WorldWideScience

Sample records for reverse engineering electronic

  1. Engineering Encounters: Reverse Engineering

    Science.gov (United States)

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  2. Reverse engineering for quality systems

    International Nuclear Information System (INIS)

    Nolan, A.J.

    1995-01-01

    When the age of software engineering began, many companies were faced with a problem of how to support the older, pre-software-engineering, programs. The techniques of reverse engineering and re-engineering were developed to bridge the gap between the past and the present. Although reverse engineering can be used for generating missing documentation, it can also be used as a means to demonstrate quality in these older programs. This paper presents, in the form of a case study, how Rolls-Royce and Associates Limited addressed the quality issues of reverse engineering and re-engineering. (author)

  3. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  4. Reverse engineering of RFID devices

    NARCIS (Netherlands)

    Bokslag, W.

    2015-01-01

    This paper discusses the relevance and potential impact of both RFID and reverse engineering of RFID technology, followed by a discussion of common protocols and internals of RFID technology. The focus of the paper is on providing an overview of the different approaches to reverse engineering RFID

  5. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  6. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-01-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent

  7. Malware analysis and reverse engineering

    OpenAIRE

    Šváb, Martin

    2014-01-01

    Focus of this thesis is reverse engineering in information technology closely linked with the malware analysis. It explains fundamentals of IA-32 processors architecture and basics of operating system Microsoft Windows. Main part of this thesis is dedicated to the malware analysis, including description of creating a tool for simplification of static part of the analysis. In Conclusion various approaches to the malware analysis, which were described in previous part of the thesis, are practic...

  8. Reverse engineering of integrated circuits

    Science.gov (United States)

    Chisholm, Gregory H.; Eckmann, Steven T.; Lain, Christopher M.; Veroff, Robert L.

    2003-01-01

    Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.

  9. Repeatable Reverse Engineering with PANDA

    Science.gov (United States)

    2015-12-08

    necessary layout information for the Android 2.3 and 4.2 SDK kernels. See Section IV-C for an example of the kind of deep reverse engineering of Android apps ...code re-use and simplifying complex analysis development. We demonstrate PANDA’s effectiveness via a number of use cases, including enabling an old but...continue to function. 2) Identify critical vulnerabilities . 3) Understand the true purpose and actions of code. It is common for legacy code to stop

  10. Electronics engineer's reference book

    CERN Document Server

    Turner, L W

    1976-01-01

    Electronics Engineer's Reference Book, 4th Edition is a reference book for electronic engineers that reviews the knowledge and techniques in electronics engineering and covers topics ranging from basics to materials and components, devices, circuits, measurements, and applications. This edition is comprised of 27 chapters; the first of which presents general information on electronics engineering, including terminology, mathematical equations, mathematical signs and symbols, and Greek alphabet and symbols. Attention then turns to the history of electronics; electromagnetic and nuclear radiatio

  11. Engineered phages for electronics.

    Science.gov (United States)

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. DIC-CAM recipe for reverse engineering

    Science.gov (United States)

    Romero-Carrillo, P.; Lopez-Alba, E.; Dorado, R.; Diaz-Garrido, F. A.

    2012-04-01

    Reverse engineering (RE) tries to model and manufacture an object from measurements one of a reference object. Modern optical measurement systems and computer aided engineering software have improved reverse engineering procedures. We detail the main RE steps from 3D digitalization by Digital Image Correlation to manufacturing. The previous description is complemented with an application example, which portrays the performance of RE. The differences between original and manufactured objects are less than 2 mm (close to the tool radius).

  13. Electron microscopy for Engineers

    International Nuclear Information System (INIS)

    Jones, I P

    2009-01-01

    This paper reviews the application of (mainly) Transmission Electron Microscopy (TEM) in an engineering context. The first two sections are TEM and chemical in nature; the final three sections are more general and include aspects of Scanning Electron Microscopy (SEM).

  14. Reverse engineering of the robot base platform

    International Nuclear Information System (INIS)

    Anwar A Rahman; Azizul Rahman A Aziz; Mohd Arif Hamzah; Muhd Nor Atan; Fadil Ismail; Rosli Darmawan

    2009-01-01

    The robot base platform used to place the robotic arm version 2 was imported through a local company. The robot base platform is used as a reference for reverse egineering development for a smaller size robot. The paper will discuss the reverse engineering design process and parameters involved in the development of the robot base platform. (Author)

  15. Electronics engineer's reference book

    CERN Document Server

    Mazda, F F

    1989-01-01

    Electronics Engineer's Reference Book, Sixth Edition is a five-part book that begins with a synopsis of mathematical and electrical techniques used in the analysis of electronic systems. Part II covers physical phenomena, such as electricity, light, and radiation, often met with in electronic systems. Part III contains chapters on basic electronic components and materials, the building blocks of any electronic design. Part IV highlights electronic circuit design and instrumentation. The last part shows the application areas of electronics such as radar and computers.

  16. Research regarding reverse engineering for aircraft components

    Directory of Open Access Journals (Sweden)

    Udroiu Razvan

    2017-01-01

    Full Text Available Reverse engineering is a useful technique used in manufacturing and design process of new components. In aerospace industry new components can be developed, based on existing components without technical Computer Aided Design (CAD data, in order to reduce the development cycle of new products. This paper proposes a methodology wherein the CAD model of turbine blade can be build using computer aided reverse engineering technique utilising a 5 axis Coordinate Measuring Machine (CMM. The proposed methodology uses a scanning strategy by features, followed by a design methodology for 3D modelling of complex shapes.

  17. Detecting A Botnet By Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Oesman Hendra Kelana

    2013-06-01

    Full Text Available Abstract— Botnet malware is a malicious program. Botnet that infects computers, called bots, will be controlled by a botmaster to do various things such as: spamming, phishing, keylogging Distributed Denial of Service (DDoS and other activities that are generally profitable to the owner of the bot (botmaster or those who use botnet services. The problem is that many computers have been controlled by botnets without the knowledge of the computer owner.  There are many ways to examine botnets, for example by studying the traffic from the botnet network, studying how botnets communicate to each, studying how each robot receives orders to do something, and so forth. Of the many methods, the most frequently and commonly used is the reverse engineering, where researchers study how a botnet works by botnet debugging. In this study the author tries to understand or research botnets by taking a type of botnet, namely Agobot, using reverse engineering.  One of the result of the research is that malware program files in general and in particular botnet has a technique to obscure the way that research using reverse engineering. Another result also shows that the botnet Agobot runs on computers by using the Windows service, and by changing the Windows registry so that every time the computer starts, Agobot always actively works in the computer memory. Keywords— Malware, Bot, Botnet, Botmaster, Agobot, Spam, Distributed Denial of Services, Identity Theft, Computer Security, Reverse Engineering, Debug, Windows Service, the Registry.

  18. Reversibility: An Engineer's Point of View

    Energy Technology Data Exchange (ETDEWEB)

    Berest, Pierre [LMS, ecole Polytechnique (France)

    2012-07-01

    Reversibility is the most consistent option in a democratic country. However reversibility may also have several drawbacks which must be identified and mitigated. Reversibility of a geological repository is a relatively new idea in France. The 1991 law dedicated to nuclear waste management considered reversibility as a possible option. Fifteen years later, the 2006 law mandated that a deep repository must be reversible and that the exact content of this notion should be defined by a new law to be discussed by the Parliament in 2015. Reversibility was not a concern put forward by engineers. It clearly originated from a societal demand sponsored and formulated by the Parliament. Since 1991, the exact meaning of this mandate progressively became more precise. In the early days, reversibility meant the technical and financial capability to retrieve the wastes from the repository, at least for some period of time after being emplaced. Progressively, a broader definition, suggested by Andra, was accepted: reversibility also means that a disposal facility should be operated in such a way that a stepwise decision-making process is possible. At each step, society must be able to decide to proceed to the next step, to pause or to reverse a step. Several benefits can be expected from a reversible repository. Some technical safety concerns may be only recognised after waste emplacement. Radioactive wastes may become a resource whose recoverability is desirable. Regulations may change, alternative waste treatment or better disposal techniques may be developed, or the need to modify a component of the facility may arise. Looking back at how chemical or domestic wastes were managed some 50 years ago easily underscores that it is not unreasonable to hope for significant advances in the future. For scientists and engineers, reversibility proves to have several other merits. To design and build a good repository, time is needed. The operator of a mine or of an oil field knows that

  19. Variable Cycle Intake for Reverse Core Engine

    Science.gov (United States)

    Suciu, Gabriel L (Inventor); Chandler, Jesse M (Inventor); Staubach, Joseph B (Inventor)

    2016-01-01

    A gas generator for a reverse core engine propulsion system has a variable cycle intake for the gas generator, which variable cycle intake includes a duct system. The duct system is configured for being selectively disposed in a first position and a second position, wherein free stream air is fed to the gas generator when in the first position, and fan stream air is fed to the gas generator when in the second position.

  20. Space Electronic Test Engineering

    Science.gov (United States)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  1. Understanding Virtual Objects through Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Vera Moitinho

    2012-11-01

    Full Text Available The main objective of our research is to develop a new methodology, based on Reverse Engineering processes – 3D scan, quantitative data analysis and Artificial Intelligence techniques, in particular simulation – to study the relationship between form and function of artefacts. Furthermore, we aim to provide new data, as well as possible explanations of the archaeological record according to what it expects about social activity, including working processes, by simulating the potentialities of such actions in terms of input-output relationships.

  2. High Pressure Reverse Flow APS Engine

    Science.gov (United States)

    Senneff, J. M.

    1972-01-01

    A design and test demonstration effort was undertaken to evaluate the concept of the reverse flow engine for the APS engine application. The 1500 lb (6672 N) thrust engine was designed to operate on gaseous hydrogen and gaseous oxygen propellants at a mixture ratio of 4 and to achieve the objective performance of 435 sec (4266 Nsec/kg) specific impulse. Superimposed durability requirements called for a million-cycle capability with 50 hours duration. The program was undertaken as a series of tasks including the initial preliminary design, design of critical test components and finally, the design and demonstration of an altitude engine which could be used interchangeably to examine operating parameters as well as to demonstrate the capability of the concept. The program results are reported with data to indicate that all of the program objectives were met or exceeded within the course of testing on the program. The analysis effort undertaken is also reported in detail and supplemented with test data in some cases where prior definitions could not be made. The results are contained of these analyses as well as the test results conducted throughout the course of the program. Finally, the test data and analytical results were combined to allow recommendations for a flight weight design. This preliminary design effort is also detailed.

  3. Reverse engineering of inductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Pina, J M; Neves, M Ventim; Rodrigues, A L [Centre of Technology and Systems Faculdade de Ciencias e Tecnologia, Nova University of Lisbon Monte de Caparica, 2829-516 Caparica (Portugal); Suarez, P; Alvarez, A, E-mail: jmmp@fct.unl.p [' Benito Mahedero' Group of Electrical Applications of Superconductors Escuela de IngenierIas Industrials, University of Extremadura Avenida de Elvas s/n, 06006 Badajoz (Spain)

    2010-06-01

    The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.

  4. Reverse engineering of inductive fault current limiters

    International Nuclear Information System (INIS)

    Pina, J M; Neves, M Ventim; Rodrigues, A L; Suarez, P; Alvarez, A

    2010-01-01

    The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.

  5. Application of industrial CT in reverse engineering technology

    International Nuclear Information System (INIS)

    Fang Liyong; Li Hui; Bai Jinping; Li Bailin

    2013-01-01

    The basic principle and basic steps of reverse engineering technology based on industrial CT are described. The recent research progresses and situation at home and abroad of reverse engineering technology based on industrial CT image are respectively described, analyzed and summarized from two routes which are surface segmentation and volume segmentation. An example of conch is used to exhibit the results from the two routes in reverse engineering technology based on industrial CT image. Finally, some difficulties in application and the future developments of reverse engineering technology based on industrial CT are prospected. (authors)

  6. Introduction to electronic engineering I

    International Nuclear Information System (INIS)

    Kim, Bong Ryeol; Park, Han Gue; Lee, Tae Won; Choi, Gap Seok

    1979-09-01

    It deals with basic element of electronic engineering, which are an electric network such as alternating current voltage, distributed self, energy and power of an AC circuit, matrix, Tie-set and Cut-set, Fourier Transform and Laplace Transform, electromagnetics with vector theory, dot product and cross product, gradient, divergence static electricity, dielectric substance and capacity, boundary condition, resistance, magnetic field, magnetic circuit and electromagnetic field, electronic circuit including power circuit, amplification circuit, modulation and digital circuit, physical electronic engineering about movement of electron, semiconductor and integrated circuit.

  7. Novel combination of reverse engineering and vapid prototyping in medicine

    CSIR Research Space (South Africa)

    Schenker, R

    1999-08-01

    Full Text Available The technologies of reverse engineering and rapid prototyping are emerging as useful new tools in medicine. One application is of particular interest in orthopaedic, dental and reconstructive surgery. It involves the imaging, modelling...

  8. Reverse Engineering Integrated Circuits Using Finite State Machine Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oler, Kiri J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Carl H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-12

    In this paper, we present a methodology for reverse engineering integrated circuits, including a mathematical verification of a scalable algorithm used to generate minimal finite state machine representations of integrated circuits.

  9. Vertical Integration and Reverse Engineering of Agricultural Enterprises

    Institute of Scientific and Technical Information of China (English)

    Gang; WU; Yong; DU

    2014-01-01

    This paper studies the potential effects of agricultural enterprise’s vertical integration and reverse engineering on downstream firms.Suppliers who invest reverse engineering technology can exploit customer’s information. An integrated supplier can obtain at no cost the information from its subsidiary. Based on repeated game and considered corporate " good" or " bad" type,this paper analysis supplier’s selection and downstream investment in innovation. The results showed that: when the cost is higher than the threshold value no company invest in reverse engineering,when the cost is lower than the threshold value the integration company invest in reverse engineering; in the second period,vertical integration reduce the downstream independent enterprise’s innovation investment and profits,integrated enterprise increase innovation investment and profits; during the first period of the game,the independent downstream firms being " completely foreclosure".

  10. Reverse Engineering Camouflaged Sequential Integrated Circuits Without Scan Access

    OpenAIRE

    Massad, Mohamed El; Garg, Siddharth; Tripunitara, Mahesh

    2017-01-01

    Integrated circuit (IC) camouflaging is a promising technique to protect the design of a chip from reverse engineering. However, recent work has shown that even camouflaged ICs can be reverse engineered from the observed input/output behaviour of a chip using SAT solvers. However, these so-called SAT attacks have so far targeted only camouflaged combinational circuits. For camouflaged sequential circuits, the SAT attack requires that the internal state of the circuit is controllable and obser...

  11. Android Application Protection against Static Reverse Engineering based on Multidexing

    Directory of Open Access Journals (Sweden)

    Nak Young Kim

    2016-11-01

    Full Text Available DEX files are executable files of Android applications. Since DEX files are in the format of Java bytecodes, their Java source codes can be easily obtained using static reverse engineering tools. This results in numerous Android application thefts. There are some tools (e.g. bangcle, ijiami, liapp that protect Android applications against static reverse engineering utilizing dynamic code loading. These tools usually encrypt classes.dex in an APK file. When the application is launched, the encrypted classes.dex file is decrypted and dynamically loaded. However, these tools fail to protect multidex APKs, which include more than one DEX files (classes2.dex, classes3.dex, ... to accommodate large-sized execution codes. In this paper, we propose a technique that protects multidex Android applications against static reverse engineering. The technique can encrypt/decrypt multiple DEX files in APK files and dynamically load them. The experimental results show that the proposed technique can effiectively protect multidex APKs.

  12. Parametric Optimization Design of Brake Block Based on Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Jin Hua-wei

    2017-01-01

    Full Text Available As one of the key part of automotive brake,the performance of brake block has a direct impact on the safety and comfort of cars. Modeling the brake block of disc brake in reverse parameterization by reverse engineering software, analyzing and optimizing the reconstructed model by CAE software. Processing the scanned point cloud by Geomagic Studio and reconstructing the CAD model of the brake block with the parametric surface function of the software, then analyzing and optimizing it by Wrokbench. The example shows that it is quick to reconstruct the CAD model of parts by using reverse parameterization method and reduce part re-design development cycle significantly.

  13. Application of reverse engineering in the medical industry.

    Science.gov (United States)

    Kaleev, A. A.; Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.

    2017-09-01

    The purpose of this research is to develop on the basis of existing analogs new design of ophthalmologic microsurgical tweezers by using reverse engineering techniques. Virtual model was obtained by using a three-dimensional scanning system Solutionix Rexcan 450 MP. Geomagic Studio program was used to remove defects and inaccuracies of the obtained parametric model. A prototype of the finished model was made on the installation of laser stereolithography Projet 6000. Total time of the creation was 16 hours from the reverse engineering procedure to 3D-printing of the prototype.

  14. Newnes radio and electronics engineer's pocket book

    CERN Document Server

    Moorshead, H W; Perry, J

    1978-01-01

    Newnes Radio and Electronics Engineer's Pocket Book, Fifteenth Edition provides reference of the information relevant in radio and electronics engineering. The book presents tables, illustrations, and diagrams of various data used in radio and electronics engineering. The coverage of the text includes abbreviations and symbols, electrical equations, and code conversions. The text will be useful to engineers, technicians, and other professionals who require a reference about the different aspects of radio and electronics.

  15. An Analog Computer for Electronic Engineering Education

    Science.gov (United States)

    Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.

    2011-01-01

    This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…

  16. Teach CAD and Measuring Skills through Reverse Engineering

    Science.gov (United States)

    Board, Keith

    2012-01-01

    This article describes a reverse engineering activity that gives students hands-on, minds-on experience with measuring tools, machine parts, and CAD. The author developed this activity to give students an abundance of practical experience with measuring tools. Equally important, it provides a good interface between the virtual world of CAD 3D…

  17. A gene network simulator to assess reverse engineering algorithms.

    Science.gov (United States)

    Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2009-03-01

    In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.

  18. Contact mechanics of reverse engineered distal humeral hemiarthroplasty implants.

    Science.gov (United States)

    Willing, Ryan; King, Graham J W; Johnson, James A

    2015-11-26

    Erosion of articular cartilage is a concern following distal humeral hemiarthroplasty, because native cartilage surfaces are placed in contact with stiff metallic implant components, which causes decreases in contact area and increases in contact stresses. Recently, reverse engineered implants have been proposed which are intended to promote more natural contact mechanics by reproducing the native bone or cartilage shape. In this study, finite element modeling is used in order to calculate changes in cartilage contact areas and stresses following distal humeral hemiarthroplasty with commercially available and reverse engineered implant designs. At the ulna, decreases in contact area were -34±3% (p=0.002), -27±1% (pengineered and cartilage reverse engineered designs, respectively. Peak contact stresses increased by 461±57% (p=0.008), 387±127% (p=0.229) and 165±16% (p=0.003). At the radius, decreases in contact area were -21±3% (p=0.013), -13±2% (p0.999), 241±32% (p=0.010) and 61±10% (p=0.021). Between the three different implant designs, the cartilage reverse engineered design yielded the largest contact areas and lowest contact stresses, but was still unable to reproduce the contact mechanics of the native joint. These findings align with a growing body of evidence indicating that although reverse engineered hemiarthroplasty implants can provide small improvements in contact mechanics when compared with commercially available designs, further optimization of shape and material properties is required in order reproduce native joint contact mechanics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The ATPG Attack for Reverse Engineering of Combinational Hybrid Custom-Programmable Circuits

    Science.gov (United States)

    2017-03-23

    Introduction The widely practiced horizontal integrated circuit supply chain exposes a design to various types of attacks including the reverse engineering ...STT_CMOS designs for reverse- engineering prevention, DAC 2016. [5] M. E. Massad and et. al. Integrated circuit (IC) decamouflaging: reverse...The ATPG Attack for Reverse Engineering of Combinational Hybrid Custom-Programmable Circuits Raza Shafiq Hamid Mahmoodi Houman Homayoun Hassan

  20. Benefits of reverse engineering technologies in software development makerspace

    Directory of Open Access Journals (Sweden)

    Aabidi M.H.

    2017-01-01

    Full Text Available In the recent decades, the amount of data produced by scientific, engineering, and life science applications has increased with several orders of magnitude. In parallel with this development, the applications themselves have become increasingly complex in terms of functionality, structure, and behavior. In the same time, development and production cycles of such applications exhibit a tendency of becoming increasingly shorter, due to factors such as market pressure and rapid evolution of supporting and enabling technologies. As a consequence, an increasing fraction of the cost of creating new applications and manufacturing processes shifts from the creation of new artifacts to the adaption of existing ones. A key component of this activity is the understanding of the design, operation, and behavior of existing manufactured artifacts, such as software code bases, hardware systems, and mechanical assemblies. For instance, in the software industry, it is estimated that maintenance costs exceed 80% of the total costs of a software product's lifecycle, and software understanding accounts for as much as half of these maintenance costs. To facilitate the software development process, it would be ideal to have tools that automatically generate or help to generate UML (Unified Modeling Language models from source code. Reverse engineering the software architecture from source code provides a valuable service to software practitioners. Case tools implementing MDA and reverse-engineering constitute an important opportunity of software development engineers. So MDA and reverse engineering is an important key witch make makerspace more productive and more efficient.

  1. Reversible and irreversible heat engine and refrigerator cycles

    Science.gov (United States)

    Leff, Harvey S.

    2018-05-01

    Although no reversible thermodynamic cycles exist in nature, nearly all cycles covered in textbooks are reversible. This is a review, clarification, and extension of results and concepts for quasistatic, reversible and irreversible processes and cycles, intended primarily for teachers and students. Distinctions between the latter process types are explained, with emphasis on clockwise (CW) and counterclockwise (CCW) cycles. Specific examples of each are examined, including Carnot, Kelvin and Stirling cycles. For the Stirling cycle, potentially useful task-specific efficiency measures are proposed and illustrated. Whether a cycle behaves as a traditional refrigerator or heat engine can depend on whether it is reversible or irreversible. Reversible and irreversible-quasistatic CW cycles both satisfy Carnot's inequality for thermal efficiency, η ≤ η C a r n o t . Irreversible CCW cycles with two reservoirs satisfy the coefficient of performance inequality K ≤ K C a r n o t . However, an arbitrary reversible cycle satisfies K ≥ K C a r n o t when compared with a reversible Carnot cycle operating between its maximum and minimum temperatures, a potentially counterintuitive result.

  2. Mobile Timekeeping Application Built on Reverse-Engineered JPL Infrastructure

    Science.gov (United States)

    Witoff, Robert J.

    2013-01-01

    Every year, non-exempt employees cumulatively waste over one man-year tracking their time and using the timekeeping Web page to save those times. This app eliminates this waste. The innovation is a native iPhone app. Libraries were built around a reverse- engineered JPL API. It represents a punch-in/punch-out paradigm for timekeeping. It is accessible natively via iPhones, and features ease of access. Any non-exempt employee can natively punch in and out, as well as save and view their JPL timecard. This app is built on custom libraries created by reverse-engineering the standard timekeeping application. Communication is through custom libraries that re-route traffic through BrowserRAS (remote access service). This has value at any center where employees track their time.

  3. Computer-aided dental prostheses construction using reverse engineering.

    Science.gov (United States)

    Solaberrieta, E; Minguez, R; Barrenetxea, L; Sierra, E; Etxaniz, O

    2014-01-01

    The implementation of computer-aided design/computer-aided manufacturing (CAD/CAM) systems with virtual articulators, which take into account the kinematics, constitutes a breakthrough in the construction of customised dental prostheses. This paper presents a multidisciplinary protocol involving CAM techniques to produce dental prostheses. This protocol includes a step-by-step procedure using innovative reverse engineering technologies to transform completely virtual design processes into customised prostheses. A special emphasis is placed on a novel method that permits a virtual location of the models. The complete workflow includes the optical scanning of the patient, the use of reverse engineering software and, if necessary, the use of rapid prototyping to produce CAD temporary prostheses.

  4. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    Science.gov (United States)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  5. Efficient Reverse-Engineering of a Developmental Gene Regulatory Network

    Science.gov (United States)

    Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes

    2012-01-01

    Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to

  6. Cranioplasty prosthesis manufacturing based on reverse engineering technology

    Science.gov (United States)

    Chrzan, Robert; Urbanik, Andrzej; Karbowski, Krzysztof; Moskała, Marek; Polak, Jarosław; Pyrich, Marek

    2012-01-01

    Summary Background Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing. Material/Methods CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared. Results In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes. Conclusions Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material. PMID:22207125

  7. Biometrics in wearable products: Reverse Engineering and numerical modeling

    OpenAIRE

    Rao, Andrea

    2011-01-01

    The Reverse Engineering (RE) techniques and the Finite Element Modelling (FEM) are widely used tools in many scientific fields. They were firstly developed for the mechanics but in the last times became common for other disciplines. In the thesis these techniques are used for the customization of the wearable products. It is possible to observe that the geometry of whatever wearable product is fundamental for the comfort. In particular, starting from the need of wearable product it is possibl...

  8. A Predictive Approach to Network Reverse-Engineering

    Science.gov (United States)

    Wiggins, Chris

    2005-03-01

    A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.

  9. Reverse electrodialysis heat engine for sustainable power production

    International Nuclear Information System (INIS)

    Tamburini, A.; Tedesco, M.; Cipollina, A.; Micale, G.; Ciofalo, M.; Papapetrou, M.; Van Baak, W.; Piacentino, A.

    2017-01-01

    Graphical abstract: State of the art technologies for the conversion of heat into power. Grey circles refer to technologies at very early stage of development and non-available at industrial level. The Carnot efficiency (on the secondary horizontal axis) is evaluated assuming a cold sink temperature of 25 °C. SRC-hot gases: Steam Rankine Cycle integrated with gas turbine/other topping cycles; SRC-fuel: Steam Rankine Cycle directly fuelled by oil, coal or other fuels; KC: Kalina Cycle; ORC: Organic Rankine Cycle; TEG: Thermoelectric Generation; PEPG: Piezoelectric Power Generation with waste heat-powered expansion/compression cycle; OHE: Osmotic Heat Engine; REDHE, Reverse Electrodialysis Heat Engine (this paper). Display Omitted -- Highlights: •For the first time, the potential of Reverse Electrodialysis Heat Engine is assessed. •An overview of the possible regeneration methods is presented. •Performance of the RED unit fed by different salty solutions was suitably optimized. •Three different RED Heat Engine scenarios were studied. •Exergetic efficiency of about 85% could be achieved in the foreseen future. -- Abstract: Reverse Electrodialysis Heat Engine (REDHE) is a promising technology to convert waste heat at temperatures lower than 100 °C into electric power. In the present work an overview of the possible regeneration methods is presented and the technological challenges for the development of the RED Heat Engine (REDHE) are identified. The potential of this power production cycle was investigated through a simplified mathematical model. In the first part of the work, several salts were singularly modelled as possible solutes in aqueous solutions feeding the RED unit and the corresponding optimal conditions were recognized via an optimization study. In the second part, three different RED Heat Engine scenarios were studied. Results show that power densities much higher than those relevant to NaCl-water solutions can be obtained by using different

  10. Strategies for replacement of obsolete equipment - including reverse engineering

    International Nuclear Information System (INIS)

    Irish, C.S.

    2000-01-01

    The presentation shall detail the challenges facing nuclear power plants with the replacement of obsolete equipment and the strategies used to overcome those challenges. The presentation will outline the common equipment types which are either obsolete or are becoming obsolete, with a focus on safety related components. The four options of the obsolete equipment replacement philosophy will be presented with replacement examples from each of the options shown for discussion purposes. Detailed examples from each of the four obsolete equipment replacement options of: commercially available equivalent component; modification of a commercial available component; reverse engineering of the original component; and finally, design changes using a new component, shall be presented to evaluate the advantages and disadvantages of each option. The presentation will include the technical challenges, cost and schedule concerns for each of the four options. Emphasis will be placed on the technological challenges associated with replacing old and obsolete equipment. The following is a bullet list of the challenges which will be discussed: Missing, misleading or no information on the original component; Acquiring information from the original equipment manufacturer and the plant; Using a sample component for the replacement evaluation and or reverse engineering; and Reverse engineering old equipment with newly available discrete components. The presentation will include the equivalency documentation using the EPRI guidelines when replacing an original component with a different yet form, fit and functional equivalent component. The presentation will conclude with a discussion of the advantages and disadvantages of the replacement of the obsolete component with a form, fit and functional equivalent component vs. the replacement of the original component with a new component with today's technology. (author)

  11. Critical evaluation of reverse engineering tool Imagix 4D!

    Science.gov (United States)

    Yadav, Rashmi; Patel, Ravindra; Kothari, Abhay

    2016-01-01

    The comprehension of legacy codes is difficult to understand. Various commercial reengineering tools are available that have unique working styles, and are equipped with their inherent capabilities and shortcomings. The focus of the available tools is in visualizing static behavior not the dynamic one. Therefore, it is difficult for people who work in software product maintenance, code understanding reengineering/reverse engineering. Consequently, the need for a comprehensive reengineering/reverse engineering tool arises. We found the usage of Imagix 4D to be good as it generates the maximum pictorial representations in the form of flow charts, flow graphs, class diagrams, metrics and, to a partial extent, dynamic visualizations. We evaluated Imagix 4D with the help of a case study involving a few samples of source code. The behavior of the tool was analyzed on multiple small codes and a large code gcc C parser. Large code evaluation was performed to uncover dead code, unstructured code, and the effect of not including required files at preprocessing level. The utility of Imagix 4D to prepare decision density and complexity metrics for a large code was found to be useful in getting to know how much reengineering is required. At the outset, Imagix 4D offered limitations in dynamic visualizations, flow chart separation (large code) and parsing loops. The outcome of evaluation will eventually help in upgrading Imagix 4D and posed a need of full featured tools in the area of software reengineering/reverse engineering. It will also help the research community, especially those who are interested in the realm of software reengineering tool building.

  12. Strategies for replacement of obsolete equipment, including reverse engineering

    International Nuclear Information System (INIS)

    Irish, C.S.

    2003-01-01

    The presentation shall detail the challenges facing nuclear power plants with the replacement of obsolete equipment and the strategies used to overcome those challenges. The presentation will outline the common equipment types which are either obsolete or are becoming obsolete, with a focus on safety related components. The four options of the obsolete equipment replacement philosophy will be presented with replacement examples from each of the options shown for discussion purposes. Detailed examples from each of the four obsolete equipment replacement options of, (1) commercially available equivalent component, (2) modification of a commercial available component, (3) reverse engineering of the original component and finally (4) design changes using a new component, shall be presented to evaluate the advantages and disadvantages of each option. The presentation will include the technical challenges, cost and schedule concerns for each of the four options. Emphasis will be placed on the technological challenges associated with replacing old and obsolete equipment. The following is a bullet list of the challenges which will be discussed: 1) Missing, misleading or no information on the original component. 2) Acquiring information from the original equipment manufacturer and the plant. 3) Using a sample component for the replacement evaluation and or reverse engineering. 4) Reverse engineering old equipment with newly available discrete components. The presentation will include the equivalency documentation using the EPRI guidelines when replacing an original component with a different yet form, fit and functional equivalent component. The presentation will conclude with a discussion of the advantages and disadvantages of the replacement of the obsolete component with a form, fit and functional equivalent component vs. the replacement of the original component with a new component with today's technology. (author)

  13. Graphical User Interfaces Reverse Engineering for Requirements Elicitation - Literature Review

    Directory of Open Access Journals (Sweden)

    Carol Jaimes

    2016-06-01

    Full Text Available This paper exhibits a synthesis of the use of legacy systems GUI reverse engineering as a tool to software requirements elicitation. It presents a literature review describing the approaches related to the topic. This work primary goal is to determine the major investigations in this area, and if there are techniques focused exclusively on the observation of the legacy applications GUI to obtain software requirements in a standard format, without the use of source code, data structures, documentation or sophisticated algorithms for the application analysis.

  14. Drag reduction of a reverse-engineered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Lecrivain, G.; Slaouti, A.; Kennedy, I. [Manchester Metropolitan Univ., Manchester (United Kingdom). Dept. of Engineering and Technology

    2007-08-09

    The aerodynamic performance of a hand-made sports car was numerically assessed using computational fluid dynamics (CFD) analysis of various shape modifications. The purpose was to achieve a lower drag design. Reverse-engineering was used to create a virtual model of complex 3D shapes for which no computer-aided drawings (CAD) data existed. From the predicted flow, the body could be redesigned for better performance prior to its remanufacturing. This paper described the multidisciplinary procedure involving reverse-engineering and CAD that was used to recreate a suitable watertight model of the sports car. The different errors embedded in the successive stages leading to the final model were accurately assessed and minimized. The whole vehicle was remodelled for drag reduction. Surface reconstruction was carried out, an an accurate set of high quality Non-Uniform Rational B-Spline (NURBS) surfaces was produced over the polygonal mesh resulting in a fine visual surface finish with smooth lines and contours, as required in the automotive industry. Further modifications were implemented for the purpose of drag reduction and to improve its aerodynamic performance. The application described in this paper can be extended to any other similarly intricate vehicle or industrial component. 12 refs., 1 tab., 11 figs.

  15. Adding Robustness to Support Vector Machines Against Adversarial Reverse Engineering

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2014-01-01

    Many classification algorithms have been successfully deployed in security-sensitive applications including spam filters and intrusion detection systems. Under such adversarial environments, adversaries can generate exploratory attacks against the defender such as evasion and reverse engineering. In this paper, we discuss why reverse engineering attacks can be carried out quite efficiently against fixed classifiers, and investigate the use of randomization as a suitable strategy for mitigating their risk. In particular, we derive a semidefinite programming (SDP) formulation for learning a distribution of classifiers subject to the constraint that any single classifier picked at random from such distribution provides reliable predictions with a high probability. We analyze the tradeoff between variance of the distribution and its predictive accuracy, and establish that one can almost always incorporate randomization with large variance without incurring a loss in accuracy. In other words, the conventional approach of using a fixed classifier in adversarial environments is generally Pareto suboptimal. Finally, we validate such conclusions on both synthetic and real-world classification problems. Copyright 2014 ACM.

  16. Electron temperature diagnostics in the RFX reversed field pinch experiment

    International Nuclear Information System (INIS)

    Bartiromo, R.; Carraro, L.; Marrelli, L.; Murari, A.; Pasqualotto, R.; Puiatti, M.E.; Scarin, P.; Valisa, M.; Franz, P.; Martin, P.; Zabeo, L.

    2000-01-01

    The paper presents an integrated approach to the problem of electron temperature diagnostics of the plasma in a reversed field pinch. Three different methods, sampling different portions of the electron distribution function, are adopted, namely Thomson scattering, soft X-ray spectroscopy by pulse-height analysis and filtered soft X-ray intensity ratio. A careful analysis of the different sources of systematic errors is performed and a novel statistical approach is adopted to mutually validate the three independent measurements. A satisfactory agreement is obtained over a large range of experimental conditions, indicating that in the plasma core the energy distribution function is well represented by a maxwellian. (author)

  17. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  18. Smartphone based scalable reverse engineering by digital image correlation

    Science.gov (United States)

    Vidvans, Amey; Basu, Saurabh

    2018-03-01

    There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.

  19. [Veneer computer aided design based on reverse engineering technology].

    Science.gov (United States)

    Liu, Ming-li; Chen, Xiao-dong; Wang, Yong

    2012-03-01

    To explore the computer aided design (CAD) method of veneer restoration, and to assess if the solution can help prosthesis meet morphology esthetics standard. A volunteer's upper right central incisor needed to be restored with veneer. Super hard stone models of patient's dentition (before and after tooth preparation) were scanned with the three-dimensional laser scanner. The veneer margin was designed as butt-to-butt type. The veneer was constructed using reverse engineering (RE) software. The technique guideline of veneers CAD was explore based on RE software, and the veneers was smooth, continuous and symmetrical, which met esthetics construction needs. It was a feasible method to reconstruct veneer restoration based on RE technology.

  20. Automatic Reverse Engineering of Private Flight Control Protocols of UAVs

    Directory of Open Access Journals (Sweden)

    Ran Ji

    2017-01-01

    Full Text Available The increasing use of civil unmanned aerial vehicles (UAVs has the potential to threaten public safety and privacy. Therefore, airspace administrators urgently need an effective method to regulate UAVs. Understanding the meaning and format of UAV flight control commands by automatic protocol reverse-engineering techniques is highly beneficial to UAV regulation. To improve our understanding of the meaning and format of UAV flight control commands, this paper proposes a method to automatically analyze the private flight control protocols of UAVs. First, we classify flight control commands collected from a binary network trace into clusters; then, we analyze the meaning of flight control commands by the accumulated error of each cluster; next, we extract the binary format of commands and infer field semantics in these commands; and finally, we infer the location of the check field in command and the generator polynomial matrix. The proposed approach is validated via experiments on a widely used consumer UAV.

  1. Update of GRASP/Ada reverse engineering tools for Ada

    Science.gov (United States)

    Cross, James H., II

    1993-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional pretty printed Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype CSD generator (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3,e two update phases were completed. Update'92 focused on the initial analysis of evaluation data collected from software engineering students at Auburn University and the addition of significant enhancements to the user interface. Update'93 (the current update) focused on the statistical analysis of the data collected in the previous update and preparation of Version 3.4 of the prototype for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical

  2. Reversible S-nitrosylation in an engineered azurin

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Shiliang; Liu, Jing; Cowley, Ryan E.; Hosseinzadeh, Parisa; Marshall, Nicholas M.; Yu, Yang; Robinson, Howard; Nilges, Mark J.; Blackburn, Ninian J.; Solomon, Edward I.; Lu, Yi

    2016-04-25

    S-Nitrosothiols are known as reagents for NO storage and transportation and as regulators in many physiological processes. Although the S-nitrosylation catalysed by haem proteins is well known, no direct evidence of S-nitrosylation in copper proteins has been reported. Here, we report reversible insertion of NO into a copper–thiolate bond in an engineered copper centre in Pseudomonas aeruginosa azurin by rational design of the primary coordination sphere and tuning its reduction potential by deleting a hydrogen bond in the secondary coordination sphere. The results not only provide the first direct evidence of S-nitrosylation of Cu(II)-bound cysteine in metalloproteins, but also shed light on the reaction mechanism and structural features responsible for stabilizing the elusive Cu(I)–S(Cys)NO species. The fast, efficient and reversible S-nitrosylation reaction is used to demonstrate its ability to prevent NO inhibition of cytochrome bo3 oxidase activity by competing for NO binding with the native enzyme under physiologically relevant conditions.

  3. Un-Building Blocks: A Model of Reverse Engineering and Applicable Heuristics

    Science.gov (United States)

    2015-12-01

    Inclusion relationships of root events, events, and subevents .................179  Table 5.  Formal specification of reverse engineering model using Monterey...intend to stay technologically competitive at personal as well as societal levels. Third, reverse engineering is important for pedagogical reasons. It is...increasingly blurred (Anderson, 2012).4 Third, reverse engineering can be a pedagogical tool (Otto & Wood, 2000; O’Brien, 2010; Halsmer, 2013

  4. Reversed shear Alfven eigenmode stabilization by localized electron cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Van Zeeland, M A; Hyatt, A W; Lohr, J; Petty, C C [General Atomics, PO Box 85608 San Diego, CA 92186-5608 (United States); Heidbrink, W W [University of California-Irvine, Irvine, CA 92697 (United States); Nazikian, R; Solomon, W M; Gorelenkov, N N; Kramer, G J [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Austin, M E [University of Texas-Austin, Austin, TX 78712 (United States); Berk, H L [Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712 (United States); Holcomb, C T; Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA (United States); McKee, G R [University of Wisconsin-Madison, Madison, WI 53726 (United States); Sharapov, S E [Euratom/UKAEA Fusion Association, Culham, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Rhodes, T L [University of California-Los Angeles, Los Angeles, California, 90095 (United States)], E-mail: vanzeeland@fusion.gat.com

    2008-03-15

    Reversed shear Alfven eigenmode (RSAE) activity in DIII-D is stabilized by electron cyclotron heating (ECH) applied near the minimum of the magnetic safety factor (q{sub min}) in neutral beam heated discharges with reversed-magnetic shear. The degree of RSAE stabilization, fast ion density and the volume averaged neutron production (S{sub n}) are highly dependent on ECH deposition location relative to q{sub min}. While discharges with ECH stabilization of RSAEs have higher S{sub n} and more peaked fast ion profiles than discharges with significant RSAE activity, neutron production remains strongly reduced (up to 60% relative to TRANSP predictions assuming classical fast ion transport) even when RSAEs are stabilized.

  5. Internet-based dimensional verification system for reverse engineering processes

    International Nuclear Information System (INIS)

    Song, In Ho; Kim, Kyung Don; Chung, Sung Chong

    2008-01-01

    This paper proposes a design methodology for a Web-based collaborative system applicable to reverse engineering processes in a distributed environment. By using the developed system, design reviewers of new products are able to confirm geometric shapes, inspect dimensional information of products through measured point data, and exchange views with other design reviewers on the Web. In addition, it is applicable to verifying accuracy of production processes by manufacturing engineers. Functional requirements for designing this Web-based dimensional verification system are described in this paper. ActiveX-server architecture and OpenGL plug-in methods using ActiveX controls realize the proposed system. In the developed system, visualization and dimensional inspection of the measured point data are done directly on the Web: conversion of the point data into a CAD file or a VRML form is unnecessary. Dimensional verification results and design modification ideas are uploaded to markups and/or XML files during collaboration processes. Collaborators review the markup results created by others to produce a good design result on the Web. The use of XML files allows information sharing on the Web to be independent of the platform of the developed system. It is possible to diversify the information sharing capability among design collaborators. Validity and effectiveness of the developed system has been confirmed by case studies

  6. Internet-based dimensional verification system for reverse engineering processes

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Ho [Ajou University, Suwon (Korea, Republic of); Kim, Kyung Don [Small Business Corporation, Suwon (Korea, Republic of); Chung, Sung Chong [Hanyang University, Seoul (Korea, Republic of)

    2008-07-15

    This paper proposes a design methodology for a Web-based collaborative system applicable to reverse engineering processes in a distributed environment. By using the developed system, design reviewers of new products are able to confirm geometric shapes, inspect dimensional information of products through measured point data, and exchange views with other design reviewers on the Web. In addition, it is applicable to verifying accuracy of production processes by manufacturing engineers. Functional requirements for designing this Web-based dimensional verification system are described in this paper. ActiveX-server architecture and OpenGL plug-in methods using ActiveX controls realize the proposed system. In the developed system, visualization and dimensional inspection of the measured point data are done directly on the Web: conversion of the point data into a CAD file or a VRML form is unnecessary. Dimensional verification results and design modification ideas are uploaded to markups and/or XML files during collaboration processes. Collaborators review the markup results created by others to produce a good design result on the Web. The use of XML files allows information sharing on the Web to be independent of the platform of the developed system. It is possible to diversify the information sharing capability among design collaborators. Validity and effectiveness of the developed system has been confirmed by case studies

  7. GRASP/Ada 95: Reverse Engineering Tools for Ada

    Science.gov (United States)

    Cross, James H., II

    1996-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped an algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD), and a new visualization for a fine-grained complexity metric called the Complexity Profile Graph (CPG). By synchronizing the CSD and the CPG, the CSD view of control structure, nesting, and source code is directly linked to the corresponding visualization of statement level complexity in the CPG. GRASP has been integrated with GNAT, the GNU Ada 95 Translator to provide a comprehensive graphical user interface and development environment for Ada 95. The user may view, edit, print, and compile source code as a CSD with no discernible addition to storage or computational overhead. The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada 95 source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. The current update has focused on the design and implementation of a new Motif compliant user interface, and a new CSD generator consisting of a tagger and renderer. The Complexity Profile Graph (CPG) is based on a set of functions that describes the context, content, and the scaling for complexity on a statement by statement basis. When combined graphicafly, the result is a composite profile of complexity for the program unit. Ongoing research includes the development and refinement of the associated functions, and the development of the CPG generator prototype. The current Version 5.0 prototype provides the capability for the user to generate CSDs and CPGs from Ada 95 source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for

  8. Newnes electronics engineers pocket book

    CERN Document Server

    Brindley, Keith

    2013-01-01

    This book is packed with information and material which everyone involved in electronics will find indispensable. Now when you need to know a transistor's characteristics, or an integrated circuit's pinout details, simply look it up! The book is full of tables, symbols, formulae, conversions and illustrations.Promotion via the new Newnes Pocket Book catalogue to the electronics trade will drive sales into the book trade Covers component data; encapsulations; pin-outs; symbols & codings Extensive material on conversion factors, formulae; units and relationships

  9. Neutron tomography as a reverse engineering method applied to the IS-60 Rover gas turbine

    CSIR Research Space (South Africa)

    Roos, TH

    2011-09-01

    Full Text Available Probably the most common method of reverse engineering in mechanical engineering involves measuring the physical geometry of a component using a coordinate measuring machine (CMM). Neutron tomography, in contrast, is used primarily as a non...

  10. Electronics Engineering Research. Final report, FY 1979

    International Nuclear Information System (INIS)

    Weissenberger, S.

    1980-01-01

    Accomplishments in Electronics Engineering Research (EER) during FY79 spanned a broad range of technologies, from high-speed microelectronics to digital image enhancement; from underground probing with electromagnetic waves to detecting neutrons with a small solid-state device; and from computer systems to aid engineers, to software tools to aid programmers. This report describes the overall EER program and its objectives, summarizes progress made in FY79, and outlines plans for FY80

  11. Reverse Engineering Nature to Design Biomimetic Total Knee Implants.

    Science.gov (United States)

    Varadarajan, Kartik Mangudi; Zumbrunn, Thomas; Rubash, Harry E; Malchau, Henrik; Muratoglu, Orhun K; Li, Guoan

    2015-10-01

    While contemporary total knee arthroplasty (TKA) provides tremendous clinical benefits, the normal feel and function of the knee is not fully restored. To address this, a novel design process was developed to reverse engineer "biomimetic" articular surfaces that are compatible with normal soft-tissue envelope and kinematics of the knee. The biomimetic articular surface is created by moving the TKA femoral component along in vivo kinematics of normal knees and carving out the tibial articular surface from a rectangular tibial block. Here, we describe the biomimetic design process. In addition, we utilize geometric comparisons and kinematic simulations to show that; (1) tibial articular surfaces of conventional implants are fundamentally incompatible with normal knee motion, and (2) the anatomic geometry of the biomimetic surface contributes directly to restoration of normal knee kinematics. Such biomimetic implants may enable us to achieve the long sought after goal of a "normal" knee post-TKA surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Reversal of lattice, electronic structure, and magnetism in epitaxial SrCoOx thin films

    Science.gov (United States)

    Jeen, H.; Choi, W. S.; Lee, J. H.; Cooper, V. R.; Lee, H. N.; Seo, S. S. A.; Rabe, K. M.

    2014-03-01

    SrCoOx (x = 2.5 - 3.0, SCO) is an ideal material to study the role of oxygen content for electronic structure and magnetism, since SCO has two distinct topotactic phases: the antiferromagnetic insulating brownmillerite SrCoO2.5 and the ferromagnetic metallic perovskite SrCoO3. In this presentation, we report direct observation of a reversible lattice and electronic structure evolution in SrCoOx epitaxial thin films as well as different magnetic and electronic ground states between the topotactic phases.[2] By magnetization measurements, optical absorption, and transport measurements drastically different electronic and magnetic ground states are found in the epitaxially grown SrCoO2.5 and SrCoO3 thin films by pulsed laser epitaxy. First-principles calculations confirm substantial, which originate from the modification in the Co valence states and crystallographic structures. By real-time spectroscopic ellipsometry, the two electronically and magnetically different phases can be reversibly changed by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides. The work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  13. Electron Bifurcation and Confurcation in Methanogenesis and Reverse Methanogenesis

    Directory of Open Access Journals (Sweden)

    Zhen Yan

    2018-06-01

    conserving energy. The HdrA2B2C2 is also proposed to play a role in Fe(III-dependent reverse methanogenesis. A flavin-based electron confurcating (FBEC HdrABC complex is proposed for nitrate-dependent reverse methanogenesis in which the oxidation of CoM-SH/CoB-SH and Fdx2- is coupled to reduction of F420. The F420H2 donates electrons to a membrane complex that generates a proton gradient driving ATP synthesis.

  14. Effective Spend Management Through Electronic Reverse Auction Configurations

    Directory of Open Access Journals (Sweden)

    Mojmír Prídavok

    2013-07-01

    Full Text Available The purpose of the paper is to analyz wide range of possible auction strategies and configurations of eRA, with respect to the ever changing market conditions. Electronic reverse auction (eRA represents an electronic sourcing method of competitive bidding among a number of qualified suppliers. Theory assumes that eRA represents pure market environment with information perfectly distributed between both buyers and suppliers. Although initial eRA cost savings in B2B could be as high as 40%, without deeper knowledge of different auctions strategies and configurations, additional cost reductions are not possible. To identify crucial determinant, the statistical (correlation analysis on the data set of more than 18.000 auction items with different configuration parameters was conducted. Findings suggest that the more bidders are invited to the eRA, the better results could be expected. Additionally, the complexity of the eRA parameterization does not seem to influent the success of the eRA. These results can influence usage and SW development of eRA application in real environment. This research extends already realized studies in the field of electronic auctions for the B2B processes

  15. New Project System for Undergraduate Electronic Engineering

    Science.gov (United States)

    Chiu, Dirk M.; Chiu, Shen Y.

    2005-01-01

    A new approach to projects for undergraduate electronic engineering in an Australian university has been applied successfully for over 10 years. This approach has a number of projects running over three year period. Feedback from past graduates and their managers has confirmed that these projects train the students well, giving them the ability…

  16. Electronics Engineering Department Thrust Area report FY'84

    International Nuclear Information System (INIS)

    Minichino, C.; Phelps, P.L.

    1984-01-01

    This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided

  17. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  18. Electronic ignition system for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, L W

    1980-11-20

    Mechanical ignition adjustment devices are sensitive to many effects, for example breakage, faults due to manufacturing tolerances, play in the linkage and the effect of a dirty or corrosive environment. It is therefore the purpose of the invention to provide an electronic ignition system which avoids the disadvantages of a mechanical system. The invention provides adjustment of the ignition point, which gives advance of the ignition timing with increasing speed. An output signal is formed, which supersedes the signal supplied by the electronic control system, so that the ignition is advanced. This also occurs with a larger crankshaft angle before top dead centre of the engine. The electronic control system combines with a source of AC time signals which has a generator as electrical transmitter and a DC battery and ignition coil. The rotor of the electrical generator is driven synchronised with the engine. Structural and functional details of the transistor control circuits are given in 5 patent claims.

  19. Chemical respiratory allergy: Reverse engineering an adverse outcome pathway

    International Nuclear Information System (INIS)

    Kimber, Ian; Dearman, Rebecca J.; Basketter, David A.; Boverhof, Darrell R.

    2014-01-01

    Allergic sensitisation of the respiratory tract by chemicals is associated with rhinitis and asthma and remains an important occupational health issue. Although less than 80 chemicals have been confirmed as respiratory allergens the adverse health effects can be serious, and in rare instances can be fatal, and there are, in addition, related socioeconomic issues. The challenges that chemical respiratory allergy pose for toxicologists are substantial. No validated methods are available for hazard identification and characterisation, and this is due in large part to the fact that there remains considerable uncertainty and debate about the mechanisms through which sensitisation of the respiratory tract is acquired. Despite that uncertainty, there is a need to establish some common understanding of the key events and processes that are involved in respiratory sensitisation to chemicals and that might in turn provide the foundations for novel approaches to safety assessment. In recent years the concept of adverse outcome pathways (AOP) has gained some considerable interest among the toxicology community as a basis for outlining the key steps leading to an adverse health outcome, while also providing a framework for focusing future research, and for developing alternative paradigms for hazard characterisation. Here we explore application of the same general principles to an examination of the induction by chemicals of respiratory sensitisation. In this instance, however, we have chosen to adopt a reverse engineering approach and to model a possible AOP for chemical respiratory allergy working backwards from the elicitation of adverse health effects to the cellular and molecular mechanisms that are implicated in the acquisition of sensitisation

  20. Laser marking as a result of applying reverse engineering

    Science.gov (United States)

    Mihalache, Andrei; Nagîţ, Gheorghe; Rîpanu, Marius Ionuţ; Slǎtineanu, Laurenţiu; Dodun, Oana; Coteaţǎ, Margareta

    2018-05-01

    The elaboration of a modern manufacturing technology needs a certain quantum of information concerning the part to be obtained. When it is necessary to elaborate the technology for an existing object, such an information could be ensured by using the principles specific to the reverse engineering. Essentially, in the case of this method, the analysis of the surfaces and of other characteristics of the part must offer enough information for the elaboration of the part manufacturing technology. On the other hand, it is known that the laser marking is a processing method able to ensure the transfer of various inscriptions or drawings on a part. Sometimes, the laser marking could be based on the analysis of an existing object, whose image could be used to generate the same object or an improved object. There are many groups of factors able to affect the results of applying the laser marking process. A theoretical analysis was proposed to show that the heights of triangles obtained by means of a CNC marking equipment depend on the width of the line generated by the laser spot on the workpiece surface. An experimental research was thought and materialized to highlight the influence exerted by the line with and the angle of lines intersections on the accuracy of the marking process. By mathematical processing of the experimental results, empirical mathematical models were determined. The power type model and the graphical representation elaborated on the base of this model offered an image concerning the influences exerted by the considered input factors on the marking process accuracy.

  1. Experimental study of a reverse flow catalytic converter for a duel fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.; Checkel, M. D. [Alberta Univ., Dept. of Mechanical Engineering, Edmonton, ANB (Canada); Hayes, R. E. [Alberta Univ., Dept, of Chemical and Materials Engineering, Edmonton, AB, (Canada)

    2001-08-01

    Performance of a reverse flow catalytic converter for a methane/diesel dual fuel engine is evaluated under steady and transient engine conditions. The converter is of the monolith honeycomb type with palladium catalyst washcoat. Results of the reverse flow converter's performance was found to be superior for several steady state engine operations when compared to unidirectional flow operation. In transient operations following a step change in engine operating conditions, reverse flow was found to be better than unidirectional flow when the change in engine operation was such as to reduce the exhaust gas temperature. When exhaust gas temperature was increased, reverse flow decreased the rate of increase in the reactor temperature. Testing was done using the transient Japanese 6-Mode tests. Best results were achieved with a switch time in the five seconds to fifteen seconds range. 31 refs., 9 tabs., 24 figs.

  2. Electronics engineering research proposals for FY78

    International Nuclear Information System (INIS)

    Cleland, L.L.; Ekstrom, M.P.; Miller, E.K.

    1977-01-01

    Since most of the Electronics Engineering Research expenditures are in the Engineering Research Division (ERD), the two are inseparable when discussing plans. A reorganization of ERD aimed at further expanding LLL capabilities and being more responsive to LLL needs is now complete. Six discipline related groups constitute the research elements in ERD. Three groups remained unchanged, one group was modified slightly, two groups were added, and one group was dissolved. The technical activities of each of the six research-oriented groups within ERD are reported

  3. Elements of theoretical mechanics for electronic engineers

    CERN Document Server

    Bultot, Franz

    1965-01-01

    Elements of Theoretical Mechanics for Electronic Engineers deals with theoretical mechanics, which is considered one of the fundamental branches of instruction essential to training an engineer. This book discusses the oscillatory motions and their counterparts in electrical circuits and radio, and provides an introduction to differential operators of vector field theory. Other topics covered include systems and functions of vectors; dynamics of a free point; vibrations and waves; and statics. Worked examples and many notes on the application of most sections of the theories to electrical deve

  4. ANP applied to electronics engineering project selection

    International Nuclear Information System (INIS)

    Habib, M.

    2010-01-01

    Project selection in Electronics engineering is a complex decision-making process. This research paper illustrates an application of ANP/AHP process. The AHP (Analytic Hierarchy Process) is employed to break down large unstructured decision problems into manageable and measureable components. The ANP, as the general form of AHP, is powerful to deal with complex decisions where interdependence exists in a decision model. The research paper discusses the use of the ANP, a general form of Saaty's analytic Network process, as a model to evaluate the value of competing Electronics projects. The research paper concludes with a case study describing the implementation of this model at an engineering college, including data based on the actual use of the decision making model. The case study helps to verify that AHP is an effective and efficient decision-making tool. A major contribution of this work is to provide a methodology for assessing the best project. Despite a number of publications applying AHP in project selection, this is probably the first time that an attempt has been made to apply AHP in an electronics project selection in an engineering university environment. (author)

  5. Penerapan Reverse Engineering Dalam Penentuan Pola Interaksi Sequence Diagram Pada Sampel Aplikasi Android

    Directory of Open Access Journals (Sweden)

    Vierdy Sulfianto Rahmadani

    2015-04-01

    Full Text Available The purpose of this research is to apply the application of reverse engineering to determine interaction patterns of the Sequence diagram that can be used by system analysts as a template for designing UML sequence diagrams. Sample applications from android are used as dataset for reverse engineering and pattern identification. The first step is collecting application datasets. The next stage is identifying the features and applications activity, reverse engineering to obtain a sequence diagram model, and then synthesize all of the models into an interaction pattern of sequence diagram. The final step is to test the patterns by implementing it in an application development case stud. The evaluation results concludes that interaction patterns of sequence diagram designs obtained in reverse engineering steps is able to be implemented in software development that contained similar features with the obtained features in this research.

  6. Threshold-Dependent Camouflaged Cells to Secure Circuits Against Reverse Engineering Attacks

    OpenAIRE

    Collantes, Maria I. Mera; Massad, Mohamed El; Garg, Siddharth

    2016-01-01

    With current tools and technology, someone who has physical access to a chip can extract the detailed layout of the integrated circuit (IC). By using advanced visual imaging techniques, reverse engineering can reveal details that are meant to be kept secret, such as a secure protocol or novel implementation that offers a competitive advantage. A promising solution to defend against reverse engineering attacks is IC camouflaging. In this work, we propose a new camouflaging technique based on t...

  7. Reverse engineering by design: using history to teach.

    Science.gov (United States)

    Fagette, Paul

    2013-01-01

    Engineering students rarely have an opportunity to delve into the historic antecedents of design in their craft, and this is especially true for biomedical devices. The teaching emphasis is always on the new, the innovative, and the future. Even so, over the last decade, I have coupled a research agenda with engineering special projects into a successful format that allows young biomedical engineering students to understand aspects of their history and learn the complexities of design. There is value in having knowledge of historic engineering achievements, not just for an appreciation of these accomplishments but also for understanding exactly how engineers and clinicians of the day executed their feats-in other words, how the design process works. Ultimately, this particular educational odyssey confirms that history and engineering education are not only compatible but mutually supportive.

  8. A Process Re-engineering Framework for Reverse Logistics based on a Case Study

    Directory of Open Access Journals (Sweden)

    Hing Kai Chan

    2010-09-01

    Full Text Available Reverse logistics has gained increasing attention in recent years as a channel for companies to achieve operational excellence. The process involves manipulation of returned materials, or even products, which forms a pivotal role in sustainable development throughout the whole supply chains. To make reverse logistics possible, process re-engineering may need to be carried out. However, the processes involved in reengineering are practically complicated. Objectives, benefits, and applicability of any process re-engineering require a careful and detailed strategic planning. This paper aims to propose an easy-to-follow step-by-step framework for practitioners to perform process re-engineering, to learn and identify the critical issues in each step, and to be successful in applying process re-engineering in order to enhance reverse logistics performance. A learner-centred approach is adopted based on a case study of process re-engineering, which is demonstrated in the paper for explanation.

  9. Research on the Environmental Performance Evaluation of Electronic Waste Reverse Logistics Enterprise

    Science.gov (United States)

    Yang, Yu-Xiang; Chen, Fei-Yang; Tong, Tong

    According to the characteristic of e-waste reverse logistics, environmental performance evaluation system of electronic waste reverse logistics enterprise is proposed. We use fuzzy analytic hierarchy process method to evaluate the system. In addition, this paper analyzes the enterprise X, as an example, to discuss the evaluation method. It's important to point out attributes and indexes which should be strengthen during the process of ewaste reverse logistics and provide guidance suggestions to domestic e-waste reverse logistics enterprises.

  10. Macromolecular cell surface engineering for accelerated and reversible cellular aggregation.

    OpenAIRE

    Amaral, A. J.; Pasparakis, G.

    2015-01-01

    We report the synthesis of two simple copolymers that induce rapid cell aggregation within minutes in a fully reversible manner. The polymers can act as self-supporting "cellular glues" or as "drivers" of 3D cell spheroids/aggregates formation at minute concentrations.

  11. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    Science.gov (United States)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  12. Altering Height Data by Using Natural Logarithm as 3D Modelling Function for Reverse Engineering Application

    Science.gov (United States)

    Ilham Aminullah Abdulqawi, Nur; Salman Abu Mansor, Mohd

    2018-01-01

    The raw data extracted from reverse engineering based on vision mostly do not resemble the actual geometrical representation yet. Even though the higher object surface reflected the most visible light towards the camera and yield higher number of value based on Lambertian illumination model, this does not mean the curvature profile are always accurate. After all, there are many mathematical models to shape curvature profiles into the correct representation. However, one of the most appropriate models found is the natural logarithm function. The function itself has alteration properties towards the raw data generated from reverse engineering based on vision.

  13. 2012 International Conference on Mechanical and Electronic Engineering

    CERN Document Server

    Lin, Sally; ICMEE2012; Advances in Mechanical and Electronic Engineering v.2

    2012-01-01

    This book includes the volume 2 of the proceedings of the 2012 International Conference on Mechanical and Electronic Engineering(ICMEE2012), held at June 23-24,2012 in Hefei, China. The conference provided a rare opportunity to bring together worldwide researchers who are working in the fields. This volume 2 is focusing on Mechatronic Engineering and Technology,  Electronic Engineering and Electronic Information Technology .

  14. 2012 International Conference on Electrical and Electronics Engineering

    CERN Document Server

    Chen, Suting; Wei, Zhanming; Xia, Jingming

    2014-01-01

    Unifying Electrical Engineering and Electronics Engineering is based on the Proceedings of the 2012 International Conference on Electrical and Electronics Engineering (ICEE 2012). This book collects the peer reviewed papers presented at the conference. The aim of the conference is to unify the two areas of Electrical and Electronics Engineering. The book examines trends and techniques in the field as well as theories and applications. The editors have chosen to include the following topics; biotechnology, power engineering, superconductivity circuits, antennas technology, system architectures and telecommunication.

  15. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment [i.e., fusion power core (FPC) plus support systems]. In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development

  16. Multifunctional guest-host particles engineered by reversal nanoimprint lithography

    Science.gov (United States)

    Ha, Uh-Myong; Kaban, Burhan; Tomita, Andreea; Krekić, Kristijan; Klintuch, Dieter; Pietschnig, Rudolf; Ehresmann, Arno; Holzinger, Dennis; Hillmer, Hartmut

    2018-03-01

    Particulate polymeric microfibers with incorporated europium(III)oxide (Eu2O3) nanoparticles were introduced as a magneto-photoluminescent multifunctional material fabricated via reversal nanoimprint lithography. To specifically address the volume properties of these guest-host particles, the guest, Eu2O3, was milled down to an average particle size of 350 nm in diameter and mixed with the host-polymer, AMONIL®, before in situ hardening in the imprint stamp. The variation of the fabrication process parameters, i.e. delay time, spin coating speed, as well as the concentration of Eu2O3 nanoparticles was proven to have a significant impact on both the structure quality and the stamp release of the microfibers with respect to the formation of a thinner residual layer. Structural characterization performed by SEM revealed optimum fabrication process parameters for a homogeneous spatial distribution of Eu2O3 nanoparticles within the microfibers while simultaneously avoiding the formation of undesired agglomerates. The magneto-photoluminescent properties of Eu2O3 nanoparticles, i.e. a red emission at 613 nm and a paramagnetic response, were found to be superimposed to the optic and the diamagnetic behaviors of AMONIL®. The results imply that guest-host interdependence of these properties can be excluded and that the suggested technique enables for specific tailoring of particulate multifunctional materials with focus on their volume properties.

  17. Reverse engineering validation using a benchmark synthetic gene circuit in human cells.

    Science.gov (United States)

    Kang, Taek; White, Jacob T; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-05-17

    Multicomponent biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.

  18. Importance of field-reversing ion ring formation in hot electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, K.

    1975-11-01

    Formation of the field reversing ion ring in the mirror confined hot electron plasma may offer a device to confine the fusion plasma even under the restriction of the present technology. (Author) (GRA)

  19. Magnetic turbulent electron transport in a reversed field pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.; Moses, R.

    1990-01-01

    A model of magnetic turbulent electron transport is presented. The model, based on the thermal conduction theory of Rechester and Rosenbluth, entails a Boltzmann description of electron dynamics in the long mean-free-path limit and quantitatively describes the salient features of superthermal electron measurements in the RFP edge plasma. Included are predictions of the mean superthermal electron energy, current density, and power flux asymmetry. A discussion of the transport model, the assumptions implicit in the model, and the relevance of this work to more general issue of magnetic turbulent transport in toroidal systems is presented. 32 refs., 3 figs

  20. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    International Nuclear Information System (INIS)

    Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.

    2010-01-01

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.

  1. Methylcellulose Based Thermally Reversible Hydrogel System for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ram V. Devireddy

    2013-06-01

    Full Text Available The thermoresponsive behavior of a Methylcellulose (MC polymer was systematically investigated to determine its usability in constructing MC based hydrogel systems in cell sheet engineering applications. Solution-gel analyses were made to study the effects of polymer concentration, molecular weight and dissolved salts on the gelation of three commercially available MCs using differential scanning calorimeter and rheology. For investigation of the hydrogel stability and fluid uptake capacity, swelling and degradation experiments were performed with the hydrogel system exposed to cell culture solutions at incubation temperature for several days. From these experiments, the optimal composition of MC-water-salt that was able to produce stable hydrogels at or above 32 °C, was found to be 12% to 16% of MC (Mol. wt. of 15,000 in water with 0.5× PBS (~150mOsm. This stable hydrogel system was then evaluated for a week for its efficacy to support the adhesion and growth of specific cells in culture; in our case the stromal/stem cells derived from human adipose tissue derived stem cells (ASCs. The results indicated that the addition (evenly spread of ~200 µL of 2 mg/mL bovine collagen type -I (pH adjusted to 7.5 over the MC hydrogel surface at 37 °C is required to improve the ASC adhesion and proliferation. Upon confluence, a continuous monolayer ASC sheet was formed on the surface of the hydrogel system and an intact cell sheet with preserved cell–cell and cell–extracellular matrix was spontaneously and gradually detached when the grown cell sheet was removed from the incubator and exposed to room temperature (~30 °C within minutes.

  2. Methylcellulose based thermally reversible hydrogel system for tissue engineering applications.

    Science.gov (United States)

    Thirumala, Sreedhar; Gimble, Jeffrey M; Devireddy, Ram V

    2013-06-25

    The thermoresponsive behavior of a Methylcellulose (MC) polymer was systematically investigated to determine its usability in constructing MC based hydrogel systems in cell sheet engineering applications. Solution-gel analyses were made to study the effects of polymer concentration, molecular weight and dissolved salts on the gelation of three commercially available MCs using differential scanning calorimeter and rheology. For investigation of the hydrogel stability and fluid uptake capacity, swelling and degradation experiments were performed with the hydrogel system exposed to cell culture solutions at incubation temperature for several days. From these experiments, the optimal composition of MC-water-salt that was able to produce stable hydrogels at or above 32 °C, was found to be 12% to 16% of MC (Mol. wt. of 15,000) in water with 0.5× PBS (~150mOsm). This stable hydrogel system was then evaluated for a week for its efficacy to support the adhesion and growth of specific cells in culture; in our case the stromal/stem cells derived from human adipose tissue derived stem cells (ASCs). The results indicated that the addition (evenly spread) of ~200 µL of 2 mg/mL bovine collagen type -I (pH adjusted to 7.5) over the MC hydrogel surface at 37 °C is required to improve the ASC adhesion and proliferation. Upon confluence, a continuous monolayer ASC sheet was formed on the surface of the hydrogel system and an intact cell sheet with preserved cell-cell and cell-extracellular matrix was spontaneously and gradually detached when the grown cell sheet was removed from the incubator and exposed to room temperature (~30 °C) within minutes.

  3. Interactive scalable condensation of reverse engineered UML class diagrams for software comprehension

    NARCIS (Netherlands)

    Osman, Mohd Hafeez Bin

    2015-01-01

    Software design documentation is a valuable aid in software comprehension. However, keeping the software design up-to-date with evolving source code is challenging and time-consuming. Reverse engineering is one of the options for recovering software architecture from the implementation code.

  4. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    Science.gov (United States)

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  5. The investment strategies of sovereign wealth funds: A reverse engineered pitch

    Directory of Open Access Journals (Sweden)

    Stanislav Martínek

    2017-12-01

    Full Text Available This letter describes personal reflection based on the utilization of the Faff’s (2017, Pitching Research pitch template for a reverse engineering technique in order to summarize, evaluate and properly interpret information from articles in respected scientific journals which represents key or seminal scientific research work upon which a researcher built his/her scientific work.

  6. Plasma engineering design of a compact reversed-field pinch reactor (CRFPR)

    International Nuclear Information System (INIS)

    Bathke, C.G.; Embrechts, M.J.; Hagenson, R.L.; Krakowski, R.A.; Miller, R.L.

    1983-01-01

    The rationale for and the characteristics of the high-power-density Compact Reversed-Field Pinch Reactor (CRFPR) are discussed. Particular emphasis is given to key plasma engineering aspects of the conceptual design, including plasma operations, current drive, and impurity/ash control by means of pumped limiters or magnetic divertors. A brief description of the Fusion-Power-Core integration is given

  7. Electronics and Telemetry Engineering and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronics Laboratory is a fully equipped facility providing the capability to support electronic product development from highly complex weapon system sensors,...

  8. Reversal of local spins in transport of electrons through a one-dimensional chain

    International Nuclear Information System (INIS)

    Hu, D.-S.; Xiong, S.-J.

    2003-01-01

    We investigate the spin reversal of two coupled magnetic impurities in the transport processes of electrons in a one-dimensional chain. The impurities are side coupled to the chain and the electrons are injected and tunneling through it. The transmission coefficient of electrons and the polarization of impurities are calculated by the use of the equivalent single-particle network method for the correlated system. It is found that both the transmission coefficient and the polarization of impurities depend on the initial state of impurities and the impurity spins can be converted into the direction of electron spin if the injected electrons are polarized and the number of electrons is large enough. The evolution of the spin-reversal processes is studied in details

  9. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  11. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  12. Reverse Engineering and Security Evaluation of Commercial Tags for RFID-Based IoT Applications.

    Science.gov (United States)

    Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Castedo, Luis

    2016-12-24

    The Internet of Things (IoT) is a distributed system of physical objects that requires the seamless integration of hardware (e.g., sensors, actuators, electronics) and network communications in order to collect and exchange data. IoT smart objects need to be somehow identified to determine the origin of the data and to automatically detect the elements around us. One of the best positioned technologies to perform identification is RFID (Radio Frequency Identification), which in the last years has gained a lot of popularity in applications like access control, payment cards or logistics. Despite its popularity, RFID security has not been properly handled in numerous applications. To foster security in such applications, this article includes three main contributions. First, in order to establish the basics, a detailed review of the most common flaws found in RFID-based IoT systems is provided, including the latest attacks described in the literature. Second, a novel methodology that eases the detection and mitigation of such flaws is presented. Third, the latest RFID security tools are analyzed and the methodology proposed is applied through one of them (Proxmark 3) to validate it. Thus, the methodology is tested in different scenarios where tags are commonly used for identification. In such systems it was possible to clone transponders, extract information, and even emulate both tags and readers. Therefore, it is shown that the methodology proposed is useful for auditing security and reverse engineering RFID communications in IoT applications. It must be noted that, although this paper is aimed at fostering RFID communications security in IoT applications, the methodology can be applied to any RFID communications protocol.

  13. Reverse Engineering and Security Evaluation of Commercial Tags for RFID-Based IoT Applications

    Directory of Open Access Journals (Sweden)

    Tiago M. Fernández-Caramés

    2016-12-01

    Full Text Available The Internet of Things (IoT is a distributed system of physical objects that requires the seamless integration of hardware (e.g., sensors, actuators, electronics and network communications in order to collect and exchange data. IoT smart objects need to be somehow identified to determine the origin of the data and to automatically detect the elements around us. One of the best positioned technologies to perform identification is RFID (Radio Frequency Identification, which in the last years has gained a lot of popularity in applications like access control, payment cards or logistics. Despite its popularity, RFID security has not been properly handled in numerous applications. To foster security in such applications, this article includes three main contributions. First, in order to establish the basics, a detailed review of the most common flaws found in RFID-based IoT systems is provided, including the latest attacks described in the literature. Second, a novel methodology that eases the detection and mitigation of such flaws is presented. Third, the latest RFID security tools are analyzed and the methodology proposed is applied through one of them (Proxmark 3 to validate it. Thus, the methodology is tested in different scenarios where tags are commonly used for identification. In such systems it was possible to clone transponders, extract information, and even emulate both tags and readers. Therefore, it is shown that the methodology proposed is useful for auditing security and reverse engineering RFID communications in IoT applications. It must be noted that, although this paper is aimed at fostering RFID communications security in IoT applications, the methodology can be applied to any RFID communications protocol.

  14. Reverse Engineering and Security Evaluation of Commercial Tags for RFID-Based IoT Applications

    Science.gov (United States)

    Fernández-Caramés, Tiago M.; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Castedo, Luis

    2016-01-01

    The Internet of Things (IoT) is a distributed system of physical objects that requires the seamless integration of hardware (e.g., sensors, actuators, electronics) and network communications in order to collect and exchange data. IoT smart objects need to be somehow identified to determine the origin of the data and to automatically detect the elements around us. One of the best positioned technologies to perform identification is RFID (Radio Frequency Identification), which in the last years has gained a lot of popularity in applications like access control, payment cards or logistics. Despite its popularity, RFID security has not been properly handled in numerous applications. To foster security in such applications, this article includes three main contributions. First, in order to establish the basics, a detailed review of the most common flaws found in RFID-based IoT systems is provided, including the latest attacks described in the literature. Second, a novel methodology that eases the detection and mitigation of such flaws is presented. Third, the latest RFID security tools are analyzed and the methodology proposed is applied through one of them (Proxmark 3) to validate it. Thus, the methodology is tested in different scenarios where tags are commonly used for identification. In such systems it was possible to clone transponders, extract information, and even emulate both tags and readers. Therefore, it is shown that the methodology proposed is useful for auditing security and reverse engineering RFID communications in IoT applications. It must be noted that, although this paper is aimed at fostering RFID communications security in IoT applications, the methodology can be applied to any RFID communications protocol. PMID:28029119

  15. Using a Formal Approach for Reverse Engineering and Design Recovery to Support Software Reuse

    Science.gov (United States)

    Gannod, Gerald C.

    2002-01-01

    This document describes 3rd year accomplishments and summarizes overall project accomplishments. Included as attachments are all published papers from year three. Note that the budget for this project was discontinued after year two, but that a residual budget from year two allowed minimal continuance into year three. Accomplishments include initial investigations into log-file based reverse engineering, service-based software reuse, and a source to XML generator.

  16. An Analytical Reverse Engineering of IELTS Listening Tasks for a Construct Model

    OpenAIRE

    Masood Khalili Sabet; Hamid Reza Babaee Bormanaki

    2017-01-01

    The study reported here was concerned with the issue of reverse engineering of language test items as it relates to the identification of the language constructs underlying listening tasks of LELTS test. In this regard, the IELTS examination papers, from IELTS 1 to IELTS 10 were compiled as a corpus for the analysis. Tasks were analyzed using a taxonomic frame work adopted from Moore, Morton and price (2012), that was originally adapted from Weir and Urquhart (1998), with a focus on two dimen...

  17. A Survey of Automatic Protocol Reverse Engineering Approaches, Methods, and Tools on the Inputs and Outputs View

    Directory of Open Access Journals (Sweden)

    Baraka D. Sija

    2018-01-01

    Full Text Available A network protocol defines rules that control communications between two or more machines on the Internet, whereas Automatic Protocol Reverse Engineering (APRE defines the way of extracting the structure of a network protocol without accessing its specifications. Enough knowledge on undocumented protocols is essential for security purposes, network policy implementation, and management of network resources. This paper reviews and analyzes a total of 39 approaches, methods, and tools towards Protocol Reverse Engineering (PRE and classifies them into four divisions, approaches that reverse engineer protocol finite state machines, protocol formats, and both protocol finite state machines and protocol formats to approaches that focus directly on neither reverse engineering protocol formats nor protocol finite state machines. The efficiency of all approaches’ outputs based on their selected inputs is analyzed in general along with appropriate reverse engineering inputs format. Additionally, we present discussion and extended classification in terms of automated to manual approaches, known and novel categories of reverse engineered protocols, and a literature of reverse engineered protocols in relation to the seven layers’ OSI (Open Systems Interconnection model.

  18. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor; Slepoy, Alexander; Zhang, Zhaoduo; May, Elebeoba Eni; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-12-01

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

  19. [Reconstruction and measurement of a digital dental model using grating projection and reverse engineering].

    Science.gov (United States)

    Zhenzhen, Wang; Yi, Lu; Jun, Song; Jun, Chen; Qin, Zhou

    2015-02-01

    This work lays the foundation for establishing a digital model database with normal occlusion. A digital dental cast is acquired through grating projection, and model features are measured through reverse engineering. The grating projection system controlled by a computer was projected onto the surface of a normal dental model. Three-dimensional contour data were obtained through multi-angle shooting. A three-dimensional model was constructed, and the model features were analyzed by using reverse engineering. The digital model was compared with the plaster model to determine the accuracy of the measurement system. The structure of three-dimensional reconstruction model was clear. The digital models of two measurements exhibited no significant difference (P > 0.05). When digital and plaster models were measured, we found that the crown length and arch width were not statistically different (P > 0.05), whereas the difference between the crown width and arch length was statistically significant (P model by using the grating projection technique and reverse engineering can be used for dental model measurement in clinic al and scientific research and can provide a scientific method for establishing a digital model database with normal occlusion.

  20. A novel technique for presurgical nasoalveolar molding using computer-aided reverse engineering and rapid prototyping.

    Science.gov (United States)

    Yu, Quan; Gong, Xin; Wang, Guo-Min; Yu, Zhe-Yuan; Qian, Yu-Fen; Shen, Gang

    2011-01-01

    To establish a new method of presurgical nasoalveolar molding (NAM) using computer-aided reverse engineering and rapid prototyping technique in infants with unilateral cleft lip and palate (UCLP). Five infants (2 males and 3 females with mean age of 1.2 w) with complete UCLP were recruited. All patients were subjected to NAM before the cleft lip repair. The upper denture casts were recorded using a three-dimensional laser scanner within 2 weeks after birth in UCLP infants. A digital model was constructed and analyzed to simulate the NAM procedure with reverse engineering software. The digital geometrical data were exported to print the solid model with rapid prototyping system. The whole set of appliances was fabricated based on these solid models. Laser scanning and digital model construction simplified the NAM procedure and estimated the treatment objective. The appliances were fabricated based on the rapid prototyping technique, and for each patient, the complete set of appliances could be obtained at one time. By the end of presurgical NAM treatment, the cleft was narrowed, and the malformation of nasoalveolar segments was aligned normally. We have developed a novel technique of presurgical NAM based on a computer-aided design. The accurate digital denture model of UCLP infants could be obtained with laser scanning. The treatment design and appliance fabrication could be simplified with a computer-aided reverse engineering and rapid prototyping technique.

  1. Reliable design of electronic equipment an engineering guide

    CERN Document Server

    Natarajan, Dhanasekharan

    2014-01-01

    This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support

  2. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    Science.gov (United States)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  3. Electron currents in field reversed mirror dynamics: Theory and hybrid simulation

    International Nuclear Information System (INIS)

    Stark, R.A.

    1987-01-01

    To model the dynamics of the Field-Reversed Mirror (FRM) as a whole we have developed a 1-D radical hybrid code which also incorporates the above electron null current model. This code, named FROST, models the plasma as azimuthally symmetric with no axial dependence. A multi-group method in energy and canonical angular momentum describes the large-orbit ions from the beam. Massless fluid equations describe electrons and low energy ions. Since a fluid treatment for electrons is invalid near a field null, the null region electron current model discussed above has been included for this region, a unique feature. Results of simulation of neutral beam start-up in a 2XIIB-like plasma is discussed. There FROST predicts that electron currents will retard, but not prevent reversal of the magnetic field at the plasma center. These results are optimistic when compared to actual reversal experiments in 2XIIB, because there finite axial length effects and micro-instabilities substantially deteriorated the ion confinement. Nevertheless, because of the importance of the electron current in a low field region in the FRM, FROST represents a valuable intermediate step toward a more complete description of FRM dynamics. 54 refs., 50 figs., 3 tabs

  4. Electronic battlespace facility for research, develoment and engineering

    NARCIS (Netherlands)

    Jense, Hans; Kuijpers, N.H.L.; Elias, R.J.D.

    1997-01-01

    In order to support its research, development and engineering activities in the area of distributed simulation for training and command & control, TNO Physics and Electronics Laboratory has developed (and continues to enhance) an Electronic Battlespace Facility (EBF). This paper presents an overview

  5. Engineered Surfaces to Control Secondary Electron Yield for Multipactor Suppression

    Science.gov (United States)

    2017-09-14

    Air Force Institute of Technology AFIT Scholar Theses and Dissertations 9-14-2017 Engineered Surfaces to Control Secondary Electron Yield for...Multipactor Suppression James M. Sattler Follow this and additional works at: https://scholar.afit.edu/etd Part of the Electrical and Electronics Commons... TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

  6. Data base systems in electronic design engineering

    Science.gov (United States)

    Williams, D.

    1980-01-01

    The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.

  7. Engineers' Responsibilities for Global Electronic Waste: Exploring Engineering Student Writing Through a Care Ethics Lens.

    Science.gov (United States)

    Campbell, Ryan C; Wilson, Denise

    2017-04-01

    This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student's writing on the human health and environmental impacts of "backyard" electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering.

  8. Analysis and simulation on two types of thrust reversers in an aircraft engine

    Directory of Open Access Journals (Sweden)

    Tian Feng

    2017-01-01

    Full Text Available With rapid development of new composite material and manufacturing, innovative engineering solutions are supplied to the advanced nacelle, such as integrated propulsion system(IPS, carbon-fiber composite inner skin by single-piece molding process,which offers a reduction in fuel burn and less noise produced by engines. The advanced nacelle has an O-duct thrust reverser demonstrator whose composite structure is in the form of an “O” as opposed to the traditional “D-duct”. A comparative study is to be conducted to investigate the differences between the latest O-duct and conventional D-duct in numerical approaches. To focus on the quantitative analysis of thrust reverser’s operation, this paper mainly uses CATIA/Digital Mock Up(DMU to simulate under deployment and stowed conditions of two different thrust reverser. After comparing the structural weight, the design models of blocker door are built for kinematic analysis of relevant mechanism and simulation. The results show that simplified design and elimination of multiple interfaces generates weight saving, O-duct improves airflows within the engine, meanwhile D-duct has excellent cost effective and maintainability.

  9. Reverse engineering of a railcar prototype via energetic macroscopic representation approach

    International Nuclear Information System (INIS)

    Agbli, Kréhi Serge; Hissel, Daniel; Sorrentino, Marco; Chauvet, Frédéric; Pouget, Julien

    2016-01-01

    Highlights: • A complex EMR model of a new railcar range has been developed. • A satisfactory assessment of the fuel consumption of the railcar. • The significant potential benefits are attainable by hybridizing the original railcar. • The regenerative braking can provide up to 240 kW h saving. - Abstract: Energetic Macroscopic Representation (EMR) modelling approach is proposed to perform model-based reverse-engineering of a new railcar range, having six propulsion units, each consisting of a diesel engine and a traction motor. Particularly, EMR intrinsic features were exploited to perform phenomenological structuration of power flows, thus allowing proper and comprehensive modelling of complex systems, such as the under-study railcar. Based on some prospective real trips, selected in such a way as to enable realistic evaluation of effective railcar effort, EMR-based prediction of railcar energy consumption is performed. Furthermore, physical consistency of each powertrain component operation was carefully verified. The suitability of EMR approach was thus proven effective to perform reverse-engineering of known specifications and available experimental data, with the final aim of reconstructing a high fidelity computational tool that meets computational burden requirements for subsequent model-based tasks deployment. Finally, specific simulation analyses were performed to evaluate the potential benefits attainable through electric hybridization of the original powertrain.

  10. Reversing flow catalytic converter for a natural gas/diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, E.; Checkel, M.D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Hayes, R.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Zheng, M.; Mirosh, E. [Alternative Fuel Systems Inc., Calgary, AB (Canada)

    2001-07-01

    An experimental and modelling study was performed for a reverse flow catalytic converter attached to a natural gas/diesel dual fuel engine. The catalytic converter had a segmented ceramic monolith honeycomb substrate and a catalytic washcoat containing a predominantly palladium catalyst. A one-dimensional single channel model was used to simulate the operation of the converter. The kinetics of the CO and methane oxidation followed first-order behaviour. The activation energy for the oxidation of methane showed a change with temperature, dropping from a value of 129 to 35 kJ/mol at a temperature of 874 K. The reverse flow converter was able to achieve high reactor temperature under conditions of low inlet gas temperature, provided that the initial reactor temperature was sufficiently high. (author)

  11. Improving the reverse recovery of power MOSFET integral diodes by electron irradiation

    International Nuclear Information System (INIS)

    Baliga, B.J.; Walden, J.P.

    1983-01-01

    Using 3 MeV electron irradiation at room temperature it was found that the reverse recovery charge in the integral diode could be continuously reduced in a well controlled manner from over 500nC to less than 100nC without any significant increase in the forward voltage drop of the integral diode under typical operating peak currents. The reverse recovery time was also observed to decrease from 3 microseconds to less than 200 nsec when the radiation dose was increased from 0 to 16 Megarads. The damage produced in gate oxide of the MOSFET due to the electron radiation damage was found to cause an undesirable decrease in the gate threshold voltage. This resulted in excessive channel leakage current flow in the MOSFET at zero gate bias. It was found that this channel leakage current was substantially reduced by annealing the devices at 140 0 C without influencing the integral diode reverse recovery speed. Thus, the electron irradiation technique was found to be effective in controlling the integral diode reverse recovery characteristics without any degradation of the power MOSFET characteristics. (author)

  12. Engineering complex oxide interfaces for oxide electronics

    NARCIS (Netherlands)

    Roy, Saurabh

    2015-01-01

    A complex interplay of physics and chemistry in transition metal oxides determines their electronic, magnetic, and ferroic properties enabling a wide range of applications of these materials. BiFeO_3, a canonical multiferroic system exhibits the interesting feature of enhanced conductivity on

  13. Electronic Reverse Auctions: Integrating an E-Sourcing Tool into a Sales and Purchasing Cross-Course Negotiation Project

    Science.gov (United States)

    Williams, Jacqueline A.; Dobie, Kathryn

    2011-01-01

    Electronic reverse auctions are increasingly being used by firms to improve firm financial and operational performance. The described teaching innovation serves as a model for introducing electronic reverse auctions as a central element in a comprehensive negotiation exercise involving sales management and purchasing management students. Results…

  14. A reverse engineering methodology for nickel alloy turbine blades with internal features

    DEFF Research Database (Denmark)

    Gameros, A.; De Chiffre, Leonardo; Siller, H.R.

    2015-01-01

    The scope of this work is to present a reverse engineering (RE) methodology for freeform surfaces, based on a case study of a turbine blade made of Inconel, including the reconstruction of its internal cooling system. The methodology uses an optical scanner and X-ray computed tomography (CT......) equipment. Traceability of the measurements was obtained through the use of a Modular Freeform Gage (MFG). An uncertainty budget is presented for both measuring technologies and results show that the RE methodology presented is promising when comparing uncertainty values against common industrial tolerances....

  15. An analysis of extended entity relationship constructs extraction in database reverse engineering approaches

    International Nuclear Information System (INIS)

    Jilani, M.A.; Aziz, A.; Hussain, T.

    2008-01-01

    Database reverse Engineering is technique used for transforming relational schema into a conceptual schema for finding and fixing design flaw for maintaining and re-engineering database systems for the integration of database system with another and migration of a database system from one platform to another. We studied the approaches from year 1993 to 2006 to find out which EER construct cannot be retrieved by most of the DBRE approaches so that they can be retrieved in the future. For each EER construct that can be retrieved by using a given DBRE approach. We show whether they are retrieved without user involvement (automatically). Partial user involvement (semi-automatically) or full user involvement (manually). We also discuss the relevant advantages and limitations of each DBRE technique considered in this paper. (author)

  16. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    Science.gov (United States)

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  17. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.

    Science.gov (United States)

    Lu, Kai; Gordon, Richard; Cao, Tong

    2015-03-01

    The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.

  18. First International Conference on Electrical, Electronic and Communications Engineering

    CERN Document Server

    Vyas, Nalinaksh; Sanei, Saeid; Deb, Kalyanmoy

    2017-01-01

    The book reports on advanced theories and methods in two related engineering fields: electrical and electronic engineering, and communications engineering and computing. It highlights areas of global and growing importance, such as renewable energy, power systems, mobile communications, security and the Internet of Things (IoT). The contributions cover a number of current research issues, including smart grids, photovoltaic systems, wireless power transfer, signal processing, 4G and 5G technologies, IoT applications, mobile cloud computing and many more. Based on the proceedings of the first International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM 2016), held in Voila Bagatelle, Mauritius from November 25 to 27, 2016, the book provides graduate students, researchers and professionals with a snapshot of the state-of-the-art and a source of new ideas for future research and collaborations.

  19. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal.

    Science.gov (United States)

    Oh, Juwon; Sung, Young Mo; Hong, Yongseok; Kim, Dongho

    2018-03-06

    Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To

  20. Polarization reversal of electron cyclotron wave due to radial boundary condition

    International Nuclear Information System (INIS)

    Takahashi, K.; Kaneko, T.; Hatakeyama, R.

    2004-01-01

    The electron cyclotron wave is an important plasma wave in the fields of basic plasma physics and nuclear fusion. Propagation and absorption of electromagnetic waves with electron cyclotron resonance (ECR) frequency are experimentally and theoretically investigated for the case of inhomogeneously magnetized plasma column with peripheral vacuum layer, when a left-hand polarized wave (LHPW) is selectively launched. The polarization reversal from the LHPW to the right-hand polarized wave is found to occur near the ECR point. As a result, it is clarified that the LHPW, which has been considered not to be absorbed at the ECR point, is absorbed near the ECR point. The phenomena can be explained by taking into account the effects of the radial boundary conditions. In addition, it is found that the polarization reversal point can be adjusted by the external parameters, for example, plasma radius. (authors)

  1. Electrical, electronics, and digital hardware essentials for scientists and engineers

    CERN Document Server

    Lipiansky, Ed

    2012-01-01

    A practical guide for solving real-world circuit board problems Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers arms engineers with the tools they need to test, evaluate, and solve circuit board problems. It explores a wide range of circuit analysis topics, supplementing the material with detailed circuit examples and extensive illustrations. The pros and cons of various methods of analysis, fundamental applications of electronic hardware, and issues in logic design are also thoroughly examined. The author draws on more than tw

  2. The development of a program analysis environment for Ada: Reverse engineering tools for Ada

    Science.gov (United States)

    Cross, James H., II

    1991-01-01

    The Graphical Representations of Algorithms, Structures, and Processes for Ada (GRASP/Ada) has successfully created and prototyped a new algorithm level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and thus improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under the Virtual Memory System (VMS) on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. In Phase 3 of the project, the prototype was prepared for limited distribution (GRASP/Ada Version 3.0) to facilitate evaluation. The user interface was extensively reworked. The current prototype provides the capability for the user to generate CSD from Ada source code in a reverse engineering mode with a level of flexibility suitable for practical application.

  3. An Application of Reverse Engineering in Design of the Spur Gear

    Directory of Open Access Journals (Sweden)

    Adem Çiçek

    2010-06-01

    Full Text Available In this study, it is aimed that the gear parameters required the design of a spur gear are obtained by use of reverse engineering techniques. Therefore, point cloud of tooth profile of the manufactured spur gear is extracted by a coordinate measuring machine (CMM. The gear parameters are derived by processing the obtained point cloud. 3D model of the spur gear are modeled through this parameters in a CAD environment. In the system, a hybrid programming approach is used. Generating and processing the point cloud, extraction of the gear parameters are performed by Visual BASIC programming language. 3D modeling in the CAD environment is performed also by AutoLISP programming language due to programming simplicity. These two softwares are provided to be in harmony by integrating them. In the study, SolidworksTM and AutoCADTM are selected as CAD environments. With this study, an alternative approach for the design of the spur gear is presented and modeling of the gears in the CAD environment is carried out using reverse engineering techniques.

  4. Topology reconstruction for B-Rep modeling from 3D mesh in reverse engineering applications

    Science.gov (United States)

    Bénière, Roseline; Subsol, Gérard; Gesquière, Gilles; Le Breton, François; Puech, William

    2012-03-01

    Nowadays, most of the manufactured objects are designed using CAD (Computer-Aided Design) software. Nevertheless, for visualization, data exchange or manufacturing applications, the geometric model has to be discretized into a 3D mesh composed of a finite number of vertices and edges. But, in some cases, the initial model may be lost or unavailable. In other cases, the 3D discrete representation may be modified, for example after a numerical simulation, and does not correspond anymore to the initial model. A reverse engineering method is then required to reconstruct a 3D continuous representation from the discrete one. In previous work, we have presented a new approach for 3D geometric primitive extraction. In this paper, to complete our automatic and comprehensive reverse engineering process, we propose a method to construct the topology of the retrieved object. To reconstruct a B-Rep model, a new formalism is now introduced to define the adjacency relations. Then a new process is used to construct the boundaries of the object. The whole process is tested on 3D industrial meshes and bring a solution to recover B-Rep models.

  5. Energetic electron measurements in the edge of a reversed-field pinch

    International Nuclear Information System (INIS)

    Ingraham, J.C.; Ellis, R.F.; Downing, J.N.; Munson, C.P.; Weber, P.G.; Wurden, G.A.

    1990-01-01

    The edge plasma of the ZT-40M [Fusion Technol. 8, 1571 (1985)] reversed-field pinch has been studied using a combination of three different plasma probes: a double-swept Langmuir probe, an electrostatic energy analyzer, and a calorimeter--Langmuir probe. The edge plasma has been measured both with and without a movable graphite tile limiter present nearby in the plasma. Without a limiter a fast nonthermal tail of electrons (T congruent 350 eV) is detected in the edge plasma with nearly unidirectional flow along B and having a density between 2% and 10% of the cold edge plasma (T congruent 20 eV). The toroidal sense of this fast electron flow is against the force of the applied electric field. A large power flux along B is measured flowing in the same direction as the fast electrons and is apparently carried by the fast electrons. With the limiter present the fast electrons are still detected in the plasma, but are strongly attenuated in the shadow of the limiter. The measured scrape-off lengths for both the fast electrons and the cold plasma indicate cross-field transport at the rate of, or less than, Bohm diffusion. Estimates indicate that the fast electrons could carry the reversed-field pinch current density at the edge and, from the measured transverse diffusion rates, could also account for the electron energy loss channel in ZT-40 M. The long mean-free-path kinetic nature of these fast electrons suggests that a kinetic process, rather than a magnetohydrodynamic process that is based upon a local Ohm's law formulation, is responsible for their generation

  6. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  7. Measurements of hot electrons in the Extrap T1 reversed-field pinch

    International Nuclear Information System (INIS)

    Welander, A.; Bergsaaker, H.

    1998-01-01

    The presence of an anisotropic energetic electron population in the edge region is a characteristic feature of reversed-field pinch (RFP) plasmas. In the Extrap T1 RFP, the anisotropic, parallel heat flux in the edge region measured by calorimetry was typically several hundred MWm -2 . To gain more insight into the origin of the hot electron component and to achieve time resolution of the hot electron flow during the discharge, a target probe with a soft x-ray monitor was designed, calibrated and implemented. The x-ray emission from the target was measured with a surface barrier detector covered with a set of different x-ray filters to achieve energy resolution. A calibration in the range 0.5-2 keV electron energy was performed on the same target and detector assembly using a LaB 6 cathode electron gun. The calibration data are interpolated and extrapolated numerically. A directional asymmetry of more than a factor of 100 for the higher energy electrons is observed. The hot electrons are estimated to constitute 10% of the total electron density at the edge and their energy distribution is approximated by a half-Maxwellian with a temperature slightly higher than the central electron temperature. Scalings with plasma current, as well as correlations with local Hα measurements and radial dependences, are presented. (author)

  8. Measurements of hot electrons in the Extrap T1 reversed-field pinch

    Science.gov (United States)

    Welander, A.; Bergsåker, H.

    1998-02-01

    The presence of an anisotropic energetic electron population in the edge region is a characteristic feature of reversed-field pinch (RFP) plasmas. In the Extrap T1 RFP, the anisotropic, parallel heat flux in the edge region measured by calorimetry was typically several hundred 0741-3335/40/2/011/img1. To gain more insight into the origin of the hot electron component and to achieve time resolution of the hot electron flow during the discharge, a target probe with a soft x-ray monitor was designed, calibrated and implemented. The x-ray emission from the target was measured with a surface barrier detector covered with a set of different x-ray filters to achieve energy resolution. A calibration in the range 0.5-2 keV electron energy was performed on the same target and detector assembly using a 0741-3335/40/2/011/img2 cathode electron gun. The calibration data are interpolated and extrapolated numerically. A directional asymmetry of more than a factor of 100 for the higher energy electrons is observed. The hot electrons are estimated to constitute 10% of the total electron density at the edge and their energy distribution is approximated by a half-Maxwellian with a temperature slightly higher than the central electron temperature. Scalings with plasma current, as well as correlations with local 0741-3335/40/2/011/img3 measurements and radial dependences, are presented.

  9. Electron Bernstein wave emission from an overdense reversed field pinch plasma

    International Nuclear Information System (INIS)

    Chattopadhyay, P.K.; Anderson, J.K.; Biewer, T.M.; Craig, D.; Forest, C.B.; Harvey, R.W.; Smirnov, A.P.

    2002-01-01

    Blackbody levels of emission in the electron cyclotron range of frequencies have been observed from an overdense (ω pe ∼3ω ce ) Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch plasma, a result of electrostatic electron Bernstein waves emitted from the core and mode converted into electromagnetic waves at the extreme plasma edge. Comparison of the measured radiation temperature with profiles measured by Thomson scattering indicates that the mode conversion efficiency can be as high as ∼75%. Emission is preferentially in the X-mode polarization, and is strongly dependent upon the density and magnetic field profiles at the mode conversion point

  10. Handbook of power systems engineering with power electronics applications

    CERN Document Server

    Hase, Yoshihide

    2012-01-01

    Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single u

  11. Reversed magnetic shear suppression of electron-scale turbulence on NSTX

    Science.gov (United States)

    Yuh, Howard Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Smith, D. R.; Domier, C. W.; Luhmann, N. C.; Park, H. K.

    2009-11-01

    Electron thermal internal transport barriers (e-ITBs) are observed in reversed (negative) magnetic shear NSTX discharges^1. These e-ITBs can be created with either neutral beam heating or High Harmonic Fast Wave (HHFW) RF heating. The e-ITB location occurs at the location of minimum magnetic shear determined by Motional Stark Effect (MSE) constrained equilibria. Statistical studies show a threshold condition in magnetic shear for e-ITB formation. High-k fluctuation measurements at electron turbulence wavenumbers^3 have been made under several different transport regimes, including a bursty regime that limits temperature gradients at intermediate magnetic shear. The growth rate of fluctuations has been calculated immediately following a change in the local magnetic shear, resulting in electron temperature gradient relaxation. Linear gyrokinetic simulation results for NSTX show that while measured electron temperature gradients exceed critical linear thresholds for ETG instability, growth rates can remain low under reversed shear conditions up to high electron temperatures gradients. ^1H. Yuh, et. al., PoP 16, 056120 ^2D.R. Smith, E. Mazzucato et al., RSI 75, 3840 ^3E. Mazzucato, D.R. Smith et al., PRL 101, 075001

  12. Experimental and modelling study of reverse flow catalytic converters for natural gas/diesel dual fuel engine pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.

    2000-07-01

    There is renewed interest in the development of natural gas vehicles in response to the challenge to reduce urban air pollution and consumption of petroleum. The natural gas/diesel dual fuel engine is one way to apply natural gas to the conventional diesel engine. Dual fuel engines operating on natural gas and diesel emit less nitrogen oxides, and less carbon soot to the air compared to conventional diesel engines. The problem is that at light loads, fuel efficiency is reduced and emissions of hydrocarbons and carbon monoxide are increased. This thesis focused on control methods for emissions of hydrocarbons and carbon monoxide in the dual fuel engine at light loads. This was done by developing a reverse flow catalytic converter to complement dual fuel engine exhaust characteristics. Experimental measurements and numerical simulations of reverse flow catalytic converters were conducted. Reverse flow creates a high reactor temperature even when the engine is run at low exhaust temperature levels at light loads. The increase in reactor temperature from reverse flow could be 2 or 3 times higher than the adiabatic temperature increase, which is based on the reactor inlet temperature and concentration. This temperature makes it possible for greater than 90 per cent of the hydrocarbon and carbon monoxide to be converted with a palladium based catalyst. Reverse flow appears to be better than conventional unidirectional flow to deal with natural gas/diesel dual fuel engine pollution at light loads. Reverse flow could also maintain reactor temperature at over 800 K and hydrocarbon conversion at about 80 per cent during testing. The newly presented model simulates reactor performance with reasonable accuracy. Both carbon monoxide and methane oxidation over the palladium catalyst in excess oxygen and water were described using first order kinetics.

  13. Method and electronic database search engine for exposing the content of an electronic database

    NARCIS (Netherlands)

    Stappers, P.J.

    2000-01-01

    The invention relates to an electronic database search engine comprising an electronic memory device suitable for storing and releasing elements from the database, a display unit, a user interface for selecting and displaying at least one element from the database on the display unit, and control

  14. MODELING OF ELECTRONIC GASOLINE INJECTION PROCESSES IN TWO STROKE ENGINE

    Directory of Open Access Journals (Sweden)

    Hraivoronskyi, Y.

    2013-06-01

    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  15. Multiple choice questions in electronics and electrical engineering

    CERN Document Server

    DAVIES, T J

    2013-01-01

    A unique compendium of over 2000 multiple choice questions for students of electronics and electrical engineering. This book is designed for the following City and Guilds courses: 2010, 2240, 2320, 2360. It can also be used as a resource for practice questions for any vocational course.

  16. Palm Power Free-Piston Stirling Engine Control Electronics

    Science.gov (United States)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  17. Experimental realization of a Szilard engine with a single electron.

    Science.gov (United States)

    Koski, Jonne V; Maisi, Ville F; Pekola, Jukka P; Averin, Dmitri V

    2014-09-23

    The most succinct manifestation of the second law of thermodynamics is the limitation imposed by the Landauer principle on the amount of heat a Maxwell demon (MD) can convert into free energy per single bit of information obtained in a measurement. We propose and realize an electronic MD based on a single-electron box operated as a Szilard engine, where kBT ln 2 of heat is extracted from the reservoir at temperature T per one bit of created information. The information is encoded in the position of an extra electron in the box.

  18. Innovative technologies in course Electrical engineering and electronics

    Science.gov (United States)

    Kuznetsov, E. V.; Kiselev, V. I.; Kulikova, E. A.

    2017-11-01

    Department of Electrical Engineering and Nondestructive Testing, NRU “MPEI”, has been working on development Electronic Learning Resources (ELRs) in course Electrical Engineering and Electronics for several years. This work have been focused on education intensification and effectiveness while training bachelors in nonelectrical specializations including students from Thermal and Atomic Power Engineering Institute. The developed ELRs are united in a tutorial module consisting of three parts (Electrical Circuits, Electrical Machines, Basics of Electronics): electronic textbook and workbook (ETW); virtual laboratory sessions (VLS); training sessions (ETS); personal tasks (PT); testing system that contains electronic tests in all course subjects and built-in verification of a student’s work results in ETW, VLS, ETS, PT. The report presents samples of different ELRs in html format and MathCAD, MatLAB Simulink applications, copyrighted programs in Java2, Delphi, VB6, C++. The report also contains the experience description, advantages and disadvantages of the new technologies. It is mentioned that ELRs provide new opportunities in course studying.

  19. 78 FR 37958 - Special Conditions: Cessna Aircraft Company, Model J182T; Electronic Engine Control System...

    Science.gov (United States)

    2013-06-25

    ...; Electronic Engine Control System Installation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... feature(s) associated with the installation of an electronic engine control. The applicable airworthiness...) fuel. The J182T incorporates an engine controlled by an electronic engine [[Page 37959

  20. [Computer aided design for fixed partial denture framework based on reverse engineering technology].

    Science.gov (United States)

    Sun, Yu-chun; Lü, Pei-jun; Wang, Yong

    2006-03-01

    To explore a computer aided design (CAD) route for the framework of domestic fixed partial denture (FPD) and confirm the suitable method of 3-D CAD. The working area of a dentition model was scanned with a 3-D mechanical scanner. Using the reverse engineering (RE) software, margin and border curves were extracted and several reference curves were created to ensure the dimension and location of pontic framework that was taken from the standard database. The shoulder parts of the retainers were created after axial surfaces constructed. The connecting areas, axial line and curving surface of the framework connector were finally created. The framework of a three-unit FPD was designed with RE technology, which showed smooth surfaces and continuous contours. The design route is practical. The result of this study is significant in theory and practice, which will provide a reference for establishing the computer aided design/computer aided manufacture (CAD/CAM) system of domestic FPD.

  1. Political science. Reverse-engineering censorship in China: randomized experimentation and participant observation.

    Science.gov (United States)

    King, Gary; Pan, Jennifer; Roberts, Margaret E

    2014-08-22

    Existing research on the extensive Chinese censorship organization uses observational methods with well-known limitations. We conducted the first large-scale experimental study of censorship by creating accounts on numerous social media sites, randomly submitting different texts, and observing from a worldwide network of computers which texts were censored and which were not. We also supplemented interviews with confidential sources by creating our own social media site, contracting with Chinese firms to install the same censoring technologies as existing sites, and--with their software, documentation, and even customer support--reverse-engineering how it all works. Our results offer rigorous support for the recent hypothesis that criticisms of the state, its leaders, and their policies are published, whereas posts about real-world events with collective action potential are censored. Copyright © 2014, American Association for the Advancement of Science.

  2. Modeling planarian regeneration: a primer for reverse-engineering the worm.

    Directory of Open Access Journals (Sweden)

    Daniel Lobo

    Full Text Available A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences-using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an

  3. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.

    Science.gov (United States)

    Wei, Jiangyong; Hu, Xiaohua; Zou, Xiufen; Tian, Tianhai

    2017-12-28

    Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate

  4. Reverse engineering of B-pillar with 3D optical scanning for manufacturing of non-uniform thickness part

    OpenAIRE

    Islam Md. Tasbirul; Abdullah A.B.; Mahmud Mohamad Zihad

    2017-01-01

    This paper presents reverse engineering (RE) of a complex automobile structural part, B-pillar. As a major part of the automobile body-in white (BiW), B-pillar has substantial opportunity for weight reduction by introducing variable thickness across its sections. To leverage such potential, an existing B-pillar was reverse engineered with a 3D optical scanner and computer aided design (CAD) application. First, digital data (i.e. in meshes) of exiting B-pillar was obtained by the scanner, and ...

  5. Electron temperature in field reversed configurations and theta pinches with closed magnetic field lines

    International Nuclear Information System (INIS)

    Newton, A.A.

    1986-01-01

    Field-reversed configurations (FRC) and theta pinches with trapped reversed bias field are essentially the same magnetic confinement systems using closed magnetic field lines inside an open-ended magnetic flux tube. A simple model of joule heating and parallel electron thermal conduction along the open flux lines to an external heat sink gives the electron temperature as Tsub(e)(eV) approx.= 0.05 Bsup(2/3)(G)Lsup(1/3)(cm), where B is the magnetic field and L is the coil length. This model appears to agree with measurements from present FRC experiments and past theta-pinch experiments which cover a range of 40-900 eV. The energy balance in the model is dominated by (a) parallel electron thermal conduction along the open field lines which has a steep temperature dependence, Q is proportional to Tsub(e)sup(7/2), and (b) the assumed rapid perpendicular transport in the plasma bulk which, in experiments to date, may be due to the small number of ion gyroradii across the plasma. (author)

  6. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  7. Search for Time Reversal Violation in Neutron Decay: A Measurement of the Transverse Polarization of Electrons

    International Nuclear Information System (INIS)

    Bodek, K.; Kaczmarek, A.; Kistryn, St.; Kuzniak, M.; Zejma, J.; Pulut, J.; Kirch, K.; Bialek, A.; Kozela, A.; Ban, G.; Naviliat-Cuncic, O.; Gorel, P.; Beck, M.; Lindroth, A.; Severijns, N.; Stephan, E.; Czarnecki, A.

    2006-01-01

    A non-zero value of the R-correlation coefficient due to the e - polarization component, perpendicular to the plane spanned by the spin of the decaying neutron and the electron momentum, would signal a violation of time reversal symmetry and thus physics beyond the Standard Model. The value of the N-correlation coefficient, given by the transverse e - polarization component within that plane, is expected to be finite. The measurement of N serves as an important systematic check of the apparatus for the R-measurement. The first phase of data taking has been completed. Preliminary results from a limited data sample show no deviations from the Standard Model predictions

  8. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    Science.gov (United States)

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. 76 FR 55293 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-09-07

    ... with an electronic engine control (EEC), also known as a Full Authority Digital Engine Control (FADEC... engine design certification, and the certification requirements for engine control systems are driven by... aircraft supplied power and data failures on the engine control system, and the resulting effects on engine...

  10. Influence of 2 MeV electrons irradiation on gallium phosphide light-emitting diodes reverse currents

    Directory of Open Access Journals (Sweden)

    V. G. Vorobiov

    2015-10-01

    Full Text Available Results of reverse electrophysical characteristics study of red and green LEDs, initial and irradiated with 2 MeV electrons were given. It was found that reverse current was predominantly caused by carriers tunneling at Urev ≤ 9 V, and by the avalanche multiplication at Urev ≥ 13 V, in the range U = 9 ÷ 13 V both mechanisms are available. Current increase at high voltage areas (Urev > 19 V is limited by the base resistance of diode. In the case of significant reverse currents (I > 1 mA irradiation of diodes leads to the shift of reverse current-voltage characteristics into the high voltages direction.

  11. GREEN ECONOMY AND THE REVERSE LOGISTICS OF WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Fernando Augusto Silva Marins

    2016-03-01

    Full Text Available From the way globally accepted for economic growth representation of evolution of a country related to the findings of non consideration of environmental assets and liabilities as a measure of occupancy in the economy of the countries, this study suggests a paradigm shift in the operation of the world economy with the implementation of the Green Economy concept seeking the achievement of environmental goals necessary to a level considered optimal in terms of pollution at lower cost to society. The focus of the study is given to the management of waste electrical and electronic equipment (WEEE, particularly in the reverse logistics of WEEE as a potential tool for economic growth maintenance condition with sustainability. A diagnosis on the use of reverse logistics of WEEE in the world is also presented based on research conducted in countries on five continents. At the end of the study it was concluded that the application of reverse logistics in the world is still incipient with no evidence of the use of economic instruments that give opportunity for growth and sustainability. Accordingly, it is emphasized that the management of WEEE practiced in most countries has shown motivation solely on financial profit based on the export / import of waste in a kind of ruse coated green taking into account the environmental and health risks of the population in developing countries or in development, which are the main final destination of WEEE.

  12. Structured electron beams from nano-engineered cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaramwong, A. [NICADD, DeKalb; Mihalcea, D. [NICADD, DeKalb; Andonian, G. [RadiaBeam Tech.; Piot, P. [Fermilab

    2017-03-07

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  13. Imitating model of the electronic regulator frequencies of rotation of the automobile diesel engine

    OpenAIRE

    Тырловой, С. И.

    2011-01-01

    The imitating model of an frequency electronic regulator of rotation of high-speed diesel engine an automobile diesel engine with the distributive fuel pump of Bosch company is resulted. Is executed simulation transitive modes of a diesel engine with mechanic and electronic regulators. Deterioration influence plungers steams on dinamic and economic indicators of a diesel engine is analysed. Operational indicators of a diesel engine with mechanic and electronic regulators are compared. The obt...

  14. Generation and confinement of hot ions and electrons in a reversed-field pinch plasma

    International Nuclear Information System (INIS)

    Chapman, B E; Almagri, A F; Anderson, J K; Caspary, K J; Clayton, D J; Den Hartog, D J; Ennis, D A; Fiksel, G; Gangadhara, S; Kumar, S; Magee, R M; O'Connell, R; Parke, E; Prager, S C; Reusch, J A; Sarff, J S; Stephens, H D; Brower, D L; Ding, W X; Craig, D

    2010-01-01

    By manipulating magnetic reconnection in Madison Symmetric Torus (MST) discharges, we have generated and confined for the first time a reversed-field pinch (RFP) plasma with an ion temperature >1 keV and an electron temperature of 2 keV. This is achieved at a toroidal plasma current of about 0.5 MA, approaching MST's present maximum. The manipulation begins with intensification of discrete magnetic reconnection events, causing the ion temperature to increase to several kiloelectronvolts. The reconnection is then quickly suppressed with inductive current profile control, leading to capture of a portion of the added ion heat with improved ion energy confinement. Electron energy confinement is simultaneously improved, leading to a rapid ohmically driven increase in the electron temperature. A steep electron temperature gradient emerges in the outer region of the plasma, with a local thermal diffusivity of about 2 m 2 s -1 . The global energy confinement time reaches 12 ms, the largest value yet achieved in the RFP and which is roughly comparable to the H-mode scaling prediction for a tokamak with the same plasma current, density, heating power, size and shape.

  15. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology.

    Science.gov (United States)

    Li, Jinyang; Liu, Yi; Kim, Eunkyoung; March, John C; Bentley, William E; Payne, Gregory F

    2017-04-01

    The intestine is the site of digestion and forms a critical interface between the host and the outside world. This interface is composed of host epithelium and a complex microbiota which is "connected" through an extensive web of chemical and biological interactions that determine the balance between health and disease for the host. This biology and the associated chemical dialogues occur within a context of a steep oxygen gradient that provides the driving force for a variety of reduction and oxidation (redox) reactions. While some redox couples (e.g., catecholics) can spontaneously exchange electrons, many others are kinetically "insulated" (e.g., biothiols) allowing the biology to set and control their redox states far from equilibrium. It is well known that within cells, such non-equilibrated redox couples are poised to transfer electrons to perform reactions essential to immune defense (e.g., transfer from NADH to O 2 for reactive oxygen species, ROS, generation) and protection from such oxidative stresses (e.g., glutathione-based reduction of ROS). More recently, it has been recognized that some of these redox-active species (e.g., H 2 O 2 ) cross membranes and diffuse into the extracellular environment including lumen to transmit redox information that is received by atomically-specific receptors (e.g., cysteine-based sulfur switches) that regulate biological functions. Thus, redox has emerged as an important modality in the chemical signaling that occurs in the intestine and there have been emerging efforts to develop the experimental tools needed to probe this modality. We suggest that electrochemistry provides a unique tool to experimentally probe redox interactions at a systems level. Importantly, electrochemistry offers the potential to enlist the extensive theories established in signal processing in an effort to "reverse engineer" the molecular communication occurring in this complex biological system. Here, we review our efforts to develop this

  16. Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels

    NARCIS (Netherlands)

    Heinen, André; Aldakkak, Mohammed; Stowe, David F.; Rhodes, Samhita S.; Riess, Matthias L.; Varadarajan, Srinivasan G.; Camara, Amadou K. S.

    2007-01-01

    Mitochondria generate reactive oxygen species (ROS) dependent on substrate conditions, O(2) concentration, redox state, and activity of the mitochondrial complexes. It is well known that the FADH(2)-linked substrate succinate induces reverse electron flow to complex I of the electron transport chain

  17. Automation of reverse engineering process in aircraft modeling and related optimization problems

    Science.gov (United States)

    Li, W.; Swetits, J.

    1994-01-01

    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for

  18. Teaching electronics to first-year non-electrical engineering students

    OpenAIRE

    Dahnoun, Naim

    2017-01-01

    Teaching electronics is not only for electrical and electronics students but also for mechanical, aerospace, engineering design, civil and engineering mathematics programmes, which are likely to have electronics units as part of their curriculum. To teach electronics for these non-electronic programmes is very challenging in many aspects. First, the electronics unit has to satisfy the learning outcomes for each programme. Second, the student's motivation is normally very low since electronics...

  19. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  20. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  1. Reverse engineering of wörner type drilling machine structure.

    Science.gov (United States)

    Wibowo, A.; Belly, I.; llhamsyah, R.; Indrawanto; Yuwana, Y.

    2018-03-01

    A product design needs to be modified based on the conditions of production facilities and existing resource capabilities without reducing the functional aspects of the product itself. This paper describes the reverse engineering process of the main structure of the wörner type drilling machine to obtain a machine structure design that can be made by resources with limited ability by using simple processes. Some structural, functional and the work mechanism analyzes have been performed to understand the function and role of each basic components. The process of dismantling of the drilling machine and measuring each of the basic components was performed to obtain sets of the geometry and size data of each component. The geometric model of each structure components and the machine assembly were built to facilitate the simulation process and machine performance analysis that refers to ISO standard of drilling machine. The tolerance stackup analysis also performed to determine the type and value of geometrical and dimensional tolerances, which could affect the ease of the components to be manufactured and assembled

  2. A data-driven approach to reverse engineering customer engagement models: towards functional constructs.

    Directory of Open Access Journals (Sweden)

    Natalie Jane de Vries

    Full Text Available Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The 'communities' of questionnaire items that emerge from our community detection method form possible 'functional constructs' inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such 'functional constructs' suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling.

  3. Engineering and physics of high-power-density, compact, reversed-field-pinch fusion reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Krakowski, R.A.; Schultz, K.R.; Steiner, D.

    1989-01-01

    The technical feasibility and key developmental issues of compact, high-power-density Reversed-Field-Pinch (RFP) reactors are the primary results of the TITAN RFP reactor study. Two design approaches emerged, TITAN-I and TITAN-II, both of which are steady-state, DT-burning, circa 1000 MWe power reactors. The TITAN designs are physically compact and have a high neutron wall loading of 18 MW m 2 . Detailed analyses indicate that: a) each design is technically feasible; b) attractive features of compact RFP reactors can be realized without sacrificing the safety and environmental potential of fusion; and c) major features of this particular embodiment of the RFP reactor are retained in a design window of neutron wall loading ranging from 10 to 20 MW/m 2 . A major product of the TITAN study is the identification and quantification of major engineering and physics requirements for this class of RFP reactors. These findings are the focus of this paper. (author). 26 refs.; 4 figs.; 1 tab

  4. RegnANN: Reverse Engineering Gene Networks using Artificial Neural Networks.

    Directory of Open Access Journals (Sweden)

    Marco Grimaldi

    Full Text Available RegnANN is a novel method for reverse engineering gene networks based on an ensemble of multilayer perceptrons. The algorithm builds a regressor for each gene in the network, estimating its neighborhood independently. The overall network is obtained by joining all the neighborhoods. RegnANN makes no assumptions about the nature of the relationships between the variables, potentially capturing high-order and non linear dependencies between expression patterns. The evaluation focuses on synthetic data mimicking plausible submodules of larger networks and on biological data consisting of submodules of Escherichia coli. We consider Barabasi and Erdös-Rényi topologies together with two methods for data generation. We verify the effect of factors such as network size and amount of data to the accuracy of the inference algorithm. The accuracy scores obtained with RegnANN is methodically compared with the performance of three reference algorithms: ARACNE, CLR and KELLER. Our evaluation indicates that RegnANN compares favorably with the inference methods tested. The robustness of RegnANN, its ability to discover second order correlations and the agreement between results obtained with this new methods on both synthetic and biological data are promising and they stimulate its application to a wider range of problems.

  5. A data-driven approach to reverse engineering customer engagement models: towards functional constructs.

    Science.gov (United States)

    de Vries, Natalie Jane; Carlson, Jamie; Moscato, Pablo

    2014-01-01

    Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The 'communities' of questionnaire items that emerge from our community detection method form possible 'functional constructs' inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such 'functional constructs' suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling.

  6. An Integrated Reverse Engineering Approach for Accuracy Control of Free-Form Objects

    Directory of Open Access Journals (Sweden)

    Pathak Vimal Kumar

    2016-12-01

    Full Text Available Computer-aided tools help in shortening and eradicating numerous repetitive tasks that reduces the gap between digital model and actual product. Use of these tools assists in realizing free-form objects such as custom fit products as described by a stringent interaction with the human body. Development of such a model presents a challenging situation for reverse engineering (RE which is not analogous with the requirement for generating simple geometric models. Hence, an alternating way of producing more accurate three-dimensional models is proposed. For creating accurate 3D models, point clouds are processed through filtering, segmentation, mesh smoothing and surface generation. These processes help in converting the initial unorganized point data into a 3D digital model and simultaneously influence the quality of model. This study provides an optimum balance for the best accuracy obtainable with maximum allowable deviation to lessen computer handling and processing time. A realistic non trivial case study of free-form prosthetic socket is considered. The accuracy obtained for the developed model is acceptable for the use in medical applications and FEM analysis.

  7. An Analytical Reverse Engineering of IELTS Listening Tasks for a Construct Model

    Directory of Open Access Journals (Sweden)

    Masood Khalili Sabet

    2017-10-01

    Full Text Available The study reported here was concerned with the issue of reverse engineering of language test items as it relates to the identification of the language constructs underlying listening tasks of LELTS test. In this regard, the IELTS examination papers, from IELTS 1 to IELTS 10 were compiled as a corpus for the analysis. Tasks were analyzed using a taxonomic frame work adopted from Moore, Morton and price (2012, that was originally adapted from Weir and Urquhart (1998, with a focus on two dimensions of difference: level of engagement, referring to the level of text with which a listener required to engage in order to respond to a task (local vs. global; type of engagement referring to the way (or ways  listeners expected to engage with a text in order to process the material to respond to a task (literal vs. interpretative. Overall, the analysis found evidences of bottom up processing underlying most IELTS listening tasks. The majority of tasks were identified to have a ‘local-literal’ configuration on their orientation, demanding primarily a basic understanding of relatively small textual units of the material. The results of the study were used to suggest the practical implications for the four groups of the people involved in the IELTS educational contexts: participants; teachers; material preparation experts, and curriculum designers.

  8. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    Science.gov (United States)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  9. Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering

    Science.gov (United States)

    Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland

    2000-01-01

    Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.

  10. Engineered reversal of drug resistance in cancer cells--metastases suppressor factors as change agents.

    Science.gov (United States)

    Yadav, Vinod Kumar; Kumar, Akinchan; Mann, Anita; Aggarwal, Suruchi; Kumar, Maneesh; Roy, Sumitabho Deb; Pore, Subrata Kumar; Banerjee, Rajkumar; Mahesh Kumar, Jerald; Thakur, Ram Krishna; Chowdhury, Shantanu

    2014-01-01

    Building molecular correlates of drug resistance in cancer and exploiting them for therapeutic intervention remains a pressing clinical need. To identify factors that impact drug resistance herein we built a model that couples inherent cell-based response toward drugs with transcriptomes of resistant/sensitive cells. To test this model, we focused on a group of genes called metastasis suppressor genes (MSGs) that influence aggressiveness and metastatic potential of cancers. Interestingly, modeling of 84 000 drug response transcriptome combinations predicted multiple MSGs to be associated with resistance of different cell types and drugs. As a case study, on inducing MSG levels in a drug resistant breast cancer line resistance to anticancer drugs caerulomycin, camptothecin and topotecan decreased by more than 50-60%, in both culture conditions and also in tumors generated in mice, in contrast to control un-induced cells. To our knowledge, this is the first demonstration of engineered reversal of drug resistance in cancer cells based on a model that exploits inherent cellular response profiles.

  11. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process

    Directory of Open Access Journals (Sweden)

    Gabriele Baronio

    2016-01-01

    Full Text Available The possibility to realize highly customized orthoses is receiving boost thanks to the widespread diffusion of low-cost 3D printing technologies. However, rapid prototyping (RP with 3D printers is only the final stage of patient personalized orthotics processes. A reverse engineering (RE process is in fact essential before RP, to digitize the 3D anatomy of interest and to process the obtained surface with suitable modeling software, in order to produce the virtual solid model of the orthosis to be printed. In this paper, we focus on the specific and demanding case of the customized production of hand orthosis. We design and test the essential steps of the entire production process with particular emphasis on the accurate acquisition of the forearm geometry and on the subsequent production of a printable model of the orthosis. The choice of the various hardware and software tools (3D scanner, modeling software, and FDM printer is aimed at the mitigation of the design and production costs while guaranteeing suitable levels of data accuracy, process efficiency, and design versatility. Eventually, the proposed method is critically analyzed so that the residual issues and critical aspects are highlighted in order to discuss possible alternative approaches and to derive insightful observations that could guide future research activities.

  12. Design of microreactor by integration of reverse engineering and direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Bineli, Aulus Roberto Romao; Gimenez Perez, Ana Paula; Bernardes, Luiz Fernando; Munhoz, Andre Luiz Jardini; Maciel Filho, Rubens [Universidade de Campinas (LOPCA/UNICAMP), SP (Brazil). School of Chemical Engineering. Laboratory of Optimization, Design and Advanced Process Control], Email: aulus@feq.unicamp.br

    2010-07-01

    The propose of this work is to present high precision microfabrication facilities using computer aided technologies as Reverse Engineering (RE) and Rapid Manufacturing (RM) to analyze, design and construct micro reactors to produce high content hydrogen gas. Micro reactors are very compact, have a high surface to volume ratio, exhibit enhanced heat and mass transfer rates, denotes extremely low pressure drop and allow improved thermal integration in the processes involved. The main goals of micro reactors are the optimization of conventional chemical plants and low footprint, opening different ways to research new process technologies and synthesis of new products. In this work, a microchannels plate and housing structure of these plates were fabricated using DMLS method (Direct Metal Laser Sintering). The plates were analyzed to verify the minimum thickness wall that machine can produce, and the housing structure were digitalized, using a 3D scanning, to perform a 3D inspection and to verify the deflection of the constructed part in comparison with original CAD design models. It was observed that DMLS systems are able to produce micro reactors and microchannels plates with high precision at different metallic materials. However, it is important to choose appropriate conditions to avoid residual stresses and consequently warping parts. (author)

  13. Demonstration of Electron Bernstein Wave Heating in a Reversed Field Pinch

    Science.gov (United States)

    Seltzman, Andrew H.

    The Electron Bernstein wave (EBW) presents an alternative to conventional electron cyclotron resonance heating and current drive in overdense plasmas, where electromagnetic waves are inaccessible. The first observation of rf heating in a reversed field pinch (RFP) using the EBW has been demonstrated on Madison Symmetric Torus (MST). The EBW propagates radially inward through a magnetic field that is either stochastic or has broken flux surfaces, before absorption on a substantially Doppler-shifted cyclotron resonance (? = n*?_ce - k_parallel*v_parallel), where n is the harmonic number. Deposition depth is controllable with plasma current on a broad range (n=1-7) of harmonics. Novel techniques were required to measure the suprathermal electron tail generated by EBW heating in the presence of intense Ohmic heating. In the thick-shelled MST RFP, the radial accessibility of the EBW is limited to r/a > 0.8 ( 10 cm), where a=52cm is the minor radius, by magnetic field error induced by the porthole necessary for the antenna; accessibility in a thin-shelled device with actively controlled saddle coils (without the burden of substantial porthole field error) is likely to be r/a> 0.5 in agreement with ray tracing studies. Measured electron loss rates with falloff time constants in the 10s of micros imply a large, non-collisional radial diffusivity; collisional times with background particles are on the order of one millisecond. EBW-heated test electrons are used as a probe of edge (r/a > 0.9) radial transport, showing a modest transition from 'standard' to reduced-tearing RFP operation.

  14. Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain

    Science.gov (United States)

    Selivanov, Vitaly A.; Votyakova, Tatyana V.; Pivtoraiko, Violetta N.; Zeak, Jennifer; Sukhomlin, Tatiana; Trucco, Massimo; Roca, Josep; Cascante, Marta

    2011-01-01

    Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC. PMID:21483483

  15. Speed Control of General Purpose Engine with Electronic Governor

    Science.gov (United States)

    Sawut, Umerujan; Tohti, Gheyret; Takigawa, Buso; Tsuji, Teruo

    This paper presents a general purpose engine speed control system with an electronic governor in order to improve the current system with a mechanical governor which shows unstable characteristics by change of mecanical friction or A/F ratio (Air/Fuel ratio). For the control system above, there are problems that the feedback signal is only a crank angle because of cost and the controlled object is a general purpose engine which is strongly nonlinear. In order to overcome these problems, the system model is shown for the dynamic estimation of the amount of air flow and the robust controller is designed. That is, the proposed system includes the robust sliding-mode controller by the feedback signal of only a crank angle where Genetic Algorithm is applied for the controller design. The simulation and the experiments by MATLAB/Simulink are performed to show the effectiveness of our proposal.

  16. Query Log Analysis of an Electronic Health Record Search Engine

    Science.gov (United States)

    Yang, Lei; Mei, Qiaozhu; Zheng, Kai; Hanauer, David A.

    2011-01-01

    We analyzed a longitudinal collection of query logs of a full-text search engine designed to facilitate information retrieval in electronic health records (EHR). The collection, 202,905 queries and 35,928 user sessions recorded over a course of 4 years, represents the information-seeking behavior of 533 medical professionals, including frontline practitioners, coding personnel, patient safety officers, and biomedical researchers for patient data stored in EHR systems. In this paper, we present descriptive statistics of the queries, a categorization of information needs manifested through the queries, as well as temporal patterns of the users’ information-seeking behavior. The results suggest that information needs in medical domain are substantially more sophisticated than those that general-purpose web search engines need to accommodate. Therefore, we envision there exists a significant challenge, along with significant opportunities, to provide intelligent query recommendations to facilitate information retrieval in EHR. PMID:22195150

  17. Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas

    Science.gov (United States)

    Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.

    2018-01-01

    Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.

  18. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease

    Directory of Open Access Journals (Sweden)

    Filippo Scialò

    2017-06-01

    Full Text Available Reactive Oxygen Species (ROS can cause oxidative damage and have been proposed to be the main cause of aging and age-related diseases including cancer, diabetes and Parkinson's disease. Accordingly, mitochondria from old individuals have higher levels of ROS. However, ROS also participate in cellular signaling, are instrumental for several physiological processes and boosting ROS levels in model organisms extends lifespan. The current consensus is that low levels of ROS are beneficial, facilitating adaptation to stress via signaling, whereas high levels of ROS are deleterious because they trigger oxidative stress. Based on this model the amount of ROS should determine the physiological effect. However, recent data suggests that the site at which ROS are generated is also instrumental in determining effects on cellular homeostasis. The best example of site-specific ROS signaling is reverse electron transport (RET. RET is produced when electrons from ubiquinol are transferred back to respiratory complex I, reducing NAD+ to NADH. This process generates a significant amount of ROS. RET has been shown to be instrumental for the activation of macrophages in response to bacterial infection, re-organization of the electron transport chain in response to changes in energy supply and adaptation of the carotid body to changes in oxygen levels. In Drosophila melanogaster, stimulating RET extends lifespan. Here, we review what is known about RET, as an example of site-specific ROS signaling, and its implications for the field of redox biology.

  19. Characterization of Isomeric Glycans by Reversed Phase Liquid Chromatography-Electronic Excitation Dissociation Tandem Mass Spectrometry

    Science.gov (United States)

    Tang, Yang; Wei, Juan; Costello, Catherine E.; Lin, Cheng

    2018-04-01

    The occurrence of numerous structural isomers in glycans from biological sources presents a severe challenge for structural glycomics. The subtle differences among isomeric structures demand analytical methods that can provide structural details while working efficiently with on-line glycan separation methods. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful tool for mixture analysis, the commonly utilized collision-induced dissociation (CID) method often does not generate a sufficient number of fragments at the MS2 level for comprehensive structural characterization. Here, we studied the electronic excitation dissociation (EED) behaviors of metal-adducted, permethylated glycans, and identified key spectral features that could facilitate both topology and linkage determinations. We developed an EED-based, nanoscale, reversed phase (RP)LC-MS/MS platform, and demonstrated its ability to achieve complete structural elucidation of up to five structural isomers in a single LC-MS/MS analysis. [Figure not available: see fulltext.

  20. Electronic digital computers their use in science and engineering

    CERN Document Server

    Alt, Franz L

    1958-01-01

    Electronic Digital Computers: Their Use in Science and Engineering describes the principles underlying computer design and operation. This book describes the various applications of computers, the stages involved in using them, and their limitations. The machine is composed of the hardware which is run by a program. This text describes the use of magnetic drum for storage of data and some computing. The functions and components of the computer include automatic control, memory, input of instructions by using punched cards, and output from resulting information. Computers operate by using numbe

  1. Integrating Sustainability in a PBL Environment for Electronics Engineering

    DEFF Research Database (Denmark)

    Arsat, Mahyuddin; Holgaard, Jette Egelund; de Graaff, Erik

    2013-01-01

    (PBL) has been put forward as a promising pedagogical model and emerged as an opportunity to implement sustainability successfully. Due to the almost forty years of experience in PBL, a case study was carried out at Aalborg University, Denmark to excerpt their experience of integrating sustainability...... in a problem based learning environment. Three electronics engineering project modules were selected as example and empirically supported by constructed interviews with staff and document analysis of selected material. The findings were analysed with a systems approach and presented with reference to three...

  2. IEEE [Institute of Electrical and Electronics Engineers] standards and nuclear software quality engineering

    International Nuclear Information System (INIS)

    Daughtrey, T.

    1988-01-01

    Significant new nuclear-specific software standards have recently been adopted under the sponsorship of the American Nuclear Society and the American Society of Mechanical Engineers. The interest of the US Nuclear Regulatory Commission has also been expressed through their issuance of NUREG/CR-4640. These efforts all indicate a growing awareness of the need for thorough, referenceable expressions of the way to build in and evaluate quality in nuclear software. A broader professional perspective can be seen in the growing number of software engineering standards sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Computer Society. This family of standards represents a systematic effort to capture professional consensus on quality practices throughout the software development life cycle. The only omission-the implementation phase-is treated by accepted American National Standards Institute or de facto standards for programming languages

  3. Suppressing Electron Turbulence and Triggering Internal Transport Barriers with Reversed Magnetic Shear in the National Spherical Torus Experiment

    Science.gov (United States)

    Peterson, Jayson Luc

    2011-10-01

    Observations in the National Spherical Torus Experiment (NSTX) have found electron temperature gradients that greatly exceed the linear threshold for the onset for electron temperature gradient-driven (ETG) turbulence. These discharges, deemed electron internal transport barriers (e-ITBs), coincide with a reversal in the shear of the magnetic field and with a reduction in electron-scale density fluctuations, qualitatively consistent with earlier gyrokinetic predictions. To investigate this phenomenon further, we numerically model electron turbulence in NSTX reversed-shear plasmas using the gyrokinetic turbulence code GYRO. These first-of-a-kind nonlinear gyrokinetic simulations of NSTX e-ITBs confirm that reversing the magnetic shear can allow the plasma to reach electron temperature gradients well beyond the critical gradient for the linear onset of instability. This effect is very strong, with the nonlinear threshold for significant transport approaching three times the linear critical gradient in some cases, in contrast with moderate shear cases, which can drive significant ETG turbulence at much lower gradients. In addition to the experimental implications of this upshifted nonlinear critical gradient, we explore the behavior of ETG turbulence during reversed shear discharges. This work is supported by the SciDAC Center for the Study of Plasma Microturbulence, DOE Contract DE-AC02-09CH11466, and used the resources of NCCS at ORNL and NERSC at LBNL. M. Ono et al., Nucl. Fusion 40, 557 (2000).

  4. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.

    Science.gov (United States)

    Khan, Abhinandan; Saha, Goutam; Pal, Rajat Kumar

    2018-05-14

    A gene regulatory network discloses the regulatory interactions amongst genes, at a particular condition of the human body. The accurate reconstruction of such networks from time-series genetic expression data using computational tools offers a stiff challenge for contemporary computer scientists. This is crucial to facilitate the understanding of the proper functioning of a living organism. Unfortunately, the computational methods produce many false predictions along with the correct predictions, which is unwanted. Investigations in the domain focus on the identification of as many correct regulations as possible in the reverse engineering of gene regulatory networks to make it more reliable and biologically relevant. One way to achieve this is to reduce the number of incorrect predictions in the reconstructed networks. In the present investigation, we have proposed a novel scheme to decrease the number of false predictions by suitably combining several metaheuristic techniques. We have implemented the same using a dataset ensemble approach (i.e. combining multiple datasets) also. We have employed the proposed methodology on real-world experimental datasets of the SOS DNA Repair network of Escherichia coli and the IMRA network of Saccharomyces cerevisiae. Subsequently, we have experimented upon somewhat larger, in silico networks, namely, DREAM3 and DREAM4 Challenge networks, and 15-gene and 20-gene networks extracted from the GeneNetWeaver database. To study the effect of multiple datasets on the quality of the inferred networks, we have used four datasets in each experiment. The obtained results are encouraging enough as the proposed methodology can reduce the number of false predictions significantly, without using any supplementary prior biological information for larger gene regulatory networks. It is also observed that if a small amount of prior biological information is incorporated here, the results improve further w.r.t. the prediction of true positives

  5. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane.

    Science.gov (United States)

    Jeong, Sanghyun; Cho, Kyungjin; Jeong, Dawoon; Lee, Seockheon; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan

    2017-11-01

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors (BERs) containing the removable reverse osmosis (RO) coupons, were connected at the end of the DMFs in parallel to analyze the biofilm on the RO membrane by DMF effluents. Filtration performances were evaluated in terms of dissolved organic carbon (DOC) and assimilable organic carbon (AOC). Organic foulants on the RO membrane were also quantified and fractionized. The bacterial community structures in liquid (seawater and effluent) and biofilm (DMF and RO) samples were analyzed using 454-pyrosequencing. The DMF IV fed with the chlorinated seawater demonstrated the highest reductions of DOC including LMW-N as well as AOC among the other DMFs. The DMF IV was also effective in reducing organic foulants on the RO membrane surface. The bacterial community structure was grouped according to the sample phase (i.e., liquid and biofilm samples), sampling location (i.e., DMF and RO samples), and chlorination (chlorinated and non-chlorinated samples). In particular, the biofilm community in the DMF IV differed from the other DMF treatments, suggesting that chlorination exerted as stronger selective pressure than pH adjustment or coagulation on the biofilm community. In the DMF IV, several chemoorganotrophic chlorine-resistant biofilm-forming bacteria such as Hyphomonas, Erythrobacter, and Sphingomonas were predominant, and they may enhance organic carbon degradation efficiency. Diverse halophilic or halotolerant organic degraders were also found in other DMFs (i.e., DMF I, II, and III). Various kinds of dominant biofilm-forming bacteria were also investigated in RO membrane samples; the results provided possible candidates that cause biofouling when DMF process is applied as the pretreatment option for the RO process. Copyright

  6. Social smile reproducibility using 3-D stereophotogrammetry and reverse engineering technology.

    Science.gov (United States)

    Dindaroğlu, Furkan; Duran, Gökhan Serhat; Görgülü, Serkan; Yetkiner, Enver

    2016-05-01

    To assess the range of social smile reproducibility using 3-D stereophotogrammetry and reverse engineering technology. Social smile images of white adolescents (N  =  15, mean age  =  15.4 ±1.5 years; range  =  14-17 years) were obtained using 3dMDFlex (3dMD, Atlanta, Ga). Each participant was asked to produce 16 social smiles at 3-minute intervals. All images were obtained in natural head position. Alignment of images, segmentation of smile area, and 3-D deviation analysis were carried out using Geomagic Control software (3D Systems Inc, Cary, NC). A single image was taken as a reference, and the remaining 15 images were compared with the reference image to evaluate positive and negative deviations. The differences between the mean deviation limits of participants with the highest and the lowest deviations and the total mean deviations were evaluated using Bland-Altman Plots. Minimum and maximum deviations of a single image from the reference image were 0.34 and 2.69 mm, respectively. Lowest deviation between two images was within 0.5 mm and 1.54 mm among all participants (mean, 0.96 ± 0.21 mm), and the highest deviation was between 0.41 mm and 2.69 mm (mean, 1.53 ± 0.46 mm). For a single patient, when all alignments were considered together, the mean deviation was between 0.32 ± 0.10 mm and 0.59 ± 0.24 mm. Mean deviation for one image was between 0.14 and 1.21 mm. The range of reproducibility of the social smile presented individual variability, but this variation was not clinically significant or detectable under routine clinical observation.

  7. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.

    Science.gov (United States)

    Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Chunyu; Zhang, Gong; Xu, Zhewu

    2014-11-01

    Recently a new therapeutic concept of patient-specific implant dentistry has been advanced based on computer-aided design/computer-aided manufacturing technology. However, a comprehensive study of the design and 3-dimensional (3D) printing of the customized implants, their mechanical properties, and their biomechanical behavior is lacking. The purpose of this study was to evaluate the mechanical and biomechanical performance of a novel custom-made dental implant fabricated by the selective laser melting technique with simulation and in vitro experimental studies. Two types of customized implants were designed by using reverse engineering: a root-analog implant and a root-analog threaded implant. The titanium implants were printed layer by layer with the selective laser melting technique. The relative density, surface roughness, tensile properties, bend strength, and dimensional accuracy of the specimens were evaluated. Nonlinear and linear finite element analysis and experimental studies were used to investigate the stress distribution, micromotion, and primary stability of the implants. Selective laser melting 3D printing technology was able to reproduce the customized implant designs and produce high density and strength and adequate dimensional accuracy. Better stress distribution and lower maximum micromotions were observed for the root-analog threaded implant model than for the root-analog implant model. In the experimental tests, the implant stability quotient and pull-out strength of the 2 types of implants indicated that better primary stability can be obtained with a root-analog threaded implant design. Selective laser melting proved to be an efficient means of printing fully dense customized implants with high strength and sufficient dimensional accuracy. Adding the threaded characteristic to the customized root-analog threaded implant design maintained the approximate geometry of the natural root and exhibited better stress distribution and

  8. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane

    KAUST Repository

    Jeong, Sanghyun

    2017-07-25

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors (BERs) containing the removable reverse osmosis (RO) coupons, were connected at the end of the DMFs in parallel to analyze the biofilm on the RO membrane by DMF effluents. Filtration performances were evaluated in terms of dissolved organic carbon (DOC) and assimilable organic carbon (AOC). Organic foulants on the RO membrane were also quantified and fractionized. The bacterial community structures in liquid (seawater and effluent) and biofilm (DMF and RO) samples were analyzed using 454-pyrosequencing. The DMF IV fed with the chlorinated seawater demonstrated the highest reductions of DOC including LMW-N as well as AOC among the other DMFs. The DMF IV was also effective in reducing organic foulants on the RO membrane surface. The bacterial community structure was grouped according to the sample phase (i.e., liquid and biofilm samples), sampling location (i.e., DMF and RO samples), and chlorination (chlorinated and non-chlorinated samples). In particular, the biofilm community in the DMF IV differed from the other DMF treatments, suggesting that chlorination exerted as stronger selective pressure than pH adjustment or coagulation on the biofilm community. In the DMF IV, several chemoorganotrophic chlorine-resistant biofilm-forming bacteria such as Hyphomonas, Erythrobacter, and Sphingomonas were predominant, and they may enhance organic carbon degradation efficiency. Diverse halophilic or halotolerant organic degraders were also found in other DMFs (i.e., DMF I, II, and III). Various kinds of dominant biofilm-forming bacteria were also investigated in RO membrane samples; the results provided possible candidates that cause biofouling when DMF process is applied as the pretreatment option for the RO process.

  9. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store

    Science.gov (United States)

    Kitano, Masaaki; Inoue, Yasunori; Yamazaki, Youhei; Hayashi, Fumitaka; Kanbara, Shinji; Matsuishi, Satoru; Yokoyama, Toshiharu; Kim, Sung-Wng; Hara, Michikazu; Hosono, Hideo

    2012-11-01

    Industrially, the artificial fixation of atmospheric nitrogen to ammonia is carried out using the Haber-Bosch process, but this process requires high temperatures and pressures, and consumes more than 1% of the world's power production. Therefore the search is on for a more environmentally benign process that occurs under milder conditions. Here, we report that a Ru-loaded electride [Ca24Al28O64]4+(e-)4 (Ru/C12A7:e-), which has high electron-donating power and chemical stability, works as an efficient catalyst for ammonia synthesis. Highly efficient ammonia synthesis is achieved with a catalytic activity that is an order of magnitude greater than those of other previously reported Ru-loaded catalysts and with almost half the reaction activation energy. Kinetic analysis with infrared spectroscopy reveals that C12A7:e- markedly enhances N2 dissociation on Ru by the back donation of electrons and that the poisoning of ruthenium surfaces by hydrogen adatoms can be suppressed effectively because of the ability of C12A7:e- to store hydrogen reversibly.

  10. Reversible assembly of protein-DNA nanostructures triggered by mediated electron transfer

    International Nuclear Information System (INIS)

    Vogt, Stephan; Wenderhold-Reeb, Sabine; Nöll, Gilbert

    2017-01-01

    Stable protein-DNA nanostructures have been assembled by reconstitution of the multi-ligand binding flavoprotein dodecin on top of flavin-terminated dsDNA monolayers on gold electrodes. These structures could be disassembled by electrochemical flavin reduction via mediated electron transfer. For this purpose a negative potential was applied at the Au working electrode in the presence of the redox mediator bis-(ammoniumethyl)-4,4′-bipyridinium tetrabromide. The stepwise formation of the flavin-terminated dsDNA monolayers as well as the binding and electrochemically triggered release of apododecin were monitored by surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) measurements. The assembly and disassembly of the protein-DNA nanostructures were fully reversible processes, which could be carried out multiple times at the same flavin-dsDNA modified surface. When a negative potential was applied in the absence of a redox mediator apododecin could not be released, i.e. direct electron transfer was not possible. As alternative redox mediators also methylene blue and phenosafranine were studied, but in the presence of these molecules apododecin was released without applying a potential, probably because the tricyclic aromatic compounds are able to replace the flavins at the binding sites.

  11. A Survey of Automatic Protocol Reverse Engineering Approaches, Methods, and Tools on the Inputs and Outputs View

    OpenAIRE

    Baraka D. Sija; Young-Hoon Goo; Kyu-Seok Shim; Huru Hasanova; Myung-Sup Kim

    2018-01-01

    A network protocol defines rules that control communications between two or more machines on the Internet, whereas Automatic Protocol Reverse Engineering (APRE) defines the way of extracting the structure of a network protocol without accessing its specifications. Enough knowledge on undocumented protocols is essential for security purposes, network policy implementation, and management of network resources. This paper reviews and analyzes a total of 39 approaches, methods, and tools towards ...

  12. Engineering electronic states of periodic and quasiperiodic chains by buckling

    Science.gov (United States)

    Mukherjee, Amrita; Nandy, Atanu; Chakrabarti, Arunava

    2017-07-01

    The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, bending the segments more) absolutely continuous density of states is retained towards the edges of the band, while the central portion becomes fragmented and host subbands of narrowing widths containing extended, current carrying states, and multiple isolated bound states formed as a result of the bending. A switching ;on; and ;off; of the electronic transmission can thus be engineered by buckling. On the other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. We present exact results based on a real space renormalization group analysis, that is corroborated by explicit calculation of the two terminal electronic transport.

  13. Engineering tradeoffs in miniaturization of electronics for very large detectors

    International Nuclear Information System (INIS)

    Larsen, R.S.

    1987-10-01

    The trend toward Application-Specific Integrated Circuits and similar systems-on-a-chip-technologies is fueling a new wave of innovation in detector electronics, just in time to address some of the problems being introduced by detectors which will approach a million channels of electronics. The cost-effectiveness of these technologies can be easily demonstrated, and the trend of the past twenty years of achieving more powerful electronics at a lower per-channel cost should receive a major impetus. The investment required in the new technologies will reshape the work force of most laboratories, by providing more and better tools, and by requiring training or retraining of significant numbers of personnel. The need for new instrumentation standards will arise at new levels in the detectors of the future. The laboratories must also invest heavily in integrating various computer aided engineering and computer aided design tools into a smoothly functioning system. They must also establish a new and different kind of working relationship with vendors and suppliers of both basic devices as well as standard packaged products. This paper discusses three concepts

  14. Backup control airstart performance on a digital electronic engine control-equipped F100-engine

    Science.gov (United States)

    Johnson, J. B.

    1984-01-01

    The air start capability of a backup control (BUC) was tested for a digital electronic engine control (DEEC) equipped F100 engine, which was installed in an F-15 aircraft. Two air start schedules were tested. Using the group 1 start schedule, based on a 40 sec timer, an air speed of 300 knots was required to ensure successful 40 and 25% BUC mode spooldown airstarts. If core rotor speed (N2) was less than 40% a stall would occur when the start bleed closed, 40 sec after initiation of the air start. All jet fuel starter (JFS) assisted air starts were successful with the group 1 start schedule. For the group 2 schedule, the time between pressurization and start bleed closure ranged between 50 sec and 72 sec. Idle rps was lower than the desired 65% for air starts at higher altitudes and lower air speeds.

  15. Reverse engineering of heavy-ion collisions: Unraveling initial conditions from anisotropic flow data

    International Nuclear Information System (INIS)

    Retinskaya, Ekaterina

    2014-01-01

    Ultra-Relativistic heavy-ion physics is a promising field of high energy physics connecting two fields: nuclear physics and elementary particle physics. Experimental achievements of the last years have provided an opportunity to study the properties of a new state of matter created in heavy-ion collisions called quark-gluon plasma. The initial state of two colliding nuclei is affected by fluctuations coming from wave- functions of nucleons. These fluctuations lead to the momentum anisotropy of the hadronic matter which is observed by the detectors. The system created in the collision behaves like a fluid, so the initial state is connected to the final state via hydrodynamic evolution. In this thesis we model the evolution with relativistic viscous hydrodynamics. Our results, combined with experimental data, give non trivial constraints on the initial state, thus achieving 'reverse engineering' of the heavy-ion collisions. The observable which characterizes the momentum anisotropy is the anisotropic flow v n . We present the first measurements of the first harmonic of the anisotropic flow called directed flow v 1 in Pb-Pb collisions at the LHC. We then perform the first viscous hydrodynamic modeling of directed flow and show that it is less sensitive to viscosity than higher harmonics. Comparison of these experimental data with the modeling allows to extract the values of the dipole asymmetry of the initial state, which provides constraints on the models of initial states. A prediction for directed flow v 1 in Au-Au collisions is also made for RHIC. We then perform a similar modeling of the second and third harmonics of the anisotropic flow, called respectively elliptic v 2 and triangular v 3 flow. A combined analysis of the elliptic and triangular flow data compared with viscous hydrodynamic calculations allows us to put constraints on initial ellipticity and triangularity of the system. These constraints are then used as a filter for different models of

  16. Insights gained from the reverse engineering of gene networks in keloid fibroblasts

    Directory of Open Access Journals (Sweden)

    Phan Toan

    2011-05-01

    Full Text Available Abstract Background Keloids are protrusive claw-like scars that have a propensity to recur even after surgery, and its molecular etiology remains elusive. The goal of reverse engineering is to infer gene networks from observational data, thus providing insight into the inner workings of a cell. However, most attempts at modeling biological networks have been done using simulated data. This study aims to highlight some of the issues involved in working with experimental data, and at the same time gain some insights into the transcriptional regulatory mechanism present in keloid fibroblasts. Methods Microarray data from our previous study was combined with microarray data obtained from the literature as well as new microarray data generated by our group. For the physical approach, we used the fREDUCE algorithm for correlating expression values to binding motifs. For the influence approach, we compared the Bayesian algorithm BANJO with the information theoretic method ARACNE in terms of performance in recovering known influence networks obtained from the KEGG database. In addition, we also compared the performance of different normalization methods as well as different types of gene networks. Results Using the physical approach, we found consensus sequences that were active in the keloid condition, as well as some sequences that were responsive to steroids, a commonly used treatment for keloids. From the influence approach, we found that BANJO was better at recovering the gene networks compared to ARACNE and that transcriptional networks were better suited for network recovery compared to cytokine-receptor interaction networks and intracellular signaling networks. We also found that the NFKB transcriptional network that was inferred from normal fibroblast data was more accurate compared to that inferred from keloid data, suggesting a more robust network in the keloid condition. Conclusions Consensus sequences that were found from this study are

  17. The Science of Solubility: Using Reverse Engineering to Brew a Perfect Cup of Coffee

    Science.gov (United States)

    West, Andrew B.; Sickel, Aaron J.; Cribbs, Jennifer D.

    2015-01-01

    The Next Generation Science Standards call for the integration of science and engineering. Often, the introduction of engineering activities occurs after instruction in the science content. That is, engineering is used as a way for students to elaborate on science ideas that have already been explored. However, using only this sequence of…

  18. Flight Measurements of the Effect of a Controllable Thrust Reverser on the Flight Characteristics of a Single-Engine Jet Airplane

    Science.gov (United States)

    Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.

    1959-01-01

    A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.

  19. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Wendell O Khunjar

    Full Text Available The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.

  20. Electron transport in the stochastic fields of the reversed-field pinch

    International Nuclear Information System (INIS)

    Kim, M.-H.; Punjabi, A.

    1996-01-01

    We employ the Monte Carlo method for the calculation of anomalous transport developed by Punjabi and Boozer to calculate the particle diffusion coefficient for electrons in the stochastic magnetic fields of the reversed-field pinch (RFP). In the Monte Carlo calculations represented here, the transport mechanism is the loss of magnetic surfaces due to resistive perturbations. The equilibrium magnetic fields are represented by the Bessel function model for the RFP. The diffusion coefficient D is calculated as a function of a, the amplitude of the perturbation. We see three regimes as the amplitude of the tearing modes is increased: the Rechester-Rosenbluth regime where D scales as a 2 ; the anomalous regime where D scales more rapidly than a 2 ; and the Mynick-Krommes regime where D scales more slowly than a 2 . Inclusion of the effects of loop voltage on the particle drift orbits in the RFP does not affect the intervals in the amplitude a where these regimes operate. (Author)

  1. Closing the Loop : Reverse supply chain management andproduct return processes in electronics retailing

    OpenAIRE

    Gorskova, Julija; Ortega, Edrion

    2012-01-01

    Abstract Problem There is a gap in the knowledge concerning reverse product flows due to a lack of research and empirical data in the field of reverse supply chain management in general. Furthermore, more research is needed to investigate the factors influencing the decision making process regarding the right reverse supply chain recovery option choice for companies in order to close the supply chain loop. Processing product returns has become a critical activity for organisations as the volu...

  2. New evidence for efficient collisionless heating of electrons at the reverse shock of a young supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroya; Petre, Robert [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Eriksen, Kristoffer A. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O' Hara St, Pittsburgh, PA 15260 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Brickhouse, Nancy S.; Foster, Adam R.; Patnaude, Daniel J.; Slane, Patrick O.; Smith, Randall K., E-mail: hiroya.yamaguchi@nasa.gov [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-01-10

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here, we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect Kβ (3p → 1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe Kα (2p → 1s) emission dominated by a relatively highly ionized component. Comparisons with our hydrodynamical simulations imply instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe Kα morphology from the Chandra observations. Since strong Fe Kβ fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.

  3. New Evidence for Efficient Collisionless Heating of Electrons at the Reverse Shock of a Young Supernova Remnant

    Science.gov (United States)

    Yamaguchi, Hiroya; Eriksen, Kristoffer A.; Badenes, Carles; Hughes, John P.; Brickhouse, Nancy S.; Foster, Adam R.; Patnaude, Daniel J.; Petre, Robert; Slane, Patrick O.; Smith, Randall K.

    2013-01-01

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here, we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect K beta (3p yields 1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe K alpha (2p yields 1s) emission dominated by a relatively highly ionized component. Comparisons with our hydrodynamical simulations imply instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe K alpha morphology from the Chandra observations. Since strong Fe K beta fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.

  4. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    Science.gov (United States)

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  5. Electron Acceleration in the Field-reversed Configuration (FRC) by Slowly Rotation Odd-parity Magnetic Fields (RMFo)

    International Nuclear Information System (INIS)

    Glasser, A.H.; Cohen, S.A.

    2001-01-01

    The trajectories of individual electrons are studied numerically in a 3D, prolate, FRC [field-reversed configuration] equilibrium magnetic geometry with added small-amplitude, slowly rotating, odd-parity magnetic fields (RMFos). RMFos cause electron heating by toroidal acceleration near the O-point line and by field-parallel acceleration away from it, both followed by scattering from magnetic-field inhomogeneities. Electrons accelerated along the O-point line move antiparallel to the FRC's current and attain average toroidal angular speeds near that of the RMFo, independent of the sense of RMFo rotation. A conserved transformed Hamiltonian, dependent on electron energy and RMFo sense, controls electron flux-surface coordinate

  6. Principle and realization of segmenting contour series algorithm in reverse engineering based on X-ray computerized tomography

    International Nuclear Information System (INIS)

    Wang Yanfang; Liu Li; Yan Yonglian; Shan Baoci; Tang Xiaowei

    2007-01-01

    A new algorithm of segmenting contour series of images is presented, which can achieve three dimension reconstruction with parametric recognition in Reverse Engineering based on X-ray CT. First, in order to get the nested relationship between contours, a method of a certain angle ray is used. Second, for realizing the contour location in one slice, another approach is presented to generate the contour tree by scanning the relevant vector only once. Last, a judge algorithm is put forward to accomplish the contour match between slices by adopting the qualitative and quantitative properties. The example shows that this algorithm can segment contour series of CT parts rapidly and precisely. (authors)

  7. Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium.

    Science.gov (United States)

    Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A

    2014-06-13

    We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

  8. Proceedings of 2011 International Conference on Electronic Engineering, Communication and Management

    CERN Document Server

    Lin, Sally

    2012-01-01

      This volume presents the main results of 2011 International Conference on Electronic  Engineering, Communication and Management (EECM2011) held December 24-25, 2011, Beijing China. The EECM2011 is an integrated conference providing a valuable opportunity for researchers, scholars and scientists to exchange their ideas face to face together. The main focus of the EECM 2011 and the present 2 volumes “Advances in Electronic Engineering, Communication and Management” is on Power Engineering, Electrical engineering applications, Electrical machines, as well as Communication and Information Systems Engineering.

  9. Proceedings of 2011 International Conference on Electronic Engineering, Communication and Management

    CERN Document Server

    Lin, Sally

    2012-01-01

    This volume presents the main results of 2011 International Conference on Electronic  Engineering, Communication and Management (EECM2011) held December 24-25, 2011, Beijing China. The EECM2011 is an integrated conference providing a valuable opportunity for researchers, scholars and scientists to exchange their ideas face to face together. The main focus of the EECM 2011 and the present 2 volumes “Advances in Electronic Engineering, Communication and Management” is on Power Engineering, Electrical engineering applications, Electrical machines, as well as Communication and Information Systems Engineering.

  10. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane

    KAUST Repository

    Jeong, Sanghyun; Cho, Kyungjin; Jeong, Dawoon; Lee, Seockheon; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan

    2017-01-01

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors

  11. Reverse engineering of B-pillar with 3D optical scanning for manufacturing of non-uniform thickness part

    Directory of Open Access Journals (Sweden)

    Islam Md. Tasbirul

    2017-01-01

    Full Text Available This paper presents reverse engineering (RE of a complex automobile structural part, B-pillar. As a major part of the automobile body-in white (BiW, B-pillar has substantial opportunity for weight reduction by introducing variable thickness across its sections. To leverage such potential, an existing B-pillar was reverse engineered with a 3D optical scanner and computer aided design (CAD application. First, digital data (i.e. in meshes of exiting B-pillar was obtained by the scanner, and subsequently, this information was utilized in developing a complete 3D CAD model. CATIA V5 was used in the modeling where some of the essential work benches were “Digitized Shape Editor”, “Quick Surface Reconstruction”, “Wireframe and Surface Design”, “Freestyle”, “Generation Shape Design” and “Part design”. In the final CAD design, five different thicknesses were incorporated successfully in order to get a B-pillar with non-uniform sections. This research opened opportunities for thickness optimization and mold tooling design in real time manufacturing.

  12. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.

    Science.gov (United States)

    De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego

    2013-01-01

    Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.

  13. In Situ Transmission Electron Microscopy Studies of the Magnetization Reversal Mechanism in Information Storage Materials.

    Science.gov (United States)

    Petford-Long; Portier; Bayle-Guillemaud; Anthony; Brug

    1998-05-01

    : The Foucault and Fresnel modes of Lorentz microscopy, together with a quantitative magnetization mapping technique, summed image differential phase-contrast imaging, were used to study the magnetization reversal mechanism of the sense layer in spin-valve structures exhibiting the giant magnetoresistance effect. In addition to studies of sheet film, lithographically defined spin-valve elements were investigated. A current can be passed through the element during magnetizing so that the effect of the applied current on the giant magnetoresistance and magnetization reversal mechanism can be studied. Results are presented for a number of different spin-valve structures.

  14. Low-Cost Virtual Laboratory Workbench for Electronic Engineering

    Science.gov (United States)

    Achumba, Ifeyinwa E.; Azzi, Djamel; Stocker, James

    2010-01-01

    The laboratory component of undergraduate engineering education poses challenges in resource constrained engineering faculties. The cost, time, space and physical presence requirements of the traditional (real) laboratory approach are the contributory factors. These resource constraints may mitigate the acquisition of meaningful laboratory…

  15. Engineering Electrochemical Setups for Electron Microscopy of Liquid Processes

    DEFF Research Database (Denmark)

    Jensen, Eric; Burrows, Andrew

    This work focuses on creating tools for imaging liquid samples at atmospheric pressure and room temperature in two different electron microscopes; the scanning electron microscope (SEM) and the transmission electron microscope (TEM). The main focus of the project was the fabrication of the two sy...

  16. Optimising reverse logistics network to support policy-making in the case of Electrical and Electronic Equipment.

    Science.gov (United States)

    Achillas, Ch; Vlachokostas, Ch; Aidonis, D; Moussiopoulos, N; Iakovou, E; Banias, G

    2010-12-01

    Due to the rapid growth of Waste Electrical and Electronic Equipment (WEEE) volumes, as well as the hazardousness of obsolete electr(on)ic goods, this type of waste is now recognised as a priority stream in the developed countries. Policy-making related to the development of the necessary infrastructure and the coordination of all relevant stakeholders is crucial for the efficient management and viability of individually collected waste. This paper presents a decision support tool for policy-makers and regulators to optimise electr(on)ic products' reverse logistics network. To that effect, a Mixed Integer Linear Programming mathematical model is formulated taking into account existing infrastructure of collection points and recycling facilities. The applicability of the developed model is demonstrated employing a real-world case study for the Region of Central Macedonia, Greece. The paper concludes with presenting relevant obtained managerial insights. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Reverse engineering the structural and acoustic behavior of a stradivari violin

    Science.gov (United States)

    Pyrkosz, Michael

    There is a tremendous amount of mystery that surrounds the instruments of Antonio Stradivari. There have been many studies done in the past, but no one completely understands exactly how he made his instruments, or why they are still considered the best in the world. This project is designed to develop an engineering model of one of Stradivari's violins that will accurately simulate the structural and acoustic behavior of the instrument. It also hopes to shine some light on what makes the instruments of Stradivari unique when compared to other violins. It will focus on geometry and material properties, utilizing several modern engineering tools, including CT scanning, experimental modal analysis, finite element analysis, correlation techniques, and acoustic synthesis.

  18. File Carving and Malware Identification Algorithms Applied to Firmware Reverse Engineering

    Science.gov (United States)

    2013-03-21

    Internet, and use of common network protocols, enable nuisance hacker attacks. Search engines like SHODAN make searching for Internet-facing SCADA networks... pipeline leak in Bellingham, Washington, to pipeline damage and degraded SCADA software performance [1]. The leak and a subsequent explosion resulted in... FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or

  19. Research on external flow field of a car based on reverse engineering

    Science.gov (United States)

    Hu, Shushan; Liu, Ronge

    2018-05-01

    In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.

  20. Engineers’ Responsibilities for Global Electronic Waste: Exploring Engineering Student Writing Through a Care Ethics Lens

    Science.gov (United States)

    Campbell, Ryan C.; Wilson, Denise

    2016-01-01

    This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student’s writing on the human health and environmental impacts of “backyard” electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering. PMID:27368195

  1. Cognitive science in the era of artificial intelligence: A roadmap for reverse-engineering the infant language-learner.

    Science.gov (United States)

    Dupoux, Emmanuel

    2018-04-01

    Spectacular progress in the information processing sciences (machine learning, wearable sensors) promises to revolutionize the study of cognitive development. Here, we analyse the conditions under which 'reverse engineering' language development, i.e., building an effective system that mimics infant's achievements, can contribute to our scientific understanding of early language development. We argue that, on the computational side, it is important to move from toy problems to the full complexity of the learning situation, and take as input as faithful reconstructions of the sensory signals available to infants as possible. On the data side, accessible but privacy-preserving repositories of home data have to be setup. On the psycholinguistic side, specific tests have to be constructed to benchmark humans and machines at different linguistic levels. We discuss the feasibility of this approach and present an overview of current results. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effective multiple oral administration of reverse genetics engineered infectious bursal disease virus in mice in the presence of neutralizing antibodies.

    Science.gov (United States)

    Hornyák, Ákos; Lipinski, Kai S; Bakonyi, Tamás; Forgách, Petra; Horváth, Ernő; Farsang, Attila; Hedley, Susan J; Palya, Vilmos; Bakács, Tibor; Kovesdi, Imre

    2015-01-01

    Despite spectacular successes in hepatitis B and C therapies, severe hepatic impairment is still a major treatment problem. The clinically tested infectious bursal disease virus (IBDV) superinfection therapy promises an innovative, interferon-free solution to this great unmet need, provided that a consistent manufacturing process preventing mutations or reversions to virulent strains is obtained. To address safety concerns, a tissue culture adapted IBDV vaccine strain V903/78 was cloned into cDNA plasmids ensuring reproducible production of a reverse engineered virus R903/78. The therapeutic drug candidate was characterized by immunocytochemistry assay, virus particle determination and immunoblot analysis. The biodistribution and potential immunogenicity of the IBDV agent was determined in mice, which is not a natural host of this virus, by quantitative detection of IBDV RNA by a quantitative reverse transcriptase-polymerase chain reaction and virus neutralization test, respectively. Several human cell lines supported IBDV propagation in the absence of visible cytopathic effect. The virus was stable from pH 8 to pH 6 and demonstrated significant resistance to low pH and also proved to be highly resistant to high temperatures. No pathological effects were observed in mice. Single and multiple oral administration of IBDV elicited antibodies with neutralizing activities in vitro. Repeat oral administration of R903/78 was successful despite the presence of neutralizing antibodies. Single oral and intravenous administration indicated that IBDV does not replicate in mammalian liver alleviating some safety related concerns. These data supports the development of an orally delivered anti-hepatitis B virus/ anti-hepatitis C virus viral agent for human use. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Cuckoo Search Algorithm with Lévy Flights for Global-Support Parametric Surface Approximation in Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Andrés Iglesias

    2018-03-01

    Full Text Available This paper concerns several important topics of the Symmetry journal, namely, computer-aided design, computational geometry, computer graphics, visualization, and pattern recognition. We also take advantage of the symmetric structure of the tensor-product surfaces, where the parametric variables u and v play a symmetric role in shape reconstruction. In this paper we address the general problem of global-support parametric surface approximation from clouds of data points for reverse engineering applications. Given a set of measured data points, the approximation is formulated as a nonlinear continuous least-squares optimization problem. Then, a recent metaheuristics called Cuckoo Search Algorithm (CSA is applied to compute all relevant free variables of this minimization problem (namely, the data parameters and the surface poles. The method includes the iterative generation of new solutions by using the Lévy flights to promote the diversity of solutions and prevent stagnation. A critical advantage of this method is its simplicity: the CSA requires only two parameters, many fewer than any other metaheuristic approach, so the parameter tuning becomes a very easy task. The method is also simple to understand and easy to implement. Our approach has been applied to a benchmark of three illustrative sets of noisy data points corresponding to surfaces exhibiting several challenging features. Our experimental results show that the method performs very well even for the cases of noisy and unorganized data points. Therefore, the method can be directly used for real-world applications for reverse engineering without further pre/post-processing. Comparative work with the most classical mathematical techniques for this problem as well as a recent modification of the CSA called Improved CSA (ICSA is also reported. Two nonparametric statistical tests show that our method outperforms the classical mathematical techniques and provides equivalent results to ICSA

  4. Proceedings of the international workshop on engineering design of next step reversed field pinch devices

    International Nuclear Information System (INIS)

    Thomson, D.B.

    1987-11-01

    These Proceedings contain the formal contributed papers, the workshop papers and workshop summaries presented at the International Workshop on Engineering Design of Next Step RFP Devices held at Los Alamos, July 13-17, 1987. Contributed papers were presented at formal sessions on the topics: (1) physics overview (3 papers); (2) general overview (3 papers); (3) front-end (9 papers); (4) computer control and data acquisition (1 paper); (5) magnetics (5 papers); and (6) electrical design (9 papers). Informal topical workshop sessions were held on the topics: (1) RFP physics (9 papers); (2) front-end (7 papers); (3) magnetics (3 papers); and (4) electrical design (1 paper). This volume contains the summaries written by the Chairmen of each of the informal topical workshop sessions. The papers in these Proceedings represent a significant review of the status of the technical base for the engineering design of the next step RFP devices being developed in the US, Europe, and Japan, as of this date

  5. Proceedings of the international workshop on engineering design of next step reversed field pinch devices

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, D.B. (comp.)

    1987-11-01

    These Proceedings contain the formal contributed papers, the workshop papers and workshop summaries presented at the International Workshop on Engineering Design of Next Step RFP Devices held at Los Alamos, July 13-17, 1987. Contributed papers were presented at formal sessions on the topics: (1) physics overview (3 papers); (2) general overview (3 papers); (3) front-end (9 papers); (4) computer control and data acquisition (1 paper); (5) magnetics (5 papers); and (6) electrical design (9 papers). Informal topical workshop sessions were held on the topics: (1) RFP physics (9 papers); (2) front-end (7 papers); (3) magnetics (3 papers); and (4) electrical design (1 paper). This volume contains the summaries written by the Chairmen of each of the informal topical workshop sessions. The papers in these Proceedings represent a significant review of the status of the technical base for the engineering design of the next step RFP devices being developed in the US, Europe, and Japan, as of this date.

  6. Accuracy of energy measurement and reversible operation of a microcanonical Szilard engine.

    Science.gov (United States)

    Bergli, Joakim

    2014-04-01

    In a recent paper [Vaikuntanathan and Jarzynski, Phys. Rev. E 83, 061120 (2011)], a model was introduced whereby work could be extracted from a thermal bath by measuring the energy of a particle that was thermalized by the bath and manipulating the potential of the particle in the appropriate way, depending on the measurement outcome. If the extracted work is Wextracted and the work Werasure needed to be dissipated in order to erase the measured information in accordance with Landauer's principle, it was shown that Wextracted≤Werasure in accordance with the second law of thermodynamics. Here we extend this work in two directions: First, we discuss how accurately the energy should be measured. By increasing the accuracy one can extract more work, but at the same time one obtains more information that has to be deleted. We discuss what are the appropriate ways of optimizing the balance between the two and find optimal solutions. Second, whenever Wextracted is strictly less than Werasure it means that an irreversible step has been performed. We identify the irreversible step and propose a protocol that will achieve the same transition in a reversible way, increasing Wextracted so that Wextracted=Werasure.

  7. Evolutionary optimization with data collocation for reverse engineering of biological networks.

    Science.gov (United States)

    Tsai, Kuan-Yao; Wang, Feng-Sheng

    2005-04-01

    Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.

  8. Lyapunov-based constrained engine torque control using electronic throttle and variable cam timing

    NARCIS (Netherlands)

    Feru, E.; Lazar, M.; Gielen, R.H.; Kolmanovsky, I.V.; Di Cairano, S.

    2012-01-01

    In this paper, predictive control of a spark ignition engine equipped with an electronic throttle and a variable cam timing actuator is considered. The objective is to adjust the throttle angle and the engine cam timing in order to reduce the exhaust gas emissions while maintaining fast and

  9. The Impact of Software on Associate Degree Programs in Electronic Engineering Technology.

    Science.gov (United States)

    Hata, David M.

    1986-01-01

    Assesses the range and extent of computer assisted instruction software available in electronic engineering technology education. Examines the need for software skills in four areas: (1) high-level languages; (2) assembly language; (3) computer-aided engineering; and (4) computer-aided instruction. Outlines strategies for the future in three…

  10. Implementation on Electronic Circuits and RTR Pragmatical Adaptive Synchronization: Time-Reversed Uncertain Dynamical Systems' Analysis and Applications

    Directory of Open Access Journals (Sweden)

    Shih-Yu Li

    2013-01-01

    Full Text Available We expose the chaotic attractors of time-reversed nonlinear system, further implement its behavior on electronic circuit, and apply the pragmatical asymptotically stability theory to strictly prove that the adaptive synchronization of given master and slave systems with uncertain parameters can be achieved. In this paper, the variety chaotic motions of time-reversed Lorentz system are investigated through Lyapunov exponents, phase portraits, and bifurcation diagrams. For further applying the complex signal in secure communication and file encryption, we construct the circuit to show the similar chaotic signal of time-reversed Lorentz system. In addition, pragmatical asymptotically stability theorem and an assumption of equal probability for ergodic initial conditions (Ge et al., 1999, Ge and Yu, 2000, and Matsushima, 1972 are proposed to strictly prove that adaptive control can be accomplished successfully. The current scheme of adaptive control—by traditional Lyapunov stability theorem and Barbalat lemma, which are used to prove the error vector—approaches zero, as time approaches infinity. However, the core question—why the estimated or given parameters also approach to the uncertain parameters—remains without answer. By the new stability theory, those estimated parameters can be proved approaching the uncertain values strictly, and the simulation results are shown in this paper.

  11. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    Science.gov (United States)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  12. Tissue-electronics interfaces: from implantable devices to engineered tissues

    Science.gov (United States)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  13. A review of electronic engineering design free software tools

    OpenAIRE

    Medrano Sánchez, Carlos; Plaza García, Inmaculada; Castro Gil, Manuel Alonso; García Sevilla, Francisco; Martínez Calero, J.D.; Pou Félix, Josep; Corbalán Fuertes, Montserrat

    2010-01-01

    In this paper, we review electronic design free software tools. We have searched open source programs that help with several tasks of the electronic design flow: analog and digital simulation, schematic capture, printed circuit board design and hardware description language compilation and simulation. Using some rapid criteria for verifying their availability, we have selected some of them which are worth working with. This work intends to perform a deeper analysis of fre...

  14. Reverse Engineering of Corinthian Pigment Processing and Firing Technologies on Archaic Polychrome Ceramics

    Science.gov (United States)

    Klesner, Catherine Elizabeth

    Decorative, polychrome ceramics from Corinth, Greece, produced during the 8th-6th centuries B.C.E. are luxury goods that were widely traded throughout Greece and the Mediterranean. The decorated ceramics were produced in a variety of shapes, including aryballos, alabastron, and olpe. They were decorated with slip-glazes in distinctive white, black, red, yellow, and purple colors, and in a variety of surface finishes, matte, semi-matte and glossy. Artisans in Corinthian workshops experimented to change the colors of the slips by varying the type and amount of iron-rich raw materials. They also varied the composition of the clay used as a binder and the amount of flux used as a sintering aid to promote glass formation. This research reconstructs the technology used by the Corinthian craftsmen to produce the Archaic polychrome ceramics, and shows how these technologies differed from the production of better known, more prestigious Athenian black-figure and red-figure ceramics. Through microstructural examination of archaeological samples and replication experiments, this thesis proposes that the purple iron oxide pigment is the result of acid treatment and oxidation of iron metal. The firing temperature range of the Corinthian polychrome ceramics was determined experimentally to be 925-1025°C, which is higher than previously reported and similar to that reported for Corinthian transport amphoras. The firing range is higher by 50-150°C than the Athenian black-figure and red-figure ceramics. Samples of Corinthian polychrome and Athenian black-figure ceramics from the Marie Farnsworth collection at the University of Arizona were tested and compared to Corinthian clay collections. Analytical techniques included Fourier-transform infrared spectroscopy (FTIR), scanning-electron microscopy with energy-dispersive spectroscopy (SEM-EDS), micro-Raman spectroscopy, and wavelength-dispersive electron microprobe (EPMA with BSE-SEM).

  15. Information Technology in project-organized electronic and computer technology engineering education

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1999-01-01

    This paper describes the integration of IT in the education of electronic and computer technology engineers at Institute of Electronic Systems, Aalborg Uni-versity, Denmark. At the Institute Information Technology is an important tool in the aspects of the education as well as for communication...

  16. Improvement of handle grip using reverse engineering, CAE and Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Stoklasek Pavel

    2016-01-01

    Full Text Available The overwhelming majority of manual operations is even nowadays performed by using manual hand tools. These tools can be divided into 2 groups – hand tools designed for general use or a single-purpose hand tools for special operations. Tool described in this paper is used in assembling operation in the completion of electric motor. During the design of the existing tools the requirements for a functional part of the tool (lifespan, inability to damage the engine installation were fully considered, demands for ergonomic grip area, however, were not taken into account. Long-term use of incorrectly designed tool causes carpal tunnel syndrome, hand-arm vibration syndrome, diminished sensitivity or tingling in the fingers of workers. These difficulties can be reduced or entirely eliminated due to proper design of the grip of hand tool. Most authors focus on adjusting the grip for optimum ergonomics at individual types of grips (cylindrical, palmar, lateral, etc.. However, as already mentioned, there are tools for specific operations when the working area is limited by space or a specific type of load on the grip is needed. In some cases, it is often necessary to change the type of grip or combine different types of grips. This paper describes the design of an optimal grip of hand tool used for specific operation when assembling motors. Design of prototype mold and production of functional prototypes for ergonomics assessment directly in the workplace were realized. New design of handle should reduce the risk primarily of developing carpal tunnel in long-term use.

  17. Evaluation of a Commercial Tractor Safety Monitoring System Using a Reverse Engineering Procedure.

    Science.gov (United States)

    Casazza, Camilla; Martelli, Roberta; Rondelli, Valda

    2016-10-17

    There is a high rate of work-related deaths in agriculture. In Italy, despite the obligato-ry installation of ROPS, fatal accidents involving tractors represent more than 40% of work-related deaths in agriculture. As death is often due to an overturn that the driver is incapable of predicting, driver assistance devices that can signal critical stability conditions have been studied and marketed to prevent accidents. These devices measure the working parameters of the tractor through sensors and elaborate the values using an algorithm that, taking into account the geometric characteristics of the tractor, pro-vides a risk index based on models elaborated on a theoretical basis. This research aimed to verify one of these stability indexes in the field, using a commercial driver as-sistance device to monitor five tractors on the University of Bologna experimental farm. The setup of the device involved determining the coordinates of the center of gravity of the tractor and the implement mounted on the tractor. The analysis of the stability in-dex, limited to events with a significant risk level, revealed a clear separation into two groups: events with high values of roll or pitch and low speeds, typical of a tractor when working, and events with low values of roll and pitch and high steering angle and forward speed, typical of travel on the road. The equation for calculating the critical speed when turning provided a significant contribution only for events that were typi-cal of travel rather than field work, suggesting a diversified calculation approach ac-cording to the work phase. Copyright© by the American Society of Agricultural Engineers.

  18. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum

    Science.gov (United States)

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste. PMID:23868689

  19. Reverse engineering of fluid selection for thermodynamic cycles with cubic equations of state, using a compression heat pump as example

    International Nuclear Information System (INIS)

    Roskosch, Dennis; Atakan, Burak

    2015-01-01

    Fluid selection for thermodynamic cycles like refrigeration cycles, heat pumps or organic Rankine cycles remains an actual topic. Generally the search for a working fluid is based on experimental approaches or on a not very systematic trial and error approach, far from being elegant. An alternative method may be a theory based reverse engineering approach, proposed and investigated here: The design process should start with an optimal process and with (abstract) properties of the fluid needed to fit into this optimal process, best described by some general equation of state and the corresponding fluid-describing parameters. These should be analyzed and optimized with respect to the defined model process, which also has to be optimized simultaneously. From this information real fluids can be selected or even synthesized which have fluid defining properties in the optimum regime like critical temperature or ideal gas capacities of heat, allowing to find new working fluids, not considered so far. The number and kind of the fluid-defining parameters is mainly based on the choice of the used EOS (equation of state). The property model used in the present work is based on the cubic Peng–Robinson equation, chosen due to its moderate numerical expense, sufficient accuracy as well as a general availability of the fluid-defining parameters for many compounds. The considered model-process works between the temperature levels of 273.15 and 333.15 K and can be used as heat pump for supplying buildings with heat, typically. The objective functions are the COP (coefficient of performance) and the VHC (volumetric heating capacity) as a function of critical pressure, critical temperature, acentric factor and two coefficients for the temperature-dependent isobaric ideal gas heat capacity. Also, the steam quality at the compressor entrance has to be regarded as a problem variable. The results give clear hints regarding optimal fluid parameters of the analyzed process and deepen

  20. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlö gl, Udo

    2016-01-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects

  1. Field-reversed bubble in deep plasma channels for high quality electron acceleration

    CERN Document Server

    Pukhov, A; Tueckmantel, T; Thomas, J; Yu, I; Kostyukov, Yu

    2014-01-01

    We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for mono-energetic acceleration. We observe as low as 10−3 r.m.s. relative witness beam energy uncertainty in each cross-section and 0.3% total energy spread. By varying plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the deep channel are derived. Ultra-short pancake-like laser pulses lead to the highest energies of accelerated electrons per Joule of laser pulse energy.

  2. Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography

    International Nuclear Information System (INIS)

    Rodríguez, L.A.; Magén, C.; Snoeck, E.; Gatel, C.; Marín, L.; Serrano-Ramón, L.

    2013-01-01

    A generalized procedure for the in situ application of magnetic fields by means of the excitation of the objective lens for magnetic imaging experiments in Lorentz microscopy and electron holography is quantitatively described. A protocol for applying magnetic fields with arbitrary in-plane magnitude and orientation is presented, and a freeware script for Digital Micrograph ™ is provided to assist the operation of the microscope. Moreover, a method to accurately reconstruct hysteresis loops is detailed. We show that the out-of-plane component of the magnetic field cannot be always neglected when performing quantitative measurements of the local magnetization. Several examples are shown to demonstrate the accuracy and functionality of the methods. - Highlights: • Generalized procedure for application of magnetic fields with the TEM objective lens. • Arbitrary in-plane magnetic field magnitude and orientation can be applied. • Method to accurately reconstruct hysteresis loops by electron holography. • Out-of-plane field component should be considered in quantitative measurements. • Examples to illustrate the method in Lorentz microscopy and electron holography

  3. Electronic structure characterization and bandgap engineering of solar hydrogen materials

    International Nuclear Information System (INIS)

    Guo, Jinghua

    2007-01-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe 2 O 3 and ZnO

  4. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation

    Science.gov (United States)

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander

    2016-01-01

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894

  5. Reverse Engineering Tone-Deafness: Disrupting Pitch-Matching by Creating Temporary Dysfunctions in the Auditory-Motor Network

    Directory of Open Access Journals (Sweden)

    Anja Hohmann

    2018-01-01

    Full Text Available Perceiving and producing vocal sounds are important functions of the auditory-motor system and are fundamental to communication. Prior studies have identified a network of brain regions involved in pitch production, specifically pitch matching. Here we reverse engineer the function of the auditory perception-production network by targeting specific cortical regions (e.g., right and left posterior superior temporal (pSTG and posterior inferior frontal gyri (pIFG with cathodal transcranial direct current stimulation (tDCS—commonly found to decrease excitability in the underlying cortical region—allowing us to causally test the role of particular nodes in this network. Performance on a pitch-matching task was determined before and after 20 min of cathodal stimulation. Acoustic analyses of pitch productions showed impaired accuracy after cathodal stimulation to the left pIFG and the right pSTG in comparison to sham stimulation. Both regions share particular roles in the feedback and feedforward motor control of pitched vocal production with a differential hemispheric dominance.

  6. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    Science.gov (United States)

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  7. Gas engine driven reversible heat pumps: Innovative design. Realizzazione di una pompa di calore reversibile azionata da motore a gas

    Energy Technology Data Exchange (ETDEWEB)

    Canci, F.; Zecchin, M.

    1992-01-01

    This paper describes the development of a series of gas engine driven air-water compression heat pumps designed for reversible summer-winter operation. The development work was carried out within the framework of a joint venture combing the efforts of the Italian Gas Society, Natural Gas of Barcellona and Climaveneta of Vicenza (Italy), who acted as the heat pump constructor. The main objective of this venture was to develop a series of machines that would be suitable for the contemporaneous summer air conditioning and winter space heating of medium-sized buildings. The designs were optimized to allow cost and energy savings with respect to conventional equipment. The useful cooling power range of the innovative heat pump systems goes from 100 to 250 kW thus giving them the flexibility not yet afforded by conventional equipment currently sold on international markets. In addition to pointing out the new heat pumps' main design and performance features, this paper suggests some feasible applications.

  8. HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation.

    Science.gov (United States)

    Deng, Yue; Zenil, Hector; Tegnér, Jesper; Kiani, Narsis A

    2017-12-15

    The use of differential equations (ODE) is one of the most promising approaches to network inference. The success of ODE-based approaches has, however, been limited, due to the difficulty in estimating parameters and by their lack of scalability. Here, we introduce a novel method and pipeline to reverse engineer gene regulatory networks from gene expression of time series and perturbation data based upon an improvement on the calculation scheme of the derivatives and a pre-filtration step to reduce the number of possible links. The method introduces a linear differential equation model with adaptive numerical differentiation that is scalable to extremely large regulatory networks. We demonstrate the ability of this method to outperform current state-of-the-art methods applied to experimental and synthetic data using test data from the DREAM4 and DREAM5 challenges. Our method displays greater accuracy and scalability. We benchmark the performance of the pipeline with respect to dataset size and levels of noise. We show that the computation time is linear over various network sizes. The Matlab code of the HiDi implementation is available at: www.complexitycalculator.com/HiDiScript.zip. hzenilc@gmail.com or narsis.kiani@ki.se. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism

    Science.gov (United States)

    Kim, Eunkyoung; Panzella, Lucia; Micillo, Raffaella; Bentley, William E.; Napolitano, Alessandra; Payne, Gregory F.

    2015-01-01

    Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin’s pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin’s redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism. PMID:26669666

  10. HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation

    KAUST Repository

    Deng, Yue

    2017-08-05

    Motivation: The use of differential equations (ODE) is one of the most promising approaches to network inference. The success of ODE-based approaches has, however, been limited, due to the difficulty in estimating parameters and by their lack of scalability. Here, we introduce a novel method and pipeline to reverse engineer gene regulatory networks from gene expression of time series and perturbation data based upon an improvement on the calculation scheme of the derivatives and a pre-filtration step to reduce the number of possible links. The method introduces a linear differential equation model with adaptive numerical differentiation that is scalable to extremely large regulatory networks. Results: We demonstrate the ability of this method to outperform current state-of-the-art methods applied to experimental and synthetic data using test data from the DREAM4 and DREAM5 challenges. Our method displays greater accuracy and scalability. We benchmark the performance of the pipeline with respect to dataset size and levels of noise. We show that the computation time is linear over various network sizes.

  11. Combining selected immunomodulatory Propionibacterium freudenreichii and Lactobacillus delbrueckii strains: Reverse engineering development of an anti-inflammatory cheese.

    Science.gov (United States)

    Plé, Coline; Breton, Jérôme; Richoux, Romain; Nurdin, Marine; Deutsch, Stéphanie-Marie; Falentin, Hélène; Hervé, Christophe; Chuat, Victoria; Lemée, Riwanon; Maguin, Emmanuelle; Jan, Gwénaël; Van de Guchte, Maarten; Foligné, Benoit

    2016-04-01

    Inflammatory bowel disease (IBD) constitutes a growing public health concern in western countries. Bacteria with anti-inflammatory properties are lacking in the dysbiosis accompanying IBD. Selected strains of probiotic bacteria with anti-inflammatory properties accordingly alleviate symptoms and enhance treatment of ulcerative colitis in clinical trials. Such properties are also found in selected strains of dairy starters such as Propionibacterium freudenreichii and Lactobacillus delbrueckii (Ld). We thus investigated the possibility to develop a fermented dairy product, combining both starter and probiotic abilities of both lactic acid and propionic acid bacteria, designed to extend remissions in IBD patients. We developed a single-strain Ld-fermented milk and a two-strain P. freudenreichii and Ld-fermented experimental pressed cheese using strains previously selected for their anti-inflammatory properties. Consumption of these experimental fermented dairy products protected mice against trinitrobenzenesulfonic acid induced colitis, alleviating severity of symptoms, modulating local and systemic inflammation, as well as colonic oxidative stress and epithelial cell damages. As a control, the corresponding sterile dairy matrix failed to afford such protection. This work reveals the probiotic potential of this bacterial mixture, in the context of fermented dairy products. It opens new perspectives for the reverse engineering development of anti-inflammatory fermented foods designed for target populations with IBD, and has provided evidences leading to an ongoing pilot clinical study in ulcerative colitis patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electronic cigarettes: incorporating human factors engineering into risk assessments

    OpenAIRE

    Yang, Ling; Rudy, Susan F; Cheng, James M; Durmowicz, Elizabeth L

    2014-01-01

    Objective A systematic review was conducted to evaluate the impact of human factors (HF) on the risks associated with electronic cigarettes (e-cigarettes) and to identify research gaps. HF is the evaluation of human interactions with products and includes the analysis of user, environment and product complexity. Consideration of HF may mitigate known and potential hazards from the use and misuse of a consumer product, including e-cigarettes. Methods Five databases were searched through Januar...

  14. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Atanu, E-mail: atanunandy1989@gmail.com; Chakrabarti, Arunava, E-mail: arunava_chakrabarti@yahoo.co.in

    2015-11-06

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign. - Highlights: • Exact construction of eigenstates with flat and dispersive bands is reported. • Competition between translational order and growth of aperiodicity is discussed. • The effect of magnetic field on the location of flat band states is shown. • Flux tunable re-entrant behavior of the effective mass of electron is studied.

  15. Electronics and Software Engineer for Robotics Project Intern

    Science.gov (United States)

    Teijeiro, Antonio

    2017-01-01

    I was assigned to mentor high school students for the 2017 First Robotics Competition. Using a team based approach, I worked with the students to program the robot and applied my electrical background to build the robot from start to finish. I worked with students who had an interest in electrical engineering to teach them about voltage, current, pulse width modulation, solenoids, electromagnets, relays, DC motors, DC motor controllers, crimping and soldering electrical components, Java programming, and robotic simulation. For the simulation, we worked together to generate graphics files, write simulator description format code, operate Linux, and operate SOLIDWORKS. Upon completion of the FRC season, I transitioned over to providing full time support for the LCS hardware team. During this phase of my internship I helped my co-intern write test steps for two networking hardware DVTs , as well as run cables and update cable running lists.

  16. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    Science.gov (United States)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  17. Integrating electron microscopy into nanoscience and materials engineering programs

    Science.gov (United States)

    Cormia, Robert D.; Oye, Michael M.; Nguyen, Anh; Skiver, David; Shi, Meng; Torres, Yessica

    2014-10-01

    Preparing an effective workforce in high technology is the goal of both academic and industry training, and has been the engine that drives innovation and product development in the United States for over a century. During the last 50 years, technician training has comprised a combination of two-year academic programs, internships and apprentice training, and extensive On-the-Job Training (OJT). Recently, and especially in Silicon Valley, technicians have four-year college degrees, as well as relevant hands-on training. Characterization in general, and microscopy in particular, is an essential tool in process development, manufacturing and QA/QC, and failure analysis. Training for a broad range of skills and practice is challenging, especially for community colleges. Workforce studies (SRI/Boeing) suggest that even four year colleges often do not provide the relevant training and experience in laboratory skills, especially design of experiments and analysis of data. Companies in high-tech further report difficulty in finding skilled labor, especially with industry specific experience. Foothill College, in partnership with UCSC, SJSU, and NASA-Ames, has developed a microscopy training program embedded in a research laboratory, itself a partnership between university and government, providing hands-on experience in advanced instrumentation, experimental design and problem solving, with real-world context from small business innovators, in an environment called `the collaboratory'. The program builds on AFM-SEM training at Foothill, and provides affordable training in FE-SEM and TEM through a cost recovery model. In addition to instrument and engineering training, the collaboratory also supports academic and personal growth through a multiplayer social network of students, faculty, researchers, and innovators.

  18. XI Scientific Conference Selected Issues of Electrical Engineering and Electronics (WZEE)

    CERN Document Server

    Mazur, Damian; Analysis and Simulation of Electrical and Computer Systems

    2015-01-01

    This book presents the selected results of the XI Scientific Conference Selected Issues of Electrical Engineering and Electronics (WZEE) which was held in Rzeszów and Czarna, Poland on September 27-30, 2013. The main aim of the Conference was to provide academia and industry to discuss and present the latest technological advantages and research results and to integrate the new interdisciplinary scientific circle in the field of electrical engineering, electronics and mechatronics. The Conference was organized by the Rzeszów Division of Polish Association of Theoretical and Applied Electrical Engineering (PTETiS) in cooperation with Rzeszów University of Technology, the Faculty of Electrical and Computer Engineering and Rzeszów University, the Faculty of Mathematics and Natural Sciences.  

  19. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2008-01-01

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed

  20. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  1. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  2. Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography.

    Science.gov (United States)

    Rodríguez, L A; Magén, C; Snoeck, E; Gatel, C; Marín, L; Serrano-Ramón, L; Prieto, J L; Muñoz, M; Algarabel, P A; Morellon, L; De Teresa, J M; Ibarra, M R

    2013-11-01

    A generalized procedure for the in situ application of magnetic fields by means of the excitation of the objective lens for magnetic imaging experiments in Lorentz microscopy and electron holography is quantitatively described. A protocol for applying magnetic fields with arbitrary in-plane magnitude and orientation is presented, and a freeware script for Digital Micrograph(™) is provided to assist the operation of the microscope. Moreover, a method to accurately reconstruct hysteresis loops is detailed. We show that the out-of-plane component of the magnetic field cannot be always neglected when performing quantitative measurements of the local magnetization. Several examples are shown to demonstrate the accuracy and functionality of the methods. © 2013 Elsevier B.V. All rights reserved.

  3. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    Science.gov (United States)

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (1-5 μm, exceptionally 13 μm), rarely engine wear and escape into the atmosphere.

  4. Electronic laboratory books in fusion experiments and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Landgraf, B., E-mail: b.landgraf@fz-juelich.d [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, D-52425 Juelich (Germany); Kraemer-Flecken, A. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, D-52425 Juelich (Germany)

    2010-07-15

    In this work we introduce eLaBo-an electronic laboratory book system. ELaBo is a tool that enables collaboration of distributed teams by using standard internet browsers. It provides several functions: Users can create books for specific purposes, e.g. an experimental session or for recording on diagnostics. A book contains pages and resources (e.g. binary files), which are created and manipulated by users of the book. A simple WIKI syntax is used to edit the contents of pages including formatted text, images, and LaTeX for expressing mathematical equations. ELaBo provides for different types of links, a full-text search for the WIKI pages and a version history. Access control is implemented using a key methaphor. Recently (since the last login) modified or created pages or books can be displayed on demand.

  5. Electronic laboratory books in fusion experiments and engineering

    International Nuclear Information System (INIS)

    Landgraf, B.; Kraemer-Flecken, A.

    2010-01-01

    In this work we introduce eLaBo-an electronic laboratory book system. ELaBo is a tool that enables collaboration of distributed teams by using standard internet browsers. It provides several functions: Users can create books for specific purposes, e.g. an experimental session or for recording on diagnostics. A book contains pages and resources (e.g. binary files), which are created and manipulated by users of the book. A simple WIKI syntax is used to edit the contents of pages including formatted text, images, and LaTeX for expressing mathematical equations. ELaBo provides for different types of links, a full-text search for the WIKI pages and a version history. Access control is implemented using a key methaphor. Recently (since the last login) modified or created pages or books can be displayed on demand.

  6. Superconductivity in engineered two-dimensional electron gases

    Science.gov (United States)

    Chubukov, Andrey V.; Kivelson, Steven A.

    2017-11-01

    We consider Kohn-Luttinger mechanism for superconductivity in a two-dimensional electron gas confined to a narrow well between two grounded metallic planes with two occupied subbands with Fermi momenta kF L>kF S . On the basis of a perturbative analysis, we conclude that non-s -wave superconductivity emerges even when the bands are parabolic. We analyze the conditions that maximize Tc as a function of the distance to the metallic planes, the ratio kF L/kF S , and rs, which measures the strength of Coulomb correlations. The largest attraction is in p -wave and d -wave channels, of which p wave is typically the strongest. For rs=O (1 ) we estimate that the dimensionless coupling λ ≈10-1 , but it likely continues increasing for larger rs (where we lose theoretical control).

  7. Designing a Prototype LPG Injection Electronic Control Unit for a Carburetted Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Barış ERKUŞ

    2015-07-01

    Full Text Available In this study, the originally carburetted gasoline engine was converted to gas-phase liquefied petroleum gas (LPG injection engine by using an after market LPG conversion kit's components except the electronic control unit (ECU. Instead of after market LPG injection ECU, the ECU which was designed considering the effects of  electromagnetic interference (EMI, was used for controlling injection. The designed ECU was tested in terms of EMI while the engine was being run and it was detected that the EMI noises could be suppressed as possible by taken measures. Designed ECU was used in performance tests at different engine conditions and the results obtained with LPG injection were compared with the results obtained with LPG carburetion. According to the performance test results, LPG injection ECU designed in this study could help to achieve low exhaust emissions and high engine performance.  

  8. Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test

    Science.gov (United States)

    Aryan, Homayon; Boynton, Richard J.; Walker, Simon N.

    2013-02-01

    A correlation between solar wind velocity (VSW) and energetic electron fluxes (EEF) at the geosynchronous orbit was first identified more than 30 years ago. However, recent studies have shown that the relation between VSW and EEF is considerably more complex than was previously suggested. The application of process identification technique to the evolution of electron fluxes in the range 1.8 - 3.5 MeV has also revealed peculiarities in the relation between VSW and EEF at the geosynchronous orbit. It has been revealed that for a constant solar wind density, EEF increase with VSW until a saturation velocity is reached. Beyond the saturation velocity, an increase in VSW is statistically not accompanied with EEF enhancement. The present study is devoted to the investigation of saturation velocity and its dependency upon solar wind density using the reverse arrangement test. In general, the results indicate that saturation velocity increases as solar wind density decreases. This implies that solar wind density plays an important role in defining the relationship between VSW and EEF at the geosynchronous orbit.

  9. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    International Nuclear Information System (INIS)

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-01-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO 2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  10. Feasibility study of microwave electron heating on the C-2 field-reversed configuration device

    International Nuclear Information System (INIS)

    Yang, Xiaokang; Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl; Koehn, Alf; Petrov, Yuri

    2015-01-01

    Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition

  11. Development and evaluation of a digital dental modeling method based on grating projection and reverse engineering software.

    Science.gov (United States)

    Zhou, Qin; Wang, Zhenzhen; Chen, Jun; Song, Jun; Chen, Lu; Lu, Yi

    2016-01-01

    For reasons of convenience and economy, attempts have been made to transform traditional dental gypsum casts into 3-dimensional (3D) digital casts. Different scanning devices have been developed to generate digital casts; however, each has its own limitations and disadvantages. The purpose of this study was to develop an advanced method for the 3D reproduction of dental casts by using a high-speed grating projection system and noncontact reverse engineering (RE) software and to evaluate the accuracy of the method. The methods consisted of 3 main steps: the scanning and acquisition of 3D dental cast data with a high-resolution grating projection system, the reconstruction and measurement of digital casts with RE software, and the evaluation of the accuracy of this method using 20 dental gypsum casts. The common anatomic landmarks were measured directly on the gypsum casts with a Vernier caliper and on the 3D digital casts with the Geomagic software measurement tool. Data were statistically assessed with the t test. The grating projection system had a rapid scanning speed, and smooth 3D dental casts were obtained. The mean differences between the gypsum and 3D measurements were approximately 0.05 mm, and no statistically significant differences were found between the 2 methods (P>.05), except for the measurements of the incisor tooth width and maxillary arch length. A method for the 3D reconstruction of dental casts was developed by using a grating projection system and RE software. The accuracy of the casts generated using the grating projection system was comparable with that of the gypsum casts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Reverse engineering of modified genes by Bayesian network analysis defines molecular determinants critical to the development of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Brian W Kunkle

    Full Text Available In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I-IV, and 'key genes' within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated. These 10 genes were able to predict tumor status with 96-100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential 'hubs of activity'. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several 'key genes' may be required for the development of glioblastoma. Further studies are needed to validate these 'key genes' as useful tools for early detection and novel therapeutic options for these tumors.

  13. Use of single-representative reverse-engineered surface-models for RSA does not affect measurement accuracy and precision.

    Science.gov (United States)

    Seehaus, Frank; Schwarze, Michael; Flörkemeier, Thilo; von Lewinski, Gabriela; Kaptein, Bart L; Jakubowitz, Eike; Hurschler, Christof

    2016-05-01

    Implant migration can be accurately quantified by model-based Roentgen stereophotogrammetric analysis (RSA), using an implant surface model to locate the implant relative to the bone. In a clinical situation, a single reverse engineering (RE) model for each implant type and size is used. It is unclear to what extent the accuracy and precision of migration measurement is affected by implant manufacturing variability unaccounted for by a single representative model. Individual RE models were generated for five short-stem hip implants of the same type and size. Two phantom analyses and one clinical analysis were performed: "Accuracy-matched models": one stem was assessed, and the results from the original RE model were compared with randomly selected models. "Accuracy-random model": each of the five stems was assessed and analyzed using one randomly selected RE model. "Precision-clinical setting": implant migration was calculated for eight patients, and all five available RE models were applied to each case. For the two phantom experiments, the 95%CI of the bias ranged from -0.28 mm to 0.30 mm for translation and -2.3° to 2.5° for rotation. In the clinical setting, precision is less than 0.5 mm and 1.2° for translation and rotation, respectively, except for rotations about the proximodistal axis (RSA can be achieved and are not biased by using a single representative RE model. At least for implants similar in shape to the investigated short-stem, individual models are not necessary. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:903-910, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.

    2016-06-03

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  15. Informing via Research: Methods, Challenges and Success when Using a Multi-Disciplinary Team and Reverse Engineering Analysis Processes to Answer a 200 Year Old Question

    Directory of Open Access Journals (Sweden)

    Melinda H. Connor

    2014-10-01

    Full Text Available The goal of this study was to develop the foundation for the creation of a 21st century spiritual which could be used to mitigate the effects of stress and violence. Using a multi-disciplinary team and basing the work in the music of the antebellum Negro Spiritual (a group of 6000 works, reverse engineering, extensive use of engineering principles and utilization of existing databases was done to aid in the analysis of the neurological and physiological impact of the musical form and development of an applicable theory.

  16. An experimental investigation on reverse-cycle defrosting performance for an air source heat pump using an electronic expansion valve

    International Nuclear Information System (INIS)

    Qu, Minglu; Xia, Liang; Deng, Shiming; Jiang, Yiqiang

    2012-01-01

    Highlights: ► We experimentally studied the defrost performance under two EEV control strategies. ► The two EEV control strategies were fully open and controlled by a DS controller. ► When the EEV was under the DS controller, higher defrosting efficiency was obtained. -- Abstract: When an air source heat pump (ASHP) operates in heating mode, frost can be accumulated on the surface of its finned outdoor coil. Frosting deteriorates the operation and energy efficiency of the ASHP and periodic defrosting becomes necessary. Currently the most widely used standard defrosting method for ASHPs is reverse cycle defrost. On the other hand, electronic expansion valves (EEVs) are commonly used in heat pump/refrigeration systems, including ASHP units, as throttle regulators of refrigerant flow. This paper reports on an experimental investigation of the performance of a reverse cycle defrost operation for a 6.5 kW experimental heating capacity residential ASHP whose outdoor coil had four-parallel refrigerant circuits, and with an EEV as the refrigerant flow throttle regulator. The detailed descriptions of the experimental ASHP unit and the experimental procedures of ASHP are firstly presented. This is followed by reporting the comparative experiments of two control strategies for the EEV to investigate their effects on defrosting performance: the EEV being fully open and the EEV being regulated by a degree of refrigerant superheat (DS) controller. Experimental results revealed that when the EEV was regulated by the DS controller during defrosting, a higher defrosting efficiency and less heat wastage would be resulted in.

  17. Enhanced identification of eligibility for depression research using an electronic medical record search engine.

    Science.gov (United States)

    Seyfried, Lisa; Hanauer, David A; Nease, Donald; Albeiruti, Rashad; Kavanagh, Janet; Kales, Helen C

    2009-12-01

    Electronic medical records (EMRs) have become part of daily practice for many physicians. Attempts have been made to apply electronic search engine technology to speed EMR review. This was a prospective, observational study to compare the speed and clinical accuracy of a medical record search engine vs. manual review of the EMR. Three raters reviewed 49 cases in the EMR to screen for eligibility in a depression study using the electronic medical record search engine (EMERSE). One week later raters received a scrambled set of the same patients including 9 distractor cases, and used manual EMR review to determine eligibility. For both methods, accuracy was assessed for the original 49 cases by comparison with a gold standard rater. Use of EMERSE resulted in considerable time savings; chart reviews using EMERSE were significantly faster than traditional manual review (p=0.03). The percent agreement of raters with the gold standard (e.g. concurrent validity) using either EMERSE or manual review was not significantly different. Using a search engine optimized for finding clinical information in the free-text sections of the EMR can provide significant time savings while preserving clinical accuracy. The major power of this search engine is not from a more advanced and sophisticated search algorithm, but rather from a user interface designed explicitly to help users search the entire medical record in a way that protects health information.

  18. A Multidisciplinary PBL Robot Control Project in Automation and Electronic Engineering

    Science.gov (United States)

    Hassan, Houcine; Domínguez, Carlos; Martínez, Juan-Miguel; Perles, Angel; Capella, Juan-Vicente; Albaladejo, José

    2015-01-01

    This paper presents a multidisciplinary problem-based learning (PBL) project consisting of the development of a robot arm prototype and the implementation of its control system. The project is carried out as part of Industrial Informatics (II), a compulsory third-year course in the Automation and Electronic Engineering (AEE) degree program at the…

  19. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    Science.gov (United States)

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  20. Electronic journals: Their use by teachers/researchers of engineering and social sciences

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Fernanda, E-mail: mmartins@letras.up.pt; Machado, Diana, E-mail: mmartins@letras.up.pt; Fernandes, Alberto, E-mail: mmartins@letras.up.pt; Ribeiro, Fernanda, E-mail: mmartins@letras.up.pt [Faculdade de Letras da Universidade do Porto (Portugal)

    2015-02-09

    Libraries must attend the needs of their different users. Academics are usually a particular kind of users with specific needs. Universities are environments where scientific communication is essential and where electronic format of journals is becoming more and more frequently used. This way it becomes increasingly important to understand how academics from different scientific areas use the available electronic resources. The aim of this study is to better understand the existing differences among the users of electronic journals in Engineering and Social Sciences. The research undertaken was mainly focused on the study of the use of electronic journals by teachers/researchers from the Faculties of Engineering and of Arts from the University of Porto, Portugal. In this study an international survey was used in order to characterize the levels of use and access of electronic journals by these communities. The ways of seeking and using scientific information, namely in terms frequency of access, the number of articles consulted, the use of databases and the preference of publishing in electronic journals were analyzed. A set of comparisons were established and results indicate an extensive use of the electronic format, regardless the faculty. However, some differences emerge when it comes to details. Such is the case of the usage rate of reference management software which is considerably more used by Engineering academics than Social Science ones. Generally, electronic journals meeting the information needs of its users and are increasingly used as a preferred means of research. Though, some particular differences in the use of them have emerged, when comparing academics from these two faculties.

  1. Electronic journals: Their use by teachers/researchers of engineering and social sciences

    International Nuclear Information System (INIS)

    Martins, Fernanda; Machado, Diana; Fernandes, Alberto; Ribeiro, Fernanda

    2015-01-01

    Libraries must attend the needs of their different users. Academics are usually a particular kind of users with specific needs. Universities are environments where scientific communication is essential and where electronic format of journals is becoming more and more frequently used. This way it becomes increasingly important to understand how academics from different scientific areas use the available electronic resources. The aim of this study is to better understand the existing differences among the users of electronic journals in Engineering and Social Sciences. The research undertaken was mainly focused on the study of the use of electronic journals by teachers/researchers from the Faculties of Engineering and of Arts from the University of Porto, Portugal. In this study an international survey was used in order to characterize the levels of use and access of electronic journals by these communities. The ways of seeking and using scientific information, namely in terms frequency of access, the number of articles consulted, the use of databases and the preference of publishing in electronic journals were analyzed. A set of comparisons were established and results indicate an extensive use of the electronic format, regardless the faculty. However, some differences emerge when it comes to details. Such is the case of the usage rate of reference management software which is considerably more used by Engineering academics than Social Science ones. Generally, electronic journals meeting the information needs of its users and are increasingly used as a preferred means of research. Though, some particular differences in the use of them have emerged, when comparing academics from these two faculties

  2. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    Science.gov (United States)

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  3. Reverse Engineering of Modified Genes by Bayesian Network Analysis Defines Molecular Determinants Critical to the Development of Glioblastoma

    Science.gov (United States)

    Kunkle, Brian W.; Yoo, Changwon; Roy, Deodutta

    2013-01-01

    In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors. PMID:23737970

  4. Atomic structure of Mg-based metallic glass investigated with neutron diffraction, reverse Monte Carlo modeling and electron microscopy

    Directory of Open Access Journals (Sweden)

    Rafał Babilas

    2017-05-01

    Full Text Available The structure of a multicomponent metallic glass, Mg65Cu20Y10Ni5, was investigated by the combined methods of neutron diffraction (ND, reverse Monte Carlo modeling (RMC and high-resolution transmission electron microscopy (HRTEM. The RMC method, based on the results of ND measurements, was used to develop a realistic structure model of a quaternary alloy in a glassy state. The calculated model consists of a random packing structure of atoms in which some ordered regions can be indicated. The amorphous structure was also described by peak values of partial pair correlation functions and coordination numbers, which illustrated some types of cluster packing. The N = 9 clusters correspond to the tri-capped trigonal prisms, which are one of Bernal’s canonical clusters, and atomic clusters with N = 6 and N = 12 are suitable for octahedral and icosahedral atomic configurations. The nanocrystalline character of the alloy after annealing was also studied by HRTEM. The selected HRTEM images of the nanocrystalline regions were also processed by inverse Fourier transform analysis. The high-angle annular dark-field (HAADF technique was used to determine phase separation in the studied glass after heat treatment. The HAADF mode allows for the observation of randomly distributed, dark contrast regions of about 4–6 nm. The interplanar spacing identified for the orthorhombic Mg2Cu crystalline phase is similar to the value of the first coordination shell radius from the short-range order.

  5. Teaching Sustainable Energy and Power Electronics to Engineering Students in a Laboratory Environment Using Industry-Standard Tools

    Science.gov (United States)

    Ochs, David S.; Miller, Ruth Douglas

    2015-01-01

    Power electronics and renewable energy are two important topics for today's power engineering students. In many cases, the two topics are inextricably intertwined. As the renewable energy sector grows, the need for engineers qualified to design such systems grows as well. In order to train such engineers, new courses are needed that highlight the…

  6. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...

  7. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  8. Employability of the Bachelor of Science in Electronics Engineering Graduates of Camarines Sur Polytechnic Colleges

    Directory of Open Access Journals (Sweden)

    Rizza T. Loquias

    2015-11-01

    Full Text Available The study determined the employment status of the graduates of BS Electronics Engineering from 1999 to 2011. It also addressed the relevance of the ECE program outcomes and school factors to their employability. Pertinent data were gathered using a questionnaire and the sample size of 180 was determined using Slovin’s formula. Findings revealed that the graduates are highly employable in a wide range of industry such as electronics manufacturing, electronics design, telecommunications, broadcasting, and data communications and ICT-related areas, were able to pass the licensure examinations and other certifications, currently enjoying regular permanent job positions as supervisors, production engineers, process engineers, educators and others, and are working for companies located in Metro Manila and industrial zones in Laguna and Cavite. A significant number work abroad as OFWs. Only a small number are employed in the province of Camarines Sur mainly due to the lack of electronics industries and employment opportunities in the area. The skills the graduates found most useful to their first jobs are critical thinking, problem solving, and communication skills. Suggestions were given such as the inclusion of industry-utilized software and enhancement of the OJT program, more hands-on activities in the curriculum, exposure to industry while studying, and job familiarization among others. The findings of the study can serve as basis for curriculum review and revision to meet the demands of the industry.

  9. Enzyme engineering through evolution: thermostable recombinant group II intron reverse transcriptases provide new tools for RNA research and biotechnology.

    Science.gov (United States)

    Collins, Kathleen; Nilsen, Timothy W

    2013-08-01

    Current investigation of RNA transcriptomes relies heavily on the use of retroviral reverse transcriptases. It is well known that these enzymes have many limitations because of their intrinsic properties. This commentary highlights the recent biochemical characterization of a new family of reverse transcriptases, those encoded by group II intron retrohoming elements. The novel properties of these enzymes endow them with the potential to revolutionize how we approach RNA analyses.

  10. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses

    International Nuclear Information System (INIS)

    Cai Hongbo; Zhu Shaoping; Wu Sizhong; Chen Mo; Zhou Cangtao; He, X. T.; Yu Wei; Nagatomo, Hideo

    2011-01-01

    The efficient magnetic collimation of fast electron flow transporting in overdense plasmas is investigated with two-dimensional collisional particle-in-cell numerical simulations. It is found that the specially engineered targets exhibiting either high-resistivity-core-low-resistivity-cladding structure or low-density-core-high-density-cladding structure can collimate fast electrons. Two main mechanisms to generate collimating magnetic fields are found. In high-resistivity-core-low-resistivity-cladding structure targets, the magnetic field at the interfaces is generated by the gradients of the resistivity and fast electron current, while in low-density-core-high-density-cladding structure targets, the magnetic field is generated by the rapid changing of the flow velocity of the background electrons in transverse direction (perpendicular to the flow velocity) caused by the density jump. The dependences of the maximal magnetic field on the incident laser intensity and plasma density, which are studied by numerical simulations, are supported by our analytical calculations.

  11. SiGe-based re-engineering of electronic warfare subsystems

    CERN Document Server

    Lambrechts, Wynand

    2017-01-01

    This book equips readers with a thorough understanding of the applicability of new-generation silicon-germanium (SiGe) electronic subsystems for the military purposes of electronic warfare and defensive countermeasures. The theoretical and technical background is extensively explained and all aspects of the integration of SiGe as an enabling technology for maritime, land, and airborne (including space) electronic warfare are addressed, including research, design, development, and implementation. The coverage is supported by mathematical derivations, informative illustrations, practical examples, and case studies. While SiGe technology provides speed, performance, and price advantages in many markets, sharing of information on its use in electronic warfare systems has to date been limited, especially in developing nations. This book will therefore be warmly welcomed as an engineering guideline that focuses especially on the speed and reliability of current-generation SiGe circuits and highlights emerging innov...

  12. Structural and electronic properties of in-plane phase engineered WSe2: A DFT study

    Science.gov (United States)

    Bhart, Ankush; Kapoor, Pooja; Sharma, Munish; Sharma, Raman; Ahluwalia, P. K.

    2018-04-01

    We present first principal investigations on structural and electronic properties of in-plane phase engineered WSe2 with armchair type interface. The 2H and 1T phases of WSe2, joined along x-direction is a natural metal-semiconductor heterostructure and therefore shows potential for applications in 2D electronics and opto-electronics. The electronic properties transit towards metallic 1T region. No inflections across interface shows negligible mismatch strain which is unlike what has been reported for MoS2. Charge density analysis shows charge accumulation on 1T domain. This can lead to reduction of Schottky barrier heights at the metal-semiconductor junction. STM analysis confirms transition of 1T phase towards distorted 1T' structure. The present results provide essential insights for nano-devices using 2D hybrid materials.

  13. ELECTRONIC CONTROL FOR FUEL SUPPLY OF DIESEL ENGINE ON THE BASIS OF PROGRAMMABLE PID-REGULATOR

    Directory of Open Access Journals (Sweden)

    A. G. Bakhanovich

    2017-01-01

    Full Text Available The article presents a schematic diagram of the Euro-3 diesel engine electronic control and describes hard- and software platform of the high pressure fuel pump pneumatic actuator control that allows to realize the concept of electronic fuel supply control of diesel engine KamAZ-740. The strategic dependence beetwen the angular position of fuel pump governor lever and the angular position of electronic accelerator pedal were put on the basis of electronic control concept. Implementation of this dependence was carried out by applying a modulated PWM signal with determined duty cycle by the controller to the coil proportional solenoid valve, which is responsible for the amount of air pressure in the working chamber of the power air cylinder, connected by articulated-type to the governor lever of the high pressure fuel pump. In this case, the feedback control by position of governor lever of the high pressure fuel pump was introduced in the control circuit, but engine crankshaft speed control was carried out using a software continuous PID governor. Developed strategy gives possibility to track the deflection  of control parameter from a predetermined value by real-time and almost instantly, to make a control action on actuators to eliminate this deflection, while providing a minimum time of transition. Governor’s setting (proportional, integral and differential component performed empirically using the classical Ziegler – Nichols method, based on the analysis of the safety factor of automatic control system. The results of calculating the coefficients of proportional integral-differential regulator and oscillograms HIL experiment on testing the proposed diesel engine throttle control strategies using visualization CoDeSys V2.3 are given in activity.

  14. Theory of semiconductor junction devices a textbook for electrical and electronic engineers

    CERN Document Server

    Leck, J H

    1967-01-01

    Theory of Semiconductor Junction Devices: A Textbook for Electrical and Electronic Engineers presents the simplified numerical computation of the fundamental electrical equations, specifically Poisson's and the Hall effect equations. This book provides the fundamental theory relevant for the understanding of semiconductor device theory. Comprised of 10 chapters, this book starts with an overview of the application of band theory to the special case of semiconductors, both intrinsic and extrinsic. This text then describes the electrical properties of conductivity, semiconductors, and Hall effe

  15. An investigation of the performance of an electronic in-line pump system for diesel engines

    Science.gov (United States)

    Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying

    2008-12-01

    WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.

  16. A Low Cost Implementation of an Existing Hands-on Laboratory Experiment in Electronic Engineering

    Directory of Open Access Journals (Sweden)

    Clement Onime

    2014-10-01

    Full Text Available In engineering the pedagogical content of most formative programmes includes a significant amount of practical laboratory hands-on activity designed to deliver knowledge acquisition from actual experience alongside traditional face-to-face classroom based lectures and tutorials; this hands-on aspect is not always adequately addressed by current e-learning platforms. An innovative approach to e-learning in engineering, named computer aided engineering education (CAEE is about the use of computer aids for the enhanced, interactive delivery of educational materials in different fields of engineering through two separate but related components; one for classroom and another for practical hands-on laboratory work. The component for hands-on laboratory practical work focuses on the use of mixed reality (video-based augmented reality tools on mobile devices/platforms. This paper presents the computer aided engineering education (CAEE implementation of a laboratory experiment in micro-electronics that highlights some features such as the ability to closely implement an existing laboratory based hands-on experiment with lower associated costs and the ability to conduct the experiment off-line while maintaining existing pedagogical contents and standards.

  17. Fuelling regulation with Electronic fuel injection for small spark ignition engine using Fuzzy Logic

    International Nuclear Information System (INIS)

    Shah, S.R.; Sahir, M.H.

    2004-01-01

    The use of Electronic Control systems in automotive applications gives the design engineer greater control over various processes compared with mechanical methods Examples of such electronic control systems are Electronic Fuel Injection (EFI), Traction Control Systems (TCS) and Anti-lock Braking Systems (ABS). In addition, the development of inexpensive and fast microcontrollers has remarkably improve, performance of passive and active safety systems of automobiles, without causing excessive increase in prices of vehicles -a favourable factor from the consumer's perspective. This paper deals with a possible electronic aid for the improvement of power control in a motorcycle. Controlling the speed and power of a motorcycle is difficult; especially on bumpy and uneven terrain. In this paper, the development of an EPI system is discussed, incorporating artificial intelligence to regulate the fuel supplied to the engine. It would minimize wheel slippage and jerky and sudden acceleration which potentially dangerous. It would also reduce production of large quantities of pollutant like hydrocarbons and carbon monoxide. Fuel consumption would also improve during stop-and-go traffic. (author)

  18. Advanced 3D tools used in reverse engineering and ray tracing simulation of phased array inspection of turbine components with complex geometry

    International Nuclear Information System (INIS)

    Daks, W.; Kovacshazy, C.; Mair, D.; Ciorau, P.

    2002-01-01

    This paper outlines the practical aspects of reverse engineering and the integration of multiple pieces of software (Drafting, CNC Machining, Ray Tracing, Inspection Simulation Scenario and Phased Array UT Analysis), in order to inspect turbine components comprised of complex geometry. The CNC software, Mastercam, and design software, CADKEY/FastSURF, were used to validate the phased-array automated and manual inspection of blade root, rotor steeples and disk-blade rim attachment. The integration of a 3D part in the software engine, Imagine 3D and SimScan, as well as Tomoview analysis (specimen feature) is based on CADKEY Developer Kit - IGES/SAT file format. A generic Ray Tracing simulation for multi-probe beam was integrated into Imagine 3D. Representative examples of reference blocks and mock-ups, UT simulation and phased-array data comparison are presented. (author)

  19. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    International Nuclear Information System (INIS)

    Ouyang, Bin; Lan, Guoqiang; Song, Jun; Guo, Yinsheng; Mi, Zetian

    2015-01-01

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX 2 (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated

  20. Reduction of reversed micelle entrapped cytochrome c and cytochrome c3 by electrons generated by pulse radiolysis or by pyrene photoionization

    International Nuclear Information System (INIS)

    Vlsser, A.J.W.G.; Fendler, J.H.

    1982-01-01

    Horse heart cytochrome c and cytochrome c 3 , isolated from Desulfovibrio vulgaris, have been incorporated in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) entrapped water pools in heptane. The absorption spectra of the cytochromes have been found to be strongly dependent on the water to AOT concentration ratios. The proteins solubilized in heptane by the AOT reversed micelles have retained their ability to mediate electron transfer. They reacted very rapidly with hydrated electrons, generated pulse radiolytically or, alternatively, formed in the laser photoionization of pyrene

  1. Implementation and use of cloud-based electronic lab notebook in a bioprocess engineering teaching laboratory.

    Science.gov (United States)

    Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur

    2017-01-01

    Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.

  2. Development of a tetrameric streptavidin mutein with reversible biotin binding capability: engineering a mobile loop as an exit door for biotin.

    Directory of Open Access Journals (Sweden)

    Valerie J O'Sullivan

    Full Text Available A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop(3-4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop(3-4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop(7-8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop(7-8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (k(off of 4.28×10(-4 s(-1 and K(d of 1.9×10(-8 M make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible.

  3. Development of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin

    Science.gov (United States)

    O'Sullivan, Valerie J.; Barrette-Ng, Isabelle; Hommema, Eric; Hermanson, Greg T.; Schofield, Mark; Wu, Sau-Ching; Honetschlaeger, Claudia; Ng, Kenneth K.-S.; Wong, Sui-Lam

    2012-01-01

    A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible. PMID:22536357

  4. GRASP/Ada (Graphical Representations of Algorithms, Structures, and Processes for Ada): The development of a program analysis environment for Ada. Reverse engineering tools for Ada, task 1, phase 2

    Science.gov (United States)

    Cross, James H., II

    1990-01-01

    The study, formulation, and generation of structures for Ada (GRASP/Ada) are discussed in this second phase report of a three phase effort. Various graphical representations that can be extracted or generated from source code are described and categorized with focus on reverse engineering. The overall goal is to provide the foundation for a CASE (computer-aided software design) environment in which reverse engineering and forward engineering (development) are tightly coupled. Emphasis is on a subset of architectural diagrams that can be generated automatically from source code with the control structure diagram (CSD) included for completeness.

  5. MORE: mixed optimization for reverse engineering--an application to modeling biological networks response via sparse systems of nonlinear differential equations.

    Science.gov (United States)

    Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas

    2012-01-01

    Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.

  6. Optimising the cam profile of an electronic unit pump for a heavy-duty diesel engine

    International Nuclear Information System (INIS)

    Qiu, Tao; Dai, Hefei; Lei, Yan; Cao, Chunlei; Li, Xuchu

    2015-01-01

    For a fuel system with a tangent cam or a constant-velocity cam, the peak injection pressure continues to rise as the injection duration increases, but overly high peak pressures induce mechanical loads and wear, limiting the maximum engine speed and injection quantity. To improve the performance of an EUP (Electronic Unit Pump) fuel system for heavy-duty diesel engines, this work proposes a new pump cam, namely the constant-pressure cam. It helps the EUP run at a higher speed and deliver larger fuel quantities while maintaining a constant peak injection pressure, which improves the power of the heavy-duty diesel engine. A model based on the EUP was built to determine the three constraints for optimising the constant-pressure cam: 1) the pump pressure should equal the nozzle pressure; 2) the cam speed should decrease with the increase in the injection duration; and 3) the cam acceleration gradient should be zero. An EUP system was tested with the tangent cam and the optimised cam under different conditions. The experimental results show that the EUP system with the optimised cam delivers more injection quantity and runs at higher engine speeds while maintaining the same peak pressure as the tangent cam. - Highlights: • We propose a constant-pressure cam to improve the power of heavy-duty diesel engine. • We deduce three constraints for the CP (constant-peak pressure) cam based on a model. • The EUP system with the new cam works well under higher engine speed. • The peak pressure of the constant-pressure cam fuel system maintains high

  7. Implementation of Microelectronics Track in Electronics Engineering in a Philippines State University

    Directory of Open Access Journals (Sweden)

    Gil B. Barte

    2015-11-01

    Full Text Available The evolving trends in electronics continuous to attract students to take upElectronics Engineering.However, it also adds to discipline implementation complexities.Institutions of Higher Learning offering this program must adapt to this realities to avoid obsolescence. This paper looked at Batangas State University, in the Philippines,ongoingimplementation of the Microelectronics track under the Electronics Engineering (ECEProgram. It describes the restructuring done to the ECE curriculum to overcome the enormous complexity inherent in microelectronics design and the teaching pedagogy adopted to promote active learning. The ongoing program has produced encouraging outcomes:1students were able to design, and simulate complex gate CMOS circuits using EDA tools, in the four(4 course electives identified for the track; 2 the culture of independent learning among students improvement in students soft skills, communication skills, time-management and teamwork skill,; 3. useof free and web-based tools overcome the issue of high cost of license for EDA tools and seminar/training for continuous upgrading of faculty. Another encouraging outcome was the acceptance of the student-centered teaching approach used, Problem-Based Learning (PBL,in enhancing the students learning experience.

  8. Electron-phonon interaction and scattering in Si and Ge: Implications for phonon engineering

    International Nuclear Information System (INIS)

    Tandon, Nandan; Albrecht, J. D.; Ram-Mohan, L. R.

    2015-01-01

    We report ab-initio results for electron-phonon (e-ph) coupling and display the existence of a large variation in the coupling parameter as a function of electron and phonon dispersion. This variation is observed for all phonon modes in Si and Ge, and we show this for representative cases where the initial electron states are at the band gap edges. Using these e-ph matrix elements, which include all possible phonon modes and electron bands within a relevant energy range, we evaluate the imaginary part of the electron self-energy in order to obtain the associated scattering rates. The temperature dependence is seen through calculations of the scattering rates at 0 K and 300 K. The results provide a basis for understanding the impacts of phonon scattering vs. orientation and geometry in the design of devices, and in analysis of transport phenomena. This provides an additional tool for engineering the transfer of energy from carriers to the lattice

  9. Measures to increase the availability of electronic control units, illustrated by examples from power plant engineering

    International Nuclear Information System (INIS)

    Schmidt, R.

    1976-01-01

    The availibility of electric control units in the power plant engineering is increased by a decentralized construction, redundant current supply. miniaturized electronic modules, short-circuit-safe outputs, efficient protection of the wiring against over-voltage and intensive control of the afferent cables against wire break and short circuits. To reduce disturbing and damaging influences on the control multiple earthings should be avoided, the inductive coupling of distrubances should be reduced by parallel earth wires, and cable shields handled according to the prescriptions should reduce influences on the capacity. (orig.) [de

  10. Teaching strategies applied to teaching computer networks in Engineering in Telecommunications and Electronics

    Directory of Open Access Journals (Sweden)

    Elio Manuel Castañeda-González

    2016-07-01

    Full Text Available Because of the large impact that today computer networks, their study in related fields such as Telecommunications Engineering and Electronics is presented to the student with great appeal. However, by digging in content, lacking a strong practical component, you can make this interest decreases considerably. This paper proposes the use of teaching strategies and analogies, media and interactive applications that enhance the teaching of discipline networks and encourage their study. It is part of an analysis of how the teaching of the discipline process is performed and then a description of each of these strategies is done with their respective contribution to student learning.

  11. Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing

    International Nuclear Information System (INIS)

    Tsai, D.-B.; Goan, H.-S.

    2008-01-01

    In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10 -6 that is below the error threshold of 10 -4 required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.

  12. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    International Nuclear Information System (INIS)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NO x emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NO x emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN B and W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NO x emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation. - Highlights: ► A fast realistic model of a marine two-stroke low speed diesel engine was derived. ► The model is fast and accurate enough for future complex energy systems analysis. ► The effects of engine tuning were validated with experimental tests. ► The model was validated while constrained by experimental input and output data.

  13. Reduction of secondary electron yield for E-cloud mitigation by laser ablation surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, R., E-mail: reza.valizadeh@stfc.ac.uk [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Malyshev, O.B. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Wang, S. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sian, T. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Cropper, M.D. [Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sykes, N. [Micronanics Ltd., Didcot, Oxon OX11 0QX (United Kingdom)

    2017-05-15

    Highlights: • SEY below 1 can be achieved with Laser ablation surface engineering. • SEY <1 surface can be produced with different types of nanosecond lasers. • Both microstructure (groves) and nano-structures are playing a role in reducing SEY. - Abstract: Developing a surface with low Secondary Electron Yield (SEY) is one of the main ways of mitigating electron cloud and beam-induced electron multipacting in high-energy charged particle accelerators. In our previous publications, a low SEY < 0.9 for as-received metal surfaces modified by a nanosecond pulsed laser was reported. In this paper, the SEY of laser-treated blackened copper has been investigated as a function of different laser irradiation parameters. We explore and study the influence of micro- and nano-structures induced by laser surface treatment in air of copper samples as a function of various laser irradiation parameters such as peak power, laser wavelength (λ = 355 nm and 1064 nm), number of pulses per point (scan speed and repetition rate) and fluence, on the SEY. The surface chemical composition was determined by x-ray photoelectron spectroscopy (XPS) which revealed that heating resulted in diffusion of oxygen into the bulk and induced the transformation of CuO to sub-stoichiometric oxide. The surface topography was examined with high resolution scanning electron microscopy (HRSEM) which showed that the laser-treated surfaces are dominated by microstructure grooves and nanostructure features.

  14. Nanoscale Engineering in VO2 Nanowires via Direct Electron Writing Process.

    Science.gov (United States)

    Zhang, Zhenhua; Guo, Hua; Ding, Wenqiang; Zhang, Bin; Lu, Yue; Ke, Xiaoxing; Liu, Weiwei; Chen, Furong; Sui, Manling

    2017-02-08

    Controlling phase transition in functional materials at nanoscale is not only of broad scientific interest but also important for practical applications in the fields of renewable energy, information storage, transducer, sensor, and so forth. As a model functional material, vanadium dioxide (VO 2 ) has its metal-insulator transition (MIT) usually at a sharp temperature around 68 °C. Here, we report a focused electron beam can directly lower down the transition temperature of a nanoarea to room temperature without prepatterning the VO 2 . This novel process is called radiolysis-assisted MIT (R-MIT). The electron beam irradiation fabricates a unique gradual MIT zone to several times of the beam size in which the temperature-dependent phase transition is achieved in an extended temperature range. The gradual transformation zone offers to precisely control the ratio of metal/insulator phases. This direct electron writing technique can open up an opportunity to precisely engineer nanodomains of diversified electronic properties in functional material-based devices.

  15. Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines

    International Nuclear Information System (INIS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-01-01

    Ecological performance of a single resonance ESE heat engine with heat leakage is conducted by applying finite time thermodynamics. By introducing Nielsen function and numerical calculations, expressions about power output, efficiency, entropy generation rate and ecological objective function are derived; relationships between ecological objective function and power output, between ecological objective function and efficiency as well as between power output and efficiency are demonstrated; influences of system parameters of heat leakage, boundary energy and resonance width on the optimal performances are investigated in detail; a specific range of boundary energy is given as a compromise to make ESE heat engine system work at optimal operation regions. Comparing performance characteristics with different optimization objective functions, the significance of selecting ecological objective function as the design objective is clarified specifically: when changing the design objective from maximum power output into maximum ecological objective function, the improvement of efficiency is 4.56%, while the power output drop is only 2.68%; when changing the design objective from maximum efficiency to maximum ecological objective function, the improvement of power output is 229.13%, and the efficiency drop is only 13.53%. - Highlights: • An irreversible single resonance energy selective electron heat engine is studied. • Heat leakage between two reservoirs is considered. • Power output, efficiency and ecological objective function are derived. • Optimal performance comparison for three objective functions is carried out.

  16. Can electronic search engines optimize screening of search results in systematic reviews: an empirical study.

    Science.gov (United States)

    Sampson, Margaret; Barrowman, Nicholas J; Moher, David; Clifford, Tammy J; Platt, Robert W; Morrison, Andra; Klassen, Terry P; Zhang, Li

    2006-02-24

    Most electronic search efforts directed at identifying primary studies for inclusion in systematic reviews rely on the optimal Boolean search features of search interfaces such as DIALOG and Ovid. Our objective is to test the ability of an Ultraseek search engine to rank MEDLINE records of the included studies of Cochrane reviews within the top half of all the records retrieved by the Boolean MEDLINE search used by the reviewers. Collections were created using the MEDLINE bibliographic records of included and excluded studies listed in the review and all records retrieved by the MEDLINE search. Records were converted to individual HTML files. Collections of records were indexed and searched through a statistical search engine, Ultraseek, using review-specific search terms. Our data sources, systematic reviews published in the Cochrane library, were included if they reported using at least one phase of the Cochrane Highly Sensitive Search Strategy (HSSS), provided citations for both included and excluded studies and conducted a meta-analysis using a binary outcome measure. Reviews were selected if they yielded between 1000-6000 records when the MEDLINE search strategy was replicated. Nine Cochrane reviews were included. Included studies within the Cochrane reviews were found within the first 500 retrieved studies more often than would be expected by chance. Across all reviews, recall of included studies into the top 500 was 0.70. There was no statistically significant difference in ranking when comparing included studies with just the subset of excluded studies listed as excluded in the published review. The relevance ranking provided by the search engine was better than expected by chance and shows promise for the preliminary evaluation of large results from Boolean searches. A statistical search engine does not appear to be able to make fine discriminations concerning the relevance of bibliographic records that have been pre-screened by systematic reviewers.

  17. Cigarette company trade secrets are not secret: an analysis of reverse engineering reports in internal tobacco industry documents released as a result of litigation.

    Science.gov (United States)

    Velicer, Clayton; Lempert, Lauren K; Glantz, Stanton

    2015-09-01

    Use previously secret tobacco industry documents to assess tobacco companies' routine claims of trade secret protection for information on cigarette ingredients, additives and construction made to regulatory agencies, as well as the companies' refusal to publicly disclose this information. We analysed previously secret tobacco industry documents available at (http://legacy.library.ucsf.edu) to identify 100 examples of seven major tobacco companies' reverse engineering of their competitors' brands between 1937 and 2001. These reverse engineering reports contain detailed data for 142 different measurements for at least two companies, including physical parameters of the cigarettes, tobacco types, humectants, additives, flavourings, and smoke constituents of competitors' cigarettes. These 100 documents were distributed to 564 employees, including top managers in domestic and foreign offices across multiple departments, including executive leadership, research and design, product development, marketing and legal. These documents reported new competitors' products, measured ingredient changes over time, and informed companies' decisions regarding ingredients in their own products. Because cigarette companies routinely analyse their competitors' cigarettes in great detail, this information is neither secret nor commercially valuable and, thus, does not meet the legal definition of a 'trade secret.' This information is only being kept 'secret' from the people consuming cigarettes and the scientific community. Public agencies should release this detailed information because it would provide valuable information about how ingredients affect addictiveness and toxicity, and would help the public health community and consumers better understand the impact of cigarette design on human health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Engineering in-plane silicon nanowire springs for highly stretchable electronics

    Science.gov (United States)

    Xue, Zhaoguo; Dong, Taige; Zhu, Zhimin; Zhao, Yaolong; Sun, Ying; Yu, Linwei

    2018-01-01

    Crystalline silicon (c-Si) is unambiguously the most important semiconductor that underpins the development of modern microelectronics and optoelectronics, though the rigid and brittle nature of bulk c-Si makes it difficult to implement directly for stretchable applications. Fortunately, the one-dimensional (1D) geometry, or the line-shape, of Si nanowire (SiNW) can be engineered into elastic springs, which indicates an exciting opportunity to fabricate highly stretchable 1D c-Si channels. The implementation of such line-shape-engineering strategy demands both a tiny diameter of the SiNWs, in order to accommodate the strains under large stretching, and a precise growth location, orientation and path control to facilitate device integration. In this review, we will first introduce the recent progresses of an in-plane self-assembly growth of SiNW springs, via a new in-plane solid-liquid-solid (IPSLS) mechanism, where mono-like but elastic SiNW springs are produced by surface-running metal droplets that absorb amorphous Si thin film as precursor. Then, the critical growth control and engineering parameters, the mechanical properties of the SiNW springs and the prospects of developing c-Si based stretchable electronics, will be addressed. This efficient line-shape-engineering strategy of SiNW springs, accomplished via a low temperature batch-manufacturing, holds a strong promise to extend the legend of modern Si technology into the emerging stretchable electronic applications, where the high carrier mobility, excellent stability and established doping and passivation controls of c-Si can be well inherited. Project supported by the National Basic Research 973 Program (No. 2014CB921101), the National Natural Science Foundation of China (No. 61674075), the National Key Research and Development Program of China (No. 2017YFA0205003), the Jiangsu Excellent Young Scholar Program (No. BK20160020), the Scientific and Technological Support Program in Jiangsu Province (No. BE

  19. A Stochastic Programming Approach with Improved Multi-Criteria Scenario-Based Solution Method for Sustainable Reverse Logistics Design of Waste Electrical and Electronic Equipment (WEEE

    Directory of Open Access Journals (Sweden)

    Hao Yu

    2016-12-01

    Full Text Available Today, the increased public concern about sustainable development and more stringent environmental regulations have become important driving forces for value recovery from end-of-life and end-of use products through reverse logistics. Waste electrical and electronic equipment (WEEE contains both valuable components that need to be recycled and hazardous substances that have to be properly treated or disposed of, so the design of a reverse logistics system for sustainable treatment of WEEE is of paramount importance. This paper presents a stochastic mixed integer programming model for designing and planning a generic multi-source, multi-echelon, capacitated, and sustainable reverse logistics network for WEEE management under uncertainty. The model takes into account both economic efficiency and environmental impacts in decision-making, and the environmental impacts are evaluated in terms of carbon emissions. A multi-criteria two-stage scenario-based solution method is employed and further developed in this study for generating the optimal solution for the stochastic optimization problem. The proposed model and solution method are validated through a numerical experiment and sensitivity analyses presented later in this paper, and an analysis of the results is also given to provide a deep managerial insight into the application of the proposed stochastic optimization model.

  20. Controllable and reversible inversion of the electronic structure in nickel N-confused porphyrin: a case when MCD matters.

    Science.gov (United States)

    Sripothongnak, Saovalak; Ziegler, Christopher J; Dahlby, Michael R; Nemykin, Victor N

    2011-08-01

    Nickel N-confused tetraphenylporphyrin, 1, and nickel 2-N-methyl-N-confused tetraphenylporphyrin, 1-Me, exhibit unusual sign-reversed (positive-to-negative intensities in ascending energy) MCD spectra in the Q-type band region, suggesting a rare ΔHOMO ΔLUMO combination characteristic for the meso-(tetraaryl)porphyrins. DFT, time-dependent DFT, and semiempirical ZINDO/S calculations on 1, 1-Me, and 1(-) confirm the experimental finding and successfully explain the MCD pattern in the target compounds. © 2011 American Chemical Society

  1. Electron irradiation effect on the reverse phase transformation temperatures in TiNi shape memory alloy thin films

    International Nuclear Information System (INIS)

    Wang, Z.G.; Zu, X.T.; Fu, Y.Q.; Zhu, S.; Wang, L.M.

    2005-01-01

    In this work, Ti-Ni shape memory alloy thin films were irradiated by 1.7 MeV electron with three types of fluences: 4 x 10 20 , 7 x 10 20 and 1 x 10 21 /m 2 . The influence of electron irradiation on the transformation behavior of the TiNi thin films were investigated by differential scanning calorimetry. The transformation temperatures A s and A f shifted to higher temperature after electron irradiation, the martensite was stabilized. The electron irradiation effect can be easily eliminated by one thermal cycle. The shifts of the transformation temperatures can be explained from the change of potential energy barrier and coherency energy between parent phase and martensite after irradiation

  2. Flat-panel electronic displays: a triumph of physics, chemistry and engineering.

    Science.gov (United States)

    Hilsum, Cyril

    2010-03-13

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III-V or II-VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X-Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs.

  3. Fuzzy Pattern Classification Based Detection of Faulty Electronic Fuel Control (EFC Valves Used in Diesel Engines

    Directory of Open Access Journals (Sweden)

    Umut Tugsal

    2014-05-01

    Full Text Available In this paper, we develop mathematical models of a rotary Electronic Fuel Control (EFC valve used in a Diesel engine based on dynamic performance test data and system identification methodology in order to detect the faulty EFC valves. The model takes into account the dynamics of the electrical and mechanical portions of the EFC valves. A recursive least squares (RLS type system identification methodology has been utilized to determine the transfer functions of the different types of EFC valves that were investigated in this study. Both in frequency domain and time domain methods have been utilized for this purpose. Based on the characteristic patterns exhibited by the EFC valves, a fuzzy logic based pattern classification method was utilized to evaluate the residuals and identify faulty EFC valves from good ones. The developed methodology has been shown to provide robust diagnostics for a wide range of EFC valves.

  4. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  5. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    Science.gov (United States)

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within

  6. Electronic Engineering Notebook: A software environment for research execution, documentation and dissemination

    Science.gov (United States)

    Moerder, Dan

    1994-01-01

    The electronic engineering notebook (EEN) consists of a free form research notebook, implemented in a commercial package for distributed hypermedia, which includes utilities for graphics capture, formatting and display of LaTex constructs, and interfaces to the host operating system. The latter capability consists of an information computer-aided software engineering (CASE) tool and a means to associate executable scripts with source objects. The EEN runs on Sun and HP workstations. The EEN, in day-to-day use can be used in much the same manner as the sort of research notes most researchers keep during development of projects. Graphics can be pasted in, equations can be entered via LaTex, etc. In addition, the fact that the EEN is hypermedia permits easy management of 'context', e.g., derivations and data can contain easily formed links to other supporting derivations and data. The CASE tool also permits development and maintenance of source code directly in the notebook, with access to its derivations and data.

  7. Reverse Algols

    Science.gov (United States)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  8. Development of educational complex on electrical engineering, electronics and microcon-trollers on modeling in TINA software

    Directory of Open Access Journals (Sweden)

    Vladimir A. Alekhin

    2017-01-01

    Full Text Available The study of electrical engineering, electronics and microcontrollers in accordance with federal state educational standards requires from students the practical mastering of experimental methods for the study of electrical circuits and electronic circuits, the formation of competences and skills in the calculation of electrical circuits and electronic circuits. The modern development of information educational technologies, the widespread use of a variety of computer facilities by students in reducing teaching hours for the study of disciplines make it necessary to create new multimedia training complexes, using computer simulation of electrical circuits, electronic circuits and microcontrollers in the lecture process and in the laboratory and practical exercises. The purpose of the research was a comparative analysis of various computer simulation programs in terms of their accessibility, ease of development and efficiency of use by lecturers and students in the educational process, and the creation and testing of a training complex for the electrical engineering, electronics and microcontrollers using the selected modeling environment.The problems associated with the need to purchase licensed software were discussed and a comparative analysis of the following computer modeling programs for electrical circuits and electronic circuits was performed: NI Multisim, Micro-Cap, Proteus VSM, OrCAD, TINA. The research method included the study of these modeling and design programs, writing of teaching aids and conducting of training sessions with students. The cost of licenses for the software application in computer classes and on students’ home computers was estimated. As a result, the conclusion was confirmed about the advisability of using the free student program of computer modeling TINA-TI and the TINACloud environment from DesignSoft for the teaching of electrical engineering and electronics.The new software product TINACloud uses cloud

  9. Reversible and nonvolatile ferroelectric control of two-dimensional electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films with a layered structure

    Science.gov (United States)

    Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui

    2018-05-01

    Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.

  10. Suppressing electron turbulence and triggering internal transport barriers with reversed magnetic shear in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bell, R.; Guttenfelder, W.; Hammett, G. W.; Kaye, S. M.; LeBlanc, B.; Mikkelsen, D. R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Candy, J. [General Atomics, San Diego, California 92186 (United States); Smith, D. R. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. Y. [Nova Photonics Inc., Princeton, New Jersey 08540 (United States)

    2012-05-15

    The National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] can achieve high electron plasma confinement regimes that are super-critically unstable to the electron temperature gradient driven (ETG) instability. These plasmas, dubbed electron internal transport barriers (e-ITBs), occur when the magnetic shear becomes strongly negative. Using the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the first nonlinear ETG simulations of NSTX e-ITB plasmas reinforce this observation. Local simulations identify a strongly upshifted nonlinear critical gradient for thermal transport that depends on magnetic shear. Global simulations show e-ITB formation can occur when the magnetic shear becomes strongly negative. While the ETG-driven thermal flux at the outer edge of the barrier is large enough to be experimentally relevant, the turbulence cannot propagate past the barrier into the plasma interior.

  11. A Requirement Engineering Framework for Electronic Data Sharing of Health Care Data Between Organizations

    Science.gov (United States)

    Liu, Xia; Peyton, Liam; Kuziemsky, Craig

    Health care is increasingly provided to citizens by a network of collaboration that includes multiple providers and locations. Typically, that collaboration is on an ad-hoc basis via phone calls, faxes, and paper based documentation. Internet and wireless technologies provide an opportunity to improve this situation via electronic data sharing. These new technologies make possible new ways of working and collaboration but it can be difficult for health care organizations to understand how to use the new technologies while still ensuring that their policies and objectives are being met. It is also important to have a systematic approach to validate that e-health processes deliver the performance improvements that are expected. Using a case study of a palliative care patient receiving home care from a team of collaborating health organizations, we introduce a framework based on requirements engineering. Key concerns and objectives are identified and modeled (privacy, security, quality of care, and timeliness of service). And, then, proposed business processes which use new technologies are modeled in terms of these concerns and objectives to assess their impact and ensure that electronic data sharing is well regulated.

  12. Reverse Logistics

    OpenAIRE

    Kulikova, Olga

    2016-01-01

    This thesis was focused on the analysis of the concept of reverse logistics and actual reverse processes which are implemented in mining industry and finding solutions for the optimization of reverse logistics in this sphere. The objective of this paper was the assessment of the development of reverse logistics in mining industry on the example of potash production. The theoretical part was based on reverse logistics and mining waste related literature and provided foundations for further...

  13. Influence of electronic and steric effects on stability constants and electrochemical reversibility of divalent ion complexes with glycine and sarcosine

    International Nuclear Information System (INIS)

    Cukrowski, Ignacy; Marques, Helder M.; Mkwizu, Tumaini S.; Magampa, Philemon P.; Serge, Claudette

    2007-01-01

    Cd II complexes with glycine (gly) and sarcosine (sar) were studied by glass electrode potentiometry, direct current polarography, virtual potentiometry, and molecular modelling. The electrochemically reversible Cd II -glycine-OH labile system was best described by a model consisting of M(HL), ML, ML 2 , ML 3 , ML(OH) and ML 2 (OH) (M = Cd II , L = gly) with the overall stability constants, as log β, determined to be 10.30 ± 0.05, 4.21 ± 0.03, 7.30 ± 0.05, 9.84 ± 0.04, 8.9 ± 0.1, and 10.75 ± 0.10, respectively. In case of the electrochemically quasi-reversible Cd II -sarcosine-OH labile system, only ML, ML 2 and ML 3 (M = Cd II , L = sar) were found and their stability constants, as log β, were determined to be 3.80 ± 0.03, 6.91 ± 0.07, and 8.9 ± 0.4, respectively. Stability constants for the ML complexes, the prime focus of this work, were thus established with an uncertainty smaller than 0.05 log units. The observed departure from electrochemical reversibility for the Cd-sarcosine-OH system was attributed mainly to the decrease in the transfer coefficient α. The MM2 force field, supplemented by additional parameters, reproduced the reported crystal structures of diaqua-bis(glycinato-O,N)nickel(II) and fac-tri(glycinato)-nickelate(II) very well. These parameters were used to predict structures of all possible isomers of (i) [Ni(H 2 O) 4 (gly)] + and [Ni(H 2 O) 4 (sar)] + ; and (ii) [Ni(H 2 O) 3 (IDA)] and [Ni(H 2 O) 3 (MIDA)] (IDA = iminodiacetic acid, MIDA = N-methyl iminodiacetic acid) by molecular mechanics/simulated annealing methods. The change in strain energy, ΔU str , that accompanies the substitution of one ligand by another (ML + L' → ML' + L), was computed and a strain energy ΔU str = +0.28 kcal mol -1 for the reaction [Ni(H 2 O) 4 (gly)] + + sar → [Ni(H 2 O) 4 (sar)] + + gly was found. This predicts the monoglycine complex to be marginally more stable. By contrast, for the reaction [Ni(H 2 O) 3 IDA] + MIDA → [Ni(H 2 O) 3 MIDA] + IDA

  14. Preventing colloidal fouling in reverse osmosis and nano filtration system. Application of electron beam surface analysis; Prevencion del ensuciamiento coloidal en sistemas de osmosis inversa y nanofiltracion. Aplicacion del analisis de superficies con haces de electrones.

    Energy Technology Data Exchange (ETDEWEB)

    Sanz Ataz, J.; Guerrero Gallego, L.; Taberna Camprubi, E.; Pena Garcia, N.M; Carulla Contreras, C.; Blavia Bergos, J.

    2003-07-01

    Particulate matter in natural waters and wastewaters can cause fouling in reverse osmosis and nano filtration membranes. Common foulants includes organic and inorganic colloids; hydrous aluminum and iron silicates, silt, iron and manganese oxides, calcium carbonate, microorganisms, polysaccharides, lipoproteins, biological debris, etc. Predicting fouling of dispersed materials on membrane surface and brine flow channels uses the silt density index (SDI) and modified fouling index (MFI). Scanning electron microscopy (SEM) coupled with energy X-ray microanalysis (EDX) of SDI filters contributes to obtain information about shape, size and chemical composition of foulants and cake layer. (Author) 6 refs.

  15. Elevating Learner Achievement Using Formative Electronic Lab Assessments in the Engineering Laboratory: A Viable Alternative to Weekly Lab Reports

    Science.gov (United States)

    Chen, Baiyun; DeMara, Ronald F.; Salehi, Soheil; Hartshorne, Richard

    2018-01-01

    A laboratory pedagogy interweaving weekly student portfolios with onsite formative electronic laboratory assessments (ELAs) is developed and assessed within the laboratory component of a required core course of the electrical and computer engineering (ECE) undergraduate curriculum. The approach acts to promote student outcomes, and neutralize…

  16. Project based education as motivation factor in undergraduate program in Electronics at Copenhagen University College of Engineering

    DEFF Research Database (Denmark)

    Friesel, Anna

    2012-01-01

    This paper summarizes the contents of our experience with project based courses and team work in the undergraduate program in Electronics. The main points of our program are described in this paper, where the leading idea is to combine theory with practical engineering projects. Our students work...

  17. Factors Influencing Consumers’ Intention to Return the End of Life Electronic Products through Reverse Supply Chain Management for Reuse, Repair and Recycling

    Directory of Open Access Journals (Sweden)

    Kamyar Kianpour

    2017-09-01

    Full Text Available Resource depletion, population growth and environmental problems force companies to collect their end of life (EOL products for reuse, recycle and refurbishment through reverse supply chain management (RSCM. Success in collecting the EOL products through RSCM depends on the customers’ participation intention. The objectives of this study are: (1 To examine the important factors influencing customers’ attitude to participate in RSCM; (2 To examine the important factors influencing customers’ subjective norm to participate in RSCM; (3 To examine the main factors influencing customers’ perceived behavioral control to participate in RSCM; (4 To examine the influence of attitude, subjective norms and perceived behavioral control on customers’ participation intention in RSCM. The Decomposed Theory of Planned Behaviour (DTPB has been chosen as the underpinning theory for this research. The research conducted employed the quantitative approach. Non-probability (convenience sampling method was used to determine the sample and data was collected using questionnaires. Partial Least Squares-Structural Equation Modeling (PLS-SEM technique was employed. A total of 800 questionnaires were distributed among customers of electronic products in Malaysia. Finally, the questionnaire was distributed among the customers in electronic retailer companies based on convenience sampling method. The empirical results confirm that consumers perception about the risk associated with EOL electronic products, consumers’ ecological knowledge and relative advantages associated with reuse, repair and recycling can influence the attitude of consumers to return the EOL products for reuse, repair and recycling to producer.

  18. Mechanism of the transition from orthorhombic to tetragonal YBa 2Cu 3O 7- x. Investigation of a reversible topotactic reaction in the electron microscope

    Science.gov (United States)

    Müller, J.-H.; Gruehn, R.

    The phase transition from orthorhombic to tetragonal could be observed (in situ) with High-Resolution Transmission Electron Microscopy (HRTEM). In superconducting samples of YBa 2Cu 3O 7- x ( x=0.09) twinned areas were found which changed from orthorhombic to tetragonal symmetry upon electron irradiation parallel to the long c axis. In opposition to annealing experiments the length of the c-axis remained unchanged. The transition was reversible in the high vacuum of the electron microscope. Therefore we surmise that this reaction has no reductive character (no perceptible loss of oxygen). Within the tetragonal structure one can assume a statistical sharing (“disorder”) of oxygen by the metal atoms. The transition could also be explained by a migration of oxygen to the surface. After finishing the irradiation experiment and waiting for several minutes, the oxygen seems to occupy partially ordered positions resulting again in an orthorhombic symmetry. In some cases we could observed transition states of the structural transformation. A schematic model of the mechanism is depicted.

  19. Reversibility of magnetic field driven transition from electronic phase separation state to single-phase state in manganites: A microscopic view

    Science.gov (United States)

    Liu, Hao; Lin, Lingfang; Yu, Yang; Lin, Hanxuan; Zhu, Yinyan; Miao, Tian; Bai, Yu; Shi, Qian; Cai, Peng; Kou, Yunfang; Lan, Fanli; Wang, Wenbin; Zhou, Xiaodong; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2017-11-01

    Electronic phase separation (EPS) is a common phenomenon in strongly correlated oxides. For colossal magnetoresistive (CMR) manganites, the EPS is so pronounced that not only does it govern the CMR behavior, but also raises a question whether EPS exists as a ground state for systems or a metastable state. While it has been well known that a magnetic field can drive the transition of the EPS state into a single-phase state in manganites, the reversibility of this transition is not well studied. In this work we use magnetic force microscopy (MFM) to directly visualize the reversibility of the field driven transition between the EPS state and the single-phase state at different temperatures. The MFM images correspond well with the global magnetic and transport property measurements, uncovering the underlying mechanism of the field driven transition between the EPS state and the single-phase state. We argue that EPS state is a consequence of system quenching whose response to an external magnetic field is governed by a local energy landscape.

  20. Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach "reverse pathway engineering".

    Science.gov (United States)

    Liu, Mengjin; Bienfait, Bruno; Sacher, Oliver; Gasteiger, Johann; Siezen, Roland J; Nauta, Arjen; Geurts, Jan M W

    2014-01-01

    The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the "missing links" between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology.

  1. Delineation and interpretation of gene networks towards their effect in cellular physiology- a reverse engineering approach for the identification of critical molecular players, through the use of ontologies.

    Science.gov (United States)

    Moutselos, K; Maglogiannis, I; Chatziioannou, A

    2010-01-01

    Exploiting ontologies, provides clues regarding the involvement of certain molecular processes in the cellular phenotypic manifestation. However, identifying individual molecular actors (genes, proteins, etc.) for targeted biological validation in a generic, prioritized, fashion, based in objective measures of their effects in the cellular physiology, remains a challenge. In this work, a new meta-analysis algorithm is proposed for the holistic interpretation of the information captured in -omic experiments, that is showcased in a transcriptomic, dynamic, DNA microarray dataset, which examines the effect of mastic oil treatment in Lewis lung carcinoma cells. Through the use of the Gene Ontology this algorithm relates genes to specific cellular pathways and vice versa in order to further reverse engineer the critical role of specific genes, starting from the results of various statistical enrichment analyses. The algorithm is able to discriminate candidate hub-genes, implying critical biochemical cross-talk. Moreover, performance measures of the algorithm are derived, when evaluated with respect to the differential expression gene list of the dataset.

  2. Large-scale Wind Turbine Blade Redesign Based on Reverse Engineering%大型风能发电机组叶片反求再设计

    Institute of Scientific and Technical Information of China (English)

    陶庆; 孙文磊

    2015-01-01

    叶片的外形设计和翼型的选择等都能影响风机性能和产能效率。提出一种大型风能发电机组叶片反求再设计的原理和方法,通过对大型风能发电机组叶片反求测量、大型风能发电机组叶片逆向CAD建模,寻找几何特征,探索制约叶片形状的基本因素,确定叶片截面参数计算公式,利用所开发的叶片翼型自动生成系统,完成了叶片的再设计,并得到了实际应用。%The large⁃scale wind turbine blade contour design and the choice of wing section affect the wind turbine performance and energy efficiency. A redesign principle and method for large⁃scale wind turbine blade was presented which was based on the analy⁃sis of blade CAD model from reverse engineering, looking for geometric features, exploring basic constraint factors on blade shape, and determining parameters of blade cross section calculation formula. Blade design was completed using this self⁃developed blade aerofoil automatic generation system. The results show that the redesign meets the production requirements.

  3. Reverse engineering of mandible and prosthetic framework: Effect of titanium implants in conjunction with titanium milled full arch bridge prostheses on the biomechanics of the mandible.

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Russo, Teresa; D'Amora, Ugo; Varriale, Angelo; Veltri, Mario; Balleri, Piero; Mollica, Francesco; Riccitiello, Francesco; Ambrosio, Luigi

    2014-12-18

    This study aimed at investigating the effects of titanium implants and different configurations of full-arch prostheses on the biomechanics of edentulous mandibles. Reverse engineered, composite, anisotropic, edentulous mandibles made of a poly(methylmethacrylate) core and a glass fibre reinforced outer shell were rapid prototyped and instrumented with strain gauges. Brånemark implants RP platforms in conjunction with titanium Procera one-piece or two-piece bridges were used to simulate oral rehabilitations. A lateral load through the gonion regions was used to test the biomechanical effects of the rehabilitations. In addition, strains due to misfit of the one-piece titanium bridge were compared to those produced by one-piece cast gold bridges. Milled titanium bridges had a better fit than cast gold bridges. The stress distribution in mandibular bone rehabilitated with a one-piece bridge was more perturbed than that observed with a two-piece bridge. In particular the former induced a stress concentration and stress shielding in the molar and symphysis regions, while for the latter design these stresses were strongly reduced. In conclusion, prosthetic frameworks changed the biomechanics of the mandible as a result of both their design and manufacturing technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Safety-factor profile tailoring by improved electron cyclotron system for sawtooth control and reverse shear scenarios in ITER

    International Nuclear Information System (INIS)

    Zucca, C.; Sauter, O.; Fable, E.; Henderson, M. A.; Polevoi, A.; Farina, D.; Ramponi, G.; Saibene, G.; Zohm, H.

    2008-01-01

    The effect of the predicted local electron cyclotron current driven by the optimized electron cyclotron system on ITER is discussed. A design variant was recently proposed to enlarge the physics program covered by the upper and equatorial launchers. By extending the functionality range of the upper launcher, significant control capabilities of the sawtooth period can be obtained. The upper launcher improvement still allows enough margin to exceed the requirements for neoclassical tearing mode stabilization, for which it was originally designed. The analysis of the sawtooth control is carried on with the ASTRA transport code, coupled with the threshold model by Por-celli, to study the control capabilities of the improved upper launcher on the sawtooth instability. The simulations take into account the significant stabilizing effect of the fusion alpha particles. The sawtooth period can be increased by a factor of 1.5 with co-ECCD outside the q = 1 surface, and decreased by at least 30% with co-ECCD inside q = 1. The present ITER base-line design has the electron cyclotron launchers providing only co-ECCD. The variant for the equatorial launcher proposes the possibility to drive counter-ECCD with 1 of the 3 rows of mirrors: the counter-ECCD can then be balanced with co-ECCD and provide pure ECH with no net driven current. The difference between full co-ECCD off-axis using all 20MW from the equatorial launcher and 20MW co-ECCD driven by 2/3 from the equatorial launcher and 1/3 from the upper launcher is shown to be negligible. Cnt-ECCD also offers greater control of the plasma current density, therefore this analysis addresses the performance of the equatorial launcher to control the central q profile. The equatorial launcher is shown to control very efficiently the value of q 0.2 -q min in advanced scenarios, if one row provides counter-ECCD.

  5. Advancing cognitive engineering methods to support user interface design for electronic health records.

    Science.gov (United States)

    Thyvalikakath, Thankam P; Dziabiak, Michael P; Johnson, Raymond; Torres-Urquidy, Miguel Humberto; Acharya, Amit; Yabes, Jonathan; Schleyer, Titus K

    2014-04-01

    Despite many decades of research on the effective development of clinical systems in medicine, the adoption of health information technology to improve patient care continues to be slow, especially in ambulatory settings. This applies to dentistry as well, a primary care discipline with approximately 137,000 practitioners in the United States. A critical reason for slow adoption is the poor usability of clinical systems, which makes it difficult for providers to navigate through the information and obtain an integrated view of patient data. In this study, we documented the cognitive processes and information management strategies used by dentists during a typical patient examination. The results will inform the design of a novel electronic dental record interface. We conducted a cognitive task analysis (CTA) study to observe ten general dentists (five general dentists and five general dental faculty members, each with more than two years of clinical experience) examining three simulated patient cases using a think-aloud protocol. Dentists first reviewed the patient's demographics, chief complaint, medical history and dental history to determine the general status of the patient. Subsequently, they proceeded to examine the patient's intraoral status using radiographs, intraoral images, hard tissue and periodontal tissue information. The results also identified dentists' patterns of navigation through patient's information and additional information needs during a typical clinician-patient encounter. This study reinforced the significance of applying cognitive engineering methods to inform the design of a clinical system. Second, applying CTA to a scenario closely simulating an actual patient encounter helped with capturing participants' knowledge states and decision-making when diagnosing and treating a patient. The resultant knowledge of dentists' patterns of information retrieval and review will significantly contribute to designing flexible and task

  6. Efficient composite fabrication using electron-beam rapidly cured polymers engineered for several manufacturing processes

    International Nuclear Information System (INIS)

    Walton, T.C.; Crivello, J.V.

    1995-01-01

    Low cost, efficiently processed ultra high specific strength and stiffness graphite fiber reinforced polymeric composite materials are of great interest to commercial transportation, construction and aerospace industries for use in various components with enhanced degrees of weight reduction, corrosion/erosion resistance and fatigue resistance. 10 MeV Electron Beam cure processing has been found to increase the cure rate by an order of magnitude over thermally cured systems yet provide less molded in stresses and high T g s. However, a limited range of resins are available which are easily processed with low shrinkage and with performance properties equal or exceeding those of state of the art toughened epoxies and BMI's. The technology, introduced by an academia-industry partnership sparked by Langley Research Center utilizes a cost effective, rapid curing polymeric composite processing technique which effectively reduces the need for expensive tooling and energy inefficient autoclave processing and can cure the laminate in seconds (compared to hours for thermal curing) in ambient or sub-ambient conditions. The process is based on electron beam (E-Beam) curing of a new series of (65 to 1,000,000 cPs.) specially formulated resins that have been shown to exhibit excellent mechanical and physical properties once cured. Fabrication processes utilizing these specially formulated and newly commercialized resins, (e.g. including Vacuum Assist Resin Transfer molding (VARTM), vacuum bag prepreg layup, pultrusion and filament winding grades) are engineered to cure with low shrinkage, provide excellent mechanical properties, be processed solventless (environmentally friendly) and are inherently non toxic

  7. Preliminary Performance Data on Westinghouse Electronic Power Regulator Operating on J34-WE-32 Turbojet Engine in Altitude Wind Tunnel

    Science.gov (United States)

    Ketchum, James R.; Blivas, Darnold; Pack, George J.

    1950-01-01

    The behavior of the Westinghouse electronic power regulator operating on a J34-WE-32 turbojet engine was investigated in the NACA Lewis altitude wind tunnel at the request of the Bureau of Aeronautics, Department of the Navy. The object of the program was to determine the, steady-state stability and transient characteristics of the engine under control at various altitudes and ram pressure ratios, without afterburning. Recordings of the response of the following parameters to step changes in power lever position throughout the available operating range of the engine were obtained; ram pressure ratio, compressor-discharge pressure, exhaust-nozzle area, engine speed, turbine-outlet temperature, fuel-valve position, jet thrust, air flow, turbine-discharge pressure, fuel flow, throttle position, and boost-pump pressure. Representative preliminary data showing the actual time response of these variables are presented. These data are presented in the form of reproductions of oscillographic traces.

  8. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes

    Science.gov (United States)

    Peng, Chengxin; Ning, Guo-Hong; Su, Jie; Zhong, Guiming; Tang, Wei; Tian, Bingbing; Su, Chenliang; Yu, Dingyi; Zu, Lianhai; Yang, Jinhu; Ng, Man-Fai; Hu, Yong-Sheng; Yang, Yong; Armand, Michel; Loh, Kian Ping

    2017-07-01

    Even though organic molecules with well-designed functional groups can be programmed to have high electron density per unit mass, their poor electrical conductivity and low cycle stability limit their applications in batteries. Here we report a facile synthesis of π-conjugated quinoxaline-based heteroaromatic molecules (3Q) by condensation of cyclic carbonyl molecules with o-phenylenediamine. 3Q features a number of electron-deficient pyrazine sites, where multiple redox reactions take place. When hybridized with graphene and coupled with an ether-based electrolyte, an organic cathode based on 3Q molecules displays a discharge capacity of 395 mAh g-1 at 400 mA g-1 (1C) in the voltage range of 1.2-3.9 V and a nearly 70% capacity retention after 10,000 cycles at 8 A g-1. It also exhibits a capacity of 222 mAh g-1 at 20C, which corresponds to 60% of the initial specific capacity. Our results offer evidence that heteroaromatic molecules with multiple redox sites are promising in developing high-energy-density, long-cycle-life organic rechargeable batteries.

  9. Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C

    Science.gov (United States)

    Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao

    2018-04-01

    A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.

  10. Reverse Osmosis

    Indian Academy of Sciences (India)

    many applications, one of which is desalination of seawater. The inaugural Nobel Prize in Chemistry was awarded in 1901 to van 't Hoff for his seminal work in this area. The present article explains the principle of osmosis and reverse osmosis. Osmosis and Reverse Osmosis. As the name suggests, reverse osmosis is the ...

  11. Safety leadership in the teaching laboratories of electrical and electronic engineering departments at Taiwanese Universities.

    Science.gov (United States)

    Wu, Tsung-Chih

    2008-01-01

    Safety has always been one of the principal goals in teaching laboratories. Laboratories cannot serve their educational purpose when accidents occur. The leadership of department heads has a major impact on laboratory safety, so this study discusses the factors affecting safety leadership in teaching laboratories. This study uses a mail survey to explore the perceived safety leadership in electrical and electronic engineering departments at Taiwanese universities. An exploratory factor analysis shows that there are three main components of safety leadership, as measured on a safety leadership scale: safety controlling, safety coaching, and safety caring. The descriptive statistics also reveals that among faculty, the perception of department heads' safety leadership is in general positive. A two-way MANOVA shows that there are interaction effects on safety leadership between university size and instructor age; there are also interaction effects between presence of a safety committee and faculty gender and faculty age. It is therefore necessary to assess organizational factors when determining whether individual factors are the cause of differing perceptions among faculty members. The author also presents advice on improving safety leadership for department heads at small universities and at universities without safety committees.

  12. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins

    Science.gov (United States)

    Park, Jonghwa; Kim, Jinyoung; Hong, Jaehyung; Lee, Hochan; Lee, Youngoh; Cho, Seungse; Kim, Sung-Woo; Kim, Jae Joon; Kim, Sung Youb; Ko, Hyunhyub

    2018-04-01

    Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa-1 in the range of <1 kPa, 90,657 kPa-1 in the range of 1-10 kPa, and 30,214 kPa-1 in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins.

  13. Monitoring micro-crack healing in an engineered cementitious composite using the environmental scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Suryanto, B., E-mail: b.suryanto@hw.ac.uk; Buckman, J.O.; Thompson, P.; Bolbol, M.; McCarter, W.J.

    2016-09-15

    Environmental Scanning Electron Microscopy (ESEM) is used to study the origin of micro-crack healing in an Engineered Cementitious Composite (ECC). ESEM images were acquired from ECC specimens cut from pre-cracked, dog-bone samples which then subjected to submerged curing followed by exposure to the natural environment. The mineralogical and chemical compositions of the healing products were determined using the EDX facility in the ESEM. It is shown that the precipitation of calcium carbonate is the main contributor to micro-crack healing at the crack mouth. The healing products initially appeared in an angular rhombohedral morphology which then underwent a discernable transformation in size, shape and surface texture, from relatively flat and smooth to irregular and rough, resembling the texture of the original surface areas surrounding the micro-cracks. It is also shown that exposure to the natural environment, involving intermittent wetting/drying cycles, promotes additional crystal growth, which indicates enhanced self-healing capability in this environment. - Highlights: •ESEM with EDX used to characterize the origin of micro-crack healing in an ECC •Evolution of healing precipitates studied at three specific locations over four weeks •Specimens exposed to laboratory environment, followed by the natural environment •Calcium carbonate is the main contributor to crack healing at the crack mouth. •Outdoor exposure involving intermittent rain promotes additional crystal growth.

  14. TIME MANAGEMENT SKILLS IN HIGHER INSTITUTIONS: A CASE STUDY OF ELECTRICAL, ELECTRONIC & SYSTEMS ENGINEERING UNDERGRADUATE STUDENTS

    Directory of Open Access Journals (Sweden)

    NORBAHIAH MISRAN

    2016-11-01

    Full Text Available Time management is an important skill that every student in higher education institutions should acquire since it is one of the key factors in assuring excellent achievement in academic. Students with poor time-management skills are far more likely to be tressed and, as a result, have a negative impact on the quality of life. Thus, this paper discusses this issue based on a study among students of Electrical, Electronic & System Engineering at Universiti Kebangsaan Malaysia according to year of study and then establishes the relationship with the student's academic performance. Data were collected using a set of questionnaire carried out on 272 undergraduate students from year one to year four for 2015/2016 session. These data were then analysed using ANOVA statistical inference and Pearson correlations. Results revealed that time management skills of the respondents were at moderate level and established a negative correlation with year of study. This study also found significant findings where time management skills have a positive but weak correlation with student’s academic performance. These findings suggest the need for additional research to further refine the justifications of these measures. The university is also anticipated to provide a good platform for students to develop their time management skills at the early stage of their admission to university.

  15. Electronic ignition device for internal combustion engines. Elektronische Zuendvorrichtung fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Erhard, W

    1983-07-14

    The purpose of the invention is to create an electronic ignition device for internal combustion engines, so that the exact setting of a required ignition timing can be done without troublesome balancing of the circuit and without temperature compensation processes. According to the invention, in order to solve this problem, the ignition device is characterized by an auxiliary circuit, with an auxiliary winding magnetically coupled to the ignition coil, a capacitor and a diode, which is connected in parallel with the control section of the control component. The auxiliary winding charges the capacitor up via the diode, as long as the induction and therefore the voltage in the auxiliary winding are increasing. After exceeding the maximum voltage, this is maintained at the capacitor while the voltage in the auxiliary winding decreases. If the difference reaches the threshold voltage of the control component, in particular of a thyristor, this is switched on and blocks the switching transistor. Due to this circuit, the ignition timing is very close behind the timing of the greatest possible energy input into the primary coil.

  16. Engineering development of a short course in transportation planning for electronic delivery to DOTD : technical summary.

    Science.gov (United States)

    2000-12-01

    As part of an effort to establish a Louisiana professional Masters degree in Civil Engineering, with a concentration in transportation engineering, it has been proposed that a number of courses should be offered on different Louisiana campuses thr...

  17. International symposium on Electron-magnetic fields in mechatronics, electrical and electronique engineering

    CERN Document Server

    Krawczyk, Andrzej; Dolezel, Ivo

    2008-01-01

    Includes contributions on electromagnetic fields in electrical engineering which intends at joining theory and practice. This book helps the world-wide electromagnetic community, both academic and engineering, in understanding electromagnetism itself and its application to technical problems.

  18. Temperature and 8 MeV electron irradiation effects on GaAs solar cells

    Indian Academy of Sciences (India)

    1Department of Physics, Mangalore Institute of Technology and Engineering, ... strate were irradiated with 1 MeV electrons, they showed high radiation tolerance ... under both forward and reverse bias in the temperature range of 270–315 K ...

  19. Electronic Engineering Technology Program Exit Examination as an ABET and Self-Assessment Tool

    Science.gov (United States)

    Thomas, Gary; Darayan, Shahryar

    2018-01-01

    Every engineering, computing, and engineering technology program accredited by the Accreditation Board for Engineering and Technology (ABET) has formulated many and varied self-assessment methods. Methods used to assess a program for ABET accreditation and continuous improvement are for keeping programs current with academic and industrial…

  20. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium activity in its 3rd year (Research and development of reverse engineering system for local craftwork articles); 1999 nendo chiiki kogeihin muke reverse engineering system no kenkyu kaihatsu seika hokokusho. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The effort concerns Ryukyu craftwork articles. Reverse engineering used to be regarded as a technique of imitation or duplication but today it is drawing attention as a concept of positively utilizing the directionality of information flow in the integrated environment. In the development of a reverse information system, novel designs are created by utilizing a 3-dimensional data base, a high-efficiency fabrication technology for metal patterns for the press-molding of glass is established incorporating some fabrication diagnosing techniques, and a system is constructed under which fabrication accuracy is evaluated and difference data are fed back. In the development of technologies for metal pattern cutting and surface reforming, a metal pattern fabrication technology for molding glass, low in cost and high in performance, is systematized, which enables short delivery. In the diversification of glass products, Ryukyu patterns are collected and Ryukyu glass products are tentatively manufactured by press-molding, and a good result is achieved. In the field of total system technology, basic technologies for an advanced and integrated common production base are established. A virtual reality assisted designing system is developed, under which the designer feels force on the finger tips when preparing a shape for a 3-dimensional structure. (NEDO)

  1. Effect of Smoking Abstinence and Reduction in Asthmatic Smokers Switching to Electronic Cigarettes: Evidence for Harm Reversal

    Directory of Open Access Journals (Sweden)

    Riccardo Polosa

    2014-05-01

    Full Text Available Electronic cigarettes (e-cigs are marketed as safer alternatives to tobacco cigarettes and have shown to reduce their consumption. Here we report for the first time the effects of e-cigs on subjective and objective asthma parameters as well as tolerability in asthmatic smokers who quit or reduced their tobacco consumption by switching to these products. We retrospectively reviewed changes in spirometry data, airway hyper-responsiveness (AHR, asthma exacerbations and subjective asthma control in smoking asthmatics who switched to regular e-cig use. Measurements were taken prior to switching (baseline and at two consecutive visits (Follow-up/1 at 6 (±1 and Follow-up/2 at 12 (±2 months. Eighteen smoking asthmatics (10 single users, eight dual users were identified. Overall there were significant improvements in spirometry data, asthma control and AHR. These positive outcomes were noted in single and dual users. Reduction in exacerbation rates was reported, but was not significant. No severe adverse events were noted. This small retrospective study indicates that regular use of e-cigs to substitute smoking is associated with objective and subjective improvements in asthma outcomes. Considering that e-cig use is reportedly less harmful than conventional smoking and can lead to reduced cigarette consumption with subsequent improvements in asthma outcomes, this study shows that e-cigs can be a valid option for asthmatic patients who cannot quit smoking by other methods.

  2. Supporting information retrieval from electronic health records: A report of University of Michigan's nine-year experience in developing and using the Electronic Medical Record Search Engine (EMERSE).

    Science.gov (United States)

    Hanauer, David A; Mei, Qiaozhu; Law, James; Khanna, Ritu; Zheng, Kai

    2015-06-01

    This paper describes the University of Michigan's nine-year experience in developing and using a full-text search engine designed to facilitate information retrieval (IR) from narrative documents stored in electronic health records (EHRs). The system, called the Electronic Medical Record Search Engine (EMERSE), functions similar to Google but is equipped with special functionalities for handling challenges unique to retrieving information from medical text. Key features that distinguish EMERSE from general-purpose search engines are discussed, with an emphasis on functions crucial to (1) improving medical IR performance and (2) assuring search quality and results consistency regardless of users' medical background, stage of training, or level of technical expertise. Since its initial deployment, EMERSE has been enthusiastically embraced by clinicians, administrators, and clinical and translational researchers. To date, the system has been used in supporting more than 750 research projects yielding 80 peer-reviewed publications. In several evaluation studies, EMERSE demonstrated very high levels of sensitivity and specificity in addition to greatly improved chart review efficiency. Increased availability of electronic data in healthcare does not automatically warrant increased availability of information. The success of EMERSE at our institution illustrates that free-text EHR search engines can be a valuable tool to help practitioners and researchers retrieve information from EHRs more effectively and efficiently, enabling critical tasks such as patient case synthesis and research data abstraction. EMERSE, available free of charge for academic use, represents a state-of-the-art medical IR tool with proven effectiveness and user acceptance. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. MODEL-DRIVEN REVERSE ENGINEERING AND PROGRAM COMPREHENSION: AN EXAMPLE INGENIERÍA REVERSA Y COMPRENSIÓN DE PROGRAMAS DIRIGIDA POR MODELOS: UN EJEMPLO

    Directory of Open Access Journals (Sweden)

    Eugenio G Scalise P

    2010-04-01

    Full Text Available This paper presents an example of how Model-Driven Engineering (MDE can be applied to the development of tools for reverse engineering and program comprehension. The tool CodeCrawler was selected as an example; in particular, the polymetric view feature was computed using MDE techniques. To this end, two metamodels were proposed (source and target and meta-level transformations that were used to deduce the information of a polymetric view associated to any software project (source code. The technologies selected to develop the example were those related with the Eclipse Modeling Project, specifically the ATL and the KM3 languages. The approach used in this paper to obtain the implementation can be used to develop all the features of a MDE-oriented software comprehension tool, obtaining a domain-oriented implementation.En este artículo se presenta un ejemplo que describe cómo la Ingeniería Dirigida por Modelos (IDM puede ser aplicada al desarrollo de herramientas para la ingeniería reversa y comprensión de programas. Se seleccionó como caso de estudio la herramienta CodeCrawler, específicamente la funcionalidad denominada polymetric view, desarrollada mediante tecnologías y técnicas de la IDM. Para ello, se emplearon dos metamodelos (entrada y salida y transformaciones a nivel de los metamodelos que permiten generar la información de un polymetric view asociado a un proyecto de software, utilizando la información extraída del código fuente. Las tecnologías utilizadas para el desarrollo del ejemplo, las relacionadas con el Eclipse Modeling Project, específicamente el lenguaje de transformación ATL y el lenguaje KM3. El enfoque seguido para obtener la implementación resultante puede ser utilizado para desarrollar una herramienta de ingeniería reversa y comprensión de software mediante técnicas de la IDM, incorporando el vocabulario del dominio en la implementación.

  4. Thorium and uranium redox-active ligand complexes; reversible intramolecular electron transfer in U(dpp-BIAN)2/ U(dpp-BIAN)2(THE)

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric John [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01

    Actinide complexes of the redox-active ligand dpp-BIAN{sup 2-} (dpp-BIAN = bis(2,6-diisopropylphenyl)acenaphthylene), An(dpp-BIAN){sub 2}(THF){sub n} (An = Th, n = 1; An = U, n = 0, 1) have been prepared. Solid-state magnetic and single-crystal X-ray data for U(dpp-BIAN){sub 2}(THF){sub n} show when n = 0, the complex exists in an f{sup 2}-{pi}*{sup 4} configuration; whereas an intramolecular electron transfer occurs for n = 1, resulting in an f{sup 3}-{pi}*{sup 3} ground configuration. The magnetic data also indicate that interconversion between the two forms of the complex is possible, limited only by the ability of THF vapor to penetrate the solid on cooling of the sample. Spectroscopic data indicate the complex exists solely in the f{sup 2}-{pi}*{sup 4} form in solution, evidenced by the appearance of only small changes in the electronic absorption spectra of the U(dpp-BIAN){sub 2} complex on titration with THF and by measurement of the solution magnetic moment m d{sub 8}-tetrahydrofuran using Evans method. Electrochemistry of the complexes is reported, with small differences observed in wave potentials between metals and in the presence of THF. These data represent the first example of a well-defined, reversible intramolecular electron transfer in an f-element complex and the second example of oxidation state change through dative interaction with a metal ion.

  5. Continuous CS Analysis of Using the SIEM to Introduction to Computer Programming Education in the School of Engineering Evening Division at the Department of Electrical and Electronic Engineering

    Science.gov (United States)

    Dohi, Shinichi; Miyakawa, Osamu; Konno, Noriko

    In order to improve students’ motivation, the SIEM (School of Information Environment Method) which is the education method for the introduction of the computer programming education was developed. We focus on students’ motivation, and we have measured students’ motivation as the educational effects. After the SIEM was developed in the School of Information Environment, it applied to introduction to the computer programming education in the School of Engineering Evening Division at the Department of Electrical and Electronic Engineering. It is effective for the improvement of students’ motivation. By adding the Customer Satisfaction Analysis to the SIEM Analysis, it was able to clarify the priority level of the SIEM assessment item. In this paper, we describe results of the Customer Satisfaction Analysis.

  6. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    International Nuclear Information System (INIS)

    Adorno, Dominique Persano; Pizzolato, Nicola; Fazio, Claudio

    2015-01-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations. (paper)

  7. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    Science.gov (United States)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  8. A theoretical study on the performances of thermoelectric heat engine and refrigerator with two-dimensional electron reservoirs

    International Nuclear Information System (INIS)

    Luo, Xiaoguang; Long, Kailin; Wang, Jun; Qiu, Teng; He, Jizhou; Liu, Nian

    2014-01-01

    Theoretical thermoelectric nanophysics models of low-dimensional electronic heat engine and refrigerator devices, comprising two-dimensional hot and cold reservoirs and an interconnecting filtered electron transport mechanism have been established. The models were used to numerically simulate and evaluate the thermoelectric performance and energy conversion efficiencies of these low-dimensional devices, based on three different types of electron transport momentum-dependent filters, referred to herein as k x , k y , and k r filters. Assuming the Fermi-Dirac distribution of electrons, expressions for key thermoelectric performance parameters were derived for the resonant transport processes, in which the transmission of electrons has been approximated as a Lorentzian resonance function. Optimizations were carried out and the corresponding optimized design parameters have been determined, including but not limited to the universal theoretical upper bound of the efficiency at maximum power for heat engines, and the maximum coefficient of performance for refrigerators. From the results, it was determined that k r filter delivers the best thermoelectric performance, followed by the k x filter, and then the k y filter. For refrigerators with any one of three filters, an optimum range for the full width at half maximum of the transport resonance was found to be B T.

  9. Engineering design of the interaction waveguide for high-power accelerator-driven microwave free-electron lasers

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Clay, H.W.; Stallard, B.W.; Throop, A.L.; Listvinsky, G.; Makowski, M.A.

    1989-01-01

    Linear induction accelerators (LIAs) operating at beam energies of a few million electron volts and currents of a few thousand amperes are suitable drivers for free-electron lasers (FELs). Such lasers are capable of producing gigawatts of peak power and megawatts of average power at microwave frequencies. Such devices are being studied as possible power sources for future high-gradient accelerators and are being constructed for plasma heating applications. At high power levels, the engineering design of the interaction waveguide presents a challenge. This paper discusses several concerns, including electrical breakdown and metal fatigue limits, choice of material, and choice of operating propagation mode. 13 refs., 3 figs

  10. GRASP/Ada: Graphical Representations of Algorithms, Structures, and Processes for Ada. The development of a program analysis environment for Ada: Reverse engineering tools for Ada, task 2, phase 3

    Science.gov (United States)

    Cross, James H., II

    1991-01-01

    The main objective is the investigation, formulation, and generation of graphical representations of algorithms, structures, and processes for Ada (GRASP/Ada). The presented task, in which various graphical representations that can be extracted or generated from source code are described and categorized, is focused on reverse engineering. The following subject areas are covered: the system model; control structure diagram generator; object oriented design diagram generator; user interface; and the GRASP library.

  11. High Temperature "Smart" P3 Sensors and Electronics for Distributed Engine Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current engine control architectures impose limitations on the insertion of new control capabilities due to weight penalties and reliability issues related to...

  12. High Temperature "Smart" P3 Sensors and Electronics for Distributed Engine Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current engine control architectures impose limitations on the insertion of new control capabilities due to weight penalties and reliability issues related to...

  13. Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devices

    Science.gov (United States)

    Du, Xiang

    As the sizes of individual components in electronic and optoelectronic devices approach nano scale, the performance of the devices is often determined by surface properties due to their large surface-to-volume ratio. Surface phenomena have become one of the cornerstones in nanoelectronic industry. For this reason, research on the surface functionalization has been tremendous amount of growth over the past decades, and promises to be an increasingly important field in the future. Surface functionalization, as an effective technique to modify the surface properties of a material through a physical or chemical approach, exhibits great potential to solve the problems and challenges, and modulate the performance of nanomaterials based functional devices. Surface functionalization drives the developments and applications of modern electronic and optoelectronic devices fabricated by nanomaterials. In this thesis, I demonstrate two surface functionalization approaches, namely, surface transfer doping and H2 annealing, to effectively solve the problems and significantly enhance the performance of 2D (single structure black phosphorus (BP) and heterostructure graphene/Si Schottky junction), and quasi-1D (molybdenum trioxide (MoO 3) nanobelt) nanomaterials based functional devices, respectively. In situ photoelectron spectroscopy (PES) measurements were also carried out to explore the interfacial charge transfer occurring at the interface between the nanostructures and doping layers, and the gap states in MoO 3 thin films, which provides the underlying mechanism to understand and support our device measurement results. In the first part of this thesis, I will discuss the first surface functionalization approach, namely, surface transfer doping, to effectively modulate the ambipolar characteristics of 2D few-layer BP flakes based FETs. The ambipolar characteristics of BP transistors were effectively modulated through in situ surface functionalization with cesium carbonate (Cs2

  14. Engineering Mixed Ionic Electronic Conduction in La 0.8 Sr 0.2 MnO 3+ δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity

    KAUST Repository

    Saranya, Aruppukottai M.; Pla, Dolors; Morata, Alex; Cavallaro, Andrea; Canales-Vá zquez, Jesú s; Kilner, John A.; Burriel, Mó nica; Tarancó n, Albert

    2015-01-01

    to implement in nanostructures. Here, an artificial mixed ionic electronic conducting oxide is fabricated by grain boundary (GB) engineering thin films of La0.8Sr0.2MnO3+δ. This electronic conductor is converted into a good mixed ionic electronic conductor

  15. A petabyte size electronic library using the N-Gram memory engine

    Science.gov (United States)

    Bugajski, Joseph M.

    1993-01-01

    A model library containing petabytes of data is proposed by Triada, Ltd., Ann Arbor, Michigan. The library uses the newly patented N-Gram Memory Engine (Neurex), for storage, compression, and retrieval. Neurex splits data into two parts: a hierarchical network of associative memories that store 'information' from data and a permutation operator that preserves sequence. Neurex is expected to offer four advantages in mass storage systems. Neurex representations are dense, fully reversible, hence less expensive to store. Neurex becomes exponentially more stable with increasing data flow; thus its contents and the inverting algorithm may be mass produced for low cost distribution. Only a small permutation operator would be recalled from the library to recover data. Neurex may be enhanced to recall patterns using a partial pattern. Neurex nodes are measures of their pattern. Researchers might use nodes in statistical models to avoid costly sorting and counting procedures. Neurex subsumes a theory of learning and memory that the author believes extends information theory. Its first axiom is a symmetry principle: learning creates memory and memory evidences learning. The theory treats an information store that evolves from a null state to stationarity. A Neurex extracts information data without a priori knowledge; i.e., unlike neural networks, neither feedback nor training is required. The model consists of an energetically conservative field of uniformly distributed events with variable spatial and temporal scale, and an observer walking randomly through this field. A bank of band limited transducers (an 'eye'), each transducer in a bank being tuned to a sub-band, outputs signals upon registering events. Output signals are 'observed' by another transducer bank (a mid-brain), except the band limit of the second bank is narrower than the band limit of the first bank. The banks are arrayed as n 'levels' or 'time domains, td.' The banks are the hierarchical network (a cortex

  16. Assessment of Augmented Electronic Fuel Controls for Modular Engine Diagnostics and Condition Monitoring

    Science.gov (United States)

    1978-12-01

    removal of the horoscope . Diagnostic Conoctor - E4 Th10 E4 23-pin connoctor on the electrical control unit Is provided for ground- checking electrical...confidenou in engine condition monitoring * 1min general. Thi9 has boon especially true in~ eases where fUse signal s have c~aused engine shutdowns. Where ECWI

  17. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-11-22

    ...; Special Conditions No. 23-253-SC] Special Conditions: Diamond Aircraft Industries, Model DA-40NG..., Model DA-40NG airplane. This airplane will have a novel or unusual design feature(s) associated with an... include the new model DA- 40NG with the Austro Engine GmbH model E4 Aircraft Diesel Engine (ADE). The...

  18. X-ray Free Electron Laser Determination of Crystal Structures of Dark and Light States of a Reversibly Photoswitching Fluorescent Protein at Room Temperature

    Directory of Open Access Journals (Sweden)

    Christopher D. M. Hutchison

    2017-09-01

    Full Text Available The photochromic fluorescent protein Skylan-NS (Nonlinear Structured illumination variant mEos3.1H62L is a reversibly photoswitchable fluorescent protein which has an unilluminated/ground state with an anionic and cis chromophore conformation and high fluorescence quantum yield. Photo-conversion with illumination at 515 nm generates a meta-stable intermediate with neutral trans-chromophore structure that has a 4 h lifetime. We present X-ray crystal structures of the cis (on state at 1.9 Angstrom resolution and the trans (off state at a limiting resolution of 1.55 Angstrom from serial femtosecond crystallography experiments conducted at SPring-8 Angstrom Compact Free Electron Laser (SACLA at 7.0 keV and 10.5 keV, and at Linac Coherent Light Source (LCLS at 9.5 keV. We present a comparison of the data reduction and structure determination statistics for the two facilities which differ in flux, beam characteristics and detector technologies. Furthermore, a comparison of droplet on demand, grease injection and Gas Dynamic Virtual Nozzle (GDVN injection shows no significant differences in limiting resolution. The photoconversion of the on- to the off-state includes both internal and surface exposed protein structural changes, occurring in regions that lack crystal contacts in the orthorhombic crystal form.

  19. Threading dislocation movement in AlGaN/GaN-on-Si high electron mobility transistors under high temperature reverse bias stressing

    Directory of Open Access Journals (Sweden)

    W. A. Sasangka

    2016-09-01

    Full Text Available Dislocations are known to be associated with both physical and electrical degradation mechanisms of AlGaN/GaN-on-Si high electron mobility transistors (HEMTs. We have observed threading dislocation movement toward the gate-edges in AlGaN/GaN-on-Si HEMT under high reverse bias stressing. Stressed devices have higher threading dislocation densities (i.e. ∼5 × 109/cm2 at the gate-edges, as compared to unstressed devices (i.e. ∼2.5 × 109/cm2. Dislocation movement correlates well with high tensile stress (∼1.6 GPa at the gate-edges, as seen from inverse piezoelectric calculations and x-ray synchrotron diffraction residual stress measurements. Based on Peierls stress calculation, we believe that threading dislocations move via glide in 〈 11 2 ¯ 0 〉 / { 1 1 ¯ 00 } and 〈 11 2 ¯ 0 〉 / { 1 1 ¯ 01 } slip systems. This result illustrates the importance of threading dislocation mobility in controlling the reliability of AlGaN/GaN-on-Si HEMTs.

  20. Problems of development and putting into education process an electronic textbook on special discipline 'General theory and construction of heat-and-power engineering facilities'

    International Nuclear Information System (INIS)

    Karitskaya, S.G.; Ruzanov, K.A.; Davletov, V.S.

    2005-01-01

    The results of work of making the electronic textbook of special discipline ('General theory and construction of heat-and-power engineering facilities' are brought. The principles and requirements, presented towards literature of such type, are outlined. (author)

  1. Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor.

    Science.gov (United States)

    Ruan, Jiufeng; Yang, Zhengwen; Huang, Anjun; Zhang, Hailu; Qiu, Jianbei; Song, Zhiguo

    2018-05-02

    Reversible luminescence modulation of upconversion phosphors has the potential applications as photoswitches and optical memory and data storage devices. Previously, the photochromic reaction was extensively used for the realization of reversible luminescence modulation. It is very necessary to develop other approaches such as thermomchromic reaction to obtain the reversible upconversion luminescence modulation. In this work, the WO 3 :Yb 3+ ,Er 3+ phosphors with various colors were prepared at various temperatures, exhibiting tunable upconversion luminescence attributed to the formation of oxygen vacancies in the host. Upon heat treatment in the reducing atmosphere or air, the WO 3 :Yb 3+ ,Er 3+ phosphors show a reversible thermomchromic property. The reversible upconversion luminescence modulation of WO 3 :Yb 3+ ,Er 3+ phosphors was observed based on thermomchromic reaction. Additionally, the upconversion luminescence modulation is maintained after several cycles, indicating its excellent stability. The WO 3 :Yb 3+ ,Er 3+ phosphors with reversible upconversion luminescence and excellent reproducibility have potential applications as the photoswitches and optical memory and data storage devices.

  2. Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites

    Science.gov (United States)

    2016-06-08

    The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...study, etc. 3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun...describing its operation and its special place in the depths of medieval sadism, which proved that the stretchability of Homo sapiens is not reversible

  3. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field / research and development of a reverse engineering system for local industrial articles (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium bun`ya / chiiki kogeihin muke reverse engineering system no kenkyu kaihatsu (daiichi nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper described the fiscal 1997 result of the research on the application of local industrial article use reverse engineering (RE, it had been regarded as imitation and reproduction technology, but has recently been as a part of the production information integration). With the actual local industrial article as standard, which has features in design and was added with local traditionality, such as glass having 3D free-form surface, 3D shape information modeling technology RE is developed, and a system for direct automatic metal mold processing is established, aiming at shortening of delivery date, cost reduction and higher grade. The target of the research is Okinawa prefecture. In fiscal 1997, study was made of the speeding-up of the non-contact 3D shape information inputting (multi-point simultaneous inputting by CCD of the laser reflected light of the actual model) and the data storage technology. Cast iron was selected as molding materials, judging from reactivity/machinability with heat resistant glass. Also studied was the blend of glass materials suitable for press forming. Further, studies were proceeded with of development of intellectual cutting tools into which sensor function is integrated and of virtual reality for facilitating/accelerating the design up to metal mold manufacturing. 39 refs., 88 figs., 21 tabs.

  4. Epitaxial engineering of polar ɛ-Ga2O3 for tunable two-dimensional electron gas at the heterointerface

    Science.gov (United States)

    Cho, Sung Beom; Mishra, Rohan

    2018-04-01

    We predict the formation of a polarization-induced two-dimensional electron gas (2DEG) at the interface of ɛ-Ga2O3 and CaCO3, wherein the density of the 2DEG can be tuned by reversing the spontaneous polarization in ɛ-Ga2O3, for example, with an applied electric field. ɛ-Ga2O3 is a polar and metastable ultra-wide band-gap semiconductor. We use density-functional theory (DFT) calculations and coincidence-site lattice model to predict the region of epitaxial strain under which ɛ-Ga2O3 can be stabilized over its other competing polymorphs and suggest promising substrates. Using group-theoretical methods and DFT calculations, we show that ɛ-Ga2O3 is a ferroelectric material where the spontaneous polarization can be reversed through a non-polar phase by using an electric field. Based on the calculated band alignment of ɛ-Ga2O3 with various substrates, we show the formation of a 2DEG with a high sheet charge density of 1014 cm-2 at the interface with CaCO3 due to the spontaneous and piezoelectric polarization in ɛ-Ga2O3, which makes the system attractive for high-power and high-frequency applications.

  5. Introducing Programmable Logic to Undergraduate Engineering Students in a Digital Electronics Course

    Science.gov (United States)

    Todorovich, E.; Marone, J. A.; Vazquez, M.

    2012-01-01

    Due to significant technological advances and industry requirements, many universities have introduced programmable logic and hardware description languages into undergraduate engineering curricula. This has led to a number of logistical and didactical challenges, in particular for computer science students. In this paper, the integration of some…

  6. Molecular Engineering of Non-Halogenated Solution-Processable Bithiazole based Electron Transport Polymeric Semiconductors

    KAUST Repository

    Fu, Boyi; Wang, Cheng-Yin; Rose, Bradley Daniel; Jiang, Yundi; Chang, Mincheol; Chu, Ping-Hsun; Yuan, Zhibo; Fuentes-Hernandez, Canek; Bernard, Kippelen; Bredas, Jean-Luc; Collard, David M.; Reichmanis, Elsa

    2015-01-01

    The electron deficiency and trans planar conformation of bithiazole is potentially beneficial for the electron transport performance of organic semiconductors. However, the incorporation of bithiazole into polymers through a facile synthetic strategy remains a challenge. Herein, 2,2’-bithiazole was synthesized in one step and copolymerized with dithienyldiketopyrrolopyrrole to afford poly(dithienyldiketopyrrolopyrrole-bithiazole), PDBTz. PDBTz exhibited electron mobility reaching 0.3 cm2V-1s-1 in organic field-effect transistor (OFET) configuration; this contrasts with a recently discussed isoelectronic conjugated polymer comprising an electron rich bithiophene and dithienyldiketopyrrolopyrrole, which displays merely hole transport characteristics. This inversion of charge carrier transport characteristics confirms the significant potential for bithiazole in the development of electron transport semiconducting materials. Branched 5-decylheptacyl side chains were incorporated into PDBTz to enhance polymer solubility, particularly in non-halogenated, more environmentally compatible solvents. PDBTz cast from a range of non-halogenated solvents exhibited film morphologies and field-effect electron mobility similar to those cast from halogenated solvents.

  7. Molecular Engineering of Non-Halogenated Solution-Processable Bithiazole based Electron Transport Polymeric Semiconductors

    KAUST Repository

    Fu, Boyi

    2015-04-01

    The electron deficiency and trans planar conformation of bithiazole is potentially beneficial for the electron transport performance of organic semiconductors. However, the incorporation of bithiazole into polymers through a facile synthetic strategy remains a challenge. Herein, 2,2’-bithiazole was synthesized in one step and copolymerized with dithienyldiketopyrrolopyrrole to afford poly(dithienyldiketopyrrolopyrrole-bithiazole), PDBTz. PDBTz exhibited electron mobility reaching 0.3 cm2V-1s-1 in organic field-effect transistor (OFET) configuration; this contrasts with a recently discussed isoelectronic conjugated polymer comprising an electron rich bithiophene and dithienyldiketopyrrolopyrrole, which displays merely hole transport characteristics. This inversion of charge carrier transport characteristics confirms the significant potential for bithiazole in the development of electron transport semiconducting materials. Branched 5-decylheptacyl side chains were incorporated into PDBTz to enhance polymer solubility, particularly in non-halogenated, more environmentally compatible solvents. PDBTz cast from a range of non-halogenated solvents exhibited film morphologies and field-effect electron mobility similar to those cast from halogenated solvents.

  8. Reverse Engineering and Software Products Reuse to Teach Collaborative Web Portals: A Case Study with Final-Year Computer Science Students

    Science.gov (United States)

    Medina-Dominguez, Fuensanta; Sanchez-Segura, Maria-Isabel; Mora-Soto, Arturo; Amescua, Antonio

    2010-01-01

    The development of collaborative Web applications does not follow a software engineering methodology. This is because when university students study Web applications in general, and collaborative Web portals in particular, they are not being trained in the use of software engineering techniques to develop collaborative Web portals. This paper…

  9. IEEE Milestone at CERN - W Cleon Anderson (right), president of the Institute of Electrical and Electronics Engineers, unveils the Milestone plaque at CERN, together with Georges Charpak

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    At a ceremony on 26 September at CERN, W Cleon Anderson, president of the Institute of Electrical and Electronics Engineers (IEEE), formally dedicated a "Milestone" plaque in recognition of the invention of electronic particle detectors at CERN. The plaque was unveiled by Anderson and Georges Charpak, the Nobel-prize winning inventor of wire-chamber technology at CERN.

  10. Dual Electron Spectrometer for Magnetospheric Multiscale Mission: Results of the Comprehensive Tests of the Engineering Test Unit

    Science.gov (United States)

    Avanov, Levon A.; Gliese, Ulrik; Mariano, Albert; Tucker, Corey; Barrie, Alexander; Chornay, Dennis J.; Pollock, Craig James; Kujawski, Joseph T.; Collinson, Glyn A.; Nguyen, Quang T.; hide

    2011-01-01

    The Magnetospheric Multiscale mission (MMS) is designed to study fundamental phenomena in space plasma physics such as a magnetic reconnection. The mission consists of four spacecraft, equipped with identical scientific payloads, allowing for the first measurements of fast dynamics in the critical electron diffusion region where magnetic reconnection occurs and charged particles are demagnetized. The MMS orbit is optimized to ensure the spacecraft spend extended periods of time in locations where reconnection is known to occur: at the dayside magnetopause and in the magnetotail. In order to resolve fine structures of the three dimensional electron distributions in the diffusion region (reconnection site), the Fast Plasma Investigation's (FPI) Dual Electron Spectrometer (DES) is designed to measure three dimensional electron velocity distributions with an extremely high time resolution of 30 ms. In order to achieve this unprecedented sampling rate, four dual spectrometers, each sampling 180 x 45 degree sections of the sky, are installed on each spacecraft. We present results of the comprehensive tests performed on the DES Engineering & Test Unit (ETU). This includes main parameters of the spectrometer such as energy resolution, angular acceptance, and geometric factor along with their variations over the 16 pixels spanning the 180-degree tophat Electro Static Analyzer (ESA) field of view and over the energy of the test beam. A newly developed method for precisely defining the operational space of the instrument is presented as well. This allows optimization of the trade-off between pixel to pixel crosstalk and uniformity of the main spectrometer parameters.

  11. Interconversion of η3-H2SiRR' σ-complexes and 16-electron silylene complexes via reversible H-H or C-H elimination.

    Science.gov (United States)

    Lipke, Mark C; Neumeyer, Felix; Tilley, T Don

    2014-04-23

    Solid samples of η(3)-silane complexes [PhBP(Ph)3]RuH(η(3)-H2SiRR') (R,R' = Et2, 1a; PhMe, 1b; Ph2, 1c, MeMes, 1d) decompose when exposed to dynamic vacuum. Gas-phase H2/D2 exchange between isolated, solid samples of 1c-d3 and 1c indicate that a reversible elimination of H2 is the first step in the irreversible decomposition. An efficient solution-phase trap for hydrogen, the 16-electron ruthenium benzyl complex [PhBP(Ph)3]Ru[η(3)-CH2(3,5-Me2C6H3)] (3) reacts quantitatively with H2 in benzene via elimination of mesitylene to form the η(5)-cyclohexadienyl complex [PhBP(Ph)3]Ru(η(5)-C6H7) (4). This H2 trapping reaction was utilized to drive forward and quantify the elimination of H2 from 1b,d in solution, which resulted in the decomposition of 1b,d to form 4 and several organosilicon products that could not be identified. Reaction of {[PhBP(Ph)3]Ru(μ-Cl)}2 (2) with (THF)2Li(SiHMes2) forms a new η(3)-H2Si species [PhBP(Ph)3]Ru[CH2(2-(η(3)-H2SiMes)-3,5-Me2C6H2)] (5) which reacts with H2 to form the η(3)-H2SiMes2 complex [PhBP(Ph)3]RuH(η(3)-H2SiMes2) (1e). Complex 1e was identified by NMR spectroscopy prior to its decomposition by elimination of Mes2SiH2 to form 4. DFT calculations indicate that an isomer of 5, the 16-electron silylene complex [PhBP(Ph)3]Ru(μ-H)(═SiMes2), is only 2 kcal/mol higher in energy than 5. Treatment of 5 with XylNC (Xyl = 2,6-dimethylphenyl) resulted in trapping of [PhBP(Ph)3]Ru(μ-H)(═SiMes2) to form the 18-electron silylene complex [PhBP(Ph)3]Ru(CNXyl)(μ-H)(═SiMes2) (6). A closely related germylene complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)](H)(═GeH(t)Bu) (8) was prepared from reaction of (t)BuGeH3 with the benzyl complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)][η(1)-CH2(3,5-Me2C6H3)] (7). Single crystal XRD analysis indicated that unlike for 6, the hydride ligand in 8 is a terminal hydride that does not engage in 3c-2e Ru-H → Ge bonding. Complex 1b is an effective precatalyst for the catalytic Ge-H dehydrocoupling

  12. [Integration of fundamental and applied medical and technical research made at the department of the biomedical systems, Moscow State Institute of Electronic Engineering].

    Science.gov (United States)

    Selishchev, S V

    2004-01-01

    The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.

  13. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Directory of Open Access Journals (Sweden)

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  14. Development of technical skills in Electrical Power Engineering students: A case study of Power Electronics as a Key Course

    Science.gov (United States)

    Hussain, I. S.; Azlee Hamid, Fazrena

    2017-08-01

    Technical skills are one of the attributes, an engineering student must attain by the time of graduation, as per recommended by Engineering Accreditation Council (EAC). This paper describes the development of technical skills, Programme Outcome (PO) number 5, in students taking the Bachelor of Electrical Power Engineering (BEPE) programme in Universiti Tenaga Nasional (UNITEN). Seven courses are identified to address the technical skills development. The course outcomes (CO) of the courses are designed to instill the relevant technical skills with suitable laboratory activities. Formative and summative assessments are carried out to gauge students’ acquisition of the skills. Finally, to measure the attainment of the technical skills, key course concept is used. The concept has been implemented since 2013, focusing on improvement of the programme instead of the cohort. From the PO attainment analysis method, three different levels of PO attainment can be calculated: from the programme level, down to the course and student levels. In this paper, the attainment of the courses mapped to PO5 is measured. It is shown that Power Electronics course, which is the key course for PO5, has a strong attainment at above 90%. PO5 of other six courses are also achieved. As a conclusion, by embracing outcome-based education (OBE), the BEPE programme has a sound method to develop technical psychomotor skills in the degree students.

  15. Strain engineering on electronic structure and carrier mobility in monolayer GeP3

    Science.gov (United States)

    Zeng, Bowen; Long, Mengqiu; Zhang, Xiaojiao; Dong, Yulan; Li, Mingjun; Yi, Yougen; Duan, Haiming

    2018-06-01

    Using density functional theory coupled with the Boltzmann transport equation with relaxation time approximation, we have studied the strain effect on the electronic structure and carrier mobility of two-dimensional monolayer GeP3. We find that the energies of valence band maximum and conduction band minimum are nearly linearly shifted with a biaxial strain in the range of  ‑4% to 6%, and the band structure experiences a remarkable transition from semiconductor to metal with the appropriate compression (‑5% strain). Under biaxial strain, the mobility of the electron and hole in monolayer GeP3 reduces and increases by more than one order of magnitude, respectively. It is suggested that it is possible to perform successive transitions from an n-type semiconductor (‑4% strain) to a good performance p-semiconductor (+6% strain) by applying strain in monolayer GeP3, which is potentially useful for flexible electronics and nanosized mechanical sensors.

  16. Software product line engineering for consumer electronics : Keeping up with the speed of innovation

    NARCIS (Netherlands)

    Hartmann, Herman

    2015-01-01

    During the last decade consumer electronics products have changed radically. Traditionally these products were used for a few dedicated tasks, and were implemented through hardware. Nowadays, these products are used for a variety of tasks and are largely implemented through software. Furthermore

  17. Interface Engineering for Organic Electronics; Manufacturing of Hybrid Inorganic-Organic Molecular Crystal Devices

    NARCIS (Netherlands)

    de Veen, P.J.

    2011-01-01

    Organic semiconductors are at the basis of Organic Electronics. Objective of this dissertation is “to fabricate high-quality organic molecular single-crystal devices”, to explore the intrinsic properties of organic semiconductors. To achieve this, the in situ fabrication of complete field-effect

  18. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials

    Czech Academy of Sciences Publication Activity Database

    Agudo Jácome, L.; Eggeler, G.; Dlouhý, Antonín

    2012-01-01

    Roč. 122, NOV (2012), s. 48-59 ISSN 0304-3991 R&D Projects: GA ČR GA202/09/2073 Institutional research plan: CEZ:AV0Z20410507 Keywords : stereoscopy * scanning transmission electron microscopy * single crystal Ni-base superalloys * Dislocation substructures * Foil thickness measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.470, year: 2012

  19. r-Universal reversible logic gates

    International Nuclear Information System (INIS)

    Vos, A de; Storme, L

    2004-01-01

    Reversible logic plays a fundamental role both in ultra-low power electronics and in quantum computing. It is therefore important to know which reversible logic gates can be used as building block for the reversible implementation of an arbitrary boolean function and which cannot

  20. Nonthermal electron-positron pairs and cold matter in the central engines of active galactic nuclei

    Science.gov (United States)

    Zdziarski, Andrzej A.

    1992-01-01

    The nonthermal e(+/-) pair model of the central engine of active galactic nuclei (AGNs) is discussed. The model assumes that nonthermal e(+/-) pairs are accelerated to highly relativistic energies in a compact region close to the central black hole and in the vicinity of some cold matter. The model has a small number of free parameters and explains a large body of AGN observations from EUV to soft gamma-rays. In particular, the model explains the existence of the UV bump, the soft X-rays excess, the canonical hard X-ray power law, the spectral hardening above about 10 keV, and some of the variability patterns in the soft and hard X-rays. In addition, the model explains the spectral steepening above about 50 keV seen in NGC 4151.

  1. Chemical engineering in the electronics industry: progress towards the rational design of organic semiconductor heterojunctions

    KAUST Repository

    Clancy, Paulette

    2012-01-01

    We review the current status of heterojunction design for combinations of organic semiconductor materials, given its central role in affecting the device performance for electronic devices and solar cell applications. We provide an emphasis on recent progress towards the rational design of heterojunctions that may lead to higher performance of charge separation and mobility. We also play particular attention to the role played by computational approaches and its potential to help define the best choice of materials for solar cell development in the future. We report the current status of the field with respect to such goals. © 2012 Elsevier Ltd.

  2. Chemical engineering in the electronics industry: progress towards the rational design of organic semiconductor heterojunctions

    KAUST Repository

    Clancy, Paulette

    2012-05-01

    We review the current status of heterojunction design for combinations of organic semiconductor materials, given its central role in affecting the device performance for electronic devices and solar cell applications. We provide an emphasis on recent progress towards the rational design of heterojunctions that may lead to higher performance of charge separation and mobility. We also play particular attention to the role played by computational approaches and its potential to help define the best choice of materials for solar cell development in the future. We report the current status of the field with respect to such goals. © 2012 Elsevier Ltd.

  3. Interactive learning media based on flash for basic electronic engineering development for SMK Negeri 1 Driyorejo - Gresik

    Science.gov (United States)

    Mandigo Anggana Raras, Gustav

    2018-04-01

    This research aims to produce a product in the form of flash based interactive learning media on a basic electronic engineering subject that reliable to be used and to know students’ responses about the media. The target of this research is X-TEI 1 class at SMK Negeri 1 Driyorejo – Gresik. The method used in this study is R&D that has been limited into seven stages only (1) potential and problems, (2) data collection, (3) product design, (4) product validation, (5) product revision, (6) field test, and (7) analysis and writing. The obtained result is interactive learning media named MELDASH. Validation process used to produce a valid interactive learning media. The result of media validation state that the interactive learning media has a 90.83% rating. Students’ responses to this interactive learning media is really good with 88.89% rating.

  4. Electronic properties of in-plane phase engineered 1T'/2H/1T' MoS2

    Science.gov (United States)

    Thakur, Rajesh; Sharma, Munish; Ahluwalia, P. K.; Sharma, Raman

    2018-04-01

    We present the first principles studies of semi-infinite phase engineered MoS2 along zigzag direction. The semiconducting (2H) and semi-metallic (1T') phases are known to be stable in thin-film MoS2. We described the electronic and structural properties of the infinite array of 1T'/2H/1T'. It has been found that 1T'phase induced semi-metallic character in 2H phase beyond interface but, only Mo atoms in 2H phase domain contribute to the semi-metallic nature and S atoms towards semiconducting state. 1T'/2H/1T' system can act as a typical n-p-n structure. Also high holes concentration at the interface of Mo layer provides further positive potential barriers.

  5. Process Simulation and Characterization of Substrate Engineered Silicon Thin Film Transistor for Display Sensors and Large Area Electronics

    International Nuclear Information System (INIS)

    Hashmi, S M; Ahmed, S

    2013-01-01

    Design, simulation, fabrication and post-process qualification of substrate-engineered Thin Film Transistors (TFTs) are carried out to suggest an alternate manufacturing process step focused on display sensors and large area electronics applications. Damage created by ion implantation of Helium and Silicon ions into single-crystalline n-type silicon substrate provides an alternate route to create an amorphized region responsible for the fabrication of TFT structures with controllable and application-specific output parameters. The post-process qualification of starting material and full-cycle devices using Rutherford Backscattering Spectrometry (RBS) and Proton or Particle induced X-ray Emission (PIXE) techniques also provide an insight to optimize the process protocols as well as their applicability in the manufacturing cycle

  6. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  7. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Sunil; Kumar, Ashish; Tripathi, Ambuj; Tyagi, Chetna; Avasthi, D. K.

    2018-04-01

    In this work, swift heavy ion irradiation induced effects on the electrical properties of single layer graphene are reported. The modulation in minimum conductivity point in graphene with in-situ electrical measurement during ion irradiation was studied. It is found that the resistance of graphene layer decreases at lower fluences up to 3 × 1011 ions/cm2, which is accompanied by the five-fold increase in electron and hole mobilities. The ion irradiation induced increase in electron and hole mobilities at lower fluence up to 1 × 1011 ions/cm2 is verified by separate Hall measurements on another irradiated graphene sample at the selected fluence. In contrast to the adverse effects of irradiation on the electrical properties of materials, we have found improvement in electrical mobility after irradiation. The increment in mobility is explained by considering the defect annealing in graphene after irradiation at a lower fluence regime. The modification in carrier density after irradiation is also observed. Based on findings of the present work, we suggest ion beam irradiation as a useful tool for tuning of the electrical properties of graphene.

  8. The core contribution of transmission electron microscopy to functional nanomaterials engineering.

    Science.gov (United States)

    Carenco, Sophie; Moldovan, Simona; Roiban, Lucian; Florea, Ileana; Portehault, David; Vallé, Karine; Belleville, Philippe; Boissière, Cédric; Rozes, Laurence; Mézailles, Nicolas; Drillon, Marc; Sanchez, Clément; Ersen, Ovidiu

    2016-01-21

    Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.

  9. Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation.

    Science.gov (United States)

    Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang

    2017-05-31

    Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.

  10. Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering.

    Science.gov (United States)

    Iandolo, Donata; Ravichandran, Akhilandeshwari; Liu, Xianjie; Wen, Feng; Chan, Jerry K Y; Berggren, Magnus; Teoh, Swee-Hin; Simon, Daniel T

    2016-06-01

    Bones have been shown to exhibit piezoelectric properties, generating electrical potential upon mechanical deformation and responding to electrical stimulation with the generation of mechanical stress. Thus, the effects of electrical stimulation on bone tissue engineering have been extensively studied. However, in bone regeneration applications, only few studies have focused on the use of electroactive 3D biodegradable scaffolds at the interphase with stem cells. Here a method is described to combine the bone regeneration capabilities of 3D-printed macroporous medical grade polycaprolactone (PCL) scaffolds with the electrical and electrochemical capabilities of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). PCL scaffolds have been highly effective in vivo as bone regeneration grafts, and PEDOT is a leading material in the field of organic bioelectronics, due to its stability, conformability, and biocompatibility. A protocol is reported for scaffolds functionalization with PEDOT, using vapor-phase polymerization, resulting in a conformal conducting layer. Scaffolds' porosity and mechanical stability, important for in vivo bone regeneration applications, are retained. Human fetal mesenchymal stem cells proliferation is assessed on the functionalized scaffolds, showing the cytocompatibility of the polymeric coating. Altogether, these results show the feasibility of the proposed approach to obtain electroactive scaffolds for electrical stimulation of stem cells for regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials

    Energy Technology Data Exchange (ETDEWEB)

    Agudo Jacome, L., E-mail: leonardo.agudo@bam.de [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Eggeler, G., E-mail: gunther.eggeler@ruhr-uni-bochum.de [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Dlouhy, A., E-mail: dlouhy@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic)

    2012-11-15

    Stereo transmission electron microscopy (TEM) provides a 3D impression of the microstructure in a thin TEM foil. It allows to perform depth and TEM foil thickness measurements and to decide whether a microstructural feature lies inside of a thin foil or on its surface. It allows appreciating the true three-dimensional nature of dislocation configurations. In the present study we first review some basic elements of classical stereo TEM. We then show how the method can be extended by working in the scanning transmission electron microscope (STEM) mode of a modern analytical 200 kV TEM equipped with a field emission gun (FEG TEM) and a high angle annular dark field (HAADF) detector. We combine two micrographs of a stereo pair into one anaglyph. When viewed with special colored glasses the anaglyph provides a direct and realistic 3D impression of the microstructure. Three examples are provided which demonstrate the potential of this extended stereo TEM technique: a single crystal Ni-base superalloy, a 9% Chromium tempered martensite ferritic steel and a NiTi shape memory alloy. We consider the effect of camera length, show how foil thicknesses can be measured, and discuss the depth of focus and surface effects. -- Highlights: Black-Right-Pointing-Pointer The advanced STEM/HAADF diffraction contrast is extended to 3D stereo-imaging. Black-Right-Pointing-Pointer The advantages of the new technique over stereo-imaging in CTEM are demonstrated. Black-Right-Pointing-Pointer The new method allows foil thickness measurements in a broad range of conditions. Black-Right-Pointing-Pointer We show that features associated with ion milling surface damage can be beneficial for appreciating 3D features of the microstructure.

  12. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials

    International Nuclear Information System (INIS)

    Agudo Jácome, L.; Eggeler, G.; Dlouhý, A.

    2012-01-01

    Stereo transmission electron microscopy (TEM) provides a 3D impression of the microstructure in a thin TEM foil. It allows to perform depth and TEM foil thickness measurements and to decide whether a microstructural feature lies inside of a thin foil or on its surface. It allows appreciating the true three-dimensional nature of dislocation configurations. In the present study we first review some basic elements of classical stereo TEM. We then show how the method can be extended by working in the scanning transmission electron microscope (STEM) mode of a modern analytical 200 kV TEM equipped with a field emission gun (FEG TEM) and a high angle annular dark field (HAADF) detector. We combine two micrographs of a stereo pair into one anaglyph. When viewed with special colored glasses the anaglyph provides a direct and realistic 3D impression of the microstructure. Three examples are provided which demonstrate the potential of this extended stereo TEM technique: a single crystal Ni-base superalloy, a 9% Chromium tempered martensite ferritic steel and a NiTi shape memory alloy. We consider the effect of camera length, show how foil thicknesses can be measured, and discuss the depth of focus and surface effects. -- Highlights: ► The advanced STEM/HAADF diffraction contrast is extended to 3D stereo-imaging. ► The advantages of the new technique over stereo-imaging in CTEM are demonstrated. ► The new method allows foil thickness measurements in a broad range of conditions. ► We show that features associated with ion milling surface damage can be beneficial for appreciating 3D features of the microstructure.

  13. Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.

    2018-05-01

    Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.

  14. Numerical simulation of optical and electronic properties for multilayer organic light-emitting diodes and its application in engineering education

    Science.gov (United States)

    Chang, Shu-Hsuan; Chang, Yung-Cheng; Yang, Cheng-Hong; Chen, Jun-Rong; Kuo, Yen-Kuang

    2006-02-01

    Organic light-emitting diodes (OLEDs) have been extensively developed in the past few years. The OLED displays have advantages over other displays, such as CRT, LCD, and PDP in thickness, weight, brightness, response time, viewing angle, contrast, driving power, flexibility, and capability of self-emission. In this work, the optical and electronic properties of multilayer OLED devices are numerically studied with an APSYS (Advanced Physical Model of Semiconductor Devices) simulation program. Specifically, the emission and absorption spectra of the Alq 3, DCM, PBD, and SA light-emitting layers, and energy band diagrams, electron-hole recombination rates, and current-voltage characteristics of the simulated OLED devices, typically with a multilayer structure of metal/Alq 3/EML/TPD/ITO constructed by Lim et al., are investigated and compared to the experimental results. The physical models utilized in this work are similar to those presented by Ruhstaller et al. and Hoffmann et al. The simulated results indicate that the emission spectra of the Alq 3, DCM, PBD, and SA light-emitting layers obtained in this study are in good agreement with those obtained experimentally by Zugang et al. Optimization of the optical and electronic performance of the multilayer OLED devices are attempted. In order to further promote the research results, the whole numerical simulation process for optimizing the design of OLED devices has been applied to a project-based course of OLED device design to enhance the students' skills in photonics device design at the Graduate Institute of Photonics of National Changhua University of Education in Taiwan. In the meantime, the effectiveness of the course has been proved by various assessments. The application of the results is a useful point of reference for the research on photonics device design and engineering education. Therefore, it proffers a synthetic effect between innovation and practical application.

  15. Engineering materials properties and process technologies for electronic and energy applications

    Science.gov (United States)

    Hailey, Anna Kathryn

    In this thesis, we pushed the boundaries of knowledge toward exciting new alternatives in the fields of electronic materials and energy. In Part 1, we focused on organic semiconductors, assessing how disorder on different length scales impacts the electrical properties in organic thin-film transistors (OTFTs). We first explored the effect of disorder at the molecular scale due to the coexistence of isomers in thin films. By blending fractional quantities of syn and anti isomers of triethylsilylethynyl anthradithiophene (TES ADT), we found that the electrical properties of devices comprising the anti isomer plummet to that of syn after the addition of only 10% syn. Through single-crystal computational analysis, we determined that the addition of syn disorders the two-dimensional electronic coupling between anti molecules, thereby increasing charge trapping and decreasing mobilities in OTFTs with increasing syn concentrations in the active layers. We also elucidated the impact of disorder stemming from boundaries between crystalline superstructures in polycrystalline thin films. By measuring the electrical characteristics of OTFTs across interspherulite boundaries (ISBs) in TES ADT and rubrene thin films, we found the energy barriers for charge transport across ISBs to be more akin to those found across the boundaries between polymer crystallites than between conventional molecular-semiconductor grains. In contrast to sharp, creviced grain boundaries, ISBs presumably comprise trapped molecules that electrically connect neighboring spherulites, as polymer chains connect crystallites in polymer-semiconductor thin films. In Part 2, we turned our focus to the production of alternative liquid fuels, evaluating process designs to produce "drop-in" replacement diesel and gasoline from non-food biomass and domestic natural gas. By considering the storage of captured byproduct CO2 in nearby depleted shale-gas wells, these processes produce liquid fuels with low

  16. Interfacial engineering of electron transport layer using Caesium Iodide for efficient and stable organic solar cells

    Science.gov (United States)

    Upama, Mushfika Baishakhi; Elumalai, Naveen Kumar; Mahmud, Md Arafat; Wright, Matthew; Wang, Dian; Xu, Cheng; Haque, Faiazul; Chan, Kah Howe; Uddin, Ashraf

    2017-09-01

    Polymer solar cells (PSCs) have gained immense research interest in the recent years predominantly due to low-cost, solution process-ability, and facile device fabrication. However, achieving high stability without compromising the power conversion efficiency (PCE) serves to be an important trade-off for commercialization. In line with this, we demonstrate the significance of incorporating a CsI/ZnO bilayer as electron transport layer (ETL) in the bulk heterojunction PSCs employing low band gap polymer (PTB7) and fullerene (PC71BM) as the photo-active layer. The devices with CsI/ZnO interlayer exhibited substantial enhancement of 800% and 12% in PCE when compared to the devices with pristine CsI and pristine ZnO as ETL, respectively. Furthermore, the UV and UV-ozone induced degradation studies revealed that the devices incorporating CsI/ZnO bilayer possess excellent decomposition stability (∼23% higher) over the devices with pristine ZnO counterparts. The incorporation of CsI between ITO and ZnO was found to favorably modify the energy-level alignment at the interface, contributing to the charge collection efficiency as well as protecting the adjacent light absorbing polymer layers from degradation. The mechanism behind the improvement in PCE and stability is analyzed using the electrochemical impedance spectroscopy and dark I-V characteristics.

  17. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au.

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-05-28

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  18. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-01-01

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:28773549

  19. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy.

    Science.gov (United States)

    Benedetti, Sara; Uno, Narumi; Hoshiya, Hidetoshi; Ragazzi, Martina; Ferrari, Giulia; Kazuki, Yasuhiro; Moyle, Louise Anne; Tonlorenzi, Rossana; Lombardo, Angelo; Chaouch, Soraya; Mouly, Vincent; Moore, Marc; Popplewell, Linda; Kazuki, Kanako; Katoh, Motonobu; Naldini, Luigi; Dickson, George; Messina, Graziella; Oshimura, Mitsuo; Cossu, Giulio; Tedesco, Francesco Saverio

    2018-02-01

    Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Field reversal in mirror machines

    International Nuclear Information System (INIS)

    Pearlstein, L.D.; Anderson, D.V.; Boozer, A.H.

    1978-01-01

    This report discusses some of the physics issues anticipated in field-reversed mirrors. The effect of current cancellation due to electrons is described. An estimate is made of the required impurity level to maintain a field-reversed configuration. The SUPERLAYER code is used to simulate the high-β 2XIIB results, and favorable comparisons require inclusion of quasilinear RF turbulence. Impact of a quadrupole field on field-line closure and resonant transport is discussed. A simple self-consistent model of ion currents is presented. Conditions for stability of field-reversed configurations to E x B driven rotations are determined

  1. Future trends in agricultural engineering.

    NARCIS (Netherlands)

    Jongebreur, A.A.; Speelman, L.

    1997-01-01

    Beside traditional mechanical engineering, other engineering branches such as electronics, control engineering and physics play their specific role within the agricultural engineering field. Agricultural engineering has affected and stimulated major changes in agriculture. In the last decades

  2. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  3. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...

  4. "Design for All in the Context of the Information Society": Integration of a Specialist Course in a Generalist M.Sc. Program in Electrical and Electronics Engineering

    Science.gov (United States)

    Godino-Llorente, J. I.; Fraile, R.; Gonzalez de Sande, J. C.; Osma-Ruiz, V.; Saenz-Lechon, N.

    2012-01-01

    This paper describes an educational research experience that took place in the Electrical & Electronics Engineering Master's program offered at the Escuela Universitaria de Ingenieria Tecnica de Telecomunicacion, Universidad Politecnica de Madrid, Madrid, Spain. The focus is to provide details of the motivation behind and the design and…

  5. ETRAN 1999: Society for Electronics,Telecommunications, Computers, Automation and Nuclear Engineering. Section for Nuclear Techniques and Technology. Proceedings of the XLIII Conference. Vol IV

    International Nuclear Information System (INIS)

    Spasojevic, D.; Smiljanic, M.; Bozic, D.; Stankovic, D.

    1999-01-01

    The XLIII ETRAN Conference of the Society for Electronic, Telecommunications, Computers, Automation and Nuclear Engineering was held on 20-22 Sep, 1999. In the Proceedings of the Conference The Commission of the Nuclear Technique and Technology has 19 papers presented in three sessions.

  6. ETRAN 2002: Society for Electronics,Telecommunications, Computers, Automation and Nuclear Engineering. Section for Nuclear Techniques and Technology. Proceedings of the XLVI Conference. Vol IV

    International Nuclear Information System (INIS)

    Milosevic, M.; Jaksic, Z.; Bozic, D.; Potkonjak, V.

    2002-01-01

    The XLVI ETRAN Conference of the Society for Electronic, Telecommunications, Computers, Automation and Nuclear Engineering was held on 4-7 June, 2002. In the Proceedings of the Conference The Commission of the Nuclear Technique and Technology has 14 papers presented in three following sessions: 1. Actual problems in nuclear technologies; 2. Accelerator and reactor systems; and 3. Radiation protection and ionizing radiation uses

  7. Development and empirical user-centered evaluation of semantically-based query recommendation for an electronic health record search engine.

    Science.gov (United States)

    Hanauer, David A; Wu, Danny T Y; Yang, Lei; Mei, Qiaozhu; Murkowski-Steffy, Katherine B; Vydiswaran, V G Vinod; Zheng, Kai

    2017-03-01

    The utility of biomedical information retrieval environments can be severely limited when users lack expertise in constructing effective search queries. To address this issue, we developed a computer-based query recommendation algorithm that suggests semantically interchangeable terms based on an initial user-entered query. In this study, we assessed the value of this approach, which has broad applicability in biomedical information retrieval, by demonstrating its application as part of a search engine that facilitates retrieval of information from electronic health records (EHRs). The query recommendation algorithm utilizes MetaMap to identify medical concepts from search queries and indexed EHR documents. Synonym variants from UMLS are used to expand the concepts along with a synonym set curated from historical EHR search logs. The empirical study involved 33 clinicians and staff who evaluated the system through a set of simulated EHR search tasks. User acceptance was assessed using the widely used technology acceptance model. The search engine's performance was rated consistently higher with the query recommendation feature turned on vs. off. The relevance of computer-recommended search terms was also rated high, and in most cases the participants had not thought of these terms on their own. The questions on perceived usefulness and perceived ease of use received overwhelmingly positive responses. A vast majority of the participants wanted the query recommendation feature to be available to assist in their day-to-day EHR search tasks. Challenges persist for users to construct effective search queries when retrieving information from biomedical documents including those from EHRs. This study demonstrates that semantically-based query recommendation is a viable solution to addressing this challenge. Published by Elsevier Inc.

  8. Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks

    National Research Council Canada - National Science Library

    Beskok, Ali; Bevan, Michael; Lagoudas, Dimitris; Ounaies, Zoubeida; Bahukudumbi, Pradipkumar; Everett, William

    2007-01-01

    This research addresses the tunable assembly of reversible colloidal structures within microfluidic networks to engineer multifunctional materials that exhibit a wide range of electrical properties...

  9. Effect of orbital alignment on the forward and reverse electronic energy transfer Ca(4s5p 1P1)+Marrow-right-leftCa(4s5p 3P/sub J/)+M with rare gases

    International Nuclear Information System (INIS)

    Bussert, W.; Neuschaefer, D.; Leone, S.R.; Departments of Physics and Chemistry, University of Colorado, Boulder, Colorado 80309-0440)

    1987-01-01

    Effects of orbital alignment on the relative cross sections for electronic energy transfer are determined for the near resonant transfer between Ca(4s5p 1 P 1 ) and Ca(4s5p 3 P/sub J/) states with rare gas collision partners. The experiments are carried out by pulsed laser excitation in a crossed beam. The results for the forward direction, 1 P to 3 P, formulated in terms of the ratio of the maximum to minimum transfer probability are: 3 He 1.61 +- 0.05; He 1.60 +- 0.03; Ne 1.55 +- 0.10; Ar 1.52 +- 0.21; for Kr, transfer occurs, but no preference is distinguishable within 1 +- 0.2; Xe 1.44 +- 0.06. The results for He, Ne, and Ar indicate a clear preference in the transfer for the initially prepared molecular Pi state. For Xe the molecular Σ state is dominant. The energy transfer is also carried out in the reverse direction, 3 P 1 to 1 P, for He and Xe, obtaining 1.65 +- 0.10 and 1.94 +- 0.22, respectively. Analysis of the state preparation suggests that the reverse direction favors the asymptotic molecular Σ state for He and the molecular Pi state for Xe. These alignment results provide a first experimental determination of the dominant electronic states involved in a collisional energy transfer process

  10. High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies.

    Science.gov (United States)

    Okano, Hiroyuki; Baba, Misato; Kawato, Katsuhiro; Hidese, Ryota; Yanagihara, Itaru; Kojima, Kenji; Takita, Teisuke; Fujiwara, Shinsuke; Yasukawa, Kiyoshi

    2018-03-01

    One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4pol L329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4pol L329A and RTX were highly affected by the concentrations of MgCl 2 and Mn(OCOCH 3 ) 2 as well as those of K4pol L329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4pol L329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4pol L329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4pol L329A or RTX is more advantageous than the current one. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Technician Career Opportunities in Engineering Technology.

    Science.gov (United States)

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  12. Ice911 Research: A Reversible Localized Geo-Engineering Technique to Mitigate Climate Change Effects: Field Testing, Instrumentation and Climate Modeling Results

    Science.gov (United States)

    Field, L. A.; Sholtz, A.; Chetty, S.; Manzara, A.; Johnson, D.; Christodoulou, E.; Decca, R.; Walter, P.; Katuri, K.; Bhattacharyya, S.; Ivanova, D.; Mlaker, V.; Perovich, D. K.

    2017-12-01

    This work uses ecologically benign surface treatment of silica-based materials in carefully selected, limited areas to reduce polar ice melt by reflecting energy from summertime polar sun to attempt to slow ice loss due to the Ice-Albedo Feedback Effect. Application of Ice911's materials can be accomplished within a season, at a comparatively low cost, and with far less secondary environmental impact than many other proposed geo-engineering solutions. Field testing, instrumentation, safety testing, data-handling and modeling results will be presented. The albedo modification has been tested over a number of melt seasons with an evolving array of instrumentation, at multiple sites and on progressively larger scales, most recently in a small artificial pond in Minnesota and in a lake in Barrow, Alaska's BEO (Barrow Experimental Observatory) area. The test data show that the glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. Using NCAR's CESM package the environmental impact of the approach of surface albedo modification was studied. During two separate runs, region-wide Arctic albedo modification as well as more targeted localized treatments were modeled and compared. The parameters of a surface snow layer are used as a proxy to simulate Ice911's high-albedo materials, and the modification is started in January over selected ice/snow regions in the Arctic. Preliminary results show promising possibilities of enhancements in surface albedo, sea ice area and sea-ice concentration, as well as temperature reductions of .5 to 3 degree Kelvin in the Arctic, and global average temperature reductions of .5 to 1 degrees.

  13. An Engineered Disulfide Bond Reversibly Traps the IgE-Fc3-4 in a Closed, Nonreceptor Binding Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Wurzburg, Beth A.; Kim, Beomkyu; Tarchevskaya, Svetlana S.; Eggel, Alexander; Vogel, Monique; Jardetzky, Theodore S. [Bern; (Stanford-MED)

    2013-08-02

    IgE antibodies interact with the high affinity IgE Fc receptor, FcϵRI, and activate inflammatory pathways associated with the allergic response. The IgE-Fc region, comprising the C-terminal domains of the IgE heavy chain, binds FcϵRI and can adopt different conformations ranging from a closed form incompatible with receptor binding to an open, receptor-bound state. A number of intermediate states are also observed in different IgE-Fc crystal forms. To further explore this apparent IgE-Fc conformational flexibility and to potentially trap a closed, inactive state, we generated a series of disulfide bond mutants. Here we describe the structure and biochemical properties of an IgE-Fc mutant that is trapped in the closed, non-receptor binding state via an engineered disulfide at residue 335 (Cys-335). Reduction of the disulfide at Cys-335 restores the ability of IgE-Fc to bind to its high affinity receptor, FcϵRIα. The structure of the Cys-335 mutant shows that its conformation is within the range of previously observed, closed form IgE-Fc structures and that it retains the hydrophobic pocket found in the hinge region of the closed conformation. Locking the IgE-Fc into the closed state with the Cys-335 mutation does not affect binding of two other IgE-Fc ligands, omalizumab and DARPin E2_79, demonstrating selective blocking of the high affinity receptor binding.

  14. Distributed Control Architecture for Gas Turbine Engine. Chapter 4

    Science.gov (United States)

    Culley, Dennis; Garg, Sanjay

    2009-01-01

    The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.

  15. Field-reversing electron and ion rings for the confinement and heating of plasmas. Annual progress report, October 1, 1985-September 30, 1986

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1986-10-01

    During the present, second period of our contract, the effort of our RECE-group was focussed mainly in four areas: (1) the design and construction of our new main experimental device, the megavolt ion coil experiment (MICE, aimed at generating 1-MeV ion rings) was continued. The device construction was completed and injection experiments recently have started using a half-cusp arrangement. (2) Using our smaller MERGE device (500 keV electrons, cusp injection), we investigated as expected the precessional stabilization of strong electron rings by a resistive wall. As expected, the experiments are completed. The results show excellent agreement with the basic theoretical expectations of our earlier analytic calculations and also with a more detailed computer code recently compiled. (3) Also, our MERGE device was completed as expected; experiments showed successful generation of electron and plasma rings; first experiments on the merging of these rings show a rapid attraction between the rings, which is to be properly slowed down by the introduction of a resistive wall. (4) Our pilot model calculations on mixed-CT configurations were nearly completed; including a survey of relevant plasma ring equilibria with a strong large-orbit particle components. Rough stability limits were obtained by studying the magnetic interaction between the two components

  16. Practical electronics handbook

    CERN Document Server

    Sinclair, Ian R

    2013-01-01

    Practical Electronics Handbook, Third Edition provides the frequently used and highly applicable principles of electronics and electronic circuits.The book contains relevant information in electronics. The topics discussed in the text include passive and active discrete components; linear and digital I.C.s; microprocessors and microprocessor systems; digital-analogue conversions; computer aids in electronics design; and electronic hardware components.Electronic circuit constructors, service engineers, electronic design engineers, and anyone with an interest in electronics will find the book ve

  17. Free-Energy Landscape of Reverse tRNA Translocation through the Ribosome Analyzed by Electron Microscopy Density Maps and Molecular Dynamics Simulations

    Science.gov (United States)

    Ishida, Hisashi; Matsumoto, Atsushi

    2014-01-01

    To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA. PMID:24999999

  18. Electronic simulation of the supported liquid membrane in electromembrane extraction systems: Improvement of the extraction by precise periodical reversing of the field polarity

    International Nuclear Information System (INIS)

    Moazami, Hamid Reza; Nojavan, Saeed; Zahedi, Pegah; Davarani, Saied Saeed Hosseiny

    2014-01-01

    Highlights: • A simple equivalent circuit has been proposed for a supported liquid membrane. • A dual charge transfer mechanism was proposed for electromembrane extraction. • An improvement was observed by precise periodical reversing of the field polarity. - Abstract: In order to understand the limitations of electromebrane extraction procedure better, a simple equivalent circuit has been proposed for a supported liquid membrane consisting of a resistor and a low leakage capacitor in series. To verify the equivalent circuit, it was subjected to a simulated periodical polarity changing potential and the resulting time variation of the current was compared with that of a real electromembrane extraction system. The results showed a good agreement between the simulated current patterns and those of the real ones. In order to investigate the impact of various limiting factors, the corresponding values of the equivalent circuit were estimated for a real electromembrane extraction system and were attributed to the physical parameters of the extraction system. A dual charge transfer mechanism was proposed for electromembrane extraction by combining general migration equation and fundamental aspects derived from the simulation. Dual mechanism comprises a current dependent contribution of analyte in total current and could support the possibility of an improvement in performance of an electromembrane extraction by application of an asymmetric polarity changing potential. The optimization of frequency and duty cycle of the asymmetric polarity exchanging potential resulted in a higher recovery (2.17 times greater) in comparison with the conventional electromebrane extraction. The simulation also provided more quantitative approaches toward the investigation of the mechanism of extraction and contribution of different limiting factors in electromembrane extraction. Results showed that the buildup of the double layer is the main limiting factor and the Joule heating has

  19. Free-energy landscape of reverse tRNA translocation through the ribosome analyzed by electron microscopy density maps and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Hisashi Ishida

    Full Text Available To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA.

  20. Engineering Mixed Ionic Electronic Conduction in La 0.8 Sr 0.2 MnO 3+ δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity

    KAUST Repository

    Saranya, Aruppukottai M.

    2015-04-09

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Nanoionics has become an increasingly promising field for the future development of advanced energy conversion and storage devices, such as batteries, fuel cells, and supercapacitors. Particularly, nanostructured materials offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. However, the enhancement of the mass transport properties at the nanoscale has often been found to be difficult to implement in nanostructures. Here, an artificial mixed ionic electronic conducting oxide is fabricated by grain boundary (GB) engineering thin films of La0.8Sr0.2MnO3+δ. This electronic conductor is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with high density of vertically aligned GBs with high concentration of strain-induced defects. Since this type of GBs present a remarkable enhancement of their oxide-ion mass transport properties (of up to six orders of magnitude at 773 K), it is possible to tailor the electrical nature of the whole material by nanoengineering, especially at low temperatures. The presented results lead to fundamental insights into oxygen diffusion along GBs and to the application of these engineered nanomaterials in new advanced solid state ionics devices such are micro-solid oxide fuel cells or resistive switching memories. An electronic conductor such as La0.8Sr0.2MnO3+δ is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with excellent electronic and oxygen mass transport properties. Oxygen diffusion highways are created by promoting a high concentration of strain-induced defects in the grain boundary region. This novel strategy opens the way for synthesizing new families of artificial mixed ionic-electronic conductors by design.

  1. A Quantitative Analysis of Students' Perception of Generic Skills within an Undergraduate Electronics/mechanical Engineering Curriculum

    Science.gov (United States)

    Duggan, Louise

    2014-01-01

    Generic skills are considered as key essential skills which are required by all individuals in the engineering profession and are considered vital for success. Integrating generic skills into engineering education is a key concern for universities and colleges involved in delivering such courses. The accreditation criteria for engineering…

  2. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  3. Influence analysis of electronically and vibrationally excited particles on the ignition of methane and hydrogen under the conditions of a gas turbine engine

    Science.gov (United States)

    Deminskii, M. A.; Konina, K. M.; Potapkin, B. V.

    2018-03-01

    The vibronic and electronic energy relaxation phenomena in the specific conditions of a gas turbine engine were investigated in this paper. The plasma-chemical mechanism has been augmented with the results of recent investigations of the processes that involve electronically and vibrationally excited species. The updated mechanism was employed for the computer simulation of plasma-assisted combustion of hydrogen-air and methane-air mixtures under high pressure and in the range of initial temperatures T  =  500-900 K. The updated mechanism was verified using the experimental data. The influence of electronically excited nitrogen on the ignition delay time was analyzed. The rate coefficient of the vibration-vibration exchange between N2 and HO2 was calculated as well as the rate coefficient of HO2 decomposition.

  4. Integrated two-cylinder liquid piston Stirling engine

    Science.gov (United States)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  5. Integrated two-cylinder liquid piston Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd, E-mail: todd.sulchek@me.gatech.edu [George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  6. Integrated two-cylinder liquid piston Stirling engine

    International Nuclear Information System (INIS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-01-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  7. Managing Reverse Logistics or Reversing Logistics Management?

    OpenAIRE

    Brito, Marisa

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse logistics. The thesis brings insights on reverse logistics decision-making and it lays down theoretical principles for reverse logistics as a research field.In particular it puts together a framework ...

  8. SU-E-T-112: An OpenCL-Based Cross-Platform Monte Carlo Dose Engine (oclMC) for Coupled Photon-Electron Transport

    International Nuclear Information System (INIS)

    Tian, Z; Shi, F; Folkerts, M; Qin, N; Jiang, S; Jia, X

    2015-01-01

    Purpose: Low computational efficiency of Monte Carlo (MC) dose calculation impedes its clinical applications. Although a number of MC dose packages have been developed over the past few years, enabling fast MC dose calculations, most of these packages were developed under NVidia’s CUDA environment. This limited their code portability to other platforms, hindering the introduction of GPU-based MC dose engines to clinical practice. To solve this problem, we developed a cross-platform fast MC dose engine named oclMC under OpenCL environment for external photon and electron radiotherapy. Methods: Coupled photon-electron simulation was implemented with standard analogue simulation scheme for photon transport and Class II condensed history scheme for electron transport. We tested the accuracy and efficiency of oclMC by comparing the doses calculated using oclMC and gDPM, a previously developed GPU-based MC code on NVidia GPU platform, for a 15MeV electron beam and a 6MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. We also tested code portability of oclMC on different devices, including an NVidia GPU, two AMD GPUs and an Intel CPU. Results: Satisfactory agreements were observed in all photon and electron cases, with ∼0.48%–0.53% average dose differences at regions within 10% isodose line for electron beam cases and ∼0.15%–0.17% for photon beam cases. It took oclMC 3–4 sec to perform transport simulation for electron beam on NVidia Titan GPU and 35–51 sec for photon beam, both with ∼0.5% statistical uncertainty. The computation was 6%–17% slower than gDPM due to the differences in both physics model and development environment, which is considered not significant for clinical applications. In terms of code portability, gDPM only runs on NVidia GPUs, while oclMC successfully runs on all the tested devices. Conclusion: oclMC is an accurate and fast MC dose engine. Its high cross

  9. SU-E-T-112: An OpenCL-Based Cross-Platform Monte Carlo Dose Engine (oclMC) for Coupled Photon-Electron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Folkerts, M; Qin, N; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2015-06-15

    Purpose: Low computational efficiency of Monte Carlo (MC) dose calculation impedes its clinical applications. Although a number of MC dose packages have been developed over the past few years, enabling fast MC dose calculations, most of these packages were developed under NVidia’s CUDA environment. This limited their code portability to other platforms, hindering the introduction of GPU-based MC dose engines to clinical practice. To solve this problem, we developed a cross-platform fast MC dose engine named oclMC under OpenCL environment for external photon and electron radiotherapy. Methods: Coupled photon-electron simulation was implemented with standard analogue simulation scheme for photon transport and Class II condensed history scheme for electron transport. We tested the accuracy and efficiency of oclMC by comparing the doses calculated using oclMC and gDPM, a previously developed GPU-based MC code on NVidia GPU platform, for a 15MeV electron beam and a 6MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. We also tested code portability of oclMC on different devices, including an NVidia GPU, two AMD GPUs and an Intel CPU. Results: Satisfactory agreements were observed in all photon and electron cases, with ∼0.48%–0.53% average dose differences at regions within 10% isodose line for electron beam cases and ∼0.15%–0.17% for photon beam cases. It took oclMC 3–4 sec to perform transport simulation for electron beam on NVidia Titan GPU and 35–51 sec for photon beam, both with ∼0.5% statistical uncertainty. The computation was 6%–17% slower than gDPM due to the differences in both physics model and development environment, which is considered not significant for clinical applications. In terms of code portability, gDPM only runs on NVidia GPUs, while oclMC successfully runs on all the tested devices. Conclusion: oclMC is an accurate and fast MC dose engine. Its high cross

  10. Reverse Engineering in Data Integration Software

    Directory of Open Access Journals (Sweden)

    Vlad DIACONITA

    2013-05-01

    Full Text Available Integrated applications are complex solutions that help build better consolidated and standardized systems from existing (usually transactional systems. Integrated applications are complex solutions, whose complexity are determined by the economic processes they implement, the amount of data employed (millions of records grouped in hundreds of tables, databases, hundreds of GB and the number of users [11]. Oracle, once mainly known for his database and e-business solutions has been constantly expanding its product portfolio, providing solutions for SOA, BPA, Warehousing, Big Data and Cloud Computing. In this article I will review the facilities and the power of using a dedicated integration tool in an environment with multiple data sources and a target data mart.

  11. Reverse Engineering Socialbot Infiltration Strategies in Twitter

    OpenAIRE

    Freitas, Carlos A.; Benevenuto, Fabrício; Ghosh, Saptarshi; Veloso, Adriano

    2014-01-01

    Data extracted from social networks like Twitter are increasingly being used to build applications and services that mine and summarize public reactions to events, such as traffic monitoring platforms, identification of epidemic outbreaks, and public perception about people and brands. However, such services are vulnerable to attacks from socialbots $-$ automated accounts that mimic real users $-$ seeking to tamper statistics by posting messages generated automatically and interacting with le...

  12. Music engineering

    CERN Document Server

    Brice, Richard

    2001-01-01

    Music Engineering is a hands-on guide to the practical aspects of electric and electronic music. It is both a compelling read and an essential reference guide for anyone using, choosing, designing or studying the technology of modern music. The technology and underpinning science are introduced through the real life demands of playing and recording, and illustrated with references to well known classic recordings to show how a particular effect is obtained thanks to the ingenuity of the engineer as well as the musician. In addition, an accompanying companion website containing over 50 specially chosen tracks for download, provides practical demonstrations of the effects and techniques described in the book. Written by a music enthusiast and electronic engineer, this book covers the electronics and physics of the subject as well as the more subjective aspects. The second edition includes an updated Digital section including MPEG3 and fact sheets at the end of each chapter to summarise the key electronics and s...

  13. Managing Reverse Logistics or Reversing Logistics Management?

    NARCIS (Netherlands)

    M.P. de Brito (Marisa)

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse

  14. Electromotor actuators with integrated electronics for control of modern internal combustion engines; Elektromotorische Steller mit integrierter Elektronik zur Regelung moderner Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Krome, J.; Dorissen, H.T.; Duerkopp, K. [Hella KG Hueck and Co., Lippstadt (Germany)

    2002-07-01

    Combustion and emission specifications make increasing demands on motor car control systems, and pneumatic control elements are getting replaced by specialized electromotor systems. The contribution describes an electromotor actuator with integrated electronics which is suited for the extreme conditions inside motor engines and is already produced in series in turbo-supercharger engines with variable turbine geometries. [German] Durch die gestiegenen Anforderungen an Verbrauch und Emissionen werden auch immer hoehere Ansprueche an Stell- und Regelsysteme im Kraftfahrzeug gestellt. Dies fuehrt unter anderem dazu, dass die heute eingesetzten pneumatischen Stellsysteme zunehmend durch spezialisierte elektromotorische Systeme ersetzt werden. In diesem Beitrag wird ein elektromotorischer Aktuator mit integrierter Elektronik vorgestellt. Der Steller ist fuer die extremen Umgebungsbedingungen von Motoranbauteilen qualifiziert und wird bereits in Serie zur Verstellung von Turboladern mit variabler Turbinengeometrie eingesetzt. (orig.)

  15. Electrothermal evaluation of thick GaN epitaxial layers and AlGaN/GaN high-electron-mobility transistors on large-area engineered substrates

    Science.gov (United States)

    Anderson, Travis J.; Koehler, Andrew D.; Tadjer, Marko J.; Hite, Jennifer K.; Nath, Anindya; Mahadik, Nadeemullah A.; Aktas, Ozgur; Odnoblyudov, Vladimir; Basceri, Cem; Hobart, Karl D.; Kub, Francis J.

    2017-12-01

    AlGaN/GaN high-electron-mobility transistor (HEMT) device layers were grown by metal organic chemical vapor deposition (MOCVD) on commercial engineered QST™ substrates to demonstrate a path to scalable, cost-effective foundry processing while supporting the thick epitaxial layers required for power HEMT structures. HEMT structures on 150 mm Si substrates were also evaluated. The HEMTs on engineered substrates exhibited material quality, DC performance, and forward blocking performance superior to those of the HEMT on Si. GaN device layers up to 15 µm were demonstrated with a wafer bow of 1 µm, representing the thickest films grown on 150-mm-diameter substrates with low bow to date.

  16. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  17. Single-molecule Mapping of Long-range Electron Transfer for a Cytochrome b562 Variant

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Chi, Qijin; Jones, D. Dafydd

    2011-01-01

    Cytochrome b562 was engineered to introduce a cysteine residue at a surface-exposed position to facilitate direct self-assembly on a Au(111) surface. The confined protein exhibited reversible and fast electron exchange with a gold substrate over a distance of 20 Å between the heme redox center an...

  18. ZnO Nanorods on a LaAlO 3 -SrTiO 3 Interface: Hybrid 1D-2D Diodes with Engineered Electronic Properties

    KAUST Repository

    Bera, Ashok

    2015-12-28

    Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ZnO Nanorods on a LaAlO 3 -SrTiO 3 Interface: Hybrid 1D-2D Diodes with Engineered Electronic Properties

    KAUST Repository

    Bera, Ashok; Lin, Weinan; Yao, Yingbang; Ding, Junfeng; Lourembam, James; Wu, Tao

    2015-01-01

    Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. THE DESIGNING OF ELECTRONIC TEACHING-METHODS COMPLEX «GRAPHICS» FOR REALIZATION OF COMPUTER-BASED LEARNING OF ENGINEERING-GRAPHIC DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Іван Нищак

    2015-12-01

    Full Text Available The article contains Theoretical Foundations of designing of author’s electronic educational-methodical complex (EEMC «Graphics», intended to implement the engineering-graphic preparation of future teachers of technology in terms of computer-based learning. The process of designing of electronic educational-methodical complex “Graphics” includes the following successive stages: 1 identification of didactic goals and objectives; 2the designing of patterns of EEMC; 3 the selection of contents and systematization of educational material; 4 the program-technical implementation of EEMC; 5 interface design; 6 expert assessment of quality of EEMC; 7 testing of EEMC; 8 adjusting the software; 9 the development of guidelines and instructions for the use of EEMC.

  1. Photonics and Web Engineering 2011, International Journal of Electronics and Telecommunication, vol.57, no 3, pp.421-428, September 2011

    CERN Document Server

    Romaniuk, R S

    2011-01-01

    The paper presents a digest of chosen technical work results shown by young researchers from different technical universities in this country during the SPIE-IEEE Wilga 2011 symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics and telecom, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for telecom, astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also an occasion for young researchers to meet together in a large group (under the patronage of IEEE) spanning the whole country with guests from this part of Europe. A digest of Wilga references is pr...

  2. Tubal Ligation Reversal

    Science.gov (United States)

    ... seal off the fallopian tubes, such as the Essure or Adiana systems, generally aren't reversible. Why ... electrocautery). Some types of sterilization, such as the Essure or Adiana systems, aren't considered reversible. Risks ...

  3. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-08-01

    Full Text Available The two-dimensional electron gas (2DEG formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO3 (LAO and non-polar SrTiO3 (STO. Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La0.5Sr0.5TiO3 (LSTO layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  4. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  5. Reverse logistics - a framework

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); R. Dekker (Rommert)

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of

  6. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  7. Electronic Grey Literature in Accelerator Science and Its Allied Subjects : Selected Web Resources for Scientists and Engineers

    CERN Document Server

    Rajendiran, P

    2006-01-01

    Grey literature Web resources in the field of accelerator science and its allied subjects are collected for the scientists and engineers of RRCAT (Raja Ramanna Centre for Advanced Technology). For definition purposes the different types of grey literature are described. The Web resources collected and compiled in this article (with an overview and link for each) specifically focus on technical reports, preprints or e-prints, which meet the main information needs of RRCAT users.

  8. Electronic Reverse Auctions in the Federal Government

    Science.gov (United States)

    2007-12-01

    notification e-mail to all vendors informing them that a solicitation was issued that matches their company profile. A notification will also be sent...auction design. According to Kambil and van Heck (2002) business-to-business ( B2B ) auctions should be conducted on the weekdays, with enough time...allowed for proper pricing and risk-assessment by the company . In contrast, sellers on eBay may decide to run their auctions for any length of time

  9. Projeto conceitual de componentes de um forno industrial por meio da integração entre a engenharia reversa e o DFMA Conceptual design of components of an industrial oven through the integration between the reverse engineering and DFMA

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Pereira Mello

    2010-01-01

    Full Text Available O tema deste artigo é o estudo da integração da engenharia reversa (ER e o projeto para manufatura e montagem (DFMA como ferramentas de suporte ao projeto conceitual de produtos. A partir de uma fundamentação teórica sobre esses conceitos, o presente trabalho visa analisar a adequação de um modelo para a utilização integrada do DFMA com a prototipagem rápida em uma abordagem de ER no projeto de um novo sistema de fechadura para forno industrial e recomendar melhorias no projeto conceitual do novo sistema de fechadura. O método de pesquisa empregado foi a pesquisa-ação, uma vez que o pesquisador buscava resolver um problema identificado dentro do objeto de estudo em parceria com a equipe de profissionais da empresa. Os resultados das recomendações para o projeto conceitual apresentam redução, especialmente, no custo, no tempo para fabricação e no tempo para montagem. Conclui-se que o modelo de integração estudado foi adequado para apoiar o processo de projeto do sistema de fechadura proposto por meio da ER.This study focuses on investigating the integration between reverse engineering (RE and design for manufacture and assembly (DFMA as tools to support the conceptual design of products. From a literature review of these concepts, this research aims to examine the adequacy of a model for the integrated use of DFMA and rapid prototyping in an ER approach in the design of a new locking system for an industrial oven and recommend improvements in conceptual design of a new lock system. The research method employed was action-research since the aim was to solve a problem identified in the company, object of study, in partnership with the company team. The results of the conceptual design indicate reductions, especially in cost, time to manufacture, and assembly time. It was concluded that the integration model studied was adequate to support the design process of the locking system proposed by the ER approach.

  10. Electronic structure engineering of ZnO with the modified Becke-Johnson exchange versus the classical correlation potential approaches

    KAUST Repository

    Ul Haq, Bakhtiar; Ahmed, Rashid; Goumri-Said, Souraya; Shaari, Amiruddin; Afaq, Ahmad

    2013-01-01

    applied. Where for electronic properties in addition to these, Tran-Blaha modified Becke-Johnson (mBJ) potential has been used. Our computed band gap values of ZnO in WZ and ZB phases with mBJ potential are significantly improved compared to those with LDA

  11. Reversible flowchart languages and the structured reversible program theorem

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    Many irreversible computation models have reversible counterparts, but these are poorly understood at present. We introduce reversible flowcharts with an assertion operator and show that any reversible flowchart can be simulated by a structured reversible flowchart using only three control flow...... operators. Reversible flowcharts are r- Turing-complete, meaning that they can simuluate reversible Turing machines without garbage data. We also demonstrate the injectivization of classical flowcharts into reversible flowcharts. The reversible flowchart computation model provides a theoretical...

  12. Tuning the two-dimensional electron liquid at oxide interfaces by buffer-layer-engineered redox reactions

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Green, Robert J.; Sutarto, Ronny

    2017-01-01

    Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO3 (STO) achieved using polar La7/8Sr1/8MnO3 (LSMO) buffer layers to manipulate both...... polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant x-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how...... these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer...

  13. Engineering the interface characteristics on the enhancement of field electron emission properties of vertically aligned hexagonal boron nitride nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K.J.; Hoang, D.Q.; Drijkoningen, S.; Pobedinskas, P.; Haenen, K. [Institute for Materials Research (IMO), Hasselt University, Diepenbeek (Belgium); IMOMEC, IMEC vzw, Diepenbeek (Belgium); Srinivasu, K.; Leou, K.C. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu (China); Korneychuk, S.; Turner, S.; Verbeeck, J. [Electron Microscopy for Materials Science (EMAT), University of Antwerp (Belgium); Lin, I.N. [Department of Physics, Tamkang University, Tamsui (China)

    2016-10-15

    Utilization of Au and nanocrystalline diamond (NCD) as interlayers noticeably modifies the microstructure and field electron emission (FEE) properties of hexagonal boron nitride nanowalls (hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3 V μm{sup -1}, attaining FEE current density of 2.58 mA cm{sup -2} and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride (aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies

    Directory of Open Access Journals (Sweden)

    Joana M Dantas

    2015-07-01

    Full Text Available Multiheme cytochromes have been implicated in Geobacter sulfurreducens (Gs extracellular electron transfer (EET. These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by Gs. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of Gs multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of Gs by characterizing a family of five triheme cytochromes (PpcA-E. These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell’s outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of Gs. For the first time Gs strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve

  15. A method for finding D-region electron density distributions from lf broadband pulse measurements. Telecommunications research and engineering report

    International Nuclear Information System (INIS)

    Wieder, B.; Espeland, R.H.

    1972-11-01

    A Loran-C transmitter is used as the signal source for the experiment. In the experiment, both the normal and abnormal components of the pulses reflected from the ionosphere are measured, and the reflection coeffeicients are determined as a function of frequency through Fourier analysis of both the groundwave and the skywave signals. The resultant data are then compared with reflection coefficients calculated from a series of test D-region electron density profiles

  16. Time reversibility, computer simulation, algorithms, chaos

    CERN Document Server

    Hoover, William Graham

    2012-01-01

    A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of ba...

  17. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors

  18. Introduction to reversible computing

    CERN Document Server

    Perumalla, Kalyan S

    2013-01-01

    Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever

  19. Development of an image converter of radical design. [employing solid state electronics towards the production of an advanced engineering model camera system

    Science.gov (United States)

    Irwin, E. L.; Farnsworth, D. L.

    1972-01-01

    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.

  20. Electronic structure engineering of ZnO with the modified Becke-Johnson exchange versus the classical correlation potential approaches

    KAUST Repository

    Ul Haq, Bakhtiar

    2013-12-01

    In this study, we report investigations of structural and electronic properties of ZnO in wurtzite (WZ), rock salt (RS) and zinc-blende (ZB) phases. Calculations have been done with full-potential linearized augmented plane wave plus local orbital method developed within the frame work of Density Functional Theory (DFT). For structural properties investigations, Perdew and Wang proposed local density approximations (LDA) and Perdew et al. proposed generalized gradient approximations (GGA) have been applied. Where for electronic properties in addition to these, Tran-Blaha modified Becke-Johnson (mBJ) potential has been used. Our computed band gap values of ZnO in WZ and ZB phases with mBJ potential are significantly improved compared to those with LDA and GGA; however, in RS phase, energy gap is significantly overestimated compared to experimental measurements. The Zn-d band was found to be more narrower with mBJ potential than that of LDA and GGA. On the other hand, our evaluated crystal field splitting energy values overestimate the experimental values. © 2013 Taylor and Francis.