce a constant concentration electroplating solution, which were composed of CuCl2, InCl3, GaCl3, and SeO2. Then these as-electrodeposited films were annealed in argon atmosphere and characterized by X-ray diffraction. The results revealed that annealing treatment significantly i...

  1. Pulsed power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The key element of our pulsed power program is concentration of power in time and space by suppression of breakdown in dielectrics and in vacuum. Magnetically insulated vacuum transmission lines and magnetic suppression of insulator flashover have continued as the main reserch directions. Vacuum insulated line studies at Physics International have been expanded and a test bed at Sandia, called MITE (Magnetically Insulated Transmission Experiment), is under development. The choice for the baseline EBFA design will depend on the outcome of these studies and should be made in July 1977. The slow and intermediate speed pulsed power approaches to EBFA will be based on Proto I and Proto II results and several of the projected EBFA subsystems are presently being tested in Proto II. A further stage of power concentration, within the vacuum diode itself, would considerably ease the burden on dielectrics; methods of power multiplication involving magnetically imploded plasmas are being considered and tests have begun using the Ripple III apparatus

  2. Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose

    International Nuclear Information System (INIS)

    Yang, S.; Lu, Z.; Luo, S.; Liu, C.; Tang, Y.

    2013-01-01

    We have electrodeposited a composite film consisting of graphene oxide, chitosan and glucose oxidase directly on a glassy carbon electrode (GCE) through electrochemical reduction of a solution of the 3 components under controlled direct electrical potential. The procedure takes only several minutes, and the thickness of the resulting film is uniform and controllable. The GOx has uncompromised bioactivity and exhibits reversible 2-proton and 2-electron transfer in presence of glucose. It therefore can be used amperometric sensing of glucose. The biosensor has a fast response (<3 s), a detection limit of 0.4 μM (which is 50-fold lower compared to the biosensor prepared by drop-casting solutions of the same materials onto an GCE), and a linear response in the 0.4 μM to 2 mM concentration range (which again is much better than that of the biosensor prepared by the drop-casting method). Other features include high reproducibility, long-time storage stability, and satisfactory selectivity. We presume that the direct single-step electrodeposition of this nanocomposite offers a promising approach towards novel types of highly sensitive and stable electrochemical biosensors. (author)

  3. Electrochemical deposition and characterization of zinc–nickel alloys deposited by direct and reverse current

    Directory of Open Access Journals (Sweden)

    JELENA B. BAJAT

    2005-12-01

    Full Text Available Zn–Ni alloys electrochemically deposited on steel under various deposition conditions were investigated. The alloys were deposited on a rotating disc electrode and on a steel panel from chloride solutions by direct and reverse current. The influence of reverse plating variables (cathodic and anodic current densities and their time duration on the composition, phase structure and corrosion properties were investigated. The chemical content and phase composition affect the anticorrosive properties of Zn–Ni alloys during exposure to a corrosive agent (3 % NaCl solution. It was shown that the Zn–Ni alloy electrodeposited by reverse current with a full period T = 1 s and r = 0.2 exhibits the best corrosion properties of all the investigated alloys deposited by reverse current.

  4. Effect of non-stationary current regimes on the morphology of silver electrodeposits

    OpenAIRE

    ALEKSANDAR T. DIMITROV; PERICA PAUNOVIĆ; ORCE POPOVSKI; DRAGAN SLAVKOV; ŽELJKO KAMBEROVIĆ; SVETOMIR HADŽI JORDANOV

    2009-01-01

    This work is concerned with the use of reverse current regimes in order to form small-grained and compact silver deposits during the electro-refining process. Several parameters were varied, i.e., i) anodic overpotential, ii) cathodic vs. anodic time ratio and iii) duration of the anodic pulse. After optimization of these parameters, phosphate ions were added and the electrolyte was stirred. The effects of a rise of the anodic overpotential on the grain sizes of the silver deposit and compact...

  5. Electro-deposition of Pd on carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions usingthe electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substratesfor the electrodeposition of the metal...

  6. Managing Reverse Logistics or Reversing Logistics Management?

    OpenAIRE

    Brito, Marisa

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse logistics. The thesis brings insights on reverse logistics decision-making and it lays down theoretical principles for reverse logistics as a research field.In particular it puts together a framework ...

  7. Effect of Electrodeposition Potential on Composition of CuIn1−xGaxSe2 Absorber Layer for Solar Cell by One-Step Electrodeposition

    Directory of Open Access Journals (Sweden)

    Rui-Wei You

    2014-01-01

    Full Text Available CIGS polycrystalline thin films were successfully fabricated by one-step cathodic electrodeposition on Mo-coated glass. In this study, we applied a galvanometry mode with three-electrode potentiostatic systems to produce a constant concentration electroplating solution, which were composed of CuCl2, InCl3, GaCl3, and SeO2. Then these as-electrodeposited films were annealed in argon atmosphere and characterized by X-ray diffraction. The results revealed that annealing treatment significantly improved the crystallinity of electrodeposited films and formed CIGS chalcopyrite structure, but at low applied deposition voltage (−950 mV versus SCE there appeared second phase. The cross-section morphology revealed that applied voltage at −1350 mV versus SCE has uniform deposition, and higher applied voltage made grain more unobvious. The deposition rate and current density are proportional to deposition potential, and hydrogen was generated apparently when applying potential beyond −1750 mV versus SCE. It was found that the CIGS compound did not match exact stoichiometry of Cu : In : Ga : Se =1 : x : 1-x : 2. This result suggests the possibility of controlling the property of thin films by varying the applied potential during electrodeposition.

  8. The effect of different component ratios in block polymers and processing conditions on electrodeposition efficiency onto titanium

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, Yusuke; Kyuzo, Megumi [Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Tsutsumi, Yusuke [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Nagai, Akiko [Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Chen, Peng [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Hanawa, Takao, E-mail: hanawa.met@tmd.ac.jp [Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • MPC polymers with an ability of electrodeposition were synthesized. • MPC polymers were immobilized on titanium substrates by electrodeposition. • Immobilization by electrodeposition of MPC polymer decreased water contact angle and protein adsorption. • Length of MPC unit and electrodeposition time did not influence water contact angle and protein adsorption. - Abstract: 2-Methacryloyloxyethyl phosphorylcholine (MPC) polymers for electrodeposition to titanium surfaces were synthesized. The polymers were block-type copolymers composed of a poly(MPC) segment and a poly(2-aminoethylmethacrylate (AEMA)) segment, which could electronically adsorb to a titanium oxide film on the titanium surface. The polymer was synthesized as expected by nuclear magnetic resonance and gel permeation chromatography. In a 0.26 mmol L{sup −1} PMbA solution adjusted to pH 11, −3.0 V (vs. an Ag/AgCl electrode) was applied to a titanium substrate for 300 s. We evaluated the effects of the molecular structure of poly(MPC-block-AEMA) (PMbA) with a different polymerization degree of MPC unit, whereas the polymerization degree of the AEMA units was fixed. The 15-min electrodeposition of PMbA100 was the most efficient condition in this study. On the other hand, the results of the water contact angle and the amount of adsorbed protein did not change, even when altering the MPC unit number and electrodeposition time. This indicates that the immobilization by electrodeposition of PMbA is important for the inhibition of protein adsorption, while the polymerization degree of the MPC unit and the electrodeposition time do not influence them. This study will enhance the understanding of effective polymer structures for electrodeposition and electrodeposition conditions.

  9. Iron oxide nanotubes synthesized via template-based electrodeposition

    Science.gov (United States)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition

  10. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  11. Pulse radiolysis

    International Nuclear Information System (INIS)

    Greenshields, H.; Seddon, W.A.

    1982-03-01

    This supplement to two bibliographies published in 1970 and 1972 lists 734 references to the literature of pulse radiolysis, arranged under eight broad subject headings. The references were compiled by searching Biological Abstracts, Chemical Abstracts, Nuclear Science Abstracts and the Weekly List of Papers in Radiation Chemistry issued by the Radiation Chemistry Data Center of Notre Dame University. Full bibliographic data is given for papers published in the period 1971 to 1974. A personal author index listing more than 600 authors and a similar number of co-authors is included

  12. Investigation of CuInSe{sub 2} nanowire arrays with core–shell structure electrodeposited at various duty cycles into anodic alumina templates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yu-Song [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, Tainan 701, Taiwan (China); Wang, Na-Fu; Tsai, Yu-Zen [Department of Electronic Engineering, Cheng Shiu University, 840 Chengcing Rd., Niaosong District, Kaohsiung City 833, Taiwan (China); Lin, Jia-Jun [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, Tainan 701, Taiwan (China); Houng, Mau-Phon, E-mail: mphoung@eembox.ncku.edu.tw [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, Tainan 701, Taiwan (China)

    2017-02-28

    Highlights: • The present paper reports that CuInSe2 NW arrays were fabricated through pulsed electrode position onto an AAO template with various duty cycles, and a pore-filling ratio of approximately 92% was achieved. • GIXRD patterns showed that all CuInSe2 NW arrays were chalcopyrite and SAED images confirmed that the CuInSe2 NWs were polycrystalline. • PEDOT/CuInSe2 NW core–shell arrays were fabricated using surfactant-modified CuInSe2 NW surfaces showing the lotus effect. • Current–voltage plots revealed that the CuInSe2 NW arrays were p-type semiconductors; moreover, the core–shell structure improved the diode ideality factor from 3.91 to 2.63. - Abstract: Copper indium selenide (CuInSe{sub 2}) nanowire (NW) arrays were prepared at various electrolyte duty cycles by filling anodic alumina templates through the pulsed electrodeposition technique. X-ray diffraction and scanning electron microscopy (SEM) images showed that the nucleation mechanism of CuInSe{sub 2} NW arrays was affected by the electrodeposition duty cycle. Moreover, SEM images showed that the diameter and length of the NWs were 80 nm and 2 μm, respectively. Furthermore, PEDOT/CuInSe{sub 2} NW core–shell arrays were fabricated using surfactant-modified CuInSe{sub 2} NW surfaces showing the lotus effect. Transmission electron microscopy images confirmed that a core–shell structure was achieved. Current–voltage plots revealed that the CuInSe{sub 2} NW arrays were p-type semiconductors; moreover, the core–shell structure improved the diode ideality factor from 3.91 to 2.63.

  13. Preparation of tungsten coatings on graphite by electro-deposition via Na{sub 2}WO{sub 4}–WO{sub 3} molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning-bo [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Ying-chun, E-mail: zycustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Jiang, Fan; Lang, Shao-ting [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Xia, Min [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Institute of Powder Metallurgy and Advanced Ceramics, Southwest Jiaotong University, 111, 1st Section, Northern 2nd Ring Road, Chengdu (China)

    2014-11-15

    Highlights: • Tungsten coatings on graphite were firstly obtained by electro-deposition method via Na{sub 2}WO{sub 4}–WO{sub 3} molten salt system. • Uniform and dense tungsten coatings could be easily prepared in each face of the sample, especially the complex components. • The obtained tungsten coatings are with high purity, ultra-low oxygen content (about 0.022 wt%). • Modulate pulse parameters can get tungsten coatings with different thickness and hardness. - Abstract: Tungsten coating on graphite substrate is one of the most promising candidate materials as the ITER plasma facing components. In this paper, tungsten coatings on graphite substrates were fabricated by electro-deposition from Na{sub 2}WO{sub 4}–WO{sub 3} molten salt system at 1173 K in atmosphere. Tungsten coatings with no impurities were successfully deposited on graphite substrates under various pulsed current densities in an hour. By increasing the current density from 60 mA cm{sup −2} to 120 mA cm{sup −2} an increase of the average size of tungsten grains, the thickness and the hardness of tungsten coatings occurs. The average size of tungsten grains can reach 7.13 μm, the thickness of tungsten coating was in the range of 28.8–51 μm, and the hardness of coating was higher than 400 HV. No cracks or voids were observed between tungsten coating and graphite substrate. The oxygen content of tungsten coating is about 0.022 wt%.

  14. Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Yang Guangming; Li Ling; Jiang Jinhe; Yang Yunhui

    2012-01-01

    Gold nanotube arrays of rough and porous wall has been synthesized by direct electrodeposition with cyclic voltammetry utilizing anodic aluminum oxide template (AAO) and polycarbonate membrane (PC) during short time (only 3 min and 2 min, respectively). The mechanism of the direct electrodeposition of gold nanotube arrays by cyclic voltammetry (CV) has been discussed. The morphological characterizations of the gold nanotube arrays have been investigated by scanning electron microscopy (SEM). A simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry (DPV) was constructed by attaching gold nanotube arrays (using AAO) onto the surface of a glassy carbon electrode (GCE). The electrochemical behavior of AA and UA at this modified electrode has been studied by CV and differential pulse voltammetry (DPV). The sensor offers an excellent response for AA and UA and the linear response range for AA and UA were 1.02 × 10 −7 –5.23 × 10 −4 mol L −1 and 1.43 × 10 −7 –4.64 × 10 −4 mol L −1 , the detection limits were 1.12 × 10 −8 mol L −1 and 2.24 × 10 −8 mol L −1 , respectively. This sensor shows good regeneration, stability and selectivity and has been used for the determination of AA and UA in real human urine and serum samples with satisfied results. - Graphical abstract: The schematic diagram of formation of Au nanotube arrays (a) and the stepwise procedure of the sensor (b). Highlights: ► Gold nanotubes array has been synthesized by cyclic voltammetry. ► The mechanism of deposition of gold nanotube has been discussed. ► A determination of ascorbic acid and uric acid was constructed by gold array. ► A satisfied determination of samples can be obtained by this sensor.

  15. Investigation of CuInSe2 nanowire arrays with core–shell structure electrodeposited at various duty cycles into anodic alumina templates

    International Nuclear Information System (INIS)

    Cheng, Yu-Song; Wang, Na-Fu; Tsai, Yu-Zen; Lin, Jia-Jun; Houng, Mau-Phon

    2017-01-01

    Highlights: • The present paper reports that CuInSe2 NW arrays were fabricated through pulsed electrode position onto an AAO template with various duty cycles, and a pore-filling ratio of approximately 92% was achieved. • GIXRD patterns showed that all CuInSe2 NW arrays were chalcopyrite and SAED images confirmed that the CuInSe2 NWs were polycrystalline. • PEDOT/CuInSe2 NW core–shell arrays were fabricated using surfactant-modified CuInSe2 NW surfaces showing the lotus effect. • Current–voltage plots revealed that the CuInSe2 NW arrays were p-type semiconductors; moreover, the core–shell structure improved the diode ideality factor from 3.91 to 2.63. - Abstract: Copper indium selenide (CuInSe 2 ) nanowire (NW) arrays were prepared at various electrolyte duty cycles by filling anodic alumina templates through the pulsed electrodeposition technique. X-ray diffraction and scanning electron microscopy (SEM) images showed that the nucleation mechanism of CuInSe 2 NW arrays was affected by the electrodeposition duty cycle. Moreover, SEM images showed that the diameter and length of the NWs were 80 nm and 2 μm, respectively. Furthermore, PEDOT/CuInSe 2 NW core–shell arrays were fabricated using surfactant-modified CuInSe 2 NW surfaces showing the lotus effect. Transmission electron microscopy images confirmed that a core–shell structure was achieved. Current–voltage plots revealed that the CuInSe 2 NW arrays were p-type semiconductors; moreover, the core–shell structure improved the diode ideality factor from 3.91 to 2.63.

  16. Pulse pile-up. I: Short pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  17. Cyclic Voltammetric Study of High Speed Silver Electrodeposition and Dissolution in Low Cyanide Solutions

    Directory of Open Access Journals (Sweden)

    Bo Zheng

    2016-01-01

    Full Text Available The electrochemical processes in solutions with a much lower amount of free cyanide (<10 g/L KCN than the conventional alkaline silver electrolytes were first explored by using cyclic voltammetry. The electrochemical behavior and the effect of KAg(CN2, KCN, and KNO3 electrolytes and solution pH on the electrodeposition and dissolution processes were investigated. Moreover, suitable working conditions for high speed, low cyanide silver electrodeposition were also proposed. Both silver and cyanide ions concentration had significant effects on the electrode polarization and deposition rate. The onset potential of silver electrodeposition could be shifted to more positive values by using solutions containing higher silver and lower KCN concentration. Higher silver concentration also led to higher deposition rate. Besides maintaining high conductivity of the solution, KNO3 might help reduce the operating current density required for silver electrodeposition at high silver concentration albeit at the expense of slowing down the electrodeposition rate. The silver dissolution consists of a limiting step and the reaction rate depends on the amount of free cyanide ions. The surface and material characteristics of Ag films deposited by low cyanide solution are also compared with those deposited by conventional high cyanide solution.

  18. DC electrodeposition of NiGa alloy nanowires in AAO template

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, K. [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Sanjabi, S., E-mail: sanjabi@modares.ac.ir [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Alemipour, Z. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2015-12-01

    NiGa alloy nanowires were electrodeposited from an acidic sulfate bath into nanoporous anodized alumina oxide (AAO). This template was fabricated by two-step anodizing. The effects of bath composition and current density were explored on the Ga content of electrodeposited nanowires. The Ga content in the deposits was increased by increasing both Ga in the bath composition and electrodepositing current density. The NiGa alloy nanowires were synthesized for Ga content up to 2–4% without significant improving the magnetic properties. Above this threshold Ga clusters were formed and decreased the magnetic properties of the nanowires. For Ga content of the alloy above 30%, the wires were too short and incomplete. X-ray diffraction patterns reveal that the significant increase of Ga content in the nanowires, changes the FCC crystal structure of Ni to an amorphous phase. It also causes a sizeable increase in the Ga cluster size; these both lead to a significant reduction in the coercivity and the magnetization respectively. - Highlights: • NiGa alloy nanowires were electrodeposited from acidic sulphate baths into nanoporous anodized alumina oxide (AAO) template. • The Ga content was increased by increasing the Ga in the bath composition and electrodeposition current density. • The magnetic parameters such as coercivity and magnetization were not changed for the alloy nanowire with Ga content less than 4%.

  19. Physical and electrochemical properties of ZnO films fabricated from highly cathodic electrodeposition potentials

    Science.gov (United States)

    Ismail, Abdul Hadi; Abdullah, Abdul Halim; Sulaiman, Yusran

    2017-03-01

    The physical and electrochemical properties of zinc oxide (ZnO) film electrode that were prepared electrochemically were studied. ZnO was electrodeposited on ITO glass substrate by applying three different highly cathodic potentials (-1.3 V, -1.5 V, -1.7 V) in a solution containing 70 mM of Zn(NO3)2.xH2O and 0.1 M KCl with bath temperatures of 70 °C and 80 °C. The presence of ZnO was asserted from XRD analysis where the corresponding peaks in the spectra were assigned. SEM images revealed the plate-like hexagonal morphology of ZnO which is in agreement with the XRD analysis. The areal capacitance of the ZnO was observed to increase when the applied electrodeposition potential is increased from -1.3 V to -1.5 V. However, the areal capacitance is found to decrease when the applied electrodeposition potential is further increased to -1.7 V. The resistance of charge transfer (Rct) of the ZnO decreased when the applied electrodeposition potential varies from -1.3 V to -1.7 V due to the decreased particle size of ZnO when more cathodic electrodeposition potential is applied.

  20. Utilization of electrodeposition for electrothermal atomic absorption spectrometry determination of gold

    International Nuclear Information System (INIS)

    Konecna, Marie; Komarek, Josef

    2007-01-01

    Gold was determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on the graphite ridge probe used as a working electrode and sample support. The probe surface was electrochemically modified with Pd, Re and the mixture of both. The electrolysis of gold was performed under galvanostatic control at 0.5 mA. Maximum pyrolysis temperature for the probe surface modified with Pd was 1200 deg. C, with Re 1300 deg. C. The relative standard deviation for the determination of 2 μg l -1 Au was not higher than 5.6% (n = 8) for 2 min electrodeposition. The sensitivity of gold determination was reproducible for 300 electrodeposition and atomization cycles. When the probe surface was modified with a mixture of Pd and Re the detection limit was 31 ng l -1 for 2 min electrodeposition, 3.7 ng l -1 for 30 min, 1.5 ng l -1 for 1 h and 0.4 ng l -1 for 4 h electrodeposition, respectively. The procedure was applied to the determination of gold in river water samples. The relative standard deviation for the determination of 2.5 ng l -1 Au at 4 h electrodeposition time at 0.5 mA was 7.5%

  1. Electrodeposited Ni-B coatings: Formation and evaluation of hardness and wear resistance

    International Nuclear Information System (INIS)

    Krishnaveni, K.; Sankara Narayanan, T.S.N.; Seshadri, S.K.

    2006-01-01

    The formation of electrodeposited Ni-B alloy coatings using a dimethylamine borane (DMAB) modified Watt's nickel bath and evaluation of their structural characteristics, hardness and wear resistance are discussed. The boron content in the electrodeposited Ni-B alloy coating is determined by the ratio of rate of reduction of nickel and rate of decomposition of DMAB. The boron content of the electrodeposited Ni-B coating decreases as the current density increased from 0.4 to 4 A dm -2 . XRD diffraction pattern of electrodeposited Ni-B coatings in their as-plated condition exhibits the presence of Ni (1 1 1) (2 0 0) and (2 2 0) reflections with (1 1 1) texture. Heat treatment at 400 deg. C for 1 h has resulted in the formation of nickel boride phases, which results in an increase in hardness and wear resistance. The mechanism of wear in electrodeposited Ni-B coatings is intensive plastic deformation of the coating due to the ploughing action of the hard counter disk

  2. Managing Reverse Logistics or Reversing Logistics Management?

    NARCIS (Netherlands)

    M.P. de Brito (Marisa)

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse

  3. Electrolyte influence on the Cu nanoparticles electrodeposition onto boron doped diamond electrode; Influencia do eletrolito na eletrodeposicao de nanoparticulas de Cu sobre eletrodo de diamante dopado com boro

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Jorge Tadao; Santos, Laura Camila Diniz; Couto, Andrea Boldarini; Baldan, Mauricio Ribeiro; Ferreira, Neidenei Gomes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2012-07-01

    This paper presents the electrolyte influence on deposition and dissolution processes of Cu nanoparticles on boron doped diamond electrodes (DDB). Morphological, structural and electrochemical analysis showed BDD films with good reproducibility, quality and reversible in a specific redox system. Electrodeposition of Cu nanoparticles on DDB electrodes in three different solutions was influenced by pH and ionic strength of the electrolytic medium. Analyzing the process as function of the scan rate, it was verified a better efficiency in 0,5 mol L{sup -1} Na{sub 2}SO{sub 4} solution. Under the influence of the pH and ionic strength, Cu nanoparticles on DDB may be obtained with different morphologies and it was important for defining the desired properties. (author)

  4. Magnetic signature of granular superconductivity in electrodeposited Pb nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Riminucci, Alberto, E-mail: a.riminucci@bo.ismn.cnr.it [CNR, Institute for Nanostructured Materials, Via Gobetti 101, 40129 Bologna (Italy); H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Schwarzacher, Walther [H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2014-06-14

    Nanocrystalline freestanding Pb nanowires ∼200 nm in diameter were fabricated by electrodeposition into track etched polycarbonate membranes in order to study their superconducting properties. Their superconducting critical temperature, as determined by measuring the Meissner effect, was the same as for bulk Pb, but their critical field was greatly enhanced up to ∼3000 Oe. By assuming the wires consisted of spherical superconducting grains, an estimated grain size r = 60 ± 25 nm was obtained from the magnetization measured as a function of the applied magnetic field at a fixed temperature. An independent estimate for r = 47 ± 12 nm, in good agreement with the previous one, was obtained from the magnetization measured as a function of temperature at a fixed applied magnetic field. Transmission electron microscopy was used to characterize grain size at the wire edges, where a grain size in agreement with the magnetic studies was observed.

  5. Electrodeposition of uranium and transuranic metals (Pu) on solid cathode

    International Nuclear Information System (INIS)

    Laplace, A. F.; Lacquement, J.; Willitt, J. L.; Finch, R. A.; Fletcher, G. A.; Williamson, M. A.

    2008-01-01

    The results from a study of U and Pu metal electrodeposition from molten eutectic LiCl-KCl on a solid inert cathode are presented. This study has been conducted using ∼ to 50 g of U-Pu together with rare earths (mostly Nd) and 1.5 kg of salt. The introduction of a three-electrode probe with an Ag/AgCl reference electrode has allowed voltammetric measurement during electrolysis and control of the cathode potential versus the reference. Cyclic and square-wave voltammetric measurements proved to be very useful tools for monitoring the electrolysis as well as selecting the cathode versus reference potential to maximize the separation between actinides and rare earths. The voltammetric data also highlighted the occurrence of back reactions between the cathode deposit and oxidizing equivalents formed at the anode that remained in the molten salt electrolyte. Any further electrolysis test needs to be conducted continuously and followed by immediate removal of the cathode to minimize those back reactions. (authors)

  6. Electrochemical behavior of CIGS electrodeposition for applications to photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunju; Ji, Changwook; Kim, Yangdo; Hwang, Yoonhwae [Pusan National University, Busan (Korea, Republic of); Lee, Jaeho [Hongik University, Seoul (Korea, Republic of); Jo, Ilguk [Colorado School of Mines, Golden, CO (United States); Kim, Hyoungchan [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2014-04-15

    The electrodeposition mechanism of Cu(In,Ga)Se{sub 2} (CIGS) thin films on ITO substrates was examined by using cyclic voltammetry (CV). The CV study was performed in unitary In, binary In-Se, ternary Cu-In-Se, and quaternary Cu-In-Ga-Se systems. CV of the Cu-In-Ga-Se system revealed a reduction peak at -0.6 V with the addition of GaCl{sub 3} and showed that the current density was affected significantly by the concentrations of GaCl{sub 3} and InCl{sub 3}. This is probably due to the adsorption-site competition between In{sup 3+} and Ga{sup 3+} on the electrode surface. Energy dispersive X-ray spectroscopy confirmed the CV results. The composition of Ga in the CIGS films increased with increasing concentration of GaCl{sub 3} in the electrolyte whereas the composition of In decreased sharply. The as-deposited films were annealed at 500 .deg. C in a N{sub 2} atmosphere for crystallization. XRD revealed three major peaks corresponding to the (112), (220) and (312) planes of CIGS chalcopyrite respectively. On the other hand, a secondary phase, such as In{sub 4}Se{sub 3}, was observed in the CIGS films containing a high In composition.

  7. Electrodeposition of hybrid ZnO/organic dye films

    Energy Technology Data Exchange (ETDEWEB)

    Moya, Monica; Mari, Bernabe; Mollar, Miquel [Department de Fisica Aplicada-IDF, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain)

    2011-06-15

    The viability of the electrodeposition as a suitable technique for preparing new porous hybrid materials has been tested in this paper. Hybrid ZnO films with two different organic dyes: Eosin-Y and Tetrasulphonated-Cu-phtalocyanine were prepared. Their physical and chemical properties as well as their dependence on the growth conditions were investigated. It is found that the type of dye has a big influence on the morphology and porosity of hybrid films. Open and connected pores are created in hybrid ZnO/Eosin-Y films while both open and closed pores coexist in hybrid ZnO/Tetrasulfonated-Cu-phthalocyanine. As one of the promising applications of hybrid materials is photovoltaic conversion of sunlight, photoelectrochemical characterization of hybrid films is also reported. Photocurrent generation owing to both contributions ZnO and Eosin-Y is observed in ZnO/Eosin-Y films but no photocurrent has been observed in ZnO/Tetrasulfonated-Cu-phthalocyanine films. SEM micrographs of hybrid ZnO films grown in aqueous bath; (Left) ZnO/Eosin-Y films grown at 70 C, -0.9 V (Right) ZnO/Ts-CuPc films grown at 70 C, -0.9 V. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Surface and electrochemical characterization of electrodeposited PtRu alloys

    Science.gov (United States)

    Richarz, Frank; Wohlmann, Bernd; Vogel, Ulrich; Hoffschulz, Henning; Wandelt, Klaus

    1995-07-01

    PtRu alloys of different compositions were electrodeposited on Au. Twelve alloys between 0% and 100% Pt were characterized with surface sensitive spectroscopies (XPS, LEIS) after transfer from an electrochemical cell to an ultra high vaccum chamber without contact to air. The composition of the thus prepared alloys showed a linear dependence on the concentrations of the deposition solution, but was Pt-enriched both in the bulk and (even more so) at the surface. During the electrochemical reduction of the metal cations, sulfur from the supporting electrolyte 1N H 2SO 4 was found to be incorporated into the electrodes. Cyclic voltammetry was used for the determination of the electrocatalytic activity of the electrodes for the oxidation of carbon monoxide. The highest activity for this oxidation as measured by the (peak) potential of the CO oxidation cyclovoltammograms was found for a surface concentration of ˜ 50%Pt. The asymmetry of this "activity curve" (oxidation potential versus Pt surface concentration) is tentatively explained in terms of a surface structural phase separation.

  9. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianping; Ye, Jianqing; Tong, Yexiang [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xu, Changwei [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-09-15

    Pd nanoparticles dispersed well on Ti were successfully prepared by the electrodeposition method used in this study. The results show that Pd has no activity for ethanol oxidation in acid media and is a good electrocatalyst for ethanol oxidation in alkaline media when the OH{sup -} concentration is greater than 0.001 M. The pH and ethanol concentration affects the ethanol oxidation. The reaction orders for OH{sup -} and ethanol are 0.2 and 1. The anodic transfer coefficient ({alpha}) is 0.1. The diffusion coefficient (D) of ethanol is calculated as 9.3 x 10{sup -5} cm{sup 2} s{sup -1} (298 K) when the concentration of KOH and ethanol is both 1.0 M. The overall rate equation for ethanol oxidation on Pd/Ti electrode in alkaline media is given as j=1.4 x 10{sup -4}C{sub KOH}{sup 0.2}C{sub ethanol} exp ((0.28F)/(RT){eta}). (author)

  10. Structural and electrical properties of CZTS thin films by electrodeposition

    Science.gov (United States)

    Rao, M. C.; Basha, Sk. Shahenoor

    2018-06-01

    CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.

  11. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings

    Science.gov (United States)

    Szeptycka, Benigna; Gajewska-Midzialek, Anna; Babul, Tomasz

    2016-08-01

    The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

  12. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  13. Electrodeposition of bismuth alloys by the controlled potential method

    International Nuclear Information System (INIS)

    Lopez Alvarez, F.A.

    1993-01-01

    We worked with the electrodeposition of three bismuth alloys, the composition of the first electrolyte was: 0.3 g/l. Bi; 20 g/l. Ni; and the conditions were pH = 5.2 - 5.6; T = 25 Centigrade degrees; current density 0.3 A / dm 2 - 6.6 A / dm 2 . Following alloy was between Bi - Pb, composition of the electrolyte was 3.18 g/l. Bi (metallic); 31.81 g/l. Pb (Pb(NO 3 ) 2 ) pH : 1; T = 20 Centigrade degrees; current density 10.20 A/dm 2 . The third electrolyte was Bi-Cu, its composition was: 20.89 g/l. Bi; (metallic) 63.54 g/l Cu (Cu(NO 3 ) 2 ) pH : 1.5 - 1.8; T = 25-30 Centigrade degrees; current density 1-2 A/dm 2 . The best results were obtained with the third electrolyte. The purpose of this work was to experiment with different parameters like temperature, pH and the electrolyte concentration to obtain a bismuth alloy. (Author)

  14. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  15. Moessbauer Study of Electrodeposited Fe/Fe-Oxide Multilayers

    International Nuclear Information System (INIS)

    Kuzmann, E.; Homonnay, Z.; Klencsar, Z.; Vertes, A.; Lakatos-Varsanyi, M.; Miko, A.; Varga, L.K.; Kalman, E.; Nagy, F.

    2005-01-01

    Iron has been deposited electrochemically by short current pulses in Na-saccharin containing FeII-chloride and sulphate solution electrolytes. Combined electrochemical techniques with initial pulse plating of iron nanolayer and its subsequent anodic oxidation under potential control have been used for production of Fe/Fe-oxide multilayers. 57Fe CEM spectra of pulse plated iron revealed the presence of a minor doublet attributed mainly to γ-FeOOH in addition to the dominant sextet of α-iron. In the case of anodically oxidized pulse plated iron and of samples after repeated deposition of anodically oxidized pulse plated iron an additional minor doublet, assigned to ferrous chloride, also appears in the Moessbauer spectra. A significant change in the magnetic anisotropy of α-iron was observed with the anodic oxidation. The thickness of the layers were estimated from the CEM spectrum data by a modified computer program of the Liljequist method. The coercive field and the power loss versus frequency data showed that the pulse plated iron cores are good inductive elements up to several kHz frequencies

  16. Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Hamid R., E-mail: hrzare@yazduni.ac.ir [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Nanotechnology Research Center, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Hashemi, S. Hossein; Benvidi, Ali [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2010-06-04

    For the first time, an electrodeposited nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles), as an excellent bifunctional electrocatalyst, was successfully used for hydrazine and hydroxylamine electrocatalytic oxidation. The results show that, at the present bifunctional modified electrode, two different redox couples of ruthenium oxides serve as electrocatalysts for simultaneous electrocatalytic oxidation of hydrazine and hydroxylamine. At the modified electrode surface, the peaks of differential pulse voltammetry (DPV) for hydrazine and hydroxylamine oxidation were clearly separated from each other when they co-exited in solution. Thus, it was possible to simultaneously determine hydrazine and hydroxylamine in the samples at a ruthenium oxide nanoparticles modified glassy carbon electrode (RuON-GCE). Linear calibration curves were obtained for 2.0-268.3 {mu}M and 268.3-417.3 {mu}M of hydrazine and for 4.0-33.8 {mu}M and 33.8-78.3 {mu}M of hydroxylamine at the modified electrode surface using an amperometric method. The amperometric method also exhibited the detection limits of 0.15 {mu}M and 0.45 {mu}M for hydrazine and hydroxylamine respectively. RuON-GCE was satisfactorily used for determination of spiked hydrazine in two water samples. Moreover, the studied bifunctional modified electrode exhibited high sensitivity, good repeatability, wide linear range and long-term stability.

  17. Preparation and characterization of the electrodeposited Cr-Al{sub 2}O{sub 3}/SiC composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jifeng, E-mail: readlot@tom.com [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-09-01

    To increase the SiC content in Cr-based coatings, Cr-Al{sub 2}O{sub 3}/SiC composite coatings were plated in Cr(VI) baths which contained Al{sub 2}O{sub 3}-coated SiC powders. The Al{sub 2}O{sub 3}-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al{sub 2}O{sub 3}/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al{sub 2}O{sub 3}/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.

  18. Direct Electrodeposition of Gold Nanoparticles on Glassy Carbon Electrode for Selective Determination Catechol in the Presence of Hydroquinone.

    Science.gov (United States)

    Jayakumar, C; Magdalane, C Maria; Kaviyarasu, K; Kulandainathan, M Anbu; Jeyaraj, Boniface; Maaza, M

    2018-07-01

    A simple and reliable voltammetric sensor for simultaneous determination of Catechol (CT) and Hydroquinone (HQ) was developed by electrodepositing the gold nanoparticles on the surface of the Glassy Carbon Electrode (GCE). The cyclic voltammograms in a mixed solution of CT and HQ have shown that the oxidation peaks become well resolved and were separated by 110 mV, although the bare GCE gave a single broad oxidation peak. Moreover, the oxidation peak currents of both CT and HQ were remarkably increased three times in comparison with the bare GCE. This makes gold nanoparticles deposited GCE a suitable candidate for the determination of these isomers. In the presence of 1 mM HQ isomer, the oxidation peak currents of differential pulse voltammograms are proportional to the concentration of CT in the range of 21 μM to 323 μM with limit of detection 3.0 μM (S/N = 3). The proposed sensor has some important advantages such as low cost, ease of preparation, good stability and high reproducibility.

  19. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S.K. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Jeong, G.H. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Park, I.S. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Na, S.M. [Advanced Materials and Process Research for IT, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)]. E-mail: nsmv2k@skku.edu; Suh, S.J. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Advanced Materials and Process Research for IT, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2007-03-15

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-{mu}m-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 deg. C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM.

  20. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    Science.gov (United States)

    Lim, S. K.; Jeong, G. H.; Park, I. S.; Na, S. M.; Suh, S. J.

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-μm-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 °C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM.

  1. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    International Nuclear Information System (INIS)

    Lim, S.K.; Jeong, G.H.; Park, I.S.; Na, S.M.; Suh, S.J.

    2007-01-01

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-μm-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 deg. C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM

  2. Tuning microstructure and magnetic properties of electrodeposited CoNiP films by high magnetic field annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun; Wang, Kai [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Li, Donggang, E-mail: lidonggang@smm.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Lou, Changsheng [School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159 (China); Zhao, Yue; Gao, Yang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2016-10-15

    A high magnetic field (up to 12 T) has been used to anneal 2.6-µm-thick Co{sub 50}Ni{sub 40}P{sub 10} films formed by pulse electrodeposition. The effects of high magnetic field annealing on the microstructure and magnetic properties of CoNiP thin films have been investigated. It was found that a high magnetic field accelerated a phase transformation from fcc to hcp and enhanced the preferred hcp-(002) orientation during annealing. Compared with the films annealed without a magnetic field, annealing at 12 T decreased the surface particle size, roughness, and coercivity, but increased the saturation magnetization and remanent magnetization of CoNiP films. The out-of-plane coercivity was higher than that the in-plane for the as-deposited films. After annealing without a magnetic field, the out-of-plane coercivity was equal to that of the in-plane. However, the out-of-plane coercivity was higher than that of the in-plane when annealing at 12 T. These results indicate that high magnetic field annealing is an effective method for tuning the microstructure and magnetic properties of thin films. - Highlights: • High magnetic field annealing accelerated phase transformation from γ to ε. • High magnetic field annealing enhanced preferred hcp-(002) orientation. • High magnetic field annealing decreased particle size, roughness and coercivity. • High magnetic field annealing increased the saturation and remanent magnetization.

  3. Size-controlled gold nanoparticles obtained from electrodeposited amidoferrocenylpoly(propyleneimine) dendrimer-templates for the electrochemical sensing of dopamine

    Science.gov (United States)

    Villena, Carlos; Bravo, Marta; Alonso, Beatriz; Casado, Carmen M.; Losada, José; García Armada, M. Pilar

    2017-10-01

    Nanometer-scale gold particles exhibit size-dependent electronic properties with important sensing and biosensing applications. In the same way, a lot of analytes show some type of surface-sensitive reaction and the electrode material has a strong influence on the catalytic activity. In this work we study the kinetics and electrochemistry of electrodes with size controlled gold nanoparticles, obtained by electrodeposited amidoferrocenylpoly(propyleneimine) dendrimers of two generations as templates, and the kinetics and the analytical response to the oxidation of dopamine. We demonstrate that the four-types of modified electrodes show good catalytic responses toward the oxidation of dopamine via different processes in relation with the absence or presence of gold nanoparticles and their size. The best response was obtained with the largest nanoparticles, obtained with the first generation dendrimer-template at 0.3 V vs. SCE, with three linear ranges (0-70, 70-600 and 600-1000 μM), with sensitivities 585.7; 466.0 and 314.3 μA/mM cm2, and limit of detection of 0.01 μM. The effect of interfering substances has been studied by differential pulse voltammetry and the developed sensor has been successfully used for the determination of dopamine in a commercial dopamine hydrochloride injection and in spiked Human urine.

  4. Electrodeposition and characterization of Fe–Mo alloys as cathodes for hydrogen evolution in the process of chlorate

    Directory of Open Access Journals (Sweden)

    B. N. GRGUR

    2005-06-01

    Full Text Available Fe–Mo alloys were electrodeposited from a pyrophosphate bath using a single diode rectified AC current. Their composition and morphology were investigated by SEM, optical microscopy and EDS, in order to determine the influence of the deposition conditions on the morphology and composition of these alloys. It was shown that the electrodeposition parameters, such as: chemical bath composition and current density, influenced both the composition of the Fe–Mo alloys and the current efficiency for their deposition, while the micro and macro-morphology did not change significantly with changing conditions of alloy electrodeposition. It was found that the electrodeposited Fe–Mo alloys possessed a 0.15 V to 0.30 V lower overvoltage than mild steel for hydrogen evolution in an electrolyte commonly used in commercial chlorate production, depending on the alloy composition, i.e., the conditions of alloy electrodeposition.

  5. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits-A comparative study

    International Nuclear Information System (INIS)

    Pantleon, Karen; Somers, Marcel A.J.

    2010-01-01

    Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver and nickel electrodeposits was achieved by time-resolved X-ray diffraction line profile analysis and crystallographic texture analysis during room temperature storage and during isothermal annealing at elevated temperatures. These in-situ studies with unique time resolution allowed quantification of the self-annealing kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted to be interpreted in terms of recovery, recrystallization and grain growth.

  6. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    Energy Technology Data Exchange (ETDEWEB)

    Adamic, M.L., E-mail: Mary.Adamic@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States); Lister, T.E.; Dufek, E.J.; Jenson, D.D.; Olson, J.E. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States); Vockenhuber, C. [Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Watrous, M.G. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States)

    2015-10-15

    This paper presents an evaluation of an alternate method for preparing environmental samples for {sup 129}I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  7. Electrodeposition of Amorphous Molybdenum Chalcogenides from Ionic Liquids and Their Activity for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Redman, Daniel W; Rose, Michael J; Stevenson, Keith J

    2017-09-19

    This work reports on the general electrodeposition mechanism of tetrachalcogenmetallates from 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Both tetrathio- and tetraselenomolybdate underwent anodic electrodeposition and cathodic corrosion reactions as determined by UV-vis spectroelectrochemistry. Electrodeposition was carried out by cycling the potential between the anodic and cathodic regimes. This resulted in a film of densely packed nanoparticles of amorphous MoS x or MoSe x as determined by SEM, Raman, and XPS. The films were shown to have high activity for the hydrogen evolution reaction. The onset potential (J = 1 mA/cm 2 ) of the MoS x film was E = -0.208 V vs RHE, and that of MoSe x was E = -0.230 V vs RHE. The Tafel slope of MoS x was 42 mV/decade, and that of MoSe x was 59 mV/decade.

  8. Electrodeposition of milligram amounts of uranium on electropolished stainless steel disks

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Shah, P.M.; Duggal, R.K.; Jain, H.C.

    1991-01-01

    Investigations have been carried out for the electrodeposition of milligram amounts of uranium on electropolished stainless steel disks with an objective of preparing good quality sources for α-spectrometric studies on uranium. The parameters studied include the vatiation of electrodeposition yield as a function of voltage, time, distance between the cathode and anode, and the volume of 0.2M ammonium oxalate solution. The conditions selected for preparing good quality sources with nearly 100% yield were: electrodeposition voltage 25 V, time of deposition 15 min, volume of 0.2M ammonium oxalate solution in the cell 4 ml and a distance of 2 cm between the cathode and anode. The sources prepared using this method have been used successfully for the α-spectrometric determination of 234 U/ 238 U ratios in uranium samples. (author) 6 refs.; 4 figs

  9. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    International Nuclear Information System (INIS)

    Adamic, M.L.; Lister, T.E.; Dufek, E.J.; Jenson, D.D.; Olson, J.E.; Vockenhuber, C.; Watrous, M.G.

    2015-01-01

    This paper presents an evaluation of an alternate method for preparing environmental samples for "1"2"9I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  10. Studying the initial stages of film electrodeposition of magnetic cobalt-tungsten alloys

    International Nuclear Information System (INIS)

    Rachinskas, V.S.; Orlovskaya, L.V.; Parfenov, V.A.; Yasulajtene, V.V.

    1996-01-01

    Initial stages of magnetic film electrodeposition by recording potentiodynamic polarization and j c ,t-curves, determination of surface structure of electrolytically deposited films by the method of XPS and study of thin coating properties have been considered. It is shown that at initial stage of electrodeposition of magnetic Co-W-films a sharp decrease in cathode process rate and formation of Co(OH) 2 , WO 3 and/or WO 4 2- occur on Cu-cathode surface. Electrodeposition of metallic magnetic Co-W-alloy, consisting of Co, W and containing basic compounds of co-deposited metals, takes place after a certain time period depending on deposition E c . 6 refs.; 3 figs

  11. ZnTe Amorphous Semiconductor Nanowires Array Electrodeposited into Polycarbonate Membrane Thin Films

    International Nuclear Information System (INIS)

    Ohgai, T; Ikeda, T; Ohta, J

    2013-01-01

    ZnTe amorphous semiconductor nanowires array was electrodeposited into the nanochannels of ion-track etched polycarbonate membrane thin films from acidic aqueous solution at 313 K. ZnTe electrodeposits with Zn-rich composition was obtained over the wide range of cathode potential from −0.8 V to −1.1 V and the growth rate of ZnTe amorphous nanowires was around 3 nm.sec −1 at the cathode potential of −0.8 V. Cylindrical shape of the nanowires was precisely transferred from the nanochannels and the aspect ratio reached up to ca. 40. ZnTe amorphous phase electrodeposited at 313 K was crystallized by annealing at 683 K and the band gap energy of ZnTe crystalline phase reached up to ca. 2.13 eV.

  12. Liquid Membrane System for Extraction and Electrodeposition of Lead(II During Electrodialysis

    Directory of Open Access Journals (Sweden)

    Sadyrbaeva Tatiana

    2017-05-01

    Full Text Available A novel method for lead(II removal from aqueous acidic solutions is presented. The method involves electrodialysis through bulk liquid membranes accompanied by electrodeposition of metal from the cathodic solution. Solutions of di(2-ethylhexylphosphoric acid with admixtures of tri-n-octylamine in 1,2-dichloroethane were used as the liquid membranes. The effects of the main electrodialysis parameters as well as of the composition of the liquid membranes and aqueous solutions on the lead(II transport rate are studied. The optimal conditions are determined. A possibility of effective single-stage transfer of lead(II through the liquid membrane into dilute solutions of perchloric, nitric and acetic acids is demonstrated. Dense and adherent lead electrodeposits are obtained from perchloric acid solutions. Maximum extraction degree of 93 % and electrodeposition degree of ~60 % are obtained during 5 h of electrodialysis.

  13. Composition control of tin-zinc electrodeposits through means of experimental strategies

    International Nuclear Information System (INIS)

    Dubent, S.; De Petris-Wery, M.; Saurat, M.; Ayedi, H.F.

    2007-01-01

    Tin-zinc coatings offer excellent corrosion protection and do not suffer the drawback of the voluminous white corrosion product of pure zinc or high zinc alloy coatings. The aim of this study was to determine the suitable electroplating conditions (i.e. electrolyte composition and cathode current density) to produce 70Sn-30Zn electrodeposits. Thus, a fractional factorial design (FFD) was carried out to evaluate the effects of experimental parameters (Zn II concentration, Sn IV concentration, pH and current density) on the Zn content of the electrodeposit. On the other hand, the electrodeposits were characterised by glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). Correlation between operating conditions, composition and morphology was attempted

  14. Electrodeposition of Manganese-Nickel Oxide Films on a Graphite Sheet for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hae-Min Lee

    2014-01-01

    Full Text Available Manganese-nickel (Mn-Ni oxide films were electrodeposited on a graphite sheet in a bath consisting of manganese acetate and nickel chloride, and the structural, morphological, and electrochemical properties of these films were investigated. The electrodeposited Mn-Ni oxide films had porous structures covered with nanofibers. The X-ray diffractometer pattern revealed the presence of separate manganese oxide (g-MnO2 and nickel oxide (NiO in the films. The electrodeposited Mn-Ni oxide electrode exhibited a specific capacitance of 424 F/g in Na2SO4 electrolyte. This electrode maintained 86% of its initial specific capacitance over 2000 cycles of the charge-discharge operation, showing good cycling stability.

  15. Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2010-05-01

    We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.

  16. Use of carriers for to electrodeposited radium 226; Utilizacion de portadores para electrodepositar radio 226

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe, J.L

    1991-10-15

    The form of the energy distribution of a monoenergetic alpha particle starting from some emitting source of these particles, it depends on the quantity of material that its cross before being detected. Some authors deposit to the radium-226 by means of direct evaporation of the solution on metallic supports, on millipore paper and by electrodeposition. Some other ones place the radium solution in scintillation liquid, to quantify it by this technique. The objective of the present work is using carriers with the same oxidation state of the radium, that is to say of 2{sup +}, for treating to be electrodeposited to the radium-226 with the biggest possible percentage for later use the alpha spectroscopy technique to quantify it. The carriers that have been used until its they are barium and zinc in form of barium chloride, zinc nitrate and zinc sulfate. The first results indicate that with the zinc solution a yield of 40% of electrodeposited radium has been reached. (Author)

  17. Stress control in electrodeposited CoFe films—Experimental study and analytical model

    International Nuclear Information System (INIS)

    Brankovic, Stanko R.; Kagajwala, Burhanuddin; George, Jinnie; Majkic, Goran; Stafford, Gery; Ruchhoeft, Paul

    2012-01-01

    Work investigating the effect of saccharin as an additive on growth stress and structure of electrodeposited CoFe films is presented. The saccharin concentrations were in the range between 0 g L −1 and 1.5 g L −1 . The stress measurements are performed in situ during electrodeposition of CoFe films using cantilever-bending method (curvature measurements). The structure of CoFe films was studied by transmission electron microscopy and X-ray diffraction. Results show that growth stress is a decreasing function of saccharin concentration. No appreciable change in composition, grain size, orientation or texture of CoFe films are observed with increasing saccharin content in solution. The growth stress dependence on saccharin concentration is discussed within the framework of analytical model, which directly links the observed stress decrease with the apparent saccharin coverage of the CoFe film surface during the electrodeposition process.

  18. Aluminium Electrodeposition from Ionic Liquid: Effect of Deposition Temperature and Sonication †

    Directory of Open Access Journals (Sweden)

    Enrico Berretti

    2016-08-01

    Full Text Available Since their discovery, ionic liquids (ILs have attracted a wide interest for their potential use as a medium for many chemical processes, in particular electrochemistry. As electrochemical media they allow the electrodeposition of elements that are impossible to reduce in aqueous media. We have investigated the electrodeposition of aluminium from 1-butyl-3-methyl-imidazolium chloride ((BmimCl/AlCl3 (40/60 mol % as concerns the effect of deposition parameters on the quality of the deposits. Thick (20 μm aluminium coatings were electrodeposited on brass substrates at different temperatures and mixing conditions (mechanical stirring and sonication. These coatings were investigated by means of scanning electron microscope, roughness measurements, and X-ray diffraction to assess the morphology and the phase composition. Finally, electrochemical corrosion tests were carried out with the intent to correlate the deposition parameters to the anti-corrosion properties.

  19. Tubal Ligation Reversal

    Science.gov (United States)

    ... seal off the fallopian tubes, such as the Essure or Adiana systems, generally aren't reversible. Why ... electrocautery). Some types of sterilization, such as the Essure or Adiana systems, aren't considered reversible. Risks ...

  20. Microstructure and corrosion behavior of electrodeposited nano-crystalline nickel coating on AZ91 Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zarebidaki, Arman, E-mail: arman.zare@iauyazd.ac.ir; Mahmoudikohani, Hassan, E-mail: hassanmahmoudi.k@gmail.com; Aboutalebi, Mohammad-Reza

    2014-12-05

    Highlights: • Activation, zincating, and Cu electrodeposition were used as pretreatment processes for electrodeposition of nickel coatings. • Nano-crystalline nickel coatings were successfully electrodeposited onto the AZ91 Mg alloys. • Effect of nickel electrodeposited coating on the corrosion resistance of AZ91 Mg alloy has been studied. - Abstract: In order to enhance the corrosion resistance, nickel coating was electrodeposited onto AZ91 Mg alloy. Activation, zincating, and Cu electrodeposition used as pretreatment processes for better adhesion and corrosion performance of the nickel over layer. The corrosion properties of the AZ91 Mg alloy, nickel electroplated AZ91 Mg alloy, and pure nickel was assessed via polarization and electrochemical impedance spectroscopy (EIS) methods in 3.5 wt% NaCl solution. Moreover, the structure of the coating was investigated by means of X-ray diffraction, whereas specimen’s morphology and elemental composition were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). Measurements revealed that the coating has a nano-crystalline structure with the grain size of 95 nm. Corrosion results showed superior corrosion resistance for the coated AZ91 Mg alloy as the corrosion current density decreased from 2.5 × 10{sup −4} A cm{sup −2}, for the uncoated sample, to 1.5 × 10{sup −5} A cm{sup −2}, for coated specimen and the corrosion potential increased from −1.55 V to −0.98 V (vs. Ag/AgCl) at the same condition.

  1. Polymeric electrochemical element for adaptive networks: Pulse mode

    International Nuclear Information System (INIS)

    Smerieri, Anteo; Berzina, Tatiana; Erokhin, Victor; Fontana, M. P.

    2008-01-01

    An electrochemically controlled polymeric heterojunction working as a memristor, i.e., having memory properties, was investigated in pulse mode, mimicking synaptic behavior of signal transmission in biological systems. Influence of parameters such as pulse duration, interval between pulses, and value of potential base level was analyzed. Learning capabilities were shown to be reversible and repeatable for both potentiation and inhibition of signal transmission. The adaptive behavior of the element was investigated and was shown to be more efficient than the dc mode

  2. Electrodeposition of Ni–W–Al{sub 2}O{sub 3} nanocomposite coating with functionally graded microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Allahyarzadeh, M.H.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Rouhaghdam, A.R. Sabour; Torabinejad, V.

    2016-05-05

    Electrodeposition of functionally graded (FG) Ni–W–Al{sub 2}O{sub 3} nanocomposite coatings is investigated in current research. These types of coatings were applied in a way that alumina content was increased from the substrate towards the surface of the coating; hence, Ni–W would possess improved wear and corrosion resistance properties. FG-coatings were developed by the variation of duty cycle and frequency. The microstructure and elemental analysis of the coating as a function of thickness was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis, respectively. The corrosion resistance of the FG-coatings was evaluated using potentiodynamic polarization and the wear behavior was also studied using pin-on-disk wear tests. In order to investigate hardness properties of the coating, microhardness measurements were carried out on cross-section of coatings. Results revealed that the alumina content and the microhardness increased towards the surface. Results also showed the corrosion and wear resistance of FG-coatings were significantly improved by addition of α-Al{sub 2}O{sub 3} nanoparticles. Profilometery and AFM results also revealed that surface roughness was influenced by pulse plating parameters. - Highlights: • Functionally graded structures have been synthesized using adjusting pulse parameters. • Al{sub 2}O{sub 3} and W contents increases gradually as a function of coating thickness. • Alumina increased the corrosion resistance by moderating i{sub corr} and E{sub corr}. • Wear behavior has been enhanced in functionally graded structure.

  3. Reverse logistics - a framework

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); R. Dekker (Rommert)

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of

  4. Evolution of the microstructure in nanocrystalline copper electrodeposits during room temperature storage

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The microstructure evolution in copper electrodeposits at room temperature (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time. In-situ studies were started immediately after electrodeposition......, crystallographic texture changes by multiple twinning and a decrease of the electrical resistivity occurred as a function of time at room temperature. The kinetics of self-annealing is strongly affected by the layer thickness: the thinner the layer the slower is the microstructure evolution and self-annealing...

  5. Near boundary acoustic streaming in Ni-Fe alloy electrodeposition control

    DEFF Research Database (Denmark)

    Pocwiardowski, Pawel; Lasota, H.; Ravn, Christian

    2005-01-01

    Alloy electrodeposition is strongly influenced by diffusion layer phenomena affecting the ion concentration distribution in a different way for each component. This paper presents the method of acoustic agitation leading to controlled uniform electrodeposition of alloys. The method consists...... in generating acoustic flow perpendicular to the surface in the field of an acoustic standing wave parallel to the plated substrate - so called modified Rayleigh streaming. The result showed that the near boundary streaming offers controlled mass transportation in the micrometer thick layer close to the cathode...

  6. Electrodeposition of near stoichiometric CuInSe2 thin films for photovoltaic applications

    Science.gov (United States)

    Chandran, Ramkumar; Mallik, Archana

    2018-03-01

    This work investigates on the single step electrodeposition of quality CuInSe2 (CIS) thin film absorber layer for photovoltaics applications. The electrodeposition was carried using an aqueous acidic solution with a pH of 2.25. The deposition was carried using a three electrode system in potentiostatic conditions for 50 minutes. The as-deposited and nitrogen (N2) annealed films were characterized using XRD, FE-SEM and Raman spectroscopy. It has been observed that the SDS has the tendency to suppress the copper selenide (CuxSe) secondary phase which is detrimental to the device performance.

  7. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    International Nuclear Information System (INIS)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Wang Xiaohua

    2009-01-01

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  8. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Wang Xiaohua, E-mail: dxzhao2000@yahoo.com.c [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, 7089 WeiXing Road, ChangChun 130022 (China)

    2009-12-09

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  9. Depth profile analysis of electrodeposited nanoscale multilayers by Secondary Neutral Mass Spectrometry (SNMS)

    International Nuclear Information System (INIS)

    Katona, G.L.; Berenyi, Z.; Vad, K.; Peter, L.

    2006-01-01

    Complete text of publication follows. Nanoscale multilayers have been in the focus of research since the discovery of the giant magnetoresistance (GMR) effect in this family of nanostructures. The first observation of GMR on sputtered magnetic/non-magnetic multilayers was followed by the detection of the same effect in electrodeposited Co-Ni-Cu/Cu multilayers within half a decade. Electrodeposition has long been considered as an inexpensive alternative of the high-vacuum methods to produce multilayers with GMR, although the GMR effect observed for electrodeposited multilayers is usually inferior to multilayers produced by physical methods. Electrochemistry appears to be an exclusive technology to produce multilayered nanowires by using porous templates. In spite of the large number of papers about the multilayers themselves, data on the depth profile of electrodeposited multilayer samples are very scarce. It has long been known that the simultaneous electrodeposition of the iron group metals takes place in the so-called anomalous manner. The diagnostic criterion of the anomalous codeposition is that the metallic component of lower standard potential (the Co in the case of Ni/Co) can be discharged together with the more noble one (Ni) at potentials where the less noble component (Co) alone cannot be deposited onto a substrate composed of the parent metal; moreover, the less noble metal (Co) is deposited preferentially. We have investigated the composition gradient along the growth direction of electrodeposited Co/Cu and CoNiCu/Cu multilayers films using SNMS. Samples were electrodeposited using the single bath method. Commercial Cu sheets and an Cr/Cu layer evaporated onto Si (111) surface were used as substrates with high and low roughness, respectively. The depth profiles of the samples were recorded using SNMS (INA-X, Specs GmbH, Berlin) in the Direct Bombardment Mode. Depth profile analysis of electrodeposited magnetic/nonmagnetic layered structures on

  10. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    Science.gov (United States)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.

  11. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    Science.gov (United States)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  12. Surface crack nucleation and propagation in electrodeposited nanocrystalline Ni-P alloy during high cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Shigeaki; Kamata, Akiyuki [Department of Mechanical Engineering, Faculty of Engineering, Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan); Watanabe, Tadao, E-mail: skoba@ashitech.ac.j [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang, 110004 (China)

    2010-07-01

    The morphology of specimen surface after fatigue fracture was evaluated in connection with grain orientation distribution and grain boundary microstructure to reveal a mechanism of fatigue fracture in nanocrystalline materials. The electrodeposited and sharply {l_brace}001{r_brace} textured Ni -2.0 mass% P alloy with the average grain size of ca. 45 nm and high fractions of low-angle and {Sigma}3 boundaries showed 2 times higher fatigue limit than electrodeposited microcrystalline Ni polycrystal. The surface features of fatigued specimen were classified into two different types of morphologies characterized as brittle fracture at the central area and as ductile fracture at the surrounding area.

  13. Characterisation of electrodeposited polycrystalline uranium dioxide thin films on nickel foil for industrial applications

    International Nuclear Information System (INIS)

    Adamska, A.M.; Bright, E. Lawrence; Sutcliffe, J.; Liu, W.; Payton, O.D.; Picco, L.; Scott, T.B.

    2015-01-01

    Polycrystalline uranium dioxide thin films were grown on nickel substrates via aqueous electrodeposition of a precursor uranyl salt. The arising semiconducting uranium dioxide thin films exhibited a tower-like morphology, which may be suitable for future application in 3D solar cell applications. The thickness of the homogenous, tower-like films reached 350 nm. Longer deposition times led to the formation of thicker (up to 1.5 μm) and highly porous films. - Highlights: • Electrodeposition of polycrystalline UO_2 thin films • Tower-like morphology for 3D solar cell applications • Novel technique for separation of heavy elements from radioactive waste streams

  14. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  15. Short pulse absorption dynamics in a p-i-n InGaAsP MQW waveguide saturable absorber

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Öhman, Filip; Mørk, Jesper

    2002-01-01

    The saturation properties and absorption dynamics of an InGaAsP MQW waveguide saturable absorber is measured using short 200-fs and 1-ps pulses. The dependence on the pulse energy and reverse bias is characterized.......The saturation properties and absorption dynamics of an InGaAsP MQW waveguide saturable absorber is measured using short 200-fs and 1-ps pulses. The dependence on the pulse energy and reverse bias is characterized....

  16. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    Science.gov (United States)

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  17. Pulse power applications of silicon diodes in EML capacitive pulsers

    Science.gov (United States)

    Dethlefsen, Rolf; McNab, Ian; Dobbie, Clyde; Bernhardt, Tom; Puterbaugh, Robert; Levine, Frank; Coradeschi, Tom; Rinaldi, Vito

    1993-01-01

    Crowbar diodes are used for increasing the energy transfer from capacitive pulse forming networks. They also prevent voltage reversal on the energy storage capacitors. 52 mm diameter diodes with a 5 kV reverse blocking voltage, rated 40 kA were successfully used for the 32 MJ SSG rail gun. An uprated diode with increased current capability and a 15 kV reverse blocking voltage has been developed. Transient thermal analysis has predicted the current ratings for different pulse length. Analysis verification is obtained from destructive testing.

  18. Ascorbyl radical disproportionation in reverse micellar systems

    Science.gov (United States)

    Gębicki, J. L.; Szymańska-Owczarek, M.; Pacholczyk-Sienicka, B.; Jankowski, S.

    2018-04-01

    Ascorbyl radical was generated by the pulse radiolysis method and observed with the fast kinetic spectrophotometry within reverse micelles stabilized by AOT in n-heptane or by Igepal CO-520 in cyclohexane at different water to surfactant molar ratio, w0. Rate constants for the disproportionation of the ascorbyl radicals were smaller than those for intermicellar exchange for both type of reverse micelles and slower than those in homogeneous aqueous solutions. However, they increased with increasing w0 for AOT/n-heptane system, while they decreased for Igepal CO-520 system. The absorption spectra of ascorbic acid AOT/n-heptane reverse micellar system showed that the "pH" sensed by this molecule is lower than that in respective homogeneous aqueous solutions. The obtained results were rationalized taking into account three main factors (i) preferential location of ascorbic acid molecules in the interfacial region of the both types of reverse micelles; (ii) postulate that the pH of the interface is lower than that of the water pool of reverse micelles and (iii) different structure of the interface of the reverse micelles made by AOT in n-heptane and those formed by Igepal CO-520 I cyclohexane. Some possible consequences of these findings are discussed.

  19. Reversible flowchart languages and the structured reversible program theorem

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    Many irreversible computation models have reversible counterparts, but these are poorly understood at present. We introduce reversible flowcharts with an assertion operator and show that any reversible flowchart can be simulated by a structured reversible flowchart using only three control flow...... operators. Reversible flowcharts are r- Turing-complete, meaning that they can simuluate reversible Turing machines without garbage data. We also demonstrate the injectivization of classical flowcharts into reversible flowcharts. The reversible flowchart computation model provides a theoretical...

  20. Effect of High Frequency Pulsing on the Interfacial Structure of Anodised Aluminium-TiO2

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2015-01-01

    High frequency anodizing of friction stir processed Al-TiO2 surface composites was investigated. The effect of anodizing parameters on the structure and morphology of the anodic layer including the incorporation of the TiO2 particles into the anodic layer is studied. Anodizing process was carried...... out using a high frequency pulse and pulse reverse pulse technique at a fixed frequency in a sulfuric acid bath. The structure of the composites and the anodized layer was studied using scanning and transmission electron microscopy. The pulse reverse pulse anodizing technique, using a negative...

  1. Templated electrodeposition of Ag7NO11 nanowires with very high oxidation states of silver

    NARCIS (Netherlands)

    Rodijk, E.J.B.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The templated electrodeposition of 200 nm diameter nanowires of the argentic oxynitrate Ag(Ag3O4)2NO3 phase is reported. Their high surface-to-volume ratio and the high average oxidation state of Ag make these wires promising candidates for nanoscale redox processes in which both a high volumetric

  2. Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces

    NARCIS (Netherlands)

    Lai, Stanley; Lazenby, R.A.; Kirkman, P.M.; Unwin, P.R.

    2015-01-01

    The nucleation and growth of metal nanoparticles (NPs) on surfaces is of considerable interest with regard to creating functional interfaces with myriad applications. Yet, key features of these processes remain elusive and are undergoing revision. Here, the mechanism of the electrodeposition of

  3. A study on corrosion resistance of electrodeposited Zn-base alloy steel sheet

    International Nuclear Information System (INIS)

    Park, Hyun Soon

    1986-01-01

    Effects of electrodeposits of Zn-Ni or Zn-Co alloy with small amounts of Mo or W in sulphate bath on the corrosion resistance of plated steel sheet were studied. 1) The electrodeposition of Zn-Ni and Zn-Co alloy shows both anomalous codeposition behavior. The grade of anomalous codeposition of Zn-Co alloy rises with adding Mo or W in bath. 2) The Ni content in Zn-Ni deposits increases with decreasing cathode current density and with increasing bath temperature. 3) In case of electroplating of Zn-Co, the increase of cathodic current density of bath bring on increasing of the Co content, but on decreasing of the Mo content in deposits. And rising bath temperature increases both Co and Mo deposits. 4) The corrosion resistance of the Zn-Ni electrodeposited steel sheet is shown a maximum at the Ni content of 10-17%. The structure of Zn-Ni of these composition range was finegrained γ-phase. 5) The corrosion resistance of the Zn-Co electrodeposited steel sheet is improved with increasing Co content. The corrosion resistance of the Zn-Co-Mo or Zn-Co-W deposits electroplated by proper plating conditions was improved much more than that of Zn-Co deposits. (Author)

  4. Electrodeposition Techniques for the Preparation of Beta-Sprectroscopy Sources of Rare-Earth Elements

    DEFF Research Database (Denmark)

    Hansen, P. Gregers; Høgh, J.; Nielsen, H. L.

    1964-01-01

    Thin, uniform radioactive deposits of rare earths and related elements can be prepared by cathodic electrodeposition of their hydroxides. The main theoretical and experimental features of this process are reviewed and plating cell design and the choice of conditions are described together...

  5. Effect of weak magnetic field on the grain size of electrodeposited nickel

    International Nuclear Information System (INIS)

    Ansari, M.S.; Gul, N.

    2007-01-01

    Effect of weak magnetic field on the electro-deposition of nickel onto copper electrode has been investigated. The working conditions were optimized through adjustment of cathodic current density (CCD), deposition time, bath temperature and pH of the medium. For electro-deposition in the absence of magnetic field, the optimum conditions comprised of pH = 4.0+- 0.5, average CCD = 22.5 +- 0.5 mA cm/sup -2/ and bath temperature in the range from 25 to 30 degree C. The same conditions were maintained for the electrodeposition while applying magnetic field of 0.75 kG. The morphological features of the Ni-deposits on copper cathode were compared for the two cases. The applied magnetic field not only enhanced the amount of nickel deposition but also improved the quality of the deposit. Surface morphology of the electro-deposited nickel has been monitored using scanning electron microscopy (SEM); the preliminary investigation has shown that the grain size decreased with the applied magnetic field case. One possible explanation to this behavior is the convection flow of cations close to the electrode surface induced by the Lorentz force which also influences the ion-migration. (author)

  6. III. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor.

    Science.gov (United States)

    Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George

    2011-07-11

    Results are presented of an investigation of co-electrodeposition of copper and nickel from acidic solution mixtures in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on metal removal/recovery rate, current efficiency, and corrosion of the deposited metals from the cathodic particles were examined under galvanostatic operation. The quantitative and qualitative behavior of co-electrodeposition of the two metals from their mixtures differs significantly from that of the individual single metal solutions. This is primarily attributed to the metal displacement reaction between Ni(0) and Cu(2+). This reaction effectively reduces copper corrosion, and amplifies that for nickel (at least at high concentrations). It also amplifies the separation of the deposition regimes of the two metals in time, which indicates that the recovery of each metal as a relatively pure deposit from the mixture is possible. It was also shown that nitrogen sparging considerably increases the observed net electrodeposition rates for both metals - considerably more so than from solutions with just the single metals alone. A numerical model of co-electrodeposition, corrosion, metal displacement, and mass transfer in the cylindrical spouted electrochemical reactor is presented that describes the behavior of the experimental copper and nickel removal data quite well.

  7. A novel polymeric leveller for the electrodeposition of copper from acidic sulphate bath: A spectroelectrochemical investigation

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; D'Urzo, Lucia; Mele, Claudio

    2007-01-01

    The electrodeposition of copper has recently become a 'hot topic' due to its extensive application to the fabrication of interconnects in the integrated circuits (IC) manufacturing process. However, the proper composition of the electrochemical deposition (ECD) bath, and in particular the selection of the levelling agent, represents one of the crucial factors for an effective transition of Cu ECD towards the most advanced technology nodes. In this paper we report on the electrodeposition of Cu from acidic sulphate baths containing a potential innovative polymeric leveller: a benzyl-phenyl modified polyethyleneimine (BPPEI). This investigation was carried out by: (i) cyclic voltammetry (CV) at a rotating-disk electrode, (ii) in situ surface-enhanced Raman spectroscopy (SERS) during electrodeposition and (iii) scanning electron microscopy (SEM). CV results show that BPPEI acts as an inhibitor of the electrodeposition process, since it reduces the exchange current density and increases the cathodic Tafel slope. Mass transport limitations to the Cu(II) reduction process are essentially unaffected by the presence of BPPEI. SERS spectra show that BPPEI is adsorbed at the growing Cu cathode at all potentials of interest for electroplating. SEM micrographs prove that BPPEI acts as an efficient grain-refiner and suppressor of unstable 3D growth. Cathodic reactivity of BPPEI was proved by the analysis of CV features and potential-dependent SERS spectral changes

  8. A pH Sensor Based on a Stainless Steel Electrode Electrodeposited with Iridium Oxide

    Science.gov (United States)

    Martinez, C. C. M.; Madrid, R. E.; Felice, C. J.

    2009-01-01

    A simple procedure to make an iridium oxide (IrO[subscript 2]) electrodeposited pH sensor, that can be used in a chemical, biomedical, or materials laboratory, is presented here. Some exercises, based on this sensor, that can be used to teach important concepts in the field of biomedical, biochemical, tissue, or materials engineering, are also…

  9. Alternate method of source preparation for alpha spectrometry: No electrodeposition, no hydrofluoric acid

    International Nuclear Information System (INIS)

    Kurosaki, Hiromu; Mueller, Rebecca J.; Lambert, Susan B.; Rao, Govind R.

    2016-01-01

    An alternate method of preparing actinide alpha counting sources was developed in place of electrodeposition or lanthanide fluoride micro-precipitation. The method uses lanthanide hydroxide micro-precipitation to avoid the use of hazardous hydrofluoric acid. Lastly, it provides a quicker, simpler, and safer way of preparing actinide alpha counting sources in routine, production-type laboratories that process many samples daily.

  10. Thermal stability of electrodeposited Ni and Ni-Co layers; an EBSD-study

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Gholinia, A.; Trimby, P.W.

    2004-01-01

    The influence of heat treatment on the microstructure and the microtexture of electrodeposited Ni and Ni-Co layers was investigated with Electron Backscatter Diffraction (EBSD) with high resolution. Samples were annealed for 1 hour at 523 K and 673 K, the temperature region wherein...

  11. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Roberts, S.G.; Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Bade, K. [Institut fuer Mikrostrukturtechnik (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-04-30

    Nanocrystalline nickel-tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni-12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni-12.7 at.%W was in the range of 1.49-5.14 MPa {radical}m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: Black-Right-Pointing-Pointer Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. Black-Right-Pointing-Pointer Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. Black-Right-Pointing-Pointer Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. Black-Right-Pointing-Pointer Fracture toughness values lower than that of nanocrystalline nickel.

  12. Electrodeposition of antimony, tellurium and their alloys from molten acetamide mixtures

    NARCIS (Netherlands)

    Nguyen, H.P.; Peng, X.; Murugan, G.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2013-01-01

    We examine the electrodeposition of antimony (Sb), tellurium (Te) and their alloys from molten mixtures of acetamide - antimony chloride and tellurium chloride. The binary mixtures of acetamide with SbCl3 and TeCl 4 exhibit eutectic formation with large depressions of freezing points to below room

  13. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition.

    Science.gov (United States)

    Chen, Siguo; Wei, Zidong; Li, Hua; Li, Li

    2010-12-14

    High Pt utilization PEMFC electrodes were prepared by an alternative ion-exchange/electrodeposition (AIEE) technique. The results demonstrated that the MEA employing an AIEE electrode with a Pt loading of 0.014 mg Pt cm(-2) exhibits performance approximately 2.2 times larger than that employing a conventional Nafion-bonded Pt/C electrode with a same Pt loading.

  14. Alternate method of source preparation for alpha spectrometry: no electrodeposition, no hydrofluoric acid

    International Nuclear Information System (INIS)

    Hiromu Kurosaki; Lambert, S.B.; Rao, G.R.; Mueller, R.J.

    2017-01-01

    An alternate method of preparing actinide alpha counting sources was developed in place of electrodeposition or lanthanide fluoride micro-precipitation. The method uses lanthanide hydroxide micro-precipitation to avoid the use of hazardous hydrofluoric acid. It provides a quicker, simpler, and safer way of preparing actinide alpha counting sources in routine, production-type laboratories that process many samples daily. (author)

  15. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni–W alloy films

    International Nuclear Information System (INIS)

    Armstrong, D.E.J.; Haseeb, A.S.M.A.; Roberts, S.G.; Wilkinson, A.J.; Bade, K.

    2012-01-01

    Nanocrystalline nickel–tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni–12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni–12.7 at.%W was in the range of 1.49–5.14 MPa √m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: ► Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. ► Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. ► Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. ► Fracture toughness values lower than that of nanocrystalline nickel.

  16. Microstructure and micromechanical properties of electrodeposited Zn–Mo coatings on steel

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierczak, Honorata, E-mail: h.kazimierczak@imim.pl [Institute of Metallurgy and Material Science, Polish Academy of Sciences, 30-059 Krakow, Reymonta 25 (Poland); Ozga, Piotr [Institute of Metallurgy and Material Science, Polish Academy of Sciences, 30-059 Krakow, Reymonta 25 (Poland); Berent, Katarzyna [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Mickiewicza Av. 30 (Poland); Kot, Marcin [Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Krakow, Mickiewicza Av. 30 (Poland)

    2015-07-05

    Highlights: • The conditions for electrodeposition of uniform and compact Zn–Mo coatings have been studied. • Zn–Mo coatings microstructure can be controlled by the molybdenum content. • Surface roughness can be controlled by the content of Mo in coatings. • The value of microhardness grows gradually with the increase of Mo content up to 3 wt.%. - Abstract: The aim of the work was to characterise the new coating material based on zinc with the addition of molybdenum, electrodeposited on steel substrate from nontoxic, citrate based electrolytes. The surface composition of deposits was ascertained by chemical analysis (WDXRF). The morphology of coatings was studied by SEM. The surface morphology and roughness of Zn–Mo coatings on steel was investigated by AFM. The microhardness and Young modulus were determined by indentation technique, whereas the coating adhesion to the substrate was examined by means of scratch test. The optimal ranges of electrodeposition parameters, enabling the preparation of good quality coatings (i.e. uniform, compact, with good adhesion to the substrate), was specified. The morphology of deposits depends significantly on the content of molybdenum and on the thickness of electrodeposited layer. The microhardness of Zn–Mo coating increases with the increase of molybdenum content up to 3 wt.% and then reaches about 3.5 GPa, which is almost five times that of the value of the microhardness of the Zn coating studied.

  17. Reuse of Expired Cefort Drug in Nickel Electrodeposition From Watts Bath

    Directory of Open Access Journals (Sweden)

    Delia-Andrada Duca

    2017-06-01

    Full Text Available This paper demonstrates the possibility to use ceftriaxone (CEFTR active compound from expired Cefort as additive in nickel electrodeposition from Watts baths. Electrochemical behaviour and the influence of CEFTR on nickel electroplating were studied by electrochemical methods. Experimental data recommends CEFTR as additive in nickel electroplating from Watts baths.

  18. Method for electrodeposition of nickel--chromium alloys and coating of uranium

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Lundquist, J.R.

    1975-01-01

    High-quality electrodeposits of nickel-chromium binary alloys in which the percentage of chromium is controlled can be obtained by the addition of a complexing agent such as ethylenediaminetetraacetic disodium salt to the plating solution. The nickel-chromium alloys were found to provide an excellent hydrogen barrier for the protection of uranium fuel elements. (U.S.)

  19. Anticorrosion protection of carbon steel by electrodeposition of niobium in melted fluorides

    International Nuclear Information System (INIS)

    Almeida, M.E. de; Robin, A.

    1990-01-01

    The results about niobium electrodeposition over carbon steel from K sub(2) Nb F sub(7) solutions, on LiF-Na F-KF eutetic at 750 sup(0)C and over the corrosion resistance of obtainment deposit from acid media are presented. (author)

  20. Cr-Ni ALLOY ELECTRODEPOSITION AND COMPARISON WITH CONVENTIONAL PURE Cr COATING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    M. Moniruzzaman

    2012-12-01

    Full Text Available Cr coating is widely used as the outer surface of precision parts due to its attractive appearance and superior corrosion resistance properties. It is obtained by electrodeposition via a conventional bath with hexavalent Cr ions. This manufacturing technique has many drawbacks, such as very low efficiency and high operating temperature and it is hazardous to health. In this work, we studied a Cr-Ni alloy deposition technique and compared the alloy coating properties to those with conventional Cr coating. Sequential two-step alloy electrodeposition was also compared. We took varying concentrations of Cr, Ni and complexing agents for the electrodeposition of Cr-Ni alloy and sequential Cr-Ni alloy coating on mild steel. Operating parameters, i.e. current density and temperature, were varied to examine their effects on the coating properties. The coatings thus obtained were characterized by visual observation, corrosion test, microhardness measurement, morphology and chemical analysis. The Cr-Ni alloy coating was found to be more corrosion resistant in 5% NaCl solution and harder than the pure Cr coating obtained by conventional electrodeposition. Toxic gas was produced in a much lower extent in the alloy coating than the conventional Cr coating technique. Again, the two-step Cr-Ni alloy coating was found better in terms of corrosion resistance as well as hardness compared to the Cr-Ni alloy coating. The process was also found to be much more environmentally friendly.

  1. Preparation of /sup 237/Np samples by electrodeposition and its determination by alpha spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mertzig, W; Matsuda, H T; Araujo, B.F. de; Araujo, J.A. de [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Centro de Engenharia Quimica

    1980-01-01

    An analytical method followed by alpha spectrometry was developed for the determination of trace amounts of actinides. A technique for quantitative electrodeposition of /sup 237/Np, under optimal conditions, using a carrier, is presented. This method will be applied for the control of trace amounts of /sup 237/Np in the solutions from the reprocessing (Purex process) of irradiated uranium.

  2. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  3. Electrodeposition and Properties of Copper Layer on NdFeB Device

    Directory of Open Access Journals (Sweden)

    LI Yue

    2017-06-01

    Full Text Available To decrease the impact of the regular Ni/Cu/Ni coating on the magnetic performance of sintered NdFeB device, alkaline system of HEDP complexing agent was applied to directly electro-deposit copper layer on NdFeB matrix, then nickel layer was electrodeposited on the copper layer and Cu/Ni coating was finally obtained to replace the regular Ni/Cu/Ni coating. The influence of concentration of HEDP complexing agent on deposition course was tested by electrochemical testing; morphology of copper layer was characterized by SEM, XRD and TEM; the binding force of copper layer and the thermal reduction of magnetic of NdFeB caused by electrodeposited coating were respectively explored through the thermal cycle test and thermal demagnetization test. The results show that the concentration of HEDP has great impact on the deposition overpotential of copper. In the initial electrodepositing stage, copper particles precipitate at the grain boundaries of NdFeB magnets with a preferred (111 orientation. The copper layer is compact and has enough binding force with the NdFeB matrix to meet the requirements in SJ 1282-1977. Furthermore, the thermal demagnetization loss rate of the sintered NdFeB with the protection of Cu/Ni coating is significantly less than that with the protection of Ni/Cu/Ni coating.

  4. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    In this paper, ternary NiFeW alloy coatings were prepared by jet electrodeposition, and the effects of lord salt concentration, jet speed, current density and temperature on the properties of the coatings, including the composition, microhardness, surface morphology, structure and corrosion resistance, were investigated.

  5. Electrodeposition and corrosion properties of zn-co and zn-co-fe alloy coatings

    NARCIS (Netherlands)

    Mol, J.M.C.; Lodhi, Z.F.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W. de

    2010-01-01

    Cadmium (Cd) has been extensively used as an excellent corrosion protective coating for steel components in aerospace, automotive, electrical and fasteners industries. However, Cd is banned due to its toxic nature and strict environmental regulations. In this study, the electrodeposition mechanism

  6. Electrodeposition and corrosion properties of Zn-Co and Zn-Co-Fe alloy coatings

    NARCIS (Netherlands)

    Mol, J.M.C.; Lodhi, Z.F.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W. de

    2011-01-01

    Cadmium (Cd) has been extensively used as an excellent corrosion protective coating for steel components in aerospace, automotive, electrical and fasteners industries. However, Cd is banned due to its toxic nature and strict environmental regulations. In this study, the electrodeposition mechanism

  7. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition.

    Science.gov (United States)

    Zeeshan, Muhammad A; Grisch, Roman; Pellicer, Eva; Sivaraman, Kartik M; Peyer, Kathrin E; Sort, Jordi; Özkale, Berna; Sakar, Mahmut S; Nelson, Bradley J; Pané, Salvador

    2014-04-09

    Hybrid helical magnetic microrobots are achieved by sequential electrodeposition of a CoNi alloy and PPy inside a photoresist template patterned by 3D laser lithography. A controlled actuation of the microrobots by a rotating magnetic field is demonstrated in a fluidic environment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The cathodic electrodeposition of crystalline ZnO nanowires and amorphous FeO(OH) nanotubes in polycarbonate track-etched membranes with pore diameters of 50–200 nm is reported. Nitrate was used as a sacrificial precursor for the electrochemical generation of hydroxyl ions that raised the pH of the

  9. Electrodeposition of enzymes-integrated mesoporous composite films by interfacial templating: A paradigm for electrochemical biosensors

    International Nuclear Information System (INIS)

    Wang, Dongming; Tan, Yiwei

    2014-01-01

    The development of nanostructured electrodes for electrochemical biosensors is of significant interest for modern detection, portable devices, and enhanced performance. However, development of such sensors still remains challenging due to the time-consuming, detriment-to-nature, and costly modifications of both electrodes and enzymes. In this work, we report a simple one-step approach to fabricating high-performance, direct electron transfer (DET) based nanoporous enzyme-embedded electrodes by electrodeposition coupled with recent progress in potential-controlled interfacial surfactant assemblies. In contrast to those previously electrodeposited mesoporous materials that are not bioactive, we imparted the biofunctionality to electrodeposited mesoporous thin films by means of the amphiphilic phospholipid templates strongly interacting with enzymes. Thus, phospholipid-templated mesoporous ZnO films covalently inlaid with the pristine enzymes were prepared by simple one-step electrodeposition. We further demonstrate two examples of such hybrid film electrodes embedded with alcohol dehydrogenase (ADH) and glucose oxidase (GOx), which are effectively employed as electrochemical biosensors for amperometric sensing of ethanol and glucose without using any electron relays. The favorable mass transport and large contact surface area provided by nanopores play an important role in improving the performance of these two biosensors, such as excellent sensitivities, low detection limits, and fast response. The matrix mesoporous films acting as effective electronic bridges are responsible for DET between enzyme molecules and metal electrode

  10. Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.; Ohsaka, Takeo

    2002-01-01

    The electrocatalytic reduction of oxygen at Au nanoparticles-electrodeposited Au electrodes has been studied using rotating disk electrode (RDE) voltammetry in 0.5 M H 2 SO 4 . Upon analyzing and comparison of the limiting currents data obtained at various rotation speeds of this RDE with those obtained at the bulk Au electrode, an effective value of the number of electrons, n, involved in the electrochemical reduction of O 2 was estimated to be ca. 4 for the former electrode and ca. 3 for the bulk Au electrode at the same potential of -350 mV versus Ag/AgCl/KCl(sat.). This indicates the higher possibility of further reduction and decomposition of H 2 O 2 at Au nanoparticles-electrodeposited Au electrode in this acidic medium. The reductive desorption of the self-assembled monolayer of cysteine, which was formed on the Au nanoparticles-electrodeposited Au electrode, was used to monitor the change of the specific activity of the bulk Au electrode upon the electrodeposition of the Au nanoparticles

  11. Development of silver-gas diffusion electrodes for the oxygen reduction reaction by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Salomé, Sónia; Rego, Rosa; Oliveira, M. Cristina, E-mail: mcris@utad.pt

    2013-12-16

    Silver-gas diffusion electrodes (Ag-GDE) were prepared by direct deposition of the catalyst onto a carbon paper support by electrodeposition. This deposition technique, under potentiostatic and galvanostatic mode, allows the production of well dispersed ultra-low Ag loading levels. The catalytic activity of the prepared materials towards the oxygen reduction reaction (ORR) was investigated in the alkaline solution and its tolerance to methanol was evaluated. Based on an Ag-ink prepared from the electrodeposit material and RDE experiments, it was concluded that the ORR occurs via a four-electron pathway on the Ag electrodeposit. The combination of reasonably high catalytic activity, efficiency, low price, facile and green synthesis makes the electrodeposited Ag-GDE attractive for the ORR in alkaline fuel cells. - Highlights: • A facile and simple way to successfully prepare catalyzed gas diffusion electrodes. • Ultra-low loadings of Ag-GDEs can be achieved. • Good tolerance to methanol and a high mass activity (3.14 mA{sub Ag} mg{sup −1}). • ORR occurs via a four-electron pathway.

  12. [Comparison of fibroblastic cell compatibility of type I collagen-immobilized titanium between electrodeposition and immersion].

    Science.gov (United States)

    Kyuragi, Takeru

    2014-03-01

    Titanium is widely used for medical implants. While many techniques for surface modification have been studied for optimizing its biocompatibility with hard tissues, little work has been undertaken to explore ways of maximizing its biocompatibility with soft tissues. We investigated cell attachment to titanium surfaces modified with bovine Type I collagen immobilized by either electrodeposition or a conventional immersion technique. The apparent thickness and durability of the immobilized collagen layer were evaluated prior to incubation of the collagen-immobilized titanium surfaces with NIH/3T3 mouse embryonic fibroblasts. The initial cell attachment and expression of actin and vinculin were evaluated. We determined that the immobilized collagen layer was much thicker and more durable when placed using the electrodeposition technique than the immersion technique. Both protocols produced materials that promoted better cell attachment, growth and structural protein expression than titanium alone. However, electrodeposition was ultimately superior to immersion because it is quicker to perform and produces a more durable collagen coating. We conclude that electrodeposition is an effective technique for immobilizing type I collagen on titanium surfaces, thus improving their cytocompatibility with fibroblasts.

  13. Numerical insights into the early stages of nanoscale electrodeposition: nanocluster surface diffusion and aggregative growth

    DEFF Research Database (Denmark)

    Mamme, Mesfin Haile; Kohn, Christoph; Deconinck, Johan

    2018-01-01

    Fundamental understanding of the early stages of electrodeposition at the nanoscale is key to address the challenges in a wide range of applications. Despite having been studied for decades, a comprehensive understanding of the whole process is still out of reach. In this work, we introduce a nov...

  14. Electrodeposition of BaCO3 coatings on stainless steel substrates ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan. *For correspondence. Electrodeposition of BaCO3 coatings on stainless steel substrates: Oriented growth ... orientation by an interfacial molecular recognition mechanism. BaCO3 has important applications in paint, ceramic, and paper industries. Also it is used ...

  15. Studies on electrodeposition and characterization of the Ni–W–Fe alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aldrighi Luiz M.; Costa, Josiane D.; Sousa, Mikarla B. de; Alves, José Jailson N. [Department of Chemical Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882, 58429-970 Campina Grande (Brazil); Campos, Ana Regina N.; Santana, Renato Alexandre C. [Department of Education, Federal University of Campina Grande, R. Olho da Água da Bica, S. N., 58175-000 Cuité-Pb (Brazil); Prasad, Shiva, E-mail: prasad@deq.ufcg.edu.br [Department of Education, Federal University of Campina Grande, R. Olho da Água da Bica, S. N., 58175-000 Cuité-Pb (Brazil)

    2015-01-15

    Highlights: • Ni–W–Fe alloy resistant to corrosion has been obtained by electrodeposition. • Optimal temperature and current density for Ni–W–Fe alloy electrodeposition has been found. • Experimental design has been used as optimization tool. • Amorphous Ni–W–Fe alloy has been obtained. - Abstract: Corrosion has been responsible for industrial maintenance cost as well as for industrial accidents. A key to prevent corrosion is to develop advanced materials with highly anti-corrosive properties. The electrodeposition has been one of the most important techniques for obtaining these materials. The objective of this work is to develop and optimize the parameters to obtain a new Ni–W–Fe alloy with high resistance to corrosion. A factorial design 2{sup 2} with 2 center points was used to find the optimal current density and bath temperature for Ni–W–Fe electrodeposition. The influence of such variables on the cathodic current efficiency and polarization resistance were obtained. The alloys obtained with the highest current density (125 mA/cm{sup 2}) and the highest bath temperature (70 °C) had the best anticorrosive properties, which are superior to anticorrosive properties of Ni–W–Fe available in the literature. The obtained alloys had the highest tungsten content compared with other alloys studied of about 46 wt.%. The highest cathodic current efficiency was 34% for the alloy with a chemical composition of 3 wt.% Fe, 29 wt.% W and 68 wt.% Ni.

  16. Microstructure and thermal stability of nickel layers electrodeposited from an additive-free sulphamate-based electrolyte

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Møller, Per; Somers, Marcel A. J.

    2006-01-01

    and scanning electron microscopy and X-ray diffraction; the Vickers hardness was measured in cross sections. The present is meant as a reference for forthcoming articles on the investigation of various strengthening mechanisms on the microstructure, hardness and thermal stability of Ni (alloys) electrodeposits.......The influences of the current density and the temperature on the microstructure and hardness of Ni layers electrodeposited from an additive-free sulphamate bath were investigated. The microstructure and thermal stability of the electrodeposits was investigated with a combination of transmission...

  17. Pulse compressor with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  18. Introduction to reversible computing

    CERN Document Server

    Perumalla, Kalyan S

    2013-01-01

    Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever

  19. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  20. Synthesizing the Nanocrytalline Cobalt-Iron Coating Through The Electrodeposition Process With Different Time Deposition

    Science.gov (United States)

    Rozlin Nik Masdek, Nik; Sorfian Hafiz Mansor, Mohd; Salleh, Zuraidah; Hyie, Koay Mei

    2018-03-01

    In the engineering world, electrodeposition or electroplating has become the most popular method of surface coating in improving corrosion behavior and mechanical properties of material. Therefore in this study, CoFe nanoparticle protective coating has been synthesized on the mild steel washer using electrodeposition method. The electrodeposition was conducted in the acidic environment with the pH value range from 1 to 2 with the controlled temperature of 50°C. The influence of deposition time (30, 60, 90 minutes) towards characteristic and properties such as particle size, surface morphology, corrosion behavior, and microhardness were studied in this investigation. Several results can be obtained by doing this experiment and testing. First, the surface morphology of Cobalt Iron (CoFe) on the electrodeposited mild steel washer are obtained. In addition, the microhardness of the mild steel washer due to the different deposition time are determined. Next, the observation on the difference in the grain size of CoFe that has been electrodeposited on the mild steel plate is made. Last but not least, the corrosion behavior was investigated. CoFe nanoparticles deposited for 30 minutes produced the smallest particle size and the highest microhardness of 86.17 and 236.84 HV respectively. The CoFe nanoparticles also exhibit the slowest corrosion rate at 30 minutes as compared to others. The crystalline size also increases when the time deposition is increased. The sample with 30 minute depositon time indicate the smallest crystalline size which is 15nm. The decrement of deposition time plays an important role in synthesizing CoFe nanoparticles with good corrosion resistance and microhardness. CoFe nanoparticles obtained at 30 minutes shows high corrosion resistance compared to others. In a nutshell, it was observed that the decrement of deposition time improved mechanical and corrosion properties of CoFe nanoparticles.

  1. Structure characterization of nanocrystalline Ni–W alloys obtained by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Indyka, P., E-mail: paulina.indyka@uj.edu.pl [Jagiellonian University, Faculty of Chemistry, 3 Ingardena St., 30-059 Krakow (Poland); Beltowska-Lehman, E.; Tarkowski, L.; Bigos, A. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); García-Lecina, E. [Surface Finishing Department, CIDETEC-IK4 – Centre for Electrochemical Technologies, P° Miramón 196, 20009 Donostia-San Sebastián (Spain)

    2014-03-25

    Highlights: • Ni–W alloy coatings were electrodeposited from an aqueous electrolyte solutions. • The microstructure was studied with respect to electrodeposition process parameters. • We report optimal plating conditions for crack-free, nanocrystalline Ni–W coatings. • Crystalline Ni–W coatings exhibited the phase structure of an α-Ni(W) solid solution. • Coatings revealed tensile residual stresses and weakly pronounced 〈1 1 0〉 fiber texture. -- Abstract: Ni–W coatings of different tungsten content (2–50 wt%) were electrodeposited on a steel substrates from an aqueous complex sulfate–citrate galvanic baths, under controlled hydrodynamic conditions in a Rotating Disk Electrode (RDE) system. The optimum conditions for the electrodeposition of crack-free, homogeneous nanocrystalline Ni–W coatings were determined on the basis of the microstructure investigation results. The XRD structural characterizations of Ni–W alloy coatings obtained under different experimental conditions were complemented by SEM and TEM analysis. Results of the study revealed that the main factor influencing the microstructure formation of the Ni–W coatings is the chemical composition of an electrolyte solution. X-ray and electron diffraction patterns of all nanocrystalline Ni–W coatings revealed mainly the fcc phase structure of an α-Ni(W) solid solution with a lattice parameter increased along with tungsten content. The use of additives in the plating bath resulted in the formation of equiaxial/quasifibrous, nanocrystalline Ni–W grains of an average size of about 10 nm. The coatings were characterized by relatively high tensile residual stresses (500–1000 MPa), depending on the electrodeposition conditions. Ni–W coatings exhibited weakly pronounced fiber type 〈1 1 0〉 crystallographic texture, consistent with the symmetry of the plating process. Coatings of the highest tungsten content 50 wt% were found to be amorphous.

  2. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis

    OpenAIRE

    Maswadeh, Laith A.; Warsinger, David Elan Martin; Tow, Emily W.; Connors, Grace B.; Swaminathan, Jaichander; Lienhard, John H

    2018-01-01

    Enhanced fouling resistance has been observed in recent variants of reverse osmosis (RO) desalination which use time-varying batch or semi-batch processes, such as closed-circuit RO (CCRO) and pulse flow RO (PFRO). However, the mechanisms of batch processes' fouling resistance are not well-understood, and models have not been developed for prediction of their fouling performance. Here, a framework for predicting reverse osmosis fouling is developed by comparing the fluid residence time in bat...

  3. Programmable pulse generator

    International Nuclear Information System (INIS)

    Xue Zhihua; Lou Binqiao; Duan Xiaohui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  4. Effect of non-stationary current regimes on the morphology of silver electrodeposits

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR T. DIMITROV

    2009-03-01

    Full Text Available This work is concerned with the use of reverse current regimes in order to form small-grained and compact silver deposits during the electro-refining process. Several parameters were varied, i.e., i anodic overpotential, ii cathodic vs. anodic time ratio and iii duration of the anodic pulse. After optimization of these parameters, phosphate ions were added and the electrolyte was stirred. The effects of a rise of the anodic overpotential on the grain sizes of the silver deposit and compactness were studied. Prolongation of the anodic time had a similar influence but with a decrease in current efficiency. An increase of the cathodic vs. anodic time ratio caused an enlargement of the grains and a decrease in the compactness of the deposit. Optimal morphological characteristics were obtained when PO43- was added and the electrolyte was stirred.

  5. Compact pulse topology for adjustable high-voltage pulse generation using an SOS diode

    NARCIS (Netherlands)

    Driessen, A.B.J.M.; Heesch, van E.J.M.; Huiskamp, T.; Beckers, F.J.C.M.; Pemen, A.J.M.

    2014-01-01

    In this paper, a compact circuit topology is presented for pulsed power generation with a semiconductor opening switch (SOS). Such circuits require the generation of a fast forward current through the diode, followed by a reverse current that activates the recovery process. In general, magnetic

  6. Reversibility of female sterilization.

    Science.gov (United States)

    Siegler, A M; Hulka, J; Peretz, A

    1985-04-01

    The discussion considers the current status of reversibility of sterilization in the US and describes clinical and experimental efforts for developing techniques designed for reversibility. It focuses on regret following sterilization, reversal potential of current sterilization techniques, patient selection, current reversal techniques, results of sterilization procedures, experimental approaches to reversal of current techniques of sterilization, and sterilization procedures devised for reversibility, in humans and in animals. Request is the 1st stage of reversal, but a request for sterilization reversal (SR) does not always mean regret for a decision made at the time. Frequently it is a wish to restore fertility because life circumstances have changed after a sterilization that was ppropriate at the time it was performed. Schwyhart and Kutner reviewed 22 studies published between 1949-69 in which they found that the percentage of patients regretting the procedure ranged from 1.3-15%. Requests for reversal remain low in most countries, but if sterilization becomes a more popular method of contraception, requests will also increase. The ideal operation considered as a reversaible method of sterilization should include an easy, reliable outpatient method of tubal occlusion with miniml risk or patient discomfort that subsequently could be reversed without the need for a major surgical intervention. Endoscopic methods have progressed toward the 1st objective. A recent search of the literature uncovered few series of SR of more than 50 cases. The 767 operations found were analyzed with regard to pregnancy outcome. The precent of live births varied from 74-78.8%, and the occurance of tubal pregnancies ranged from 1.7-6.5%. All of the confounding variables in patient selection and small numbers of reported procedures preclude any conclusion about the different techniques or the number of operations that give a surgeon a level of expertise. Few authors classify their

  7. Sensitive warfarin sensor based on cobalt oxide nanoparticles electrodeposited at multi-walled carbon nanotubes modified glassy carbon electrode (CoxOyNPs/MWCNTs/GCE)

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Solgi, Mohammad

    2017-01-01

    In this work, cobalt oxide nanoparticles were electrodeposited on multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE) to develop a new sensor for warfarin determination. The modified electrodes were characterized by cyclic voltammetry, scanning electron microscopy (SEM) along with energy dispersive x-ray spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The presence of cobalt oxide nanoparticles on the electrode surface enhanced the warfarin accumulation and its result was the improvement in the electrochemical response. The effect of various parameters such as pH, scan rate, accumulation potential, accumulation time and pulse amplitude on the sensor response were investigated. Under optimal conditions, the differential pulse adsorptive anodic stripping voltammetric (DPASV) response of the modified electrode was linear in the ranges of 8 nM to 50 μM and 50 μM to 800 μM with correlation coefficients greater than 0.998. The limit of detection of the proposed method was 3.3 nM. The proposed sensor was applied to determine warfarin in urine and plasma samples.

  8. A straight forward approach to electrodeposit tungsten disulfide/poly(3,4-ethylenedioxythiophene) composites onto nanoporous gold for the hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xinxin [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engelbrekt, Christian; Zhang, Minwei [Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, DK 2800 Kongens Lyngby (Denmark); Li, Zheshen [ISA, Department of Physics, Aarhus University, 8000 Aarhus (Denmark); Ulstrup, Jens [Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, DK 2800 Kongens Lyngby (Denmark); Zhang, Jingdong, E-mail: jz@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, DK 2800 Kongens Lyngby (Denmark); Si, Pengchao, E-mail: pcsi@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2017-07-15

    Highlights: • Facile electrodeposition of the WS{sub 2} hybrid layer onto nanoporous gold. • Poly(3,4-ethylenedioxythiophene) was approved to enhance the HER efficiency of WS{sub 2}. • The 1.1 nm deposition layer displayed a Tafel slope of 53 mV per decade. - Abstract: 1.1 nm tungsten disulfide/poly(3,4-ethylenedioxythiophene) (PEDOT) was successfully electrodeposited on the surface of dealloyed nanoporous gold (NPG) surface to form uniform nanocomposites and offers an excellent electrocatalysis for the electrochemical dihydrogen evolution reaction (HER) in acidic media. The approach is straight forward and does not require any expensive equipment or intensive energy. The morphology and composition of the nanocomposites were structurally mapped by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometry (FTIR). The roles of both the NPG substrate and PEDOT in the observed enhanced HER activity compared to planar Au-electrode surfaces and pure single-component WS{sub 2} have been deconvoluted experimentally. PEDOT itself is inert for the HER, but was found to improve significantly the conductivity and operating stability of the WS{sub 2} catalyst. The prepared nanocomposites reach the best in 2D WS{sub 2} catalyst family, exhibiting excellent electrochemical catalytic activity for the HER. The optimal electrode showed an onset potential of −164 mV vs. reversible hydrogen electrode (RHE), an apparent exchange current density as high as 0.04 mA cm{sup −2}, and a very low Tafel slope of 53 mV dec{sup −1}. These catalysts are promising electrocatalysts for generation a large amount of H{sub 2} from water.

  9. SURFACE MODIFICATION OF SEMICONDUCTOR THIN FILM OF TiO2 ON GRAPHITE SUBSTRATE BY Cu-ELECTRODEPOSITION

    Directory of Open Access Journals (Sweden)

    Fitria Rahmawati

    2010-06-01

    Full Text Available Surface modification of graphite/TiO2 has been done by mean of Cu electrodeposition. This research aims to study the effect of Cu electrodeposition on photocatalytic enhancing of TiO2. Electrodeposition has been done using CuSO4 0,4 M as the electrolyte at controlled current. The XRD pattern of modified TiO2 thin film on graphite substrate exhibited new peaks at 2θ= 43-44o and 2θ= 50-51o that have been identified as Cu with crystal cubic system, face-centered crystal lattice and crystallite size of 26-30 nm. CTABr still remains in the material as impurities. Meanwhile, based on morphological analysis, Cu particles are dissipated in the pore of thin film. Graphite/TiO2/Cu has higher photoconversion efficiency than graphite/TiO2.   Keywords: semiconductor, graphite/TiO2, Cu electrodeposition

  10. Tuning the electrodeposition parameters of silver to yield micro/nano structures from room temperature protic ionic liquids

    International Nuclear Information System (INIS)

    Suryanto, Bryan H.R.; Gunawan, Christian A.; Lu Xunyu; Zhao Chuan

    2012-01-01

    Controlled electrodeposition of silver onto glassy carbon, gold and indium tin oxide-coated glass substrates has been achieved from three room temperature protic ionic liquids (PILs), ethylammonium nitrate, triethylammonium methylsulfonate, and bis(2-methoxyethyl)ammonium acetate. Cyclic voltammetric, chronoamperometric, together with microscopic and X-ray techniques reveal that micro/nanostructured Ag thin films of controlled morphology, size, density, and uniformity can be achieved by tuning the electrodeposition parameters such as potential, time, types of PILs, substrate materials, and ionic liquid viscosity by altering the water content. Chronoamperometric results provide direct evidence that electrodeposition of Ag in protic ionic liquids takes place through a progressive nucleation and diffusion-controlled 3D growth mechanism. The as prepared Ag micro/nanoparticles have been employed as electrocatalysts for oxygen reduction reaction and exhibit excellent catalytic activity. The study provides promise for using protic ionic liquids as alternative electrolytes to conventional aprotic ionic liquids for electrodeposition of metals and nanostructured electrocatalysts.

  11. Influence of citrate ions as complexing agent for electrodeposition of CuInSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chraibi, F. [Universite Libre de Bruxelles (Belgium). Service de Sciences des Materiaux et Electrochimie; Universite Mohammed 5, Rabat (Morocco). Dept. de Physique; Fahoume, M.; Ennaoui, A. [Universite Mohammed 5, Rabat (Morocco). Dept. de Physique; Delplancke, J.L. [Universite Libre de Bruxelles (Belgium). Service de Sciences des Materiaux et Electrochimie

    2001-08-16

    The preparation of CuInSe{sub 2} thin films by electrodeposition is studied. The effect of sodium citrate (Na{sub 3}C{sub 6}H{sub 5}O{sub 7}) as complexing agent on the electrodeposition of pure copper, indium, selenium and of their ternary alloy is emphasized. Cathodic shifts of the copper and selenium electrodeposition potentials with increasing citrate concentration are observed. On the contrary, the presence of citrate in the electrolyte does not change the indium electrodeposition potential but improves its crystallinity. The surface morphology and the composition of the deposited films are characterized by scanning electron microscopy (SEM). The texture of the deposits and their compositions are analyzed by X-ray diffraction. The formation of CuInSe{sub 2} films with a chalcopyrite structure and good stoichiometry is observed. (orig.)

  12. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, J.; Domen, K.

    2013-01-01

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine

  13. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high- pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  14. Quantum reverse hypercontractivity

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, Toby [Department of Computer Science, University College London, London, United Kingdom and Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, Cambridge (United Kingdom); Kastoryano, Michael [NBIA, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Montanaro, Ashley [School of Mathematics, University of Bristol, Bristol (United Kingdom); Temme, Kristan [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We develop reverse versions of hypercontractive inequalities for quantum channels. By generalizing classical techniques, we prove a reverse hypercontractive inequality for tensor products of qubit depolarizing channels. We apply this to obtain a rapid mixing result for depolarizing noise applied to large subspaces and to prove bounds on a quantum generalization of non-interactive correlation distillation.

  15. Atrioventricular Pacemaker Lead Reversal

    Directory of Open Access Journals (Sweden)

    Mehmet K Aktas, MD

    2007-01-01

    Full Text Available During cardiac surgery temporary epicardial atrial and ventricular leads are placed in case cardiac pacing is required postoperatively. We present the first reported series of patients with reversal of atrioventricular electrodes in the temporary pacemaker without any consequent deleterious hemodynamic effect. We review the electrocardiographic findings and discuss the findings that lead to the discovery of atrioventricular lead reversal.

  16. High Discharge Rate Electrodeposited Zinc Electrode for Use in Alkaline Microbattery

    Directory of Open Access Journals (Sweden)

    A. L. Nor Hairin

    2012-01-01

    Full Text Available High discharge rate zinc electrode is prepared from electrodeposition process. The electrolytic bath consists of zinc chloride as the metal source and ammonium chloride as the supporting electrolyte. The concentration of the supporting electrolyte is varied from zero until 4 M, while the concentration of zinc chloride is fixed at 2 M. The aim is to produce a porous zinc coating with an enhanced and intimate interfacial area per unit volume. These characteristics shall contribute towards reduced ohmic losses, improved active material utilization, and subsequently producing high rate capacity electrochemical cell. Nitrogen physisorption at 77 K is used to measure the BET surface area and pore volume density of the zinc electrodeposits. The electrodeposited zinc electrodes are then fabricated into alkaline zinc-air microbattery measuring 1 cm2 area x ca. 305 µm thick. The use of inorganic MCM-41 membrane separator enables the fabrication of a compact cell design. The quality of the electrodeposited zinc electrodes is gauged directly from the electrochemical performance of zinc-air cell. Zinc electrodeposits prepared from electrolytic bath of 2 M NH4Cl produces the highest discharge capacity.ABSTRAK: Elektrod zink dengan kadar discas tinggi telah dihasilkan dengan proses saduran elektrokimia. Takungan elektrolit terdiri daripada zink klorida sebagai sumber logam dan ammonium klorida sebagai elektrolit sokongan. Kepekatan elektrolit sokongan diubah daripada sifar hingga 4 M, sementara kepekatan zink klorida ditetapkan pada 2 M. Ini bertujuan untuk mendapatkan saduran zink yang poros dengan luas permukaan per unit isipadu dan sentuhan antaramuka yang dipertingkatkan. Ciri-ciri ini akan menyumbang terhadap pengurangan kehilangan disebabkan kerintangan, pertambahan dalam gunapakai bahan aktif dan akhirnya menghasilkan sel elektrokimia berprestasi tinggi. Physisorpsi nitrogen pada 77 K telah digunakan untuk mengukur luas permukaan BET dan isipadu liang

  17. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  18. Cutting the Gordian Knot of electrodeposition via controlled cathodic corrosion enabling the production of supported metal nanoparticles below 5 nm

    OpenAIRE

    Vanrenterghem, B.; Bele, M.; Zepeda, F.R.; Sala, M.; Hodnik, N.; Breugelmans, Tom

    2018-01-01

    Abstract: In the past decades, there has been an ongoing search for tailor-made active metal nanoparticles for the use as electrocatalysts. An upcoming versatile and green method for the synthesis of nanoparticles is electrodeposition. However, the state-of-the-art electrodeposited metal particle sizes are in the range of 50200 nm. Production of high surface area metallic electrocatalysts with small particle sizes is a serious limitation of electrodeposition, i.e., the Gordian Knot. In this a...

  19. Pulse to pulse klystron diagnosis system

    International Nuclear Information System (INIS)

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 μs. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations

  20. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  1. Pulse-voltammetric glucose detection at gold junction electrodes.

    Science.gov (United States)

    Rassaei, Liza; Marken, Frank

    2010-09-01

    A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.

  2. Variation of magnetoimpedance of electrodeposited NiFe/Cu with deposition current density

    Science.gov (United States)

    Mishra, A. C.; Jha, A. K.

    2017-12-01

    An investigation about influence of deposition current density on electrodeposited magnetic film is reported in this paper. Ferromagnetic NiFe thin films were electrodeposited on copper wires of 100 μm diameter for various electrdepostion current densities ranging from 10 to 60 mA/cm2 maintaining equal thickness in all films. The composition of deposited film varied with deposition current density and in particular, a composition of Ni79Fe21 was achieved for a current density of 20 mA/cm2. The surface microstructure of the film deposited at the current density of 20 mA/cm2 was found to have excellent smoothness. The coercivity of the film was lowest and highest value of magnetoimpedance was measured for this film. The influence of current density on film composition and hence magnetic properties was attributed to the change of deposition mechanism.

  3. Microgravity effects on electrodeposition of metals and metal-cermet mixtures

    Science.gov (United States)

    Maybee, George W.; Riley, Clyde; Coble, H. Dwain

    1987-01-01

    An experimental system, designed to investigate the potential advantages of electrodeposition in microgravity, is being developed by the McDonnell Douglas Astronautics Company-Huntsville Division and the University of Alabama in Huntsville. It is intended to fly as an Orbiter payload when NASA resumes STS operations. The system will provide power, thermal conditioning, command and control for the production of electrodeposits; system performance data will be recorded for post-flight analysis. Plated metal surfaces will be created using simple electrolytic cells with pure metal electrodes immersed in aqueous electrolytic solutions. Crystalline structure and other properties will be analyzed to identify differences between samples produced in flight and those obtained from ground-based operations.

  4. Surface Engineering of Triboelectric Nanogenerator with an Electrodeposited Gold Nanoflower Structure.

    Science.gov (United States)

    Park, Sang-Jae; Seol, Myeong-Lok; Jeon, Seung-Bae; Kim, Daewon; Lee, Dongil; Choi, Yang-Kyu

    2015-09-14

    A triboelectric nanogenerator composed of gold nanoflowers is demonstrated. The proposed triboelectric nanogenerator creates electricity by contact-separation-based electrification between an anodic metal and a cathodic polymer. For the improvement of output power via the enlargement of the effective surface area in the anodic metal, gold nanoflowers that produce a hierarchical morphology at a micro-to-nano scale by electrodeposition are utilized. The hierarchical morphology is controlled by the applied voltage and deposition time. Even though the triboelectric coefficient of gold is inferior to those of other metals, gold is very attractive to make a flower-like structure by electrodeposition. Moreover, gold is stable against oxidation by oxygen in air. From a reliability and practicality point of view, the aforementioned stability against oxidation is preferred.

  5. A process for electrodeposition of layers of niobium, vanadium, molybdenum or tungsten, or of their alloys

    International Nuclear Information System (INIS)

    Diepers, H.; Schmidt, O.

    1977-01-01

    An improvement is proposed for the process for electrodeposition of layers of niobium, vanadium, molybdenum or tungsten or of their alloys from molten-salt electrolytes (fluorid melts) which is to increase the quality of layers in order to obtain regular thickness and smooth surfaces. According to the invention, a pre-separation is executed on an auxiliary cathode before the (preheated) cathode is immersed. The cathode is only charged for separation after the adjustment of a constant anode potential. It is an advantage that the auxiliary cathode is mechanically and electrically connected with the cathode. As an electrolyte, a mixture of niobium fluorides and a eustetic mixture of potassium fluorides, sodium fluorides and lithium fluorides are particularly suitable for the electrodeposition of miobium. (UWI) [de

  6. Electrodeposition of zinc-doped silane films for corrosion protection of mild steels

    International Nuclear Information System (INIS)

    Wu Liankui; Hu Jiming; Zhang Jianqing

    2012-01-01

    Highlights: ► Metallic zinc is doped into organosilane films by one-step electrodeposition. ► The composite films exhibit the improved corrosion resistance of mild steels. ► Zinc-doping provides additional cathodic protection to the mild steels. - Abstract: Organosilane/zinc composite films are prepared by one-step electrodeposition onto cold-rolled steels for corrosion protection. Electrochemical impedance spectroscopy measurement, bulk solution immersion and wet heat tests all show that the composite films have improved corrosion performance. X-ray photoelectron spectroscopy measurement suggests the successful encapsulation of metallic zinc. The embedding of metallic zinc results in negative shift in open-circuit potential of the film-covered electrodes. Such cathodic protection effect given by the metallic zinc provides the improved corrosion resistance of the composite films.

  7. A basic study on electrodeposition of metal halogen mixture in fluoride/chloride molten salts

    International Nuclear Information System (INIS)

    Shim, Z. H.; Kang, Y. H.; Hwang, S. C.; Woo, M. S.; Yoo, J. H.

    2001-01-01

    The electrodeposition experiments of metal mixture composed of U, Y, Gd, Nd and Ce were carried out in the KCl-LiCl and LiF-NaF-KF (FLINAK) eutectic melts at 500 .deg. C and 600 .deg. C, respectively. Uranium was major component in the cathode deposits, and the separation factors of uranium with respect to the rare earths (REs) are nearly same in both electrolytes. REs content in the cathode deposits increased sharply below -1.9V which is the decomposition voltage of the halogen compounds of REs. The current efficiency for electrodeposition of metals was inversely in proportion to the applied voltage in the range of -1.0 V to -1.9 V(vs. S.S. 304 or Ni)

  8. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M., E-mail: mrivera@fisica.unam.m [Imperial College London, Department of Chemistry, South Kensington Campus, London SW7 2AZ (United Kingdom); Rios-Reyes, C.H. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa Tamaulipas, C.P. 02200, Mexico D.F. (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico); Mendoza-Huizar, L.H. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico)

    2011-04-15

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: > Electrodeposition of cobalt clusters. > Mono to multidomain magnetic transition. > Magnetic phase diagram.

  9. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2011-01-01

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: → Electrodeposition of cobalt clusters. →Mono to multidomain magnetic transition. → Magnetic phase diagram.

  10. Concerted Electrodeposition and Alloying of Antimony on Indium Electrodes for Selective Formation of Crystalline Indium Antimonide.

    Science.gov (United States)

    Fahrenkrug, Eli; Rafson, Jessica; Lancaster, Mitchell; Maldonado, Stephen

    2017-09-19

    The direct preparation of crystalline indium antimonide (InSb) by the electrodeposition of antimony (Sb) onto indium (In) working electrodes has been demonstrated. When Sb is electrodeposited from dilute aqueous electrolytes containing dissolved Sb 2 O 3 , an alloying reaction is possible between Sb and In if any surface oxide films are first thoroughly removed from the electrode. The presented Raman spectra detail the interplay between the formation of crystalline InSb and the accumulation of Sb as either amorphous or crystalline aggregates on the electrode surface as a function of time, temperature, potential, and electrolyte composition. Electron and optical microscopies confirm that under a range of conditions, the preparation of a uniform and phase-pure InSb film is possible. The cumulative results highlight this methodology as a simple yet potent strategy for the synthesis of intermetallic compounds of interest.

  11. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    Science.gov (United States)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  12. X-ray diffraction investigation of self-annealing in nanocrystalline copper electrodeposits

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2006-01-01

    X-ray diffraction analysis and electrical resistivity measurements were conducted simultaneously for in-situ examination of self-annealing in copper electrodeposits. Considerable growth of the as-deposited nano-sized crystallites occurs with time and the crystallographic texture changes by multip...... twinning during self-annealing. The kinetics of self-annealing depends on the layer thickness as well as on the orientation and/or the size of the as-deposited crystallites. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.......X-ray diffraction analysis and electrical resistivity measurements were conducted simultaneously for in-situ examination of self-annealing in copper electrodeposits. Considerable growth of the as-deposited nano-sized crystallites occurs with time and the crystallographic texture changes by multiple...

  13. The mechanism of electrodeposition of bismuth sulfide and cadmium sulfide from dimethylsulfoxide and diethylene glycol solution

    International Nuclear Information System (INIS)

    Gilbert, C.M.; Baranski, A.S.; Fawcett, W.R.

    1985-01-01

    The kinetics of the electrodeposition of Bi 2 S 3 on an electrode covered with a coherent layer of Bi 2 S 3 was examined by analysis of the Tafel plots for different solution compositions and at different temperatures in two nonaqueous solvents, dimethylsulfoxide (DMSO) and diethylene glycol (DEG). The results were compared with those obtained for the electrodeposition of CdS on CdS under similar conditions. In both cases, it was found that the rate-determining step was an irreversible electron transfer. The rate of the reaction was independent of the metal ion concentration, but electrochemical orders with respect to S 8 of 0.7 in DMSO and 1.0 in DEG were found. Several mechanisms explaining these results are proposed and discussed

  14. Optical properties of zinc oxide-based ternary compounds synthesized by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Cembrero, J. [Departament d' Enginyeria Mecanica i Materials, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Mollar, M.; Tortosa, M. [Departament de Fisica Aplicada, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Mari, B.

    2008-07-01

    Structure, morphology and optical properties of ZnO thin films grown by electrodeposition under different conditions changing both solvent (water or dimethylsulfoxide) and substrate (polycrystalline FTO or monocrystalline GaN) are reported. The results point out the advantage of using dimethylsulfoxide when uniform, oriented and highly transparent films are required. On the other hand electrodeposition in aqueous bath produces perfectly defined hexagonal ZnO columns which can be fully oriented by chosing a suitable substrate. Photoluminescence has only been observed for ZnO films grown in aqueous bath. Ternary compounds as ZnMO (M=Cd,Co,Mn) with a controlled ratio between both cations, and morphology and structure like binary ZnO can be easily obtained from dimethylsulfoxide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries

    International Nuclear Information System (INIS)

    Wei, Xia; Desai, Divyaraj; Yadav, Gautam G.; Turney, Damon E.; Couzis, Alexander; Banerjee, Sanjoy

    2016-01-01

    Electrochemical behavior of Ag, Bi, Cu, Fe, Ni and Sn substrates on zinc deposition was evaluated over battery cycling by cyclic voltammetry and electrochemical impedance spectroscopy. The effect of Bi, Cu, Ni, and Sn substrates on zinc electrodeposition during battery cycling was investigated using scanning electron microscopy and X-ray diffraction. The corrosion behavior of each metal in 9 M KOH and the corrosion rates of zinc plated on each substrate were analyzed by Tafel extrapolation method from the potentiodynamic polarization curves and electrochemical impedance spectroscopy. Although the charge-transfer resistance (R_c_t) of zinc electrodeposition is lowest on Sn, Sn eventually corrodes on cycling in alkaline media. Use of Ni as a substrate causes zinc to deteriorate on account of rapid hydrogen evolution. Bi and Cu substrates are more suitable for use as current collectors in zinc-anode alkaline rechargeable batteries because of their low corrosion rate and compact zinc deposition over battery cycling.

  16. Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells

    KAUST Repository

    Pasta, Mauro; Hu, Liangbing; La Mantia, Fabio; Cui, Yi

    2012-01-01

    In the present paper we propose a new anode material for glucose-gluconate direct oxidation fuel cells prepared by electrodepositing gold nanoparticles onto a conductive textile made by conformally coating single walled carbon nanotubes (SWNT) on a polyester textile substrate. The electrodeposition conditions were optimized in order to achieve a uniform distribution of gold nanoparticles in the 3D porous structure of the textile. On the basis of previously reported studies, the reaction conditions (pH, electrolyte composition and glucose concentration) were tuned in order to achieve the highest oxidation rate, selectively oxidizing glucose to gluconate. The electrochemical characterization was carried out by means of cyclic voltammetry. © 2012 Elsevier B.V. All rights reserved.

  17. Effect of plasma nitriding on electrodeposited Ni–Al composite coating

    DEFF Research Database (Denmark)

    Daemi, N.; Mahboubi, F.; Alimadadi, Hossein

    2011-01-01

    In this study plasma nitriding is applied on nickel–aluminum composite coating, deposited on steel substrate. Ni–Al composite layers were fabricated by electro-deposition process in Watt’s bath containing Al particles. Electrodeposited specimens were subjected to plasma atmosphere comprising of N2......–20% H2, at 500°C, for 5h. The surface morphology investigated, using a scanning electron microscope (SEM) and the surface roughness was measured by use of contact method. Chemical composition was analyzed by X-ray fluorescence spectroscopy and formation of AlN phase was confirmed by X-ray diffraction....... The corrosion resistance of composite coatings was measured by potentiodynamic polarization in 3.5% NaCl solution. The obtained results show that plasma nitriding process leads to an increase in microhardness and corrosion resistance, simultaneously....

  18. Fabrication and magnetization measurement of Ni thin films on silicon substrate by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences (China); Zhao Dongxu [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)], E-mail: dxzhao2000@yahoo.com.cn; Shen Dezhen; Zhang Jiying; Li Binghui; Lu Youming; Fan Xiwu [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)

    2008-02-29

    Ni thin films were electrodeposited on n-Si (100) substrate from the electrolytes containing Ni(CH{sub 3}COO){sub 2} and CH{sub 3}COONH{sub 4} at room temperature. The scanning electron microscope images of the films reveals the uniform distribution of the nickel all over the substrate surface, which illustrates that the fine Ni films on large scales could be obtained through the method of electrodeposition. Vibrating sample magnetometer measurement with the applied field parallel to the surface shows obvious hysteresis loops of the magnetic thin films. The morphology and magnetism of the Ni thin films evolves with the deposition time increasing. The effect of deposition conditions on the properties of the Ni thin films is investigated.

  19. Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-10-01

    We investigate the stability of electrodeposition at solid-solid interfaces for materials exhibiting an anisotropic mechanical response. The stability of electrodeposition or resistance to the formation of dendrites is studied within a linear stability analysis. The deformation and stress equations are solved using the Stroh formalism and faithfully recover the boundary conditions at the interface. The stability parameter is used to quantify the stability of different solid-solid interfaces incorporating the full anisotropy of the elastic tensor of the two materials. Results show a high degree of variability in the stability parameter depending on the crystallographic orientation of the solids in contact, and point to opportunities for exploiting this effect in developing Li metal anodes.

  20. Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method

    International Nuclear Information System (INIS)

    Gopi, D.; Shinyjoy, E.; Sekar, M.; Surendiran, M.; Kavitha, L.; Sampath Kumar, T.S.

    2013-01-01

    Highlights: •Successful development of CNTs reinforced HAP coating on Ti by electrodeposition. •CNTs as a reinforcing material imparts strength and toughness to HAP. •Incorporating CNTs improves crystallinity, morphology, biological properties of HAP. •CNTs–HAP coating on Ti is bioresistive, better candidate for implant applications. -- Abstract: Carbon nanotubes (CNTs) are outstanding reinforcement material for imparting strength and toughness to brittle hydroxyapatite (HAP). This work reports the electrodeposition of CNTs reinforced HAP on titanium substrate at −1.4 V vs. SCE during 30 min with the functionalised CNTs concentration ranging from 0 to 2 wt.%. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX), high resolution transmission electron microscopy (HRTEM), mechanical and biological studies were used to characterise the coatings. Also, the corrosion resistance of the coatings was evaluated by electrochemical techniques in simulated body fluid (SBF) solution