WorldWideScience

Sample records for reverse genetics approach

  1. Reverse genetics with animal viruses. NSV reverse genetics

    International Nuclear Information System (INIS)

    Mebatsion, T.

    2005-01-01

    New strategies to genetically manipulate the genomes of several important animal pathogens have been established in recent years. This article focuses on the reverse genetics techniques, which enables genetic manipulation of the genomes of non-segmented negative-sense RNA viruses. Recovery of a negative-sense RNA virus entirely from cDNA was first achieved for rabies virus in 1994. Since then, reverse genetic systems have been established for several pathogens of medical and veterinary importance. Based on the reverse genetics technique, it is now possible to design safe and more effective live attenuated vaccines against important viral agents. In addition, genetically tagged recombinant viruses can be designed to facilitate serological differentiation of vaccinated animals from infected animals. The approach of delivering protective immunogens of different pathogens using a single vector was made possible with the introduction of the reverse genetics system, and these novel broad-spectrum vaccine vectors have potential applications in improving animal health in developing countries. (author)

  2. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  3. A reverse genetics approach to study feline infectious peritonitis.

    Science.gov (United States)

    Tekes, Gergely; Spies, Danica; Bank-Wolf, Barbara; Thiel, Volker; Thiel, Heinz-Jürgen

    2012-06-01

    Feline infectious peritonitis (FIP) is a lethal immunopathological disease caused by feline coronaviruses (FCoVs). Here, we describe a reverse genetics approach to study FIP by assessing the pathogenicity of recombinant type I and type II and chimeric type I/type II FCoVs. All recombinant FCoVs established productive infection in cats, and recombinant type II FCoV (strain 79-1146) induced FIP. Virus sequence analyses from FIP-diseased cats revealed that the 3c gene stop codon of strain 79-1146 has changed to restore a full-length open reading frame (ORF).

  4. Reverse genetics of avian metapneumoviruses

    Science.gov (United States)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  5. Marburg Virus Reverse Genetics Systems

    Directory of Open Access Journals (Sweden)

    Kristina Maria Schmidt

    2016-06-01

    Full Text Available The highly pathogenic Marburg virus (MARV is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  6. Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach.

    Science.gov (United States)

    Albariño, César G; Guerrero, Lisa Wiggleton; Chakrabarti, Ayan K; Kainulainen, Markus H; Whitmer, Shannon L M; Welch, Stephen R; Nichol, Stuart T

    2016-09-01

    During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays. Published by Elsevier Inc.

  7. Genetic dissection of behavioral flexibility: reversal learning in mice.

    Science.gov (United States)

    Laughlin, Rick E; Grant, Tara L; Williams, Robert W; Jentsch, J David

    2011-06-01

    Behavioral inflexibility is a feature of schizophrenia, attention-deficit/hyperactivity disorder, and behavior addictions that likely results from heritable deficits in the inhibitory control over behavior. Here, we investigate the genetic basis of individual differences in flexibility, measured using an operant reversal learning task. We quantified discrimination acquisition and subsequent reversal learning in a cohort of 51 BXD strains of mice (2-5 mice/strain, n = 176) for which we have matched data on sequence, gene expression in key central nervous system regions, and neuroreceptor levels. Strain variation in trials to criterion on acquisition and reversal was high, with moderate heritability (∼.3). Acquisition and reversal learning phenotypes did not covary at the strain level, suggesting that these traits are effectively under independent genetic control. Reversal performance did covary with dopamine D2 receptor levels in the ventral midbrain, consistent with a similar observed relationship between impulsivity and D2 receptors in humans. Reversal, but not acquisition, is linked to a locus on mouse chromosome 10 with a peak likelihood ratio statistic at 86.2 megabase (p work demonstrates the clear trait independence between, and genetic control of, discrimination acquisition and reversal and illustrates how globally coherent data sets for a single panel of highly related strains can be interrogated and integrated to uncover genetic sources and molecular and neuropharmacological candidates of complex behavioral traits relevant to human psychopathology. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines.

    Science.gov (United States)

    Zhang, Yu; Sun, Jing; Wei, Yongwei; Li, Jianrong

    2016-01-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.

  9. Expanding the Lotus japonicus reverse genetics toolbox – Development of LORE1 retrotransposon mutagenesis and artificial miRNA-mediated silencing

    DEFF Research Database (Denmark)

    Urbanski, Dorian Fabian

    2011-01-01

    . The protocols developed in the current project are now the cornerstone of a new LORE1 reverse genetics resource characterized by efficient mutant line generation and accurate mutation annotation. In parallel, artificial microRNAs (amiRNAs) were designed based on both Arabidopsis and Lotus backbones......Currently, the most common approach to studying Lotus japonicus (Lotus) genes is forward genetics in which a gene responsible for the studied phenotype is identified through map-based cloning. In reverse genetics, the activity of a gene of interest is modified to discover its mutant phenotype....... Prior to this project, the only reverse genetics resource available in Lotus was the TILLING resource. In an attempt to advance Lotus genetic studies, present study is focused on the development of two additional resources. The first is based on insertional mutagenesis and the second on harnessing post...

  10. Genetic Synthesis of New Reversible/Quantum Ternary Comparator

    Directory of Open Access Journals (Sweden)

    DEIBUK, V.

    2015-08-01

    Full Text Available Methods of quantum/reversible logic synthesis are based on the use of the binary nature of quantum computing. However, multiple-valued logic is a promising choice for future quantum computer technology due to a number of advantages over binary circuits. In this paper we have developed a synthesis of ternary reversible circuits based on Muthukrishnan-Stroud gates using a genetic algorithm. The method of coding chromosome is presented, and well-grounded choice of algorithm parameters allowed obtaining better circuit schemes of one- and n-qutrit ternary comparators compared with other methods. These parameters are quantum cost of received reversible devices, delay time and number of constant input (ancilla lines. Proposed implementation of the genetic algorithm has led to reducing of the device delay time and the number of ancilla qutrits to 1 and 2n-1 for one- and n-qutrits full comparators, respectively. For designing of n-qutrit comparator we have introduced a complementary device which compares output functions of 1-qutrit comparators.

  11. Manipulations in maternal environment reverse periodontitis in genetically predisposed rats.

    NARCIS (Netherlands)

    Sluyter, F.; Breivik, T.; Cools, A.R.

    2002-01-01

    The predisposition to develop periodontitis is partly genetically determined in humans as well as in animals. Here we demonstrate, however, that early manipulations in the maternal environment of an animal (rat) model of periodontitis can fully reverse the genetic predisposition to develop

  12. Haiku: New paradigm for the reverse genetics of emerging RNA viruses.

    Directory of Open Access Journals (Sweden)

    Thérèse Atieh

    Full Text Available Reverse genetics is key technology for producing wild-type and genetically modified viruses. The ISA (Infectious Subgenomic Amplicons method is a recent versatile and user-friendly reverse genetics method to rescue RNA viruses. The main constraint of its canonic protocol was the requirement to produce (e.g., by DNA synthesis or fusion PCR 5' and 3' modified genomic fragments encompassing the human cytomegalovirus promoter (pCMV and the hepatitis delta virus ribozyme/simian virus 40 polyadenylation signal (HDR/SV40pA, respectively. Here, we propose the ultimately simplified "Haiku" designs in which terminal pCMV and HDR/SV40pA sequences are provided as additional separate DNA amplicons. This improved procedure was successfully applied to the rescue of a wide range of viruses belonging to genera Flavivirus, Alphavirus and Enterovirus in mosquito or mammalian cells using only standard PCR amplification techniques and starting from a variety of original materials including viral RNAs extracted from cell supernatant media or animal samples. We also demonstrate that, in specific experimental conditions, the presence of the HDR/SV40pA is not necessary to rescue the targeted viruses. These ultimately simplified "Haiku" designs provide an even more simple, rapid, versatile and cost-effective tool to rescue RNA viruses since only generation of overlapping amplicons encompassing the entire viral genome is now required to generate infectious virus. This new approach may completely modify our capacity to obtain infectious RNA viruses.

  13. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    Science.gov (United States)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  14. Manipulations in Maternal Environment Reverse Periodontitis in Genetically Predisposed Rats

    Science.gov (United States)

    Sluyter, Frans; Breivik, Torbjørn; Cools, Alexander

    2002-01-01

    The predisposition to develop periodontitis is partly genetically determined in humans as well as in animals. Here we demonstrate, however, that early manipulations in the maternal environment of an animal (rat) model of periodontitis can fully reverse the genetic predisposition to develop periodontitis at adult age. PMID:12093700

  15. [Reverse genetics system of rotaviruses: development and application for analysis of VP4 spike protein].

    Science.gov (United States)

    Komoto, Satoshi

    2013-01-01

    The rotavirus genome is composed of 11 gene segments of double-stranded (ds)RNA. Reverse genetics is the powerful and ideal methodology for the molecular analysis of virus biology, which enables the virus genome to be artificially manipulated. Although reverse genetics systems exist for nearly all major groups of RNA viruses, development of such a system for rotaviruses is more challenging owing in part to the technical complexity of manipulation of their multi-segmented genome. A breakthrough in the field of rotavirus reverse genetics came in 2006, when we established the first reverse genetics system for rotaviruses, which is a partially plasmid-based system that permits replacement of a viral gene segment with the aid of a helper virus. Although this helper virus-driven system is technically limited and gives low levels of recombinant viruses, it allows alteration of the rotavirus genome, thus contributing to our understanding of these medically important viruses. In this review, I describe the development and application of our rotavirus reverse genetics system, and its future perspectives.

  16. Generation of Recombinant Ebola Viruses Using Reverse Genetics.

    Science.gov (United States)

    Groseth, Allison

    2017-01-01

    Reverse genetics systems encompass a wide array of tools aimed at recapitulating some or all of the virus life cycle. In their most complete form, full-length clone systems allow us to use plasmid-encoded versions of the ribonucleoprotein (RNP) components to initiate the transcription and replication of a plasmid-encoded version of the complete viral genome, thereby initiating the complete virus life cycle and resulting in infectious virus. As such this approach is ideal for the generation of tailor-made recombinant filoviruses, which can be used to study virus biology. In addition, the generation of tagged and particularly fluorescent or luminescent viruses can be applied as tools for both diagnostic applications and for screening to identify novel countermeasures. Here we describe the generation and basic characterization of recombinant Ebola viruses rescued from cloned cDNA using a T7-driven system.

  17. Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering

    Science.gov (United States)

    Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland

    2000-01-01

    Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.

  18. Tackling feline infectious peritonitis via reverse genetics.

    Science.gov (United States)

    Thiel, Volker; Thiel, Heinz-Jürgen; Tekes, Gergely

    2014-01-01

    Feline infectious peritonitis (FIP) is caused by feline coronaviruses (FCoVs) and represents one of the most important lethal infectious diseases of cats. To date, there is no efficacious prevention and treatment, and our limited knowledge on FIP pathogenesis is mainly based on analysis of experiments with field isolates. In a recent study, we reported a promising approach to study FIP pathogenesis using reverse genetics. We generated a set of recombinant FCoVs and investigated their pathogenicity in vivo. The set included the type I FCoV strain Black, a type I FCoV strain Black with restored accessory gene 7b, two chimeric type I/type II FCoVs and the highly pathogenic type II FCoV strain 79-1146. All recombinant FCoVs and the reference strain isolates were found to establish productive infections in cats. While none of the type I FCoVs and chimeric FCoVs induced FIP, the recombinant type II FCoV strain 79-1146 was as pathogenic as the parental isolate. Interestingly, an intact ORF 3c was confirmed to be restored in all viruses (re)isolated from FIP-diseased animals.

  19. Genetic reversion of inherited skin disorders

    Energy Technology Data Exchange (ETDEWEB)

    Magnaldo, Thierry; Sarasin, Alain

    2002-11-30

    Human epidermis is a squamous stratified epithelium whose integrity relies on balanced processes of cell attachment, proliferation, and differentiation. In monogenic skin dermatoses, such as mecano-bullous diseases, or DNA repair deficiencies such as the xeroderma pigmentosum (XP), alterations of skin integrity may have devastating consequences as illustrated by the extremely high epidermal cancer proneness of XP patients. The lack of efficient pharmacological treatments, the easy accessibility of skin, and the possibility of long term culture and genetic manipulations ex vivo of epidermal keratinocytes, have encouraged approaches toward gene transfer and skin therapy prospects. We review here some of the human genetic disorders that exhibit major traits in skin, as well as requirements and difficulties inherent to approaches aimed at stable phenotypic correction.

  20. A Predictive Approach to Network Reverse-Engineering

    Science.gov (United States)

    Wiggins, Chris

    2005-03-01

    A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.

  1. Construction and characterisation of a complete reverse genetics system of dengue virus type 3

    Directory of Open Access Journals (Sweden)

    Jefferson Jose da Silva Santos

    2013-12-01

    Full Text Available Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.

  2. Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture.

    Science.gov (United States)

    Komoto, Satoshi; Kanai, Yuta; Fukuda, Saori; Kugita, Masanori; Kawagishi, Takahiro; Ito, Naoto; Sugiyama, Makoto; Matsuura, Yoshiharu; Kobayashi, Takeshi; Taniguchi, Koki

    2017-11-01

    The use of overlapping open reading frames (ORFs) to synthesize more than one unique protein from a single mRNA has been described for several viruses. Segment 11 of the rotavirus genome encodes two nonstructural proteins, NSP5 and NSP6. The NSP6 ORF is present in the vast majority of rotavirus strains, and therefore the NSP6 protein would be expected to have a function in viral replication. However, there is no direct evidence of its function or requirement in the viral replication cycle yet. Here, taking advantage of a recently established plasmid-only-based reverse genetics system that allows rescue of recombinant rotaviruses entirely from cloned cDNAs, we generated NSP6-deficient viruses to directly address its significance in the viral replication cycle. Viable recombinant NSP6-deficient viruses could be engineered. Single-step growth curves and plaque formation of the NSP6-deficient viruses confirmed that NSP6 expression is of limited significance for RVA replication in cell culture, although the NSP6 protein seemed to promote efficient virus growth. IMPORTANCE Rotavirus is one of the most important pathogens of severe diarrhea in young children worldwide. The rotavirus genome, consisting of 11 segments of double-stranded RNA, encodes six structural proteins (VP1 to VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). Although specific functions have been ascribed to each of the 12 viral proteins, the role of NSP6 in the viral replication cycle remains unknown. In this study, we demonstrated that the NSP6 protein is not essential for viral replication in cell culture by using a recently developed plasmid-only-based reverse genetics system. This reverse genetics approach will be successfully applied to answer questions of great interest regarding the roles of rotaviral proteins in replication and pathogenicity, which can hardly be addressed by conventional approaches. Copyright © 2017 American Society for Microbiology.

  3. Female genital mutilation reversal: a general approach.

    Science.gov (United States)

    Anand, Mallika; Stanhope, Todd J; Occhino, John A

    2014-07-01

    Female genital mutilation (FGM) is a violation of human rights; yet, more than 100 million females are estimated to have undergone the procedure worldwide. There is an increased need for physician education in treating FGM. Female pelvic surgeons have a unique opportunity to treat this population of patients. Here, we depict the classification of FGM and a general approach to FGM reversal. We specifically address the procedure of type III FGM reversal, or defibulation. In this video, we first highlight the importance of the problem of FGM. Next, we present the classification of FGM using an original, simple, schematic diagram highlighting they key anatomic structures involved in the four types of FGM. We then present a simple case of reversal of type III FGM, a procedure also known as defibulation. After depicting the surgical procedure, we discuss clinical results and summarize key principles of the defibulation procedure. Our patient was a 25-year-old woman who had undergone type III FGM as a child in Somalia. She desired restoration of vaginal function. We performed a reversal, and her postoperative course was uncomplicated. By 6 weeks postoperatively, she was able to engage in sexual intercourse without dyspareunia. FGM is a problem at the doorsteps of female pelvic medicine and reconstructive surgery. Our video demonstrates a basic surgical approach that can be applied to simple cases of type III FGM presenting to the female pelvic surgeon.

  4. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    Science.gov (United States)

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  5. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    Science.gov (United States)

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  7. Design of a Multiobjective Reverse Logistics Network Considering the Cost and Service Level

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2012-01-01

    Full Text Available Reverse logistics, which is induced by various forms of used products and materials, has received growing attention throughout this decade. In a highly competitive environment, the service level is an important criterion for reverse logistics network design. However, most previous studies about product returns only focused on the total cost of the reverse logistics and neglected the service level. To help a manufacturer of electronic products provide quality postsale repair service for their consumer, this paper proposes a multiobjective reverse logistics network optimisation model that considers the objectives of the cost, the total tardiness of the cycle time, and the coverage of customer zones. The Nondominated Sorting Genetic Algorithm II (NSGA-II is employed for solving this multiobjective optimisation model. To evaluate the performance of NSGA-II, a genetic algorithm based on weighted sum approach and Multiobjective Simulated Annealing (MOSA are also applied. The performance of these three heuristic algorithms is compared using numerical examples. The computational results show that NSGA-II outperforms MOSA and the genetic algorithm based on weighted sum approach. Furthermore, the key parameters of the model are tested, and some conclusions are drawn.

  8. A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination

    NARCIS (Netherlands)

    van Beurden, Steven J; Berends, Alinda J; Krämer-Kühl, Annika; Spekreijse, Dieuwertje; Chénard, Gilles; Philipp, Hans-Christian; Mundt, Egbert; Rottier, Peter J M; Verheije, M Hélène

    2017-01-01

    BACKGROUND: Avian coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens that causes severe economic losses in the poultry industry worldwide. Major advances in the study of the molecular biology of IBV have resulted from the development of reverse genetics systems for

  9. Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse.

    Directory of Open Access Journals (Sweden)

    Tia DiTommaso

    2014-10-01

    Full Text Available The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP. A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1, while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1. The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation.

  10. A HYBRID GENETIC ALGORITHM-NEURAL NETWORK APPROACH FOR PRICING CORES AND REMANUFACTURED CORES

    Directory of Open Access Journals (Sweden)

    M. Seidi

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT:Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. Remanufacturing is an industrial process that makes used products reusable. One of the important aspects in both reverse logistics and remanufacturing is the pricing of returned and remanufactured products (called cores. In this paper, we focus on pricing the cores and remanufactured cores. First we present a mathematical model for this purpose. Since this model does not satisfy our requirements, we propose a simulation optimisation approach. This approach consists of a hybrid genetic algorithm based on a neural network employed as the fitness function. We use automata learning theory to obtain the learning rate required for training the neural network. Numerical results demonstrate that the optimal value of the acquisition price of cores and price of remanufactured cores is obtained by this approach.

    AFRIKAANSE OPSOMMING: Volhoubaarheid het ‘n belangrike saak geword in die meeste ekonomieë, wat verskeie maatskappye genoop het om produkherwinning en omgekeerde logistiek te onder oë te neem. Hervervaardiging is ‘n industriële proses wat gebruikte produkte weer bruikbaar maak. Een van die belangrike aspekte in beide omgekeerde logistiek en hervervaardiging is die prysbepaling van herwinne en hervervaardigde produkte. Hierdie artikel fokus op die prysbepalingsaspekte by wyse van ‘n wiskundige model.

  11. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    Science.gov (United States)

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  12. A Survey of Automatic Protocol Reverse Engineering Approaches, Methods, and Tools on the Inputs and Outputs View

    Directory of Open Access Journals (Sweden)

    Baraka D. Sija

    2018-01-01

    Full Text Available A network protocol defines rules that control communications between two or more machines on the Internet, whereas Automatic Protocol Reverse Engineering (APRE defines the way of extracting the structure of a network protocol without accessing its specifications. Enough knowledge on undocumented protocols is essential for security purposes, network policy implementation, and management of network resources. This paper reviews and analyzes a total of 39 approaches, methods, and tools towards Protocol Reverse Engineering (PRE and classifies them into four divisions, approaches that reverse engineer protocol finite state machines, protocol formats, and both protocol finite state machines and protocol formats to approaches that focus directly on neither reverse engineering protocol formats nor protocol finite state machines. The efficiency of all approaches’ outputs based on their selected inputs is analyzed in general along with appropriate reverse engineering inputs format. Additionally, we present discussion and extended classification in terms of automated to manual approaches, known and novel categories of reverse engineered protocols, and a literature of reverse engineered protocols in relation to the seven layers’ OSI (Open Systems Interconnection model.

  13. Directed genetic modification of African horse sickness virus by reverse genetics

    Directory of Open Access Journals (Sweden)

    Elaine Vermaak

    2015-07-01

    Full Text Available African horse sickness virus (AHSV, a member of the Orbivirus genus in the family Reoviridae, is an arthropod-transmitted pathogen that causes a devastating disease in horses with a mortality rate greater than 90%. Fundamental research on AHSV and the development of safe, efficacious vaccines could benefit greatly from an uncomplicated genetic modification method to generate recombinant AHSV. We demonstrate that infectious AHSV can be recovered by transfection of permissive mammalian cells with transcripts derived in vitro from purified AHSV core particles. These findings were expanded to establish a genetic modification system for AHSV that is based on transfection of the cells with a mixture of purified core transcripts and a synthetic T7 transcript. This approach was applied successfully to recover a directed cross-serotype reassortant AHSV and to introduce a marker sequence into the viral genome. The ability to manipulate the AHSV genome and engineer specific mutants will increase understanding of AHSV replication and pathogenicity, as well as provide a tool for generating designer vaccine strains.

  14. Reversibility of hepatocyte nuclear modifications in mice fed on genetically modified soybean

    Directory of Open Access Journals (Sweden)

    M Malatesta

    2009-06-01

    Full Text Available In the literature, the reports on the effects of a genetically modified (GM diet are scanty and heterogeneous; in particular, no direct evidence has so far been reported that GM food may affect human or animal health. Hepatocytes represent a suitable model for monitoring the effects of a GM diet, the liver potentially being a primary target. In a previous study, we demonstrated that some modifications occur in hepatocyte nuclei of mice fed on GM soybean. In order to elucidate whether such modifications can be reversed, in the present study, 3 months old mice fed on GM soybean since their weaning were submitted to a diet containing wild type soybean only, for one month. In parallel, to investigate the influence of GM soybean on adult individuals, mice fed on wild type soybean were changed to a GM diet, for the same time. Using immunoelectron microscopy, we demonstrated that a one-month diet reversion can influence some nuclear features in adult mice, restoring typical characteristics of controls in GM-fed animals, and inducing in control mice modifications similar to those observed in animals fed on GM soybean from weaning. This suggests that the modifications related to GM soybean are potentially reversible, but also that some modifications are inducible in adult organisms in a short time.

  15. A “genetics first” approach to selection

    Science.gov (United States)

    A different approach for using genomic information in genetic improvement is proposed. Past research in population genetics and animal breeding combined with information on sequence variants suggest the possibility that selection might be able to capture a portion of inbreeding and heterosis effect...

  16. Some new approaches to the study of the Earth's magnetic field reversals

    Directory of Open Access Journals (Sweden)

    G. Consolini

    2003-06-01

    Full Text Available Paleomagnetic studies clearly show that the polarity of the magnetic fi eld has been subject to reversals. It is generally assumed that polarity intervals are exponentially distributed. Here, the geomagnetic polarity reversal record, for the past 166 Ma, is analysed and a new approach to the study of the reversals is presented. In detail, the occurrence of 1/f-noise in the Power Spectral Density (PSD, relative to geomagnetic fi eld reversals, the existence of a Zipf's law behaviour for the cumulative distribution of polarity intervals, and the occurrence of punctuated equilibrium, as shown by a sort of Devil's staircase for the reversal time series, are investigated. Our results give a preliminary picture of the dynamical state of the geomagnetic dynamo suggesting that the geodynamo works in a marginally stable out-of-equilibrium confi guration, and that polarity reversals are equivalent to a sort of phase transition between two metastable states.

  17. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Directory of Open Access Journals (Sweden)

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  18. Genetic approaches in comparative and evolutionary physiology

    Science.gov (United States)

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  19. A macrothermodynamic approach to the limit of reversible capillary condensation.

    Science.gov (United States)

    Trens, Philippe; Tanchoux, Nathalie; Galarneau, Anne; Brunel, Daniel; Fubini, Bice; Garrone, Edoardo; Fajula, François; Di Renzo, Francesco

    2005-08-30

    The threshold of reversible capillary condensation is a well-defined thermodynamic property, as evidenced by corresponding states treatment of literature and experimental data on the lowest closure point of the hysteresis loop in capillary condensation-evaporation cycles for several adsorbates. The nonhysteretical filling of small mesopores presents the properties of a first-order phase transition, confirming that the limit of condensation reversibility does not coincide with the pore critical point. The enthalpy of reversible capillary condensation can be calculated by a Clausius-Clapeyron approach and is consistently larger than the condensation heat in unconfined conditions. Calorimetric data on the capillary condensation of tert-butyl alcohol in MCM-41 silica confirm a 20% increase of condensation heat in small mesopores. This enthalpic advantage makes easier the overcoming of the adhesion forces by the capillary forces and justifies the disappearing of the hysteresis loop.

  20. Inappropriate use of the quasi-reversible electrode kinetic model in simulation-experiment comparisons of voltammetric processes that approach the reversible limit.

    Science.gov (United States)

    Simonov, Alexandr N; Morris, Graham P; Mashkina, Elena A; Bethwaite, Blair; Gillow, Kathryn; Baker, Ruth E; Gavaghan, David J; Bond, Alan M

    2014-08-19

    Many electrode processes that approach the "reversible" (infinitely fast) limit under voltammetric conditions have been inappropriately analyzed by comparison of experimental data and theory derived from the "quasi-reversible" model. Simulations based on "reversible" and "quasi-reversible" models have been fitted to an extensive series of a.c. voltammetric experiments undertaken at macrodisk glassy carbon (GC) electrodes for oxidation of ferrocene (Fc(0/+)) in CH3CN (0.10 M (n-Bu)4NPF6) and reduction of [Ru(NH3)6](3+) and [Fe(CN)6](3-) in 1 M KCl aqueous electrolyte. The confidence with which parameters such as standard formal potential (E(0)), heterogeneous electron transfer rate constant at E(0) (k(0)), charge transfer coefficient (α), uncompensated resistance (Ru), and double layer capacitance (CDL) can be reported using the "quasi-reversible" model has been assessed using bootstrapping and parameter sweep (contour plot) techniques. Underparameterization, such as that which occurs when modeling CDL with a potential independent value, results in a less than optimal level of experiment-theory agreement. Overparameterization may improve the agreement but easily results in generation of physically meaningful but incorrect values of the recovered parameters, as is the case with the very fast Fc(0/+) and [Ru(NH3)6](3+/2+) processes. In summary, for fast electrode kinetics approaching the "reversible" limit, it is recommended that the "reversible" model be used for theory-experiment comparisons with only E(0), Ru, and CDL being quantified and a lower limit of k(0) being reported; e.g., k(0) ≥ 9 cm s(-1) for the Fc(0/+) process.

  1. Inappropriate Use of the Quasi-Reversible Electrode Kinetic Model in Simulation-Experiment Comparisons of Voltammetric Processes That Approach the Reversible Limit

    KAUST Repository

    Simonov, Alexandr N.

    2014-08-19

    Many electrode processes that approach the "reversible" (infinitely fast) limit under voltammetric conditions have been inappropriately analyzed by comparison of experimental data and theory derived from the "quasi-reversible" model. Simulations based on "reversible" and "quasi-reversible" models have been fitted to an extensive series of a.c. voltammetric experiments undertaken at macrodisk glassy carbon (GC) electrodes for oxidation of ferrocene (Fc0/+) in CH3CN (0.10 M (n-Bu)4NPF6) and reduction of [Ru(NH 3)6]3+ and [Fe(CN)6]3- in 1 M KCl aqueous electrolyte. The confidence with which parameters such as standard formal potential (E0), heterogeneous electron transfer rate constant at E0 (k0), charge transfer coefficient (α), uncompensated resistance (Ru), and double layer capacitance (CDL) can be reported using the "quasi- reversible" model has been assessed using bootstrapping and parameter sweep (contour plot) techniques. Underparameterization, such as that which occurs when modeling CDL with a potential independent value, results in a less than optimal level of experiment-theory agreement. Overparameterization may improve the agreement but easily results in generation of physically meaningful but incorrect values of the recovered parameters, as is the case with the very fast Fc0/+ and [Ru(NH3)6]3+/2+ processes. In summary, for fast electrode kinetics approaching the "reversible" limit, it is recommended that the "reversible" model be used for theory-experiment comparisons with only E0, R u, and CDL being quantified and a lower limit of k 0 being reported; e.g., k0 ≥ 9 cm s-1 for the Fc0/+ process. © 2014 American Chemical Society.

  2. Inappropriate Use of the Quasi-Reversible Electrode Kinetic Model in Simulation-Experiment Comparisons of Voltammetric Processes That Approach the Reversible Limit

    KAUST Repository

    Simonov, Alexandr N.; Morris, Graham P.; Mashkina, Elena A.; Bethwaite, Blair; Gillow, Kathryn; Baker, Ruth E.; Gavaghan, David J.; Bond, Alan M.

    2014-01-01

    Many electrode processes that approach the "reversible" (infinitely fast) limit under voltammetric conditions have been inappropriately analyzed by comparison of experimental data and theory derived from the "quasi-reversible" model. Simulations based on "reversible" and "quasi-reversible" models have been fitted to an extensive series of a.c. voltammetric experiments undertaken at macrodisk glassy carbon (GC) electrodes for oxidation of ferrocene (Fc0/+) in CH3CN (0.10 M (n-Bu)4NPF6) and reduction of [Ru(NH 3)6]3+ and [Fe(CN)6]3- in 1 M KCl aqueous electrolyte. The confidence with which parameters such as standard formal potential (E0), heterogeneous electron transfer rate constant at E0 (k0), charge transfer coefficient (α), uncompensated resistance (Ru), and double layer capacitance (CDL) can be reported using the "quasi- reversible" model has been assessed using bootstrapping and parameter sweep (contour plot) techniques. Underparameterization, such as that which occurs when modeling CDL with a potential independent value, results in a less than optimal level of experiment-theory agreement. Overparameterization may improve the agreement but easily results in generation of physically meaningful but incorrect values of the recovered parameters, as is the case with the very fast Fc0/+ and [Ru(NH3)6]3+/2+ processes. In summary, for fast electrode kinetics approaching the "reversible" limit, it is recommended that the "reversible" model be used for theory-experiment comparisons with only E0, R u, and CDL being quantified and a lower limit of k 0 being reported; e.g., k0 ≥ 9 cm s-1 for the Fc0/+ process. © 2014 American Chemical Society.

  3. Simulation Approach for Timing Analysis of Genetic Logic Circuits

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    2017-01-01

    in a manner similar to electronic logic circuits, but they are much more stochastic and hence much harder to characterize. In this article, we introduce an approach to analyze the threshold value and timing of genetic logic circuits. We show how this approach can be used to analyze the timing behavior...... of single and cascaded genetic logic circuits. We further analyze the timing sensitivity of circuits by varying the degradation rates and concentrations. Our approach can be used not only to characterize the timing behavior but also to analyze the timing constraints of cascaded genetic logic circuits...

  4. S.I. : Genetic pathways to Neurodegeneration Pathways to ...

    Indian Academy of Sciences (India)

    proteopathies) (Sweeney · et al. ... study of human diseases using forward and reverse genetics approaches (Lenz et al. 2013). The ... neuronal health and synapse development (Mehta et al. 2005) in ...... meta-analysis of neurodegenerative diseases.

  5. Quantum Genetics in terms of Quantum Reversible Automata and Quantum Computation of Genetic Codes and Reverse Transcription

    CERN Document Server

    Baianu,I C

    2004-01-01

    The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In previous publications (Baianu,1971a, b) the formal concept of quantum automaton and quantum computation, respectively, were introduced and their possible implications for genetic processes and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural transformations (Baianu,1971b; 1977; 1987; 2004; Baianu et al, 2004). The notions of topological semigroup, quantum automaton, or quantum computer, were then suggested with a view to their potential applications to the analogous simulation of biological systems, and especially genetic activities and nonlinear dynamics in genetic networks. Further, detailed studies of nonlinear dynamics in genetic networks were carried out in categories of n-valued, Lukasiewicz Logic Algebra...

  6. A multiobjective approach to the genetic code adaptability problem.

    Science.gov (United States)

    de Oliveira, Lariza Laura; de Oliveira, Paulo S L; Tinós, Renato

    2015-02-19

    The organization of the canonical code has intrigued researches since it was first described. If we consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51×10(84) possible genetic codes. The main question related to the organization of the genetic code is why exactly the canonical code was selected among this huge number of possible genetic codes. Many researchers argue that the organization of the canonical code is a product of natural selection and that the code's robustness against mutations would support this hypothesis. In order to investigate the natural selection hypothesis, some researches employ optimization algorithms to identify regions of the genetic code space where best codes, according to a given evaluation function, can be found (engineering approach). The optimization process uses only one objective to evaluate the codes, generally based on the robustness for an amino acid property. Only one objective is also employed in the statistical approach for the comparison of the canonical code with random codes. We propose a multiobjective approach where two or more objectives are considered simultaneously to evaluate the genetic codes. In order to test our hypothesis that the multiobjective approach is useful for the analysis of the genetic code adaptability, we implemented a multiobjective optimization algorithm where two objectives are simultaneously optimized. Using as objectives the robustness against mutation with the amino acids properties polar requirement (objective 1) and robustness with respect to hydropathy index or molecular volume (objective 2), we found solutions closer to the canonical genetic code in terms of robustness, when compared with the results using only one objective reported by other authors. Using more objectives, more optimal solutions are obtained and, as a consequence, more information can be used to investigate the adaptability of the genetic code. The multiobjective approach

  7. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-10-15

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.

  8. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    International Nuclear Information System (INIS)

    Albariño, César G.; Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-01-01

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies

  9. Sex Reversal in Birds.

    Science.gov (United States)

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  10. Therapeutic approaches to genetic disorders

    African Journals Online (AJOL)

    salah

    Although prevention is the ideal goal for genetic disorders, various types of therapeutic ... The patient being ... pirical or aimed at controlling or mediating signs and symptoms without care. ... plications and gene therapy approaches .... genes family, have opened a wide and .... cancer where nanoparticles are used to.

  11. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics

    Science.gov (United States)

    2012-01-01

    Background Foot-and-mouth disease (FMD) is the most economically important and highly contagious disease of cloven-hoofed animals worldwide. Control of the disease has been mainly based on large-scale vaccinations with whole-virus inactivated vaccines. In recent years, a series of outbreaks of type O FMD occurred in China (including Chinese Taipei, Chinese Hong Kong) posed a tremendous threat to Chinese animal husbandry. Its causative agent, type O FMDV, has evolved into three topotypes (East–South Asia (ME-SA), Southeast Asia (SEA), Cathay (CHY)) in these regions, which represents an important obstacle to disease control. The available FMD vaccine in China shows generally good protection against ME-SA and SEA topotype viruses infection, but affords insufficient protection against some variants of the CHY topotype. Therefore, the choice of a new vaccine strain is of fundamental importance. Results The present study describes the generation of a full-length infectious cDNA clone of FMDV vaccine strain and a genetically modified virus with some amino acid substitutions in antigenic sites 1, 3, and 4, based on the established infectious clone. The recombinant viruses had similar growth properties to the wild O/HN/CHA/93 virus. All swine immunized with inactivated vaccine prepared from the O/HN/CHA/93 were fully protected from challenge with the viruses of ME-SA and SEA topotypes and partially protected against challenge with the virus of CHY topotype at 28 days post-immunization. In contrast, the swine inoculated with the genetically modified vaccine were completely protected from the infection of viruses of the three topotypes. Conclusions Some amino acid substitutions in the FMDV vaccine strain genome did not have an effect on the ability of viral replication in vitro. The vaccine prepared from genetically modified FMDV by reverse genetics significantly improved the protective efficacy to the variant of the CHY topotype, compared with the wild O/HN/CHA/93 virus

  12. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics

    Directory of Open Access Journals (Sweden)

    Li Pinghua

    2012-05-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is the most economically important and highly contagious disease of cloven-hoofed animals worldwide. Control of the disease has been mainly based on large-scale vaccinations with whole-virus inactivated vaccines. In recent years, a series of outbreaks of type O FMD occurred in China (including Chinese Taipei, Chinese Hong Kong posed a tremendous threat to Chinese animal husbandry. Its causative agent, type O FMDV, has evolved into three topotypes (East–South Asia (ME-SA, Southeast Asia (SEA, Cathay (CHY in these regions, which represents an important obstacle to disease control. The available FMD vaccine in China shows generally good protection against ME-SA and SEA topotype viruses infection, but affords insufficient protection against some variants of the CHY topotype. Therefore, the choice of a new vaccine strain is of fundamental importance. Results The present study describes the generation of a full-length infectious cDNA clone of FMDV vaccine strain and a genetically modified virus with some amino acid substitutions in antigenic sites 1, 3, and 4, based on the established infectious clone. The recombinant viruses had similar growth properties to the wild O/HN/CHA/93 virus. All swine immunized with inactivated vaccine prepared from the O/HN/CHA/93 were fully protected from challenge with the viruses of ME-SA and SEA topotypes and partially protected against challenge with the virus of CHY topotype at 28 days post-immunization. In contrast, the swine inoculated with the genetically modified vaccine were completely protected from the infection of viruses of the three topotypes. Conclusions Some amino acid substitutions in the FMDV vaccine strain genome did not have an effect on the ability of viral replication in vitro. The vaccine prepared from genetically modified FMDV by reverse genetics significantly improved the protective efficacy to the variant of the CHY topotype, compared with the

  13. Critical Perspectives of Pedagogical Approaches to Reversing the Order of Integration in Double Integrals

    Science.gov (United States)

    Tisdell, Christopher C.

    2017-01-01

    This paper presents some critical perspectives regarding pedagogical approaches to the method of reversing the order of integration in double integrals from prevailing educational literature on multivariable calculus. First, we question the message found in popular textbooks that the traditional process of reversing the order of integration is…

  14. Subcriticality calculations for the FFTF reverse approach to critical experiment

    International Nuclear Information System (INIS)

    Selby, D.L.; Flanagan, G.F.

    1975-01-01

    The reverse approach to critical (RAC) experiments were performed in the ZPR-IX critical facility at Argonne National Laboratory. One of the major objectives of this project is to determine the adequacy of the low-level flux monitor (LLFM) detectors for initial loading of the Fast Flux Test Facility (FFTF). 5 references

  15. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    Science.gov (United States)

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  16. Comparative Approaches to Genetic Discrimination: Chasing Shadows?

    Science.gov (United States)

    Joly, Yann; Feze, Ida Ngueng; Song, Lingqiao; Knoppers, Bartha M

    2017-05-01

    Genetic discrimination (GD) is one of the most pervasive issues associated with genetic research and its large-scale implementation. An increasing number of countries have adopted public policies to address this issue. Our research presents a worldwide comparative review and typology of these approaches. We conclude with suggestions for public policy development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dynamic traffic assignment : genetic algorithms approach

    Science.gov (United States)

    1997-01-01

    Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...

  18. The behavioural consequences of sex reversal in dragons

    Science.gov (United States)

    Li, Hong; Holleley, Clare E.; Elphick, Melanie; Georges, Arthur

    2016-01-01

    Sex differences in morphology, physiology, and behaviour are caused by sex-linked genes, as well as by circulating sex-steroid levels. Thus, a shift from genotypic to environmental sex determination may create an organism that exhibits a mixture of male-like and female-like traits. We studied a lizard species (Central Bearded Dragon, Pogona vitticeps), in which the high-temperature incubation of eggs transforms genetically male individuals into functional females. Although they are reproductively female, sex-reversed dragons (individuals with ZZ genotype reversed to female phenotype) resemble genetic males rather than females in morphology (relative tail length), general behaviour (boldness and activity level), and thermoregulatory tactics. Indeed, sex-reversed ‘females’ are more male-like in some behavioural traits than are genetic males. This novel phenotype may impose strong selection on the frequency of sex reversal within natural populations, facilitating rapid shifts in sex-determining systems. A single period of high incubation temperatures (generating thermally induced sex reversal) can produce functionally female individuals with male-like (or novel) traits that enhance individual fitness, allowing the new temperature-dependent sex-determining system to rapidly replace the previous genetically based one.

  19. Engaging nurses in genetics: the strategic approach of the NHS National Genetics Education and Development Centre.

    Science.gov (United States)

    Kirk, Maggie; Tonkin, Emma; Burke, Sarah

    2008-04-01

    The UK government announced the establishment of an NHS National Genetics Education and Development Centre in its Genetics White Paper. The Centre aims to lead and coordinate developments to enhance genetics literacy of health professionals. The nursing program takes a strategic approach based on Ajzen's Theory of Planned Behavior, using the UK nursing genetics competences as the platform for development. The program team uses innovative approaches to raise awareness of the relevance of genetics, working collaboratively with policy stakeholders, as key agents of change in promoting competence. Providing practical help in preparing learning and teaching resources lends further encouragement. Evaluation of the program is dependent on gathering baseline data, and the program has been informed by an education needs analysis. The challenges faced are substantial and necessitate international collaboration where expertise and resources can be shared to produce a global system of influence to facilitate the engagement of non-genetic nurses.

  20. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    Science.gov (United States)

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  1. Contribution of genetics to ecological restoration.

    Science.gov (United States)

    Mijangos, Jose Luis; Pacioni, Carlo; Spencer, Peter B S; Craig, Michael D

    2015-01-01

    Ecological restoration of degraded ecosystems has emerged as a critical tool in the fight to reverse and ameliorate the current loss of biodiversity and ecosystem services. Approaches derived from different genetic disciplines are extending the theoretical and applied frameworks on which ecological restoration is based. We performed a search of scientific articles and identified 160 articles that employed a genetic approach within a restoration context to shed light on the links between genetics and restoration. These articles were then classified on whether they examined association between genetics and fitness or the application of genetics in demographic studies, and on the way the studies informed restoration practice. Although genetic research in restoration is rapidly growing, we found that studies could make better use of the extensive toolbox developed by applied fields in genetics. Overall, 41% of reviewed studies used genetic information to evaluate or monitor restoration, and 59% provided genetic information to guide prerestoration decision-making processes. Reviewed studies suggest that restoration practitioners often overlook the importance of including genetic aspects within their restoration goals. Even though there is a genetic basis influencing the provision of ecosystem services, few studies explored this relationship. We provide a view of research gaps, future directions and challenges in the genetics of restoration. © 2014 John Wiley & Sons Ltd.

  2. An imaging genetics approach to understanding social influence

    Directory of Open Access Journals (Sweden)

    Emily eFalk

    2012-06-01

    Full Text Available Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain’s reward system. We next review neuroimaging evidence linking social punishment (exclusion to brain systems involved in the experience of pain, as well as evidence linking exclusion to conformity. We suggest that genetic variants that increase sensitivity to social cues may predispose individuals to be more sensitive to either social rewards or punishments (or potentially both, which in turn increases conformity and susceptibility to normative social influences more broadly. To this end, we review evidence for genetic moderators of neurochemical responses in the brain, and suggest ways in which genes and pharmacology may modulate sensitivity to social influences. We conclude by proposing an integrative imaging genetics approach to the study of brain mediators and genetic modulators of a variety of social influences on human attitudes, beliefs, and actions.

  3. An imaging genetics approach to understanding social influence.

    Science.gov (United States)

    Falk, Emily B; Way, Baldwin M; Jasinska, Agnes J

    2012-01-01

    Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain's reward system. We next review neuroimaging evidence linking social punishment (exclusion) to brain systems involved in the experience of pain, as well as evidence linking exclusion to conformity. We suggest that genetic variants that increase sensitivity to social cues may predispose individuals to be more sensitive to either social rewards or punishments (or potentially both), which in turn increases conformity and susceptibility to normative social influences more broadly. To this end, we review evidence for genetic moderators of neurochemical responses in the brain, and suggest ways in which genes and pharmacology may modulate sensitivity to social influences. We conclude by proposing an integrative imaging genetics approach to the study of brain mediators and genetic modulators of a variety of social influences on human attitudes, beliefs, and actions.

  4. A Hybrid Genetic Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Sydulu Maheswarapu

    2011-08-01

    Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.

  5. Critical perspectives of pedagogical approaches to reversing the order of integration in double integrals

    Science.gov (United States)

    Tisdell, Christopher C.

    2017-11-01

    This paper presents some critical perspectives regarding pedagogical approaches to the method of reversing the order of integration in double integrals from prevailing educational literature on multivariable calculus. First, we question the message found in popular textbooks that the traditional process of reversing the order of integration is necessary when solving well-known problems. Second, we illustrate that the method of integration by parts can be directly applied to many of the classic pedagogical problems in the literature concerning double integrals, without taking the well-worn steps associated with reversing the order of integration. Third, we examine the benefits and limitations of such a method. In our conclusion, we advocate for integration by parts to be a part of the pedagogical conversation in the learning and teaching of double integral methods; and call for more debate around its use in the learning and teaching of other areas of mathematics. Finally, we emphasize the need for critical approaches in the pedagogy of mathematics more broadly.

  6. Evaluation of a reverse-hybridization StripAssay for the detection of genetic polymorphisms leading to acenocoumarol sensitivity.

    Science.gov (United States)

    Gialeraki, Argyri; Markatos, Christos; Grouzi, Elisabeth; Merkouri, Efrosyni; Travlou, Anthi; Politou, Marianna

    2010-04-01

    Acenocoumarol is mainly catabolized by CYP2C9 isoform of cytochrome P450 (CYP) liver complex and exerts its anticoagulant effect through the inhibition of Vitamin K Epoxide Reductase (VKOR). The most important genetic polymorphisms which lead to an impaired enzymatic activity and therefore predispose to acenocoumarol sensitivity, are considered to be CYP2C9*2 (Arg144Cys), CYP2C9*3 (Ile359Leu) and VKORC1-1639G>A, respectively. In this study we compared the results of the PGXThrombo StripAssay kit (ViennaLab Diagnostics,Vienna, Austria) with direct DNA sequencing and in house Restriction Fragment Length Polymorphisms (RFLP) for the detection of the aforementioned Single Nucleotide Polymorphisms (SNPs). The reverse hybridization StripAssay was found to be equally effective with RFLP and direct DNA sequencing for the detection of CYP2C9*2 and CYP2C9*3 polymorphisms, respectively. The comparison of the RFLP reference method with the reverse hybridization StripAssay for the detection of VKORC1-1639 G>A polymorphism showed that the reverse hybridization StripAsssay might misclassify some A/A homozygotes as heterozygotes. Optimization of the hybridization procedures may eliminate the extra low signal band observed in some samples at the reverse hybridization StripAssay and improve its diagnostic value.

  7. Development of marker vaccines for rinderpest virus using reverse genetics technology

    International Nuclear Information System (INIS)

    Parida, S.; Walsh, E.P.; Anderson, J.; Baron, M.D.; Barrett, T.

    2005-01-01

    Rinderpest is an economically devastating disease of cattle (cattle plague), but a live-attenuated vaccine has been very successfully used in a global rinderpest eradication campaign. As a consequence, the endemic focus of the virus has been reduced to an area in eastern Africa known as the Kenya-Somali ecosystem. Although the vaccine is highly effective, it has a drawback in that vaccinated animals are serologically indistinguishable from those that have recovered from natural infection. In the final stages of the eradication campaign, when vaccination to control the spread of disease will only be used in emergencies to contain an outbreak, a marker vaccine would be a very useful tool to monitor possible wild virus spread outside the vaccination area. Marker vaccines for rinderpest, and other viruses with negative-sense RNA genomes, can now be produced using reverse genetics, and the development of such marker vaccines for rinderpest virus is described. (author)

  8. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains

    Science.gov (United States)

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and

  9. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  10. Reversal learning and resurgence of operant behavior in zebrafish (Danio rerio).

    Science.gov (United States)

    Kuroda, Toshikazu; Mizutani, Yuto; Cançado, Carlos R X; Podlesnik, Christopher A

    2017-09-01

    Zebrafish are used extensively as vertebrate animal models in biomedical research for having such features as a fully sequenced genome and transparent embryo. Yet, operant-conditioning studies with this species are scarce. The present study investigated reversal learning and resurgence of operant behavior in zebrafish. A target response (approaching a sensor) was reinforced in Phase 1. In Phase 2, the target response was extinguished while reinforcing an alternative response (approaching a different sensor). In Phase 3, extinction was in effect for the target and alternative responses. Reversal learning was demonstrated when responding tracked contingency changes between Phases 1 and 2. Moreover, resurgence occurred in 10 of 13 fish in Phase 3: Target response rates increased transiently and exceeded rates of an unreinforced control response. The present study provides the first evidence with zebrafish supporting reversal learning between discrete operant responses and a laboratory model of relapse. These findings open the possibility to assessing genetic influences of operant behavior generally and in models of relapse (e.g., resurgence, renewal, reinstatement). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Multi-criteria approach for strategic planning of reverse supply chain

    Directory of Open Access Journals (Sweden)

    Abdelkader Benzohra

    2017-04-01

    Full Text Available A reverse supply chain is viewed as a process from consumption point to recovery point and the management of domestic waste is considered as a specific and complex reverse supply chain. This important sector represents a high challenging problem for our cities, constrained by financial, social, health and environmental considerations. This paper proposes multicriteria decision aid to help choose an efficient domestic waste management strategy. In fact, Multicriteria decision making techniques are considered as a key option to solve this type of problems, giving a solution that represents a good compromise between different preferences. The adopted approach consists in outranking a set of candidate management plans using a method based on partial aggregation criteria. This model is applied on a real case study of an Algerian city and to validate the obtained results, a deep sensitivity analysis is carried out, giving the most appropriate plans.

  12. Genetic algorithm and neural network hybrid approach for job-shop scheduling

    OpenAIRE

    Zhao, Kai; Yang, Shengxiang; Wang, Dingwei

    1998-01-01

    Copyright @ 1998 ACTA Press This paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and ...

  13. Preparation of a standardized, efficacious agricultural H5N3 vaccine by reverse genetics

    International Nuclear Information System (INIS)

    Liu Ming; Wood, John M.; Ellis, Trevor; Krauss, Scott; Seiler, Patrick; Johnson, Christie; Hoffmann, Erich; Humberd, Jennifer; Hulse, Diane; Zhang Yun; Webster, Robert G.; Perez, Daniel R.

    2003-01-01

    Options for the control of emerging and reemerging H5N1 influenza viruses include improvements in biosecurity and the use of inactivated vaccines. Commercially available H5N2 influenza vaccine prevents disease signs and reduces virus load but does not completely prevent virus shedding after challenge with H5N1 virus. By using reverse genetics, we prepared an H5N3 vaccine whose hemagglutinin is 99.6% homologous to that of A/CK/HK/86.3/02 (H5N1). We used the internal genes of A/PR/8/34 and the H5 of A/Goose/HK/437.4/99 (H5N1) after deletion of basic amino acids from its connecting peptide region. The resulting virus was not lethal to chicken embryos and grew to high HA titers in eggs, allowing preparation of HA protein-standardized vaccine in unconcentrated allantoic fluid. The N3 neuraminidase, derived from A/Duck/Germany/1215/73 (H2N3), permitted discrimination between vaccinated and naturally infected birds. The virus construct failed to replicate in quail and chickens. Similar to parental A/PR/8/34 (H1N1), it replicated in mice and ferrets and spread to the brains of mice; therefore, it should not be used as a live-attenuated vaccine. The H5N3 vaccine, at doses of 1.2 μg HA, induced HI antibodies in chickens and prevented death, signs of disease, and markedly reduced virus shedding after challenge with A/CK/HK/86.3/02 (H5N1) but did not provide sterilizing immunity. Thus, reverse genetics allows the inexpensive preparation of standardized, efficacious H5N3 poultry vaccines that may also reduce the reemergence of H5N1 genotypes

  14. Laparoscopic pancreaticoduodenectomy via a reverse-''V'' approach with four ports: initial experience and perioperative outcomes.

    Science.gov (United States)

    Liu, Zhao; Yu, Mu-Chuan; Zhao, Rui; Liu, Yan-Feng; Zeng, Jian-Ping; Wang, Xian-Qiang; Tan, Jing-Wang

    2015-02-07

    To evaluate the feasibility, safety, and efficacy of laparoscopic pancreaticoduodenectomy (LPD) using a reverse-"V" approach with four ports. This is a retrospective study of selected patients who underwent LPD at our center between April 2011 and April 2012. The following data were collected and reviewed: patient characteristics, tumor histology, surgical outcome, resection margins, morbidity, and mortality. All patients were thoroughly evaluated preoperatively by complete hematologic investigations, triple-phase helical computed tomography, upper gastrointestinal endoscopy, and biopsy of ampullary lesions (when present). Magnetic resonance cholangiopancreatography was performed for doubtful cases of lower common bile duct lesions. There was no perioperative mortality. LPD was performed with tumor-free margins in all patients, including patients with pancreatic ductal adenocarcinoma (n = 6), ampullary carcinoma (n = 6), intra-ductal papillary mucinous neoplasm (n = 2), pancreatic cystadenocarcinoma (n = 2), pancreatic head adenocarcinoma (n = 3), and bile duct cancer (n = 2). The mean patient age was 65 years (range, 42-75 years). The median blood loss was 240 mL, and the mean operative time was 368 min. LPD using a reverse-"V" approach can be performed safely and yields good results in elective patients. Our preliminary experience showed that LDP can be performed via a reverse-"V" approach. This approach can be used to treat localized malignant lesions irrespective of histopathology.

  15. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  16. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  17. Partial and Full PCR-Based Reverse Genetics Strategy for Influenza Viruses

    Science.gov (United States)

    Chen, Hongjun; Ye, Jianqiang; Xu, Kemin; Angel, Matthew; Shao, Hongxia; Ferrero, Andrea; Sutton, Troy; Perez, Daniel R.

    2012-01-01

    Since 1999, plasmid-based reverse genetics (RG) systems have revolutionized the way influenza viruses are studied. However, it is not unusual to encounter cloning difficulties for one or more influenza genes while attempting to recover virus de novo. To overcome some of these shortcomings we sought to develop partial or full plasmid-free RG systems. The influenza gene of choice is assembled into a RG competent unit by virtue of overlapping PCR reactions containing a cDNA copy of the viral gene segment under the control of RNA polymerase I promoter (pol1) and termination (t1) signals – herein referred to as Flu PCR amplicons. Transfection of tissue culture cells with either HA or NA Flu PCR amplicons and 7 plasmids encoding the remaining influenza RG units, resulted in efficient virus rescue. Likewise, transfections including both HA and NA Flu PCR amplicons and 6 RG plasmids also resulted in efficient virus rescue. In addition, influenza viruses were recovered from a full set of Flu PCR amplicons without the use of plasmids. PMID:23029501

  18. Reverse engineering of a railcar prototype via energetic macroscopic representation approach

    International Nuclear Information System (INIS)

    Agbli, Kréhi Serge; Hissel, Daniel; Sorrentino, Marco; Chauvet, Frédéric; Pouget, Julien

    2016-01-01

    Highlights: • A complex EMR model of a new railcar range has been developed. • A satisfactory assessment of the fuel consumption of the railcar. • The significant potential benefits are attainable by hybridizing the original railcar. • The regenerative braking can provide up to 240 kW h saving. - Abstract: Energetic Macroscopic Representation (EMR) modelling approach is proposed to perform model-based reverse-engineering of a new railcar range, having six propulsion units, each consisting of a diesel engine and a traction motor. Particularly, EMR intrinsic features were exploited to perform phenomenological structuration of power flows, thus allowing proper and comprehensive modelling of complex systems, such as the under-study railcar. Based on some prospective real trips, selected in such a way as to enable realistic evaluation of effective railcar effort, EMR-based prediction of railcar energy consumption is performed. Furthermore, physical consistency of each powertrain component operation was carefully verified. The suitability of EMR approach was thus proven effective to perform reverse-engineering of known specifications and available experimental data, with the final aim of reconstructing a high fidelity computational tool that meets computational burden requirements for subsequent model-based tasks deployment. Finally, specific simulation analyses were performed to evaluate the potential benefits attainable through electric hybridization of the original powertrain.

  19. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges.

    Science.gov (United States)

    Kanthaswamy, S

    2015-10-01

    This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample

  20. Production of Novel Ebola Virus-Like Particles from cDNAs: an Alternative to Ebola Virus Generation by Reverse Genetics

    OpenAIRE

    Watanabe, Shinji; Watanabe, Tokiko; Noda, Takeshi; Takada, Ayato; Feldmann, Heinz; Jasenosky, Luke D.; Kawaoka, Yoshihiro

    2004-01-01

    We established a plasmid-based system for generating infectious Ebola virus-like particles (VLPs), which contain an Ebola virus-like minigenome consisting of a negative-sense copy of the green fluorescent protein gene. This system produced nearly 103 infectious particles per ml of supernatant, equivalent to the titer of Ebola virus generated by a reverse genetics system. Interestingly, infectious Ebola VLPs were generated, even without expression of VP24. Transmission and scanning electron mi...

  1. Mining of lethal recessive genetic variation in Danish cattle

    DEFF Research Database (Denmark)

    Das, Ashutosh

    2015-01-01

    in fertility. The primary objective of this PhD projekt was to identify recessive lethal gentic variants in the main Danish dairy cattle breed. Holstein-Friesian utilzing next generation sequencing (NGS) data. This study shows a potential for the use of the NGS-based reverse genetic approach in identifying...... lethal or semi-lethal recessive gentic variation...

  2. Reverse breech extraction versus the standard approach of pushing the impacted fetal head up through the vagina in caesarean section for obstructed labour: A randomised controlled trial.

    Science.gov (United States)

    Nooh, Ahmed Mohamed; Abdeldayem, Hussein Mohammed; Ben-Affan, Othman

    2017-05-01

    The objective of this study was to assess effectiveness and safety of the reverse breech extraction approach in Caesarean section for obstructed labour, and compare it with the standard approach of pushing the fetal head up through the vagina. This randomised controlled trial included 192 women. In 96, the baby was delivered by the 'reverse breech extraction approach', and in the remaining 96, by the 'standard approach'. Extension of uterine incision occurred in 18 participants (18.8%) in the reverse breech extraction approach group, and 46 (47.9%) in the standard approach group (p = .0003). Two women (2.1%) in the reverse breech extraction approach group needed blood transfusion and 11 (11.5%) in the standard approach group (p = .012). Pyrexia developed in 3 participants (3.1%) in the reverse breech extraction approach group, and 19 (19.8%) in the standard approach group (p = .0006). Wound infection occurred in 2 women (2.1%) in the reverse breech extraction approach group, and 12 (12.5%) in the standard approach group (p = .007). Apgar score pushing the fetal head up through the vagina.

  3. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies.

    Science.gov (United States)

    Hüls, Anke; Krämer, Ursula; Carlsten, Christopher; Schikowski, Tamara; Ickstadt, Katja; Schwender, Holger

    2017-12-16

    Weighted genetic risk scores (GRS), defined as weighted sums of risk alleles of single nucleotide polymorphisms (SNPs), are statistically powerful for detection gene-environment (GxE) interactions. To assign weights, the gold standard is to use external weights from an independent study. However, appropriate external weights are not always available. In such situations and in the presence of predominant marginal genetic effects, we have shown in a previous study that GRS with internal weights from marginal genetic effects ("GRS-marginal-internal") are a powerful and reliable alternative to single SNP approaches or the use of unweighted GRS. However, this approach might not be appropriate for detecting predominant interactions, i.e. interactions showing an effect stronger than the marginal genetic effect. In this paper, we present a weighting approach for such predominant interactions ("GRS-interaction-training") in which parts of the data are used to estimate the weights from the interaction terms and the remaining data are used to determine the GRS. We conducted a simulation study for the detection of GxE interactions in which we evaluated power, type I error and sign-misspecification. We compared this new weighting approach to the GRS-marginal-internal approach and to GRS with external weights. Our simulation study showed that in the absence of external weights and with predominant interaction effects, the highest power was reached with the GRS-interaction-training approach. If marginal genetic effects were predominant, the GRS-marginal-internal approach was more appropriate. Furthermore, the power to detect interactions reached by the GRS-interaction-training approach was only slightly lower than the power achieved by GRS with external weights. The power of the GRS-interaction-training approach was confirmed in a real data application to the Traffic, Asthma and Genetics (TAG) Study (N = 4465 observations). When appropriate external weights are unavailable, we

  4. On Generating Optimal Signal Probabilities for Random Tests: A Genetic Approach

    Directory of Open Access Journals (Sweden)

    M. Srinivas

    1996-01-01

    Full Text Available Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed. A brief overview of Genetic Algorithms (GAs and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance of our GAbased approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger.

  5. Population-genetic approach to standardization of radiation and non-radiation factors

    International Nuclear Information System (INIS)

    Telnov, I.

    2006-01-01

    Numerous studies demonstrate the importance of genetic predisposition in the development of wide range of pathologies and unfavorable effects caused by different factors. This prompts to account for genetic factors in the risk assessment of unfavorable effects. Current approaches used to solve this problem are far from perfect. On the one hand, recommendations on occupational selection bas ed on genetic signs are presently considered as human rights violation. On the other hand, to medically inform an individual with certain genetic characteristics about possible unfavorable health effects due to occupational hazard has little effect. Finally, a vast number of polymorphic genes in human genome (at least 30%) hampers accounting for all possible factors of genetic predisposition to the increasing number of environmental factors. Therefore, the current situation proves it appropriate to develop the new approach to account for genetic predisposition of individuals that would be free of flaws considered above. A possible basis for such an approach is the assessment of genotype specific relative risk (G.S.R.R.) that accounts for genetic predisposition (susceptibility) of individuals to the effects of unfavorable factors. The study used results from 65 studies. This effort was undertaken to study the association between 32 diseases and unfavorable effects and 17 genetic polymorphic systems. Data analysis included calculation of relative risk (R.R.) of specific diseases or effects development in individuals with different genotypes. Genotype-specific relative risk (G.S.R.R.) of diseases and unfavorable effects in individuals with 'sensitive' genotypes was calculated. Since about the third of genes in human genome are polymorphic, and therefore, a considerable number of genes can be involved in genetic predisposition of an individual to a specific unfavorable effect, an averaged G.S.R.R. of diseases and unfavorable effects was calculated for integral characteristics on

  6. Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.

    Science.gov (United States)

    Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio

    2018-02-21

    Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.

  7. A "Reverse-Schur" Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design.

    Science.gov (United States)

    Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.

  8. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    Science.gov (United States)

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs.

  9. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  10. Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach

    DEFF Research Database (Denmark)

    Bothwell, H.; Bisbing, S.; Therkildsen, Nina Overgaard

    2013-01-01

    It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental...... loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi...... variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major...

  11. A genetic ensemble approach for gene-gene interaction identification

    Directory of Open Access Journals (Sweden)

    Ho Joshua WK

    2010-10-01

    Full Text Available Abstract Background It has now become clear that gene-gene interactions and gene-environment interactions are ubiquitous and fundamental mechanisms for the development of complex diseases. Though a considerable effort has been put into developing statistical models and algorithmic strategies for identifying such interactions, the accurate identification of those genetic interactions has been proven to be very challenging. Methods In this paper, we propose a new approach for identifying such gene-gene and gene-environment interactions underlying complex diseases. This is a hybrid algorithm and it combines genetic algorithm (GA and an ensemble of classifiers (called genetic ensemble. Using this approach, the original problem of SNP interaction identification is converted into a data mining problem of combinatorial feature selection. By collecting various single nucleotide polymorphisms (SNP subsets as well as environmental factors generated in multiple GA runs, patterns of gene-gene and gene-environment interactions can be extracted using a simple combinatorial ranking method. Also considered in this study is the idea of combining identification results obtained from multiple algorithms. A novel formula based on pairwise double fault is designed to quantify the degree of complementarity. Conclusions Our simulation study demonstrates that the proposed genetic ensemble algorithm has comparable identification power to Multifactor Dimensionality Reduction (MDR and is slightly better than Polymorphism Interaction Analysis (PIA, which are the two most popular methods for gene-gene interaction identification. More importantly, the identification results generated by using our genetic ensemble algorithm are highly complementary to those obtained by PIA and MDR. Experimental results from our simulation studies and real world data application also confirm the effectiveness of the proposed genetic ensemble algorithm, as well as the potential benefits of

  12. Reversible logic gates based on enzyme-biocatalyzed reactions and realized in flow cells: a modular approach.

    Science.gov (United States)

    Fratto, Brian E; Katz, Evgeny

    2015-05-18

    Reversible logic gates, such as the double Feynman gate, Toffoli gate and Peres gate, with 3-input/3-output channels are realized using reactions biocatalyzed with enzymes and performed in flow systems. The flow devices are constructed using a modular approach, where each flow cell is modified with one enzyme that biocatalyzes one chemical reaction. The multi-step processes mimicking the reversible logic gates are organized by combining the biocatalytic cells in different networks. This work emphasizes logical but not physical reversibility of the constructed systems. Their advantages and disadvantages are discussed and potential use in biosensing systems, rather than in computing devices, is suggested. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A propensity score approach to correction for bias due to population stratification using genetic and non-genetic factors.

    Science.gov (United States)

    Zhao, Huaqing; Rebbeck, Timothy R; Mitra, Nandita

    2009-12-01

    Confounding due to population stratification (PS) arises when differences in both allele and disease frequencies exist in a population of mixed racial/ethnic subpopulations. Genomic control, structured association, principal components analysis (PCA), and multidimensional scaling (MDS) approaches have been proposed to address this bias using genetic markers. However, confounding due to PS can also be due to non-genetic factors. Propensity scores are widely used to address confounding in observational studies but have not been adapted to deal with PS in genetic association studies. We propose a genomic propensity score (GPS) approach to correct for bias due to PS that considers both genetic and non-genetic factors. We compare the GPS method with PCA and MDS using simulation studies. Our results show that GPS can adequately adjust and consistently correct for bias due to PS. Under no/mild, moderate, and severe PS, GPS yielded estimated with bias close to 0 (mean=-0.0044, standard error=0.0087). Under moderate or severe PS, the GPS method consistently outperforms the PCA method in terms of bias, coverage probability (CP), and type I error. Under moderate PS, the GPS method consistently outperforms the MDS method in terms of CP. PCA maintains relatively high power compared to both MDS and GPS methods under the simulated situations. GPS and MDS are comparable in terms of statistical properties such as bias, type I error, and power. The GPS method provides a novel and robust tool for obtaining less-biased estimates of genetic associations that can consider both genetic and non-genetic factors. 2009 Wiley-Liss, Inc.

  14. Reverse Genetics for Fusogenic Bat-Borne Orthoreovirus Associated with Acute Respiratory Tract Infections in Humans: Role of Outer Capsid Protein σC in Viral Replication and Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Takahiro Kawagishi

    2016-02-01

    Full Text Available Nelson Bay orthoreoviruses (NBVs are members of the fusogenic orthoreoviruses and possess 10-segmented double-stranded RNA genomes. NBV was first isolated from a fruit bat in Australia more than 40 years ago, but it was not associated with any disease. However, several NBV strains have been recently identified as causative agents for respiratory tract infections in humans. Isolation of these pathogenic bat reoviruses from patients suggests that NBVs have evolved to propagate in humans in the form of zoonosis. To date, no strategy has been developed to rescue infectious viruses from cloned cDNA for any member of the fusogenic orthoreoviruses. In this study, we report the development of a plasmid-based reverse genetics system free of helper viruses and independent of any selection for NBV isolated from humans with acute respiratory infection. cDNAs corresponding to each of the 10 full-length RNA gene segments of NBV were cotransfected into culture cells expressing T7 RNA polymerase, and viable NBV was isolated using a plaque assay. The growth kinetics and cell-to-cell fusion activity of recombinant strains, rescued using the reverse genetics system, were indistinguishable from those of native strains. We used the reverse genetics system to generate viruses deficient in the cell attachment protein σC to define the biological function of this protein in the viral life cycle. Our results with σC-deficient viruses demonstrated that σC is dispensable for cell attachment in several cell lines, including murine fibroblast L929 cells but not in human lung epithelial A549 cells, and plays a critical role in viral pathogenesis. We also used the system to rescue a virus that expresses a yellow fluorescent protein. The reverse genetics system developed in this study can be applied to study the propagation and pathogenesis of pathogenic NBVs and in the generation of recombinant NBVs for future vaccines and therapeutics.

  15. Metaheuristic analysis in reverse logistics of waste

    Energy Technology Data Exchange (ETDEWEB)

    Serrano Elena, A.

    2016-07-01

    This paper focuses in the use of search metaheuristic techniques on a dynamic and deterministic model to analyze and solve cost optimization problems and location in reverse logistics, within the field of municipal waste management of Málaga (Spain). In this work we have selected two metaheuristic techniques having relevance in present research, to test the validity of the proposed approach: an important technique for its international presence as is the Genetic Algorithm (GA) and another interesting technique that works with swarm intelligence as is the Particles Swarm Optimization (PSO). These metaheuristic techniques will be used to solve cost optimization problems and location of MSW recovery facilities (transfer centers and treatment plants). (Author)

  16. Reversal learning as a measure of impulsive and compulsive behavior in addictions.

    Science.gov (United States)

    Izquierdo, Alicia; Jentsch, J David

    2012-01-01

    Our ability to measure the cognitive components of complex decision-making across species has greatly facilitated our understanding of its neurobiological mechanisms. One task in particular, reversal learning, has proven valuable in assessing the inhibitory processes that are central to executive control. Reversal learning measures the ability to actively suppress reward-related responding and to disengage from ongoing behavior, phenomena that are biologically and descriptively related to impulsivity and compulsivity. Consequently, reversal learning could index vulnerability for disorders characterized by impulsivity such as proclivity for initial substance abuse as well as the compulsive aspects of dependence. Though we describe common variants and similar tasks, we pay particular attention to discrimination reversal learning, its supporting neural circuitry, neuropharmacology and genetic determinants. We also review the utility of this task in measuring impulsivity and compulsivity in addictions. We restrict our review to instrumental, reward-related reversal learning studies as they are most germane to addiction. The research reviewed here suggests that discrimination reversal learning may be used as a diagnostic tool for investigating the neural mechanisms that mediate impulsive and compulsive aspects of pathological reward-seeking and -taking behaviors. Two interrelated mechanisms are posited for the neuroadaptations in addiction that often translate to poor reversal learning: frontocorticostriatal circuitry dysregulation and poor dopamine (D2 receptor) modulation of this circuitry. These data suggest new approaches to targeting inhibitory control mechanisms in addictions.

  17. Natural variation, an underexploited resource of genetic variation for plant genetics

    NARCIS (Netherlands)

    Alonso-Blanco, C.; Koornneef, M.

    2000-01-01

    The definition of gene functions requires the phenotypic characterization of genetic variants. Currently, such functional analysis of Arabidopsis genes is based largely on laboratory-induced mutants that are selected in forward and reverse genetic studies. An alternative complementary source of

  18. Comparing targeted exome and whole exome approaches for genetic diagnosis of neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Svetlana Gorokhova

    2015-12-01

    Full Text Available Massively parallel sequencing is rapidly becoming a widely used method in genetic diagnostics. However, there is still no clear consensus as to which approach can most efficiently identify the pathogenic mutations carried by a given patient, while avoiding false negative and false positive results. We developed a targeted exome approach (MyoPanel2 in order to optimize genetic diagnosis of neuromuscular disorders. Using this approach, we were able to analyse 306 genes known to be mutated in myopathies as well as in related disorders, obtaining 98.8% target sequence coverage at 20×. Moreover, MyoPanel2 was able to detect 99.7% of 11,467 known mutations responsible for neuromuscular disorders. We have then used several quality control parameters to compare performance of the targeted exome approach with that of whole exome sequencing. The results of this pilot study of 140 DNA samples suggest that targeted exome sequencing approach is an efficient genetic diagnostic test for most neuromuscular diseases.

  19. Inherited XX sex reversal originating from wild medaka populations.

    Science.gov (United States)

    Shinomiya, A; Otake, H; Hamaguchi, S; Sakaizumi, M

    2010-11-01

    The teleost fish, medaka (Oryzias latipes), has an XX/XY sex-determining mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as the sex-determining gene in this species. Previously, we conducted a field survey of genotypic sex and found that approximately 1% of wild medaka are sex-reversed (XX males and XY females). Here, we performed genetic analyses of nine spontaneous XX sex-reversed males to elucidate its genetic basis. In all cases, the F(1) progeny were all females, whereas XX males reappeared in the backcross (BC) progeny, suggesting that XX sex reversal is a recessive trait. Although the incidences of sex reversal in the BC progeny were mostly low, 40% were males derived from one XX male. We performed linkage analysis using 55 BC males and located a single major factor, sda-1 (sex-determining autosomal factor-1), controlling sex reversal in an autosomal linkage group. Thus, genes involved in the sex-determining pathway can be isolated from spontaneous mutants in wild populations.

  20. Conditional reverse tet-transactivator mouse strains for the efficient induction of TRE-regulated transgenes in mice.

    Directory of Open Access Journals (Sweden)

    Lukas E Dow

    Full Text Available Tetracycline or doxycycline (dox-regulated control of genetic elements allows inducible, reversible and tissue specific regulation of gene expression in mice. This approach provides a means to investigate protein function in specific cell lineages and at defined periods of development and disease. Efficient and stable regulation of cDNAs or non-coding elements (e.g. shRNAs downstream of the tetracycline-regulated element (TRE requires the robust expression of a tet-transactivator protein, commonly the reverse tet-transactivator, rtTA. Most rtTA strains rely on tissue specific promoters that often do not provide sufficient rtTA levels for optimal inducible expression. Here we describe the generation of two mouse strains that enable Cre-dependent, robust expression of rtTA3, providing tissue-restricted and consistent induction of TRE-controlled transgenes. We show that these transgenic strains can be effectively combined with established mouse models of disease, including both Cre/LoxP-based approaches and non Cre-dependent disease models. The integration of these new tools with established mouse models promises the development of more flexible genetic systems to uncover the mechanisms of development and disease pathogenesis.

  1. Molecular genetics and livestock selection. Approaches, opportunities and risks

    International Nuclear Information System (INIS)

    Williams, J.L.

    2005-01-01

    Following domestication, livestock were selected both naturally through adaptation to their environments and by man so that they would fulfil a particular use. As selection methods have become more sophisticated, rapid progress has been made in improving those traits that are easily measured. However, selection has also resulted in decreased diversity. In some cases, improved breeds have replaced local breeds, risking the loss of important survival traits. The advent of molecular genetics provides the opportunity to identify the genes that control particular traits by a gene mapping approach. However, as with selection, the early mapping studies focused on traits that are easy to measure. Where molecular genetics can play a valuable role in livestock production is by providing the means to select effectively for traits that are difficult to measure. Identifying the genes underpinning particular traits requires a population in which these traits are segregating. Fortunately, several experimental populations have been created that have allowed a wide range of traits to be studied. Gene mapping work in these populations has shown that the role of particular genes in controlling variation in a given trait can depend on the genetic background. A second finding is that the most favourable alleles for a trait may in fact. be present in animals that perform poorly for the trait. In the long term, knowledge of -the genes controlling particular traits, and the way they interact with the genetic background, will allow introgression between breeds and the assembly of genotypes that are best suited to particular environments, producing animals with the desired characteristics. If used wisely, this approach will maintain genetic diversity while improving performance over a wide range of desired traits. (author)

  2. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    Science.gov (United States)

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  3. Landscape genetic approaches to guide native plant restoration in the Mojave Desert

    Science.gov (United States)

    Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.

    2016-01-01

    Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially-explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive

  4. Forward Genetic Approaches for Elucidation of Novel Regulators of Lyme Arthritis Severity

    Directory of Open Access Journals (Sweden)

    Kenneth K.C. Bramwell

    2014-06-01

    Full Text Available Patients experiencing natural infection with Borrelia burgdorferi display a spectrum of associated symptoms and severity, strongly implicating the impact of genetically determined host factors in the pathogenesis of Lyme disease. Herein, we provide a summary of the host genetic factors that have been demonstrated to influence the severity and chronicity of Lyme arthritis symptoms, and a review of the resources available, current progress, and added value of a forward genetic approach for identification of novel genetic regulators.

  5. A “Reverse-Schur” Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design

    Science.gov (United States)

    Bardhan, Jaydeep P.; Altman, Michael D.

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839

  6. Earthquake—explosion discrimination using genetic algorithm-based boosting approach

    Science.gov (United States)

    Orlic, Niksa; Loncaric, Sven

    2010-02-01

    An important and challenging problem in seismic data processing is to discriminate between natural seismic events such as earthquakes and artificial seismic events such as explosions. Many automatic techniques for seismogram classification have been proposed in the literature. Most of these methods have a similar approach to seismogram classification: a predefined set of features based on ad-hoc feature selection criteria is extracted from the seismogram waveform or spectral data and these features are used for signal classification. In this paper we propose a novel approach for seismogram classification. A specially formulated genetic algorithm has been employed to automatically search for a near-optimal seismogram feature set, instead of using ad-hoc feature selection criteria. A boosting method is added to the genetic algorithm when searching for multiple features in order to improve classification performance. A learning set of seismogram data is used by the genetic algorithm to discover a near-optimal feature set. The feature set identified by the genetic algorithm is then used for seismogram classification. The described method is developed to classify seismograms in two groups, whereas a brief overview of method extension for multiple group classification is given. For method verification, a learning set consisting of 40 local earthquake seismograms and 40 explosion seismograms was used. The method was validated on seismogram set consisting of 60 local earthquake seismograms and 60 explosion seismograms, with correct classification of 85%.

  7. Building Bridges between Hard and Soft Knowledge: The Co-production of Andra's Socio-technical Approach on Reversibility

    International Nuclear Information System (INIS)

    Aparicio, Luis

    2012-01-01

    to gathering the different views on the topic of reversibility, technical as well as social and political, and maintaining a continuous dialogue with all interested parties. In order to deal with this complexity, social sciences and humanities research (SSH) was integrated into Andra's scientific programme in 2008. Studies were launched to actively explore the many sides of the notion and elaborate a comprehensive rationale on the topic; the robustness of Andra's proposals is scrutinised in interdisciplinary fora. A modest and progressive approach has been adopted by Andra since then, aiming at developing an interdisciplinary research community on the topic. This initiative goes well beyond the usual rhetoric of 'openness', which frequently hides a rather simplistic approach toward society. In the collaboration between Andra's scientists and engineers and SSH researchers initiated more than two years ago, there is no question at all of 'listening' passively to the public and 'confirming' how people are blinded by fears. On the contrary, the underlying assumption is that SSH researchers are researchers like others and share with them a general interest in knowledge production. Co-producing knowledge with other scientists, engineers and stakeholders can be (made) interesting for them if only their specific identities are respected and recognition within their communities is (made) possible. Finally, the definition of a reversible geological disposal facility can be (made) a promising fieldwork for them. One of the most prominent results of this collaborative effort is the book Making Nuclear Waste Governable: Deep Underground Disposal and the Challenge of Reversibility, which is devoted to the current French approach on reversibility. Throughout the different chapters, the book discusses the issue of how to implement 'definitive securing' of the waste, as stated by the French law, while providing flexibility over time. Its originality is precisely to focus on the

  8. WONOEP appraisal: new genetic approaches to study epilepsy

    Science.gov (United States)

    Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.

    2014-01-01

    Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non

  9. A Genetic-Algorithms-Based Approach for Programming Linear and Quadratic Optimization Problems with Uncertainty

    Directory of Open Access Journals (Sweden)

    Weihua Jin

    2013-01-01

    Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.

  10. A systems genetics approach provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Hirofumi Nakaoka

    Full Text Available Genome-wide association studies (GWAS have yielded novel genetic loci underlying common diseases. We propose a systems genetics approach to utilize these discoveries for better understanding of the genetic architecture of rheumatoid arthritis (RA. Current evidence of genetic associations with RA was sought through PubMed and the NHGRI GWAS catalog. The associations of 15 single nucleotide polymorphisms and HLA-DRB1 alleles were confirmed in 1,287 cases and 1,500 controls of Japanese subjects. Among these, HLA-DRB1 alleles and eight SNPs showed significant associations and all but one of the variants had the same direction of effect as identified in the previous studies, indicating that the genetic risk factors underlying RA are shared across populations. By receiver operating characteristic curve analysis, the area under the curve (AUC for the genetic risk score based on the selected variants was 68.4%. For seropositive RA patients only, the AUC improved to 70.9%, indicating good but suboptimal predictive ability. A simulation study shows that more than 200 additional loci with similar effect size as recent GWAS findings or 20 rare variants with intermediate effects are needed to achieve AUC = 80.0%. We performed the random walk with restart (RWR algorithm to prioritize genes for future mapping studies. The performance of the algorithm was confirmed by leave-one-out cross-validation. The RWR algorithm pointed to ZAP70 in the first rank, in which mutation causes RA-like autoimmune arthritis in mice. By applying the hierarchical clustering method to a subnetwork comprising RA-associated genes and top-ranked genes by the RWR, we found three functional modules relevant to RA etiology: "leukocyte activation and differentiation", "pattern-recognition receptor signaling pathway", and "chemokines and their receptors".These results suggest that the systems genetics approach is useful to find directions of future mapping strategies to illuminate

  11. Food control and a citizen science approach for improving teaching of Genetics in universities.

    Science.gov (United States)

    Borrell, Y J; Muñoz-Colmenero, A M; Dopico, E; Miralles, L; Garcia-Vazquez, E

    2016-09-10

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home (students as samplers) were employed as teaching material in three different courses of Genetics during the academic year 2014-2015: Experimental Methods in Food Production (MBTA) (Master level), and Applied Molecular Biology (BMA) and Conservation Genetics and Breeding (COMGE) (Bachelor/Degree level). Molecular genetics based on PCR amplification of DNA markers was employed for species identification of 22 seafood products in COMGE and MBTA, and for detection of genetically modified (GM) maize from nine products in BMA. In total six seafood products incorrectly labeled (27%), and two undeclared GM maize (22%) were found. A post-Laboratory survey was applied for assessing the efficacy of the approach for improving motivation in the Laboratory Practices of Genetics. Results confirmed that students that worked on their own samples from local markets were significantly more motivated and better evaluated their Genetic laboratory practices than control students (χ(2)  = 12.11 p = 0.033). Our results suggest that citizen science approaches could not be only useful for improving teaching of Genetics in universities but also to incorporate students and citizens as active agents in food control. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):450-462, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  12. Sabin Vaccine Reversion in the Field: a Comprehensive Analysis of Sabin-Like Poliovirus Isolates in Nigeria

    OpenAIRE

    Famulare, Michael; Chang, Stewart; Iber, Jane; Zhao, Kun; Adeniji, Johnson A.; Bukbuk, David; Baba, Marycelin; Behrend, Matthew; Burns, Cara C.; Oberste, M. Steven

    2015-01-01

    To assess the dynamics of genetic reversion of live poliovirus vaccine in humans, we studied molecular evolution in Sabin-like poliovirus isolates from Nigerian acute flaccid paralysis cases obtained from routine surveillance. We employed a novel modeling approach to infer substitution and recombination rates from whole-genome sequences and information about poliovirus infection dynamics and the individual vaccination history. We confirmed observations from a recent vaccine trial that VP1 sub...

  13. instability and reversal of genetic correlations during selection on ...

    Indian Academy of Sciences (India)

    Unknown

    stable genetic architecture has been the motivation for nu- merous investigations ... 'decisions' made by the organism concerning the mode of resource acquisition ... genetic background, making the population the appropri- ate unit of study.

  14. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    Science.gov (United States)

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  15. Management of maxillary sinus inverted papilloma via endoscopic partial medial maxillectomy with an inferior turbinate reversing approach.

    Science.gov (United States)

    Wang, Feng; Yang, Yang; Wang, Shenqing; Chen, Haihong; Wang, Dehui; Wang, Qinying

    2017-12-01

    The aim of this study is to evaluate the efficacy of endoscopic treatment for maxillary inverted papilloma (IP) through partial medial maxillectomy with an inferior turbinate reversing approach. A retrospective analysis of patients treated in our institution for maxillary sinus IP between July 2011 and August 2015 was performed. Demographics, operative technique, characteristics of tumors, complications, postoperative follow-up, and recurrence were evaluated. Twenty-two patients were enrolled in the study. All tumor attachments were identified intraoperatively. Adequate visualization was obtained following our approach. All inferior turbinate and nasolacrimal ducts were preserved. The median follow-up time was 41 months. One recurrence occurred at the follow-up time of 27 months. Postoperative hemorrhage and numbness at the ipsilateral frontal teeth were reported in two and one patients, respectively. Endoscopic surgery through partial medial maxillectomy using an inferior turbinate reversing approach provides full access to the maxillary sinus and preserves the inferior turbinate and nasolacrimal duct.

  16. An analysis of extended entity relationship constructs extraction in database reverse engineering approaches

    International Nuclear Information System (INIS)

    Jilani, M.A.; Aziz, A.; Hussain, T.

    2008-01-01

    Database reverse Engineering is technique used for transforming relational schema into a conceptual schema for finding and fixing design flaw for maintaining and re-engineering database systems for the integration of database system with another and migration of a database system from one platform to another. We studied the approaches from year 1993 to 2006 to find out which EER construct cannot be retrieved by most of the DBRE approaches so that they can be retrieved in the future. For each EER construct that can be retrieved by using a given DBRE approach. We show whether they are retrieved without user involvement (automatically). Partial user involvement (semi-automatically) or full user involvement (manually). We also discuss the relevant advantages and limitations of each DBRE technique considered in this paper. (author)

  17. Development of a tailored vaccine against challenge with very virulent infectious bursal disease virus of chickens using reverse genetics.

    Science.gov (United States)

    Gao, Li; Qi, Xiaole; Li, Kai; Gao, Honglei; Gao, Yulong; Qin, Liting; Wang, Yongqiang; Wang, Xiaomei

    2011-07-26

    Due to the problems associated with traditional methods for infectious bursal disease virus (IBDV) vaccine development and the pressure of evolution and variation of very virulent strains, it is urgent to develop IBDV vaccine rapidly with novel approaches. Using reverse genetics, the aim of this study was to generate a tailored vaccine strain (rGtHLJVP2) with its VP2 gene similar to very virulent IBDV (vvIBDV) to prevent the prevalence of IBDV. Characteristics of rGtHLJVP2 were evaluated in both cell culture and SPF chickens. rGtHLJVP2 replicated well as its parental strain Gt in vitro and in vivo. Immunization of SPF chickens with rGtHLJVP2 resulted in comparable antibody titers against IBDV as that of the medium virulent live vaccine B87, which was significant higher than that of attenuated vaccine Gt. Challenge studies with 10(4)ELD(50) of prevalent homogeneous or heterogeneous vvIBDV revealed complete (100%) protection in the groups immunized with rGtHLJVP2. No significant clinical and pathological lesions were observed in chickens immunized with rGtHLJVP2. Our data demonstrated that rGtHLJVP2 could be used as a novel vaccine candidate for prevention against vvIBDV. Copyright © 2011. Published by Elsevier Ltd.

  18. A genetic algorithm approach to recognition and data mining

    Energy Technology Data Exchange (ETDEWEB)

    Punch, W.F.; Goodman, E.D.; Min, Pei [Michigan State Univ., East Lansing, MI (United States)] [and others

    1996-12-31

    We review here our use of genetic algorithm (GA) and genetic programming (GP) techniques to perform {open_quotes}data mining,{close_quotes} the discovery of particular/important data within large datasets, by finding optimal data classifications using known examples. Our first experiments concentrated on the use of a K-nearest neighbor algorithm in combination with a GA. The GA selected weights for each feature so as to optimize knn classification based on a linear combination of features. This combined GA-knn approach was successfully applied to both generated and real-world data. We later extended this work by substituting a GP for the GA. The GP-knn could not only optimize data classification via linear combinations of features but also determine functional relationships among the features. This allowed for improved performance and new information on important relationships among features. We review the effectiveness of the overall approach on examples from biology and compare the effectiveness of the GA and GP.

  19. Motivation and motor control: hemispheric specialization for approach motivation reverses with handedness.

    Science.gov (United States)

    Brookshire, Geoffrey; Casasanto, Daniel

    2012-01-01

    According to decades of research on affective motivation in the human brain, approach motivational states are supported primarily by the left hemisphere and avoidance states by the right hemisphere. The underlying cause of this specialization, however, has remained unknown. Here we conducted a first test of the Sword and Shield Hypothesis (SSH), according to which the hemispheric laterality of affective motivation depends on the laterality of motor control for the dominant hand (i.e., the "sword hand," used preferentially to perform approach actions) and the nondominant hand (i.e., the "shield hand," used preferentially to perform avoidance actions). To determine whether the laterality of approach motivation varies with handedness, we measured alpha-band power (an inverse index of neural activity) in right- and left-handers during resting-state electroencephalography and analyzed hemispheric alpha-power asymmetries as a function of the participants' trait approach motivational tendencies. Stronger approach motivation was associated with more left-hemisphere activity in right-handers, but with more right-hemisphere activity in left-handers. The hemispheric correlates of approach motivation reversed between right- and left-handers, consistent with the way they typically use their dominant and nondominant hands to perform approach and avoidance actions. In both right- and left-handers, approach motivation was lateralized to the same hemisphere that controls the dominant hand. This covariation between neural systems for action and emotion provides initial support for the SSH.

  20. A Representation-Theoretic Approach to Reversible Computation with Applications

    DEFF Research Database (Denmark)

    Maniotis, Andreas Milton

    Reversible computing is a sub-discipline of computer science that helps to understand the foundations of the interplay between physics, algebra, and logic in the context of computation. Its subjects of study are computational devices and abstract models of computation that satisfy the constraint ......, there is still no uniform and consistent theory that is general in the sense of giving a model-independent account to the field....... of information conservation. Such machine models, which are known as reversible models of computation, have been examined both from a theoretical perspective and from an engineering perspective. While a bundle of many isolated successful findings and applications concerning reversible computing exists...

  1. The reversed-field pinch: a compact approach to fusion power

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1985-01-01

    The potential of the reversed-field pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. This compact system promises to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that substantiate these promising results have been completed. This 1000 MW(e) (net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion. The RFP presents a robust plasma confinement system capable of providing a range of reactor systems that are compact in both physical size and/or net power output while ensuring acceptable cost and engineering feasibility for a range of assumed physics performance. (author)

  2. A novel reversible logic gate and its systematic approach to implement cost-efficient arithmetic logic circuits using QCA.

    Science.gov (United States)

    Ahmad, Peer Zahoor; Quadri, S M K; Ahmad, Firdous; Bahar, Ali Newaz; Wani, Ghulam Mohammad; Tantary, Shafiq Maqbool

    2017-12-01

    Quantum-dot cellular automata, is an extremely small size and a powerless nanotechnology. It is the possible alternative to current CMOS technology. Reversible QCA logic is the most important issue at present time to reduce power losses. This paper presents a novel reversible logic gate called the F-Gate. It is simplest in design and a powerful technique to implement reversible logic. A systematic approach has been used to implement a novel single layer reversible Full-Adder, Full-Subtractor and a Full Adder-Subtractor using the F-Gate. The proposed Full Adder-Subtractor has achieved significant improvements in terms of overall circuit parameters among the most previously cost-efficient designs that exploit the inevitable nano-level issues to perform arithmetic computing. The proposed designs have been authenticated and simulated using QCADesigner tool ver. 2.0.3.

  3. Neural Network Control of CSTR for Reversible Reaction Using Reverence Model Approach

    Directory of Open Access Journals (Sweden)

    Duncan ALOKO

    2007-01-01

    Full Text Available In this work, non-linear control of CSTR for reversible reaction is carried out using Neural Network as design tool. The Model Reverence approach in used to design ANN controller. The idea is to have a control system that will be able to achieve improvement in the level of conversion and to be able to track set point change and reject load disturbance. We use PID control scheme as benchmark to study the performance of the controller. The comparison shows that ANN controller out perform PID in the extreme range of non-linearity.This paper represents a preliminary effort to design a simplified neutral network control scheme for a class of non-linear process. Future works will involve further investigation of the effectiveness of thin approach for the real industrial chemical process

  4. DNA-directed control of enzyme-inhibitor complex formation: a modular approach to reversibly switch enzyme activity

    NARCIS (Netherlands)

    Janssen, B.M.G.; Engelen, W.; Merkx, M.

    2015-01-01

    DNA-templated reversible assembly of an enzyme–inhibitor complex is presented as a new and highly modular approach to control enzyme activity. TEM1-ß-lactamase and its inhibitor protein BLIP were conjugated to different oligonucleotides, resulting in enzyme inhibition in the presence of template

  5. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  6. Safety of genetically engineered foods: approaches to assessing unintended health effects

    National Research Council Canada - National Science Library

    Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health, National Research Council

    2004-01-01

    .... It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues...

  7. Rationale for an integrated approach to genetic epidemiology.

    Science.gov (United States)

    Laberge, Claude M; Knoppers, Bartha Maria

    1992-10-01

    Genetic knowledge is now in the public domain and its interpretation by the media and the citizens brings the issues into the public forum of discussion for the necessary ethical, legal and socio-cultural evaluation of its application. Science is being perceived by some as dangerous and as requiring international regulation. Others feel that genetic knowledge will be the breakthrough that will permit medical progress and individual autonomy with regards to personal health and lifestyle choices. The mapping of the human genome has already yielded valuable information on an increasing number of diseases and their variants. Prevailing popular and journalistic archetypes ("imaginaires") used in the media are perceived by the producers as slowing down the possible application of genetic knowledge. The answers to these dilemmas are not readily apparent nor are they prescribed by classical philosophy of medicine. Since genetic knowledge eventually resides with the individual who carries the genes of disease and/or susceptibility, a logical approach to integration of this knowledge at a societal level would seem to reside with individual education and decision-making. The politics of the ensuing social debate could transform the current social contract since an individual's interests need to be balanced against those of his or her immediate family in the sharing of information. The ethical foundations of such a contract requires the genetic education of "Everyone" as a matter of urgent priority. Genetic education should not serve ideological power struggles between the medical establishment and the ethical-legal alliance. Instead, it should ensure the transfer of knowledge to physicians, to patients, to users, to planners, to social science and humanities researchers and to politicians, so that they may make "informed" and free decisions....

  8. Introduction to reversible computing

    CERN Document Server

    Perumalla, Kalyan S

    2013-01-01

    Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever

  9. Applications of a formal approach to decipher discrete genetic networks.

    Science.gov (United States)

    Corblin, Fabien; Fanchon, Eric; Trilling, Laurent

    2010-07-20

    A growing demand for tools to assist the building and analysis of biological networks exists in systems biology. We argue that the use of a formal approach is relevant and applicable to address questions raised by biologists about such networks. The behaviour of these systems being complex, it is essential to exploit efficiently every bit of experimental information. In our approach, both the evolution rules and the partial knowledge about the structure and the behaviour of the network are formalized using a common constraint-based language. In this article our formal and declarative approach is applied to three biological applications. The software environment that we developed allows to specifically address each application through a new class of biologically relevant queries. We show that we can describe easily and in a formal manner the partial knowledge about a genetic network. Moreover we show that this environment, based on a constraint algorithmic approach, offers a wide variety of functionalities, going beyond simple simulations, such as proof of consistency, model revision, prediction of properties, search for minimal models relatively to specified criteria. The formal approach proposed here deeply changes the way to proceed in the exploration of genetic and biochemical networks, first by avoiding the usual trial-and-error procedure, and second by placing the emphasis on sets of solutions, rather than a single solution arbitrarily chosen among many others. Last, the constraint approach promotes an integration of model and experimental data in a single framework.

  10. Molecular approaches for genetic improvement of seed quality and characterization of genetic diversity in soybean: a critical review.

    Science.gov (United States)

    Tripathi, Niraj; Khare, Dhirendra

    2016-10-01

    Soybean is an economically important leguminous crop. Genetic improvements of soybeans have focused on enhancement of seed and oil yield, development of varieties suited to different cropping systems, and breeding resistant/tolerant varieties for various biotic and abiotic stresses. Plant breeders have used conventional breeding techniques for the improvement of these traits in soybean. The conventional breeding process can be greatly accelerated through the application of molecular and genomic approaches. Molecular markers have proved to be a new tool in soybean breeding by enhancing selection efficiency in a rapid and time-bound manner. An overview of molecular approaches for the genetic improvement of soybean seed quality parameters, considering recent applications of marker-assisted selection and 'omics' research, is provided in this article.

  11. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    Science.gov (United States)

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  12. Genetic and neural approaches to nuclear transient identification

    International Nuclear Information System (INIS)

    Almeida, Jose Carlos Soares de; Mol, Antonio Carlos de Abreu; Pereira, Claudio Marcio Nascimento Abreu; Lapa, Celso Marcelo Franklin

    2005-01-01

    This work presents two approaches for pattern recognition to the same set of reactor signals. The first one describes a possibilistic approach optimized by genetic algorithm. The use of a possibilistic classification provides a natural and consistent classification rules, leading naturally to a good heuristic to handle the 'don't know' response, in case of unrecognized transient, which is fairly desirable in transient classification systems where safety is critical, since wrong or not reliable classifications can be catastrophic. Application of the proposed approach to a nuclear transient identification problem reveals good capability of the genetic algorithm in learning optimized possibilistic classification rules for efficient diagnosis including 'don't know' response. The second one uses two multilayer neural networks (NN). The first NN is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The second NN is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate both methods, a Nuclear Power Plant (NPP) transient identification problem comprising postulated accidents, simulated for a pressurized water reactor, was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the methods in dealing with both dynamic identification of transients and correct 'don't know' response. (author)

  13. An imaging genetics approach to understanding social influence

    OpenAIRE

    Emily eFalk; Emily eFalk; Baldwin eWay; Agnes eJasinska

    2012-01-01

    Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain’s reward system. We next review neur...

  14. An imaging genetics approach to understanding social influence

    OpenAIRE

    Falk, Emily B.; Way, Baldwin M.; Jasinska, Agnes J.

    2012-01-01

    Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain's reward system. We next review neuro...

  15. A Reverse Genetics Platform That Spans the Zika Virus Family Tree

    Directory of Open Access Journals (Sweden)

    Douglas G. Widman

    2017-03-01

    Full Text Available Zika virus (ZIKV, a mosquito-borne flavivirus discovered in 1947, has only recently caused large outbreaks and emerged as a significant human pathogen. In 2015, ZIKV was detected in Brazil, and the resulting epidemic has spread throughout the Western Hemisphere. Severe complications from ZIKV infection include neurological disorders such as Guillain-Barré syndrome in adults and a variety of fetal abnormalities, including microcephaly, blindness, placental insufficiency, and fetal demise. There is an urgent need for tools and reagents to study the pathogenesis of epidemic ZIKV and for testing vaccines and antivirals. Using a reverse genetics platform, we generated six ZIKV infectious clones and derivative viruses representing diverse temporal and geographic origins. These include three versions of MR766, the prototype 1947 strain (with and without a glycosylation site in the envelope protein, and H/PF/2013, a 2013 human isolate from French Polynesia representative of the virus introduced to Brazil. In the course of synthesizing a clone of a circulating Brazilian strain, phylogenetic studies identified two distinct ZIKV clades in Brazil. We reconstructed viable clones of strains SPH2015 and BeH819015, representing ancestral members of each clade. We assessed recombinant virus replication, binding to monoclonal antibodies, and virulence in mice. This panel of molecular clones and recombinant virus isolates will enable targeted studies of viral determinants of pathogenesis, adaptation, and evolution, as well as the rational attenuation of contemporary outbreak strains to facilitate the design of vaccines and therapeutics.

  16. Forward and reverse mutagenesis in C. elegans

    Science.gov (United States)

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  17. Design of a novel quantum reversible ternary up-counter

    Science.gov (United States)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  18. Investigation of laundering and dispersion approaches for silica and calcium phosphosilicate composite nanoparticles synthesized in reverse micelles

    Science.gov (United States)

    Tabakovic, Amra

    Nanotechnology, the science and engineering of materials at the nanoscale, is a booming research area with numerous applications in electronic, cosmetic, automotive and sporting goods industries, as well as in biomedicine. Composite nanoparticles (NPs) are of special interest since the use of two or more materials in NP design imparts multifunctionality on the final NP constructs. This is especially relevant for applications in areas of human healthcare, where the use of dye or drug doped composite NPs is expected to improve the diagnosis and treatment of cancer and other serious illnesses. Since the physicochemical properties of NP suspensions dictate the success of these systems in biomedical applications, especially drug delivery of chemotherapeutics, synthetic routes which offer precise control of NP properties, especially particle diameter and colloidal stability, are utilized to form a variety of composite NPs. Formation of NPs in reverse, or water-in-oil, micelles is one such synthetic approach. However, while the use of reverse micelles to form composite NPs offers precise control over NP size and shape, the post-synthesis laundering and dispersion of synthesized NP suspensions can still be a challenge. Reverse micelle synthetic approaches require the use of surfactants and low dielectric constant solvents, like hexane and cyclohexane, as the oil phase, which can compromise the biocompatibility and colloidal stability of the final composite NP suspensions. Therefore, appropriate dispersants and solvents must be used during laundering and dispersion to remove surfactant and ensure stability of synthesized NPs. In the work presented in this dissertation, two laundering and dispersion approaches, including packed column high performance liquid chromatography (HPLC) and centrifugation (sedimentation and redispersion), are investigated for silver core silica (Ag-SiO2) and calcium phosphosilicate (Caw(HxPO4)y(Si(OH)zOa) b · cH2O, CPS) composite NP suspensions

  19. Reverse engineering of RFID devices

    NARCIS (Netherlands)

    Bokslag, W.

    2015-01-01

    This paper discusses the relevance and potential impact of both RFID and reverse engineering of RFID technology, followed by a discussion of common protocols and internals of RFID technology. The focus of the paper is on providing an overview of the different approaches to reverse engineering RFID

  20. Approaches to quality management and accreditation in a genetic testing laboratory

    Science.gov (United States)

    Berwouts, Sarah; Morris, Michael A; Dequeker, Elisabeth

    2010-01-01

    Medical laboratories, and specifically genetic testing laboratories, provide vital medical services to different clients: clinicians requesting a test, patients from whom the sample was collected, public health and medical-legal instances, referral laboratories and authoritative bodies. All expect results that are accurate and obtained in an efficient and effective manner, within a suitable time frame and at acceptable cost. There are different ways of achieving the end results, but compliance with International Organization for Standardization (ISO) 15189, the international standard for the accreditation of medical laboratories, is becoming progressively accepted as the optimal approach to assuring quality in medical testing. We present recommendations and strategies designed to aid genetic testing laboratories with the implementation of a quality management system, including key aspects such as document control, external quality assessment, internal quality control, internal audit, management review, validation, as well as managing the human side of change. The focus is on pragmatic approaches to attain the levels of quality management and quality assurance required for accreditation according to ISO 15189, within the context of genetic testing. Attention is also given to implementing efficient and effective quality improvement. PMID:20720559

  1. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    Science.gov (United States)

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  2. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    Science.gov (United States)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  3. How decision reversibility affects motivation.

    Science.gov (United States)

    Bullens, Lottie; van Harreveld, Frenk; Förster, Jens; Higgins, Tory E

    2014-04-01

    The present research examined how decision reversibility can affect motivation. On the basis of extant findings, it was suggested that 1 way it could affect motivation would be to strengthen different regulatory foci, with reversible decision making, compared to irreversible decision making, strengthening prevention-related motivation relatively more than promotion-related motivation. If so, then decision reversibility should have effects associated with the relative differences between prevention and promotion motivation. In 5 studies, we manipulated the reversibility of a decision and used different indicators of regulatory focus motivation to test these predictions. Specifically, Study 1 tested for differences in participants' preference for approach versus avoidance strategies toward a desired end state. In Study 2, we used speed and accuracy performance as indicators of participants' regulatory motivation, and in Study 3, we measured global versus local reaction time performance. In Study 4, we approached the research question in a different way, making use of the value-from-fit hypothesis (Higgins, 2000, 2002). We tested whether a fit between chronic regulatory focus and focus induced by the reversibility of the decision increased participants' subjective positive feelings about the decision outcome. Finally, in Study 5, we tested whether regulatory motivation, induced by decision reversibility, also influenced participants' preference in specific product features. The results generally support our hypothesis showing that, compared to irreversible decisions, reversible decisions strengthen a prevention focus more than a promotion focus. Implications for research on decision making are discussed.

  4. Neutrophil Reverse Migration Becomes Transparent with Zebrafish

    Directory of Open Access Journals (Sweden)

    Taylor W. Starnes

    2012-01-01

    Full Text Available The precise control of neutrophil-mediated inflammation is critical for both host defense and the prevention of immunopathology. In vivo imaging studies in zebrafish, and more recently in mice, have made the novel observation that neutrophils leave a site of inflammation through a process called neutrophil reverse migration. The application of advanced imaging techniques to the genetically tractable, optically transparent zebrafish larvae was critical for these advances. Still, the mechanisms underlying neutrophil reverse migration and its effects on the resolution or priming of immune responses remain unclear. Here, we review the current knowledge of neutrophil reverse migration, its potential roles in host immunity, and the live imaging tools that make zebrafish a valuable model for increasing our knowledge of neutrophil behavior in vivo.

  5. Modeling AEC—New Approaches to Study Rare Genetic Disorders

    Science.gov (United States)

    Koch, Peter J.; Dinella, Jason; Fete, Mary; Siegfried, Elaine C.; Koster, Maranke I.

    2015-01-01

    Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome is a rare monogenetic disorder that is characterized by severe abnormalities in ectoderm-derived tissues, such as skin and its appendages. A major cause of morbidity among affected infants is severe and chronic skin erosions. Currently, supportive care is the only available treatment option for AEC patients. Mutations in TP63, a gene that encodes key regulators of epidermal development, are the genetic cause of AEC. However, it is currently not clear how mutations in TP63 lead to the various defects seen in the patients’ skin. In this review, we will discuss current knowledge of the AEC disease mechanism obtained by studying patient tissue and genetically engineered mouse models designed to mimic aspects of the disorder. We will then focus on new approaches to model AEC, including the use of patient cells and stem cell technology to replicate the disease in a human tissue culture model. The latter approach will advance our understanding of the disease and will allow for the development of new in vitro systems to identify drugs for the treatment of skin erosions in AEC patients. Further, the use of stem cell technology, in particular induced pluripotent stem cells (iPSC), will enable researchers to develop new therapeutic approaches to treat the disease using the patient’s own cells (autologous keratinocyte transplantation) after correction of the disease-causing mutations. PMID:24665072

  6. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy.

    Science.gov (United States)

    Benedetti, Sara; Uno, Narumi; Hoshiya, Hidetoshi; Ragazzi, Martina; Ferrari, Giulia; Kazuki, Yasuhiro; Moyle, Louise Anne; Tonlorenzi, Rossana; Lombardo, Angelo; Chaouch, Soraya; Mouly, Vincent; Moore, Marc; Popplewell, Linda; Kazuki, Kanako; Katoh, Motonobu; Naldini, Luigi; Dickson, George; Messina, Graziella; Oshimura, Mitsuo; Cossu, Giulio; Tedesco, Francesco Saverio

    2018-02-01

    Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Food Control and a Citizen Science Approach for Improving Teaching of Genetics in Universities

    Science.gov (United States)

    Borrell, Y. J.; Muñoz-Colmenero, A. M.; Dopico, E.; Miralles, L.; Garcia-Vazquez, E.

    2016-01-01

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home ("students as samplers") were employed as teaching material in three different courses of Genetics during the academic…

  8. Genetic Complexity of Episodic Memory: A Twin Approach to Studies of Aging

    Science.gov (United States)

    Kremen, William S.; Spoon, Kelly M.; Jacobson, Kristen C.; Vasilopoulos, Terrie; McCaffery, Jeanne M.; Panizzon, Matthew S.; Franz, Carol E.; Vuoksimaa, Eero; Xian, Hong; Rana, Brinda K.; Toomey, Rosemary; McKenzie, Ruth; Lyons, Michael J.

    2016-01-01

    Episodic memory change is a central issue in cognitive aging, and understanding that process will require elucidation of its genetic underpinnings. A key limiting factor in genetically informed research on memory has been lack of attention to genetic and phenotypic complexity, as if “memory is memory” and all well-validated assessments are essentially equivalent. Here we applied multivariate twin models to data from late-middle-aged participants in the Vietnam Era Twin Study of Aging to examine the genetic architecture of 6 measures from 3 standard neuropsychological tests: the California Verbal Learning Test-2, and Wechsler Memory Scale-III Logical Memory (LM) and Visual Reproductions (VR). An advantage of the twin method is that it can estimate the extent to which latent genetic influences are shared or independent across different measures before knowing which specific genes are involved. The best-fitting model was a higher order common pathways model with a heritable higher order general episodic memory factor and three test-specific subfactors. More importantly, substantial genetic variance was accounted for by genetic influences that were specific to the latent LM and VR subfactors (28% and 30%, respectively) and independent of the general factor. Such unique genetic influences could partially account for replication failures. Moreover, if different genes influence different memory phenotypes, they could well have different age-related trajectories. This approach represents an important step toward providing critical information for all types of genetically informative studies of aging and memory. PMID:24956007

  9. An Airborne Conflict Resolution Approach Using a Genetic Algorithm

    Science.gov (United States)

    Mondoloni, Stephane; Conway, Sheila

    2001-01-01

    An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.

  10. Neuro-genetic hybrid approach for the solution of non-convex economic dispatch problem

    International Nuclear Information System (INIS)

    Malik, T.N.; Asar, A.U.

    2009-01-01

    ED (Economic Dispatch) is non-convex constrained optimization problem, and is used for both on line and offline studies in power system operation. Conventionally, it is solved as convex problem using optimization techniques by approximating generator input/output characteristic. Curves of monotonically increasing nature thus resulting in an inaccurate dispatch. The GA (Genetic Algorithm) has been used for the solution of this problem owing to its inherent ability to address the convex and non-convex problems equally. This approach brings the solution to the global minimum region of search space in a short time and then takes longer time to converge to near optimal results. GA based hybrid approaches are used to fine tune the near optimal results produced by GA. This paper proposes NGH (Neuro Genetic Hybrid) approach to solve the economic dispatch with valve point effect. The proposed approach combines the GA with the ANN (Artificial Neural Network) using SI (Swarm Intelligence) learning rule. The GA acts as a global optimizer and the neural network fine tunes the GA results to the desired targets. Three machines standard test system has been tested for validation of the approach. Comparing the results with GA and NGH model based on back-propagation learning, the proposed approach gives contrast improvements showing the promise of the approach. (author)

  11. Analysis of stock investment selection based on CAPM using covariance and genetic algorithm approach

    Science.gov (United States)

    Sukono; Susanti, D.; Najmia, M.; Lesmana, E.; Napitupulu, H.; Supian, S.; Putra, A. S.

    2018-03-01

    Investment is one of the economic growth factors of countries, especially in Indonesia. Stocks is a form of investment, which is liquid. In determining the stock investment decisions which need to be considered by investors is to choose stocks that can generate maximum returns with a minimum risk level. Therefore, we need to know how to allocate the capital which may give the optimal benefit. This study discusses the issue of stock investment based on CAPM which is estimated using covariance and Genetic Algorithm approach. It is assumed that the stocks analyzed follow the CAPM model. To do the estimation of beta parameter on CAPM equation is done by two approach, first is to be represented by covariance approach, and second with genetic algorithm optimization. As a numerical illustration, in this paper analyzed ten stocks traded on the capital market in Indonesia. The results of the analysis show that estimation of beta parameters using covariance and genetic algorithm approach, give the same decision, that is, six underpriced stocks with buying decision, and four overpriced stocks with a sales decision. Based on the analysis, it can be concluded that the results can be used as a consideration for investors buying six under-priced stocks, and selling four overpriced stocks.

  12. Reverse-translational biomarker validation of Abnormal Repetitive Behaviors in mice: an illustration of the 4P's modeling approach.

    Science.gov (United States)

    Garner, Joseph P; Thogerson, Collette M; Dufour, Brett D; Würbel, Hanno; Murray, James D; Mench, Joy A

    2011-06-01

    The NIMH's new strategic plan, with its emphasis on the "4P's" (Prediction, Pre-emption, Personalization, and Populations) and biomarker-based medicine requires a radical shift in animal modeling methodology. In particular 4P's models will be non-determinant (i.e. disease severity will depend on secondary environmental and genetic factors); and validated by reverse-translation of animal homologues to human biomarkers. A powerful consequence of the biomarker approach is that different closely related disorders have a unique fingerprint of biomarkers. Animals can be validated as a highly specific model of a single disorder by matching this 'fingerprint'; or as a model of a symptom seen in multiple disorders by matching common biomarkers. Here we illustrate this approach with two Abnormal Repetitive Behaviors (ARBs) in mice: stereotypies and barbering (hair pulling). We developed animal versions of the neuropsychological biomarkers that distinguish human ARBs, and tested the fingerprint of the different mouse ARBs. As predicted, the two mouse ARBs were associated with different biomarkers. Both barbering and stereotypy could be discounted as models of OCD (even though they are widely used as such), due to the absence of limbic biomarkers which are characteristic of OCD and hence are necessary for a valid model. Conversely barbering matched the fingerprint of trichotillomania (i.e. selective deficits in set-shifting), suggesting it may be a highly specific model of this disorder. In contrast stereotypies were correlated only with a biomarker (deficits in response shifting) correlated with stereotypies in multiple disorders, suggesting that animal stereotypies model stereotypies in multiple disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The Effects of Meiosis/Genetics Integration and Instructional Sequence on College Biology Student Achievement in Genetics.

    Science.gov (United States)

    Browning, Mark

    The purpose of the research was to manipulate two aspects of genetics instruction in order to measure their effects on college, introductory biology students' achievement in genetics. One instructional sequence that was used dealt first with monohybrid autosomal inheritance patterns, then sex-linkage. The alternate sequence was the reverse.…

  14. Reversible deep storage: reversibility options for storage in deep geological formations

    International Nuclear Information System (INIS)

    2009-01-01

    This report describes the definition approach to reversibility conditions, presents the main characteristics of high-activity and intermediate-activity long-lived wastes, describes the storage in deep geological formations (safety functions, general description of the storage centre), discusses the design options for the different types of wastes (container, storage module, handling processes, phenomenological analysis, monitoring arrangements) and the decision process in support reversibility (steering of the storage process, progressive development and step-by-step closing), and reports and discusses the researches concerning the memory of the storage site

  15. A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems

    International Nuclear Information System (INIS)

    Sahoo, N.C.; Prasad, K.

    2006-01-01

    This paper presents a fuzzy genetic approach for reconfiguration of radial distribution systems (RDS) so as to maximize the voltage stability of the network for a specific set of loads. The network reconfiguration involves a mechanism for selection of the best set of branches to be opened, one from each loop, such that the reconfigured RDS possesses desired performance characteristics. This discrete solution space is better handled by the proposed scheme, which maximizes a suitable optimizing function (computed using two different approaches). In the first approach, this function is chosen as the average of a voltage stability index of all the buses in the RDS, while in the second approach, the complete RDS is reduced to a two bus equivalent system and the optimizing function is the voltage stability index of this reduced two bus system. The fuzzy genetic algorithm uses a suitable coding and decoding scheme for maintaining the radial nature of the network at every stage of genetic evolution, and it also uses a fuzzy rule based mutation controller for efficient search of the solution space. This method, tested on 69 bus and 33 bus RDSs, shows promising results for the both approaches. It is also observed that the network losses are reduced when the voltage stability is enhanced by the network reconfiguration

  16. Zebrafish Functional Genetics Approach to the Pathogenesis of Well-Differentiated Liposarcoma

    Science.gov (United States)

    2015-12-01

    Roderick JE, LaBelle JL, Bird G, Mathieu R, Bodaar K, Colon D, Pyati U, Stevenson KE, Qi J, Harris M, Silverman LB, Sallan SE, Bradner JL, Neuberg DS...pathogenesis of high-risk T-cell acute lymphoblastic leukemia. Our approach combines human cancer genomics with functional genetics, biochemistry and

  17. Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca.

    Science.gov (United States)

    Oosumi, Teruko; Ruiz-Rojas, Juan Jairo; Veilleux, Richard E; Dickerman, Allan; Shulaev, Vladimir

    2010-09-01

    Reverse genetics is used for functional genomics research in model plants. To establish a model system for the systematic reverse genetics research in the Rosaceae family, we analyzed genomic DNA flanking the T-DNA insertions in 191 transgenic plants of the diploid strawberry, Fragaria vesca. One hundred and seventy-six T-DNA flanking sequences were amplified from the right border (RB) and 37 from the left border (LB) by thermal asymmetric interlaced PCR. Analysis of the T-DNA nick positions revealed that T-DNA was most frequently nicked at the cleavage sites. Analysis of 11 T-DNA integration sites indicated that T-DNA was integrated into the F. vesca genome by illegitimate recombination, as reported in other model plants: Arabidopsis, rice and tobacco. First, deletion of DNA was found at T-DNA integration target sites in all transgenic plants tested. Second, microsimilarities of a few base pairs between the left and/or right ends of the T-DNA and genomic sites were found in all transgenic plants tested. Finally, filler DNA was identified in four break-points. Out of 191 transgenic plants, T-DNA flanking sequences of 79 plants (41%) showed significant similarity to genes, elements or proteins of other plant species and 67 (35%) of the sequences are still unknown strawberry gene fragments. T-DNA flanking sequences of 126 plants (66%) showed homology to plant ESTs. This is the first report of T-DNA integration in a sizeable population of a rosaceous species. We have shown in this paper that T-DNA integration in strawberry is not random but directed by sequence microsimilarities in the host genome.

  18. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.

    Science.gov (United States)

    Khan, Abhinandan; Saha, Goutam; Pal, Rajat Kumar

    2018-05-14

    A gene regulatory network discloses the regulatory interactions amongst genes, at a particular condition of the human body. The accurate reconstruction of such networks from time-series genetic expression data using computational tools offers a stiff challenge for contemporary computer scientists. This is crucial to facilitate the understanding of the proper functioning of a living organism. Unfortunately, the computational methods produce many false predictions along with the correct predictions, which is unwanted. Investigations in the domain focus on the identification of as many correct regulations as possible in the reverse engineering of gene regulatory networks to make it more reliable and biologically relevant. One way to achieve this is to reduce the number of incorrect predictions in the reconstructed networks. In the present investigation, we have proposed a novel scheme to decrease the number of false predictions by suitably combining several metaheuristic techniques. We have implemented the same using a dataset ensemble approach (i.e. combining multiple datasets) also. We have employed the proposed methodology on real-world experimental datasets of the SOS DNA Repair network of Escherichia coli and the IMRA network of Saccharomyces cerevisiae. Subsequently, we have experimented upon somewhat larger, in silico networks, namely, DREAM3 and DREAM4 Challenge networks, and 15-gene and 20-gene networks extracted from the GeneNetWeaver database. To study the effect of multiple datasets on the quality of the inferred networks, we have used four datasets in each experiment. The obtained results are encouraging enough as the proposed methodology can reduce the number of false predictions significantly, without using any supplementary prior biological information for larger gene regulatory networks. It is also observed that if a small amount of prior biological information is incorporated here, the results improve further w.r.t. the prediction of true positives

  19. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  20. Basic Genetics: A Human Approach.

    Science.gov (United States)

    Biological Sciences Curriculum Study, Colorado Springs, CO. Center for Education in Human and Medical Genetics.

    This document (which has the form of a magazine) provides a variety of articles, stories, editorials, letters, interviews, and other types of magazine features (such as book reviews) which focus on human genetics. In addition to providing information about the principles of genetics, nearly all of the sections in the "magazine" address moral,…

  1. Multiobjective genetic algorithm approaches to project scheduling under risk

    OpenAIRE

    Kılıç, Murat; Kilic, Murat

    2003-01-01

    In this thesis, project scheduling under risk is chosen as the topic of research. Project scheduling under risk is defined as a biobjective decision problem and is formulated as a 0-1 integer mathematical programming model. In this biobjective formulation, one of the objectives is taken as the expected makespan minimization and the other is taken as the expected cost minimization. As the solution approach to this biobjective formulation genetic algorithm (GA) is chosen. After carefully invest...

  2. Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps.

    Directory of Open Access Journals (Sweden)

    Andrei Zinovyev

    2013-04-01

    Full Text Available Systematic analysis of synthetic lethality (SL constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic interactions. The molecular mechanisms leading to within-pathway SL are not fully understood. Here, we propose a novel mechanism leading to within-pathway SL involving two genes functioning in a single non-essential pathway. This type of SL termed within-reversible-pathway SL involves reversible pathway steps, catalyzed by different enzymes in the forward and backward directions, and kinetic trapping of a potentially toxic intermediate. Experimental data with recombinational DNA repair genes validate the concept. Mathematical modeling recapitulates the possibility of kinetic trapping and revealed the potential contributions of synthetic, dosage-lethal interactions in such a genetic system as well as the possibility of within-pathway positive masking interactions. Analysis of yeast gene interaction and pathway data suggests broad applicability of this novel concept. These observations extend the canonical interpretation of synthetic-lethal or synthetic-sick interactions with direct implications to reconstruct molecular pathways and improve therapeutic approaches to diseases such as cancer.

  3. Second-life retailing: a reverse supply chain perspective

    OpenAIRE

    Beh, LS; Ghobadian, A; He, Q; Gallear, D; O Regan, N

    2016-01-01

    The authors examine the role of entrepreneurial business models in the reverse supply chain of apparel/fashion retailers. The purpose of this paper is to offer an alternative approach to the “return to the point of origin” prevalent in the reverse chain of manufacturers but less technically and economically feasible in the case of apparel/fashion retailers. This approach, second-life retailing, not only reduces waste but also democratises consumption. Design/methodology/approach – The paper i...

  4. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Michels, Helen; Nollen, Ellen A. A.

    2014-01-01

    Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be

  5. Reverse engineering large-scale genetic networks: synthetic versus ...

    Indian Academy of Sciences (India)

    2010-04-19

    Apr 19, 2010 ... process computationally to describe the structure of the sys- tem and ... to the different mathematical formalisms used to model net-. Keywords. gene ..... All the algorithms were implemented in MATLAB 7.0 and run on all the 'gold ..... De Jong H. 2002 Medeling and simulation of genetic regulatory systems: a ...

  6. Parkinson’s disease managing reversible neurodegeneration

    Science.gov (United States)

    Hinz, Marty; Stein, Alvin; Cole, Ted; McDougall, Beth; Westaway, Mark

    2016-01-01

    Traditionally, the Parkinson’s disease (PD) symptom course has been classified as an irreversible progressive neurodegenerative disease. This paper documents 29 PD and treatment-induced systemic depletion etiologies which cause and/or exacerbate the seven novel primary relative nutritional deficiencies associated with PD. These reversible relative nutritional deficiencies (RNDs) may facilitate and accelerate irreversible progressive neurodegeneration, while other reversible RNDs may induce previously undocumented reversible pseudo-neurodegeneration that is hiding in plain sight since the symptoms are identical to the symptoms being experienced by the PD patient. Documented herein is a novel nutritional approach for reversible processes management which may slow or halt irreversible progressive neurodegenerative disease and correct reversible RNDs whose symptoms are identical to the patient’s PD symptoms. PMID:27103805

  7. Mouse genetic approaches applied to the normal tissue radiation response

    International Nuclear Information System (INIS)

    Haston, Christina K.

    2012-01-01

    The varying responses of inbred mouse models to radiation exposure present a unique opportunity to dissect the genetic basis of radiation sensitivity and tissue injury. Such studies are complementary to human association studies as they permit both the analysis of clinical features of disease, and of specific variants associated with its presentation, in a controlled environment. Herein I review how animal models are studied to identify specific genetic variants influencing predisposition to radiation-induced traits. Among these radiation-induced responses are documented strain differences in repair of DNA damage and in extent of tissue injury (in the lung, skin, and intestine) which form the base for genetic investigations. For example, radiation-induced DNA damage is consistently greater in tissues from BALB/cJ mice, than the levels in C57BL/6J mice, suggesting there may be an inherent DNA damage level per strain. Regarding tissue injury, strain specific inflammatory and fibrotic phenotypes have been documented for principally, C57BL/6 C3H and A/J mice but a correlation among responses such that knowledge of the radiation injury in one tissue informs of the response in another is not evident. Strategies to identify genetic differences contributing to a trait based on inbred strain differences, which include linkage analysis and the evaluation of recombinant congenic (RC) strains, are presented, with a focus on the lung response to irradiation which is the only radiation-induced tissue injury mapped to date. Such approaches are needed to reveal genetic differences in susceptibility to radiation injury, and also to provide a context for the effects of specific genetic variation uncovered in anticipated clinical association studies. In summary, mouse models can be studied to uncover heritable variation predisposing to specific radiation responses, and such variations may point to pathways of importance to phenotype development in the clinic.

  8. Branch-pipe-routing approach for ships using improved genetic algorithm

    Science.gov (United States)

    Sui, Haiteng; Niu, Wentie

    2016-09-01

    Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

  9. A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, N.C. [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka (Malaysia); Prasad, K. [Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka (Malaysia)

    2006-11-15

    This paper presents a fuzzy genetic approach for reconfiguration of radial distribution systems (RDS) so as to maximize the voltage stability of the network for a specific set of loads. The network reconfiguration involves a mechanism for selection of the best set of branches to be opened, one from each loop, such that the reconfigured RDS possesses desired performance characteristics. This discrete solution space is better handled by the proposed scheme, which maximizes a suitable optimizing function (computed using two different approaches). In the first approach, this function is chosen as the average of a voltage stability index of all the buses in the RDS, while in the second approach, the complete RDS is reduced to a two bus equivalent system and the optimizing function is the voltage stability index of this reduced two bus system. The fuzzy genetic algorithm uses a suitable coding and decoding scheme for maintaining the radial nature of the network at every stage of genetic evolution, and it also uses a fuzzy rule based mutation controller for efficient search of the solution space. This method, tested on 69 bus and 33 bus RDSs, shows promising results for the both approaches. It is also observed that the network losses are reduced when the voltage stability is enhanced by the network reconfiguration. (author)

  10. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    Energy Technology Data Exchange (ETDEWEB)

    Balmain, Allan [University of California, San Francisco; Song, Ihn Young [University of California, San Francisco

    2013-05-15

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularly when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.

  11. A possibilistic approach for transient identification with 'don't know' response capability optimized by genetic algorithm

    International Nuclear Information System (INIS)

    Almeida, Jose Carlos S. de; Schirru, Roberto; Pereira, Claudio M.N.A.; Universidade Federal, Rio de Janeiro, RJ

    2002-01-01

    This work describes a possibilistic approach for transient identification based on the minimum centroids set method, proposed in previous work, optimized by genetic algorithm. The idea behind this method is to split the complex classification problem into small and simple ones, so that the performance in the classification can be increased. In order to accomplish that, a genetic algorithm is used to learn, from realistic simulated data, the optimized time partitions, which the robustness and correctness in the classification are maximized. The use of a possibilistic classification approach propitiates natural and consistent classification rules, leading naturally to a good heuristic to handle the 'don't know 'response, in case of unrecognized transient, which is fairly desirable in transient classification systems where safety is critical. Application of the proposed approach to a nuclear transient indentification problem reveals good capability of the genetic algorithm in learning optimized possibilistic classification rules for efficient diagnosis including 'don't know' response. Obtained results are shown and commented. (author)

  12. Arbitrariness is not enough: towards a functional approach to the genetic code.

    Science.gov (United States)

    Lacková, Ľudmila; Matlach, Vladimír; Faltýnek, Dan

    2017-12-01

    Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about "code" in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign's object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.

  13. DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs).

    Science.gov (United States)

    Arulandhu, Alfred J; van Dijk, Jeroen P; Dobnik, David; Holst-Jensen, Arne; Shi, Jianxin; Zel, Jana; Kok, Esther J

    2016-07-01

    With the increased global production of different genetically modified (GM) plant varieties, chances increase that unauthorized GM organisms (UGMOs) may enter the food chain. At the same time, the detection of UGMOs is a challenging task because of the limited sequence information that will generally be available. PCR-based methods are available to detect and quantify known UGMOs in specific cases. If this approach is not feasible, DNA enrichment of the unknown adjacent sequences of known GMO elements is one way to detect the presence of UGMOs in a food or feed product. These enrichment approaches are also known as chromosome walking or gene walking (GW). In recent years, enrichment approaches have been coupled with next generation sequencing (NGS) analysis and implemented in, amongst others, the medical and microbiological fields. The present review will provide an overview of these approaches and an evaluation of their applicability in the identification of UGMOs in complex food or feed samples.

  14. Developmental psychopathology in an era of molecular genetics and neuroimaging: A developmental neurogenetics approach.

    Science.gov (United States)

    Hyde, Luke W

    2015-05-01

    The emerging field of neurogenetics seeks to model the complex pathways from gene to brain to behavior. This field has focused on imaging genetics techniques that examine how variability in common genetic polymorphisms predict differences in brain structure and function. These studies are informed by other complimentary techniques (e.g., animal models and multimodal imaging) and have recently begun to incorporate the environment through examination of Imaging Gene × Environment interactions. Though neurogenetics has the potential to inform our understanding of the development of psychopathology, there has been little integration between principles of neurogenetics and developmental psychopathology. The paper describes a neurogenetics and Imaging Gene × Environment approach and how these approaches have been usefully applied to the study of psychopathology. Six tenets of developmental psychopathology (the structure of phenotypes, the importance of exploring mechanisms, the conditional nature of risk, the complexity of multilevel pathways, the role of development, and the importance of who is studied) are identified, and how these principles can further neurogenetics applications to understanding the development of psychopathology is discussed. A major issue of this piece is how neurogenetics and current imaging and molecular genetics approaches can be incorporated into developmental psychopathology perspectives with a goal of providing models for better understanding pathways from among genes, environments, the brain, and behavior.

  15. Reverse Vaccinology: An Approach for Identifying Leptospiral Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Odir A. Dellagostin

    2017-01-01

    Full Text Available Leptospirosis is a major public health problem with an incidence of over one million human cases each year. It is a globally distributed, zoonotic disease and is associated with significant economic losses in farm animals. Leptospirosis is caused by pathogenic Leptospira spp. that can infect a wide range of domestic and wild animals. Given the inability to control the cycle of transmission among animals and humans, there is an urgent demand for a new vaccine. Inactivated whole-cell vaccines (bacterins are routinely used in livestock and domestic animals, however, protection is serovar-restricted and short-term only. To overcome these limitations, efforts have focused on the development of recombinant vaccines, with partial success. Reverse vaccinology (RV has been successfully applied to many infectious diseases. A growing number of leptospiral genome sequences are now available in public databases, providing an opportunity to search for prospective vaccine antigens using RV. Several promising leptospiral antigens were identified using this approach, although only a few have been characterized and evaluated in animal models. In this review, we summarize the use of RV for leptospirosis and discuss the need for potential improvements for the successful development of a new vaccine towards reducing the burden of human and animal leptospirosis.

  16. Slowly switching between environments facilitates reverse evolution in small populations

    Science.gov (United States)

    Tan, Longzhi; Gore, Jeff

    2011-03-01

    The rate at which a physical process occurs usually changes the behavior of a system. In thermodynamics, the reversibility of a process generally increases when it occurs at an infinitely slow rate. In biological evolution, adaptations to a new environment may be reversed by evolution in the ancestral environment. Such fluctuating environments are ubiquitous in nature, although how the rate of switching affects reverse evolution is unknown. Here we use a computational approach to quantify evolutionary reversibility as a function of the rate of switching between two environments. For small population sizes, which travel on landscapes as random walkers, we find that both genotypic and phenotypic reverse evolution increase at slow switching rates. However, slow switching of environments decreases evolutionary reversibility for a greedy walker, corresponding to large populations (extensive clonal interference). We conclude that the impact of the switching rate for biological evolution is more complicated than other common physical processes, and that a quantitative approach may yield significant insight into reverse evolution.

  17. A Survey of Automatic Protocol Reverse Engineering Approaches, Methods, and Tools on the Inputs and Outputs View

    OpenAIRE

    Baraka D. Sija; Young-Hoon Goo; Kyu-Seok Shim; Huru Hasanova; Myung-Sup Kim

    2018-01-01

    A network protocol defines rules that control communications between two or more machines on the Internet, whereas Automatic Protocol Reverse Engineering (APRE) defines the way of extracting the structure of a network protocol without accessing its specifications. Enough knowledge on undocumented protocols is essential for security purposes, network policy implementation, and management of network resources. This paper reviews and analyzes a total of 39 approaches, methods, and tools towards ...

  18. Investigation of the antigenic evolution of field isolates using the reverse genetics system of infectious bursal disease virus (IBDV).

    Science.gov (United States)

    Durairaj, Vijay; Sellers, Holly S; Linnemann, Erich G; Icard, Alan H; Mundt, Egbert

    2011-10-01

    The antigenic profiles of over 300 infectious bursal disease virus (IBDV) isolates were analyzed using a panel of monoclonal antibodies in a reverse genetics system. In addition, the sequences of a large portion of the neutralizing-antibody-inducing VP2 of IBDV were determined. Phylogenetic analysis of nucleotide and amino acid sequences in combination with the antigenic profiles obtained using the monoclonal antibody panel, revealed a lack of correlation between antigenicity and isolate's placement within the phylogenetic tree. In-depth analysis of amino acid exchanges revealed that changes within a certain region of the VP2 molecule resulted in differences in the antigenicity of the virus. This comprehensive analysis of VP2 sequences indicated a high selective pressure in the field that was likely due to vaccination programs, which increase the rate of evolution of the virus.

  19. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    Science.gov (United States)

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  20. Chapter 7. Management strategies for dwarf mistletoes: Biological, chemical, and genetic approaches

    Science.gov (United States)

    S. F. Shamoun; L. E. DeWald

    2002-01-01

    The opportunity and need for management of mistletoe populations with biological, chemical, and genetic approaches are greatest for application to the dwarf mistletoes. Although much information is available on these management strategies (see reviews by Hawksworth 1972, Knutson 1978), significant research and development are still required for these to become...

  1. Reversal permanent charge and reversal potential: case studies via classical Poisson–Nernst–Planck models

    International Nuclear Information System (INIS)

    Eisenberg, Bob; Liu, Weishi; Xu, Hongguo

    2015-01-01

    In this work, we are interested in effects of a simple profile of permanent charges on ionic flows. We determine when a permanent charge produces current reversal. We adopt the classical Poisson–Nernst–Planck (PNP) models of ionic flows for this study. The starting point of our analysis is the recently developed geometric singular perturbation approach for PNP models. Under the setting in the paper for case studies, we are able to identify a single governing equation for the existence and the value of the permanent charge for a current reversal. A number of interesting features are established. The related topic on reversal potential can be viewed as a dual problem and is briefly examined in this work too. (paper)

  2. [Genetic diagnostics of pathogenic splicing abnormalities in the clinical laboratory--pitfalls and screening approaches].

    Science.gov (United States)

    Niimi, Hideki; Ogawa, Tomomi; Note, Rhougou; Hayashi, Shirou; Ueno, Tomohiro; Harada, Kenu; Uji, Yoshinori; Kitajima, Isao

    2010-12-01

    In recent years, genetic diagnostics of pathogenic splicing abnormalities are increasingly recognized as critically important in the clinical genetic diagnostics. It is reported that approximately 10% of pathogenic mutations causing human inherited diseases are splicing mutations. Nonetheless, it is still difficult to identify splicing abnormalities in routine genetic diagnostic settings. Here, we studied two different kinds of cases with splicing abnormalities. The first case is a protein S deficiency. Nucleotide analyses revealed that the proband had a previously reported G to C substitution in the invariant AG dinucleotide at the splicing acceptor site of intronl/exon2, which produces multiple splicing abnormalities resulting in protein S deficiency. The second case is an antithrombin (AT) deficiency. This proband had a previously reported G to A substitution, at nucleotide position 9788 in intron 4, 14 bp in front of exon 5, which created a de novo exon 5 splice site and resulted in AT deficiency. From a practical standpoint, we discussed the pitfalls, attentions, and screening approaches in genetic diagnostics of pathogenic splicing abnormalities. Due to the difficulty with full-length sequence analysis of introns, and the lack of RNA samples, splicing mutations may escape identification. Although current genetic testing remains to be improved, to screen for splicing abnormalities more efficiently, it is significant to use an appropriate combination of various approaches such as DNA and/or RNA samples, splicing mutation databases, bioinformatic tools to detect splice sites and cis-regulatory elements, and in vitro and/or in vivo experimentally methods as needed.

  3. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... yet simple way to follow a set of interacting proteins. Such a reversion site need not necessarily be geometrically close to the primary mutation site. pp 131-132 Book review. The genetics of sheep · J. H. Edwards · More Details Fulltext PDF. pp 133-134 Book review. Evolutionary genetics: from molecules to morphology.

  4. Sex Reversal in Reptiles: Reproductive Oddity or Powerful Driver of Evolutionary Change?

    Science.gov (United States)

    Holleley, Clare E; Sarre, Stephen D; O'Meally, Denis; Georges, Arthur

    2016-01-01

    Is sex a product of genes, the environment, or both? In this review, we describe the diversity of sex-determining mechanisms in reptiles, with a focus on systems that display gene-environment interactions. We summarise the field and laboratory-based evidence for the occurrence of environmental sex reversal in reptiles and ask whether this is a widespread evolutionary mechanism affecting the evolution of sex chromosomes and speciation in vertebrates. Sex determination systems exist across a continuum of genetic and environmental influences, blurring the lines between what was once considered a strict dichotomy between genetic sex determination and temperature-dependent sex determination. Across this spectrum, we identify the potential for sex reversal in species with clearly differentiated heteromorphic sex chromosomes (Pogona vitticeps, Bassiana duperreyi, Eremias multiocellata, Gekko japonicus), weakly differentiated homomorphic sex chromosomes (Niveoscincus ocellatus), and species with only a weak heritable predisposition for sex (Emys orbicularis, Trachemys scripta). We argue that sex reversal is widespread in reptiles (Testudines, Lacertidae, Agamidae, Scincidae, Gekkonidae) and has the potential to have an impact on individual fitness, resulting in reproductively, morphologically, and behaviourally unique phenotypes. Sex reversal is likely to be a powerful evolutionary force responsible for generating and maintaining lability and diversity in reptile sex-determining modes. © 2016 S. Karger AG, Basel.

  5. Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona; Stuart, David T

    2017-01-01

    The budding yeast Saccharomyces cerevisiae has a long history as a model organism for studies of meiosis and the cell cycle. The popularity of this yeast as a model is in large part due to the variety of genetic and cytological approaches that can be effectively performed with the cells. Cultures of the cells can be induced to synchronously progress through meiosis and sporulation allowing large-scale gene expression and biochemical studies to be performed. Additionally, the spore tetrads resulting from meiosis make it possible to characterize the haploid products of meiosis allowing investigation of meiotic recombination and chromosome segregation. Here we describe genetic methods for analysis progression of S. cerevisiae through meiosis and sporulation with an emphasis on strategies for the genetic analysis of regulators of meiosis-specific genes.

  6. Dating Antarctic ice sheet collapse: Proposing a molecular genetic approach

    Science.gov (United States)

    Strugnell, Jan M.; Pedro, Joel B.; Wilson, Nerida G.

    2018-01-01

    Sea levels at the end of this century are projected to be 0.26-0.98 m higher than today. The upper end of this range, and even higher estimates, cannot be ruled out because of major uncertainties in the dynamic response of polar ice sheets to a warming climate. Here, we propose an ecological genetics approach that can provide insight into the past stability and configuration of the West Antarctic Ice Sheet (WAIS). We propose independent testing of the hypothesis that a trans-Antarctic seaway occurred at the last interglacial. Examination of the genomic signatures of bottom-dwelling marine species using the latest methods can provide an independent window into the integrity of the WAIS more than 100,000 years ago. Periods of connectivity facilitated by trans-Antarctic seaways could be revealed by dating coalescent events recorded in DNA. These methods allow alternative scenarios to be tested against a fit to genomic data. Ideal candidate taxa for this work would need to possess a circumpolar distribution, a benthic habitat, and some level of genetic structure indicated by phylogeographical investigation. The purpose of this perspective piece is to set out an ecological genetics method to help resolve when the West Antarctic Ice Shelf last collapsed.

  7. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    Science.gov (United States)

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  8. A genetic epidemiology approach to cyber-security.

    Science.gov (United States)

    Gil, Santiago; Kott, Alexander; Barabási, Albert-László

    2014-07-16

    While much attention has been paid to the vulnerability of computer networks to node and link failure, there is limited systematic understanding of the factors that determine the likelihood that a node (computer) is compromised. We therefore collect threat log data in a university network to study the patterns of threat activity for individual hosts. We relate this information to the properties of each host as observed through network-wide scans, establishing associations between the network services a host is running and the kinds of threats to which it is susceptible. We propose a methodology to associate services to threats inspired by the tools used in genetics to identify statistical associations between mutations and diseases. The proposed approach allows us to determine probabilities of infection directly from observation, offering an automated high-throughput strategy to develop comprehensive metrics for cyber-security.

  9. Reference genes for reverse transcription quantitative PCR in canine brain tissue

    NARCIS (Netherlands)

    Stassen, Quirine E M; Riemers, Frank M; Reijmerink, Hannah; Leegwater, Peter A J; Penning, Louis C

    2015-01-01

    BACKGROUND: In the last decade canine models have been used extensively to study genetic causes of neurological disorders such as epilepsy and Alzheimer's disease and unravel their pathophysiological pathways. Reverse transcription quantitative polymerase chain reaction is a sensitive and

  10. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach.......The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...

  11. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Plant Genetic Resources: Selected Issues from Genetic Erosion to Genetic Engineering

    Directory of Open Access Journals (Sweden)

    Karl Hammer

    2008-04-01

    Full Text Available Plant Genetic Resources (PGR continue to play an important role in the development of agriculture. The following aspects receive a special consideration:1. Definition. The term was coined in 1970. The genepool concept served as an important tool in the further development. Different approaches are discussed.2. Values of Genetic Resources. A short introduction is highlighting this problem and stressing the economic usfulness of PGR.3. Genetic Erosion. Already observed by E. Baur in 1914, this is now a key issue within PGR. The case studies cited include Ethiopia, Italy, China, S Korea, Greece and S. Africa. Modern approaches concentrate on allelic changes in varieties over time but neglect the landraces. The causes and consequences of genetic erosion are discussed.4. Genetic Resources Conservation. Because of genetic erosion there is a need for conservation. PGR should be consigned to the appropriate method of conservation (ex situ, in situ, on-farm according to the scientific basis of biodiversity (genetic diversity, species diversity, ecosystem diversity and the evolutionary status of plants (cultivated plants, weeds, related wild plants (crop wild relatives.5. GMO. The impact of genetically engineered plants on genetic diversity is discussed.6. The Conclusions and Recommendations stress the importance of PGR. Their conservation and use are urgent necessities for the present development and future survival of mankind.

  13. Reversibility of female sterilization.

    Science.gov (United States)

    Siegler, A M; Hulka, J; Peretz, A

    1985-04-01

    The discussion considers the current status of reversibility of sterilization in the US and describes clinical and experimental efforts for developing techniques designed for reversibility. It focuses on regret following sterilization, reversal potential of current sterilization techniques, patient selection, current reversal techniques, results of sterilization procedures, experimental approaches to reversal of current techniques of sterilization, and sterilization procedures devised for reversibility, in humans and in animals. Request is the 1st stage of reversal, but a request for sterilization reversal (SR) does not always mean regret for a decision made at the time. Frequently it is a wish to restore fertility because life circumstances have changed after a sterilization that was ppropriate at the time it was performed. Schwyhart and Kutner reviewed 22 studies published between 1949-69 in which they found that the percentage of patients regretting the procedure ranged from 1.3-15%. Requests for reversal remain low in most countries, but if sterilization becomes a more popular method of contraception, requests will also increase. The ideal operation considered as a reversaible method of sterilization should include an easy, reliable outpatient method of tubal occlusion with miniml risk or patient discomfort that subsequently could be reversed without the need for a major surgical intervention. Endoscopic methods have progressed toward the 1st objective. A recent search of the literature uncovered few series of SR of more than 50 cases. The 767 operations found were analyzed with regard to pregnancy outcome. The precent of live births varied from 74-78.8%, and the occurance of tubal pregnancies ranged from 1.7-6.5%. All of the confounding variables in patient selection and small numbers of reported procedures preclude any conclusion about the different techniques or the number of operations that give a surgeon a level of expertise. Few authors classify their

  14. Maternal Smoking During Pregnancy and Offspring Birth Weight: A Genetically-Informed Approach Comparing Multiple Raters

    Science.gov (United States)

    Knopik, Valerie S.; Marceau, Kristine; Palmer, Rohan H. C.; Smith, Taylor F.; Heath, Andrew C.

    2016-01-01

    Maternal smoking during pregnancy (SDP) is a significant public health concern with adverse consequences to the health and well-being of the fetus. There is considerable debate about the best method of assessing SDP, including birth/medical records, timeline follow-back approaches, multiple reporters, and biological verification (e.g., cotinine). This is particularly salient for genetically-informed approaches where it is not always possible or practical to do a prospective study starting during the prenatal period when concurrent biological specimen samples can be collected with ease. In a sample of families (N = 173) specifically selected for sibling pairs discordant for prenatal smoking exposure, we: (1) compare rates of agreement across different types of report—maternal report of SDP, paternal report of maternal SDP, and SDP contained on birth records from the Department of Vital Statistics; (2) examine whether SDP is predictive of birth weight outcomes using our best SDP report as identified via step (1); and (3) use a sibling-comparison approach that controls for genetic and familial influences that siblings share in order to assess the effects of SDP on birth weight. Results show high agreement between reporters and support the utility of retrospective report of SDP. Further, we replicate a causal association between SDP and birth weight, wherein SDP results in reduced birth weight even when accounting for genetic and familial confounding factors via a sibling comparison approach. PMID:26494459

  15. Feature Selection using Multi-objective Genetic Algorith m: A Hybrid Approach

    OpenAIRE

    Ahuja, Jyoti; GJUST - Guru Jambheshwar University of Sciecne and Technology; Ratnoo, Saroj Dahiya; GJUST - Guru Jambheshwar University of Sciecne and Technology

    2015-01-01

    Feature selection is an important pre-processing task for building accurate and comprehensible classification models. Several researchers have applied filter, wrapper or hybrid approaches using genetic algorithms which are good candidates for optimization problems that involve large search spaces like in the case of feature selection. Moreover, feature selection is an inherently multi-objective problem with many competing objectives involving size, predictive power and redundancy of the featu...

  16. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics.

    Science.gov (United States)

    Chantreau, Maxime; Grec, Sébastien; Gutierrez, Laurent; Dalmais, Marion; Pineau, Christophe; Demailly, Hervé; Paysant-Leroux, Christine; Tavernier, Reynald; Trouvé, Jean-Paul; Chatterjee, Manash; Guillot, Xavier; Brunaud, Véronique; Chabbert, Brigitte; van Wuytswinkel, Olivier; Bendahmane, Abdelhafid; Thomasset, Brigitte; Hawkins, Simon

    2013-10-15

    Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. We have developed a flax mutant population that can be used as an efficient

  17. Evolution and developmental genetics of floral display-A review of progress

    Institute of Scientific and Technical Information of China (English)

    Qing Ma; Wenheng Zhang; Qiu-Yun (Jenny) Xiang

    2017-01-01

    Angiosperms evolved a great diversity of ways to display their flowers for reproductive success by variation in floral color,size,shape,scent,arrangements,and flowering time.The various innovations in floral forms and the aggregation of flowers into different kinds of inflorescences can drive new ecological adaptations,speciation,and angiosperm diversification.Evolutionary developmental biology (evo-devo) seeks to uncover the developmental and genetic basis underlying morphological diversification.Advances in the developmental genetics of floral display have provided a foundation for insights into the genetic basis of floral and inflorescence evolution.A number of regulatory genes controlling floral and inflorescence development have been identified in model plants (e.g.,Arabidopsis thaliana,Antirrhinum majus) using forward genetics and conserved functions of many of these genes across diverse non-model species have been revealed by reverse genetics.Gene-regulatory networks that mediated the developmental progresses of floral and inflorescence development have also been established in some plant species.Meanwhile,phylogeny-based comparative analysis of morphological and genetic character has enabled the identification of key evolutionary events that lead to morphological complexity and diversification.Here we review the recent progress on evo-devo studies of floral display including floral symmetry,petal fusion,floral color,floral scent,and inflorescences.We also review the molecular genetic approaches applied to plant evo-devo studies and highlight the future directions of evo-devo.

  18. Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks.

    Science.gov (United States)

    Spanagel, Rainer

    2013-01-01

    Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.

  19. Genetic demographic networks: Mathematical model and applications.

    Science.gov (United States)

    Kimmel, Marek; Wojdyła, Tomasz

    2016-10-01

    Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise

  20. A Heuristics Approach for Classroom Scheduling Using Genetic Algorithm Technique

    Science.gov (United States)

    Ahmad, Izah R.; Sufahani, Suliadi; Ali, Maselan; Razali, Siti N. A. M.

    2018-04-01

    Reshuffling and arranging classroom based on the capacity of the audience, complete facilities, lecturing time and many more may lead to a complexity of classroom scheduling. While trying to enhance the productivity in classroom planning, this paper proposes a heuristic approach for timetabling optimization. A new algorithm was produced to take care of the timetabling problem in a university. The proposed of heuristics approach will prompt a superior utilization of the accessible classroom space for a given time table of courses at the university. Genetic Algorithm through Java programming languages were used in this study and aims at reducing the conflicts and optimizes the fitness. The algorithm considered the quantity of students in each class, class time, class size, time accessibility in each class and lecturer who in charge of the classes.

  1. A Parallel Approach To Optimum Actuator Selection With a Genetic Algorithm

    Science.gov (United States)

    Rogers, James L.

    2000-01-01

    Recent discoveries in smart technologies have created a variety of aerodynamic actuators which have great potential to enable entirely new approaches to aerospace vehicle flight control. For a revolutionary concept such as a seamless aircraft with no moving control surfaces, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements. The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement Maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. Genetic algorithms have been instrumental in achieving good solutions to discrete optimization problems, such as the actuator placement problem. As a proof of concept, a genetic has been developed to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control for a simplified, untapered, unswept wing model. To find the optimum placement by searching all possible combinations would require 1,100 hours. Formulating the problem and as a multi-objective problem and modifying it to take advantage of the parallel processing capabilities of a multi-processor computer, reduces the optimization time to 22 hours.

  2. A systematic approach to assessing the clinical significance of genetic variants.

    Science.gov (United States)

    Duzkale, H; Shen, J; McLaughlin, H; Alfares, A; Kelly, M A; Pugh, T J; Funke, B H; Rehm, H L; Lebo, M S

    2013-11-01

    Molecular genetic testing informs diagnosis, prognosis, and risk assessment for patients and their family members. Recent advances in low-cost, high-throughput DNA sequencing and computing technologies have enabled the rapid expansion of genetic test content, resulting in dramatically increased numbers of DNA variants identified per test. To address this challenge, our laboratory has developed a systematic approach to thorough and efficient assessments of variants for pathogenicity determination. We first search for existing data in publications and databases including internal, collaborative and public resources. We then perform full evidence-based assessments through statistical analyses of observations in the general population and disease cohorts, evaluation of experimental data from in vivo or in vitro studies, and computational predictions of potential impacts of each variant. Finally, we weigh all evidence to reach an overall conclusion on the potential for each variant to be disease causing. In this report, we highlight the principles of variant assessment, address the caveats and pitfalls, and provide examples to illustrate the process. By sharing our experience and providing a framework for variant assessment, including access to a freely available customizable tool, we hope to help move towards standardized and consistent approaches to variant assessment. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Generation of mutant Uukuniemi viruses lacking the nonstructural protein NSs by reverse genetics indicates that NSs is a weak interferon antagonist.

    Science.gov (United States)

    Rezelj, Veronica V; Överby, Anna K; Elliott, Richard M

    2015-05-01

    Uukuniemi virus (UUKV) is a tick-borne member of the Phlebovirus genus (family Bunyaviridae) and has been widely used as a safe laboratory model to study aspects of bunyavirus replication. Recently, a number of new tick-borne phleboviruses have been discovered, some of which, like severe fever with thrombocytopenia syndrome virus and Heartland virus, are highly pathogenic in humans. UUKV could now serve as a useful comparator to understand the molecular basis for the different pathogenicities of these related viruses. We established a reverse-genetics system to recover UUKV entirely from cDNA clones. We generated two recombinant viruses, one in which the nonstructural protein NSs open reading frame was deleted from the S segment and one in which the NSs gene was replaced with green fluorescent protein (GFP), allowing convenient visualization of viral infection. We show that the UUKV NSs protein acts as a weak interferon antagonist in human cells but that it is unable to completely counteract the interferon response, which could serve as an explanation for its inability to cause disease in humans. Uukuniemi virus (UUKV) is a tick-borne phlebovirus that is apathogenic for humans and has been used as a convenient model to investigate aspects of phlebovirus replication. Recently, new tick-borne phleboviruses have emerged, such as severe fever with thrombocytopenia syndrome virus in China and Heartland virus in the United States, that are highly pathogenic, and UUKV will now serve as a comparator to aid in the understanding of the molecular basis for the virulence of these new viruses. To help such investigations, we have developed a reverse-genetics system for UUKV that permits manipulation of the viral genome. We generated viruses lacking the nonstructural protein NSs and show that UUKV NSs is a weak interferon antagonist. In addition, we created a virus that expresses GFP and thus allows convenient monitoring of virus replication. These new tools represent a

  4. Approaches in Characterizing Genetic Structure and Mapping in a Rice Multiparental Population.

    Science.gov (United States)

    Raghavan, Chitra; Mauleon, Ramil; Lacorte, Vanica; Jubay, Monalisa; Zaw, Hein; Bonifacio, Justine; Singh, Rakesh Kumar; Huang, B Emma; Leung, Hei

    2017-06-07

    Multi-parent Advanced Generation Intercross (MAGIC) populations are fast becoming mainstream tools for research and breeding, along with the technology and tools for analysis. This paper demonstrates the analysis of a rice MAGIC population from data filtering to imputation and processing of genetic data to characterizing genomic structure, and finally quantitative trait loci (QTL) mapping. In this study, 1316 S6:8 indica MAGIC (MI) lines and the eight founders were sequenced using Genotyping by Sequencing (GBS). As the GBS approach often includes missing data, the first step was to impute the missing SNPs. The observable number of recombinations in the population was then explored. Based on this case study, a general outline of procedures for a MAGIC analysis workflow is provided, as well as for QTL mapping of agronomic traits and biotic and abiotic stress, using the results from both association and interval mapping approaches. QTL for agronomic traits (yield, flowering time, and plant height), physical (grain length and grain width) and cooking properties (amylose content) of the rice grain, abiotic stress (submergence tolerance), and biotic stress (brown spot disease) were mapped. Through presenting this extensive analysis in the MI population in rice, we highlight important considerations when choosing analytical approaches. The methods and results reported in this paper will provide a guide to future genetic analysis methods applied to multi-parent populations. Copyright © 2017 Raghavan et al.

  5. Approaches in Characterizing Genetic Structure and Mapping in a Rice Multiparental Population

    Directory of Open Access Journals (Sweden)

    Chitra Raghavan

    2017-06-01

    Full Text Available Multi-parent Advanced Generation Intercross (MAGIC populations are fast becoming mainstream tools for research and breeding, along with the technology and tools for analysis. This paper demonstrates the analysis of a rice MAGIC population from data filtering to imputation and processing of genetic data to characterizing genomic structure, and finally quantitative trait loci (QTL mapping. In this study, 1316 S6:8 indica MAGIC (MI lines and the eight founders were sequenced using Genotyping by Sequencing (GBS. As the GBS approach often includes missing data, the first step was to impute the missing SNPs. The observable number of recombinations in the population was then explored. Based on this case study, a general outline of procedures for a MAGIC analysis workflow is provided, as well as for QTL mapping of agronomic traits and biotic and abiotic stress, using the results from both association and interval mapping approaches. QTL for agronomic traits (yield, flowering time, and plant height, physical (grain length and grain width and cooking properties (amylose content of the rice grain, abiotic stress (submergence tolerance, and biotic stress (brown spot disease were mapped. Through presenting this extensive analysis in the MI population in rice, we highlight important considerations when choosing analytical approaches. The methods and results reported in this paper will provide a guide to future genetic analysis methods applied to multi-parent populations.

  6. Genetic and Computational Approaches for Studying Plant Development and Abiotic Stress Responses Using Image-Based Phenotyping

    Science.gov (United States)

    Campbell, M. T.; Walia, H.; Grondin, A.; Knecht, A.

    2017-12-01

    The development of abiotic stress tolerant crops (i.e. drought, salinity, or heat stress) requires the discovery of DNA sequence variants associated with stress tolerance-related traits. However, many traits underlying adaptation to abiotic stress involve a suite of physiological pathways that may be induced at different times throughout the duration of stress. Conventional single-point phenotyping approaches fail to fully capture these temporal responses, and thus downstream genetic analysis may only identify a subset of the genetic variants that are important for adaptation to sub-optimal environments. Although genomic resources for crops have advanced tremendously, the collection of phenotypic data for morphological and physiological traits is laborious and remains a significant bottleneck in bridging the phenotype-genotype gap. In recent years, the availability of automated, image-based phenotyping platforms has provided researchers with an opportunity to collect morphological and physiological traits non-destructively in a highly controlled environment. Moreover, these platforms allow abiotic stress responses to be recorded throughout the duration of the experiment, and have facilitated the use of function-valued traits for genetic analyses in major crops. We will present our approaches for addressing abiotic stress tolerance in cereals. This talk will focus on novel open-source software to process and extract biological meaningful data from images generated from these phenomics platforms. In addition, we will discuss the statistical approaches to model longitudinal phenotypes and dissect the genetic basis of dynamic responses to these abiotic stresses throughout development.

  7. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach.

    Science.gov (United States)

    Zhi, Xiao-Yang; Jiang, Zhao; Yang, Ling-Ling; Huang, Ying

    2017-02-01

    The pangenome of a bacterial species population is formed by genetic reduction and genetic expansion over the long course of evolution. Gene loss is a pervasive source of genetic reduction, and (exogenous and endogenous) gene gain is the main driver of genetic expansion. To understand the genetic innovation and speciation of the family Corynebacteriaceae, which cause a wide range of serious infections in humans and animals, we analyzed the pangenome of this family, and reconstructed its phylogeny using a phylogenomics approach. Genetic variations have occurred throughout the whole evolutionary history of the Corynebacteriaceae. Gene loss has been the primary force causing genetic changes, not only in terms of the number of protein families affected, but also because of its continuity on the time series. The variation in metabolism caused by these genetic changes mainly occurred for membrane transporters, two-component systems, and metabolism related to amino acids and carbohydrates. Interestingly, horizontal gene transfer (HGT) not only caused changes related to pathogenicity, but also triggered the acquisition of antimicrobial resistance. The Darwinian theory of evolution did not adequately explain the effects of dispersive HGT and/or gene loss in the evolution of the Corynebacteriaceae. These findings provide new insight into the evolution and speciation of Corynebacteriaceae and advance our understanding of the genetic innovation in microbial populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A Point Mutation in the Rhesus Rotavirus VP4 Protein Generated through a Rotavirus Reverse Genetics System Attenuates Biliary Atresia in the Murine Model.

    Science.gov (United States)

    Mohanty, Sujit K; Donnelly, Bryan; Dupree, Phylicia; Lobeck, Inna; Mowery, Sarah; Meller, Jaroslaw; McNeal, Monica; Tiao, Greg

    2017-08-01

    Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRV VP4-R446G ) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice. IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRV VP4-R446G ) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro , the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo , it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia. Copyright © 2017 American Society for Microbiology.

  9. A probabilistic multi objective CLSC model with Genetic algorithm-ε_Constraint approach

    Directory of Open Access Journals (Sweden)

    Alireza TaheriMoghadam

    2014-05-01

    Full Text Available In this paper an uncertain multi objective closed-loop supply chain is developed. The first objective function is maximizing the total profit. The second objective function is minimizing the use of row materials. In the other word, the second objective function is maximizing the amount of remanufacturing and recycling. Genetic algorithm is used for optimization and for finding the pareto optimal line, Epsilon-constraint method is used. Finally a numerical example is solved with proposed approach and performance of the model is evaluated in different sizes. The results show that this approach is effective and useful for managerial decisions.

  10. Eco-genetic modeling of contemporary life-history evolution.

    Science.gov (United States)

    Dunlop, Erin S; Heino, Mikko; Dieckmann, Ulf

    2009-10-01

    We present eco-genetic modeling as a flexible tool for exploring the course and rates of multi-trait life-history evolution in natural populations. We build on existing modeling approaches by combining features that facilitate studying the ecological and evolutionary dynamics of realistically structured populations. In particular, the joint consideration of age and size structure enables the analysis of phenotypically plastic populations with more than a single growth trajectory, and ecological feedback is readily included in the form of density dependence and frequency dependence. Stochasticity and life-history trade-offs can also be implemented. Critically, eco-genetic models permit the incorporation of salient genetic detail such as a population's genetic variances and covariances and the corresponding heritabilities, as well as the probabilistic inheritance and phenotypic expression of quantitative traits. These inclusions are crucial for predicting rates of evolutionary change on both contemporary and longer timescales. An eco-genetic model can be tightly coupled with empirical data and therefore may have considerable practical relevance, in terms of generating testable predictions and evaluating alternative management measures. To illustrate the utility of these models, we present as an example an eco-genetic model used to study harvest-induced evolution of multiple traits in Atlantic cod. The predictions of our model (most notably that harvesting induces a genetic reduction in age and size at maturation, an increase or decrease in growth capacity depending on the minimum-length limit, and an increase in reproductive investment) are corroborated by patterns observed in wild populations. The predicted genetic changes occur together with plastic changes that could phenotypically mask the former. Importantly, our analysis predicts that evolutionary changes show little signs of reversal following a harvest moratorium. This illustrates how predictions offered by

  11. Absence of sensitization of reversions in yeast by metronidazole

    International Nuclear Information System (INIS)

    Krishnan, D.; Singh, D.R.; Mahajan, J.M.; Madhvanath, U.

    1977-01-01

    Metronidazole (Flagyl; 2-methyl-5-nitroimidazole-1-ethanol) is of potential clinical application as a radiosensitizer. Studies have been made of the effect of 1mM metronidazole on γ-induced heteroallelic recombination (reversion) under euoxic or hypoxic conditions in yeast strain BZ34, and compared with the effect on survival. The o.e.r. for reversions was 2.2, and very close to that for survival (2.3), indicating that oxygen equally sensitized gross cellular events such as killing, and genetic phenomena like reversions. The introduction of metronidazole during irradiation sensitized cells with killing as the end point only in hypoxic condition, whereas with reversion as the end point no sensitization due to the chemical was observed either in euoxic or hypoxic conditions. Since DNA damage is responsible for both cell-killing and mutations, the sensitizer might have been expected to have had an equal effect on both these end-points. The results show that only in a limited sense can metronidazole be considered to be an oxygen mimic. (U.K.)

  12. Reverse Transrectal Stapling Technique Using the EEA Stapler: An ...

    African Journals Online (AJOL)

    Reverse Transrectal Stapling Technique Using the EEA Stapler: An Alternative Approach in Difficult Reversal of Hartmann's Procedure. SK Zachariah. Abstract. The introduction of circular end-to-end stapling devices (CEEA OR EEA stapler) into colorectal surgery have revolutionised anastomotic techniques. The EEA ...

  13. A simple and efficient universal reversible Turing machine

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Glück, Robert

    2011-01-01

    We construct a universal reversible Turing machine (URTM) from first principles. We take a strict approach to the semantics of reversible Turing machines (RTMs), under which they can compute exactly all injective, computable functions, but not non-injective ones. The natural notion of universalit...... factor slowdown, with no other complexity-wise cost wrt time and space. The URTM is also able to function as an inverse interpreter for RTMs at no asymptotic cost, simply by reversing the string representing the interpreted machine....

  14. Time-reversal and Bayesian inversion

    Science.gov (United States)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  15. A practical approach to screen for authorised and unauthorised genetically modified plants.

    Science.gov (United States)

    Waiblinger, Hans-Ulrich; Grohmann, Lutz; Mankertz, Joachim; Engelbert, Dirk; Pietsch, Klaus

    2010-03-01

    In routine analysis, screening methods based on real-time PCR are most commonly used for the detection of genetically modified (GM) plant material in food and feed. In this paper, it is shown that the combination of five DNA target sequences can be used as a universal screening approach for at least 81 GM plant events authorised or unauthorised for placing on the market and described in publicly available databases. Except for maize event LY038, soybean events DP-305423 and BPS-CV127-9 and cotton event 281-24-236 x 3006-210-23, at least one of the five genetic elements has been inserted in these GM plants and is targeted by this screening approach. For the detection of these sequences, fully validated real-time PCR methods have been selected. A screening table is presented that describes the presence or absence of the target sequences for most of the listed GM plants. These data have been verified either theoretically according to available databases or experimentally using available reference materials. The screening table will be updated regularly by a network of German enforcement laboratories.

  16. Reverse ray tracing for transformation optics.

    Science.gov (United States)

    Hu, Chia-Yu; Lin, Chun-Hung

    2015-06-29

    Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.

  17. Sexing a sex-role-reversed species based on plumage: potential challenges in the red phalarope

    Directory of Open Access Journals (Sweden)

    Marie-Andrée Giroux

    2016-05-01

    Full Text Available Sex-role reversal, in which males care for offspring, can occur when mate competition is stronger between females than males. Secondary sex traits and mate attracting displays in sex-role-reversed species are usually more pronounced in females than in males. The red phalarope (Phalaropus fulicarius is a textbook example of a sex-role-reversed species. It is generally agreed that males are responsible for all incubation and parental care duties, whereas females typically desert males after having completed a clutch and may pair with new males to lay additional clutches. The breeding plumage of female red phalaropes is usually more brightly colored than male plumage, a reversed sexual dichromatism usually associated with sex-role reversal. Here, we confirm with PCR-based sexing that male red phalaropes can exhibit both the red body plumage typical of a female and the incubation behavior typical of a male. Our result, combined with previous observations of brightly colored red phalaropes incubating nests at the same arctic location (Igloolik Island, Nunavut, Canada, suggests that plumage dichromatism alone may not be sufficient to distinguish males from females in this breeding population of red phalaropes. This stresses the need for more systematic genetic sexing combined with standardized description of intersexual differences in red phalarope plumages. Determining whether such female-like plumage on males is a result of phenotypic plasticity or genetic variation could contribute to further understanding sex-role reversal strategies in the short Arctic summer.

  18. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sangjo [Bioinformatics Lab, Healthcare Group, SK Telecom, 9-1, Sunae-dong, Pundang-gu, Sungnam-si, Kyunggi-do 463-784 (Korea, Republic of); Lee, Minho [Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Chang, Hyeshik [Department of Biological Science, Seoul National University, 599 Gwanakro, Gwanak-gu, Seoul 151-747 (Korea, Republic of); Nam, Miyoung [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Park, Han-Oh [Bioneer Corp., 8-11 Munpyeongseo-ro, Daedeok-gu, Daejeon 306-220 (Korea, Republic of); Kwak, Youn-Sig [Department of Applied Biology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 660-701 (Korea, Republic of); Ha, Hye-jeong [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Kim, Dongsup [Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Hwang, Sung-Ook [Department of Obstetrics and Gynecology, Inha University Hospital, 7-206 Sinheung-dong, Jung-gu, Incheon 400-711 (Korea, Republic of); Hoe, Kwang-Lae [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Kim, Dong-Uk [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of)

    2013-07-12

    Highlights: •The first compendium of chemical-genetic profiles form fission yeast was generated. •The first HTS of drug mode-of-action in fission yeast was performed. •The first comparative chemical genetic analysis between two yeasts was conducted. -- Abstract: Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at (http://pombe.kaist.ac.kr/compendium)

  19. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data

    Directory of Open Access Journals (Sweden)

    Chandra Nagasuma R

    2009-02-01

    Full Text Available Abstract Background A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN from transcript profiling data. Results The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting problem and solved finally by formulating a Linear Program (LP. A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known

  20. Time reversibility, computer simulation, algorithms, chaos

    CERN Document Server

    Hoover, William Graham

    2012-01-01

    A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of ba...

  1. Exact Synthesis of Reversible Circuits Using A* Algorithm

    Science.gov (United States)

    Datta, K.; Rathi, G. K.; Sengupta, I.; Rahaman, H.

    2015-06-01

    With the growing emphasis on low-power design methodologies, and the result that theoretical zero power dissipation is possible only if computations are information lossless, design and synthesis of reversible logic circuits have become very important in recent years. Reversible logic circuits are also important in the context of quantum computing, where the basic operations are reversible in nature. Several synthesis methodologies for reversible circuits have been reported. Some of these methods are termed as exact, where the motivation is to get the minimum-gate realization for a given reversible function. These methods are computationally very intensive, and are able to synthesize only very small functions. There are other methods based on function transformations or higher-level representation of functions like binary decision diagrams or exclusive-or sum-of-products, that are able to handle much larger circuits without any guarantee of optimality or near-optimality. Design of exact synthesis algorithms is interesting in this context, because they set some kind of benchmarks against which other methods can be compared. This paper proposes an exact synthesis approach based on an iterative deepening version of the A* algorithm using the multiple-control Toffoli gate library. Experimental results are presented with comparisons with other exact and some heuristic based synthesis approaches.

  2. AGROBACTERIUM-MEDIATED GENETIC TRANSFORMATION OF SORGHUM USING TISSUE CULTURE-BASED AND POLLEN-MEDIATED APPROACHES

    Directory of Open Access Journals (Sweden)

    Elkonin L.A.

    2012-08-01

    Full Text Available Genetic transformation is a powerful tool for genetic improvement of arable crops. Genetic engineering approaches are especially important for modification of starch and protein contents, vitamin and micronutrient concentration, improvement of nutritive value of protein fractions, and increase tolerance to environmental stresses. Application of transgenic technologies for genetic improvement of sorghum, a highly productive heat tolerant and drought resistant crop, is extremely important since climate aridization in many regions all over the globe hampers sustainable production of traditional cereals, such as wheat, maize and barley. However, sorghum, in spite of great number of investigations, is one of the most recalcitrant crop species to genetic modification. The most frequently reported problems are a low frequency of transformation and silencing of transgenes. Using the A. tumefaciens strain AGL0/p35SGIB with the bar and gus-intron genes under the nos and CaMV35S promoters, respectively, we studied different methods of Agrobacterium-mediated genetic transformation of the grain sorghum: in vitro culture-based techniques, by inoculation of immature embryos or embryo-derived calli, and pollen-mediated approach, by inoculation of flowering panicles. Four lines of grain sorghum – Milo-10, [9E] Milo-10 (CMS-line, KVV-114, and KVV-45 – were used. In both approaches, for activation of vir-genes agrobacterial cell suspension was grown in the AB or modified AB media with acetosyringone at room temperature. In vitro culture approach was effective for obtaining transgenic plants in the lines Milo-10 and KVV-45, which were able to produce embryogenic callus from immature embryos after their co-cultivation with agrobacterial cell suspension. Callus cultures tolerant to glufosinate ammonium (GA and capable to plant regeneration were obtained. The frequency of immature embryos producing PCR-positive transgenic plants varied in different experiments

  3. Contemporary Genetics for Gender Researchers: Not Your Grandma's Genetics Anymore

    Science.gov (United States)

    Salk, Rachel H.; Hyde, Janet S.

    2012-01-01

    Over the past century, much of genetics was deterministic, and feminist researchers framed justified criticisms of genetics research. However, over the past two decades, genetics research has evolved remarkably and has moved far from earlier deterministic approaches. Our article provides a brief primer on modern genetics, emphasizing contemporary…

  4. The Genetics of Obsessive-Compulsive Disorder and Tourette Syndrome: An Epidemiological and Pathway-Based Approach for Gene Discovery

    Science.gov (United States)

    Grados, Marco A.

    2010-01-01

    Objective: To provide a contemporary perspective on genetic discovery methods applied to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). Method: A review of research trends in genetics research in OCD and TS is conducted, with emphasis on novel approaches. Results: Genome-wide association studies (GWAS) are now in progress in OCD…

  5. Reversible flowchart languages and the structured reversible program theorem

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    Many irreversible computation models have reversible counterparts, but these are poorly understood at present. We introduce reversible flowcharts with an assertion operator and show that any reversible flowchart can be simulated by a structured reversible flowchart using only three control flow...... operators. Reversible flowcharts are r- Turing-complete, meaning that they can simuluate reversible Turing machines without garbage data. We also demonstrate the injectivization of classical flowcharts into reversible flowcharts. The reversible flowchart computation model provides a theoretical...

  6. A rigorous approach to facilitate and guarantee the correctness of the genetic testing management in human genome information systems.

    Science.gov (United States)

    Araújo, Luciano V; Malkowski, Simon; Braghetto, Kelly R; Passos-Bueno, Maria R; Zatz, Mayana; Pu, Calton; Ferreira, João E

    2011-12-22

    Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes. This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra. This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.

  7. Engineering and Functional Analysis of Mitotic Kinases Through Chemical Genetics.

    Science.gov (United States)

    Jones, Mathew J K; Jallepalli, Prasad V

    2016-01-01

    During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky "gatekeeper" residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine. The enlarged catalytic pocket can then be targeted in an allele-specific manner with bulky purine analogs. This strategy provides a general framework for dissecting kinase function with high selectivity, rapid kinetics, and reversibility. In this chapter we discuss the principles and techniques needed to implement this chemical genetic approach in mammalian cells.

  8. Environmental Contamination Genetic Consequences Monitoring on the Former Semipalatinsk Test Site: General Approach

    International Nuclear Information System (INIS)

    Seisebaev, A.T.; Bakhtin, M.M.; Zhapbasov, R.Zh.

    1998-01-01

    genetic monitoring of natural populations of plants and animals and the theoretic approach for their fulfillment. We also consider the main issues of research work on assessment and forecast of the remote genetic consequences of nuclear tests at STS: 1) assessment of the environmental radiation situation; determination of the indicator species of plants and animals and the criteria encompassing the different levels from the molecular one through the genetic to the population one; 2) study of the dose dependence of the genetic effects under the chronic ionizing radiation; 3) analysis of mutation process dynamics in the following generations of population under various exposure condition; 4) study of the possible ways of population adaptation to the chronic impact of various radiation doses; 5) analysis of relation between different genetic changes in exposed population and ecology alterations, etc

  9. Genetic transformation of lettuce (Lactuca sativa): A review

    African Journals Online (AJOL)

    SAM

    2014-04-16

    Apr 16, 2014 ... by researchers, especially in genetic engineering. ... chain reaction; PPT, phosphinothricin; RT-PCR, reverse transcription polymerase chain reaction; sCT, salmon ..... gene showed higher tolerances than wild-type plants.

  10. Parkinson’s disease managing reversible neurodegeneration

    Directory of Open Access Journals (Sweden)

    Hinz M

    2016-04-01

    Full Text Available Marty Hinz,1 Alvin Stein,2 Ted Cole,3 Beth McDougall,4 Mark Westaway5 1Clinical Research, NeuroResearch Clinics, Inc., Cape Coral, FL, 2Stein Orthopedic Associates, Plantation, FL, 3Cole Center for Healing, Cincinnati, OH, 4CLEARCenter of Health, Mill Valley, CA, USA; 5Four Pillars Health, Brendale, QLD, Australia Abstract: Traditionally, the Parkinson’s disease (PD symptom course has been classified as an irreversible progressive neurodegenerative disease. This paper documents 29 PD and treatment-induced systemic depletion etiologies which cause and/or exacerbate the seven novel primary relative nutritional deficiencies associated with PD. These reversible relative nutritional deficiencies (RNDs may facilitate and accelerate irreversible progressive neurodegeneration, while other reversible RNDs may induce previously undocumented reversible pseudo-neurodegeneration that is hiding in plain sight since the symptoms are identical to the symptoms being experienced by the PD patient. Documented herein is a novel nutritional approach for reversible processes management which may slow or halt irreversible progressive neurodegenerative disease and correct reversible RNDs whose symptoms are identical to the patient’s PD symptoms. Keywords: Parkinson’s disease, L-dopa, carbidopa, B6, neurodegeneration

  11. AN OVERVIEW ON RETAIL REVERSE LOGISTICS

    Directory of Open Access Journals (Sweden)

    Ioana Olariu

    2014-07-01

    Full Text Available This article is a theoretical approach on retail reverse logistics. Environmental concern and the current marketing strategy have spurred retailers to implement strategies to facilitate product returns from end customers. Reverse logistics, indicating the process of this return flow, encompasses such activities as the movement of returned products, facilities to accommodate returned items, and overall remedy process for returned items. The retail industry, under great competitive pressure, has used return policies as a competitive weapon. Grocery retailers were the first to begin to focus serious attention on the problem of returns and to develop reverse logistics innovations. Grocery retailers first developed innovations such as reclamation centers. Reclamation centers, in turn, led to the establishment of centralized return centers. Centralizing returns has led to significant benefits for most firms that have implemented them. Over the last several years, retailers have consolidated. Now, more than ever, reverse logistics is seen as being important. This reverse distribution activity can be crucial to the survival of companies, because the permanent goodwill of the company is at stake. Businesses succeed because they respond to both external and internal changes and adjust in an effective manner to remain competitive.

  12. The challenges and promises of genetic approaches for ballast water management

    Science.gov (United States)

    Rey, Anaïs; Basurko, Oihane C.; Rodríguez-Ezpeleta, Naiara

    2018-03-01

    Ballast water is a main vector of introduction of Harmful Aquatic Organisms and Pathogens, which includes Non-Indigenous Species. Numerous and diversified organisms are transferred daily from a donor to a recipient port. Developed to prevent these introduction events, the International Convention for the Control and Management of Ships' Ballast Water and Sediments will enter into force in 2017. This international convention is asking for the monitoring of Harmful Aquatic Organisms and Pathogens. In this review, we highlight the urgent need to develop cost-effective methods to: (1) perform the biological analyses required by the convention; and (2) assess the effectiveness of two main ballast water management strategies, i.e. the ballast water exchange and the use of ballast water treatment systems. We have compiled the biological analyses required by the convention, and performed a comprehensive evaluation of the potential and challenges of the use of genetic tools in this context. Following an overview of the studies applying genetic tools to ballast water related research, we present metabarcoding as a relevant approach for early detection of Harmful Aquatic Organisms and Pathogens in general and for ballast water monitoring and port risk assessment in particular. Nonetheless, before implementation of genetic tools in the context of the ballast water management convention, benchmarked tests against traditional methods should be performed, and standard, reproducible and easy to apply protocols should be developed.

  13. Reverse Algols

    Science.gov (United States)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  14. Symmetries in Genetic Systems and the Concept of Geno-Logical Coding

    Directory of Open Access Journals (Sweden)

    Sergey V. Petoukhov

    2016-12-01

    Full Text Available The genetic code of amino acid sequences in proteins does not allow understanding and modeling of inherited processes such as inborn coordinated motions of living bodies, innate principles of sensory information processing, quasi-holographic properties, etc. To be able to model these phenomena, the concept of geno-logical coding, which is connected with logical functions and Boolean algebra, is put forward. The article describes basic pieces of evidence in favor of the existence of the geno-logical code, which exists in p­arallel with the known genetic code of amino acid sequences but which serves for transferring inherited processes along chains of generations. These pieces of evidence have been received due to the analysis of symmetries in structures of molecular-genetic systems. The analysis has revealed a close connection of the genetic system with dyadic groups of binary numbers and with other mathematical objects, which are related with dyadic groups: Walsh functions (which are algebraic characters of dyadic groups, bit-reversal permutations, logical holography, etc. These results provide a new approach for mathematical modeling of genetic structures, which uses known mathematical formalisms from technological fields of noise-immunity coding of information, binary analysis, logical holography, and digital devices of artificial intellect. Some opportunities for a development of algebraic-logical biology are opened.

  15. Nuclear power plant maintenance scheduling dilemma: a genetic algorithm approach

    International Nuclear Information System (INIS)

    Mahdavi, M.H.; Modarres, M.

    2004-01-01

    There are huge numbers of components scheduled for maintenance when a nuclear power plant is shut down. Among these components, a number of them are safety related which their operability as well as reliability when plant becomes up is main concerns. Not performing proper maintenance on this class of components/system would impose substantial risk on operating the NPP. In this paper a new approach based on genetic algorithms is presented to optimize the NPP maintenance schedule during shutdown. following this approach the cost incurred by maintenance activities for each schedule is balanced with the risk imposed by the maintenance scheduling plan to the plant operation status when it is up. The risk model implemented in the GA scheduler as its evaluation function is developed on the basis of the probabilistic risk assessment methodology. the Ga optimizers itself is shown to be superior compared to other optimization methods such as the monte carlo technique

  16. On some approaches to model reversible magnetization processes

    Science.gov (United States)

    Chwastek, K.; Baghel, A. P. S.; Sai Ram, B.; Borowik, B.; Daniel, L.; Kulkarni, S. V.

    2018-04-01

    This paper focuses on the problem of how reversible magnetization processes are taken into account in contemporary descriptions of hysteresis curves. For comparison, three versions of the phenomenological T(x) model based on hyperbolic tangent mapping are considered. Two of them are based on summing the output of the hysteresis operator with a linear or nonlinear mapping. The third description is inspired by the concept of the product Preisach model. Total susceptibility is modulated with a magnetization-dependent function. The models are verified using measurement data for grain-oriented electrical steel. The proposed third description represents minor loops most accurately.

  17. Making radioactive wastes governable. Deep storage challenged by reversibility

    International Nuclear Information System (INIS)

    Gonnot, Francois-Michel; Dupuis, Marie-Claude; Aparicio, Luis; Barthe, Yannick; Cezanne-Bert, Pierrick; Chateauraynaud, Francis

    2010-09-01

    This book addresses the principle of reversibility in the field of radioactive waste management. The first contribution discusses the political qualities of technologies and analyses the different action modes associated with the different proposed management solutions (it shows that different decision models and safety approaches are associated with different technical arrangements). The second contribution comments the present posture of the ANDRA regarding the project of creation of a reversible deep storage centre, and proposes a definition of reversibility which relates scientific and technique development and decision process. The third contribution comments the results of a study on arguments about the notion of reversibility in France

  18. Time-Reversal Generation of Rogue Waves

    Science.gov (United States)

    Chabchoub, Amin; Fink, Mathias

    2014-03-01

    The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.

  19. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-04-14

    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially

  20. On Gene Concepts and Teaching Genetics: Episodes from Classical Genetics

    Science.gov (United States)

    Burian, Richard M.

    2013-01-01

    This paper addresses the teaching of advanced high school courses or undergraduate courses for non-biology majors about genetics or history of genetics. It will probably be difficult to take the approach described here in a high school science course, although the general approach could help improve such courses. It would be ideal for a college…

  1. Intra-specific genetic relationship analyses of Elaeagnus angustifolia based on RP-HPLC biochemical markers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Elaeagnus angustifolia Linn. has various ecological, medicinal and economical uses. An approach was established using RP-HPLC (reversed-phase high-performance liquid chromatography) to classify and analyse the intra-specific genetic relationships of seventeen populations of E. angustifolia, collected from the Xinjiang areas of China. Chromatograms of alcohol-soluble proteins produced by seventeen populations ofE. angustifolia, were compared. Each chromatogram of alcohol-soluble proteins came from a single seed of one wild plant only. The results showed that when using a Waters Delta Pak. C18, 5 μm particle size reversed phase column (150 mm×3.9 mm), a linear gradient of 25%~60% solvent B with flow rate of 1 ml/min and run time of 67 min, the chromatography yielded optimum separation ofE. angustifolia alcohol-soluble proteins. Representative peaks in each population were chosen according to peak area and occurrence in every seed. The converted data on the elution peaks of each population were different and could be used to represent those populations. GSC (genetic similarity coefficients) of 41% to 62% showed a medium degree of genetic diversity among the populations in these eco-areas. Cluster analysis showed that the seventeen populations ofE. angustifolia could be divided into six clusters at the GSC=0.535 level and indicated the general and unique biochemical markers of these clusters. We suggest that E. angustifolia distribution in these eco-areas could be classified into six variable species. RP-HPLC was shown to be a rapid, repeatable and reliable method for E. angustifolia classification and identification and for analysis of genetic diversity.

  2. On Gene Concepts and Teaching Genetics: Episodes from Classical Genetics

    Science.gov (United States)

    Burian, Richard M.

    2013-02-01

    This paper addresses the teaching of advanced high school courses or undergraduate courses for non-biology majors about genetics or history of genetics. It will probably be difficult to take the approach described here in a high school science course, although the general approach could help improve such courses. It would be ideal for a college course in history of genetics or a course designed to teach non-science majors how science works or the rudiments of the genetics in a way that will help them as citizens. The approach aims to teach the processes of discovery, correction, and validation by utilizing illustrative episodes from the history of genetics. The episodes are treated in way that should foster understanding of basic questions about genes, the sorts of techniques used to answer questions about the constitution and structure of genes, how they function, and what they determine, and some of the major biological disagreements that arose in dealing with these questions. The material covered here could be connected to social and political issues raised by genetics, but these connections are not surveyed here. As it is, to cover this much territory, the article is limited to four major episodes from Mendel's paper to the beginning of World War II. A sequel will deal with the molecularization of genetics and with molecular gene concepts through the Human Genome Project.

  3. Managing Reverse Logistics or Reversing Logistics Management?

    OpenAIRE

    Brito, Marisa

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse logistics. The thesis brings insights on reverse logistics decision-making and it lays down theoretical principles for reverse logistics as a research field.In particular it puts together a framework ...

  4. An innovative and integrated approach based on DNA walking to identify unauthorised GMOs.

    Science.gov (United States)

    Fraiture, Marie-Alice; Herman, Philippe; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H

    2014-03-15

    In the coming years, the frequency of unauthorised genetically modified organisms (GMOs) being present in the European food and feed chain will increase significantly. Therefore, we have developed a strategy to identify unauthorised GMOs containing a pCAMBIA family vector, frequently present in transgenic plants. This integrated approach is performed in two successive steps on Bt rice grains. First, the potential presence of unauthorised GMOs is assessed by the qPCR SYBR®Green technology targeting the terminator 35S pCAMBIA element. Second, its presence is confirmed via the characterisation of the junction between the transgenic cassette and the rice genome. To this end, a DNA walking strategy is applied using a first reverse primer followed by two semi-nested PCR rounds using primers that are each time nested to the previous reverse primer. This approach allows to rapidly identify the transgene flanking region and can easily be implemented by the enforcement laboratories. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. A time reversal transmission approach for multi-user UWB communications

    DEFF Research Database (Denmark)

    Nguyen, Tuan Hung; Kovacs Z., Istvan; Eggers, Patrick

    2005-01-01

    In this paper we propose and evaluate the performance of the time reversal technique in impulse radio UWB communications. The evaluation was based on measured channel impulse responses in the UWB frequency band of 3 to 5 GHz of a 4x1 MISO system with both vertical and horizontal polarization at t...

  6. Genetic Approaches to Develop Salt Tolerant Germplasm

    KAUST Repository

    Tester, Mark A.

    2015-08-19

    Forty percent of the world\\'s food is produced under irrigation, and this is directly threatened by over-exploitation and changes in the global environment. One way to address this threat is to develop systems for increasing our ability to use lower quality water, in particular saline water. Low cost partial desalination of brackish water, use of saline water for cooling and increases in the salinity tolerance of crops can all contribute to the development of this new agricultural system. In this talk, the focus will be on the use of forward genetic approaches for discovery of genes related to salinity tolerance in barley and tomatoes. Rather than studying salinity tolerance as a trait in itself, we dissect salinity tolerance into a series of components that are hypothesised to contribute to overall salinity tolerance (following the paradigm of Munns & Tester, 2008). For example, one significant component of tolerance of most crop plants to moderate soil salinity is due to the ability to maintain low concentrations of Na+ in the leaves, and much analysis of this aspect has been done (e.g. Roy et al., 2013, 2014). A major site for the control of shoot Na+ accumulation is at the plasma membrane of the mature stele of the root. Alleles of HKT, a major gene underlying this transport process have been characterized and, in work led by Dr Rana Munns (CSIRO), have now been introgressed into commercial durum wheat and led to significantly increased yields in saline field conditions (Munns et al., 2012). The genotyping of mapping populations is now highly efficient. However, the ability to quantitatively phenotype these populations is now commonly limiting forward progress in plant science. The increasing power of digital imaging and computational technologies offers the opportunity to relieve this phenotyping bottleneck. The Plant Accelerator is a 4500m2 growth facility that provides non-destructive phenotyping of large populations of plants (http

  7. Translation and genetic criticism : genetic and editorial approaches to the 'untranslatable' in Joyce and Beckett

    OpenAIRE

    Hulle, Van, Dirk

    2015-01-01

    Abstract: Genetics of translation may suggest a unidirectional link between two fields of research (genetic criticism applied to translation), but there are many ways in which translation and genetic criticism interact. This article's research hypothesis is that an exchange of ideas between translation studies and genetic criticism can be mutually beneficial in more than one way. The main function of this exchange is to enhance a form of textual awareness, and to realize this enhanced textual...

  8. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...

  9. Method of transient identification based on a possibilistic approach, optimized by genetic algorithm

    International Nuclear Information System (INIS)

    Almeida, Jose Carlos Soares de

    2001-02-01

    This work develops a method for transient identification based on a possible approach, optimized by Genetic Algorithm to optimize the number of the centroids of the classes that represent the transients. The basic idea of the proposed method is to optimize the partition of the search space, generating subsets in the classes within a partition, defined as subclasses, whose centroids are able to distinguish the classes with the maximum correct classifications. The interpretation of the subclasses as fuzzy sets and the possible approach provided a heuristic to establish influence zones of the centroids, allowing to achieve the 'don't know' answer for unknown transients, that is, outside the training set. (author)

  10. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    line-cross analysis; epistasis; dominance; adaptation; experimental evolution; reverse evolution; life-history evolution; quantitative genetics; Drosophila. ... set of five populations maintained for several hundred generations on a two-week discrete-generation life cycle and a set of five populations adapted to starvation stress.

  11. Flight Measurements of the Effect of a Controllable Thrust Reverser on the Flight Characteristics of a Single-Engine Jet Airplane

    Science.gov (United States)

    Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.

    1959-01-01

    A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.

  12. Personalized translational epilepsy research - Novel approaches and future perspectives: Part II: Experimental and translational approaches.

    Science.gov (United States)

    Bauer, Sebastian; van Alphen, Natascha; Becker, Albert; Chiocchetti, Andreas; Deichmann, Ralf; Deller, Thomas; Freiman, Thomas; Freitag, Christine M; Gehrig, Johannes; Hermsen, Anke M; Jedlicka, Peter; Kell, Christian; Klein, Karl Martin; Knake, Susanne; Kullmann, Dimitri M; Liebner, Stefan; Norwood, Braxton A; Omigie, Diana; Plate, Karlheinz; Reif, Andreas; Reif, Philipp S; Reiss, Yvonne; Roeper, Jochen; Ronellenfitsch, Michael W; Schorge, Stephanie; Schratt, Gerhard; Schwarzacher, Stephan W; Steinbach, Joachim P; Strzelczyk, Adam; Triesch, Jochen; Wagner, Marlies; Walker, Matthew C; von Wegner, Frederic; Rosenow, Felix

    2017-11-01

    Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics, and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. This Part II includes the experimental and translational approaches and a discussion of the future perspectives, while the diagnostic methods, EEG network analysis, biomarkers, and personalized treatment approaches were addressed in Part I [1]. Copyright © 2017

  13. A group approach to genetic counselling of cardiomyopathy patients: satisfaction and psychological outcomes sufficient for further implementation.

    Science.gov (United States)

    Otten, Ellen; Birnie, Erwin; Ranchor, Adelita V; van Tintelen, J Peter; van Langen, Irene M

    2015-11-01

    The introduction of next-generation sequencing in everyday clinical genetics practise is increasing the number of genetic disorders that can be confirmed at DNA-level, and consequently increases the possibilities for cascade screening. This leads to a greater need for genetic counselling, whereas the number of professionals available to provide this is limited. We therefore piloted group genetic counselling for symptomatic cardiomyopathy patients at regional hospitals, to assess whether this could be an acceptable alternative to individual counselling. We performed a cohort study with pre- and post-counselling patient measurements using questionnaires, supplemented with evaluations of the group counselling format by the professionals involved. Patients from eight regional hospitals in the northern part of the Netherlands were included. Questionnaires comprised patient characteristics, psychological measures (personal perceived control (PPC), state and trait anxiety inventory (STAI)), and satisfaction with counsellors, counselling content and design. In total, 82 patients (mean age 57.5 year) attended one of 13 group sessions. Median PPC and STAI scores showed significantly higher control and lower anxiety after the counselling. Patients reported they were satisfied with the counsellors, and almost 75% of patients were satisfied with the group counselling. Regional professionals were also, overall, satisfied with the group sessions. The genetics professionals were less satisfied, mainly because of their perceived large time investment and less-than-expected group interaction. Hence, a group approach to cardiogenetic counselling is feasible, accessible, and psychologically effective, and could be one possible approach to counselling the increasing patient numbers in cardiogenetics.

  14. Reversible computing fundamentals, quantum computing, and applications

    CERN Document Server

    De Vos, Alexis

    2010-01-01

    Written by one of the few top internationally recognized experts in the field, this book concentrates on those topics that will remain fundamental, such as low power computing, reversible programming languages, and applications in thermodynamics. It describes reversible computing from various points of view: Boolean algebra, group theory, logic circuits, low-power electronics, communication, software, quantum computing. It is this multidisciplinary approach that makes it unique.Backed by numerous examples, this is useful for all levels of the scientific and academic community, from undergr

  15. Current Account Reversals and Persistency in Transition Regions

    OpenAIRE

    Aristovnik, Aleksander

    2006-01-01

    The article investigates sharp reductions seen in current account deficits in transition countries in the 1992-2003 period. By using both descriptive statistical approaches as well as panel regression-based analysis the article focuses on three important aspects of these current account reversals: a) to examine those factors that might have triggered the reversals and to provide some insights into the current account adjustment process; b) to reveal some characteristics of persistent current ...

  16. Reverse Logistics: RFID the key to optimality

    Directory of Open Access Journals (Sweden)

    Rezwan Asif

    2011-07-01

    Full Text Available Purpose: The purpose of this paper is to find ways to reduce uncertainties in Reverse logistic supply chain (RLSC through the use of Radio-frequency identification (RFID technology.Design/methodology/approach: This paper reviews literature and builds model to relate RFID with uncertainties in order to optimize Reverse Logistics. Findings: RFID is really efficient to determine and detect quantity, variety and cycle times of returns; however it's not as convenient to determine quality of the returns. The collected information from RFID can be used to standardize the RLSC.Research limitations: Though it’s several and unique advantages some limitations of RFID have been identified in quality and processing sequence, collecting points and different standards, and in global usage.Originality/value: Previous studies in the area of Reverse Logistics and RFID don’t cover all impacts of this technology on RLSC. This review paper has investigated these impacts and offers a model for optimizing the Reverse Logistics Supply Chain.

  17. Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: Comparing meta and megaanalytical approaches for data pooling.

    Science.gov (United States)

    Kochunov, Peter; Jahanshad, Neda; Sprooten, Emma; Nichols, Thomas E; Mandl, René C; Almasy, Laura; Booth, Tom; Brouwer, Rachel M; Curran, Joanne E; de Zubicaray, Greig I; Dimitrova, Rali; Duggirala, Ravi; Fox, Peter T; Hong, L Elliot; Landman, Bennett A; Lemaitre, Hervé; Lopez, Lorna M; Martin, Nicholas G; McMahon, Katie L; Mitchell, Braxton D; Olvera, Rene L; Peterson, Charles P; Starr, John M; Sussmann, Jessika E; Toga, Arthur W; Wardlaw, Joanna M; Wright, Margaret J; Wright, Susan N; Bastin, Mark E; McIntosh, Andrew M; Boomsma, Dorret I; Kahn, René S; den Braber, Anouk; de Geus, Eco J C; Deary, Ian J; Hulshoff Pol, Hilleke E; Williamson, Douglas E; Blangero, John; van 't Ent, Dennis; Thompson, Paul M; Glahn, David C

    2014-07-15

    Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Niko eBeerenwinkel

    2012-09-01

    Full Text Available Many viruses, including the clinically relevant RNA viruses HIV and HCV, exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different next-generation sequencing platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of next-generation sequencing to estimate viral diversity.

  19. Genetic determinism and evolutionary reconstruction of a host jump in a plant virus

    DEFF Research Database (Denmark)

    Vassilakos, Nikon; Simon, Vincent; Tzima, Aliki

    2016-01-01

    In spite of their widespread occurrence, only few host jumps by plant viruses have been evidenced and the molecular bases of even fewer have been determined. A combination of three independent approaches, 1) experimental evolution followed by reverse genetics analysis, 2) positive selection...... analysis, and 3) locus-by-locus analysis of molecular variance (AMOVA) allowed reconstructing the Potato virus Y (PVY; genus Potyvirus, family Potyviridae) jump to pepper (Capsicum annuum), probably from other solanaceous plants. Synthetic chimeras between infectious cDNA clones of two PVY isolates...... independently and conferred adaptation to C. annuum. In addition to increasing our knowledge of host jumps in plant viruses, this study illustrates also the efficiency of locus-by-locus AMOVA and combined approaches to identify adaptive mutations in the genome of RNA viruses....

  20. Reverse Logistics

    OpenAIRE

    Kulikova, Olga

    2016-01-01

    This thesis was focused on the analysis of the concept of reverse logistics and actual reverse processes which are implemented in mining industry and finding solutions for the optimization of reverse logistics in this sphere. The objective of this paper was the assessment of the development of reverse logistics in mining industry on the example of potash production. The theoretical part was based on reverse logistics and mining waste related literature and provided foundations for further...

  1. Construction of genetic linkage map of the medicinal and ...

    Indian Academy of Sciences (India)

    semidwarf habit, more salt and drought tolerance, low in al- .... Designed, designed forward/reverse + RAPD and EST-SSR primer sequences investigated for use in genetic ..... cell biology, molecular regulation and metabolic engineering ap-.

  2. Genetic tests in major psychiatric disorders-integrating molecular medicine with clinical psychiatry-why is it so difficult?

    Science.gov (United States)

    Demkow, U; Wolańczyk, T

    2017-06-13

    With the advent of post-genomic era, new technologies create extraordinary possibilities for diagnostics and personalized therapy, transforming todays' medicine. Rooted in both medical genetics and clinical psychiatry, the paper is designed as an integrated source of information of the current and potential future application of emerging genomic technologies as diagnostic tools in psychiatry, moving beyond the classical concept of patient approach. Selected approaches are presented, starting from currently used technologies (next-generation sequencing (NGS) and microarrays), followed by newer options (reverse phenotyping). Next, we describe an old concept in a new light (endophenotypes), subsequently coming up with a sophisticated and complex approach (gene networks) ending by a nascent field (computational psychiatry). The challenges and barriers that exist to translate genomic research to real-world patient assessment are further discussed. We emphasize the view that only a paradigm shift can bring a fundamental change in psychiatric practice, allowing to disentangle the intricacies of mental diseases. All the diagnostic methods, as described, are directed at uncovering the integrity of the system including many types of relations within a complex structure. The integrative system approach offers new opportunity to connect genetic background with specific diseases entities, or concurrently, with symptoms regardless of a diagnosis. To advance the field, we propose concerted cross-disciplinary effort to provide a diagnostic platform operating at the general level of genetic pathogenesis of complex-trait psychiatric disorders rather than at the individual level of a specific disease.

  3. Genetic testing in congenital heart disease:A clinical approach

    Institute of Scientific and Technical Information of China (English)

    Marie A Chaix; Gregor Andelfinger; Paul Khairy

    2016-01-01

    Congenital heart disease(CHD) is the most common type of birth defect. Traditionally, a polygenic model defined by the interaction of multiple genes and environmental factors was hypothesized to account for different forms of CHD. It is now understood that the contribution of genetics to CHD extends beyond a single unified paradigm. For example, monogenic models and chromosomal abnormalities have been associated with various syndromic and non-syndromic forms of CHD. In such instances, genetic investigation and testing may potentially play an important role in clinical care. A family tree with a detailed phenotypic description serves as the initial screening tool to identify potentially inherited defects and to guide further genetic investigation. The selection of a genetic test is contingent upon the particular diagnostic hypothesis generated by clinical examination. Genetic investigation in CHD may carry the potential to improve prognosis by yielding valuable information with regards to personalized medical care, confidence in the clinical diagnosis, and/or targeted patient followup. Moreover, genetic assessment may serve as a tool to predict recurrence risk, define the pattern of inheritance within a family, and evaluate the need for further family screening. In some circumstances, prenatal or preimplantation genetic screening could identify fetuses or embryos at high risk for CHD. Although genetics may appear to constitute a highly specialized sector of cardiology, basic knowledge regarding inheritance patterns, recurrence risks, and available screening and diagnostic tools, including their strengths and limitations, could assist the treating physician in providing sound counsel.

  4. Parameter identification of the glazed photovoltaic thermal system using Genetic Algorithm–Fuzzy System (GA–FS) approach and its comparative study

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay

    2015-01-01

    Highlights: • Optimization using Genetic Algorithm–Fuzzy System approach. • Overall exergy efficiency has been evaluated with different optimization tools. • Comparative analysis has been done. • GA–FS is very efficient and fast technique. • Overall exergy efficiency has been improved. - Abstract: In this paper, Genetic Algorithm–Fuzzy System (GA–FS) approach is used to identify the optimized parameters of the glazed photovoltaic thermal (PVT) system and to improve its overall exergy efficiency. The fuzzy knowledge base is used to improve the efficiency of Genetic Algorithm (GA). It is observed that three GA parameters, namely: (i) crossover probability (P cross ), (ii) mutation probability (P mut ) and (iii) population size are changing dynamically during the program, according to fuzzy knowledge base to maximize the efficiency of the GA. Here, overall exergy efficiency is considered as an objective function during the optimization process for GA–FS approach. The effort has been made to identify the different optimized parameters like; length and depth of the channel, velocity of flowing fluid, overall heat transfer coefficient from solar cell to ambient and flowing fluid and overall back loss heat transfer coefficient from flowing fluid to the ambient to maximize the overall exergy efficiency using GA–FS approach. Performance of glazed PVT using GA–FS approach has been compared with performance using GA approach and without GA. It has also been observed that the GA–FS approach is a better approach as compared to GA approach because it converges faster as compare to GA because the use of the fuzzy knowledge base with GA and take less time for identification of optimized system parameters.

  5. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    International Nuclear Information System (INIS)

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan Xiaochuan

    2010-01-01

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  6. Do high school chemistry examinations inhibit deeper level understanding of dynamic reversible chemical reactions?

    Science.gov (United States)

    Wheeldon, R.; Atkinson, R.; Dawes, A.; Levinson, R.

    2012-07-01

    Background and purpose : Chemistry examinations can favour the deployment of algorithmic procedures like Le Chatelier's Principle (LCP) rather than reasoning using chemical principles. This study investigated the explanatory resources which high school students use to answer equilibrium problems and whether the marks given for examination answers require students to use approaches beyond direct application of LCP. Sample : The questionnaire was administered to 162 students studying their first year of advanced chemistry (age 16/17) in three high achieving London high schools. Design and methods : The students' explanations of reversible chemical systems were inductively coded to identify the explanatory approaches used and interviews with 13 students were used to check for consistency. AS level examination questions on reversible reactions were analysed to identify the types of explanations sought and the students' performance in these examinations was compared to questionnaire answers. Results : 19% of students used a holistic explanatory approach: when the rates of forward and reverse reactions are correctly described, recognising their simultaneous and mutually dependent nature. 36% used a mirrored reactions approach when the connected nature of the forward and reverse reactions is identified, but not their mutual dependency. 42% failed to recognize the interdependence of forward and reverse reactions (reactions not connected approach). Only 4% of marks for AS examination questions on reversible chemical systems asked for responses which went beyond either direct application of LCP or recall of equilibrium knowledge. 37% of students attained an A grade in their AS national examinations. Conclusions : Examinations favour the application of LCP making it possible to obtain the highest grade with little understanding of reversible chemical systems beyond a direct application of this algorithm. Therefore students' understanding may be attenuated so that they are

  7. Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling

    Science.gov (United States)

    Kochunov, Peter; Jahanshad, Neda; Sprooten, Emma; Nichols, Thomas E.; Mandl, René C.; Almasy, Laura; Booth, Tom; Brouwer, Rachel M.; Curran, Joanne E.; de Zubicaray, Greig I.; Dimitrova, Rali; Duggirala, Ravi; Fox, Peter T.; Hong, L. Elliot; Landman, Bennett A.; Lemaitre, Hervé; Lopez, Lorna; Martin, Nicholas G.; McMahon, Katie L.; Mitchell, Braxton D.; Olvera, Rene L.; Peterson, Charles P.; Starr, John M.; Sussmann, Jessika E.; Toga, Arthur W.; Wardlaw, Joanna M.; Wright, Margaret J.; Wright, Susan N.; Bastin, Mark E.; McIntosh, Andrew M.; Boomsma, Dorret I.; Kahn, René S.; den Braber, Anouk; de Geus, Eco JC; Deary, Ian J.; Hulshoff Pol, Hilleke E.; Williamson, Douglas E.; Blangero, John; van ’t Ent, Dennis; Thompson, Paul M.; Glahn, David C.

    2014-01-01

    Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability. PMID:24657781

  8. Genetic risks from radiation

    International Nuclear Information System (INIS)

    Selby, P.B.

    Two widely-recognized committees, UNSCEAR and BEIR, have reevaluated their estimates of genetic risks from radiation. Their estimates for gene mutations are based on two different approaches, one being the doubling-dose approach and the other being a new direct approach based on an empirical determination of the amount of dominant induced damage in the skeletons of mice in the first generation following irradiation. The estimates made by these committees are in reasonably good agreement and suggest that the genetic risks from present exposures resultng from nuclear power production are small. There is room for much improvement in the reliability of the risk estimates. The relatively new approach of measuring the amount of induced damage to the mouse skeleton shows great promise of improving knowledge about how changes in the mutation frequency affect the incidence of genetic disorders. Such findings may have considerable influence on genetic risk estimates for radiation and on the development of risk estimates for other less-well-understood environmental mutagens. (author)

  9. Synthetic biology approaches in cancer immunotherapy, genetic network engineering, and genome editing.

    Science.gov (United States)

    Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W

    2016-04-18

    Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.

  10. [The role of the genetics history in genetics teaching].

    Science.gov (United States)

    Li, Ming-Hui

    2006-08-01

    The research of the scientific history and development status reflect the science and technology level of a nation. The genetic history is one of the branches of the life science and the 21st century is life science century. The genetics history in the teaching of genetics not only can help students get familiar with the birth and development of genetics, but also enhance their thinking ability and scientific qualities. The roles and approaches of teaching are discussed in this paper.

  11. Personalized translational epilepsy research - Novel approaches and future perspectives: Part I: Clinical and network analysis approaches.

    Science.gov (United States)

    Rosenow, Felix; van Alphen, Natascha; Becker, Albert; Chiocchetti, Andreas; Deichmann, Ralf; Deller, Thomas; Freiman, Thomas; Freitag, Christine M; Gehrig, Johannes; Hermsen, Anke M; Jedlicka, Peter; Kell, Christian; Klein, Karl Martin; Knake, Susanne; Kullmann, Dimitri M; Liebner, Stefan; Norwood, Braxton A; Omigie, Diana; Plate, Karlheinz; Reif, Andreas; Reif, Philipp S; Reiss, Yvonne; Roeper, Jochen; Ronellenfitsch, Michael W; Schorge, Stephanie; Schratt, Gerhard; Schwarzacher, Stephan W; Steinbach, Joachim P; Strzelczyk, Adam; Triesch, Jochen; Wagner, Marlies; Walker, Matthew C; von Wegner, Frederic; Bauer, Sebastian

    2017-11-01

    Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. Part I includes the clinical phenotyping and diagnostic methods, EEG network-analysis, biomarkers, and personalized treatment approaches. In Part II, experimental and translational approaches will be discussed (Bauer et al., 2017) [1]. Copyright © 2017 Elsevier Inc

  12. A Hypomethylated population of Brassica rapa for forward and reverse Epi-genetics

    Directory of Open Access Journals (Sweden)

    Amoah Stephen

    2012-10-01

    decreased oil content, as well as decreased erucic acid and corresponding increases in linoleic and/or palmitic acid. Each 5-AzaC-treated line represents a unique combination of hypomethylated epialleles. Conclusions The approach and populations developed are available for forward and reverse screening of epiallelic variation and subsequent functional and inheritance studies. The generation of stochastically hypomethylated populations has utility in epiallele discovery for a wide range of crop plants, and has considerable potential as an intervention strategy for crop improvement.

  13. Alternative Approach of Developing Optical Binary Adder Using Reversible Peres Gates

    Directory of Open Access Journals (Sweden)

    Dhoumendra Mandal

    2018-01-01

    Full Text Available All-optical devices will play a very significant and crucial role in the modern all-optical network by eliminating the bottleneck of opto-electro-opto- (O-E-O- conversion. Unfortunately, the conventional logic gates lose information at the output, and the states of the outputs cannot give any credible impressions of the states of the inputs. In this article, at first, the authors have proposed a method of designing an optical three-input-three-output reversible Peres gate. Authors have deployed polarization switching characteristic of Semiconductor Optical Amplifier (SOA for designing this circuit. The authors have also proposed a method of designing an optical reversible full adder, using two such Peres gates and subsequently a data recovery circuit which can recover the input data of the adder. The authors have chosen frequency encoded data for processing the operation. The proposed scheme has been verified by simulation results.

  14. Management of skeletal Class III malocclusion with reverse pull headgear in a growing individual

    Directory of Open Access Journals (Sweden)

    Ambreen Afzal

    2016-01-01

    Full Text Available Skeletal Class III malocclusion is considered to be one of the most difficult orthodontic problems to treat. This malocclusion is associated with the retrognathic maxilla or prognathic mandible or sometimes a combination of both. The treatment of such cases requires an integrated approach and a comprehensive treatment plan including growth modification, dental camouflage, or orthognathic surgery. In a growing patient, orthopedic correction of skeletal Class III malocclusion with the help of a reverse pull headgear is crucial as it can reduce the chances of further surgical treatment to correct the skeletal discrepancy. This case report describes the management of skeletal Class III malocclusion in a 12-year-old female child with a retrognathic maxilla. The patient did not have any other genetic abnormality or significant known comorbidity. The treatment plan involved fixed orthodontic appliance therapy in combination with a reverse pull headgear for an orthopedic effect. This treatment was continued for 3 years, and well-aligned dental arches with a positive over jet were achieved at the conclusion of treatment. Using facemask therapy in conjunction with fixed orthodontic appliances has been a successful treatment option in growing children. Treatment should be carried out as early as possible to correct the skeletal discrepancy nonsurgically and achieve better results.

  15. Genetic testing in congenital heart disease: A clinical approach

    Science.gov (United States)

    Chaix, Marie A; Andelfinger, Gregor; Khairy, Paul

    2016-01-01

    Congenital heart disease (CHD) is the most common type of birth defect. Traditionally, a polygenic model defined by the interaction of multiple genes and environmental factors was hypothesized to account for different forms of CHD. It is now understood that the contribution of genetics to CHD extends beyond a single unified paradigm. For example, monogenic models and chromosomal abnormalities have been associated with various syndromic and non-syndromic forms of CHD. In such instances, genetic investigation and testing may potentially play an important role in clinical care. A family tree with a detailed phenotypic description serves as the initial screening tool to identify potentially inherited defects and to guide further genetic investigation. The selection of a genetic test is contingent upon the particular diagnostic hypothesis generated by clinical examination. Genetic investigation in CHD may carry the potential to improve prognosis by yielding valuable information with regards to personalized medical care, confidence in the clinical diagnosis, and/or targeted patient follow-up. Moreover, genetic assessment may serve as a tool to predict recurrence risk, define the pattern of inheritance within a family, and evaluate the need for further family screening. In some circumstances, prenatal or preimplantation genetic screening could identify fetuses or embryos at high risk for CHD. Although genetics may appear to constitute a highly specialized sector of cardiology, basic knowledge regarding inheritance patterns, recurrence risks, and available screening and diagnostic tools, including their strengths and limitations, could assist the treating physician in providing sound counsel. PMID:26981213

  16. A combined genetic and multi medium approach revels new secondary metabolites in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Klejnstrup, Marie Louise; Nielsen, Morten Thrane; Frisvad, Jens Christian

    Secondary metabolites are a diverse group of metabolites which serve as important natural sources of drugs for treating diseases. The availability of full genome sequences of several filamentous fungi has revealed a large genetic potential for production of secondary metabolites that are not obse......Secondary metabolites are a diverse group of metabolites which serve as important natural sources of drugs for treating diseases. The availability of full genome sequences of several filamentous fungi has revealed a large genetic potential for production of secondary metabolites...... that are not observed under standard laboratory conditions. Genetic approaches have proven a fruitfull strategy towards the production and identification of these unknown metabolites. Examples include deletion of the cclA1 and laeA2 genes in A. nidulans which affects the expression of secondary metabolites including...... monodictyphenone and terrequinone A respectively. We have deleted the cclA gene in A. nidulans and grown the mutants on several complex media to provoke the production of secondary metabolites. This resulted in the production of several metabolites not previously reported from A. nidulans. Some of these have been...

  17. A genetic approach to shape reconstruction in limited data tomography

    International Nuclear Information System (INIS)

    Turcanu, C.; Craciunescu, T.

    2001-01-01

    The paper proposes a new method for shape reconstruction in computerized tomography. Unlike nuclear medicine applications, in physical science problems we are often confronted with limited data sets: constraints in the number of projections or limited view angles . The problem of image reconstruction from projection may be considered as a problem of finding an image (solution) having projections that match the experimental ones. In our approach, we choose a statistical correlation coefficient to evaluate the fitness of any potential solution. The optimization process is carried out by a genetic algorithm. The algorithm has some features common to all genetic algorithms but also some problem-oriented characteristics. One of them is that a chromosome, representing a potential solution, is not linear but coded as a matrix of pixels corresponding to a two-dimensional image. This kind of internal representation reflects the genuine manifestation and slight differences between two points situated in the original problem space give rise to similar differences once they become coded. Another particular feature is a newly built crossover operator: the grid-based crossover, suitable for high dimension two-dimensional chromosomes. Except for the population size and the dimension of the cutting grid for the grid-based crossover, all the other parameters of the algorithm are independent of the geometry of the tomographic reconstruction. The performances of the method are evaluated on a phantom typical for an application with limited data sets: the determination of the neutron energy spectra with time resolution in case of short-pulsed neutron emission. A genetic reconstruction is presented. The qualitative judgement and also the quantitative one, based on some figures of merit, point out that the proposed method ensures an improved reconstruction of shapes, sizes and resolution in the image, even in the presence of noise. (authors)

  18. Genetic & epigenetic approach to human obesity

    Directory of Open Access Journals (Sweden)

    K Rajender Rao

    2014-01-01

    Full Text Available Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D, cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12 th u0 pdate of Human Obesity Gene Map there are 253 quantity trait loci (QTL for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed.

  19. Tracing Technological Development Trajectories: A Genetic Knowledge Persistence-Based Main Path Approach.

    Directory of Open Access Journals (Sweden)

    Hyunseok Park

    Full Text Available The aim of this paper is to propose a new method to identify main paths in a technological domain using patent citations. Previous approaches for using main path analysis have greatly improved our understanding of actual technological trajectories but nonetheless have some limitations. They have high potential to miss some dominant patents from the identified main paths; nonetheless, the high network complexity of their main paths makes qualitative tracing of trajectories problematic. The proposed method searches backward and forward paths from the high-persistence patents which are identified based on a standard genetic knowledge persistence algorithm. We tested the new method by applying it to the desalination and the solar photovoltaic domains and compared the results to output from the same domains using a prior method. The empirical results show that the proposed method can dramatically reduce network complexity without missing any dominantly important patents. The main paths identified by our approach for two test cases are almost 10x less complex than the main paths identified by the existing approach. The proposed approach identifies all dominantly important patents on the main paths, but the main paths identified by the existing approach miss about 20% of dominantly important patents.

  20. Charge-reversal nanoparticles: novel targeted drug delivery carriers.

    Science.gov (United States)

    Chen, Xinli; Liu, Lisha; Jiang, Chen

    2016-07-01

    Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).

  1. Optimal planning approaches with multiple impulses for rendezvous based on hybrid genetic algorithm and control method

    Directory of Open Access Journals (Sweden)

    JingRui Zhang

    2015-03-01

    Full Text Available In this article, we focus on safe and effective completion of a rendezvous and docking task by looking at planning approaches and control with fuel-optimal rendezvous for a target spacecraft running on a near-circular reference orbit. A variety of existent practical path constraints are considered, including the constraints of field of view, impulses, and passive safety. A rendezvous approach is calculated by using a hybrid genetic algorithm with those constraints. Furthermore, a control method of trajectory tracking is adopted to overcome the external disturbances. Based on Clohessy–Wiltshire equations, we first construct the mathematical model of optimal planning approaches of multiple impulses with path constraints. Second, we introduce the principle of hybrid genetic algorithm with both stronger global searching ability and local searching ability. We additionally explain the application of this algorithm in the problem of trajectory planning. Then, we give three-impulse simulation examples to acquire an optimal rendezvous trajectory with the path constraints presented in this article. The effectiveness and applicability of the tracking control method are verified with the optimal trajectory above as control objective through the numerical simulation.

  2. Rat reverse genetics : generation and characterization of chemically induced rat mutants

    NARCIS (Netherlands)

    van Boxtel, R.

    2010-01-01

    The use of animal models has been crucial for studying the function of genetic elements in the human genome. Embryonic stem (ES) cell-based homologous recombination (HR) has proven a very efficient technique for gene manipulation. However, this technique is not (yet) available for all model

  3. Coalgebraic structure of genetic inheritance.

    Science.gov (United States)

    Tian, Jianjun; Li, Bai-Lian

    2004-09-01

    Although in the broadly defined genetic algebra, multiplication suggests a forward direction of from parents to progeny, when looking from the reverse direction, it also suggests to us a new algebraic structure-coalge- braic structure, which we call genetic coalgebras. It is not the dual coalgebraic structure and can be used in the construction of phylogenetic trees. Math- ematically, to construct phylogenetic trees means we need to solve equations x([n]) = a, or x([n]) = b. It is generally impossible to solve these equations inalgebras. However, we can solve them in coalgebras in the sense of tracing back for their ancestors. A thorough exploration of coalgebraic structure in genetics is apparently necessary. Here, we develop a theoretical framework of the coalgebraic structure of genetics. From biological viewpoint, we defined various fundamental concepts and examined their elementary properties that contain genetic significance. Mathematically, by genetic coalgebra, we mean any coalgebra that occurs in genetics. They are generally noncoassociative and without counit; and in the case of non-sex-linked inheritance, they are cocommutative. Each coalgebra with genetic realization has a baric property. We have also discussed the methods to construct new genetic coalgebras, including cocommutative duplication, the tensor product, linear combinations and the skew linear map, which allow us to describe complex genetic traits. We also put forward certain theorems that state the relationship between gametic coalgebra and gametic algebra. By Brower's theorem in topology, we prove the existence of equilibrium state for the in-evolution operator.

  4. Geological storage of radioactive wastes: governance and practical implementation of the reversibility concept

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    This document comments the different issues associated with the concept of reversibility in the case of geological disposal of radioactive wastes: adopted approach for investigations on the practical implementation of reversibility, decision and assessment process related to the practical implementation of reversibility, role of local actors in decision and monitoring process on a middle and long term, control and vigilance during the reversibility period, memory preservation and its inter-generational transmission, modalities of financing reversibility and the radioactive waste management system, development of a citizen ability and expertise sharing, and perspectives

  5. Reverse time migration by Krylov subspace reduced order modeling

    Science.gov (United States)

    Basir, Hadi Mahdavi; Javaherian, Abdolrahim; Shomali, Zaher Hossein; Firouz-Abadi, Roohollah Dehghani; Gholamy, Shaban Ali

    2018-04-01

    Imaging is a key step in seismic data processing. To date, a myriad of advanced pre-stack depth migration approaches have been developed; however, reverse time migration (RTM) is still considered as the high-end imaging algorithm. The main limitations associated with the performance cost of reverse time migration are the intensive computation of the forward and backward simulations, time consumption, and memory allocation related to imaging condition. Based on the reduced order modeling, we proposed an algorithm, which can be adapted to all the aforementioned factors. Our proposed method benefit from Krylov subspaces method to compute certain mode shapes of the velocity model computed by as an orthogonal base of reduced order modeling. Reverse time migration by reduced order modeling is helpful concerning the highly parallel computation and strongly reduces the memory requirement of reverse time migration. The synthetic model results showed that suggested method can decrease the computational costs of reverse time migration by several orders of magnitudes, compared with reverse time migration by finite element method.

  6. Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach.

    Science.gov (United States)

    Kutyna, Dariusz R; Cordente, Antonio G; Varela, Cristian

    2014-01-01

    Gene modification of laboratory yeast strains is currently a very straightforward task thanks to the availability of the entire yeast genome sequence and the high frequency with which yeast can incorporate exogenous DNA into its genome. Unfortunately, laboratory strains do not perform well in industrial settings, indicating the need for strategies to modify industrial strains to enable strain development for industrial applications. Here we describe approaches we have used to genetically modify industrial strains used in winemaking.

  7. A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.

    Science.gov (United States)

    Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin

    2014-06-01

    The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.

  8. A genetic programming approach for Burkholderia Pseudomallei diagnostic pattern discovery

    Science.gov (United States)

    Yang, Zheng Rong; Lertmemongkolchai, Ganjana; Tan, Gladys; Felgner, Philip L.; Titball, Richard

    2009-01-01

    Motivation: Finding diagnostic patterns for fighting diseases like Burkholderia pseudomallei using biomarkers involves two key issues. First, exhausting all subsets of testable biomarkers (antigens in this context) to find a best one is computationally infeasible. Therefore, a proper optimization approach like evolutionary computation should be investigated. Second, a properly selected function of the antigens as the diagnostic pattern which is commonly unknown is a key to the diagnostic accuracy and the diagnostic effectiveness in clinical use. Results: A conversion function is proposed to convert serum tests of antigens on patients to binary values based on which Boolean functions as the diagnostic patterns are developed. A genetic programming approach is designed for optimizing the diagnostic patterns in terms of their accuracy and effectiveness. During optimization, it is aimed to maximize the coverage (the rate of positive response to antigens) in the infected patients and minimize the coverage in the non-infected patients while maintaining the fewest number of testable antigens used in the Boolean functions as possible. The final coverage in the infected patients is 96.55% using 17 of 215 (7.4%) antigens with zero coverage in the non-infected patients. Among these 17 antigens, BPSL2697 is the most frequently selected one for the diagnosis of Burkholderia Pseudomallei. The approach has been evaluated using both the cross-validation and the Jack–knife simulation methods with the prediction accuracy as 93% and 92%, respectively. A novel approach is also proposed in this study to evaluate a model with binary data using ROC analysis. Contact: z.r.yang@ex.ac.uk PMID:19561021

  9. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate

    Directory of Open Access Journals (Sweden)

    Wu K

    2013-05-01

    Full Text Available Kaimin Wu,1,* Jie Xu,2,* Mengyuan Liu,1 Wen Song,1 Jun Yan,1 Shan Gao,3 Lingzhou Zhao,2 Yumei Zhang1 1Department of Prosthetic Dentistry, 2Department of Periodontology and Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China; 3The Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark; School of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China*Both authors contributed equally to this workAbstract: MicroRNA (miRNA regulation is a novel approach to manipulating the fate of mesenchymal stem cells, but an easy, safe, and highly efficient method of transfection is required. In this study, we developed an miRNA reverse transfection formulation by lyophilizing Lipofectamine 2000-miRNA lipoplexes on a tissue culture plate. The lipoplexes can be immobilized on a tissue culture plate with an intact pseudospherical structure and lyophilization without any lyoprotectant. In this study, reverse transfection resulted in highly efficient cellular uptake of miRNA and enabled significant manipulation of the intracellular target miRNA level. Reverse transfection formulations containing Lipofectamine 2000 1 µL per well generated much higher transfection efficiency without obvious cytotoxicity compared with conventional and other transfection methods. Further, the transfection efficiency of the reverse transfection formulations did not deteriorate during 90 days of storage at 4°C and -20°C. We then assessed the efficiency of the miRNA reverse transfection formulation in promoting osteogenic differentiation of mesenchymal stem cells. We found that transfection with anti-miR-138 and miR-148b was efficient for enhancing osteogenic differentiation, as indicated by enhanced osteogenesis-related gene expression, amount of alkaline phosphatase present, production of collagen, and matrix mineralization. Overall

  10. pH Gradient Reversal: An Emerging Hallmark of Cancers.

    Science.gov (United States)

    Sharma, Mohit; Astekar, Madhusudan; Soi, Sonal; Manjunatha, Bhari S; Shetty, Devi C; Radhakrishnan, Raghu

    2015-01-01

    Several tumors exhibit pH gradient reversal, with acidification of extracellular pH (pHe) and alkalinization of intracellular pH (pHi). The pH gradient reversal is evident even during the preliminary stages of tumorigenesis and is crucial for survival and propagation of tumors, irrespective of their pathology, genetics and origins. Moreover, this hallmark seems to be present ubiquitously in all malignant tumors. Based on these facts, we propose a new emerging hallmark of cancer "pH gradient reversal". Normalizing pH gradient reversal through inhibition of various proton transporters such as Na(+)-H(+) exchanger (NHE), Vacuolar-type H(+)-ATPase (V-ATPase), H(+)/K(+)-ATPases and carbonic anhydrases (CAs) has demonstrated substantial therapeutic benefits. Indeed, inhibition of NHE1 is now being regarded as the latest concept in cancer treatment. A recent patent deals with the utilization of cis-Urocanic acid to acidify the pHi and induce apoptosis in tumors. Another patent reports therapeutic benefit by inhibiting Lactate Dehydrogenase - 5 (LDH-5) in various cancers. Several patents have been formulated by designing drugs activated through acidic pHe providing a cancer specific action. The purpose of this review is to analyze the available literature and help design selective therapies that could be a valuable adjunct to the conventional therapies or even replace them.

  11. Introduction to focus issue: quantitative approaches to genetic networks.

    Science.gov (United States)

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  12. A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is required for pathogenicity

    Science.gov (United States)

    Ammayappan, Arun; Kurath, Gael; Thompson, Tarin M.; Vakharia, Vikram N.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus in the family of Rhabdoviridae, causes a highly contagious disease of fresh and saltwater fish worldwide. Recently, a novel genotype of VHSV, designated IVb, has invaded the Great Lakes in North America, causing large-scale epidemics in wild fish. An efficient reverse genetics system was developed to generate a recombinant VHSV of genotype IVb from cloned cDNA. The recombinant VHSV (rVHSV) was comparable to the parental wild-type strain both in vitro and in vivo, causing high mortality in yellow perch (Perca flavescens). A modified recombinant VHSV was generated in which the NV gene was substituted with an enhanced green fluorescent protein gene (rVHSV-ΔNV-EGFP), and another recombinant was made by inserting the EGFP gene into the full-length viral clone between the P and M genes (rVHSV-EGFP). The in vitro replication kinetics of rVHSV-EGFP was similar to rVHSV; however, the rVHSV-ΔNV-EGFP grew 2 logs lower. In yellow perch challenges, wtVHSV and rVHSV induced 82-100% cumulative per cent mortality (CPM), respectively, whereas rVHSV-EGFP produced 62% CPM and rVHSV-ΔNV-EGFP caused only 15% CPM. No reversion of mutation was detected in the recovered viruses and the recombinant viruses stably maintained the foreign gene after several passages. These results indicate that the NV gene of VHSV is not essential for viral replication in vitro and in vivo, but it plays an important role in viral replication efficiency and pathogenicity. This system will facilitate studies of VHSV replication, virulence, and production of viral vectored vaccines.

  13. Simulative research on reverse current in magnetically insulated coaxial diode

    Directory of Open Access Journals (Sweden)

    Danni Zhu

    2017-10-01

    Full Text Available The reverse current tends to occur in the transition region of the guiding magnetic field in a magnetically insulated coaxial diode (MICD. Influence of the guiding magnetic field on characteristics of the MICD especially on the reverse current is studied by the particle-in-cell (PIC simulation in this paper. The reverse current is confirmed to be irrelevant with the guiding magnetic field strength. However, the reverse current is clarified quantitatively to depend on the electric and magnetic field distribution in the upstream of the cathode tip. As the MICD has been widely employed in microwave tubes, a simple approach to suppress the reverse current on the premise of little change of the original diode is valuable and thus proposed. The optimum matching point between the cathode and the magnetic field is selected in consideration of the entrance depth tolerance, the diode impedance discrepancy and the reverse current coefficient.

  14. Implementation of Cooperation for Recycling Vehicle Routing Optimization in Two-Echelon Reverse Logistics Networks

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2018-04-01

    Full Text Available The formation of a cooperative alliance is an effective means of approaching the vehicle routing optimization in two-echelon reverse logistics networks. Cooperative mechanisms can contribute to avoiding the inefficient assignment of resources for the recycling logistics operations and reducing long distance transportation. With regard to the relatively low performance of waste collection, this paper proposes a three-phase methodology to properly address the corresponding vehicle routing problem on two echelons. First, a bi-objective programming model is established to minimize the total cost and the number of vehicles considering semitrailers and vehicles sharing. Furthermore, the Clarke–Wright (CW savings method and the Non-dominated Sorting Genetic Algorithm-II (NSGA-II are combined to design a hybrid routing optimization heuristic, which is denoted CW_NSGA-II. Routes on the first and second echelons are obtained on the basis of sub-optimal solutions provided by CW algorithm. Compared to other intelligent algorithms, CW_NSGA-II reduces the complexity of the multi-objective solutions search and mostly converges to optimality. The profit generated by cooperation among retail stores and the recycling hub in the reverse logistics network is fairly and reasonably distributed to the participants by applying the Minimum Costs-Remaining Savings (MCRS method. Finally, an empirical study in Chengdu City, China, reveals the superiority of CW_NSGA over the multi-objective particle swarm optimization and the multi objective genetic algorithms in terms of solutions quality and convergence. Meanwhile, the comparison of MCRS method with the Shapley value model, equal profit method and cost gap allocation proves that MCRS method is more conducive to the stability of the cooperative alliance. In general, the implementation of cooperation in the optimization of the reverse logistics network effectively leads to the sustainable development of urban and sub

  15. A New Spectral Shape-Based Record Selection Approach Using Np and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Edén Bojórquez

    2013-01-01

    Full Text Available With the aim to improve code-based real records selection criteria, an approach inspired in a parameter proxy of spectral shape, named Np, is analyzed. The procedure is based on several objectives aimed to minimize the record-to-record variability of the ground motions selected for seismic structural assessment. In order to select the best ground motion set of records to be used as an input for nonlinear dynamic analysis, an optimization approach is applied using genetic algorithms focuse on finding the set of records more compatible with a target spectrum and target Np values. The results of the new Np-based approach suggest that the real accelerograms obtained with this procedure, reduce the scatter of the response spectra as compared with the traditional approach; furthermore, the mean spectrum of the set of records is very similar to the target seismic design spectrum in the range of interest periods, and at the same time, similar Np values are obtained for the selected records and the target spectrum.

  16. [Genetics factors in pathogenesis and clinical genetics of binge eating disorder].

    Science.gov (United States)

    Kibitov, А О; Мazo, G E

    2016-01-01

    Genetic studies have shown that binge eating disorder (ВЕD) aggregates in families, heritability was estimated as about 60% and additive genetic influences on BED up to 50%. Using a genetic approach has proved useful for verifying the diagnostic categories of BED using DSM-IV criteria and supporting the validity of considering this pathology as a separate nosological category. The results confirmed the genetic and pathogenic originality of BED as a separate psychopathological phenomenon, but not a subtype of obesity. It seems fruitful to considerate BED as a disease with hereditary predisposition with significant genetic influence and a complex psychopathological syndrome, including not only eating disorders, but also depressive and addictive component. A possible mechanism of pathogenesis of BED may be the interaction of the neuroendocrine and neurotransmitters systems including the active involvement of the reward system in response to a variety of chronic stress influences with the important modulatory role of specific personality traits. The high level of genetic influence on the certain clinical manifestations of BED confirms the ability to identify the subphenotypes of BED on genetic basis involving clinical criteria. It can not only contribute to further genetic studies, taking into account more homogeneous samples, but also help in finding differentiated therapeutic approaches.

  17. Usher syndrome: an effective sequencing approach to establish a genetic and clinical diagnosis.

    Science.gov (United States)

    Lenarduzzi, S; Vozzi, D; Morgan, A; Rubinato, E; D'Eustacchio, A; Osland, T M; Rossi, C; Graziano, C; Castorina, P; Ambrosetti, U; Morgutti, M; Girotto, G

    2015-02-01

    Usher syndrome is an autosomal recessive disorder characterized by retinitis pigmentosa, sensorineural hearing loss and, in some cases, vestibular dysfunction. The disorder is clinically and genetically heterogeneous and, to date, mutations in 11 genes have been described. This finding makes difficult to get a precise molecular diagnosis and offer patients accurate genetic counselling. To overcome this problem and to increase our knowledge of the molecular basis of Usher syndrome, we designed a targeted resequencing custom panel. In a first validation step a series of 16 Italian patients with known molecular diagnosis were analysed and 31 out of 32 alleles were detected (97% of accuracy). After this step, 31 patients without a molecular diagnosis were enrolled in the study. Three out of them with an uncertain Usher diagnosis were excluded. One causative allele was detected in 24 out 28 patients (86%) while the presence of both causative alleles characterized 19 patients out 28 (68%). Sixteen novel and 27 known alleles were found in the following genes: USH2A (50%), MYO7A (7%), CDH23 (11%), PCDH15 (7%) and USH1G (2%). Overall, on the 44 patients the protocol was able to characterize 74 alleles out of 88 (84%). These results suggest that our panel is an effective approach for the genetic diagnosis of Usher syndrome leading to: 1) an accurate molecular diagnosis, 2) better genetic counselling, 3) more precise molecular epidemiology data fundamental for future interventional plans. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Quantum vertex model for reversible classical computing.

    Science.gov (United States)

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  19. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    On the basis of our studies on the genomic sequence analysis, we recently proposed a model to explain the specific changes associated with the reversion hotspots. Here we propose a more detailed version of this model that also takes into account the observed genetic requirements of stationary-state mutagenesis. Briefly ...

  20. Ruminant Nutrition Symposium: a systems approach to integrating genetics, nutrition, and metabolic efficiency in dairy cattle.

    Science.gov (United States)

    McNamara, J P

    2012-06-01

    The role of the dairy cow is to help provide high-quality protein and other nutrients for humans. We must select and manage cows with the goal of reaching the greatest possible efficiency for any given environment. We have increased efficiency tremendously over the years, yet the variation in productive and reproductive efficiency among animals is still quite large. In part this is because of a lack of full integration of genetic, nutritional, and reproductive biology into management decisions. However, integration across these disciplines is increasing as biological research findings show more specific control points at which genetics, nutrition, and reproduction interact. An ordered systems biology approach that focuses on why and how cells regulate energy and N use and on how and why organs interact by endocrine and neurocrine mechanisms will speed improvements in efficiency. More sophisticated dairy managers will demand better information to improve the efficiency of their animals. Using genetic improvement and proper animal management to improve milk productive and reproductive efficiency requires a deeper understanding of metabolic processes during the transition period. Using existing metabolic models, we can design experiments specifically to integrate new data from transcriptional arrays into models that describe nutrient use in farm animals. A systems modeling approach can help focus our research to make faster and large advances in efficiency and show directly how this can be applied on the farms.

  1. Isolation and genetic analysis of pure cells from forensic biological mixtures: The precision of a digital approach.

    Science.gov (United States)

    Fontana, F; Rapone, C; Bregola, G; Aversa, R; de Meo, A; Signorini, G; Sergio, M; Ferrarini, A; Lanzellotto, R; Medoro, G; Giorgini, G; Manaresi, N; Berti, A

    2017-07-01

    Latest genotyping technologies allow to achieve a reliable genetic profile for the offender identification even from extremely minute biological evidence. The ultimate challenge occurs when genetic profiles need to be retrieved from a mixture, which is composed of biological material from two or more individuals. In this case, DNA profiling will often result in a complex genetic profile, which is then subject matter for statistical analysis. In principle, when more individuals contribute to a mixture with different biological fluids, their single genetic profiles can be obtained by separating the distinct cell types (e.g. epithelial cells, blood cells, sperm), prior to genotyping. Different approaches have been investigated for this purpose, such as fluorescent-activated cell sorting (FACS) or laser capture microdissection (LCM), but currently none of these methods can guarantee the complete separation of different type of cells present in a mixture. In other fields of application, such as oncology, DEPArray™ technology, an image-based, microfluidic digital sorter, has been widely proven to enable the separation of pure cells, with single-cell precision. This study investigates the applicability of DEPArray™ technology to forensic samples analysis, focusing on the resolution of the forensic mixture problem. For the first time, we report here the development of an application-specific DEPArray™ workflow enabling the detection and recovery of pure homogeneous cell pools from simulated blood/saliva and semen/saliva mixtures, providing full genetic match with genetic profiles of corresponding donors. In addition, we assess the performance of standard forensic methods for DNA quantitation and genotyping on low-count, DEPArray™-isolated cells, showing that pure, almost complete profiles can be obtained from as few as ten haploid cells. Finally, we explore the applicability in real casework samples, demonstrating that the described approach provides complete

  2. Magnetization reversal processes of single nanomagnets and their energy barrier

    International Nuclear Information System (INIS)

    Krone, P.; Makarov, D.; Albrecht, M.; Schrefl, T.; Suess, D.

    2010-01-01

    Micromagnetic simulations were performed to investigate the influence of geometry and magnetic anisotropy constant on energy barrier and magnetization reversal mechanism of individual bits important for the bit patterned media concept in magnetic data storage. It is shown that dependency of the energy barrier on magnetic and geometric properties of bits can be described by an analytical approach in the case of quasi-coherent magnetization rotation process. However, when the bit size exceeds a critical size, for which an incoherent magnetization reversal is preferred, the analytical approach becomes invalid and no self-consistent theory is available. By systematically investigating the influence of bit size on the magnetization reversal mode, it was found that the transition from quasi-coherent to incoherent magnetization reversal mode can still be described analytically if an activation volume is considered instead of the bit volume. In this case, the nucleation volume is an important parameter determining thermal stability of the bit. If the volume of the bit is larger than twice the activation volume, the energy barrier stays nearly constant; with further increase in bit size, no gain in thermal stability can be achieved.

  3. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    Science.gov (United States)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  4. An efficient Bayesian meta-analysis approach for studying cross-phenotype genetic associations.

    Directory of Open Access Journals (Sweden)

    Arunabha Majumdar

    2018-02-01

    Full Text Available Simultaneous analysis of genetic associations with multiple phenotypes may reveal shared genetic susceptibility across traits (pleiotropy. For a locus exhibiting overall pleiotropy, it is important to identify which specific traits underlie this association. We propose a Bayesian meta-analysis approach (termed CPBayes that uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. This method uses a unified Bayesian statistical framework based on a spike and slab prior. CPBayes performs a fully Bayesian analysis by employing the Markov Chain Monte Carlo (MCMC technique Gibbs sampling. It takes into account heterogeneity in the size and direction of the genetic effects across traits. It can be applied to both cohort data and separate studies of multiple traits having overlapping or non-overlapping subjects. Simulations show that CPBayes can produce higher accuracy in the selection of associated traits underlying a pleiotropic signal than the subset-based meta-analysis ASSET. We used CPBayes to undertake a genome-wide pleiotropic association study of 22 traits in the large Kaiser GERA cohort and detected six independent pleiotropic loci associated with at least two phenotypes. This includes a locus at chromosomal region 1q24.2 which exhibits an association simultaneously with the risk of five different diseases: Dermatophytosis, Hemorrhoids, Iron Deficiency, Osteoporosis and Peripheral Vascular Disease. We provide an R-package 'CPBayes' implementing the proposed method.

  5. A Probabilistic Assessment of the Next Geomagnetic Reversal

    Science.gov (United States)

    Buffett, Bruce; Davis, William

    2018-02-01

    Deterministic forecasts for the next geomagnetic reversal are not feasible due to large uncertainties in the present-day state of the Earth's core. A more practical approach relies on probabilistic assessments using paleomagnetic observations to characterize the amplitude of fluctuations in the geomagnetic dipole. We use paleomagnetic observations for the past 2 Myr to construct a stochastic model for the axial dipole field and apply well-established methods to evaluate the probability of the next geomagnetic reversal as a function of time. For a present-day axial dipole moment of 7.6 × 1022 A m2, the probability of the dipole entering a reversed state is less than 2% after 20 kyr. This probability rises to 11% after 50 kyr. An imminent geomagnetic reversal is not supported by paleomagnetic observations. The current rate of decline in the dipole moment is unusual but within the natural variability predicted by the stochastic model.

  6. Going forward with genetics: recent technological advances and forward genetics in mice.

    Science.gov (United States)

    Moresco, Eva Marie Y; Li, Xiaohong; Beutler, Bruce

    2013-05-01

    Forward genetic analysis is an unbiased approach for identifying genes essential to defined biological phenomena. When applied to mice, it is one of the most powerful methods to facilitate understanding of the genetic basis of human biology and disease. The speed at which disease-causing mutations can be identified in mutagenized mice has been markedly increased by recent advances in DNA sequencing technology. Creating and analyzing mutant phenotypes may therefore become rate-limiting in forward genetic experimentation. We review the forward genetic approach and its future in the context of recent technological advances, in particular massively parallel DNA sequencing, induced pluripotent stem cells, and haploid embryonic stem cells. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Hereditary breast and ovarian cancer: successful systematic implementation of a group approach to genetic counselling.

    Science.gov (United States)

    Benusiglio, Patrick R; Di Maria, Marina; Dorling, Leila; Jouinot, Anne; Poli, Antoine; Villebasse, Sophie; Le Mentec, Marine; Claret, Béatrice; Boinon, Diane; Caron, Olivier

    2017-01-01

    The increase in referrals to cancer genetics clinics, partially associated with the "Angelina Jolie effect", presents a challenge to existing services, many are already running at full capacity. More efficient ways to deliver genetic counselling are therefore urgently needed. We now systematically offer group instead of standard individual counselling to patients with suspected Hereditary Breast and Ovarian Cancer. Group sessions last 30 min. The first twenty consist of a presentation by the genetic counsellor, the next ten of a discussion involving a cancer geneticist and a psychologist. A short individual consultation ensues, where personal and family issues are addressed and consent obtained. Blood is drawn afterwards. Satisfaction and knowledge are evaluated. We report data for the Oct-2014-Aug-2015 period. 210 patients attended group counselling, up to eight simultaneously. We always fitted them within a 4-h time frame. Mean satisfaction score was 41/43. Knowledge scores increased from 3.1/6 to 4.9/6 post-counselling (p value group counselling, we have withstood increases in referrals without compromising care. The "Angelina Jolie effect" and rapid developments in personalized medicine threaten to overwhelm cancer genetics clinics. In this context, our innovative approach should ensure that all patients have access to approved services.

  8. An Adaptive Agent-Based Model of Homing Pigeons: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Francis Oloo

    2017-01-01

    Full Text Available Conventionally, agent-based modelling approaches start from a conceptual model capturing the theoretical understanding of the systems of interest. Simulation outcomes are then used “at the end” to validate the conceptual understanding. In today’s data rich era, there are suggestions that models should be data-driven. Data-driven workflows are common in mathematical models. However, their application to agent-based models is still in its infancy. Integration of real-time sensor data into modelling workflows opens up the possibility of comparing simulations against real data during the model run. Calibration and validation procedures thus become automated processes that are iteratively executed during the simulation. We hypothesize that incorporation of real-time sensor data into agent-based models improves the predictive ability of such models. In particular, that such integration results in increasingly well calibrated model parameters and rule sets. In this contribution, we explore this question by implementing a flocking model that evolves in real-time. Specifically, we use genetic algorithms approach to simulate representative parameters to describe flight routes of homing pigeons. The navigation parameters of pigeons are simulated and dynamically evaluated against emulated GPS sensor data streams and optimised based on the fitness of candidate parameters. As a result, the model was able to accurately simulate the relative-turn angles and step-distance of homing pigeons. Further, the optimised parameters could replicate loops, which are common patterns in flight tracks of homing pigeons. Finally, the use of genetic algorithms in this study allowed for a simultaneous data-driven optimization and sensitivity analysis.

  9. Genetic bases of the nutritional approach to migraine.

    Science.gov (United States)

    De Marchis, Maria Laura; Guadagni, Fiorella; Silvestris, Erica; Lovero, Domenica; Della-Morte, David; Ferroni, Patrizia; Barbanti, Piero; Palmirotta, Raffaele

    2018-03-08

    Migraine is a common multifactorial and polygenic neurological disabling disorder characterized by a genetic background and associated to environmental, hormonal and food stimulations. A large series of evidence suggest a strong correlation between nutrition and migraine and indicates several commonly foods, food additives and beverages that may be involved in the mechanisms triggering the headache attack in migraine-susceptible persons. There are foods and drinks, or ingredients of the same, that can trigger the migraine crisis as well as some foods play a protective function depending on the specific genetic sensitivity of the subject. The recent biotechnological advances have enhanced the identification of some genetic factors involved in onset diseases and the identification of sequence variants of genes responsible for the individual sensitivity to migraine trigger-foods. Therefore many studies are aimed at the analysis of polymorphisms of genes coding for the enzymes involved in the metabolism of food factors in order to clarify the different ways in which people respond to foods based on their genetic constitution. This review discusses the latest knowledge and scientific evidence of the role of gene variants and nutrients, food additives and nutraceuticals interactions in migraine.

  10. Genetics of osteoarthritis.

    Science.gov (United States)

    Rodriguez-Fontenla, Cristina; Gonzalez, Antonio

    2015-01-01

    Osteoarthritis (OA) is a complex disease caused by the interaction of multiple genetic and environmental factors. This review focuses on the studies that have contributed to the discovery of genetic susceptibility factors in OA. The most relevant associations discovered until now are discussed in detail: GDF-5, 7q22 locus, MCF2L, DOT1L, NCOA3 and also some important findings from the arcOGEN study. Moreover, the different approaches that can be used to minimize the specific problems of the study of OA genetics are discussed. These include the study of microsatellites, phenotype standardization and other methods such as meta-analysis of GWAS and gene-based analysis. It is expected that these new approaches contribute to finding new susceptibility genetic factors for OA. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  11. Retrospective on reverse genetics in mice around the world and in Japan.

    Science.gov (United States)

    Aizawa, Shinichi

    2008-06-01

    The 2007 Nobel Prize for Physiology or Medicine was awarded to Mario R. Capecchi, Martin J. Evans and Oliver Smithies for their contribution in generating mutant mice by gene targeting in embryonic stem (ES) cells. Although there are many experimental animals, it is yet only in mouse that one can genetically examine functions of genes at will. It was merely a dream in the early 1980s that genetic studies with mutants would one day become a reality in mammals. The story began with tetratocarcinoma/embryonal carcinoma cells. Now, through the successes of cloning in mammals, somatic cells such as our skin cells will shortly be transformed into ES-like (induced pluripotent stem) cells by the proper activation of endogenous genes such as Oct4 and Sox2 with chemicals. How have times changed?

  12. Latent spatial models and sampling design for landscape genetics

    Science.gov (United States)

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  13. An analysis of the genetic diversity and genetic structure of ...

    African Journals Online (AJOL)

    Scientific approaches to conservation of threatened species depend on a good understanding of the genetic information of wild and artificial population. The genetic diversity and structure analysis of 10 Eucommia ulmoides population was analyzed using inter-simple sequence repeat (ISSR) markers in this paper.

  14. A Genetic Algorithms-based Approach for Optimized Self-protection in a Pervasive Service Middleware

    DEFF Research Database (Denmark)

    Zhang, Weishan; Ingstrup, Mads; Hansen, Klaus Marius

    2009-01-01

    With increasingly complex and heterogeneous systems in pervasive service computing, it becomes more and more important to provide self-protected services to end users. In order to achieve self-protection, the corresponding security should be provided in an optimized manner considering...... the constraints of heterogeneous devices and networks. In this paper, we present a Genetic Algorithms-based approach for obtaining optimized security configurations at run time, supported by a set of security OWL ontologies and an event-driven framework. This approach has been realized as a prototype for self-protection...... in the Hydra middleware, and is integrated with a framework for enforcing the computed solution at run time using security obligations. The experiments with the prototype on configuring security strategies for a pervasive service middleware show that this approach has acceptable performance, and could be used...

  15. Research on the influencing factors of reverse logistics carbon footprint under sustainable development.

    Science.gov (United States)

    Sun, Qiang

    2017-10-01

    With the concerns of ecological and circular economy along with sustainable development, reverse logistics has attracted the attention of enterprise. How to achieve sustainable development of reverse logistics has important practical significance of enhancing low carbon competitiveness. In this paper, the system boundary of reverse logistics carbon footprint is presented. Following the measurement of reverse logistics carbon footprint and reverse logistics carbon capacity is provided. The influencing factors of reverse logistics carbon footprint are classified into five parts such as intensity of reverse logistics, energy structure, energy efficiency, reverse logistics output, and product remanufacturing rate. The quantitative research methodology using ADF test, Johansen co-integration test, and impulse response is utilized to interpret the relationship between reverse logistics carbon footprint and the influencing factors more accurately. This research finds that energy efficiency, energy structure, and product remanufacturing rate are more capable of inhibiting reverse logistics carbon footprint. The statistical approaches will help practitioners in this field to structure their reverse logistics activities and also help academics in developing better decision models to reduce reverse logistics carbon footprint.

  16. HALT & REVERSE: Hsf1 activators lower cardiomyocyt damage; towards a novel approach to REVERSE atrial fibrillation.

    Science.gov (United States)

    Lanters, Eva A H; van Marion, Denise M S; Kik, Charles; Steen, Herman; Bogers, Ad J J C; Allessie, Maurits A; Brundel, Bianca J J M; de Groot, Natasja M S

    2015-11-05

    Atrial fibrillation is a progressive arrhythmia, the exact mechanism underlying the progressive nature of recurrent AF episodes is still unknown. Recently, it was found that key players of the protein quality control system of the cardiomyocyte, i.e. Heat Shock Proteins, protect against atrial fibrillation progression by attenuating atrial electrical and structural remodeling (electropathology). HALT & REVERSE aims to investigate the correlation between electropathology, as defined by endo- or epicardial mapping, Heat Shock Protein levels and development or recurrence of atrial fibrillation following pulmonary vein isolation, or electrical cardioversion or cardiothoracic surgery. This study is a prospective observational study. Three separate study groups are defined: (1) cardiothoracic surgery, (2) pulmonary vein isolation and (3) electrical cardioversion. An intra-operative high-resolution epicardial (group 1) or endocardial (group 2) mapping procedure of the atria is performed to study atrial electropathology. Blood samples for Heat Shock Protein determination are obtained at baseline and during the follow-up period at 3 months (group 2), 6 months (groups 1 and 2) and 1 year (group 1 and 2). Tissue samples of the right and left atrial appendages in patients in group 1 are analysed for Heat Shock Protein levels and for tissue characteristics. Early post procedural atrial fibrillation is detected by continuous rhythm monitoring, whereas late post procedural atrial fibrillation is documented by either electrocardiogram or 24-h Holter registration. HALT & REVERSE aims to identify the correlation between Heat Shock Protein levels and degree of electropathology. The study outcome will contribute to novel diagnostic tools for the early recognition of clinical atrial fibrillation. Rotterdam Medical Ethical Committee MEC-2014-393, Dutch Trial Registration NTR4658.

  17. Building of Reusable Reverse Logistics Model and its Optimization Considering the Decision of Backorder or Next Arrival of Goods

    Science.gov (United States)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu; Lee, Hee-Hyol

    This paper deals with the building of the reusable reverse logistics model considering the decision of the backorder or the next arrival of goods. The optimization method to minimize the transportation cost and to minimize the volume of the backorder or the next arrival of goods occurred by the Just in Time delivery of the final delivery stage between the manufacturer and the processing center is proposed. Through the optimization algorithms using the priority-based genetic algorithm and the hybrid genetic algorithm, the sub-optimal delivery routes are determined. Based on the case study of a distilling and sale company in Busan in Korea, the new model of the reusable reverse logistics of empty bottles is built and the effectiveness of the proposed method is verified.

  18. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    Directory of Open Access Journals (Sweden)

    Swati Chaturvedi

    2016-01-01

    Full Text Available One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.

  19. Genetic monitoring of agrocoenosis

    International Nuclear Information System (INIS)

    Lukin, V.D.

    2005-01-01

    Mutants with high frequency of revertants appearance can be used as biological indicator of genetic monitoring of agrocoenosis. It differs from the initial form in dwarf-size of the shrub, the changed plate of leaf and sterility. The low limit of the mutant sensitiveness on the test of visible reverse mutations to the doses of gamma-irradiation is 0,2 Gy and to the rate of soil contamination by lead is 50 mg per 1 kg of soil. (authors)

  20. Zero field reversal probability in thermally assisted magnetization reversal

    Science.gov (United States)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  1. Quantum Vertex Model for Reversible Classical Computing

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng

    We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.

  2. Stroke genetics: prospects for personalized medicine

    Directory of Open Access Journals (Sweden)

    Markus Hugh S

    2012-09-01

    Full Text Available Abstract Epidemiologic evidence supports a genetic predisposition to stroke. Recent advances, primarily using the genome-wide association study approach, are transforming what we know about the genetics of multifactorial stroke, and are identifying novel stroke genes. The current findings are consistent with different stroke subtypes having different genetic architecture. These discoveries may identify novel pathways involved in stroke pathogenesis, and suggest new treatment approaches. However, the already identified genetic variants explain only a small proportion of overall stroke risk, and therefore are not currently useful in predicting risk for the individual patient. Such risk prediction may become a reality as identification of a greater number of stroke risk variants that explain the majority of genetic risk proceeds, and perhaps when information on rare variants, identified by whole-genome sequencing, is also incorporated into risk algorithms. Pharmacogenomics may offer the potential for earlier implementation of 'personalized genetic' medicine. Genetic variants affecting clopidogrel and warfarin metabolism may identify non-responders and reduce side-effects, but these approaches have not yet been widely adopted in clinical practice.

  3. Reverse Osmosis

    Indian Academy of Sciences (India)

    many applications, one of which is desalination of seawater. The inaugural Nobel Prize in Chemistry was awarded in 1901 to van 't Hoff for his seminal work in this area. The present article explains the principle of osmosis and reverse osmosis. Osmosis and Reverse Osmosis. As the name suggests, reverse osmosis is the ...

  4. Mild desalination demopilot : New normalization approach to effectively evaluate electrodialysis reversal technology

    NARCIS (Netherlands)

    Bisselink, R.; Schepper, W. de; Trampé, J.; Broek, W. van den; Pinel, P.; Krutko, A.; Groot, N.

    2016-01-01

    Key performance indicators for characterization of nanofiltration performance are well developed, similar key performance indicators for electrodialysis reversal are however underdeveloped. Under the E4Water project Dow Benelux BV and Evides Industriewater BV operate a pilot facility to compare both

  5. Genes, Culture and Conservatism-A Psychometric-Genetic Approach.

    Science.gov (United States)

    Schwabe, Inga; Jonker, Wilfried; van den Berg, Stéphanie M

    2016-07-01

    The Wilson-Patterson conservatism scale was psychometrically evaluated using homogeneity analysis and item response theory models. Results showed that this scale actually measures two different aspects in people: on the one hand people vary in their agreement with either conservative or liberal catch-phrases and on the other hand people vary in their use of the "?" response category of the scale. A 9-item subscale was constructed, consisting of items that seemed to measure liberalism, and this subscale was subsequently used in a biometric analysis including genotype-environment interaction, correcting for non-homogeneous measurement error. Biometric results showed significant genetic and shared environmental influences, and significant genotype-environment interaction effects, suggesting that individuals with a genetic predisposition for conservatism show more non-shared variance but less shared variance than individuals with a genetic predisposition for liberalism.

  6. A gene network simulator to assess reverse engineering algorithms.

    Science.gov (United States)

    Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2009-03-01

    In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.

  7. Epigenetic modification and inheritance in sexual reversal of fish.

    Science.gov (United States)

    Shao, Changwei; Li, Qiye; Chen, Songlin; Zhang, Pei; Lian, Jinmin; Hu, Qiaomu; Sun, Bing; Jin, Lijun; Liu, Shanshan; Wang, Zongji; Zhao, Hongmei; Jin, Zonghui; Liang, Zhuo; Li, Yangzhen; Zheng, Qiumei; Zhang, Yong; Wang, Jun; Zhang, Guojie

    2014-04-01

    Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model-a marine fish that has both ZW chromosomal GSD and temperature-dependent ESD-we investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish.

  8. From bad to good: Fitness reversals and the ascent of deleterious mutations.

    Directory of Open Access Journals (Sweden)

    Matthew C Cowperthwaite

    2006-10-01

    Full Text Available Deleterious mutations are considered a major impediment to adaptation, and there are straightforward expectations for the rate at which they accumulate as a function of population size and mutation rate. In a simulation model of an evolving population of asexually replicating RNA molecules, initially deleterious mutations accumulated at rates nearly equal to that of initially beneficial mutations, without impeding evolutionary progress. As the mutation rate was increased within a moderate range, deleterious mutation accumulation and mean fitness improvement both increased. The fixation rates were higher than predicted by many population-genetic models. This seemingly paradoxical result was resolved in part by the observation that, during the time to fixation, the selection coefficient (s of initially deleterious mutations reversed to confer a selective advantage. Significantly, more than half of the fixations of initially deleterious mutations involved fitness reversals. These fitness reversals had a substantial effect on the total fitness of the genome and thus contributed to its success in the population. Despite the relative importance of fitness reversals, however, the probabilities of fixation for both initially beneficial and initially deleterious mutations were exceedingly small (on the order of 10(-5 of all mutations.

  9. Adiabatic process reversibility: microscopic and macroscopic views

    International Nuclear Information System (INIS)

    Anacleto, Joaquim; Pereira, Mario G

    2009-01-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r≥1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values. (letters and comments)

  10. Mild desalination demo pilot: New normalization approach to effectively evaluate electrodialysis reversal technology

    Directory of Open Access Journals (Sweden)

    Roel Bisselink

    2016-06-01

    Full Text Available Key performance indicators for characterization of nanofiltration performance are well developed, similar key performance indicators for electrodialysis reversal are however underdeveloped. Under the E4Water project Dow Benelux BV and Evides Industriewater BV operate a pilot facility to compare both technologies for their application to mildly desalinate a variety of brackish water streams. Normalized pressure drop, normalized current efficiency and normalized membrane resistance proved to be a useful tool to interpret process performance and to initiate a cleaning procedure if required. The availability of these normalized key performance indicators enables optimization and process monitoring and control of electrodialysis reversal independent of the continuously changing conditions of the feed water.

  11. Heuristic Synthesis of Reversible Logic – A Comparative Study

    Directory of Open Access Journals (Sweden)

    Chua Shin Cheng

    2014-01-01

    Full Text Available Reversible logic circuits have been historically motivated by theoretical research in low-power, and recently attracted interest as components of the quantum algorithm, optical computing and nanotechnology. However due to the intrinsic property of reversible logic, traditional irreversible logic design and synthesis methods cannot be carried out. Thus a new set of algorithms are developed correctly to synthesize reversible logic circuit. This paper presents a comprehensive literature review with comparative study on heuristic based reversible logic synthesis. It reviews a range of heuristic based reversible logic synthesis techniques reported by researchers (BDD-based, cycle-based, search-based, non-search-based, rule-based, transformation-based, and ESOP-based. All techniques are described in detail and summarized in a table based on their features, limitation, library used and their consideration metric. Benchmark comparison of gate count and quantum cost are analysed for each synthesis technique. Comparing the synthesis algorithm outputs over the years, it can be observed that different approach has been used for the synthesis of reversible circuit. However, the improvements are not significant. Quantum cost and gate count has improved over the years, but arguments and debates are still on certain issues such as the issue of garbage outputs that remain the same. This paper provides the information of all heuristic based synthesis of reversible logic method proposed over the years. All techniques are explained in detail and thus informative for new reversible logic researchers and bridging the knowledge gap in this area.

  12. Insights from human genetic studies of lung and organ fibrosis.

    Science.gov (United States)

    Garcia, Christine Kim

    2018-01-02

    Genetic investigations of fibrotic diseases, including those of late onset, often yield unanticipated insights into disease pathogenesis. This Review focuses on pathways underlying lung fibrosis that are generalizable to other organs. Herein, we discuss genetic variants subdivided into those that shorten telomeres, activate the DNA damage response, change resident protein expression or function, or affect organelle activity. Genetic studies provide a window into the downstream cascade of maladaptive responses and pathways that lead to tissue fibrosis. In addition, these studies reveal interactions between genetic variants, environmental factors, and age that influence the phenotypic spectrum of disease. The discovery of forces counterbalancing inherited risk alleles identifies potential therapeutic targets, thus providing hope for future prevention or reversal of fibrosis.

  13. Modelling Autistic Features in Mice Using Quantitative Genetic Approaches

    NARCIS (Netherlands)

    Molenhuis, Remco T; Bruining, Hilgo; Kas, Martien J

    2017-01-01

    Animal studies provide a unique opportunity to study the consequences of genetic variants at the behavioural level. Human studies have identified hundreds of risk genes for autism spectrum disorder (ASD) that can lead to understanding on how genetic variation contributes to individual differences in

  14. Compact-Toroid fusion reactor based on the field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-03-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CTOR) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  15. Toward understanding of the role of reversibility of phenotypic switching in the evolution of resistance to therapy

    Science.gov (United States)

    Horvath, D.; Brutovsky, B.

    2018-06-01

    Reversibility of state transitions is intensively studied topic in many scientific disciplines over many years. In cell biology, it plays an important role in epigenetic variation of phenotypes, known as phenotypic plasticity. More interestingly, the cell state reversibility is probably crucial in the adaptation of population phenotypic heterogeneity to environmental fluctuations by evolving bet-hedging strategy, which might confer to cancer cells resistance to therapy. In this article, we propose a formalization of the evolution of highly reversible states in the environments of periodic variability. Two interrelated models of heterogeneous cell populations are proposed and their behavior is studied. The first model captures selection dynamics of the cell clones for the respective levels of phenotypic reversibility. The second model focuses on the interplay between reversibility and drug resistance in the particular case of cancer. Overall, our results show that the threshold dependencies are emergent features of the investigated model with eventual therapeutic relevance. Presented examples demonstrate importance of taking into account cell to cell heterogeneity within a system of clones with different reversibility quantified by appropriately chosen genetic and epigenetic entropy measures.

  16. A model describing the effect of sex-reversed YY fish in an established wild population: The use of a Trojan Y chromosome to cause extinction of an introduced exotic species.

    Science.gov (United States)

    Gutierrez, Juan B; Teem, John L

    2006-07-21

    A novel means of inducing extinction of an exotic fish population is proposed using a genetic approach to shift the ratio of male to females within a population. In the proposed strategy, sex-reversed fish containing two Y chromosomes are introduced into a normal fish population. These YY fish result in the production of a disproportionate number of male fish in subsequent generations. Mathematical modeling of the system following introduction of YY fish at a constant rate reveals that female fish decline in numbers over time, leading to eventual extinction of the population.

  17. Ontogeny reversal and phylogenetic analysis of Turritopsis sp.5 (Cnidaria, Hydrozoa, Oceaniidae, a possible new species endemic to Xiamen, China

    Directory of Open Access Journals (Sweden)

    Jun-yuan Li

    2018-01-01

    Full Text Available Ontogeny reversal, as seen in some cnidarians, is an unprecedented phenomenon in the animal kingdom involving reversal of the ordinary life cycle. Three species of Turritopsis have been shown to be capable of inverted metamorphosis, a process in which the pelagic medusa transforms back into a juvenile benthic polyp stage when faced with adverse conditions. Turritopsis sp.5 is a species of Turritopsis collected from Xiamen, China which presents a similar ability, being able to reverse its life cycle if injured by mechanical stress. Phylogenetic analysis based on both 16S rDNA and cytochrome c oxidase subunit I (COI genetic barcodes shows that Turritopsis sp.5 is phylogenetically clustered in a clade separate from other species of Turritopsis. The genetic distance between T. sp.5 and the Japanese species T. sp.2 is the shortest, when measured by the Kimura 2-Parameter metric, and the distance to the New Zealand species T. rubra is the largest. An experimental assay on the induction of reverse development in this species was initiated by cutting medusae into upper and lower parts. We show, for the first time, that the two dissected parts have significantly different potentials to transform into polyps. Also, a series of morphological changes of the reversed life cycle can be recognised, including medusa stage, contraction stage I, contraction stage II, cyst, cyst with stolons, and polyp. The discovery of species capable of reverse ontogeny caused by unfavorable conditions adds to the available systems with which to study the cell types that contribute to the developmental reversal and the molecular mechanisms of the directional determination of ontogeny.

  18. Ethical genetic research in Indigenous communities: challenges and successful approaches.

    Science.gov (United States)

    McWhirter, Rebekah E; Mununggirritj, Djapirri; Marika, Dipililnga; Dickinson, Joanne L; Condon, John R

    2012-12-01

    Indigenous populations, in common with all populations, stand to benefit from the potential of genetic research to lead to improvements in diagnostic and therapeutic tools for a wide range of complex diseases. However, many Indigenous communities, especially ones that are isolated, are not included in genetic research efforts. This situation is largely a consequence of the challenges of ethically conducting genetic research in Indigenous communities and compounded by Indigenous peoples' negative past experiences with genetic issues. To examine ways of addressing these challenges, we review one investigation of a cancer cluster in remote Aboriginal communities in Arnhem Land, Australia. Our experiences demonstrate that genetic research can be both ethically and successfully conducted with Indigenous communities by respecting the authority of the community, involving community members, and including regular community review throughout the research process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. 46,XY female sex reversal syndrome with bilateral gonadoblastoma and dysgerminoma.

    Science.gov (United States)

    DU, Xue; Zhang, Xuhong; Li, Yongmei; Han, Yukun

    2014-10-01

    Sex reversal syndrome is a rare congenital condition of complete or disordered gonadal development leading to discordance between the genetic, gonadal and phenotypic sexes, including 46,XX and 46,XY. The gonadoblastoma on the Y-chromosome (GBY) region is associated with an increased risk of developing type II germ cell tumors/cancer. The present study reports a unique case of a phenotypically normal female (age 17 years), presenting with primary amenorrhea and later diagnosed with 46,XY female sex reversal syndrome. Following bilateral gonadectomy, bilateral gonadoblastoma and dysgerminoma were diagnosed. Thus, estrogen replacement therapy was administered periodically to promote the development of secondary sexual characteristics and menstruation, and to prevent osteoporosis. A four year follow-up showed no tumor recurrence and a regular menstrual cycle in this patient.

  20. Ex vivo analysis identifies effective HIV-1 latency–reversing drug combinations

    Science.gov (United States)

    Laird, Gregory M.; Bullen, C. Korin; Rosenbloom, Daniel I.S.; Martin, Alyssa R.; Hill, Alison L.; Durand, Christine M.; Siliciano, Janet D.; Siliciano, Robert F.

    2015-01-01

    Reversal of HIV-1 latency by small molecules is a potential cure strategy. This approach will likely require effective drug combinations to achieve high levels of latency reversal. Using resting CD4+ T cells (rCD4s) from infected individuals, we developed an experimental and theoretical framework to identify effective latency-reversing agent (LRA) combinations. Utilizing ex vivo assays for intracellular HIV-1 mRNA and virion production, we compared 2-drug combinations of leading candidate LRAs and identified multiple combinations that effectively reverse latency. We showed that protein kinase C agonists in combination with bromodomain inhibitor JQ1 or histone deacetylase inhibitors robustly induce HIV-1 transcription and virus production when directly compared with maximum reactivation by T cell activation. Using the Bliss independence model to quantitate combined drug effects, we demonstrated that these combinations synergize to induce HIV-1 transcription. This robust latency reversal occurred without release of proinflammatory cytokines by rCD4s. To extend the clinical utility of our findings, we applied a mathematical model that estimates in vivo changes in plasma HIV-1 RNA from ex vivo measurements of virus production. Our study reconciles diverse findings from previous studies, establishes a quantitative experimental approach to evaluate combinatorial LRA efficacy, and presents a model to predict in vivo responses to LRAs. PMID:25822022

  1. Electromagnetic energy as a bridge between atomic and cellular levels in the genetics approach to cancer treatment.

    Science.gov (United States)

    Tofani, Santi

    2015-01-01

    Literature on magnetic fields (MF) and gene expression, as well as on DNA damage, supports the hypothesis that electromagnetic energy may act at atomic level influencing genetic stability. According to quantum physics, MF act on the interconversion of singlet and triplet spin states, and therefore on genetic instability, activating oxidative processes connected to biological free radicals formation, particularly ROS. In the above frame, the results of in vitro and in vivo laboratory trials have been analyzed. The use of a static MF amplitude modulated by 50 Hz MF, with a time average total intensity of 5.5 mT, has been shown to influence tumor cell functions such as cell proliferation, apoptosis, p53 expression, inhibition of tumor growth and prolongation of survival in animals, evidence that MF can be more effective than chemotherapy (cyclophosphamide) in inhibiting metastatic spread and growth, having synergistic activity with chemotherapy (Cis-platin), and no observable side effects or toxicity in animals or in humans. The beneficial biological/clinical effects observed, without any adverse effects, have been confirmed by various authors and augur well for the potentiality of this new approach to treat genetically based diseases like cancer. Further studies are needed to develop a quantum physics approach to biology, allowing a stable bridge to be built between atomic and cellular levels, therefore developing quantum biology.

  2. Managing Reverse Logistics or Reversing Logistics Management?

    NARCIS (Netherlands)

    M.P. de Brito (Marisa)

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse

  3. Modeling risk and uncertainty in designing reverse logistics problem

    Directory of Open Access Journals (Sweden)

    Aida Nazari Gooran

    2018-01-01

    Full Text Available Increasing attention to environmental problems and social responsibility lead to appear reverse logistic (RL issues in designing supply chain which, in most recently, has received considerable attention from both academicians and practitioners. In this paper, a multi-product reverse logistic network design model is developed; then a hybrid method including Chance-constrained programming, Genetic algorithm and Monte Carlo simulation, are proposed to solve the developed model. The proposed model is solved for risk-averse and risk-seeking decision makers by conditional value at risk, sum of the excepted value and standard deviation, respectively. Comparisons of the results show that minimizing the costs had no direct relation with the kind of decision makers; however, in the most cases, risk-seeking decision maker gained more return products than risk-averse ones. It is clear that by increasing returned products to the chain, production costs of new products and material will be reduced and also by this act, environmental benefits will be created.

  4. Malware analysis and reverse engineering

    OpenAIRE

    Šváb, Martin

    2014-01-01

    Focus of this thesis is reverse engineering in information technology closely linked with the malware analysis. It explains fundamentals of IA-32 processors architecture and basics of operating system Microsoft Windows. Main part of this thesis is dedicated to the malware analysis, including description of creating a tool for simplification of static part of the analysis. In Conclusion various approaches to the malware analysis, which were described in previous part of the thesis, are practic...

  5. Genetic View To Stroke Occurrence

    Directory of Open Access Journals (Sweden)

    Sadegh Yoosefee

    2017-02-01

    Full Text Available Stroke is the third leading cause of death. The role of genetics in the etiology and development of this disease is undeniable. As a result of inadequate previous research, more and more studies in the field of genetics are necessary to identify pathways involved in the pathogenesis of stroke, which in turn, may lead to new therapeutic approaches. However, due to the multifactorial nature of stroke and the few studies conducted in this field, genetic diversity is able to predict only a small fraction of the risk of disease. On the other hand, studies have shown genetically different architecture for different types of stroke, and finally pharmacogenomics as an important part of personalized medicine approach, is influenced by genetic studies, all of which confirm the need of addressing the topic by researchers.

  6. Is it acceptable to approach colorectal cancer patients at diagnosis to discuss genetic testing? A pilot study

    OpenAIRE

    Porteous, M; Dunckley, M; Appleton, S; Catt, S; Dunlop, M; Campbell, H; Cull, A

    2003-01-01

    In this pilot study, the acceptability of approaching 111 newly diagnosed colorectal cancer patients with the offer of genetic testing for hereditary nonpolyposis colorectal cancer (HNPCC) was assessed. A total of 78% of participants found it highly acceptable to have the information about HNPCC brought to their attention at that time.

  7. Investigation of mutations in the SRY, SOX9, and DAX1 genes in sex reversal patients from the Sichuan region of China.

    Science.gov (United States)

    Chen, L; Ding, X P; Wei, X; Li, L X

    2014-03-12

    We investigated the molecular genetic mechanism of sex reversal by exploring the relationship between mutations in the sex-determining genes SRY, SOX9, and DAX1 with genetic sex reversal disease. Mutations in the three key genes were detected by polymerase chain reaction (PCR) and sequencing after karyotype analysis. The mutations detected were then aligned with a random sample of 100 normal sequences and the NCBI sequence database in order to confirm any new mutations. Furthermore, the copy number of SOX9 was measured by fluorescence quantitative PCR. Seven of the 10 male sex reversal patients (46, XX) contained an excess copy of the SRY gene, while one of the eight female sex reversal patients (46, XY) was lacking the SRY gene. Additionally, a new mutation (T-A, Asp24Lys) was detected in one female sex reversal patient (46, XY). No other mutation was detected in the analysis of SOX9 and DAX1, with the exception of an insertion mutation (c.35377791insG) found in the testicular-specific enhancer (TESCO) sequences in an SRY-positive female sex reversal patient (46, XY). Eight of the 18 sex reversal cases (44.4%) showed obvious connections with SRY gene translocations, mutations, or deletions, which was significantly higher than that reported previously (33.3%), indicating a need to further expand the range of sample collection. Overall, these results indicated that the main mechanism of sex reversal are not associated with mutations in the coding regions of SOX9 and DAX1 or copy number variations of SOX9, which is consistent with results of previous studies.

  8. Addictions Neuroclinical Assessment: A reverse translational approach.

    Science.gov (United States)

    Kwako, Laura E; Momenan, Reza; Grodin, Erica N; Litten, Raye Z; Koob, George F; Goldman, David

    2017-08-01

    Incentive salience, negative emotionality, and executive function are functional domains that are etiologic in the initiation and progression of addictive disorders, having been implicated in humans with addictive disorders and in animal models of addictions. Measures of these three neuroscience-based functional domains can capture much of the effects of inheritance and early exposures that lead to trait vulnerability shared across different addictive disorders. For specific addictive disorders, these measures can be supplemented by agent specific measures such as those that access pharmacodynamic and pharmacokinetic variation attributable to agent-specific gatekeeper molecules including receptors and drug-metabolizing enzymes. Herein, we focus on the translation and reverse translation of knowledge derived from animal models of addiction to the human condition via measures of neurobiological processes that are orthologous in animals and humans, and that are shared in addictions to different agents. Based on preclinical data and human studies, measures of these domains in a general framework of an Addictions Neuroclinical Assessment (ANA) can transform the assessment and nosology of addictive disorders, and can be informative for staging disease progression. We consider next steps and challenges for implementation of ANA in clinical care and research. This article is part of the Special Issue entitled "Alcoholism". Published by Elsevier Ltd.

  9. Unraveling the genetic landscape of autosomal recessive Charcot-Marie-Tooth neuropathies using a homozygosity mapping approach

    Science.gov (United States)

    Zimoń, Magdalena; Battaloǧlu, Esra; Parman, Yesim; Erdem, Sevim; Baets, Jonathan; De Vriendt, Els; Atkinson, Derek; Almeida-Souza, Leonardo; Deconinck, Tine; Ozes, Burcak; Goossens, Dirk; Cirak, Sebahattin; Van Damme, Philip; Shboul, Mohammad; Voit, Thomas; Van Maldergem, Lionel; Dan, Bernard; El-Khateeb, Mohammed S.; Guergueltcheva, Velina; Lopez-Laso, Eduardo; Goemans, Nathalie; Masri, Amira; Züchner, Stephan; Timmerman, Vincent; Topaloǧlu, Haluk; De Jonghe, Peter

    2016-01-01

    Autosomal recessive forms of Charcot-Marie-Tooth disease (ARCMT) are rare but severe disorders of the peripheral nervous system. Their molecular basis is poorly understood due to the extensive genetic and clinical heterogeneity, posing considerable challenges for patients, physicians, and researchers. We report on the genetic findings from a systematic study of a large collection of 174 independent ARCMT families. Initial sequencing of the three most common ARCMT genes (ganglioside-induced differentiation protein 1—GDAP1, SH3 domain and tetratricopeptide repeats-containing protein 2—SH3TC2, histidine-triad nucleotide binding protein 1—HINT1) identified pathogenic mutations in 41 patients. Subsequently, 87 selected nuclear families underwent single nucleotide polymorphism (SNP) genotyping and homozygosity mapping, followed by targeted screening of known ARCMT genes. This strategy provided molecular diagnosis to 22 % of the families. Altogether, our unbiased genetic approach identified pathogenic mutations in ten ARCMT genes in a total of 41.3 % patients. Apart from a newly described founder mutation in GDAP1, the majority of variants constitute private molecular defects. Since the gene testing was independent of the clinical phenotype of the patients, we identified mutations in patients with unusual or additional clinical features, extending the phenotypic spectrum of the SH3TC2 gene. Our study provides an overview of the ARCMT genetic landscape and proposes guidelines for tackling the genetic heterogeneity of this group of hereditary neuropathies. PMID:25231362

  10. Solitary-wave families of the Ostrovsky equation: An approach via reversible systems theory and normal forms

    International Nuclear Information System (INIS)

    Roy Choudhury, S.

    2007-01-01

    The Ostrovsky equation is an important canonical model for the unidirectional propagation of weakly nonlinear long surface and internal waves in a rotating, inviscid and incompressible fluid. Limited functional analytic results exist for the occurrence of one family of solitary-wave solutions of this equation, as well as their approach to the well-known solitons of the famous Korteweg-de Vries equation in the limit as the rotation becomes vanishingly small. Since solitary-wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions here (via the normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves and its reduction to the KdV limit, we find a second family of multihumped (or N-pulse) solutions, as well as a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. The second and third families of solutions occur in regions of parameter space distinct from the known solitary-wave solutions and are thus entirely new. Directions for future work are also mentioned

  11. A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics

    Science.gov (United States)

    Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.

    2015-12-01

    This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.

  12. Environmental change, phenotypic plasticity, and genetic compensation.

    Science.gov (United States)

    Grether, Gregory F

    2005-10-01

    When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.

  13. Studying protein assembly with reversible Brownian dynamics of patchy particles

    International Nuclear Information System (INIS)

    Klein, Heinrich C. R.; Schwarz, Ulrich S.

    2014-01-01

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly

  14. Studying protein assembly with reversible Brownian dynamics of patchy particles

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Heinrich C. R. [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); Schwarz, Ulrich S., E-mail: ulrich.schwarz@bioquant.uni-heidelberg.de [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); BioQuant, Heidelberg University, 69120 Heidelberg (Germany)

    2014-05-14

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly.

  15. Dynamic Load Balanced Clustering using Elitism based Random Immigrant Genetic Approach for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    K. Mohaideen Pitchai

    2017-07-01

    Full Text Available Wireless Sensor Network (WSN consists of a large number of small sensors with restricted energy. Prolonged network lifespan, scalability, node mobility and load balancing are important needs for several WSN applications. Clustering the sensor nodes is an efficient technique to reach these goals. WSN have the characteristics of topology dynamics because of factors like energy conservation and node movement that leads to Dynamic Load Balanced Clustering Problem (DLBCP. In this paper, Elitism based Random Immigrant Genetic Approach (ERIGA is proposed to solve DLBCP which adapts to topology dynamics. ERIGA uses the dynamic Genetic Algorithm (GA components for solving the DLBCP. The performance of load balanced clustering process is enhanced with the help of this dynamic GA. As a result, the ERIGA achieves to elect suitable cluster heads which balances the network load and increases the lifespan of the network.

  16. Genetic algorithm approach to thin film optical parameters determination

    International Nuclear Information System (INIS)

    Jurecka, S.; Jureckova, M.; Muellerova, J.

    2003-01-01

    Optical parameters of thin film are important for several optical and optoelectronic applications. In this work the genetic algorithm proposed to solve optical parameters of thin film values. The experimental reflectance is modelled by the Forouhi - Bloomer dispersion relations. The refractive index, the extinction coefficient and the film thickness are the unknown parameters in this model. Genetic algorithm use probabilistic examination of promissing areas of the parameter space. It creates a population of solutions based on the reflectance model and then operates on the population to evolve the best solution by using selection, crossover and mutation operators on the population individuals. The implementation of genetic algorithm method and the experimental results are described too (Authors)

  17. Modeling pH variation in reverse osmosis.

    Science.gov (United States)

    Nir, Oded; Bishop, Noga Fridman; Lahav, Ori; Freger, Viatcheslav

    2015-12-15

    The transport of hydronium and hydroxide ions through reverse osmosis membranes constitutes a unique case of ionic species characterized by uncommonly high permeabilities. Combined with electromigration, this leads to complex behavior of permeate pH, e.g., negative rejection, as often observed for monovalent ions in nanofiltration of salt mixtures. In this work we employed a rigorous phenomenological approach combined with chemical equilibrium to describe the trans-membrane transport of hydronium and hydroxide ions along with salt transport and calculate the resulting permeate pH. Starting from the Nernst-Planck equation, a full non-linear transport equation was derived, for which an approximate solution was proposed based on the analytical solution previously developed for trace ions in a dominant salt. Using the developed approximate equation, transport coefficients were deduced from experimental results obtained using a spiral wound reverse osmosis module operated under varying permeate flux (2-11 μm/s), NaCl feed concentrations (0.04-0.18 M) and feed pH values (5.5-9.0). The approximate equation agreed well with the experimental results, corroborating the finding that diffusion and electromigration, rather than a priori neglected convection, were the major contributors to the transport of hydronium and hydroxide. The approach presented here has the potential to improve the predictive capacity of reverse osmosis transport models for acid-base species, thereby improving process design/control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Future possibilities in migraine genetics

    DEFF Research Database (Denmark)

    Rudkjøbing, Laura Aviaja; Esserlind, Ann-Louise; Olesen, Jes

    2012-01-01

    Migraine with and without aura (MA and MO, respectively) have a strong genetic basis. Different approaches using linkage-, candidate gene- and genome-wide association studies have been explored, yielding limited results. This may indicate that the genetic component in migraine is due to rare...... variants; capturing these will require more detailed sequencing in order to be discovered. Next-generation sequencing (NGS) techniques such as whole exome and whole genome sequencing have been successful in finding genes in especially monogenic disorders. As the molecular genetics research progresses......, the technology will follow, rendering these approaches more applicable in the search for causative migraine genes in MO and MA. To date, no studies using NGS in migraine genetics have been published. In order to gain insight into the future possibilities of migraine genetics, we have looked at NGS studies...

  19. Evaluating barriers for reverse logistics implementation under a multiple stakeholders' perspective analysis using grey decision making approach

    DEFF Research Database (Denmark)

    Bouzon, Marina; Govindan, Kannan; Rodriguez, Carlos Manuel Taboada

    2018-01-01

    In the past few decades, an interest in reverse logistics has attracted the attention of industries and also has become a subject of interest for researchers. However, while reverse logistics is becoming a mandatory element of the supply chain in developed countries particularly due to legislation...... issues, the subject is still in a state of infancy in emerging economies such as Brazil. In these connections, impediments to reverse logistics implementation must be considered and analyzed, as well as the many different perspectives from the key stakeholders for their development. The objective...... of this research is to evaluate the interrelationship among reverse logistics barriers from the perspectives of the most important stakeholders in the Brazilian context. For this purpose, a Multi-Criteria Decision Making tool named grey-based Decision Making Trial and Evaluation Laboratory (grey-DEMATEL) was used...

  20. Process planning optimization on turning machine tool using a hybrid genetic algorithm with local search approach

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-04-01

    Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.

  1. The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand.

    Science.gov (United States)

    Zhao, Chen; Pyle, Anna Marie

    2017-12-01

    The splicing of group II introns in vivo requires the assistance of a multifunctional intron encoded protein (IEP, or maturase). Each IEP is also a reverse-transcriptase enzyme that enables group II introns to behave as mobile genetic elements. During splicing or retro-transposition, each group II intron forms a tight, specific complex with its own encoded IEP, resulting in a highly reactive holoenzyme. This review focuses on the structural basis for IEP function, as revealed by recent crystal structures of an IEP reverse transcriptase domain and cryo-EM structures of an IEP-intron complex. These structures explain how the same IEP scaffold is utilized for intron recognition, splicing and reverse transcription, while providing a physical basis for understanding the evolutionary transformation of the IEP into the eukaryotic splicing factor Prp8. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Compact-Toroid Fusion Reactor (CTOR) based on the Field-Reversed Theta Pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-01-01

    Scoping studies of a translating Compact Torus Reactor (CTOR) have been made on the basis of a dynamic plasma model and an overall systems approach. This CTOR embodiment uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plamoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radition shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  3. Pre-emptive resource-constrained multimode project scheduling using genetic algorithm: A dynamic forward approach

    Directory of Open Access Journals (Sweden)

    Aidin Delgoshaei

    2016-09-01

    Full Text Available Purpose: The issue resource over-allocating is a big concern for project engineers in the process of scheduling project activities. Resource over-allocating drawback is frequently seen after scheduling of a project in practice which causes a schedule to be useless. Modifying an over-allocated schedule is very complicated and needs a lot of efforts and time. In this paper, a new and fast tracking method is proposed to schedule large scale projects which can help project engineers to schedule the project rapidly and with more confidence. Design/methodology/approach: In this article, a forward approach for maximizing net present value (NPV in multi-mode resource constrained project scheduling problem while assuming discounted positive cash flows (MRCPSP-DCF is proposed. The progress payment method is used and all resources are considered as pre-emptible. The proposed approach maximizes NPV using unscheduled resources through resource calendar in forward mode. For this purpose, a Genetic Algorithm is applied to solve. Findings: The findings show that the proposed method is an effective way to maximize NPV in MRCPSP-DCF problems while activity splitting is allowed. The proposed algorithm is very fast and can schedule experimental cases with 1000 variables and 100 resources in few seconds. The results are then compared with branch and bound method and simulated annealing algorithm and it is found the proposed genetic algorithm can provide results with better quality. Then algorithm is then applied for scheduling a hospital in practice. Originality/value: The method can be used alone or as a macro in Microsoft Office Project® Software to schedule MRCPSP-DCF problems or to modify resource over-allocated activities after scheduling a project. This can help project engineers to schedule project activities rapidly with more accuracy in practice.

  4. An Impact of Reverse Logistics Activities on Marketing Communication

    Directory of Open Access Journals (Sweden)

    František Milichovský

    2017-01-01

    Full Text Available The topic of reverse logistics has become very actual due the requirements of highly competitive market. This importance is made by significance of condition for environment-friendly production and purchasing around the world. Individual activities, which are included in reverse logistics, support entrepreneurs in their competitiveness to other companies and to own customers. The objective of the paper is to find relationship between marketing communication tool and activities of reverse logistics on behaviour of final customers in Czech Republic. A theoretical background from the area of reverse logistics supports this approach with data from primary research collected by the author. A data from primary research was used. The entire primary research focused on the evaluation of customers’ perception in the area of reverse logistics in the Czech Republic by a questionnaire survey. Sample population was created by 1266 consumers’ respondents, which were chosen in random way. There were returned questionnaires from 332 respondents. Questionnaire itself was distributed by only platform, during June 2016. The research itself was aimed at a random chosen group of people in the Czech Republic. Findings of the research shows connection of individual activities of reverse logistics and individual communication tools, which are well-accepted on customer side. The result of the research can be used for the companies that operate in the Czech or Central European market.

  5. Time reversal imaging, Inverse problems and Adjoint Tomography}

    Science.gov (United States)

    Montagner, J.; Larmat, C. S.; Capdeville, Y.; Kawakatsu, H.; Fink, M.

    2010-12-01

    With the increasing power of computers and numerical techniques (such as spectral element methods), it is possible to address a new class of seismological problems. The propagation of seismic waves in heterogeneous media is simulated more and more accurately and new applications developed, in particular time reversal methods and adjoint tomography in the three-dimensional Earth. Since the pioneering work of J. Claerbout, theorized by A. Tarantola, many similarities were found between time-reversal methods, cross-correlations techniques, inverse problems and adjoint tomography. By using normal mode theory, we generalize the scalar approach of Draeger and Fink (1999) and Lobkis and Weaver (2001) to the 3D- elastic Earth, for theoretically understanding time-reversal method on global scale. It is shown how to relate time-reversal methods on one hand, with auto-correlations of seismograms for source imaging and on the other hand, with cross-correlations between receivers for structural imaging and retrieving Green function. Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and to seismic waves in seismology for earthquake imaging. In the case of source imaging, time reversal techniques make it possible an automatic location in time and space as well as the retrieval of focal mechanism of earthquakes or unknown environmental sources . We present here some applications at the global scale of these techniques on synthetic tests and on real data, such as Sumatra-Andaman (Dec. 2004), Haiti (Jan. 2010), as well as glacial earthquakes and seismic hum.

  6. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion : A quantitative proteomics approach

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen|info:eu-repo/dai/nl/313939780; Cordeiro, Carlos; Heck, Albert J R|info:eu-repo/dai/nl/105189332; Santos, Romana

    2016-01-01

    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After

  7. Reverse Evolution of Armor Plates in the Threespine Stickleback

    Science.gov (United States)

    Kitano, J.; Bolnick, D.I.; Beauchamp, D.A.; Mazur, M.M.; Mori, S.; Nakano, T.; Peichel, C.L.

    2008-01-01

    Faced with sudden environmental changes, animals must either adapt to novel environments or go extinct. Thus, study of the mechanisms underlying rapid adaptation is crucial not??only for the understanding of natural evolutionary processes but also for the understanding of human-induced evolutionary change, which is an increasingly important problem [1-8]. In the present study, we demonstrate that the frequency of completely plated threespine stickleback fish (Gasterosteus aculeatus) has increased in an urban freshwater lake (Lake Washington, Seattle, Washington) within the last 40 years. This is a dramatic example of "reverse evolution," [9] because the general evolutionary trajectory is toward armor-plate reduction in freshwater sticklebacks [10]. On the basis of our genetic studies and simulations, we propose that the most likely cause of reverse evolution is increased selection for the completely plated morph, which we suggest could result from higher levels of trout predation after a sudden increase in water transparency during the early 1970s. Rapid evolution was facilitated by the existence of standing allelic variation in Ectodysplasin (Eda), the gene that underlies the major plate-morph locus [11]. The Lake Washington stickleback thus provides a novel example of reverse evolution, which is probably caused by a change in allele frequency at the major plate locus in response to a changing predation regime. ?? 2008 Elsevier Ltd. All rights reserved.

  8. A bio-cultural approach to the study of food choice: The contribution of taste genetics, population and culture.

    Science.gov (United States)

    Risso, Davide S; Giuliani, Cristina; Antinucci, Marco; Morini, Gabriella; Garagnani, Paolo; Tofanelli, Sergio; Luiselli, Donata

    2017-07-01

    The study of food choice, one of the most complex human traits, requires an integrated approach that takes into account environmental, socio-cultural and biological diversity. We recruited 183 volunteers from four geo-linguistic groups and highly diversified in terms of both genetic background and food habits from whom we collected genotypes and phenotypes tightly linked to taste perception. We confirmed previous genetic associations, in particular with stevioside perception, and noted significant differences in food consumption: in particular, broccoli, mustard and beer consumption scores were significantly higher (Adjusted P = 0.02, Adjusted P diversity and cultural aspects in taste perception and food consumption. Published by Elsevier Ltd.

  9. A genetic basis for functional hypothalamic amenorrhea.

    OpenAIRE

    Caronia, L.M.; Martin, C.; Welt, C.K.; Sykiotis, G.P.; Quinton, R.; Thambundit, A.; Avbelj, M.; Dhruvakumar, S.; Plummer, L.; Hughes, V.A.; Seminara, S.B.; Boepple, P.A.; Sidis, Y.; Crowley, W.F.; Martin, K.A.

    2011-01-01

    Background: Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogon...

  10. A genetic algorithm approach to optimization for the radiological worker allocation problem

    International Nuclear Information System (INIS)

    Yan Chen; Masakuni Narita; Masashi Tsuji; Sangduk Sa

    1996-01-01

    The worker allocation optimization problem in radiological facilities inevitably involves various types of requirements and constraints relevant to radiological protection and labor management. Some of these goals and constraints are not amenable to a rigorous mathematical formulation. Conventional methods for this problem rely heavily on sophisticated algebraic or numerical algorithms, which cause difficulties in the search for optimal solutions in the search space of worker allocation optimization problems. Genetic algorithms (GAB) are stochastic search algorithms introduced by J. Holland in the 1970s based on ideas and techniques from genetic and evolutionary theories. The most striking characteristic of GAs is the large flexibility allowed in the formulation of the optimal problem and the process of the search for the optimal solution. In the formulation, it is not necessary to define the optimal problem in rigorous mathematical terms, as required in the conventional methods. Furthermore, by designing a model of evolution for the optimal search problem, the optimal solution can be sought efficiently with computational simple manipulations without highly complex mathematical algorithms. We reported a GA approach to the worker allocation problem in radiological facilities in the previous study. In this study, two types of hard constraints were employed to reduce the huge search space, where the optimal solution is sought in such a way as to satisfy as many of soft constraints as possible. It was demonstrated that the proposed evolutionary method could provide the optimal solution efficiently compared with conventional methods. However, although the employed hard constraints could localize the search space into a very small region, it brought some complexities in the designed genetic operators and demanded additional computational burdens. In this paper, we propose a simplified evolutionary model with less restrictive hard constraints and make comparisons between

  11. Genetics of allergy and bronchial hyperresponsiveness

    NARCIS (Netherlands)

    Howard, TD; Wiesch, DG; Koppelman, GH; Postma, DS; Meyers, DA; Bleecker, ER

    Allergy and asthma are closely related complex diseases caused by a combination of both genetic and environmental influences. Two common genetic approaches, candidate gene studies and genome-wide screens, have been used to localize and evaluate potential genetic factors that confer susceptibility or

  12. Incorporating Functional Genomic Information in Genetic Association Studies Using an Empirical Bayes Approach.

    Science.gov (United States)

    Spencer, Amy V; Cox, Angela; Lin, Wei-Yu; Easton, Douglas F; Michailidou, Kyriaki; Walters, Kevin

    2016-04-01

    There is a large amount of functional genetic data available, which can be used to inform fine-mapping association studies (in diseases with well-characterised disease pathways). Single nucleotide polymorphism (SNP) prioritization via Bayes factors is attractive because prior information can inform the effect size or the prior probability of causal association. This approach requires the specification of the effect size. If the information needed to estimate a priori the probability density for the effect sizes for causal SNPs in a genomic region isn't consistent or isn't available, then specifying a prior variance for the effect sizes is challenging. We propose both an empirical method to estimate this prior variance, and a coherent approach to using SNP-level functional data, to inform the prior probability of causal association. Through simulation we show that when ranking SNPs by our empirical Bayes factor in a fine-mapping study, the causal SNP rank is generally as high or higher than the rank using Bayes factors with other plausible values of the prior variance. Importantly, we also show that assigning SNP-specific prior probabilities of association based on expert prior functional knowledge of the disease mechanism can lead to improved causal SNPs ranks compared to ranking with identical prior probabilities of association. We demonstrate the use of our methods by applying the methods to the fine mapping of the CASP8 region of chromosome 2 using genotype data from the Collaborative Oncological Gene-Environment Study (COGS) Consortium. The data we analysed included approximately 46,000 breast cancer case and 43,000 healthy control samples. © 2016 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.

  13. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  14. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network

    Directory of Open Access Journals (Sweden)

    Han Kyungsook

    2010-06-01

    Full Text Available Abstract Background Genetic interaction profiles are highly informative and helpful for understanding the functional linkages between genes, and therefore have been extensively exploited for annotating gene functions and dissecting specific pathway structures. However, our understanding is rather limited to the relationship between double concurrent perturbation and various higher level phenotypic changes, e.g. those in cells, tissues or organs. Modifier screens, such as synthetic genetic arrays (SGA can help us to understand the phenotype caused by combined gene mutations. Unfortunately, exhaustive tests on all possible combined mutations in any genome are vulnerable to combinatorial explosion and are infeasible either technically or financially. Therefore, an accurate computational approach to predict genetic interaction is highly desirable, and such methods have the potential of alleviating the bottleneck on experiment design. Results In this work, we introduce a computational systems biology approach for the accurate prediction of pairwise synthetic genetic interactions (SGI. First, a high-coverage and high-precision functional gene network (FGN is constructed by integrating protein-protein interaction (PPI, protein complex and gene expression data; then, a graph-based semi-supervised learning (SSL classifier is utilized to identify SGI, where the topological properties of protein pairs in weighted FGN is used as input features of the classifier. We compare the proposed SSL method with the state-of-the-art supervised classifier, the support vector machines (SVM, on a benchmark dataset in S. cerevisiae to validate our method's ability to distinguish synthetic genetic interactions from non-interaction gene pairs. Experimental results show that the proposed method can accurately predict genetic interactions in S. cerevisiae (with a sensitivity of 92% and specificity of 91%. Noticeably, the SSL method is more efficient than SVM, especially for

  15. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals

    Directory of Open Access Journals (Sweden)

    RENATA V. VELHO

    2015-08-01

    Full Text Available With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.

  16. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals.

    Science.gov (United States)

    Velho, Renata V; Sperb-Ludwig, Fernanda; Schwartz, Ida V D

    2015-08-01

    With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.

  17. An investigation of the genetic toxicology of irradiated foodstuffs using short-term systems

    International Nuclear Information System (INIS)

    Phillips, B.J.; Kranz, E.; Elias, P.S.; Muenzner, R.

    1980-01-01

    The genetic toxicology of irradiated foodstuffs has been investigated by the use of a battery of short-term tests for genetic damage. Appropriate methods are discussed for the preparation of food samples for testing by techniques involving micro-organisms and mammalian cells in culture. A new method of sample preparation by enzymatic digestion in vitro is described and its use in the testing of three irradiated foodstuffs by the Salmonella typhimurium reverse mutation test is reported. The results of the mutation tests provide further evidence of the lack of genetic toxicity of irradiated foods. (author)

  18. Identification of novel genetic loci for osteoporosis and/or rheumatoid arthritis using cFDR approach.

    Directory of Open Access Journals (Sweden)

    Rou Zhou

    Full Text Available There are co-morbidity between osteoporosis (OP and rheumatoid arthritis (RA. Some genetic risk factors have been identified for these two phenotypes respectively in previous research; however, they accounted for only a small portion of the underlying total genetic variances. Here, we sought to identify additional common genetic loci associated with OP and/or RA. The conditional false discovery rate (cFDR approach allows detection of additional genetic factors (those respective ones as well as common pleiotropic ones for the two associated phenotypes. We collected and analyzed summary statistics provided by large, multi-center GWAS studies of FNK (femoral neck BMD (a major risk factor for osteoporosis (n = 53,236 and RA (n = 80,799. The conditional quantile-quantile (Q-Q plots can assess the enrichment of SNPs related to FNK BMD and RA, respectively. Furthermore, we identified shared loci between FNK BMD and RA using conjunction cFDR (ccFDR. We found strong enrichment of p-values in FNK BMD when conditional Q-Q was done on RA and vice versa. We identified 30 novel OP-RA associated pleiotropic loci that have not been reported in previous OP or RA GWAS, 18 of which located in the MHC (major histocompatibility complex region previously reported to play an important role in immune system and bone health. We identified some specific novel polygenic factors for OP and RA respectively, and identified 30 novel OP-RA associated pleiotropic loci. These discovery findings may offer novel pathobiological insights, and suggest new targets and pathways for drug development in OP and RA patients.

  19. A Genetic Algorithm-based Antenna Selection Approach for Large-but-Finite MIMO Networks

    KAUST Repository

    Makki, Behrooz

    2016-12-29

    We study the performance of antenna selectionbased multiple-input-multiple-output (MIMO) networks with large but finite number of transmit antennas and receivers. Considering the continuous and bursty communication scenarios with different users’ data request probabilities, we develop an efficient antenna selection scheme using genetic algorithms (GA). As demonstrated, the proposed algorithm is generic in the sense that it can be used in the cases with different objective functions, precoding methods, levels of available channel state information and channel models. Our results show that the proposed GAbased algorithm reaches (almost) the same throughput as the exhaustive search-based optimal approach, with substantially less implementation complexity.

  20. A Genetic Algorithm-based Antenna Selection Approach for Large-but-Finite MIMO Networks

    KAUST Repository

    Makki, Behrooz; Ide, Anatole; Svensson, Tommy; Eriksson, Thomas; Alouini, Mohamed-Slim

    2016-01-01

    We study the performance of antenna selectionbased multiple-input-multiple-output (MIMO) networks with large but finite number of transmit antennas and receivers. Considering the continuous and bursty communication scenarios with different users’ data request probabilities, we develop an efficient antenna selection scheme using genetic algorithms (GA). As demonstrated, the proposed algorithm is generic in the sense that it can be used in the cases with different objective functions, precoding methods, levels of available channel state information and channel models. Our results show that the proposed GAbased algorithm reaches (almost) the same throughput as the exhaustive search-based optimal approach, with substantially less implementation complexity.

  1. Genetic programming based models in plant tissue culture: An addendum to traditional statistical approach.

    Science.gov (United States)

    Mridula, Meenu R; Nair, Ashalatha S; Kumar, K Satheesh

    2018-02-01

    In this paper, we compared the efficacy of observation based modeling approach using a genetic algorithm with the regular statistical analysis as an alternative methodology in plant research. Preliminary experimental data on in vitro rooting was taken for this study with an aim to understand the effect of charcoal and naphthalene acetic acid (NAA) on successful rooting and also to optimize the two variables for maximum result. Observation-based modelling, as well as traditional approach, could identify NAA as a critical factor in rooting of the plantlets under the experimental conditions employed. Symbolic regression analysis using the software deployed here optimised the treatments studied and was successful in identifying the complex non-linear interaction among the variables, with minimalistic preliminary data. The presence of charcoal in the culture medium has a significant impact on root generation by reducing basal callus mass formation. Such an approach is advantageous for establishing in vitro culture protocols as these models will have significant potential for saving time and expenditure in plant tissue culture laboratories, and it further reduces the need for specialised background.

  2. Verification of consumers' experiences and perceptions of genetic discrimination and its impact on utilization of genetic testing.

    Science.gov (United States)

    Barlow-Stewart, Kristine; Taylor, Sandra D; Treloar, Susan A; Stranger, Mark; Otlowski, Margaret

    2009-03-01

    To undertake a systematic process of verification of consumer accounts of alleged genetic discrimination. Verification of incidents reported in life insurance and other contexts that met the criteria of genetic discrimination, and the impact of fear of such treatment, was determined, with consent, through interview, document analysis and where appropriate, direct contact with the third party involved. The process comprised obtaining evidence that the alleged incident was accurately reported and determining whether the decision or action seemed to be justifiable and/or ethical. Reported incidents of genetic discrimination were verified in life insurance access, underwriting and coercion (9), applications for worker's compensation (1) and early release from prison (1) and in two cases of fear of discrimination impacting on access to genetic testing. Relevant conditions were inherited cancer susceptibility (8), Huntington disease (3), hereditary hemochromatosis (1), and polycystic kidney disease (1). In two cases, the reversal of an adverse underwriting decision to standard rate after intervention with insurers by genetics health professionals was verified. The mismatch between consumer and third party accounts in three life insurance incidents involved miscommunication or lack of information provision by financial advisers. These first cases of verified genetic discrimination make it essential for policies and guidelines to be developed and implemented to ensure appropriate use of genetic test results in insurance underwriting, to promote education and training in the financial industry, and to provide support for consumers and health professionals undertaking challenges of adverse decisions.

  3. The 'morbid anatomy' of the human genome: tracing the observational and representational approaches of postwar genetics and biomedicine the William Bynum Prize Essay.

    Science.gov (United States)

    Hogan, Andrew J

    2014-07-01

    This paper explores evolving conceptions and depictions of the human genome among human and medical geneticists during the postwar period. Historians of science and medicine have shown significant interest in the use of informational approaches in postwar genetics, which treat the genome as an expansive digital data set composed of three billion DNA nucleotides. Since the 1950s, however, geneticists have largely interacted with the human genome at the microscopically visible level of chromosomes. Mindful of this, I examine the observational and representational approaches of postwar human and medical genetics. During the 1970s and 1980s, the genome increasingly came to be understood as, at once, a discrete part of the human anatomy and a standardised scientific object. This paper explores the role of influential medical geneticists in recasting the human genome as being a visible, tangible, and legible entity, which was highly relevant to traditional medical thinking and practice. I demonstrate how the human genome was established as an object amenable to laboratory and clinical research, and argue that the observational and representational approaches of postwar medical genetics reflect, more broadly, the interdisciplinary efforts underlying the development of contemporary biomedicine.

  4. Mechanisms of Bunyavirus Virulence: A Genetic Approach.

    Science.gov (United States)

    1984-12-01

    of canine parvovirus Type-2, feline panleukopenia virus and mink enteritis virus. Virology 129,401-414. Partner A., Webster, R. G., and Bean W. J...CM, and Webster RG. Procedures for the characterization of the genetic material of candidate vaccine strains. Develop Biol Standard 39:15-24, 1977

  5. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  6. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening

    International Nuclear Information System (INIS)

    Kraus, B.; Tittel, W.; Gisin, N.; Nilsson, M.; Kroell, S.; Cirac, J. I.

    2006-01-01

    We propose a method for efficient storage and recall of arbitrary nonstationary light fields, such as, for instance, single photon time-bin qubits or intense fields, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening and relies on a hidden time-reversal symmetry of the optical Bloch equations describing the propagation of the light field. We briefly discuss experimental realizations of our proposal

  7. A multi-objective fuzzy mathematical approach for sustainable reverse supply chain configuration

    Directory of Open Access Journals (Sweden)

    Jyoti D. Darbari

    2017-03-01

    Full Text Available Background: Designing and implementation of reverse logistics (RL network which meets the sustainability targets have been a matter of emerging concern for the electronics companies in India. Objectives: The present study developed a two-phase model for configuration of sustainable RL network design for an Indian manufacturing company to manage its end-of-life and endof-use electronic products. The notable feature of the model was the evaluation of facilities under financial, environmental and social considerations and integration of the facility selection decisions with the network design. Method: In the first phase, an integrated Analytical Hierarchical Process Complex Proportional Assessment methodology was used for the evaluation of the alternative locations in terms of their degree of utility, which in turn was based on the three dimensions of sustainability. In the second phase, the RL network was configured as a bi-objective programming problem, and fuzzy optimisation approach was utilised for obtaining a properly efficient solution to the problem. Results: The compromised solution attained by the proposed fuzzy model demonstrated that the cost differential for choosing recovery facilities with better environmental and social performance was not significant; therefore, Indian manufacturers must not compromise on the sustainability aspects for facility location decisions. Conclusion: The results reaffirmed that the bi-objective fuzzy decision-making model can serve as a decision tool for the Indian manufacturers in designing a sustainable RL network. The multi-objective optimisation model captured a reasonable trade-off between the fuzzy goals of minimising the cost of the RL network and maximising the sustainable performance of the facilities chosen.

  8. Evaluation of Average Life Expectancy of Exposed Individuals and their offspring: Population Genetic Approach

    International Nuclear Information System (INIS)

    Telnov, V. I.; Sotnik, N. V.

    2004-01-01

    Average life expectancy (ALE) is a significant integrating indicator of the population health. It can be affected by many factors such as radiation and hereditary ones. A population-genetic analysis of the average life expectancy (ALE) was performed for nuclear workers at the Mayak Production. Association exposed to external and internal radiation over a wide dose range and their offspring. A methodical approach was proposed to determine ALE for individuals with different genotypes and estimate ALE in the population based on genotype distribution. The analysis of a number of genetic markers revealed significant changes in the age-specific pattern of the Hp types in workers over 60 years. Such changes were caused by both radiation and non-radiation (cardiovascular pathology) factors. In the first case ALE decreased as Hp 1-1 > Hp 2-2> Hp2-1 (radiation). In the second case, it decreased as Hp 1-1> Hp-2-1> Hp2-2 (non-radiation). analysis of genetic markers in the workers offspring indicated significant shifts in distribution of the Hp types, especially an increase in the proportion of Hp 2-2 at doses from external γ-rays over 200 cGy to parents by the time of conception. Based on the non-radiation genotype differences in ALE in this group of offspring, the preliminary calculation of ALE was carried out, which indicated its reduction by 0.52 years in comparison with the control. (Author) 21 refs

  9. Application of positron annihilation technique to reverse osmosis membrane materials

    International Nuclear Information System (INIS)

    Shimazu, A.; Ikeda, K.; Miyazaki, T.; Ito, Y.

    2000-01-01

    Positron annihilation lifetime spectroscopy has been adopted as a new approach for studying vacancies of reverse osmosis membrane materials composed of cellulose acetate films and aromatic polyamide resins. The intensity of the ortho-positronium (o-Ps) lifetime increased with the amount of vacancies determined using N 2 isotherm at -195 deg. C. Changes of vacancy profiles induced by heat treatment in the cellulose acetate films were detected using o-Ps. It was found that the positron annihilation technique is applicable to the study of vacancy profiles associated with salt selectivity in typical reverse osmosis membranes.

  10. Genetic Analysis of Elevated Mastitis Risk Based on Mastitis Indicator Data

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Løvendahl, Peter

    Whole-genome sequences and multiple trait phenotypes from large numbers of individuals will soon be available. Well established statistical modeling approaches enable the genetic analyses of complex trait phenotypes while accounting for a variety of additive and non-additive genetic mechanisms....... These modeling approaches have proven to be highly useful to determine population genetic parameters as well as prediction of genetic risk or value. We present statistical modelling approaches that use prior biological information for evaluating the collective action of sets of genetic variants. We have applied...

  11. The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Toward a Therapeutic Approach

    OpenAIRE

    Korf, Bruce; Ahmadian, Reza; Allanson, Judith; Aoki, Yoko; Bakker, Annette; Wright, Emma Burkitt; Denger, Brian; Elgersma, Ype; Gelb, Bruce D.; Gripp, Karen W.; Kerr, Bronwyn; Kontaridis, Maria; Lazaro, Conxi; Linardic, Corinne; Lozano, Reymundo

    2015-01-01

    "The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regard...

  12. Sympathetic block by metal clips may be a reversible operation

    DEFF Research Database (Denmark)

    Thomsen, Lars L; Mikkelsen, Rasmus T; Derejko, Miroslawa

    2014-01-01

    , but the question of reversibility remains controversial. Two recent experimental studies found severe histological signs of nerve damage 4-6 weeks after clip removal, but they only used conventional histopathological staining methods. METHODS: Thoracoscopic clipping of the sympathetic trunk was performed in adult...... the sympathetic chain vary tremendously. Most surgeons transect or resect the sympathetic chain, but application of a metal clip that blocks transmission of nerve impulses in the sympathetic chain is used increasingly worldwide. This approach offers potential reversibility if patients regret surgery...... suggests in theory that application of metal clips to the sympathetic chain is a reversible procedure if only the observation period is prolonged. Further studies with longer periods between application and removal as well as investigations of nerve conduction should be encouraged, because we do not know...

  13. Monitoring aged reversed-phase high performance liquid chromatography columns

    NARCIS (Netherlands)

    Bolck, A; Smilde, AK; Bruins, CHP

    1999-01-01

    In this paper, a new approach for the quality assessment of routinely used reversed-phase high performance liquid chromatography columns is presented. A used column is not directly considered deteriorated when changes in retention occur. If attention is paid to the type and magnitude of the changes,

  14. Approach to estimation of level of information security at enterprise based on genetic algorithm

    Science.gov (United States)

    V, Stepanov L.; V, Parinov A.; P, Korotkikh L.; S, Koltsov A.

    2018-05-01

    In the article, the way of formalization of different types of threats of information security and vulnerabilities of an information system of the enterprise and establishment is considered. In a type of complexity of ensuring information security of application of any new organized system, the concept and decisions in the sphere of information security are expedient. One of such approaches is the method of a genetic algorithm. For the enterprises of any fields of activity, the question of complex estimation of the level of security of information systems taking into account the quantitative and qualitative factors characterizing components of information security is relevant.

  15. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  16. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  17. Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity

    Science.gov (United States)

    Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.

    2018-03-01

    The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.

  18. Genetic engineering represents a safe approach for innovations improving nutritional contents of major food crops

    Directory of Open Access Journals (Sweden)

    Werner Arber

    2017-05-01

    Full Text Available About 70 years ago early microbial genetic research revealed that inherited phenotypic traits become determined by DNA filaments composed of 4 different nucleotides that are linearly arranged. In the meantime we know that genes, the determinants of specific life functions, are genomic segments of an average size of about 1000 nucleotides, i.e. a very small part of a genome. Fundamental insights into the structures and functions of selected genes can be reached by sorting out the relevant short DNA segment, splicing this fragment into a natural gene vector such as a viral genome or a fertility plasmid. This allows the researchers to transfer the genetic hybrid into an appropriate host cell in order to produce many copies that can then serve for functional and structural analysis. This research approach became efficient in the 1970s. On the request of involved researchers, safety guidelines became proposed 1975 at the Asilomar Conference on Recombinant DNA (Berg, Baltimore, Brenner, Roblin, & Singer, 1975, then generally introduced and still largely followed nowadays. Carefully carried out genetic engineering by horizontally transferring a selected and functionally well known DNA segment into the genome of another organism has in many published biosafety investigations never shown any unexpected harmful effect. We will present below selected examples of research contributions enabling innovations for the benefit of human life conditions.

  19. Reversible sol-gel-sol medium for enzymatic optical biosensors

    NARCIS (Netherlands)

    Safaryan, S.; Yakovlev, A.; Pidko, E.A.; Vinogradov, A.; Vinogradov, V.

    2017-01-01

    In this paper we for the first time report a reversible sol-gel-sol approach to obtain optical enzymatic biosensors with improved enzyme stability and good sensitivity by using desktop inkjet printing. The developed technique is based on the bio-inorganic inks allowing for a sol-gel-sol transition

  20. Clinical neurogenetics: recent advances in the genetics of epilepsy.

    Science.gov (United States)

    Coorg, Rohini; Weisenberg, Judith L Z; Wong, Michael

    2013-11-01

    Epilepsy represents a diverse group of disorders with primary and secondary genetic etiologies, as well as non-genetic causes. As more causative genes are identified, genetic testing is becoming increasingly important in the evaluation and management of epilepsy. This article outlines the clinical approach to epilepsy patients, with emphasis on genetic testing. Specific targeted tests are available for numerous individual genetic causes of epilepsy. Broader screening tests, such as chromosome microarray analysis and whole exome sequencing, have also been developed. As a standardized protocol for genetic testing has not been established, individualized diagnostic approaches to epilepsy patients should be used. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Forward and reverse mapping for milling process using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Rashmi L. Malghan

    2018-02-01

    Full Text Available The data set presented is related to the milling process of AA6061-4.5%Cu-5%SiCp composite. The data primarily concentrates on predicting values of some machining responses, such as cutting force, surface finish and power utilization utilizing using forward back propagation neural network based approach, i.e. ANN based on three process parameters, such as spindle speed, feed rate and depth of cut.The comparing reverse model is likewise created to prescribe the ideal settings of processing parameters for accomplishing the desired responses as indicated by the necessities of the end clients. These modelling approaches are very proficient to foresee the benefits of machining responses and also process parameter settings in light of the experimental technique. Keywords: ANN, Forward mapping, Reverse mapping, Milling process

  2. Genetic counseling and the ethical issues around direct to consumer genetic testing.

    Science.gov (United States)

    Hawkins, Alice K; Ho, Anita

    2012-06-01

    Over the last several years, direct to consumer(DTC) genetic testing has received increasing attention in the public, healthcare and academic realms. DTC genetic testing companies face considerable criticism and scepticism,particularly from the medical and genetic counseling community. This raises the question of what specific aspects of DTC genetic testing provoke concerns, and conversely,promises, for genetic counselors. This paper addresses this question by exploring DTC genetic testing through an ethic allens. By considering the fundamental ethical approaches influencing genetic counseling (the ethic of care and principle-based ethics) we highlight the specific ethical concerns raised by DTC genetic testing companies. Ultimately,when considering the ethics of DTC testing in a genetic counseling context, we should think of it as a balancing act. We need careful and detailed consideration of the risks and troubling aspects of such testing, as well as the potentially beneficial direct and indirect impacts of the increased availability of DTC genetic testing. As a result it is essential that genetic counselors stay informed and involved in the ongoing debate about DTC genetic testing and DTC companies. Doing so will ensure that the ethical theories and principles fundamental to the profession of genetic counseling are promoted not just in traditional counseling sessions,but also on a broader level. Ultimately this will help ensure that the public enjoys the benefits of an increasingly genetic based healthcare system.

  3. Constraining the reversing and non-reversing modes of the geodynamo. New insights from magnetostratigraphy.

    Science.gov (United States)

    Gallet, Y.; Pavlov, V.; Shatsillo, A.; Hulot, G.

    2015-12-01

    Constraining the evolution in the geomagnetic reversal frequency over hundreds of million years is not a trivial matter. Beyond the fact that there are long periods without reversals, known as superchrons, and periods with many reversals, the way the reversal frequency changes through time during reversing periods is still debated. A smooth evolution or a succession of stationary segments have both been suggested to account for the geomagnetic polarity time scale since the Middle-Late Jurassic. Sudden changes from a reversing mode to a non-reversing mode of the geodynamo may also well have happened, the switch between the two modes having then possibly been controlled by the thermal conditions at the core-mantle boundary. There is, nevertheless, a growing set of magnetostratigraphic data, which could help decipher a proper interpretation of the reversal history, in particular in the early Paleozoic and even during the Precambrian. Although yielding a fragmentary record, these data reveal the occurrence of both additional superchrons and periods characterized by extremely high, not to say extraordinary, magnetic reversal frequencies. In this talk, we will present a synthesis of these data, mainly obtained from Siberia, and discuss their implication for the magnetic reversal behavior over the past billion years.

  4. Genetic Algorithm Based Economic Dispatch with Valve Point Effect

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Nam; Park, Kyung Won; Kim, Ji Hong; Kim, Jin O [Hanyang University (Korea, Republic of)

    1999-03-01

    This paper presents a new approach on genetic algorithm to economic dispatch problem for valve point discontinuities. Proposed approach in this paper on genetic algorithms improves the performance to solve economic dispatch problem for valve point discontinuities through improved death penalty method, generation-apart elitism, atavism and sexual selection with sexual distinction. Numerical results on a test system consisting of 13 thermal units show that the proposed approach is faster, more robust and powerful than conventional genetic algorithms. (author). 8 refs., 10 figs.

  5. Interface Promoted Reversible Mg Insertion in Nanostructured Tin-Antimony Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yingwen; Shao, Yuyan; Parent, Lucas R.; Sushko, Maria L.; Li, Guosheng; Sushko, Petr; Browning, Nigel D.; Wang, Chong M.; Liu, Jun

    2015-11-11

    This paper demonstrates intermetallic compounds SnSb are highly active materials for reversibly hosting Mg ions. Compared with monometallic Sn and Sb, SnSb alloy exhibited exceptionally high reversible capacity (420 mAh/g), excellent rate capability and good cyclic stability. Mg insertion into pristine SnSb involves an activation process to complete, which induces particle breakdown and results in phase segregation to Sn-rich and Sb-rich phases. Both experimental analysis and DFT simulation suggest that the Sn-rich phase is particularly active and provides most of the capacity whereas the Sb-rich phase is not as active, and the interface between these two phases play a key role in promoting the formation and stabilization of the cubic Sn phase that is more favorable for fast and reversible Mg insertion. We further show that activated SnSb alloy has good compatibility with simple Mg electrolytes. Overall, this work could provide new approaches for designing materials capable of reversible Mg ion insertion and new opportunities for understanding Mg electrochemistry.

  6. The ‘Morbid Anatomy’ of the Human Genome: Tracing the Observational and Representational Approaches of Postwar Genetics and Biomedicine The William Bynum Prize Essay

    Science.gov (United States)

    Hogan, Andrew J.

    2014-01-01

    This paper explores evolving conceptions and depictions of the human genome among human and medical geneticists during the postwar period. Historians of science and medicine have shown significant interest in the use of informational approaches in postwar genetics, which treat the genome as an expansive digital data set composed of three billion DNA nucleotides. Since the 1950s, however, geneticists have largely interacted with the human genome at the microscopically visible level of chromosomes. Mindful of this, I examine the observational and representational approaches of postwar human and medical genetics. During the 1970s and 1980s, the genome increasingly came to be understood as, at once, a discrete part of the human anatomy and a standardised scientific object. This paper explores the role of influential medical geneticists in recasting the human genome as being a visible, tangible, and legible entity, which was highly relevant to traditional medical thinking and practice. I demonstrate how the human genome was established as an object amenable to laboratory and clinical research, and argue that the observational and representational approaches of postwar medical genetics reflect, more broadly, the interdisciplinary efforts underlying the development of contemporary biomedicine. PMID:25045177

  7. Order Batching in Warehouses by Minimizing Total Tardiness: A Hybrid Approach of Weighted Association Rule Mining and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Amir Hossein Azadnia

    2013-01-01

    Full Text Available One of the cost-intensive issues in managing warehouses is the order picking problem which deals with the retrieval of items from their storage locations in order to meet customer requests. Many solution approaches have been proposed in order to minimize traveling distance in the process of order picking. However, in practice, customer orders have to be completed by certain due dates in order to avoid tardiness which is neglected in most of the related scientific papers. Consequently, we proposed a novel solution approach in order to minimize tardiness which consists of four phases. First of all, weighted association rule mining has been used to calculate associations between orders with respect to their due date. Next, a batching model based on binary integer programming has been formulated to maximize the associations between orders within each batch. Subsequently, the order picking phase will come up which used a Genetic Algorithm integrated with the Traveling Salesman Problem in order to identify the most suitable travel path. Finally, the Genetic Algorithm has been applied for sequencing the constructed batches in order to minimize tardiness. Illustrative examples and comparisons are presented to demonstrate the proficiency and solution quality of the proposed approach.

  8. Leveraging ethnic group incidence variation to investigate genetic susceptibility to glioma: A novel candidate SNP approach

    Directory of Open Access Journals (Sweden)

    Daniel Ian Jacobs

    2012-10-01

    Full Text Available Objectives: Using a novel candidate SNP approach, we aimed to identify a possible genetic basis for the higher glioma incidence in Whites relative to East Asians and African-Americans. Methods: We hypothesized that genetic regions containing SNPs with extreme differences in allele frequencies across ethnicities are most likely to harbor susceptibility variants. We used International HapMap Project data to identify 3,961 candidate SNPs with the largest allele frequency differences in Whites compared to East Asians and Africans and tested these SNPs for association with glioma risk in a set of White cases and controls. Top SNPs identified in the discovery dataset were tested for association with glioma in five independent replication datasets. Results: No SNP achieved statistical significance in either the discovery or replication datasets after accounting for multiple testing. However, the most strongly associated SNP, rs879471, was found to be in linkage disequilibrium with a previously identified risk SNP, rs6010620, in RTEL1. We estimate rs6010620 to account for a glioma incidence rate ratio of 1.34 for Whites relative to East Asians. Conclusions: We explored genetic susceptibility to glioma using a novel candidate SNP method which may be applicable to other diseases with appropriate epidemiologic patterns.

  9. KEYNOTE ADDRESS: CONSERVATION GENETICS OF FRESHWATER ORGANISMS

    OpenAIRE

    WEISS S.

    2005-01-01

    This manuscript serves as a summary of both the importance of genetics in conservation, and the range of methodological approaches available. Two somewhat distinct realms of conservation genetics are outlined. The first theoretically rests upon the field of population genetics, and primarily concerns itself with the conservation of genetic diversity within and among populations, both in the wild and captivity. Basic concepts such as heterozygosity, genetic drift, and effective population size...

  10. Bilingual approach to online cancer genetics education for Deaf American Sign Language users produces greater knowledge and confidence than English text only: A randomized study.

    Science.gov (United States)

    Palmer, Christina G S; Boudreault, Patrick; Berman, Barbara A; Wolfson, Alicia; Duarte, Lionel; Venne, Vickie L; Sinsheimer, Janet S

    2017-01-01

    Deaf American Sign Language-users (ASL) have limited access to cancer genetics information they can readily understand, increasing risk for health disparities. We compared effectiveness of online cancer genetics information presented using a bilingual approach (ASL with English closed captioning) and a monolingual approach (English text). Bilingual modality would increase cancer genetics knowledge and confidence to create a family tree; education would interact with modality. We used a parallel 2:1 randomized pre-post study design stratified on education. 150 Deaf ASL-users ≥18 years old with computer and internet access participated online; 100 (70 high, 30 low education) and 50 (35 high, 15 low education) were randomized to the bilingual and monolingual modalities. Modalities provide virtually identical content on creating a family tree, using the family tree to identify inherited cancer risk factors, understanding how cancer predisposition can be inherited, and the role of genetic counseling and testing for prevention or treatment. 25 true/false items assessed knowledge; a Likert scale item assessed confidence. Data were collected within 2 weeks before and after viewing the information. Significant interaction of language modality, education, and change in knowledge scores was observed (p = .01). High education group increased knowledge regardless of modality (Bilingual: p information than a monolingual approach. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. A Reverse-Genetics Mutational Analysis of the Barley HvDWARF Gene Results in Identification of a Series of Alleles and Mutants with Short Stature of Various Degree and Disturbance in BR Biosynthesis Allowing a New Insight into the Process.

    Science.gov (United States)

    Gruszka, Damian; Gorniak, Malgorzata; Glodowska, Ewelina; Wierus, Ewa; Oklestkova, Jana; Janeczko, Anna; Maluszynski, Miroslaw; Szarejko, Iwona

    2016-04-22

    Brassinosteroids (BRs) are plant steroid hormones, regulating a broad range of physiological processes. The largest amount of data related with BR biosynthesis has been gathered in Arabidopsis thaliana, however understanding of this process is far less elucidated in monocot crops. Up to now, only four barley genes implicated in BR biosynthesis have been identified. Two of them, HvDWARF and HvBRD, encode BR-6-oxidases catalyzing biosynthesis of castasterone, but their relation is not yet understood. In the present study, the identification of the HvDWARF genomic sequence, its mutational and functional analysis and characterization of new mutants are reported. Various types of mutations located in different positions within functional domains were identified and characterized. Analysis of their impact on phenotype of the mutants was performed. The identified homozygous mutants show reduced height of various degree and disrupted skotomorphogenesis. Mutational analysis of the HvDWARF gene with the "reverse genetics" approach allowed for its detailed functional analysis at the level of protein functional domains. The HvDWARF gene function and mutants' phenotypes were also validated by measurement of endogenous BR concentration. These results allowed a new insight into the BR biosynthesis in barley.

  12. An automated approach for generating and checking control logic for reversible hardware description language-based designs

    DEFF Research Database (Denmark)

    Wille, Robert; Keszocze, Oliver; Othmer, Lars

    2017-01-01

    to significantly different design challenges to be addressed. In this work, we consider problems that occur when describing a reversible control flow using Hardware Description Languages (HDLs). Here, the commonly used conditional statements must, in addition to the established if-condition for forward computation......, be provided with an additional fi-condition for backward computation. Unfortunately, deriving correct and consistent fi-conditions is often not obvious. Moreover, HDL descriptions exist which may not be realized with a reversible control flow at all. In this work, we propose automatic solutions, which...

  13. Genetic networks and soft computing.

    Science.gov (United States)

    Mitra, Sushmita; Das, Ranajit; Hayashi, Yoichi

    2011-01-01

    The analysis of gene regulatory networks provides enormous information on various fundamental cellular processes involving growth, development, hormone secretion, and cellular communication. Their extraction from available gene expression profiles is a challenging problem. Such reverse engineering of genetic networks offers insight into cellular activity toward prediction of adverse effects of new drugs or possible identification of new drug targets. Tasks such as classification, clustering, and feature selection enable efficient mining of knowledge about gene interactions in the form of networks. It is known that biological data is prone to different kinds of noise and ambiguity. Soft computing tools, such as fuzzy sets, evolutionary strategies, and neurocomputing, have been found to be helpful in providing low-cost, acceptable solutions in the presence of various types of uncertainties. In this paper, we survey the role of these soft methodologies and their hybridizations, for the purpose of generating genetic networks.

  14. Preliminary results of 'liver-first' reverse management for advanced and aggressive synchronous colorectal liver metastases: a propensity-matched analysis.

    Science.gov (United States)

    Tanaka, Kuniya; Murakami, Takashi; Matsuo, Kenichi; Hiroshima, Yukihiko; Endo, Itaru; Ichikawa, Yasushi; Taguri, Masataka; Koda, Keiji

    2015-01-01

    Although a 'liver-first' approach recently has been advocated in treating synchronous colorectal metastases, little is known about how results compare with those of the classical approach among patients with similar grades of liver metastases. Propensity-score matching was used to select study subjects. Oncologic outcomes were compared between 10 consecutive patients with unresectable advanced and aggressive synchronous colorectal liver metastases treated with the reverse strategy and 30 comparable classically treated patients. Numbers of recurrence sites and recurrent tumors irrespective of recurrence sites were greater in the reverse group then the classic group (p = 0.003 and p = 0.015, respectively). Rates of freedom from recurrence in the remaining liver and of freedom from disease also were poorer in the reverse group than in the classical group (p = 0.009 and p = 0.043, respectively). Among patients treated with 2-stage hepatectomy, frequency of microvascular invasion surrounding macroscopic metastases at second resection was higher in the reverse group than in the classical group (p = 0.011). Reverse approaches may be feasible in treating synchronous liver metastases, but that strategy should be limited to patients with less liver tumor burden. © 2015 S. Karger AG, Basel.

  15. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  16. A Bayesian phylogenetic approach to estimating the stability of linguistic features and the genetic biasing of tone.

    Science.gov (United States)

    Dediu, Dan

    2011-02-07

    Language is a hallmark of our species and understanding linguistic diversity is an area of major interest. Genetic factors influencing the cultural transmission of language provide a powerful and elegant explanation for aspects of the present day linguistic diversity and a window into the emergence and evolution of language. In particular, it has recently been proposed that linguistic tone-the usage of voice pitch to convey lexical and grammatical meaning-is biased by two genes involved in brain growth and development, ASPM and Microcephalin. This hypothesis predicts that tone is a stable characteristic of language because of its 'genetic anchoring'. The present paper tests this prediction using a Bayesian phylogenetic framework applied to a large set of linguistic features and language families, using multiple software implementations, data codings, stability estimations, linguistic classifications and outgroup choices. The results of these different methods and datasets show a large agreement, suggesting that this approach produces reliable estimates of the stability of linguistic data. Moreover, linguistic tone is found to be stable across methods and datasets, providing suggestive support for the hypothesis of genetic influences on its distribution.

  17. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

    Science.gov (United States)

    Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice

    2009-09-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

  18. Plant responses to UV and blue light: biochemical and genetic approaches

    International Nuclear Information System (INIS)

    Jenkins, G.I.; Christie, J.M.; Fuglevand, G.; Long, J.C.; Jackson, J.A.

    1995-01-01

    UV and blue light control many aspects of plant growth and development. It is evident that several different photoreceptors mediate responses to UV and blue light, and there are reports of the functional and biochemical characterisation of a putative photoreceptor for phototropism and of the functional and molecular characterisation of the CRY1 photoreceptor, encoded by the Arabidopsis HY4 gene. The CRY1 photoreceptor mediates extension growth and gene expression responses to UV-A/blue light presumably through different or branching signal transduction pathways. Progress has been made in cell physiological and biochemical studies of UV/blue light signal transduction, but much remains to be done to relate candidate UV/blue signal transduction events to particular photoreceptors and responses. The application of a genetic approach in Arabidopsis has been responsible for many advances in understanding UV/blue responses, but further UV-B, UV-A and blue light response mutants need to be isolated. (author)

  19. Association analysis of multiple traits by an approach of combining ...

    Indian Academy of Sciences (India)

    Lili Chen

    diseases. Joint analysis of multiple traits can increase statistical power of association analysis and uncover the underlying genetic ... genthaler and Thilly 2007), the combined multivariate and ... Because of using reverse regression model, our.

  20. New approaches to evaluating the genetic effects of the atomic bombs

    International Nuclear Information System (INIS)

    Neel, J.V.

    1995-01-01

    In the aftermath of the atomic bombings of Hiroshima and Nagasaki fifty years ago, one of the compelling biomedical questions that arose concerned the genetic effects of this exposure. More recently, revelations of the extent of industrial or accidental exposures in the former Soviet Union and charges that employment in the Sellafield Nuclear Reprocessing Plant in West Cumbria, England has resulted in a gene-mediated increase in children of plant employees have served to keep in the public mind the issue of the genetic risks of exposure to ionizing radiation. The study of the genetic effects of the atomic bombs has moved from the gross morphological level of congenital malformations to the examination of DNA. However, were the need for such genetic studies to arise in the foreseeable future, despite this impressive progress in DNA-oriented systems, the documentation of congenital defect, genetic disease and child survival would still be an essential component of any future study. Whatever the geneticists may think, the phenotypic well-being and survival of children are still the primary indicators on which the public, who ultimately supports these studies, will base its judgement of risk. 28 refs

  1. Defining asthma in genetic studies

    NARCIS (Netherlands)

    Koppelman, GH; Postma, DS; Meijer, G.

    1999-01-01

    Genetic studies have been hampered by the lack of a gold standard to diagnose asthma. The complex nature of asthma makes it more difficult to identify asthma genes. Therefore, approaches to define phenotypes, which have been successful in other genetically complex diseases, may be applied to define

  2. Experimental study of time-reversal invariance in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Shaparov, E.I.; Shimizu, H.M.

    1996-01-01

    Experimental approaches for the test of time-reversal invariance in neutron-nucleus interactions are reviewed. Possible transmission experiments with polarized neutron beams and polarized or aligned targets are discussed as well as neutron capture experiments with unpolarized resonance neutrons. 102 refs., 13 figs., 3 tabs

  3. A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes

    Directory of Open Access Journals (Sweden)

    Tanurdzic Milos

    2004-04-01

    Full Text Available Abstract Background Ceratopteris richardii is a useful experimental system for studying gametophyte development and sexual reproduction in plants. However, few tools for cloning mutant genes or disrupting gene function exist for this species. The feasibility of systemic gene silencing as a reverse genetics tool was examined in this study. Results Several DNA constructs targeting a Ceratopteris protoporphyrin IX magnesium chelatase (CrChlI gene that is required for chlorophyll biosynthesis were each introduced into young gametophytes by biolistic delivery. Their transient expression in individual cells resulted in a colorless cell phenotype that affected most cells of the mature gametophyte, including the meristem and gametangia. The colorless phenotype was associated with a 7-fold decrease in the abundance of the endogenous transcript. While a construct designed to promote the transient expression of a CrChlI double stranded, potentially hairpin-forming RNA was found to be the most efficient in systemically silencing the endogenous gene, a plasmid containing the CrChlI cDNA insert alone was sufficient to induce silencing. Bombarded, colorless hermaphroditic gametophytes produced colorless embryos following self-fertilization, demonstrating that the silencing signal could be transmitted through gametogenesis and fertilization. Bombardment of young gametophytes with constructs targeting the Ceratopteris filamentous temperature sensitive (CrFtsZ and uroporphyrin dehydrogenase (CrUrod genes also produced the expected mutant phenotypes. Conclusion A method that induces the systemic silencing of target genes in the Ceratopteris gametophyte is described. It provides a simple, inexpensive and rapid means to test the functions of genes involved in gametophyte development, especially those involved in cellular processes common to all plants.

  4. A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain.

    Science.gov (United States)

    Umoh, Mfon E; Dammer, Eric B; Dai, Jingting; Duong, Duc M; Lah, James J; Levey, Allan I; Gearing, Marla; Glass, Jonathan D; Seyfried, Nicholas T

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with overlap in clinical presentation, neuropathology, and genetic underpinnings. The molecular basis for the overlap of these disorders is not well established. We performed a comparative unbiased mass spectrometry-based proteomic analysis of frontal cortical tissues from postmortem cases clinically defined as ALS, FTD, ALS and FTD (ALS/FTD), and controls. We also included a subset of patients with the C9orf72 expansion mutation, the most common genetic cause of both ALS and FTD Our systems-level analysis of the brain proteome integrated both differential expression and co-expression approaches to assess the relationship of these differences to clinical and pathological phenotypes. Weighted co-expression network analysis revealed 15 modules of co-expressed proteins, eight of which were significantly different across the ALS-FTD disease spectrum. These included modules associated with RNA binding proteins, synaptic transmission, and inflammation with cell-type specificity that showed correlation with TDP-43 pathology and cognitive dysfunction. Modules were also examined for their overlap with TDP-43 protein-protein interactions, revealing one module enriched with RNA-binding proteins and other causal ALS genes that increased in FTD/ALS and FTD cases. A module enriched with astrocyte and microglia proteins was significantly increased in ALS cases carrying the C9orf72 mutation compared to sporadic ALS cases, suggesting that the genetic expansion is associated with inflammation in the brain even without clinical evidence of dementia. Together, these findings highlight the utility of integrative systems-level proteomic approaches to resolve clinical phenotypes and genetic mechanisms underlying the ALS-FTD disease spectrum in human brain. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Deciphering the genetic regulatory code using an inverse error control coding framework.

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  6. Genetic shifting: a novel approach for controlling vector-borne diseases.

    Science.gov (United States)

    Powell, Jeffrey R; Tabachnick, Walter J

    2014-06-01

    Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve the introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used in plant and animal breeding. Because no artificially constructed genetically modified organisms (GMOs) are introduced into the environment, the method is minimally controversial. We use Aedes aegypti and dengue virus (DENV) for illustrative purposes but point out that the proposed program is generally applicable to vector-borne disease control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Airway remodeling and its reversibility in equine asthma

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Lavoie

    2017-06-01

    Full Text Available Despite effective therapies for controlling its clinical manifestations, human asthma remains an incurable disease. It is now recognized that inflammation induced structural changes (remodeling of the airways are responsible for the progressive loss of lung function in asthmatic patients. However, the peripheral airways, where most of the remodeling occurs in severe asthmatic patients, cannot be safely sampled in humans, and therefore, little is known of the effects of current therapies at reversing the established asthmatic remodeling, especially those occurring in the peripheral airways. Animal models have been studied to unravel etiological, immunopathological, and genetic attributes leading to asthma. However, experiments in which the disease is artificially induced have been shown to have limited translational potential for humans. To the contrary, horses naturally suffer from an asthma-like condition which shares marked similarities with human asthma making this model unique to investigate the kinetics, reversibility, as well as the physiological consequences of tissue remodeling (Bullone and Lavoie 2015. We reported an increased deposition of smooth muscle, collagen and elastic fibers in the peripheral airways of affected horses, which was correlated with the lung function (Herszberg et al., 2006; Setlakwe et al., 2014. The airway subepithelial collagen depositions were almost completely reversed with 6 to 12 months of treatment with either antigen avoidance or inhaled corticosteroids (ICS administration, and there was a modest (30% on average decrease in airway smooth muscle (Leclere et al., 2011. A recent study also found that ICS combined with long-acting ß2-agonists drugs (LABA and ICS monotherapy similarly induced a 30% decrease of the airway smooth muscle mass at 3 months (Buollone, 2017. However, only ICS/LABA and antigen avoidance decreased airway luminal neutrophilia. The findings indicate the enhance therapeutic effect of ICS

  8. Reverse logistics - a framework

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); R. Dekker (Rommert)

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of

  9. Tubal Ligation Reversal

    Science.gov (United States)

    ... seal off the fallopian tubes, such as the Essure or Adiana systems, generally aren't reversible. Why ... electrocautery). Some types of sterilization, such as the Essure or Adiana systems, aren't considered reversible. Risks ...

  10. Reversible and Selective Encapsulation of Dextromethorphan and β-Estradiol Using an Asymmetric Molecular Capsule Assembled via the Weak-Link Approach.

    Science.gov (United States)

    Mendez-Arroyo, Jose; d'Aquino, Andrea I; Chinen, Alyssa B; Manraj, Yashin D; Mirkin, Chad A

    2017-02-01

    An allosterically regulated, asymmetric receptor featuring a binding cavity large enough to accommodate three-dimensional pharmaceutical guest molecules as opposed to planar, rigid aromatics, was synthesized via the Weak-Link Approach. This architecture is capable of switching between an expanded, flexible "open" configuration and a collapsed, rigid "closed" one. The structure of the molecular receptor can be completely modulated in situ through the use of simple ionic effectors, which reversibly control the coordination state of the Pt(II) metal hinges to open and close the molecular receptor. The substantial change in binding cavity size and electrostatic charge between the two configurations is used to explore the capture and release of two guest molecules, dextromethorphan and β-estradiol, which are widely found as pollutants in groundwater.

  11. Reverse Cholesterol Transport: Molecular Mechanisms and the Non-medical Approach to Enhance HDL Cholesterol

    Directory of Open Access Journals (Sweden)

    Leandro R. Marques

    2018-05-01

    Full Text Available Dyslipidemia (high concentrations of LDL-c and low concentrations of HDL-c is a major cause of cardiovascular events, which are the leading cause of death in the world. On the other hand, nutrition and regular exercise can be an interesting strategy to modulate lipid profile, acting as prevention or treatment, inhibiting the risk of diseases due to its anti-inflammatory and anti-atherogenic characteristics. Additionally, the possibility of controlling different training variables, such as type, intensity and recovery interval, can be used to maximize the benefits of exercise in promoting cardiovascular health. However, the mechanisms by which exercise and nutrients act in the regulation of cholesterol and its fractions, such as reverse cholesterol transport, receptors and transcription factors involved, such as PPARs and their role related to exercise, deserve further discussion. Therefore, the objective of this review is to debate about non-medical approaches to increase HDL-c, such as nutritional and training strategies, and to discuss the central mechanisms involved in the modulation of lipid profile during exercise, as well as that can be controlled by physical trainers or sports specialists in attempt to maximize the benefits promoted by exercise. The search for papers was performed in the databases: Medline (Pubmed, Science Direct, Scopus, Sport Discus, Web of Science, Scielo and Lilacs until February 2016.

  12. "Genetic exceptionalism" in medicine: clarifying the differences between genetic and nongenetic tests.

    Science.gov (United States)

    Green, Michael J; Botkin, Jeffrey R

    2003-04-01

    Predictive genetic tests are now available for assessing susceptibility to a variety of conditions, including breast and colon cancer, hemochromatosis, and Alzheimer and Huntington disease. Much controversy surrounds the application of these tests, stemming from their similarities to and differences from other tests commonly used in asymptomatic persons. Some have argued that genetic tests are unique and therefore justify special consideration with regard to informed consent and privacy. This paper examines the arguments for such "genetic exceptionalism" and concludes that no clear, significant distinctions between genetic and nongenetic tests justify a different approach to testing by clinicians. Nevertheless, with many genetic tests, the results may cause stigmatization, family discord, and psychological distress. Regardless of whether a test is genetic, when this combination of characteristics is present and when health care providers are not specifically trained to interpret results, testing should be performed with particular caution and the highest standards of informed consent and privacy protection should be applied.

  13. Evaluating Reverse Supply Chain Efficiency: Manufacturer's Perspective

    DEFF Research Database (Denmark)

    Kumar, M.; Tiwari, M. K.; Wong, K. Y.

    2014-01-01

    The paper aims to illustrate the use of fuzzy data envelopment analysis (DEA) in analyzing reverse supply chain (RSC) performance from the manufacturer's perspective. By using an alternative alpha-cut approach, the fuzzy DEA model was converted into a crisp linear programming problem, thereby...... usually ensures an environmentally friendly supply chain network, companies which have implemented RSC techniques since a longer duration do not necessarily have a more efficient supply chain in general....

  14. Genetics of aggression.

    Science.gov (United States)

    Anholt, Robert R H; Mackay, Trudy F C

    2012-01-01

    Aggression mediates competition for food, mating partners, and habitats and, among social animals, establishes stable dominance hierarchies. In humans, abnormal aggression is a hallmark of neuropsychiatric disorders and can be elicited by environmental factors acting on an underlying genetic susceptibility. Identifying the genetic architecture that predisposes to aggressive behavior in people is challenging because of difficulties in quantifying the phenotype, genetic heterogeneity, and uncontrolled environmental conditions. Studies on mice have identified single-gene mutations that result in hyperaggression, contingent on genetic background. These studies can be complemented by systems genetics approaches in Drosophila melanogaster, in which mutational analyses together with genome-wide transcript analyses, artificial selection studies, and genome-wide analysis of epistasis have revealed that a large segment of the genome contributes to the manifestation of aggressive behavior with widespread epistatic interactions. Comparative genomic analyses based on the principle of evolutionary conservation are needed to enable a complete dissection of the neurogenetic underpinnings of this universal fitness trait.

  15. Genetic improvement of vegetables

    International Nuclear Information System (INIS)

    Jaramillo Vasquez, J.G.

    2001-01-01

    Some genetic bases of the improvement of vegetables are given. The objectives of the genetic improvement and the fundamental stages of this process are done. The sources of genetic variation are indicated and they are related the reproduction systems of the main horticultural species. It is analyzed the concept of genetic inheritance like base to determine the procedures more appropriate of improvement. The approaches are discussed, has more than enough phenotypic value, genetic action and genotypic variance; Equally the heredability concepts and value of improvement. The conventional methods of improvement are described, like they are: the introduction of species or varieties, the selection, the pure line, the pedigree method, the selection for families, the recurrent selection, the selection for unique seed, the haploids method, the selection for heterosis and the synthetic varieties

  16. 49 CFR 230.89 - Reverse gear.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse gear...

  17. Women-specific risk factors for heart failure: A genetic approach.

    Science.gov (United States)

    van der Kemp, Jet; van der Schouw, Yvonne T; Asselbergs, Folkert W; Onland-Moret, N Charlotte

    2018-03-01

    Heart failure is a complex disease, which is presented differently by men and women. Several studies have shown that reproductive factors, such as age at natural menopause, parity and polycystic ovarian syndrome (PCOS), may play a role in the development of heart failure. Shared genetics may provide clues to underlying mechanisms; however, this has never been examined. Therefore, the aim of the current study was to explore whether any reproductive factor is potentially related to heart failure in women, based on genetic similarities. Conducting a systematic literature review, single nucleotide polymorphisms (SNPs) associated with reproductive factors, heart failure and its risk factors were extracted from recent genome-wide association studies. We tested whether there was any overlap between the SNPs and their proxies of reproductive risk factors with those known for heart failure or its risk factors. In total, 520 genetic variants were found that are associated with reproductive factors, namely age at menarche, age at natural menopause, menstrual cycle length, PCOS, preeclampsia, preterm delivery and spontaneous dizygotic twinning. For heart failure and associated phenotypes, 25 variants were found. Genetic variants for reproductive factors did not overlap with those for heart failure. However, age at menarche, gestational diabetes and PCOS were found to be genetically linked to risk factors for heart failure, such as atrial fibrillation, diabetes and smoking. Corresponding implicated genes, such as TNNI3K, ErbB3, MKL2, MTNR1B and PRKD1, may explain the associations between reproductive factors and heart failure. Exact effector mechanisms of these genes remain to be investigated further. Copyright © 2017. Published by Elsevier B.V.

  18. Knowledge of Genetics and Attitudes toward Genetic Testing among College Students in Saudi Arabia.

    Science.gov (United States)

    Olwi, Duaa; Merdad, Leena; Ramadan, Eman

    2016-01-01

    Genetic testing has been gradually permeating the practice of medicine. Health-care providers may be confronted with new genetic approaches that require genetically informed decisions which will be influenced by patients' knowledge of genetics and their attitudes toward genetic testing. This study assesses the knowledge of genetics and attitudes toward genetic testing among college students. A cross-sectional study was conducted using a multistage stratified sample of 920 senior college students enrolled at King Abdulaziz University, Saudi Arabia. Information regarding knowledge of genetics, attitudes toward genetic testing, and sociodemographic data were collected using a self-administered questionnaire. In general, students had a good knowledge of genetics but lacked some fundamentals of genetics. The majority of students showed positive attitudes toward genetic testing, but some students showed negative attitudes toward certain aspects of genetic testing such as resorting to abortion in the case of an untreatable major genetic defect in an unborn fetus. The main significant predictors of knowledge were faculty, gender, academic year, and some prior awareness of 'genetic testing'. The main significant predictors of attitudes were gender, academic year, grade point average, and some prior awareness of 'genetic testing'. The knowledge of genetics among college students was higher than has been reported in other studies, and the attitudes toward genetic testing were fairly positive. Genetics educational programs that target youths may improve knowledge of genetics and create a public perception that further supports genetic testing. © 2016 S. Karger AG, Basel.

  19. Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach "reverse pathway engineering".

    Science.gov (United States)

    Liu, Mengjin; Bienfait, Bruno; Sacher, Oliver; Gasteiger, Johann; Siezen, Roland J; Nauta, Arjen; Geurts, Jan M W

    2014-01-01

    The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the "missing links" between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology.

  20. Price Reversal Pattern of ARV Drugs: A Transaction-Cost Approach Digression

    Directory of Open Access Journals (Sweden)

    Frank LORNE

    2015-05-01

    Full Text Available A price reversal pattern of ARV drugs was noted across lower and middle income countries in that the lower-income countries have higher prices relative to higher-income countries based on a 2008-2009 Summary Report by World Health Organization. The transaction costs affecting AVR drug pricing can be broadly classified into two kinds: One between the final users and the opinion/knowledge experts, and the other between the opinion/knowledge experts and the manufacturers. Economist’s version of price discrimination needs to be modified by including transaction costs. Transaction costs also point to institution creditability factors that will affect NGO procurement.

  1. Generalizing genetical genomics: getting added value from environmental perturbation.

    Science.gov (United States)

    Li, Yang; Breitling, Rainer; Jansen, Ritsert C

    2008-10-01

    Genetical genomics is a useful approach for studying the effect of genetic perturbations on biological systems at the molecular level. However, molecular networks depend on the environmental conditions and, thus, a comprehensive understanding of biological systems requires studying them across multiple environments. We propose a generalization of genetical genomics, which combines genetic and sensibly chosen environmental perturbations, to study the plasticity of molecular networks. This strategy forms a crucial step toward understanding why individuals respond differently to drugs, toxins, pathogens, nutrients and other environmental influences. Here we outline a strategy for selecting and allocating individuals to particular treatments, and we discuss the promises and pitfalls of the generalized genetical genomics approach.

  2. Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

    KAUST Repository

    Dutta, Gaurav

    2013-08-20

    Attenuation leads to distortion of amplitude and phase of seismic waves propagating inside the earth. Conventional acoustic and least-squares reverse time migration do not account for this distortion which leads to defocusing of migration images in highly attenuative geological environments. To account for this distortion, we propose to use the visco-acoustic wave equation for least-squares reverse time migration. Numerical tests on synthetic data show that least-squares reverse time migration with the visco-acoustic wave equation corrects for this distortion and produces images with better balanced amplitudes compared to the conventional approach. © 2013 SEG.

  3. Reversible Communicating Processes

    Directory of Open Access Journals (Sweden)

    Geoffrey Brown

    2016-02-01

    Full Text Available Reversible distributed programs have the ability to abort unproductive computation paths and backtrack, while unwinding communication that occurred in the aborted paths. While it is natural to assume that reversibility implies full state recovery (as with traditional roll-back recovery protocols, an interesting alternative is to separate backtracking from local state recovery. For example, such a model could be used to create complex transactions out of nested compensable transactions where a programmer-supplied compensation defines the work required to "unwind" a transaction. Reversible distributed computing has received considerable theoretical attention, but little reduction to practice; the few published implementations of languages supporting reversibility depend upon a high degree of central control. The objective of this paper is to demonstrate that a practical reversible distributed language can be efficiently implemented in a fully distributed manner. We discuss such a language, supporting CSP-style synchronous communication, embedded in Scala. While this language provided the motivation for the work described in this paper, our focus is upon the distributed implementation. In particular, we demonstrate that a "high-level" semantic model can be implemented using a simple point-to-point protocol.

  4. Genetic shifting: a novel approach for controlling vector-borne diseases

    OpenAIRE

    Powell, Jeffrey R.; Tabachnick, Walter J.

    2014-01-01

    Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used...

  5. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  6. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  7. The impact of sex-role reversal on the diversity of the major histocompatibility complex: Insights from the seahorse (Hippocampus abdominalis

    Directory of Open Access Journals (Sweden)

    Wilson Anthony B

    2011-05-01

    Full Text Available Abstract Background Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation

  8. The impact of sex-role reversal on the diversity of the major histocompatibility complex: insights from the seahorse (Hippocampus abdominalis).

    Science.gov (United States)

    Bahr, Angela; Wilson, Anthony B

    2011-05-10

    Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates.Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the

  9. The impact of surgeon volume on colostomy reversal outcomes after Hartmann's procedure for diverticulitis.

    Science.gov (United States)

    Aquina, Christopher T; Probst, Christian P; Becerra, Adan Z; Hensley, Bradley J; Iannuzzi, James C; Noyes, Katia; Monson, John R T; Fleming, Fergal J

    2016-11-01

    Colostomy reversal after Hartmann's procedure for diverticulitis is a morbid procedure, and studies investigating factors associated with outcomes are lacking. This study identifies patient, surgeon, and hospital-level factors associated with perioperative outcomes after stoma reversal. The Statewide Planning and Research Cooperative System was queried for urgent/emergency Hartmann's procedures for diverticulitis between 2000-2012 in New York State and subsequent colostomy reversal within 1 year of the procedure. Surgeon and hospital volume were categorized into tertiles based on the annual number of colorectal resections performed each year. Bivariate and mixed-effects analyses were used to assess the association between patient, surgeon, and hospital-level factors and perioperative outcomes after colostomy reversal, including a laparoscopic approach; duration of stay; intensive care unit admission; complications; mortality; and 30-day, unscheduled readmission. Among 10,487 patients who underwent Hartmann's procedure and survived to discharge, 63% had the colostomy reversed within 1 year. After controlling for patient, surgeon, and hospital-level factors, high-volume surgeons (≥40 colorectal resections/yr) were independently associated with higher odds of a laparoscopic approach (unadjusted rates: 14% vs 7.6%; adjusted odds ratio = 1.84, 95% confidence interval = 1.12, 3.00), shorter duration of stay (median: 6 versus 7 days; adjusted incidence rate ratio = 0.87, 95% confidence interval = 0.81, 0.95), and lower odds of 90-day mortality (unadjusted rates: 0.4% vs 1.0%; adjusted odds ratio = 0.30, 95% confidence interval = 0.10, 0.88) compared with low-volume surgeons (1-15 colorectal resections/yr). High-volume surgeons are associated with better perioperative outcomes and lower health care utilization after Hartmann's reversal for diverticulitis. These findings support referral to high-volume surgeons for colostomy reversal. Copyright © 2016

  10. Markerless Escherichia coli rrn Deletion Strains for Genetic Determination of Ribosomal Binding Sites

    DEFF Research Database (Denmark)

    Quan, Selwyn; Skovgaard, Ole; McLaughlin, Robert E

    2015-01-01

    Single-copy rrn strains facilitate genetic ribosomal studies in Escherichia coli. Consecutive markerless deletion of rrn operons resulted in slower growth upon inactivation of the fourth copy, which was reversed by supplying transfer RNA genes encoded in rrn operons in trans. Removal of the sixth...

  11. A Simple Approach to Study Designs in Complex Biochemical ...

    Indian Academy of Sciences (India)

    Somdatta Sinha

    Protein sequences. • Biochemical & Genetic information. REVERSE ENGINEERING. LARGE NETWORKS. FORWARD ENGINEERING. All designs that are not physically forbidden are realizable, but not all realizable designs are functionally effective. (in relation to context and constraints of the system and environment).

  12. Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping

    Science.gov (United States)

    Balakrishnan, D.; Quan, C.; Tay, C. J.

    2013-06-01

    The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.

  13. A chemical genetic approach to engineer phototropin kinases for substrate labeling.

    Science.gov (United States)

    Schnabel, Jonathan; Hombach, Peter; Waksman, Thomas; Giuriani, Giovanni; Petersen, Jan; Christie, John M

    2018-04-13

    Protein kinases (PKs) control many aspects of plant physiology by regulating signaling networks through protein phosphorylation. Phototropins (phots) are plasma membrane-associated serine/threonine PKs that control a range of physiological processes that collectively serve to optimize photosynthetic efficiency in plants. These include phototropism, leaf positioning and flattening, chloroplast movement, and stomatal opening. Despite their identification over two decades ago, only a handful of substrates have been identified for these PKs. Progress in this area has been hampered by the lack of a convenient means to confirm the identity of potential substrate candidates. Here we demonstrate that the kinase domain of Arabidopsis phot1 and phot2 can be successfully engineered to accommodate non-natural ATP analogues by substituting the bulky gatekeeper residue threonine for glycine. This approach circumvents the need for radioactivity to track phot kinase activity and follow light-induced receptor autophosphorylation in vitro by incorporating thiophosphate from N 6 -benzyl-ATPγS. Consequently, thiophosphorylation of phot substrate candidates can be readily monitored when added or co-expressed with phots in vitro Furthermore, gatekeeper-modified phot1 retained its functionality and its ability to accommodate N 6 -benzyl-ATPγS as a phosphodonor when expressed in Arabidopsis We therefore anticipate that this chemical genetic approach will provide new opportunities for labeling and identifying substrates for phots and other related AGC kinases under in vitro and near-native in vivo conditions. © 2018 Schnabel et al.

  14. The Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  15. Privacy and policy for genetic research.

    Science.gov (United States)

    DeCew, Judith Wagner

    2004-01-01

    I begin with a discussion of the value of privacy and what we lose without it. I then turn to the difficulties of preserving privacy for genetic information and other medical records in the face of advanced information technology. I suggest three alternative public policy approaches to the problem of protecting individual privacy and also preserving databases for genetic research: (1) governmental guidelines and centralized databases, (2) corporate self-regulation, and (3) my hybrid approach. None of these are unproblematic; I discuss strengths and drawbacks of each, emphasizing the importance of protecting the privacy of sensitive medical and genetic information as well as letting information technology flourish to aid patient care, public health and scientific research.

  16. Biosafety risk assessment approaches for insect-resistant genetically modified crops

    Directory of Open Access Journals (Sweden)

    Inaam Ullah

    2017-02-01

    Full Text Available Background: Environmental risk assessment (ERA is imperative for commercial release of insect resistant, genetically modified crops (IR-GMCs.An insect specific, spider venom peptideω-HXTX-Hv1a (Hvt was successfully expressed in cotton plants. The cotton plants producing Hvt protein have demonstrated resistance against economically important insect pest species. The study was performed to assess the effects of Hvt producing cotton plants on Honey bees (Apis mellifera. Methods: Three approaches were used to evaluate the effects of Hvt protein on adults of honeybees; whole plant assays in flight cages, in vitro assays with pollen of Hvt-cotton, and assays with elevated levels of purified Hvt protein. Pollens of Bt cotton or purified Bt proteins were used as control. Results: The field experiments did not yield any meaningful data due to high rate of mortality in all treatments including the control. However, the laboratory experiments provided conclusive results in which Hvt, purified or in pollens, did not affect the survival or longevity of the bees compared to the control. During the course of study we were able to compare the quality, effectiveness and economics of different experiments. Conclusions: We conclude that Hvt either purified or produced in cotton plants do not affect the survival or longevity of honey bees. We are also of the view that starting at laboratory level assays not only gives meaningful data but also saves a lot of time and money that can be spent on other important questions regarding safety of a particular transgenic crop. Hence, a purpose-based, tiered approach could be the best choice for pre-release ERA of IR-GMCs.

  17. Methodological approaches to conducting pilot and proof tests on reverse-osmosis systems: Results of comparative studies

    Science.gov (United States)

    Panteleev, A. A.; Bobinkin, V. V.; Larionov, S. Yu.; Ryabchikov, B. E.; Smirnov, V. B.; Shapovalov, D. A.

    2017-10-01

    When designing large-scale water-treatment plants based on reverse-osmosis systems, it is proposed to conduct experimental-industrial or pilot tests for validated simulation of the operation of the equipment. It is shown that such tests allow establishing efficient operating conditions and characteristics of the plant under design. It is proposed to conduct pilot tests of the reverse-osmosis systems on pilot membrane plants (PMPs) and test membrane plants (TMPs). The results of a comparative experimental study of pilot and test membrane plants are exemplified by simulating the operating parameters of the membrane elements of an industrial plant. It is concluded that the reliability of the data obtained on the TMP may not be sufficient to design industrial water-treatment plants, while the PMPs are capable of providing reliable data that can be used for full-scale simulation of the operation of industrial reverse-osmosis systems. The test membrane plants allow simulation of the operating conditions of individual industrial plant systems; therefore, potential areas of their application are shown. A method for numerical calculation and experimental determination of the true selectivity and the salt passage are proposed. An expression has been derived that describes the functional dependence between the observed and true salt passage. The results of the experiments conducted on a test membrane plant to determine the true value of the salt passage of a reverse-osmosis membrane are exemplified by magnesium sulfate solution at different initial operating parameters. It is shown that the initial content of a particular solution component has a significant effect on the change in the true salt passage of the membrane.

  18. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization.

    Science.gov (United States)

    Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł

    2016-12-01

    One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure

  19. Genetic approaches to understanding post-traumatic stress disorder

    Science.gov (United States)

    Almli, Lynn M.; Fani, Negar; Smith, Alicia K.; Ressler, Kerry J.

    2015-01-01

    Post-traumatic stress disorder (PTSD) is increasingly recognized as both a disorder of enormous mental health and societal burden, but also as an anxiety disorder that may be particularly understandable from a scientific perspective. Specifically, PTSD can be conceptualized as a disorder of fear and stress dysregulation, and the neural circuitry underlying these pathways in both animals and humans are becoming increasingly well understood. Furthermore, PTSD is the only disorder in psychiatry in which the initiating factor, the trauma exposure, can be identified. Thus, the pathophysiology of the fear and stress response underlying PTSD can be examined and potentially interrupted. Twin studies have shown that the development of PTSD following a trauma is heritable, and that genetic risk factors may account for up to 30–40% of this heritability. A current goal is to understand the gene pathways that are associated with PTSD, and how those genes act on the fear/stress circuitry to mediate risk vs. resilience for PTSD. This review will examine gene pathways that have recently been analysed, primarily through candidate gene studies (including neuroimaging studies of candidate genes), in addition to genome-wide associations and the epigenetic regulation of PTSD. Future and on-going studies are utilizing larger and collaborative cohorts to identify novel gene candidates through genome-wide association and other powerful genomic approaches. Identification of PTSD biological pathways strengthens the hope of progress in the mechanistic understanding of a model psychiatric disorder and allows for the development of targeted treatments and interventions. PMID:24103155

  20. Genetic approaches to understanding post-traumatic stress disorder.

    Science.gov (United States)

    Almli, Lynn M; Fani, Negar; Smith, Alicia K; Ressler, Kerry J

    2014-02-01

    Post-traumatic stress disorder (PTSD) is increasingly recognized as both a disorder of enormous mental health and societal burden, but also as an anxiety disorder that may be particularly understandable from a scientific perspective. Specifically, PTSD can be conceptualized as a disorder of fear and stress dysregulation, and the neural circuitry underlying these pathways in both animals and humans are becoming increasingly well understood. Furthermore, PTSD is the only disorder in psychiatry in which the initiating factor, the trauma exposure, can be identified. Thus, the pathophysiology of the fear and stress response underlying PTSD can be examined and potentially interrupted. Twin studies have shown that the development of PTSD following a trauma is heritable, and that genetic risk factors may account for up to 30-40% of this heritability. A current goal is to understand the gene pathways that are associated with PTSD, and how those genes act on the fear/stress circuitry to mediate risk vs. resilience for PTSD. This review will examine gene pathways that have recently been analysed, primarily through candidate gene studies (including neuroimaging studies of candidate genes), in addition to genome-wide associations and the epigenetic regulation of PTSD. Future and on-going studies are utilizing larger and collaborative cohorts to identify novel gene candidates through genome-wide association and other powerful genomic approaches. Identification of PTSD biological pathways strengthens the hope of progress in the mechanistic understanding of a model psychiatric disorder and allows for the development of targeted treatments and interventions.

  1. A Powerful Approach to Estimating Annotation-Stratified Genetic Covariance via GWAS Summary Statistics.

    Science.gov (United States)

    Lu, Qiongshi; Li, Boyang; Ou, Derek; Erlendsdottir, Margret; Powles, Ryan L; Jiang, Tony; Hu, Yiming; Chang, David; Jin, Chentian; Dai, Wei; He, Qidu; Liu, Zefeng; Mukherjee, Shubhabrata; Crane, Paul K; Zhao, Hongyu

    2017-12-07

    Despite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic architecture is far from complete. Jointly modeling multiple traits' genetic profiles has provided insights into the shared genetic basis of many complex traits. However, large-scale inference sets a high bar for both statistical power and biological interpretability. Here we introduce a principled framework to estimate annotation-stratified genetic covariance between traits using GWAS summary statistics. Through theoretical and numerical analyses, we demonstrate that our method provides accurate covariance estimates, thereby enabling researchers to dissect both the shared and distinct genetic architecture across traits to better understand their etiologies. Among 50 complex traits with publicly accessible GWAS summary statistics (N total ≈ 4.5 million), we identified more than 170 pairs with statistically significant genetic covariance. In particular, we found strong genetic covariance between late-onset Alzheimer disease (LOAD) and amyotrophic lateral sclerosis (ALS), two major neurodegenerative diseases, in single-nucleotide polymorphisms (SNPs) with high minor allele frequencies and in SNPs located in the predicted functional genome. Joint analysis of LOAD, ALS, and other traits highlights LOAD's correlation with cognitive traits and hints at an autoimmune component for ALS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. A statistical approach to quantification of genetically modified organisms (GMO) using frequency distributions.

    Science.gov (United States)

    Gerdes, Lars; Busch, Ulrich; Pecoraro, Sven

    2014-12-14

    According to Regulation (EU) No 619/2011, trace amounts of non-authorised genetically modified organisms (GMO) in feed are tolerated within the EU if certain prerequisites are met. Tolerable traces must not exceed the so-called 'minimum required performance limit' (MRPL), which was defined according to the mentioned regulation to correspond to 0.1% mass fraction per ingredient. Therefore, not yet authorised GMO (and some GMO whose approvals have expired) have to be quantified at very low level following the qualitative detection in genomic DNA extracted from feed samples. As the results of quantitative analysis can imply severe legal and financial consequences for producers or distributors of feed, the quantification results need to be utterly reliable. We developed a statistical approach to investigate the experimental measurement variability within one 96-well PCR plate. This approach visualises the frequency distribution as zygosity-corrected relative content of genetically modified material resulting from different combinations of transgene and reference gene Cq values. One application of it is the simulation of the consequences of varying parameters on measurement results. Parameters could be for example replicate numbers or baseline and threshold settings, measurement results could be for example median (class) and relative standard deviation (RSD). All calculations can be done using the built-in functions of Excel without any need for programming. The developed Excel spreadsheets are available (see section 'Availability of supporting data' for details). In most cases, the combination of four PCR replicates for each of the two DNA isolations already resulted in a relative standard deviation of 15% or less. The aims of the study are scientifically based suggestions for minimisation of uncertainty of measurement especially in -but not limited to- the field of GMO quantification at low concentration levels. Four PCR replicates for each of the two DNA isolations

  3. Regulating electricity demand peaks for home appliances using reversible fair scheduling

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Rossello Busquet, Ana; Iversen, Villy Bæk

    2010-01-01

    This paper describes a novel methodology for regulating electricity demand peaks for home appliances. To achieve this objective, we will make use of the reversible fair scheduling algorithm originally developed for telecommunication networks. The main concept behind this approach is the aggregati...

  4. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  5. [Public health, genetics and ethics].

    Science.gov (United States)

    Kottow, Miguel H

    2002-10-01

    Genetics research has shown enormous developments in recent decades, although as yet with only limited clinical application. Bioethical analysis has been unable to deal with the vast problems of genetics because emphasis has been put on the principlism applied to both clinical and research bioethics. Genetics nevertheless poses its most complex moral dilemmas at the public level, where a social brand of ethics ought to supersede the essentially interpersonal perspective of principlism. A more social understanding of ethics in genetics is required to unravel issues such as research and clinical explorations, ownership and patents, genetic manipulation, and allocation of resources. All these issues require reflection based on the requirements of citizenry, consideration of common assets, and definition of public policies in regulating genetic endeavors and protecting the society as a whole Bioethics has privileged the approach to individual ethical issues derived from genetic intervention, thereby neglecting the more salient aspects of genetics and social ethics.

  6. Immunological and genetic aspects of asthma and allergy

    Directory of Open Access Journals (Sweden)

    Anne-Marie Madore

    2010-08-01

    Full Text Available Anne-Marie Madore, Catherine LapriseUniversité du Québec à Chicoutimi, Département des sciences fondamentales, Saguenay, CanadaAbstract: Prevalence of allergy and allergic asthma are increasing worldwide. More than half of the US population has a positive skin prick test and approximately 10% are asthmatics. Many studies have been conducted to define immunological pathways underlying allergy and asthma development and to identify the main genetic determinants. In the effort to find missing pieces of the puzzle, new genomic approaches and more standardized ones, such as the candidate gene approach, have been used collectively. This article proposes an overview of the actual knowledge about immunological and genetic aspects of allergy and asthma. Special attention has been drawn to the challenges linked to genetic research in complex traits such as asthma and to the contribution of new genomic approaches.Keywords: immune response, allergy, asthma, genetics, genomics

  7. Dynamic modeling of genetic networks using genetic algorithm and S-system.

    Science.gov (United States)

    Kikuchi, Shinichi; Tominaga, Daisuke; Arita, Masanori; Takahashi, Katsutoshi; Tomita, Masaru

    2003-03-22

    The modeling of system dynamics of genetic networks, metabolic networks or signal transduction cascades from time-course data is formulated as a reverse-problem. Previous studies focused on the estimation of only network structures, and they were ineffective in inferring a network structure with feedback loops. We previously proposed a method to predict not only the network structure but also its dynamics using a Genetic Algorithm (GA) and an S-system formalism. However, it could predict only a small number of parameters and could rarely obtain essential structures. In this work, we propose a unified extension of the basic method. Notable improvements are as follows: (1) an additional term in its evaluation function that aims at eliminating futile parameters; (2) a crossover method called Simplex Crossover (SPX) to improve its optimization ability; and (3) a gradual optimization strategy to increase the number of predictable parameters. The proposed method is implemented as a C program called PEACE1 (Predictor by Evolutionary Algorithms and Canonical Equations 1). Its performance was compared with the basic method. The comparison showed that: (1) the convergence rate increased about 5-fold; (2) the optimization speed was raised about 1.5-fold; and (3) the number of predictable parameters was increased about 5-fold. Moreover, we successfully inferred the dynamics of a small genetic network constructed with 60 parameters for 5 network variables and feedback loops using only time-course data of gene expression.

  8. Restorative glass: reversible, discreet restoration using structural glass components

    Directory of Open Access Journals (Sweden)

    Faidra Oikonomopoulou

    2017-12-01

    Full Text Available The application of structural glass as the principal material in restoration and conservation practices is a distinguishable, yet discreet approach. The transparency of glass allows the simultaneous perception of the monument at both its original and present condition, preserving its historical and aesthetical integrity. Concurrently, the material’s unique mechanical properties enable the structural consolidation of the monument. As a proof of concept, the restoration of Lichtenberg Castle is proposed. Solid cast glass units are suggested to complete the missing parts, in respect to the existing construction technique and aesthetics of the original masonry. Aiming for a reversible system, the glass units are interlocking, ensuring the overall stability without necessitating permanent, adhesive connections. This results in an elegant and reversible intervention.

  9. Reversible, on-demand generation of aqueous two-phase microdroplets

    Science.gov (United States)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya

    2017-08-15

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.

  10. Kinetics and thermochemistry of the reversible gas phase reaction HONO+NH3->3N-HONO studied by infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, P.; Ratajczak, E.; Sillesen, A.

    1994-01-01

    The kinetics of the reversible reaction HONO+NH3 reversible H3N-HONO (1) was studied by monitoring trans-HONO relaxation kinetics. The rate of approach towards equilibrium was studied as a function of the ammonia concentration to obtain values of the rate constants for the forward and reverse rea...

  11. An Interval-Valued Approach to Business Process Simulation Based on Genetic Algorithms and the BPMN

    Directory of Open Access Journals (Sweden)

    Mario G.C.A. Cimino

    2014-05-01

    Full Text Available Simulating organizational processes characterized by interacting human activities, resources, business rules and constraints, is a challenging task, because of the inherent uncertainty, inaccuracy, variability and dynamicity. With regard to this problem, currently available business process simulation (BPS methods and tools are unable to efficiently capture the process behavior along its lifecycle. In this paper, a novel approach of BPS is presented. To build and manage simulation models according to the proposed approach, a simulation system is designed, developed and tested on pilot scenarios, as well as on real-world processes. The proposed approach exploits interval-valued data to represent model parameters, in place of conventional single-valued or probability-valued parameters. Indeed, an interval-valued parameter is comprehensive; it is the easiest to understand and express and the simplest to process, among multi-valued representations. In order to compute the interval-valued output of the system, a genetic algorithm is used. The resulting process model allows forming mappings at different levels of detail and, therefore, at different model resolutions. The system has been developed as an extension of a publicly available simulation engine, based on the Business Process Model and Notation (BPMN standard.

  12. Muscular activation during reverse and non-reverse chewing cycles in unilateral posterior crossbite.

    Science.gov (United States)

    Piancino, Maria Grazia; Farina, Dario; Talpone, Francesca; Merlo, Andrea; Bracco, Pietro

    2009-04-01

    The aim of this study was to characterize the kinematics and masseter muscle activation in unilateral posterior crossbite. Eighty-two children (8.6 +/- 1.3 yr of age) with unilateral posterior crossbite and 12 children (8.9 +/- 0.6 yr of age) with normal occlusion were selected for the study. Electromyography (EMG) and kinematics were concurrently recorded during mastication of a soft bolus and a hard bolus. The percentage of reverse cycles in the group of patients was 59.0 +/- 33.1% (soft bolus) and 69.7 +/- 29.7% (hard bolus) when chewing on the crossbite side. When chewing on the non-affected side, the number of reverse cycles was 16.7 +/- 24.5% (soft bolus) and 16.7 +/- 22.3% (hard bolus). The reverse cycles on the crossbite side were narrower with respect to the cycles on the non-affected side. Although both types of cycles in patients resulted in lower EMG activity of the masseter of the crossbite side than of the contralateral masseter, the activity of the non-affected side was larger for reverse than for non-reverse cycles. It was concluded that when chewing on the crossbite side, the masseter activity is reduced on the mastication side (crossbite) and is unaltered (non-reverse cycles) or increased (reverse) on the non-affected side.

  13. Landscape characteristics influencing the genetic structure of greater sage-grouse within the stronghold of their range: a holistic modeling approach

    Science.gov (United States)

    Row, Jeff R; Oyler-McCance, Sara J.; Fike, Jennifer; O'Donnell, Michael; Doherty, Kevin E.; Aldridge, Cameron L.; Bowen, Zachary H.; Fedy, Brad C.

    2015-01-01

    Given the significance of animal dispersal to population dynamics and geographic variability, understanding how dispersal is impacted by landscape patterns has major ecological and conservation importance. Speaking to the importance of dispersal, the use of linear mixed models to compare genetic differentiation with pairwise resistance derived from landscape resistance surfaces has presented new opportunities to disentangle the menagerie of factors behind effective dispersal across a given landscape. Here, we combine these approaches with novel resistance surface parameterization to determine how the distribution of high- and low-quality seasonal habitat and individual landscape components shape patterns of gene flow for the greater sage-grouse (Centrocercus urophasianus) across Wyoming. We found that pairwise resistance derived from the distribution of low-quality nesting and winter, but not summer, seasonal habitat had the strongest correlation with genetic differentiation. Although the patterns were not as strong as with habitat distribution, multivariate models with sagebrush cover and landscape ruggedness or forest cover and ruggedness similarly had a much stronger fit with genetic differentiation than an undifferentiated landscape. In most cases, landscape resistance surfaces transformed with 17.33-km-diameter moving windows were preferred, suggesting small-scale differences in habitat were unimportant at this large spatial extent. Despite the emergence of these overall patterns, there were differences in the selection of top models depending on the model selection criteria, suggesting research into the most appropriate criteria for landscape genetics is required. Overall, our results highlight the importance of differences in seasonal habitat preferences to patterns of gene flow and suggest the combination of habitat suitability modeling and linear mixed models with our resistance parameterization is a powerful approach to discerning the effects of landscape

  14. Going Forward with Genetics: Recent Technological Advances and Forward Genetics in Mice

    OpenAIRE

    Moresco, Eva Marie Y.; Li, Xiaohong; Beutler, Bruce

    2013-01-01

    Forward genetic analysis is an unbiased approach for identifying genes essential to defined biological phenomena. When applied to mice, it is one of the most powerful methods to facilitate understanding of the genetic basis of human biology and disease. The speed at which disease-causing mutations can be identified in mutagenized mice has been markedly increased by recent advances in DNA sequencing technology. Creating and analyzing mutant phenotypes may therefore become rate-limiting in forw...

  15. Local Genetic Correlation Gives Insights into the Shared Genetic Architecture of Complex Traits.

    Science.gov (United States)

    Shi, Huwenbo; Mancuso, Nicholas; Spendlove, Sarah; Pasaniuc, Bogdan

    2017-11-02

    Although genetic correlations between complex traits provide valuable insights into epidemiological and etiological studies, a precise quantification of which genomic regions disproportionately contribute to the genome-wide correlation is currently lacking. Here, we introduce ρ-HESS, a technique to quantify the correlation between pairs of traits due to genetic variation at a small region in the genome. Our approach requires GWAS summary data only and makes no distributional assumption on the causal variant effect sizes while accounting for linkage disequilibrium (LD) and overlapping GWAS samples. We analyzed large-scale GWAS summary data across 36 quantitative traits, and identified 25 genomic regions that contribute significantly to the genetic correlation among these traits. Notably, we find 6 genomic regions that contribute to the genetic correlation of 10 pairs of traits that show negligible genome-wide correlation, further showcasing the power of local genetic correlation analyses. Finally, we report the distribution of local genetic correlations across the genome for 55 pairs of traits that show putative causal relationships. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium.

    Directory of Open Access Journals (Sweden)

    Elena Kondratieva

    2010-05-01

    Full Text Available Development of lung granulomata is a hallmark of infections caused by virulent mycobacteria, reflecting both protective host response that restricts infection spreading and inflammatory pathology. The role of host genetics in granuloma formation is not well defined. Earlier we have shown that mice of the I/St strain are extremely susceptible to Mycobacterium tuberculosis but resistant to M. avium infection, whereas B6 mice show a reversed pattern of susceptibility. Here, by directly comparing: (i characteristics of susceptibility to two infections in vivo; (ii architecture of lung granulomata assessed by immune staining; and (iii expression of genes encoding regulatory factors of neutrophil influx in the lung tissue, we demonstrate that genetic susceptibility of the host largely determines the pattern of lung pathology. Necrotizing granuloma surrounded by hypoxic zones, as well as a massive neutrophil influx, develop in the lungs of M. avium-infected B6 mice and in the lungs of M. tuberculosis-infected I/St mice, but not in the lungs of corresponding genetically resistant counterparts. The mirror-type lung tissue responses to two virulent mycobacteria indicate that the level of genetic susceptibility of the host to a given mycobacterial species largely determines characteristics of pathology, and directly demonstrate the importance of host genetics in pathogenesis.

  17. Advancing ecological understandings through technological transformations in noninvasive genetics

    Science.gov (United States)

    Albano Beja-Pereira; Rita Oliveira; Paulo C. Alves; Michael K. Schwartz; Gordon Luikart

    2009-01-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological...

  18. The Causes of Preference Reversal.

    OpenAIRE

    Tversky, Amos; Slovic, Paul; Kahneman, Daniel

    1990-01-01

    Observed preference reversal cannot be adequately explained by violations of independence, the reduction axiom, or transitivity. The primary cause of preference reversal is the failure of procedure invariance, especially the overpricing of low-probability, high-payoff bets. This result violates regret theory and generalized (nonindependent) utility models. Preference reversal and a new reversal involving time preferences are explained by scale compatibility, which implies that payoffs are wei...

  19. A novel genetic score approach using instruments to investigate interactions between pathways and environment: application to air pollution.

    Directory of Open Access Journals (Sweden)

    Marie-Abele Bind

    Full Text Available Air pollution has been associated with increased systemic inflammation markers. We developed a new pathway analysis approach to investigate whether gene variants within relevant pathways (oxidative stress, endothelial function, and metal processing modified the association between particulate air pollution and fibrinogen, C-reactive protein (CRP, intercellular adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule-1 (VCAM-1. Our study population consisted of 822 elderly participants of the Normative Aging Study (1999-2011. To investigate the role of biological mechanisms and to reduce the number of comparisons in the analysis, we created pathway-specific scores using gene variants related to each pathway. To select the most appropriate gene variants, we used the least absolute shrinkage and selection operator (Lasso to relate independent outcomes representative of each pathway (8-hydroxydeoxyguanosine for oxidative stress, augmentation index for endothelial function, and patella lead for metal processing to gene variants. A high genetic score corresponds to a higher allelic risk profile. We fit mixed-effects models to examine modification by the genetic score of the weekly air pollution association with the outcome. Among participants with higher genetic scores within the oxidative stress pathway, we observed significant associations between particle number and fibrinogen, while we did not find any association among participants with lower scores (p(interaction = 0.04. Compared to individuals with low genetic scores of metal processing gene variants, participants with higher scores had greater effects of particle number on fibrinogen (p(interaction = 0.12, CRP (p(interaction = 0.02, and ICAM-1 (pinteraction = 0.08. This two-stage penalization method is easy to implement and can be used for large-scale genetic applications.

  20. Dissaving of the Past via Reverse Mortgages

    Directory of Open Access Journals (Sweden)

    Ana Luiza Champloni

    Full Text Available We build a simple two-period general equilibrium model with incomplete markets which incorporates reverse market mortgages without appealing to the complicated framework required by the infinite horizon models. Two types of agents are considered: elderly agents and investors. The former are owners of physical assets (for instance housing who will want to sell them to investors. For that end the elderly agents, who are assumed to not have any bequest motive, issue claims against physical assets they own. One of the claims issued will be interpreted as reverse mortgage (loan for seniors and the other one as a call option written on the value of housing equity. By assuming that both the elderly agents and the investors are price takers, and by applying the generalized game approach, we show that the equilibrium in this economy always exists, providing the usual conditions on utilities and initial endowments are satisfied. We end with a remark on efficiency of the quilibrium.

  1. Reverse Logistics Systems: Persepsi dan Harapan Konsumen

    Directory of Open Access Journals (Sweden)

    Farida Pulansari

    2016-12-01

    Full Text Available Complaint is a signal that indicates important information directly by customers. Complaint will give valuable information to company to plan recovery strategies to maintain customer satisfaction and loyalty. Hence, Electronic Waste (E-waste becomes a hot issue internationally, domestically and locally. There are many kind of regulations, strategy, methods or approach to minimize of E-waste. The goal of this research is design of House of Reverse Logistics (HRL to understanding the customer needs and wants for Reverse Logistics (RL implementation. This research adopted Quality Function Deployment (QFD method to construct the HRL. Differences among them are determination of the customer needs and wants. HRL insert five perspectives i.e. Input, Structure, Process, Output and Social & Organization. In other hand, QFD only inserts consumer perspective. The results showed the highest factors of consumer dissatisfaction comes from: 20% of third-party services mechanism, 10% from collaboration RL system (collection centers, recycling centers, disposal center ,10% comes the standardization of servicing system and 60% of others

  2. Pollen Sterility—A Promising Approach to Gene Confinement and Breeding for Genetically Modified Bioenergy Crops

    Directory of Open Access Journals (Sweden)

    Albert P. Kausch

    2012-10-01

    Full Text Available Advanced genetic and biotechnology tools will be required to realize the full potential of food and bioenergy crops. Given current regulatory concerns, many transgenic traits might never be deregulated for commercial release without a robust gene confinement strategy in place. The potential for transgene flow from genetically modified (GM crops is widely known. Pollen-mediated transfer is a major component of gene flow in flowering plants and therefore a potential avenue for the escape of transgenes from GM crops. One approach for preventing and/or mitigating transgene flow is the production of trait linked pollen sterility. To evaluate the feasibility of generating pollen sterility lines for gene confinement and breeding purposes we tested the utility of a promoter (Zm13Pro from a maize pollen-specific gene (Zm13 for driving expression of the reporter gene GUS and the cytotoxic gene barnase in transgenic rice (Oryza sativa ssp. Japonica cv. Nipponbare as a monocot proxy for bioenergy grasses. This study demonstrates that the Zm13 promoter can drive pollen-specific expression in stably transformed rice and may be useful for gametophytic transgene confinement and breeding strategies by pollen sterility in food and bioenergy crops.

  3. Proton-Fueled, Reversible DNA Hybridization Chain Assembly for pH Sensing and Imaging.

    Science.gov (United States)

    Liu, Lan; Liu, Jin-Wen; Huang, Zhi-Mei; Wu, Han; Li, Na; Tang, Li-Juan; Jiang, Jian-Hui

    2017-07-05

    Design of DNA self-assembly with reversible responsiveness to external stimuli is of great interest for diverse applications. We for the first time develop a pH-responsive, fully reversible hybridization chain reaction (HCR) assembly that allows sensitive sensing and imaging of pH in living cells. Our design relies on the triplex forming sequences that form DNA triplex with toehold regions under acidic conditions and then induce a cascade of strand displacement and DNA assembly. The HCR assembly has shown dynamic responses in physiological pH ranges with excellent reversibility and demonstrated the potential for in vitro detection and live-cell imaging of pH. Moreover, this method affords HCR assemblies with highly localized fluorescence responses, offering advantages of improving sensitivity and better selectivity. The proton-fueled, reversible HCR assembly may provide a useful approach for pH-related cell biology study and disease diagnostics.

  4. The practice of genetic counselling: a Ccmparative approach to understanding genetic counselling in China

    NARCIS (Netherlands)

    Suli, S.

    2009-01-01

    This article provides an empirical account of the application of genetic counselling in China based on interviews, clinical observation and literature research during a field study from September 2008 to February 2009, carried out mainly in China and partly in Hong Kong and the United Kingdom.

  5. A simple model of EG and G reverse reach-through APDs

    CERN Document Server

    Musienko, Y; Swain, J D

    2000-01-01

    A simple model of reverse reach-through APDs is described. APD parameters including the dependence of the electric field and gain on the bias voltage, dependence of gain on wavelength are calculated using the McIntyre approach and an assumed doping profile of the APD.

  6. A simple model of EG and G reverse reach-through APDs

    Energy Technology Data Exchange (ETDEWEB)

    Musienko, Y. E-mail: iouri.moussienko@cern.ch; Reucroft, S.; Swain, J

    2000-03-11

    A simple model of reverse reach-through APDs is described. APD parameters including the dependence of the electric field and gain on the bias voltage, dependence of gain on wavelength are calculated using the McIntyre approach and an assumed doping profile of the APD.

  7. Minimal approaches to genetic improvement of growth rates in white spruce

    Science.gov (United States)

    D.T. Lester

    1973-01-01

    Several features of central importance to genetic improvement of white spruce have been demonstrated by tree breeders. First, white spruce is genetically a highly variable species and much of the existent variation can be readily incorporated in planting stock (Jeffers 1969, Holst and Teich 1969). Second, local seed often is not the best for rapid growth (Nienstaedt...

  8. Somatic cell and molecular genetics approach to DNA repair and mutagenesis

    International Nuclear Information System (INIS)

    Thompson, L.H.

    1985-01-01

    In the CHO cell line, UV-sensitive mutants representing five genetic complementation groups have been identified. Mutants from each of these groups were shown to be defective in performing the incision step of repair after exposure to UV. The large number of complementation groups of xeroderma pigmentosa mutations has raised the question whether these groups all correspond to single gene loci. The same issue applies to the 5 groups of UV-sensitive CHO mutants. One approach toward answering this question is to localize in the human karyotype the genes that complement the defects in the CHO mutants. Thus, by making CHO/human cell hybrids under the appropriate selective conditions, we have begun to map each of the complementing human genes. The mutation in strain UV20 (Group 2) was complemented by human chromosome 19. Preliminary evidence suggests that UV5 may also be complemented by human chromosome 19 while each of the other 3 groups involves a different human chromosome. Somewhat surprisingly, mutant EM9 is also complemented by a gene on chromosome 19

  9. Combined Simulated Annealing and Genetic Algorithm Approach to Bus Network Design

    Science.gov (United States)

    Liu, Li; Olszewski, Piotr; Goh, Pong-Chai

    A new method - combined simulated annealing (SA) and genetic algorithm (GA) approach is proposed to solve the problem of bus route design and frequency setting for a given road network with fixed bus stop locations and fixed travel demand. The method involves two steps: a set of candidate routes is generated first and then the best subset of these routes is selected by the combined SA and GA procedure. SA is the main process to search for a better solution to minimize the total system cost, comprising user and operator costs. GA is used as a sub-process to generate new solutions. Bus demand assignment on two alternative paths is performed at the solution evaluation stage. The method was implemented on four theoretical grid networks of different size and a benchmark network. Several GA operators (crossover and mutation) were utilized and tested for their effectiveness. The results show that the proposed method can efficiently converge to the optimal solution on a small network but computation time increases significantly with network size. The method can also be used for other transport operation management problems.

  10. Advancing ecological understandings through technological transformations in noninvasive genetics.

    Science.gov (United States)

    Beja-Pereira, Albano; Oliveira, Rita; Alves, Paulo C; Schwartz, Michael K; Luikart, Gordon

    2009-09-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological advances continue to make noninvasive approaches among the most used and rapidly advancing areas in genetics. Here, we review recent advances in noninvasive genetics and how they allow us to address important research and management questions thanks to improved techniques for DNA extraction, preservation, amplification and data analysis. We show that many advances come from the fields of forensics, human health and domestic animal health science, and suggest that molecular ecologists explore literature from these fields. Finally, we discuss how the combination of advances in each step of a noninvasive genetics study, along with fruitful areas for future research, will continually increase the power and role of noninvasive genetics in molecular ecology and conservation genetics. © 2009 Blackwell Publishing Ltd.

  11. Genetic Algorithms for Multiple-Choice Problems

    Science.gov (United States)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  12. Reverse-hybrid robotic mesorectal excision for rectal cancer.

    Science.gov (United States)

    Park, In Ja; You, Y Nancy; Schlette, Erika; Nguyen, Sa; Skibber, John M; Rodriguez-Bigas, Miguel A; Chang, George J

    2012-02-01

    The robotic system offers potential technical advantages over laparoscopy for total mesorectal excision with radical lymphadenectomy for rectal cancer. However, the requirement for fixed docking limits its utility when the working volume is large or patient repositioning is required. The purpose of this study was to evaluate short-term outcomes associated with a novel setup to perform total mesorectal excision and radical lymphadenectomy for rectal cancer by the use of a "reverse" hybrid robotic-laparoscopic approach. This is a prospective consecutive cohort observational study of patients who underwent robotic rectal cancer resection from January 2009 to March 2011. During the study period, a technique of reverse-hybrid robotic-laparoscopic rectal resection with radical lymphadenectomy was developed. This technique involves reversal of the operative sequence with lymphovascular and rectal dissection to precede proximal colonic mobilization. This technique evolved from a conventional-hybrid resection with laparoscopic vascular control, colonic mobilization, and robotic pelvic dissection. Perioperative and short-term oncologic outcomes were analyzed. Thirty patients underwent reverse-hybrid resection. Median tumor location was 5 cm (interquartile range 3-9) from the anal verge. Median BMI was 27.6 (interquartile range 25.0-32.1 kg/m). Twenty (66.7%) received neoadjuvant chemoradiation. There were no conversions. Median blood loss was 100 mL (interquartile range 75-200). Total operation time was a median 369 (interquartile range 306-410) minutes. Median docking time was 6 (interquartile range 5-8) minutes, and console time was 98 (interquartile range 88-140) minutes. Resection was R0 in all patients; no patients had an incomplete mesorectal resection. Six patients (20%) underwent extended lymph node dissection or en bloc resection. Reverse-hybrid robotic surgery for rectal cancer maximizes the therapeutic applicability of the robotic and conventional laparoscopic

  13. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  14. Measuring the genetic influence on human life span: gene-environment interaction and sex-specific genetic effects

    DEFF Research Database (Denmark)

    Tan, Qihua; De Benedictis, G; Yashin, Annatoli

    2001-01-01

    New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic and demographicinf......New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic...

  15. Comparing the ISO-recommended and the cumulative data-reduction algorithms in S-on-1 laser damage test by a reverse approach method

    Science.gov (United States)

    Zorila, Alexandru; Stratan, Aurel; Nemes, George

    2018-01-01

    We compare the ISO-recommended (the standard) data-reduction algorithm used to determine the surface laser-induced damage threshold of optical materials by the S-on-1 test with two newly suggested algorithms, both named "cumulative" algorithms/methods, a regular one and a limit-case one, intended to perform in some respects better than the standard one. To avoid additional errors due to real experiments, a simulated test is performed, named the reverse approach. This approach simulates the real damage experiments, by generating artificial test-data of damaged and non-damaged sites, based on an assumed, known damage threshold fluence of the target and on a given probability distribution function to induce the damage. In this work, a database of 12 sets of test-data containing both damaged and non-damaged sites was generated by using four different reverse techniques and by assuming three specific damage probability distribution functions. The same value for the threshold fluence was assumed, and a Gaussian fluence distribution on each irradiated site was considered, as usual for the S-on-1 test. Each of the test-data was independently processed by the standard and by the two cumulative data-reduction algorithms, the resulting fitted probability distributions were compared with the initially assumed probability distribution functions, and the quantities used to compare these algorithms were determined. These quantities characterize the accuracy and the precision in determining the damage threshold and the goodness of fit of the damage probability curves. The results indicate that the accuracy in determining the absolute damage threshold is best for the ISO-recommended method, the precision is best for the limit-case of the cumulative method, and the goodness of fit estimator (adjusted R-squared) is almost the same for all three algorithms.

  16. Geomagnetic polarity reversals as a mechanism for the punctuated equilibrium model of biological evolution

    International Nuclear Information System (INIS)

    Welsh, J.S.; Welsh, A.L.; Welsh, W.F.

    2003-01-01

    genetic mutation rates are altered during polarity reversals and what role this may play in evolutionary biology

  17. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems.

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-06-05

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits.

  18. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-01-01

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits. PMID:28587254

  19. Molecular and Chemical Genetic Approaches to Developmental Origins of Aging and Disease in Zebrafish

    Science.gov (United States)

    Sasaki, Tomoyuki; Kishi, Shuji

    2013-01-01

    The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins

  20. Assessing population genetic structure via the maximisation of genetic distance

    Directory of Open Access Journals (Sweden)

    Toro Miguel A

    2009-11-01

    Full Text Available Abstract Background The inference of the hidden structure of a population is an essential issue in population genetics. Recently, several methods have been proposed to infer population structure in population genetics. Methods In this study, a new method to infer the number of clusters and to assign individuals to the inferred populations is proposed. This approach does not make any assumption on Hardy-Weinberg and linkage equilibrium. The implemented criterion is the maximisation (via a simulated annealing algorithm of the averaged genetic distance between a predefined number of clusters. The performance of this method is compared with two Bayesian approaches: STRUCTURE and BAPS, using simulated data and also a real human data set. Results The simulations show that with a reduced number of markers, BAPS overestimates the number of clusters and presents a reduced proportion of correct groupings. The accuracy of the new method is approximately the same as for STRUCTURE. Also, in Hardy-Weinberg and linkage disequilibrium cases, BAPS performs incorrectly. In these situations, STRUCTURE and the new method show an equivalent behaviour with respect to the number of inferred clusters, although the proportion of correct groupings is slightly better with the new method. Re-establishing equilibrium with the randomisation procedures improves the precision of the Bayesian approaches. All methods have a good precision for FST ≥ 0.03, but only STRUCTURE estimates the correct number of clusters for FST as low as 0.01. In situations with a high number of clusters or a more complex population structure, MGD performs better than STRUCTURE and BAPS. The results for a human data set analysed with the new method are congruent with the geographical regions previously found. Conclusion This new method used to infer the hidden structure in a population, based on the maximisation of the genetic distance and not taking into consideration any assumption about Hardy