WorldWideScience

Sample records for reveals sensory encoding

  1. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex.

    Science.gov (United States)

    Sussman, Elyse; Steinschneider, Mitchell

    2006-02-23

    Attention biases the way in which sound information is stored in auditory memory. Little is known, however, about the contribution of stimulus-driven processes in forming and storing coherent sound events. An electrophysiological index of cortical auditory change detection (mismatch negativity [MMN]) was used to assess whether sensory memory representations could be biased toward one organization over another (one or two auditory streams) without attentional control. Results revealed that sound representations held in sensory memory biased the organization of subsequent auditory input. The results demonstrate that context-dependent sound representations modulate stimulus-dependent neural encoding at early stages of auditory cortical processing.

  3. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    Science.gov (United States)

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  4. Ketamine produces lasting disruptions in encoding of sensory stimuli.

    Science.gov (United States)

    Maxwell, Christina R; Ehrlichman, Richard S; Liang, Yuling; Trief, Danielle; Kanes, Stephen J; Karp, Jonathan; Siegel, Steven J

    2006-01-01

    The current study analyzed the acute, chronic, and lasting effects of ketamine administration in four inbred mouse strains (C3H/HeHsd, C57BL/6Hsd, FVB/Hsd, and DBA/2Hsd) to evaluate vulnerability to ketamine as a drug of abuse and as a model of schizophrenia. Serum half-life of ketamine was similar between all strains (approximately 13 min). Also, the ratio of brain-to-serum ketamine levels was 3:1. Examination of multiple phases of auditory processing using auditory-evoked potentials (AEPs) following acute ketamine (0, 5, and 20 mg/kg) treatment revealed C3H/HeHsd mice to be most vulnerable to ketamine-induced alterations in AEPs, whereas FVB/Hsd mice exhibited the least electrophysiological sensitivity to ketamine. Overall, the precortical P1-evoked potential component increased in amplitude and latency, whereas the cortically generated N1 and P2 components decreased in amplitude and latency following acute ketamine across all strains. Brain catecholamine analyses indicated that ketamine decreased hippocampus epinephrine levels in C3H/HeHsd but elevated hippocampus epinephrine levels in FVB/Hsd, suggesting one potential mechanism for AEP vulnerability to ketamine. Based on results of the acute study, the immediate and lasting effects of chronic low-dose ketamine on AEPs were examined among C3H/HeHsd (sensitive) and FVB/Hsd (insensitive) mice. We observed a decrement of the N1 amplitude that persisted at least 1 week after the last exposure to ketamine across both strains. This lasting deficit in information processing occurred in the absence of acute changes among the FVB/Hsd mice. Implications for both ketamine abuse and N-methyl-D-aspartate hypofunction models of schizophrenia are discussed.

  5. The power of projectomes: genetic mosaic labeling in the larval zebrafish brain reveals organizing principles of sensory circuits.

    Science.gov (United States)

    Robles, Estuardo

    2017-09-01

    In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.

  6. Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.

    Science.gov (United States)

    Goudar, Vishwa; Buonomano, Dean V

    2018-03-14

    Much of the information the brain processes and stores is temporal in nature-a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds-we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. © 2018, Goudar et al.

  7. Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation.

    Science.gov (United States)

    Stobart, Jillian L; Ferrari, Kim David; Barrett, Matthew J P; Stobart, Michael J; Looser, Zoe J; Saab, Aiman S; Weber, Bruno

    2018-01-01

    Localized, heterogeneous calcium transients occur throughout astrocytes, but the characteristics and long-term stability of these signals, particularly in response to sensory stimulation, remain unknown. Here, we used a genetically encoded calcium indicator and an activity-based image analysis scheme to monitor astrocyte calcium activity in vivo. We found that different subcellular compartments (processes, somata, and endfeet) displayed distinct signaling characteristics. Closer examination of individual signals showed that sensory stimulation elevated the number of specific types of calcium peaks within astrocyte processes and somata, in a cortical layer-dependent manner, and that the signals became more synchronous upon sensory stimulation. Although mice genetically lacking astrocytic IP3R-dependent calcium signaling (Ip3r2-/-) had fewer signal peaks, the response to sensory stimulation was sustained, suggesting other calcium pathways are also involved. Long-term imaging of astrocyte populations revealed that all compartments reliably responded to stimulation over several months, but that the location of the response within processes may vary. These previously unknown characteristics of subcellular astrocyte calcium signals provide new insights into how astrocytes may encode local neuronal circuit activity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L; Fairhall, Adrienne L

    2015-04-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  9. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Directory of Open Access Journals (Sweden)

    Simon Sponberg

    2015-04-01

    Full Text Available What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in

  10. Dual Dimensionality Reduction Reveals Independent Encoding of Motor Features in a Muscle Synergy for Insect Flight Control

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L.; Fairhall, Adrienne L.

    2015-01-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  11. Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.

    Science.gov (United States)

    Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni

    2006-01-01

    Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.

  12. Hearing Shapes: Event-related Potentials Reveal the Time Course of Auditory-Visual Sensory Substitution.

    Science.gov (United States)

    Graulty, Christian; Papaioannou, Orestis; Bauer, Phoebe; Pitts, Michael A; Canseco-Gonzalez, Enriqueta

    2018-04-01

    In auditory-visual sensory substitution, visual information (e.g., shape) can be extracted through strictly auditory input (e.g., soundscapes). Previous studies have shown that image-to-sound conversions that follow simple rules [such as the Meijer algorithm; Meijer, P. B. L. An experimental system for auditory image representation. Transactions on Biomedical Engineering, 39, 111-121, 1992] are highly intuitive and rapidly learned by both blind and sighted individuals. A number of recent fMRI studies have begun to explore the neuroplastic changes that result from sensory substitution training. However, the time course of cross-sensory information transfer in sensory substitution is largely unexplored and may offer insights into the underlying neural mechanisms. In this study, we recorded ERPs to soundscapes before and after sighted participants were trained with the Meijer algorithm. We compared these posttraining versus pretraining ERP differences with those of a control group who received the same set of 80 auditory/visual stimuli but with arbitrary pairings during training. Our behavioral results confirmed the rapid acquisition of cross-sensory mappings, and the group trained with the Meijer algorithm was able to generalize their learning to novel soundscapes at impressive levels of accuracy. The ERP results revealed an early cross-sensory learning effect (150-210 msec) that was significantly enhanced in the algorithm-trained group compared with the control group as well as a later difference (420-480 msec) that was unique to the algorithm-trained group. These ERP modulations are consistent with previous fMRI results and provide additional insight into the time course of cross-sensory information transfer in sensory substitution.

  13. Cross-sensory facilitation reveals neural interactions between visual and tactile motion in humans

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2011-04-01

    Full Text Available Many recent studies show that the human brain integrates information across the different senses and that stimuli of one sensory modality can enhance the perception of other modalities. Here we study the processes that mediate cross-modal facilitation and summation between visual and tactile motion. We find that while summation produced a generic, non-specific improvement of thresholds, probably reflecting higher-order interaction of decision signals, facilitation reveals a strong, direction-specific interaction, which we believe reflects sensory interactions. We measured visual and tactile velocity discrimination thresholds over a wide range of base velocities and conditions. Thresholds for both visual and tactile stimuli showed the characteristic dipper function, with the minimum thresholds occurring at a given pedestal speed. When visual and tactile coherent stimuli were combined (summation condition the thresholds for these multi-sensory stimuli also showed a dipper function with the minimum thresholds occurring in a similar range to that for unisensory signals. However, the improvement of multisensory thresholds was weak and not directionally specific, well predicted by the maximum likelihood estimation model (agreeing with previous research. A different technique (facilitation did, however, reveal direction-specific enhancement. Adding a non-informative pedestal motion stimulus in one sensory modality (vision or touch selectively lowered thresholds in the other, by the same amount as pedestals in the same modality. Facilitation did not occur for neutral stimuli like sounds (that would also have reduced temporal uncertainty, nor for motion in opposite direction, even in blocked trials where the subjects knew that the motion was in the opposite direction showing that the facilitation was not under subject control. Cross-sensory facilitation is strong evidence for functionally relevant cross-sensory integration at early levels of sensory

  14. Pacemaker activity in a sensory ending with multiple encoding sites : The cat muscle spindle primary ending

    NARCIS (Netherlands)

    Banks, RW; Hulliger, M; Scheepstra, KA; Otten, E

    1997-01-01

    1. A combined physiological, histological and computer modelling study was carried out on muscle spindles of the cat tenuissimus muscle to examine whether there was any correlation between the functional interaction of putative encoding sites, operated separately by static and dynamic fusimotor

  15. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses.

    Science.gov (United States)

    Vaughan, Cheryl H; Bartness, Timothy J

    2012-05-01

    Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.

  16. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  17. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding

    Directory of Open Access Journals (Sweden)

    Mari eTervaniemi

    2014-07-01

    Full Text Available Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel to compare memory-related MMN and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians. In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  18. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding.

    Science.gov (United States)

    Tervaniemi, Mari; Huotilainen, Minna; Brattico, Elvira

    2014-01-01

    Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel) to compare memory-related mismatch negativity (MMN) and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians). In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  19. Characterization of 17 chaperone-usher fimbriae encoded by Proteus mirabilis reveals strong conservation

    Science.gov (United States)

    Kuan, Lisa; Schaffer, Jessica N.; Zouzias, Christos D.

    2014-01-01

    Proteus mirabilis is a Gram-negative enteric bacterium that causes complicated urinary tract infections, particularly in patients with indwelling catheters. Sequencing of clinical isolate P. mirabilis HI4320 revealed the presence of 17 predicted chaperone-usher fimbrial operons. We classified these fimbriae into three groups by their genetic relationship to other chaperone-usher fimbriae. Sixteen of these fimbriae are encoded by all seven currently sequenced P. mirabilis genomes. The predicted protein sequence of the major structural subunit for 14 of these fimbriae was highly conserved (≥95 % identity), whereas three other structural subunits (Fim3A, UcaA and Fim6A) were variable. Further examination of 58 clinical isolates showed that 14 of the 17 predicted major structural subunit genes of the fimbriae were present in most strains (>85 %). Transcription of the predicted major structural subunit genes for all 17 fimbriae was measured under different culture conditions designed to mimic conditions in the urinary tract. The majority of the fimbrial genes were induced during stationary phase, static culture or colony growth when compared to exponential-phase aerated culture. Major structural subunit proteins for six of these fimbriae were detected using MS of proteins sheared from the surface of broth-cultured P. mirabilis, demonstrating that this organism may produce multiple fimbriae within a single culture. The high degree of conservation of P. mirabilis fimbriae stands in contrast to uropathogenic Escherichia coli and Salmonella enterica, which exhibit greater variability in their fimbrial repertoires. These findings suggest there may be evolutionary pressure for P. mirabilis to maintain a large fimbrial arsenal. PMID:24809384

  20. Membrane potential correlates of sensory perception in mouse barrel cortex.

    Science.gov (United States)

    Sachidhanandam, Shankar; Sreenivasan, Varun; Kyriakatos, Alexandros; Kremer, Yves; Petersen, Carl C H

    2013-11-01

    Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell recordings from barrel cortex neurons revealed membrane potential correlates of sensory perception. Sensory responses depended strongly on prestimulus cortical state, but both slow-wave and desynchronized cortical states were compatible with task performance. Whisker deflection evoked an early (sensory response that was encoded through cell-specific reversal potentials. A secondary late (50-400 ms) depolarization was enhanced on hit trials compared to misses. Optogenetic inactivation revealed a causal role for late excitation. Our data reveal dynamic processing in the sensory cortex during task performance, with an early sensory response reliably encoding the stimulus and later secondary activity contributing to driving the subjective percept.

  1. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway.

    Science.gov (United States)

    Bassler, B L; Wright, M; Silverman, M R

    1994-07-01

    Density-dependent expression of luminescence in Vibrio harveyi is regulated by the concentration of extracellular signal molecules (autoinducers) in the culture medium. One signal-response system is encoded by the luxL,M,N locus. The luxL and luxM genes are required for the production of an autoinducer (probably beta-hydroxybutyl homoserine lactone), and the luxN gene is required for the response to that autoinducer. Analysis of the phenotypes of LuxL,M and N mutants indicated that an additional signal-response system also controls density sensing. We report here the identification, cloning and analysis of luxP and luxQ, which encode functions required for a second density-sensing system. Mutants with defects in luxP and luxQ are defective in response to a second autoinducer substance. LuxQ, like LuxN, is similar to members of the family of two-component, signal transduction proteins and contains both a histidine protein kinase and a response regulator domain. Analysis of signalling mutant phenotypes indicates that there are at least two separate signal-response pathways which converge to regulate expression of luminescence in V. harveyi.

  2. Audiovisual functional magnetic resonance imaging adaptation reveals multisensory integration effects in object-related sensory cortices.

    Science.gov (United States)

    Doehrmann, Oliver; Weigelt, Sarah; Altmann, Christian F; Kaiser, Jochen; Naumer, Marcus J

    2010-03-03

    Information integration across different sensory modalities contributes to object recognition, the generation of associations and long-term memory representations. Here, we used functional magnetic resonance imaging adaptation to investigate the presence of sensory integrative effects at cortical levels as early as nonprimary auditory and extrastriate visual cortices, which are implicated in intermediate stages of object processing. Stimulation consisted of an adapting audiovisual stimulus S(1) and a subsequent stimulus S(2) from the same basic-level category (e.g., cat). The stimuli were carefully balanced with respect to stimulus complexity and semantic congruency and presented in four experimental conditions: (1) the same image and vocalization for S(1) and S(2), (2) the same image and a different vocalization, (3) different images and the same vocalization, or (4) different images and vocalizations. This two-by-two factorial design allowed us to assess the contributions of auditory and visual stimulus repetitions and changes in a statistically orthogonal manner. Responses in visual regions of right fusiform gyrus and right lateral occipital cortex were reduced for repeated visual stimuli (repetition suppression). Surprisingly, left lateral occipital cortex showed stronger responses to repeated auditory stimuli (repetition enhancement). Similarly, auditory regions of interest of the right middle superior temporal gyrus and sulcus exhibited repetition suppression to auditory repetitions and repetition enhancement to visual repetitions. Our findings of crossmodal repetition-related effects in cortices of the respective other sensory modality add to the emerging view that in human subjects sensory integrative mechanisms operate on earlier cortical processing levels than previously assumed.

  3. Cognitive mechanisms associated with auditory sensory gating

    Science.gov (United States)

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  4. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2012-05-01

    Full Text Available The regulation of hydrogen ion concentration (pH is fundamental to cell viability, metabolism and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilised to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E2GFP and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  5. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons.

    Science.gov (United States)

    Raimondo, Joseph V; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E; Akerman, Colin J

    2012-01-01

    The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E(2)GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  6. Visual sensory processing deficits in patients with bipolar disorder revealed through high-density electrical mapping.

    LENUS (Irish Health Repository)

    Yeap, Sherlyn

    2009-11-01

    BACKGROUND: Etiological commonalities are apparent between bipolar disorder and schizophrenia. For example, it is becoming clear that both populations show similar electrophysiological deficits in the auditory domain. Recent studies have also shown robust visual sensory processing deficits in patients with schizophrenia using the event-related potential technique, but this has not been formally tested in those with bipolar disorder. Our goal here was to assess whether early visual sensory processing in patients with bipolar disorder, as indexed by decreased amplitude of the P1 component of the visual evoked potential (VEP), would show a similar deficit to that seen in those with schizophrenia. Since the P1 deficit has already been established as an endophenotype in schizophrenia, a finding of commonality between disorders would raise the possibility that it represents a measure of common genetic liability. METHODS: We visually presented isolated-check stimuli to euthymic patients with a diagnosis of bipolar disorder and age-matched healthy controls within a simple go\\/no-go task and recorded VEPs using high-density (72-channel) electroencephalography. RESULTS: The P1 VEP amplitude was substantially reduced in patients with bipolar disorder, with an effect size of f = 0.56 (large according to Cohen\\'s criteria). LIMITATIONS: Our sample size was relatively small and as such, did not allow for an examination of potential relations between the physiologic measures and clinical measures. CONCLUSION: This reduction in P1 amplitude among patients with bipolar disorder represents a dysfunction in early visual processing that is highly similar to that found repeatedly in patients with schizophrenia and their healthy first-degree relatives. Since the P1 deficit has been related to susceptibility genes for schizophrenia, our results raise the possibility that the deficit may in fact be more broadly related to the development of psychosis and that it merits further

  7. Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure.

    Science.gov (United States)

    Barbagallo, Federica; Xu, Bing; Reddy, Gopireddy R; West, Toni; Wang, Qingtong; Fu, Qin; Li, Minghui; Shi, Qian; Ginsburg, Kenneth S; Ferrier, William; Isidori, Andrea M; Naro, Fabio; Patel, Hemal H; Bossuyt, Julie; Bers, Donald; Xiang, Yang K

    2016-09-30

    In heart failure, myofilament proteins display abnormal phosphorylation, which contributes to contractile dysfunction. The mechanisms underlying the dysregulation of protein phosphorylation on myofilaments is not clear. This study aims to understand the mechanisms underlying altered phosphorylation of myofilament proteins in heart failure. We generate a novel genetically encoded protein kinase A (PKA) biosensor anchored onto the myofilaments in rabbit cardiac myocytes to examine PKA activity at the myofilaments in responses to adrenergic stimulation. We show that PKA activity is shifted from the sarcolemma to the myofilaments in hypertrophic failing rabbit myocytes. In particular, the increased PKA activity on the myofilaments is because of an enhanced β2 adrenergic receptor signal selectively directed to the myofilaments together with a reduced phosphodiesterase activity associated with the myofibrils. Mechanistically, the enhanced PKA activity on the myofilaments is associated with downregulation of caveolin-3 in the hypertrophic failing rabbit myocytes. Reintroduction of caveolin-3 in the failing myocytes is able to normalize the distribution of β2 adrenergic receptor signal by preventing PKA signal access to the myofilaments and to restore contractile response to adrenergic stimulation. In hypertrophic rabbit myocytes, selectively enhanced β2 adrenergic receptor signaling toward the myofilaments contributes to elevated PKA activity and PKA phosphorylation of myofilament proteins. Reintroduction of caveolin-3 is able to confine β2 adrenergic receptor signaling and restore myocyte contractility in response to β adrenergic stimulation. © 2016 American Heart Association, Inc.

  8. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    Science.gov (United States)

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.

  9. Recall of Others' Actions after Incidental Encoding Reveals Episodic-like Memory in Dogs.

    Science.gov (United States)

    Fugazza, Claudia; Pogány, Ákos; Miklósi, Ádám

    2016-12-05

    The existence of episodic memory in non-human animals is a debated topic that has been investigated using different methodologies that reflect diverse theoretical approaches to its definition. A fundamental feature of episodic memory is recalling after incidental encoding, which can be assessed if the recall test is unexpected [1]. We used a modified version of the "Do as I Do" method [2], relying on dogs' ability to imitate human actions, to test whether dogs can rely on episodic memory when recalling others' actions from the past. Dogs were first trained to imitate human actions on command. Next, they were trained to perform a simple training exercise (lying down), irrespective of the previously demonstrated action. This way, we substituted their expectation to be required to imitate with the expectation to be required to lie down. We then tested whether dogs recalled the demonstrated actions by unexpectedly giving them the command to imitate, instead of lying down. Dogs were tested with a short (1 min) and a long (1 hr) retention interval. They were able to recall the demonstrated actions after both intervals; however, their performance declined more with time compared to conditions in which imitation was expected. These findings show that dogs recall past events as complex as human actions even if they do not expect the memory test, providing evidence for episodic-like memory. Dogs offer an ideal model to study episodic memory in non-human species, and this methodological approach allows investigating memory of complex, context-rich events. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Femtosecond Laser Ablation Reveals Antagonistic Sensory and Neuroendocrine Signaling that Underlie C. elegans Behavior and Development

    Directory of Open Access Journals (Sweden)

    Samuel H. Chung

    2013-07-01

    Full Text Available The specific roles of neuronal subcellular components in behavior and development remain largely unknown, even though advances in molecular biology and conventional whole-cell laser ablation have greatly accelerated the identification of contributors at the molecular and cellular levels. We systematically applied femtosecond laser ablation, which has submicrometer resolution in vivo, to dissect the cell bodies, dendrites, or axons of a sensory neuron (ASJ in Caenorhabditis elegans to determine their roles in modulating locomotion and the developmental decisions for dauer, a facultative, stress-resistant life stage. Our results indicate that the cell body sends out axonally mediated and hormonal signals in order to mediate these functions. Furthermore, our results suggest that antagonistic sensory dendritic signals primarily drive and switch polarity between the decisions to enter and exit dauer. Thus, the improved resolution of femtosecond laser ablation reveals a rich complexity of neuronal signaling at the subcellular level, including multiple neurite and hormonally mediated pathways dependent on life stage.

  11. Insects Can Count: Sensory Basis of Host Discrimination in Parasitoid Wasps Revealed.

    Directory of Open Access Journals (Sweden)

    Sara Ruschioni

    Full Text Available The solitary parasitoid Leptopilina heterotoma is one of the best studied organisms concerning the ecology, behaviour and physiology of host discrimination. Behavioural evidence shows that L. heterotoma uses its ovipositor to discriminate not only between parasitized and unparasitized Drosophila melanogaster larvae, but also to discriminate between hosts with different numbers of parasitoid eggs. The existing knowledge about how and when the parasitoid marks the host motivated us to unravel the chemosensory basis of host discrimination by L. heterotoma that allows it to choose the "best" host available. In this paper we report on electrophysiological recordings of multi-neural responses from the single taste sensillum on the tip of the unpaired ovipositor valve. We stimulated this sensillum with haemolymph of unparasitized, one-time-parasitized and two-times-parasitized Drosophila larvae. We demonstrate for the first time that quantitative characteristics of the neural responses to these haemolymph samples differed significantly, implying that host discrimination is encoded by taste receptor neurons in the multi-neuron coeloconic ovipositor sensillum. The activity of three of the six neurons present in the sensillum suffices for host discrimination and support the hypothesis that L. heterotoma females employ an ensemble code of parasitization status of the host.

  12. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding

    DEFF Research Database (Denmark)

    Tervaniemi, Mari; Huotilainen, Minna; Brattico, Elvira

    2014-01-01

    Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel) to compare memory......-related mismatch negativity (MMN) and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians). In Folk musicians, the MMN was enlarged for mistuned sounds when compared...... with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies...

  13. Single-cell genomics reveals pyrrolysine-encoding potential in members of uncultivated archaeal candidate division MSBL1

    KAUST Repository

    Guan, Yue; Haroon, Mohamed; Alam, Intikhab; Ferry, James G.; Stingl, Ulrich

    2017-01-01

    Pyrrolysine (Pyl), the 22nd canonical amino acid, is only decoded and synthesized by a limited number of organisms in the domains Archaea and Bacteria. Pyl is encoded by the amber codon UAG, typically a stop codon. To date, all known Pyl-decoding archaea are able to carry out methylotrophic methanogenesis. The functionality of methylamine methyltransferases, an important component of corrinoid-dependent methyltransfer reactions, depends on the presence of Pyl. Here, we present a putative pyl gene cluster obtained from single-cell genomes of the archaeal Mediterranean Sea Brine Lakes group 1 (MSBL1) from the Red Sea. Functional annotation of the MSBL1 single cell amplified genomes (SAGs) also revealed a complete corrinoid-dependent methyl-transfer pathway suggesting that members of MSBL1 may possibly be capable of synthesizing Pyl and metabolizing methylated amines. This article is protected by copyright. All rights reserved.

  14. Single-cell genomics reveals pyrrolysine-encoding potential in members of uncultivated archaeal candidate division MSBL1

    KAUST Repository

    Guan, Yue

    2017-05-11

    Pyrrolysine (Pyl), the 22nd canonical amino acid, is only decoded and synthesized by a limited number of organisms in the domains Archaea and Bacteria. Pyl is encoded by the amber codon UAG, typically a stop codon. To date, all known Pyl-decoding archaea are able to carry out methylotrophic methanogenesis. The functionality of methylamine methyltransferases, an important component of corrinoid-dependent methyltransfer reactions, depends on the presence of Pyl. Here, we present a putative pyl gene cluster obtained from single-cell genomes of the archaeal Mediterranean Sea Brine Lakes group 1 (MSBL1) from the Red Sea. Functional annotation of the MSBL1 single cell amplified genomes (SAGs) also revealed a complete corrinoid-dependent methyl-transfer pathway suggesting that members of MSBL1 may possibly be capable of synthesizing Pyl and metabolizing methylated amines. This article is protected by copyright. All rights reserved.

  15. MOBIUS-STRIP-LIKE COLUMNAR FUNCTIONAL CONNECTIONS ARE REVEALED IN SOMATO-SENSORY RECEPTIVE FIELD CENTROIDS.

    Directory of Open Access Journals (Sweden)

    James Joseph Wright

    2014-10-01

    Full Text Available Receptive fields of neurons in the forelimb region of areas 3b and 1 of primary somatosensory cortex, in cats and monkeys, were mapped using extracellular recordings obtained sequentially from nearly radial penetrations. Locations of the field centroids indicated the presence of a functional system, in which cortical homotypic representations of the limb surfaces are entwined in three-dimensional Mobius-strip-like patterns of synaptic connections. Boundaries of somatosensory receptive field in nested groups irregularly overlie the centroid order, and are interpreted as arising from the superposition of learned connections upon the embryonic order. Since the theory of embryonic synaptic self-organisation used to model these results was devised and earlier used to explain findings in primary visual cortex, the present findings suggest the theory may be of general application throughout cortex, and may reveal a modular functional synaptic system, which, only in some parts of the cortex, and in some species, is manifest as anatomical ordering into columns.

  16. Sensory Neuronopathy Revealing Severe Vitamin B12 Deficiency in a Patient with Anorexia Nervosa: An Often-Forgotten Reversible Cause

    Directory of Open Access Journals (Sweden)

    Jérôme Franques

    2017-03-01

    Full Text Available Vitamin B12 (B12 deficiency is known to be associated with various neurological manifestations. Although central manifestations such as dementia or subacute combined degeneration are the most classic, neurological manifestations also include sensory neuropathies. However, B12 deficiency is still rarely integrated as a potential cause of sensory neuronopathy. Moreover, as many medical conditions can falsely normalize serum B12 levels even in the context of a real B12 deficiency, some cases may easily remain underdiagnosed. We report the illustrating case of an anorexic patient with sensory neuronopathy and consistently normal serum B12 levels. After all classical causes of sensory neuronopathy were ruled out, her clinical and electrophysiological conditions first worsened after folate administration, but finally improved dramatically after B12 administration. B12 deficiency should be systematically part of the etiologic workup of sensory neuronopathy, especially in a high risk context such as anorexia nervosa.

  17. The effect of L-dopa in Parkinson's disease as revealed by neurophysiological studies of motor and sensory functions.

    Science.gov (United States)

    Suppa, Antonio; Bologna, Matteo; Conte, Antonella; Berardelli, Alfredo; Fabbrini, Giovanni

    2017-02-01

    This review will first discuss evidence of motor and sensory abnormalities as yielded by neurophysiological techniques in patients with PD. It will then go on to describe the effects of L-dopa replacement on motor and sensory abnormalities in PD as assessed by neurophysiological studies. Areas covered: We analyzed papers in English using Pubmed with the following keywords: L-dopa, dopamine, bradykinesia, basal ganglia, kinematic analysis, TMS, motor cortex plasticity, motor cortex excitability, somatosensory discrimination threshold, pain Expert commentary: L-dopa improves the amplitude and speed of upper limb voluntary movements, but it does not restore abnormalities in the sequence effect or voluntary facial movements. L-dopa only partially normalizes changes in motor cortex excitability and plasticity and has also contrasting effects on the sensory system and on sensory-motor integration. The neurophysiological studies reviewed here show that PD is more than a hypo-dopaminergic disease, and non-dopaminergic mechanisms should also be considered.

  18. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation

    Science.gov (United States)

    Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li

    2013-01-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378

  19. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation.

    Science.gov (United States)

    Paulk, Angelique C; Zhou, Yanqiong; Stratton, Peter; Liu, Li; van Swinderen, Bruno

    2013-10-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel "whole brain" readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior.

  20. Multisensory representation of frequency across audition and touch: high density electrical mapping reveals early sensory-perceptual coupling.

    Science.gov (United States)

    Butler, John S; Foxe, John J; Fiebelkorn, Ian C; Mercier, Manuel R; Molholm, Sophie

    2012-10-31

    The frequency of environmental vibrations is sampled by two of the major sensory systems, audition and touch, notwithstanding that these signals are transduced through very different physical media and entirely separate sensory epithelia. Psychophysical studies have shown that manipulating frequency in audition or touch can have a significant cross-sensory impact on perceived frequency in the other sensory system, pointing to intimate links between these senses during computation of frequency. In this regard, the frequency of a vibratory event can be thought of as a multisensory perceptual construct. In turn, electrophysiological studies point to temporally early multisensory interactions that occur in hierarchically early sensory regions where convergent inputs from the auditory and somatosensory systems are to be found. A key question pertains to the level of processing at which the multisensory integration of featural information, such as frequency, occurs. Do the sensory systems calculate frequency independently before this information is combined, or is this feature calculated in an integrated fashion during preattentive sensory processing? The well characterized mismatch negativity, an electrophysiological response that indexes preattentive detection of a change within the context of a regular pattern of stimulation, served as our dependent measure. High-density electrophysiological recordings were made in humans while they were presented with separate blocks of somatosensory, auditory, and audio-somatosensory "standards" and "deviants," where the deviant differed in frequency. Multisensory effects were identified beginning at ∼200 ms, with the multisensory mismatch negativity (MMN) significantly different from the sum of the unisensory MMNs. This provides compelling evidence for preattentive coupling between the somatosensory and auditory channels in the cortical representation of frequency.

  1. Temporally Specific Divided Attention Tasks in Young Adults Reveal the Temporal Dynamics of Episodic Encoding Failures in Elderly Adults

    OpenAIRE

    Johnson, Ray; Nessler, Doreen; Friedman, David

    2012-01-01

    Nessler, Johnson, Bersick, and Friedman (D. Nessler, R. Johnson, Jr., M. Bersick, & D. Friedman, 2006, On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity, NeuroImage, Vol. 30, pp. 299–312) found that, compared with young adults, older adults show decreased event-related brain potential (ERP) activity over posterior left inferior prefrontal cortex (pLIPFC) in a 400- to 1,400-ms interval during episodic encoding. This...

  2. Continuous theta-burst stimulation to primary motor cortex reveals asymmetric compensation for sensory attenuation in bimanual repetitive force production.

    Science.gov (United States)

    Therrien, Amanda S; Lyons, James; Balasubramaniam, Ramesh

    2013-08-01

    Studies of fingertip force production have shown that self-produced forces are perceived as weaker than externally generated forces. This is due to mechanisms of sensory reafference where the comparison between predicted and actual sensory feedback results in attenuated perceptions of self-generated forces. Without an external reference to calibrate attenuated performance judgments, a compensatory overproduction of force is exhibited. It remains unclear whether the force overproduction seen in the absence of visual reference stimuli differs when forces are produced bimanually. We studied performance of two versions of a bimanual sequential force production task compared with each hand performing the task unimanually. When the task goal was shared, force series produced by each hand in bimanual conditions were found to be uncorrelated. When the bimanual task required each hand to reach a target force level, we found asymmetries in the degree of force overproduction between the hands following visual feedback removal. Unilateral continuous theta-burst stimulation of the left primary motor cortex yielded a selective reduction of force overproduction in the hand contralateral to stimulation by disrupting sensory reafference processes. While variability was lower in bimanual trials when the task goal was shared, this influence of hand condition disappeared when the target force level was to be reached by each hand simultaneously. Our findings strengthen the notion that force control in bimanual action is less tightly coupled than other mechanisms of bimanual motor control and show that this effector specificity may be extended to the processing and compensation for mechanisms of sensory reafference.

  3. Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo

    Science.gov (United States)

    Rossano, Adam J; Chouhan, Amit K; Macleod, Gregory T

    2013-01-01

    All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pHcyto) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pHcyto shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pHcyto. Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤4 s) trains of action potentials but did buffer slow (∼60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca2+ increase upon stimulation, and partial inhibition of the plasma membrane Ca2+-ATPase, a Ca2+/H+ exchanger, attenuated pHcyto shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (∼0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pHcyto shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pHcyto shifts cannot be dismissed as artifacts of ex vivo preparations. PMID:23401611

  4. Temporally specific divided attention tasks in young adults reveal the temporal dynamics of episodic encoding failures in elderly adults.

    Science.gov (United States)

    Johnson, Ray; Nessler, Doreen; Friedman, David

    2013-06-01

    Nessler, Johnson, Bersick, and Friedman (D. Nessler, R. Johnson, Jr., M. Bersick, & D. Friedman, 2006, On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity, NeuroImage, Vol. 30, pp. 299-312) found that, compared with young adults, older adults show decreased event-related brain potential (ERP) activity over posterior left inferior prefrontal cortex (pLIPFC) in a 400- to 1,400-ms interval during episodic encoding. This altered brain activity was associated with significantly decreased recognition performance and reduced recollection-related brain activity at retrieval (D. Nessler, D. Friedman, R. Johnson, Jr., & M. Bersick, 2007, Does repetition engender the same retrieval processes in young and older adults? NeuroReport, Vol. 18, pp. 1837-1840). To test the hypothesis that older adults' well-documented episodic retrieval deficit is related to reduced pLIPFC activity at encoding, we used a novel divided attention task in healthy young adults that was specifically timed to disrupt encoding in either the 1st or 2nd half of a 300- to 1,400-ms interval. The results showed that diverting resources for 550 ms during either half of this interval reproduced the 4 characteristic aspects of the older participants' retrieval performance: normal semantic retrieval during encoding, reduced subsequent episodic recognition and recall, reduced recollection-related ERP activity, and the presence of "compensatory" brain activity. We conclude that part of older adults' episodic memory deficit is attributable to altered pLIPFC activity during encoding due to reduced levels of available processing resources. Moreover, the findings also provide insights into the nature and timing of the putative "compensatory" processes posited to be used by older adults in an attempt to compensate for age-related decline in cognitive function. These results support the scaffolding account of compensation, in which the

  5. A Synthetic Oligo Library and Sequencing Approach Reveals an Insulation Mechanism Encoded within Bacterial σ54 Promoters

    Directory of Open Access Journals (Sweden)

    Lior Levy

    2017-10-01

    Full Text Available We use an oligonucleotide library of >10,000 variants to identify an insulation mechanism encoded within a subset of σ54 promoters. Insulation manifests itself as reduced protein expression for a downstream gene that is expressed by transcriptional readthrough. It is strongly associated with the presence of short CT-rich motifs (3–5 bp, positioned within 25 bp upstream of the Shine-Dalgarno (SD motif of the silenced gene. We provide evidence that insulation is triggered by binding of the ribosome binding site (RBS to the upstream CT-rich motif. We also show that, in E. coli, insulator sequences are preferentially encoded within σ54 promoters, suggesting an important regulatory role for these sequences in natural contexts. Our findings imply that sequence-specific regulatory effects that are sparsely encoded by short motifs may not be easily detected by lower throughput studies. Such sequence-specific phenomena can be uncovered with a focused oligo library (OL design that mitigates sequence-related variance, as exemplified herein.

  6. Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243.

    Directory of Open Access Journals (Sweden)

    Andrea J Dowling

    2010-12-01

    Full Text Available Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin 'tails' and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle.

  7. The attentional blink reveals serial working memory encoding: evidence from virtual and human event-related potentials.

    Science.gov (United States)

    Craston, Patrick; Wyble, Brad; Chennu, Srivas; Bowman, Howard

    2009-03-01

    Observers often miss a second target (T2) if it follows an identified first target item (T1) within half a second in rapid serial visual presentation (RSVP), a finding termed the attentional blink. If two targets are presented in immediate succession, however, accuracy is excellent (Lag 1 sparing). The resource sharing hypothesis proposes a dynamic distribution of resources over a time span of up to 600 msec during the attentional blink. In contrast, the ST(2) model argues that working memory encoding is serial during the attentional blink and that, due to joint consolidation, Lag 1 is the only case where resources are shared. Experiment 1 investigates the P3 ERP component evoked by targets in RSVP. The results suggest that, in this context, P3 amplitude is an indication of bottom-up strength rather than a measure of cognitive resource allocation. Experiment 2, employing a two-target paradigm, suggests that T1 consolidation is not affected by the presentation of T2 during the attentional blink. However, if targets are presented in immediate succession (Lag 1 sparing), they are jointly encoded into working memory. We use the ST(2) model's neural network implementation, which replicates a range of behavioral results related to the attentional blink, to generate "virtual ERPs" by summing across activation traces. We compare virtual to human ERPs and show how the results suggest a serial nature of working memory encoding as implied by the ST(2) model.

  8. Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain?

    Science.gov (United States)

    Näätänen, R; Paavilainen, P; Alho, K; Reinikainen, K; Sams, M

    1989-03-27

    Event-related brain potentials (ERP) to task-irrelevant tone pips presented at short intervals were recorded from the scalp of normal human subjects. Infrequent decrements in stimulus intensity elicited the mismatch negativity (MMN) which was larger in amplitude and shorter in latency the softer the deviant stimulus was. The results obtained imply memory representations which develop automatically and accurately represent the physical features of the repetitive stimulus. These memory traces appear to be those of the acoustic sensory memory, the 'echoic' memory. When an input does not match with such a trace the MMN is generated.

  9. Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes

    Directory of Open Access Journals (Sweden)

    Gorman Kevin

    2011-01-01

    Full Text Available Abstract Background The whitefly Trialeurodes vaporariorum is an economically important crop pest in temperate regions that has developed resistance to most classes of insecticides. However, the molecular mechanisms underlying resistance have not been characterised and, to date, progress has been hampered by a lack of nucleotide sequence data for this species. Here, we use pyrosequencing on the Roche 454-FLX platform to produce a substantial and annotated EST dataset. This 'unigene set' will form a critical reference point for quantitation of over-expressed messages via digital transcriptomics. Results Pyrosequencing produced around a million sequencing reads that assembled into 54,748 contigs, with an average length of 965 bp, representing a dramatic expansion of existing cDNA sequences available for T. vaporariorum (only 43 entries in GenBank at the time of this publication. BLAST searching of non-redundant databases returned 20,333 significant matches and those gene families potentially encoding gene products involved in insecticide resistance were manually curated and annotated. These include, enzymes potentially involved in the detoxification of xenobiotics and those encoding the targets of the major chemical classes of insecticides. A total of 57 P450s, 17 GSTs and 27 CCEs were identified along with 30 contigs encoding the target proteins of six different insecticide classes. Conclusion Here, we have developed new transcriptomic resources for T. vaporariorum. These include a substantial and annotated EST dataset that will serve the community studying this important crop pest and will elucidate further the molecular mechanisms underlying insecticide resistance.

  10. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K

    2016-06-01

    The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.

  11. Domestication process of the goat revealed by an analysis of the nearly complete mitochondrial protein-encoding genes.

    Directory of Open Access Journals (Sweden)

    Koh Nomura

    Full Text Available Goats (Capra hircus are one of the oldest domesticated species, and they are kept all over the world as an essential resource for meat, milk, and fiber. Although recent archeological and molecular biological studies suggested that they originated in West Asia, their domestication processes such as the timing of population expansion and the dynamics of their selection pressures are little known. With the aim of addressing these issues, the nearly complete mitochondrial protein-encoding genes were determined from East, Southeast, and South Asian populations. Our coalescent time estimations suggest that the timing of their major population expansions was in the Late Pleistocene and significantly predates the beginning of their domestication in the Neolithic era (≈10,000 years ago. The ω (ratio of non-synonymous rate/synonymous substitution rate for each lineage was also estimated. We found that the ω of the globally distributed haplogroup A which is inherited by more than 90% of goats examined, turned out to be extremely low, suggesting that they are under severe selection pressure probably due to their large population size. Conversely, the ω of the Asian-specific haplogroup B inherited by about 5% of goats was relatively high. Although recent molecular studies suggest that domestication of animals may tend to relax selective constraints, the opposite pattern observed in our goat mitochondrial genome data indicates the process of domestication is more complex than may be presently appreciated and cannot be explained only by a simple relaxation model.

  12. Two highly divergent lineages of exfoliative toxin B-encoding plasmids revealed in impetigo strains of Staphylococcus aureus.

    Science.gov (United States)

    Botka, Tibor; Růžičková, Vladislava; Svobodová, Karla; Pantůček, Roman; Petráš, Petr; Čejková, Darina; Doškař, Jiří

    2017-09-01

    Exfoliative toxin B (ETB) encoded by some large plasmids plays a crucial role in epidermolytic diseases caused by Staphylococcus aureus. We have found as yet unknown types of etb gene-positive plasmids isolated from a set of impetigo strains implicated in outbreaks of pemphigus neonatorum in Czech maternity hospitals. Plasmids from the strains of clonal complex CC121 were related to archetypal plasmid pETB TY4 . Sharing a 33-kb core sequence including virulence genes for ETB, EDIN C, and lantibiotics, they were assigned to a stand-alone lineage, named pETB TY4 -based plasmids. Differing from each other in the content of variable DNA regions, they formed four sequence types. In addition to them, a novel unique plasmid pETB608 isolated from a strain of ST130 was described. Carrying conjugative cluster genes, as well as new variants of etb and edinA genes, pETB608 could be regarded as a source of a new lineage of ETB plasmids. We have designed a helpful detection assay, which facilitates the precise identification of the all described types of ETB plasmids. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

    Science.gov (United States)

    Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A

    2011-01-01

    The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

  14. Dysregulation of the descending pain system in temporomandibular disorders revealed by low-frequency sensory transcutaneous electrical nerve stimulation: a pupillometric study.

    Directory of Open Access Journals (Sweden)

    Annalisa Monaco

    Full Text Available Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS is dysregulated in patients suffering from temporomandibular disorders (TMDs, suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation and long after (recovery period sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired

  15. A DNA-Encoded Library of Chemical Compounds Based on Common Scaffolding Structures Reveals the Impact of Ligand Geometry on Protein Recognition.

    Science.gov (United States)

    Favalli, Nicholas; Biendl, Stefan; Hartmann, Marco; Piazzi, Jacopo; Sladojevich, Filippo; Gräslund, Susanne; Brown, Peter J; Näreoja, Katja; Schüler, Herwig; Scheuermann, Jörg; Franzini, Raphael; Neri, Dario

    2018-06-01

    A DNA-encoded chemical library (DECL) with 1.2 million compounds was synthesized by combinatorial reaction of seven central scaffolds with two sets of 343×492 building blocks. Library screening by affinity capture revealed that for some target proteins, the chemical nature of building blocks dominated the selection results, whereas for other proteins, the central scaffold also crucially contributed to ligand affinity. Molecules based on a 3,5-bis(aminomethyl)benzoic acid core structure were found to bind human serum albumin with a K d value of 6 nm, while compounds with the same substituents on an equidistant but flexible l-lysine scaffold showed 140-fold lower affinity. A 18 nm tankyrase-1 binder featured l-lysine as linking moiety, while molecules based on d-Lysine or (2S,4S)-amino-l-proline showed no detectable binding to the target. This work suggests that central scaffolds which predispose the orientation of chemical building blocks toward the protein target may enhance the screening productivity of encoded libraries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Identities among actin-encoding cDNAs of the Nile tilapia (Oreochromis niloticus and other eukaryote species revealed by nucleotide and amino acid sequence analyses

    Directory of Open Access Journals (Sweden)

    Andréia B. Poletto

    2008-01-01

    Full Text Available Actin-encoding cDNAs of Nile tilapia (Oreochromis niloticus were isolated by RT-PCR using total RNA samples of different tissues and further characterized by nucleotide sequencing and in silico amino acid (aa sequence analysis. Comparisons among the actin gene sequences of O. niloticus and those of other species evidenced that the isolated genes present a high similarity to other fish and other vertebrate actin genes. The highest nucleotide resemblance was observed between O. niloticus and O. mossambicus a-actin and b-actin genes. Analysis of the predicted aa sequences revealed two distinct types of cytoplasmic actins, one cardiac muscle actin type and one skeletal muscle actin type that were expressed in different tissues of Nile tilapia. The evolutionary relationships between the Nile tilapia actin genes and diverse other organisms is discussed.

  17. In vitro receptor autoradiography reveals angiotensin IL (ANG II) binding associated with sensory and motor components of the vagus

    International Nuclear Information System (INIS)

    Diz, D.I.; Barnes, K.L.; Ferrario, C.M.

    1986-01-01

    Specific, high affinity Ang II binding in the dog's dorsal medulla is concentrated in the area postrema, nucleus tractus solitarii (nTS) and dorsal motor nucleus of the vagus (dmnX). More recently Ang II binding sites were observed where bundles of vagal afferent fibers enter the dorsal medulla 6 mm rostral to obex and in the nodose ganglia and peripheral vagal nerves. Since Ang II binding in the nTS and dmnX overlies the distribution of vagal afferent fibers and efferent neurons, the effects of nodose ganglionectomy and cervical vagotomy on Ang II binding in the dorsal medulla were studied in rats and dogs using autoradiography after incubation of 14 μm coronal sections with 0.4 nM 125 I-Ang II. Nonspecific binding was determined in the presence of 1 μm unlabeled Ang II. Two weeks after unilateral nodose ganglionectomy Ang II binding sites were absent ipsilaterally in the region where vagal afferent fibers enter the dorsal medulla. In the nTS and dmnX, binding near obex was reduced, while more rostrally these nuclei were almost completely devoid of Ang II binding on the denervated side. After cervical vagotomy, the loss of binding was restricted to the ipsilateral dmnX. These data are the first to reveal that Ang II binding in the dorsal medulla requires an intact vagal system

  18. A novel missense variant (Gln220Arg) of GNB4 encoding guanine nucleotide-binding protein, subunit beta-4 in a Japanese family with autosomal dominant motor and sensory neuropathy.

    Science.gov (United States)

    Miura, Shiroh; Morikawa, Takuya; Fujioka, Ryuta; Noda, Kazuhito; Kosaka, Kengo; Taniwaki, Takayuki; Shibata, Hiroki

    2017-09-01

    Dominant intermediate Charcot-Marie-Tooth disease F (CMTDIF) is an autosomal dominant hereditary form of Charcot-Marie-Tooth disease (CMT) caused by variations in the guanine nucleotide-binding protein, subunit beta-4 gene (GNB4). We examined two Japanese familial cases with CMT. Case 1 was a 49-year-old male whose chief complaint was slowly progressive gait disturbance and limb dysesthesia that appeared at the age of 47. On neurological examination, he showed hyporeflexia or areflexia, distal limb muscle weakness, and distal sensory impairment with lower dominancy. Nerve conduction studies demonstrated demyelinating sensorimotor neuropathy with reduced action potentials in the lower limbs. Case 2 was an 80-year-old man, Case 1's father, who reported difficulty in riding a bicycle at the age of 76. On neurological examination, he showed areflexia in the upper and lower limbs. Distal sensory impairment in the lower limbs was also observed. Nerve conduction studies revealed mainly axonal involvement. Exome sequencing identified a novel heterozygous nonsynonymous variant (NM_021629.3:c.659T > C [p.Gln220Arg]) in GNB4 exon 8, which is known to be responsible for CMT. Sanger sequencing confirmed that both patients are heterozygous for the variation, which causes an amino acid substitution, Gln220Arg, in the highly conserved region of the WD40 domain of GNB4. The frequency of this variant in the Exome Aggregation Consortium Database was 0.000008247, and we confirmed its absence in 502 Japanese control subjects. We conclude that this novel GNB4 variant is causative for CMTDIF in these patients, who represent the first record of the disease in the Japanese population. Copyright © 2017. Published by Elsevier Masson SAS.

  19. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme.

    Science.gov (United States)

    Moriau, L; Michelet, B; Bogaerts, P; Lambert, L; Michel, A; Oufattole, M; Boutry, M

    1999-07-01

    The plasma membrane H+-ATPase couples ATP hydrolysis to proton transport, thereby establishing the driving force for solute transport across the plasma membrane. In Nicotiana plumbaginifolia, this enzyme is encoded by at least nine pma (plasma membrane H+-ATPase) genes. Four of these are classified into two gene subfamilies, pma1-2-3 and pma4, which are the most highly expressed in plant species. We have isolated genomic clones for pma2 and pma4. Mapping of their transcript 5' end revealed the presence of a long leader that contained small open reading frames, regulatory features typical of other pma genes. The gusA reporter gene was then used to determine the expression of pma2, pma3 and pma4 in N. tabacum. These data, together with those obtained previously for pma1, led to the following conclusions. (i) The four pma-gusA genes were all expressed in root, stem, leaf and flower organs, but each in a cell-type specific manner. Expression in these organs was confirmed at the protein level, using subfamily-specific antibodies. (ii) pma4-gusA was expressed in many cell types and notably in root hair and epidermis, in companion cells, and in guard cells, indicating that in N. plumbaginifolia the same H+-ATPase isoform might be involved in mineral nutrition, phloem loading and control of stomata aperture. (iii) The second gene subfamily is composed, in N. plumbaginifolia, of a single gene (pma4) with a wide expression pattern and, in Arabidopsis thaliana, of three genes (aha1, aha2, aha3), at least two of them having a more restrictive expression pattern. (iv) Some cell types expressed pma2 and pma4 at the same time, which encode H+-ATPases with different enzymatic properties.

  20. Sensory adaptation for timing perception.

    Science.gov (United States)

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-04-22

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception.

  1. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research.

    Science.gov (United States)

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-08-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell-derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.

  2. Characterizing Human Stem Cell–derived Sensory Neurons at the Single-cell Level Reveals Their Ion Channel Expression and Utility in Pain Research

    Science.gov (United States)

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-01-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell–derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders. PMID:24832007

  3. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells

    Directory of Open Access Journals (Sweden)

    Andrew Parker

    2015-12-01

    Full Text Available Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182 in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss.

  4. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells.

    Science.gov (United States)

    Parker, Andrew; Cross, Sally H; Jackson, Ian J; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R; Brown, Steve D M

    2015-12-01

    Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss. © 2015. Published by The Company of

  5. HOXD-AS1 is a novel lncRNA encoded in HOXD cluster and a marker of neuroblastoma progression revealed via integrative analysis of noncoding transcriptome

    Science.gov (United States)

    2014-01-01

    Background Long noncoding RNAs (lncRNAs) constitute a major, but poorly characterized part of human transcriptome. Recent evidence indicates that many lncRNAs are involved in cancer and can be used as predictive and prognostic biomarkers. Significant fraction of lncRNAs is represented on widely used microarray platforms, however they have usually been ignored in cancer studies. Results We developed a computational pipeline to annotate lncRNAs on popular Affymetrix U133 microarrays, creating a resource allowing measurement of expression of 1581 lncRNAs. This resource can be utilized to interrogate existing microarray datasets for various lncRNA studies. We found that these lncRNAs fall into three distinct classes according to their statistical distribution by length. Remarkably, these three classes of lncRNAs were co-localized with protein coding genes exhibiting distinct gene ontology groups. This annotation was applied to microarray analysis which identified a 159 lncRNA signature that discriminates between localized and metastatic stages of neuroblastoma. Analysis of an independent patient cohort revealed that this signature differentiates also relapsing from non-relapsing primary tumors. This is the first example of the signature developed via the analysis of expression of lncRNAs solely. One of these lncRNAs, termed HOXD-AS1, is encoded in HOXD cluster. HOXD-AS1 is evolutionary conserved among hominids and has all bona fide features of a gene. Studying retinoid acid (RA) response of SH-SY5Y cell line, a model of human metastatic neuroblastoma, we found that HOXD-AS1 is a subject to morphogenic regulation, is activated by PI3K/Akt pathway and itself is involved in control of RA-induced cell differentiation. Knock-down experiments revealed that HOXD-AS1 controls expression levels of clinically significant protein-coding genes involved in angiogenesis and inflammation, the hallmarks of metastatic cancer. Conclusions Our findings greatly extend the number of

  6. Displacement encoder

    International Nuclear Information System (INIS)

    Hesketh, T.G.

    1983-01-01

    In an optical encoder, light from an optical fibre input A is encoded by means of the encoding disc and is subsequently collected for transmission via optical fibre B. At some point in the optical path between the fibres A and B, the light is separated into component form by means of a filtering or dispersive system and each colour component is associated with a respective one of the coding channels of the disc. In this way, the significance of each bit of the coded information is represented by a respective colour thereby enabling the components to be re-combined for transmission by the fibre B without loss of information. (author)

  7. Dissociating sensory from decision processes in human perceptual decision making.

    Science.gov (United States)

    Mostert, Pim; Kok, Peter; de Lange, Floris P

    2015-12-15

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.

  8. Dissociating sensory from decision processes in human perceptual decision making

    Science.gov (United States)

    Mostert, Pim; Kok, Peter; de Lange, Floris P.

    2015-01-01

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393

  9. Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.

    Science.gov (United States)

    Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon

    2016-01-06

    Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright

  10. Carbon monoxide stunning of Atlantic salmon (Salmo salar L.) modifies rigor mortis and sensory traits as revealed by NIRS and other instruments.

    Science.gov (United States)

    Concollato, Anna; Parisi, Giuliana; Masoero, Giorgio; Romvàri, Robert; Olsen, Rolf-Erik; Dalle Zotte, Antonella

    2016-08-01

    Methods of stunning used in salmon slaughter are still the subject of research. Fish quality can be influenced by pre-, ante- and post-mortem conditions, including handling before slaughter, slaughter methods and storage conditions. Carbon monoxide (CO) is known to improve colour stability in red muscle and to reduce microbial growth and lipid oxidation in live fish exposed to CO. Quality differences in Atlantic salmon, Salmo salar L., stunned by CO or percussion, were evaluated and compared by different techniques [near infrared reflectance spectroscopy (NIRS), electronic nose (EN), electronic tongue (ET)] and sensory analysis. Thawed samples, freeze-dried preparates and NIRS devices proved to be the most efficient combinations for discriminating the treatments applied to salmon, i.e. first the stunning methods adopted, then the back-prediction of the maximum time to reach rigor mortis and finally to correlate some sensory attributes. A trained panel found significant differences between control and CO-stunned salmon: reduced tactile crumbliness, reduced odour and aroma intensities, and reduced tenderness of CO-treated fillets. CO stunning reduced radiation absorbance in spectra of thawed and freeze-dried fillets, but not fillet samples stored in ethanol, where it may have interacted with myoglobin and myosin. The good results in a rapid discrimination of thawed samples detected by NIRS suggest suitable applications in the fish industry. CO treatment could mitigate sensory perception, but consumer tests are needed to confirm our findings. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Re-engaging with the past: recapitulation of encoding operations during episodic retrieval

    Science.gov (United States)

    Morcom, Alexa M.

    2014-01-01

    Recollection of events is accompanied by selective reactivation of cortical regions which responded to specific sensory and cognitive dimensions of the original events. This reactivation is thought to reflect the reinstatement of stored memory representations and therefore to reflect memory content, but it may also reveal processes which support both encoding and retrieval. The present study used event-related functional magnetic resonance imaging to investigate whether regions selectively engaged in encoding face and scene context with studied words are also re-engaged when the context is later retrieved. As predicted, encoding face and scene context with visually presented words elicited activity in distinct, context-selective regions. Retrieval of face and scene context also re-engaged some of the regions which had shown successful encoding effects. However, this recapitulation of encoding activity did not show the same context selectivity observed at encoding. Successful retrieval of both face and scene context re-engaged regions which had been associated with encoding of the other type of context, as well as those associated with encoding the same type of context. This recapitulation may reflect retrieval attempts which are not context-selective, but use shared retrieval cues to re-engage encoding operations in service of recollection. PMID:24904386

  12. Re-engaging with the past: recapitulation of encoding operations during retrieval

    Directory of Open Access Journals (Sweden)

    Alexa eMorcom

    2014-05-01

    Full Text Available Recollection of events is accompanied by selective reactivation of cortical regions which responded to specific sensory and cognitive dimensions of the original events. This reactivation is thought to reflect the reinstatement of stored memory representations and therefore to reflect memory content, but it may also reveal processes which support both encoding and retrieval. The present study used event-related functional magnetic resonance imaging (fMRI to investigate whether regions selectively engaged in encoding face and scene context with studied words are also re-engaged when the context is later retrieved. As predicted, encoding face and scene context with visually presented words elicited activity in distinct, context-selective regions. Retrieval of face and scene context also re-engaged some of the regions which had shown successful encoding effects. However, this recapitulation of encoding activity did not show the same context selectivity observed at encoding. Successful retrieval of both face and scene context re-engaged regions which had been associated with encoding of the other type of context, as well as those associated with encoding the same type of context. This recapitulation may reflect retrieval attempts which are not context-selective, but use shared retrieval cues to re-engage encoding operations in service of recollection.

  13. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis.

    Directory of Open Access Journals (Sweden)

    Hui-Yeng Y Yap

    Full Text Available Lignosus rhinocerotis (Cooke Ryvarden (tiger milk mushroom has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.

  14. Survey of the rubber tree genome reveals a high number of cysteine protease-encoding genes homologous to Arabidopsis SAG12.

    Science.gov (United States)

    Zou, Zhi; Liu, Jianting; Yang, Lifu; Xie, Guishui

    2017-01-01

    Arabidopsis thaliana SAG12, a senescence-specific gene encoding a cysteine protease, is widely used as a molecular marker for the study of leaf senescence. To date, its potential orthologues have been isolated from several plant species such as Brassica napus and Nicotiana tabacum. However, little information is available in rubber tree (Hevea brasiliensis), a rubber-producing plant of the Euphorbiaceae family. This study presents the identification of SAG12-like genes from the rubber tree genome. Results showed that an unexpected high number of 17 rubber orthologues with a single intron were found, contrasting the single copy with two introns in Arabidopsis. The gene expansion was also observed in another two Euphorbiaceae plants, castor bean (Ricinus communis) and physic nut (Jatropha curcas), both of which contain 8 orthologues. In accordance with no occurrence of recent whole-genome duplication (WGD) events, most duplicates in castor and physic nut were resulted from tandem duplications. In contrast, the duplicated HbSAG12H genes were derived from tandem duplications as well as the recent WGD. Expression analysis showed that most HbSAG12H genes were lowly expressed in examined tissues except for root and male flower. Furthermore, HbSAG12H1 exhibits a strictly senescence-associated expression pattern in rubber tree leaves, and thus can be used as a marker gene for the study of senescence mechanism in Hevea.

  15. Analysis of expressed sequence tags (ESTs) from avocado seed (Persea americana var. drymifolia) reveals abundant expression of the gene encoding the antimicrobial peptide snakin.

    Science.gov (United States)

    Guzmán-Rodríguez, Jaquelina J; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Ochoa-Zarzosa, Alejandra; Suárez-Rodríguez, Luis María; Rodríguez-Zapata, Luis C; Salgado-Garciglia, Rafael; Jimenez-Moraila, Beatriz; López-Meza, Joel E; López-Gómez, Rodolfo

    2013-09-01

    Avocado is one of the most important fruits in the world. Avocado "native mexicano" (Persea americana var. drymifolia) seeds are widely used in the propagation of this plant and are the primary source of rootstocks globally for a variety of avocado cultivars, such as the Hass avocado. Here, we report the isolation of 5005 ESTs from the 5' ends of P. americana var. drymifolia seed cDNA clones representing 1584 possible unigenes. These avocado seed ESTs were compared with the avocado flower EST library, and we detected several genes that are expressed either in both tissues or only in the seed. The snakin gene, which encodes an element of the innate immune response in plants, was one of those most frequently found among the seed ESTs, and this suggests that it is abundantly expressed in the avocado seed. We expressed the snakin gene in a heterologous system, namely the bovine endothelial cell line BVE-E6E7. Conditioned media from transfected BVE-E6E7 cells showed antimicrobial activity against strains of Escherichia coli and Staphylococcus aureus. This is the first study of the function of the snakin gene in plant seed tissue, and our observations suggest that this gene might play a protective role in the avocado seed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. A systematic comparison of all mutations in hereditary sensory neuropathy type I (HSAN I) reveals that the G387A mutation is not disease associated.

    Science.gov (United States)

    Hornemann, Thorsten; Penno, Anke; Richard, Stephane; Nicholson, Garth; van Dijk, Fleur S; Rotthier, Annelies; Timmerman, Vincent; von Eckardstein, Arnold

    2009-04-01

    Hereditary sensory neuropathy type 1 (HSAN I) is an autosomal dominant inherited neurodegenerative disorder of the peripheral nervous system associated with mutations in the SPTLC1 subunit of the serine palmitoyltransferase (SPT). Four missense mutations (C133W, C133Y, V144D and G387A) in SPTLC1 were reported to cause HSAN I. SPT catalyses the condensation of Serine and Palmitoyl-CoA, which is the first and rate-limiting step in the de novo synthesis of ceramides. Earlier studies showed that C133W and C133Y mutants have a reduced activity, whereas the impact of the V144D and G387A mutations on the human enzyme was not tested yet. In this paper, we show that none of the HSAN I mutations interferes with SPT complex formation. We demonstrate that also V144D has a reduced SPT activity, however to a lower extent than C133W and C133Y. In contrast, the G387A mutation showed no influence on SPT activity. Furthermore, the growth phenotype of LY-B cells--a SPTLC1 deficient CHO cell line--could be reversed by expressing either the wild-type SPTLC1 or the G387A mutant, but not the C133W mutant. This indicates that the G387A mutation is most likely not directly associated with HSAN I. These findings were genetically confirmed by the identification of a nuclear HSAN family which showed segregation of the G387A variant as a non-synonymous SNP.

  17. Retention interval affects visual short-term memory encoding.

    Science.gov (United States)

    Bankó, Eva M; Vidnyánszky, Zoltán

    2010-03-01

    Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.

  18. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  19. High sequence variations in the region containing genes encoding a cellular morphogenesis protein and the repressor of sexual development help to reveal origins of Aspergillus oryzae.

    Science.gov (United States)

    Chang, Perng-Kuang; Scharfenstein, Leslie L; Solorzano, Cesar D; Abbas, Hamed K; Hua, Sui-Sheng T; Jones, Walker A; Zablotowicz, Robert M

    2015-05-04

    Aspergillus oryzae and Aspergillus flavus are closely related fungal species. The A. flavus morphotype that produces numerous small sclerotia (S strain) and aflatoxin has a unique 1.5 kb deletion in the norB-cypA region of the aflatoxin gene cluster (i.e. the S genotype). Phylogenetic studies have indicated that an isolate of the nonaflatoxigenic A. flavus with the S genotype is the ancestor of A. oryzae. Genome sequence comparison between A. flavus NRRL3357, which produces large sclerotia (L strain), and S-strain A. flavus 70S identified a region (samA-rosA) that was highly variable in the two morphotypes. A third type of samA-rosA region was found in A. oryzae RIB40. The three samA-rosA types were later revealed to be commonly present in A. flavus L-strain populations. Of the 182 L-strain A. flavus field isolates examined, 46%, 15% and 39% had the samA-rosA type of NRRL3357, 70S and RIB40, respectively. The three types also were found in 18 S-strain A. flavus isolates with different proportions. For A. oryzae, however, the majority (80%) of the 16 strains examined had the RIB40 type and none had the NRRL3357 type. The results suggested that A. oryzae strains in the current culture collections were mostly derived from the samA-rosA/RIB40 lineage of the nonaflatoxigenic A. flavus with the S genotype. Published by Elsevier B.V.

  20. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior.

    Science.gov (United States)

    Carlson, Bruce A

    2009-07-29

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge. In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals, and bandpass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally relevant stimulus information encoded into temporal patterns of activity by sensory neurons.

  1. Sensory neuropathy in two Border collie puppies.

    Science.gov (United States)

    Vermeersch, K; Van Ham, L; Braund, K G; Bhatti, S; Tshamala, M; Chiers, K; Schrauwen, E

    2005-06-01

    A peripheral sensory neuropathy was diagnosed in two Border collie puppies. Neurological, electrophysiological and histopathological examinations suggested a purely sensory neuropathy with mainly distal involvement. Urinary incontinence was observed in one of the puppies and histological examination of the vagus nerve revealed degenerative changes. An inherited disorder was suspected.

  2. Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese.

    Science.gov (United States)

    Lessard, Marie-Hélène; Viel, Catherine; Boyle, Brian; St-Gelais, Daniel; Labrie, Steve

    2014-03-26

    Camembert-type cheese ripening is driven mainly by fungal microflora including Geotrichum candidum and Penicillium camemberti. These species are major contributors to the texture and flavour of typical bloomy rind cheeses. Biochemical studies showed that G. candidum reduces bitterness, enhances sulphur flavors through amino acid catabolism and has an impact on rind texture, firmness and thickness, while P. camemberti is responsible for the white and bloomy aspect of the rind, and produces enzymes involved in proteolysis and lipolysis activities. However, very little is known about the genetic determinants that code for these activities and their expression profile over time during the ripening process. The metatranscriptome of an industrial Canadian Camembert-type cheese was studied at seven different sampling days over 77 days of ripening. A database called CamemBank01 was generated, containing a total of 1,060,019 sequence tags (reads) assembled in 7916 contigs. Sequence analysis revealed that 57% of the contigs could be affiliated to molds, 16% originated from yeasts, and 27% could not be identified. According to the functional annotation performed, the predominant processes during Camembert ripening include gene expression, energy-, carbohydrate-, organic acid-, lipid- and protein- metabolic processes, cell growth, and response to different stresses. Relative expression data showed that these functions occurred mostly in the first two weeks of the ripening period. These data provide further advances in our knowledge about the biological activities of the dominant ripening microflora of Camembert cheese and will help select biological markers to improve cheese quality assessment.

  3. Human visual system automatically encodes sequential regularities of discrete events.

    Science.gov (United States)

    Kimura, Motohiro; Schröger, Erich; Czigler, István; Ohira, Hideki

    2010-06-01

    For our adaptive behavior in a dynamically changing environment, an essential task of the brain is to automatically encode sequential regularities inherent in the environment into a memory representation. Recent studies in neuroscience have suggested that sequential regularities embedded in discrete sensory events are automatically encoded into a memory representation at the level of the sensory system. This notion is largely supported by evidence from investigations using auditory mismatch negativity (auditory MMN), an event-related brain potential (ERP) correlate of an automatic memory-mismatch process in the auditory sensory system. However, it is still largely unclear whether or not this notion can be generalized to other sensory modalities. The purpose of the present study was to investigate the contribution of the visual sensory system to the automatic encoding of sequential regularities using visual mismatch negativity (visual MMN), an ERP correlate of an automatic memory-mismatch process in the visual sensory system. To this end, we conducted a sequential analysis of visual MMN in an oddball sequence consisting of infrequent deviant and frequent standard stimuli, and tested whether the underlying memory representation of visual MMN generation contains only a sensory memory trace of standard stimuli (trace-mismatch hypothesis) or whether it also contains sequential regularities extracted from the repetitive standard sequence (regularity-violation hypothesis). The results showed that visual MMN was elicited by first deviant (deviant stimuli following at least one standard stimulus), second deviant (deviant stimuli immediately following first deviant), and first standard (standard stimuli immediately following first deviant), but not by second standard (standard stimuli immediately following first standard). These results are consistent with the regularity-violation hypothesis, suggesting that the visual sensory system automatically encodes sequential

  4. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  5. Sensory Processing Subtypes in Autism: Association with Adaptive Behavior

    Science.gov (United States)

    Lane, Alison E.; Young, Robyn L.; Baker, Amy E. Z.; Angley, Manya T.

    2010-01-01

    Children with autism are frequently observed to experience difficulties in sensory processing. This study examined specific patterns of sensory processing in 54 children with autistic disorder and their association with adaptive behavior. Model-based cluster analysis revealed three distinct sensory processing subtypes in autism. These subtypes…

  6. The beauty of sensory ecology.

    Science.gov (United States)

    Otálora-Luna, Fernando; Aldana, Elis

    2017-08-10

    Sensory ecology is a discipline that focuses on how living creatures use information to survive, but not to live. By trans-defining the orthodox concept of sensory ecology, a serious heterodox question arises: how do organisms use their senses to live, i.e. to enjoy or suffer life? To respond to such a query the objective (time-independent) and emotional (non-rational) meaning of symbols must be revealed. Our program is distinct from both the neo-Darwinian and the classical ecological perspective because it does not focus on survival values of phenotypes and their functions, but asks for the aesthetic effect of biological structures and their symbolism. Our message recognizes that sensing apart from having a survival value also has a beauty value. Thus, we offer a provoking and inspiring new view on the sensory relations of 'living things' and their surroundings, where the innovating power of feelings have more weight than the privative power of reason.

  7. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  8. Emotional facilitation of sensory processing in the visual cortex.

    Science.gov (United States)

    Schupp, Harald T; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2003-01-01

    A key function of emotion is the preparation for action. However, organization of successful behavioral strategies depends on efficient stimulus encoding. The present study tested the hypothesis that perceptual encoding in the visual cortex is modulated by the emotional significance of visual stimuli. Event-related brain potentials were measured while subjects viewed pleasant, neutral, and unpleasant pictures. Early selective encoding of pleasant and unpleasant images was associated with a posterior negativity, indicating primary sources of activation in the visual cortex. The study also replicated previous findings in that affective cues also elicited enlarged late positive potentials, indexing increased stimulus relevance at higher-order stages of stimulus processing. These results support the hypothesis that sensory encoding of affective stimuli is facilitated implicitly by natural selective attention. Thus, the affect system not only modulates motor output (i.e., favoring approach or avoidance dispositions), but already operates at an early level of sensory encoding.

  9. Long-Range Regulatory Synergy Is Required to Allow Control of the TAC1 Locus by MEK/ERK Signalling in Sensory Neurones

    Directory of Open Access Journals (Sweden)

    Lynne Shanley

    2010-12-01

    Full Text Available Changes in the expression of the neuropeptide substance P (SP in different populations of sensory neurones are associated with the progression of chronic inflammatory disease. Thus, understanding the genomic and cellular mechanisms driving the expression of the TAC1 gene, which encodes SP, in sensory neurones is essential to understanding its role in inflammatory disease. We used a novel combination of computational genomics, primary-cell culture and mouse transgenics to determine the genomic and cellular mechanisms that control the expression of TAC1 in sensory neurones. Intriguingly, we demonstrated that the promoter of the TAC1 gene must act in synergy with a remote enhancer, identified using comparative genomics, to respond to MAPK signalling that modulates the expression of TAC1 in sensory neurones. We also reveal that noxious stimulation of sensory neurones triggers this synergy in larger diameter sensory neurones – an expression of SP associated with hyperalgesia. This noxious stimulation of TAC1 enhancer-promotor synergy could be strongly blocked by antagonism of the MEK pathway. This study provides a unique insight into the role of long-range enhancer-promoter synergy and selectivity in the tissue-specific response of promoters to specific signal transduction pathways and suggests a possible new avenue for the development of novel anti-inflammatory therapies.

  10. Sensory perception in autism.

    Science.gov (United States)

    Robertson, Caroline E; Baron-Cohen, Simon

    2017-11-01

    Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.

  11. UNCOMMON SENSORY METHODOLOGIES

    Directory of Open Access Journals (Sweden)

    Vladimír Vietoris

    2015-02-01

    Full Text Available Sensory science is the young but the rapidly developing field of the food industry. Actually, the great emphasis is given to the production of rapid techniques of data collection, the difference between consumers and trained panel is obscured and the role of sensory methodologists is to prepare the ways for evaluation, by which a lay panel (consumers can achieve identical results as a trained panel. Currently, there are several conventional methods of sensory evaluation of food (ISO standards, but more sensory laboratories are developing methodologies that are not strict enough in the selection of evaluators, their mechanism is easily understandable and the results are easily interpretable. This paper deals with mapping of marginal methods used in sensory evaluation of food (new types of profiles, CATA, TDS, napping.

  12. Probabilistic sensory recoding.

    Science.gov (United States)

    Jazayeri, Mehrdad

    2008-08-01

    A hallmark of higher brain functions is the ability to contemplate the world rather than to respond reflexively to it. To do so, the nervous system makes use of a modular architecture in which sensory representations are dissociated from areas that control actions. This flexibility however necessitates a recoding scheme that would put sensory information to use in the control of behavior. Sensory recoding faces two important challenges. First, recoding must take into account the inherent variability of sensory responses. Second, it must be flexible enough to satisfy the requirements of different perceptual goals. Recent progress in theory, psychophysics, and neurophysiology indicate that cortical circuitry might meet these challenges by evaluating sensory signals probabilistically.

  13. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation.

    Science.gov (United States)

    Bieszczad, Kasia M; Bechay, Kiro; Rusche, James R; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M; McGaugh, James L; Wood, Marcelo A

    2015-09-23

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. Significance statement: Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by

  14. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation

    Science.gov (United States)

    Bechay, Kiro; Rusche, James R.; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M.; McGaugh, James L.

    2015-01-01

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. SIGNIFICANCE STATEMENT Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by

  15. Encoding of Naturalistic Optic Flow by a Population of Blowfly Motion-Sensitive Neurons

    NARCIS (Netherlands)

    Karmeier, K.; Hateren, J.H. van; Kern, R.; Egelhaaf, M.

    In sensory systems information is encoded by the activity of populations of neurons. To analyze the coding properties of neuronal populations sensory stimuli have usually been used that were much simpler than those encountered in real life. It has been possible only recently to stimulate visual

  16. The synaptic pharmacology underlying sensory processing in the superior colliculus.

    Science.gov (United States)

    Binns, K E

    1999-10-01

    The superior colliculus (SC) is one of the most ancient regions of the vertebrate central sensory system. In this hub afferents from several sensory pathways converge, and an extensive range of neural circuits enable primary sensory processing, multi-sensory integration and the generation of motor commands for orientation behaviours. The SC has a laminar structure and is usually considered in two parts; the superficial visual layers and the deep multi-modal/motor layers. Neurones in the superficial layers integrate visual information from the retina, cortex and other sources, while the deep layers draw together data from many cortical and sub-cortical sensory areas, including the superficial layers, to generate motor commands. Functional studies in anaesthetized subjects and in slice preparations have used pharmacological tools to probe some of the SC's interacting circuits. The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers. N-methyl-D-aspartate receptors appear to have special responsibility for the temporal matching of retinal and cortical activity in the superficial layers and for the integration of multiple sensory data-streams in the deep layers. Sensory responses are shaped by intrinsic inhibitory mechanisms mediated by GABA(A) and GABA(B) receptors and influenced by nicotinic acetylcholine receptors. These sensory and motor-command activities of SC neurones are modulated by levels of arousal through extrinsic connections containing GABA, serotonin and other transmitters. It is possible to naturally stimulate many of the SC's sensory and non-sensory inputs either independently or simultaneously and this brain area is an ideal location in which to study: (a) interactions between inputs from the same sensory system; (b) the integration of inputs from several sensory systems; and (c) the influence of non-sensory systems on

  17. Efficiency turns the table on neural encoding, decoding and noise.

    Science.gov (United States)

    Deneve, Sophie; Chalk, Matthew

    2016-04-01

    Sensory neurons are usually described with an encoding model, for example, a function that predicts their response from the sensory stimulus using a receptive field (RF) or a tuning curve. However, central to theories of sensory processing is the notion of 'efficient coding'. We argue here that efficient coding implies a completely different neural coding strategy. Instead of a fixed encoding model, neural populations would be described by a fixed decoding model (i.e. a model reconstructing the stimulus from the neural responses). Because the population solves a global optimization problem, individual neurons are variable, but not noisy, and have no truly invariant tuning curve or receptive field. We review recent experimental evidence and implications for neural noise correlations, robustness and adaptation. Copyright © 2016. Published by Elsevier Ltd.

  18. Accessibility and sensory experiences

    DEFF Research Database (Denmark)

    Ryhl, Camilla

    2010-01-01

    and accessibility. Sensory accessibility accommodates aspects of a sensory disability and describes architectural design requirements needed to ensure access to architectural experiences. In the context of architecture accessibility has become a design concept of its own. It is generally described as ensuring...... physical access to the built environment by accommodating physical disabilities. While the existing concept of accessibility ensures the physical access of everyone to a given space, sensory accessibility ensures the choice of everyone to stay and be able to participate and experience....

  19. Dissociating sensory from decision processes in human perceptual decision making

    NARCIS (Netherlands)

    Mostert, P.; Kok, P.; Lange, F.P. de

    2015-01-01

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying

  20. Neuromorphic sensory systems.

    Science.gov (United States)

    Liu, Shih-Chii; Delbruck, Tobi

    2010-06-01

    Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.

  1. Sensory evaluation techniques

    National Research Council Canada - National Science Library

    Meilgaard, Morten; Civille, Gail Vance; Carr, B. Thomas

    1991-01-01

    ..., #2 as a textbook for courses at the academic level, it aims to provide just enough theoretical background to enable the student to understand which sensory methods are best suited to particular...

  2. William Carlos Williams’ cubism: The sensory dimension

    Directory of Open Access Journals (Sweden)

    J-L Kruger

    1995-05-01

    Full Text Available In this article the cubism of the American poet William Carlos Williams is discussed as a product of sensory elements combined with techniques derived from the work of the visual artists associated with this style. Through the study o f a number of poems written in the period between 1917 and 1923 it is shown that Williams employs the cubist intersection of sensory planes in particular to create a sensory dimension that not only renews the traditions and mode of poetry, but also reveals the cubist concern with the defamiliarization and foregrounding of fragments of everyday experiences. Ultimately the article is an attempt to indicate Williams’ incorporation o f a sensual dimension in creating a style that achieves modernist presentation revealing an independence from both traditional literary and visual styles.

  3. The Variant p.(Arg183Trp) in SPTLC2 Causes Late-Onset Hereditary Sensory Neuropathy.

    Science.gov (United States)

    Suriyanarayanan, Saranya; Auranen, Mari; Toppila, Jussi; Paetau, Anders; Shcherbii, Maria; Palin, Eino; Wei, Yu; Lohioja, Tarja; Schlotter-Weigel, Beate; Schön, Ulrike; Abicht, Angela; Rautenstrauss, Bernd; Tyynismaa, Henna; Walter, Maggie C; Hornemann, Thorsten; Ylikallio, Emil

    2016-03-01

    Hereditary sensory and autonomic neuropathy 1 (HSAN1) is an autosomal dominant disorder that can be caused by variants in SPTLC1 or SPTLC2, encoding subunits of serine palmitoyl-CoA transferase. Disease variants alter the enzyme's substrate specificity and lead to accumulation of neurotoxic 1-deoxysphingolipids. We describe two families with autosomal dominant HSAN1C caused by a new variant in SPTLC2, c.547C>T, p.(Arg183Trp). The variant changed a conserved amino acid and was not found in public variant databases. All patients had a relatively mild progressive distal sensory impairment, with onset after age 50. Small fibers were affected early, leading to abnormalities on quantitative sensory testing. Sural biopsy revealed a severe chronic axonal neuropathy with subtotal loss of myelinated axons, relatively preserved number of non-myelinated fibers and no signs for regeneration. Skin biopsy with PGP9.5 labeling showed lack of intraepidermal nerve endings early in the disease. Motor manifestations developed later in the disease course, but there was no evidence of autonomic involvement. Patients had elevated serum 1-deoxysphingolipids, and the variant protein produced elevated amounts of 1-deoxysphingolipids in vitro, which proved the pathogenicity of the variant. Our results expand the genetic spectrum of HSAN1C and provide further detail about the clinical characteristics. Sequencing of SPTLC2 should be considered in all patients presenting with mild late-onset sensory-predominant small or large fiber neuropathy.

  4. TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors

    Science.gov (United States)

    Low, Sean E.; Amburgey, Kimberly; Horstick, Eric; Linsley, Jeremy; Sprague, Shawn M.; Cui, Wilson W.; Zhou, Weibin; Hirata, Hiromi; Saint-Amant, Louis; Hume, Richard I.; Kuwada, John Y.

    2011-01-01

    Mutations in the gene encoding TRPM7 (trpm7), a member of the TRP superfamily of cation channels that possesses an enzymatically active kinase at its carboxyl terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations which abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons we found that TRPM7’s kinase activity, and selectivity for divalent cations over monovalent cations, were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses. PMID:21832193

  5. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    Science.gov (United States)

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  6. Cross-Sensory Correspondences: Heaviness is Dark and Low-Pitched.

    Science.gov (United States)

    Walker, Peter; Scallon, Gabrielle; Francis, Brian

    2017-07-01

    Everyday language reveals how stimuli encoded in one sensory feature domain can possess qualities normally associated with a different domain (e.g., higher pitch sounds are bright, light in weight, sharp, and thin). Such cross-sensory associations appear to reflect crosstalk among aligned (corresponding) feature dimensions, including brightness, heaviness, and sharpness. Evidence for heaviness being one such dimension is very limited, with heaviness appearing primarily as a verbal associate of other feature contrasts (e.g., darker objects and lower pitch sounds are heavier than their opposites). Given the presumed bidirectionality of the crosstalk between corresponding dimensions, heaviness should itself induce the cross-sensory associations observed elsewhere, including with brightness and pitch. Taking care to dissociate effects arising from the size and mass of an object, this is confirmed. When hidden objects varying independently in size and mass are lifted, objects that feel heavier are judged to be darker and to make lower pitch sounds than objects feeling less heavy. These judgements track the changes in perceived heaviness induced by the size-weight illusion. The potential involvement of language, natural scene statistics, and Bayesian processes in correspondences, and the effects they induce, is considered.

  7. Landscape encodings enhance optimization.

    Directory of Open Access Journals (Sweden)

    Konstantin Klemm

    Full Text Available Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state.

  8. Landscape Encodings Enhance Optimization

    Science.gov (United States)

    Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.

    2012-01-01

    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860

  9. Blind encoding into qudits

    International Nuclear Information System (INIS)

    Shaari, J.S.; Wahiddin, M.R.B.; Mancini, S.

    2008-01-01

    We consider the problem of encoding classical information into unknown qudit states belonging to any basis, of a maximal set of mutually unbiased bases, by one party and then decoding by another party who has perfect knowledge of the basis. Working with qudits of prime dimensions, we point out a no-go theorem that forbids 'shift' operations on arbitrary unknown states. We then provide the necessary conditions for reliable encoding/decoding

  10. An encoding device and a method of encoding

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an encoding device, such as an optical position encoder, for encoding input from an object, and a method for encoding input from an object, for determining a position of an object that interferes with light of the device. The encoding device comprises a light source...... in the area in the space and may interfere with the light, which interference may be encoded into a position or activation....

  11. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    Science.gov (United States)

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  12. Novel mutation in the replication focus targeting sequence domain of DNMT1 causes hereditary sensory and autonomic neuropathy IE.

    Science.gov (United States)

    Yuan, Junhui; Higuchi, Yujiro; Nagado, Tatsui; Nozuma, Satoshi; Nakamura, Tomonori; Matsuura, Eiji; Hashiguchi, Akihiro; Sakiyama, Yusuke; Yoshimura, Akiko; Takashima, Hiroshi

    2013-03-01

    DNMT1, encoding DNA methyltransferase 1 (Dnmt1), is a critical enzyme which is mainly responsible for conversion of unmethylated DNA into hemimethylated DNA. To date, two phenotypes produced by DNMT1 mutations have been reported, including hereditary sensory and autonomic neuropathy (HSAN) type IE with mutations in exon 20, and autosomal dominant cerebellar ataxia, deafness, and narcolepsy caused by mutations in exon 21. We report a sporadic case in a Japanese patient with loss of pain and vibration sense, chronic osteomyelitis, autonomic system dysfunctions, hearing loss, and mild dementia, but without definite cerebellar ataxia. Electrophysiological studies revealed absent sensory nerve action potential with nearly normal motor nerve conduction studies. Brain magnetic resonance imaging revealed mild diffuse cerebral and cerebellar atrophy. Using a next-generation sequencing system, 16 candidate genes were analyzed and a novel missense mutation, c.1706A>G (p.His569Arg), was identified in exon 21 of DNMT1. Our findings suggest that mutation in exon 21 of DNMT1 may also produce a HSAN phenotype. Because all reported mutations of DNMT1 are concentrated in exons 20 and 21, which encode the replication focus targeting sequence (RFTS) domain of Dnmt1, the RFTS domain could be a mutation hot spot. © 2013 Peripheral Nerve Society.

  13. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  14. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  15. Physico-Chemical Analysis and Sensory Evaluation of Bread

    African Journals Online (AJOL)

    Shuaibu et al.

    Physico-Chemical Analysis and Sensory Evaluation of Bread Produced Using ... analysis of the bread samples revealed that the moisture content ..... 72. Jarup, L. ,2003. Hazards of heavy metal contamination. Br Med. Bull; 68, pp.167-82.

  16. Neural Correlates of Sensory Substitution in Vestibular Pathways Following Complete Vestibular Loss

    Science.gov (United States)

    Sadeghi, Soroush G.; Minor, Lloyd B.; Cullen, Kathleen E.

    2012-01-01

    Sensory substitution is the term typically used in reference to sensory prosthetic devices designed to replace input from one defective modality with input from another modality. Such devices allow an alternative encoding of sensory information that is no longer directly provided by the defective modality in a purposeful and goal-directed manner. The behavioral recovery that follows complete vestibular loss is impressive and has long been thought to take advantage of a natural form of sensory substitution in which head motion information is no longer provided by vestibular inputs, but instead by extra-vestibular inputs such as proprioceptive and motor efference copy signals. Here we examined the neuronal correlates of this behavioral recovery after complete vestibular loss in alert behaving monkeys (Macaca mulata). We show for the first time that extra-vestibular inputs substitute for the vestibular inputs to stabilize gaze at the level of single neurons in the VOR premotor circuitry. The summed weighting of neck proprioceptive and efference copy information was sufficient to explain simultaneously observed behavioral improvements in gaze stability. Furthermore, by altering correspondence between intended and actual head movement we revealed a four-fold increase in the weight of neck motor efference copy signals consistent with the enhanced behavioral recovery observed when head movements are voluntary versus unexpected. Thus, taken together our results provide direct evidence that the substitution by extra-vestibular inputs in vestibular pathways provides a neural correlate for the improvements in gaze stability that are observed following the total loss of vestibular inputs. PMID:23077054

  17. Studying Sensory Perception.

    Science.gov (United States)

    Ackerly, Spafford C.

    2001-01-01

    Explains the vestibular organ's role in balancing the body and stabilizing the visual world using the example of a hunter. Describes the relationship between sensory perception and learning. Recommends using optical illusions to illustrate the distinctions between external realities and internal perceptions. (Contains 13 references.) (YDS)

  18. Transcendence and Sensoriness

    DEFF Research Database (Denmark)

    Protestant theology and culture are known for a reserved, at times skeptical, attitude to the use of art and aesthetic forms of expression in a religious context. In Transcendence and Sensoriness, this attitude is analysed and discussed both theoretically and through case studies considered...

  19. Sensory matched filters.

    Science.gov (United States)

    Warrant, Eric J

    2016-10-24

    As animals move through their environments they are subjected to an endless barrage of sensory signals. Of these, some will be of utmost importance, such as the tell-tale aroma of a potential mate, the distinctive appearance of a vital food source or the unmistakable sound of an approaching predator. Others will be less important. Indeed some will not be important at all. There are, for instance, wide realms of the sensory world that remain entirely undetected, simply because an animal lacks the physiological capacity to detect and analyse the signals that characterise this realm. Take ourselves for example: we are completely insensitive to the Earth's magnetic field, a sensory cue of vital importance as a compass for steering the long distance migration of animals as varied as birds, lobsters and sea turtles. We are also totally oblivious to the rich palette of ultraviolet colours that exist all around us, colours seen by insects, crustaceans, birds, fish and lizards (in fact perhaps by most animals). Nor can we hear the ultrasonic sonar pulses emitted by bats in hot pursuit of flying insect prey. The simple reason for these apparent deficiencies is that we either lack the sensory capacity entirely (as in the case of magnetoreception) or that our existing senses are incapable of detecting specific ranges of the stimulus (such as the ultraviolet wavelength range of light). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Multiple Regions of a Cortical Network Commonly Encode the Meaning of Words in Multiple Grammatical Positions of Read Sentences.

    Science.gov (United States)

    Anderson, Andrew James; Lalor, Edmund C; Lin, Feng; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Raizada, Rajeev D S; Grimm, Scott; Wang, Xixi

    2018-05-16

    Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents). Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of semantic representation. This suggests that sentence comprehension involves a common core representation of multiple words' meaning being encoded in a network of regions distributed across the brain.

  1. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila.

    Science.gov (United States)

    Aso, Yoshinori; Sitaraman, Divya; Ichinose, Toshiharu; Kaun, Karla R; Vogt, Katrin; Belliart-Guérin, Ghislain; Plaçais, Pierre-Yves; Robie, Alice A; Yamagata, Nobuhiro; Schnaitmann, Christopher; Rowell, William J; Johnston, Rebecca M; Ngo, Teri-T B; Chen, Nan; Korff, Wyatt; Nitabach, Michael N; Heberlein, Ulrike; Preat, Thomas; Branson, Kristin M; Tanimoto, Hiromu; Rubin, Gerald M

    2014-12-23

    Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.

  2. Neural correlates supporting sensory discrimination after left hemisphere stroke

    Science.gov (United States)

    Borstad, Alexandra; Schmalbrock, Petra; Choi, Seongjin; Nichols-Larsen, Deborah S.

    2012-01-01

    Background Nearly half of stroke patients have impaired sensory discrimination, however, the neural structures that support post-stroke sensory function have not been described. Objectives 1) To evaluate the role of the primary somatosensory (S1) cortex in post-stroke sensory discrimination and 2) To determine the relationship between post-stroke sensory discrimination and structural integrity of the sensory component of the superior thalamic radiation (sSTR). Methods 10 healthy adults and 10 individuals with left hemisphere stroke participated. Stroke participants completed sensory discrimination testing. An fMRI was conducted during right, impaired hand sensory discrimination. Fractional anisotropy and volume of the sSTR were quantified using diffusion tensor tractography. Results Sensory discrimination was impaired in 60% of participants with left stroke. Peak activation in the left (S1) did not correlate with sensory discrimination ability, rather a more distributed pattern of activation was evident in post-stroke subjects with a positive correlation between peak activation in the parietal cortex and discrimination ability (r=.70, p=.023). The only brain region in which stroke participants had significantly different cortical activation than control participants was the precuneus. Region of interest analysis of the precuneus across stroke participants revealed a positive correlation between peak activation and sensory discrimination ability (r=.77, p=.008). The L/R ratio of sSTR fractional anisotropy also correlated with right hand sensory discrimination (r=.69, p=.027). Conclusions Precuneus cortex, distributed parietal lobe activity, and microstructure of the sSTR support sensory discrimination after left hemisphere stroke. PMID:22592076

  3. Noise and neuronal populations conspire to encode simple waveforms reliably

    Science.gov (United States)

    Parnas, B. R.

    1996-01-01

    Sensory systems rely on populations of neurons to encode information transduced at the periphery into meaningful patterns of neuronal population activity. This transduction occurs in the presence of intrinsic neuronal noise. This is fortunate. The presence of noise allows more reliable encoding of the temporal structure present in the stimulus than would be possible in a noise-free environment. Simulations with a parallel model of signal processing at the auditory periphery have been used to explore the effects of noise and a neuronal population on the encoding of signal information. The results show that, for a given set of neuronal modeling parameters and stimulus amplitude, there is an optimal amount of noise for stimulus encoding with maximum fidelity.

  4. Shared Neural Mechanisms for the Evaluation of Intense Sensory Stimulation and Economic Reward, Dependent on Stimulation-Seeking Behavior.

    Science.gov (United States)

    Norbury, Agnes; Valton, Vincent; Rees, Geraint; Roiser, Jonathan P; Husain, Masud

    2016-09-28

    Why are some people strongly motivated by intense sensory experiences? Here we investigated how people encode the value of an intense sensory experience compared with economic reward, and how this varies according to stimulation-seeking preference. Specifically, we used a novel behavioral task in combination with computational modeling to derive the value individuals assigned to the opportunity to experience an intense tactile stimulus (mild electric shock). We then examined functional imaging data recorded during task performance to see how the opportunity to experience the sensory stimulus was encoded in stimulation-seekers versus stimulation-avoiders. We found that for individuals who positively sought out this kind of sensory stimulation, there was common encoding of anticipated economic and sensory rewards in the ventromedial prefrontal cortex. Conversely, there was robust encoding of the modeled probability of receiving such stimulation in the insula only in stimulation-avoidant individuals. Finally, we found preliminary evidence that sensory prediction error signals may be positively signed for stimulation-seekers, but negatively signed for stimulation-avoiders, in the posterior cingulate cortex. These findings may help explain why high intensity sensory experiences are appetitive for some individuals, but not for others, and may have relevance for the increased vulnerability for some psychopathologies, but perhaps increased resilience for others, in high sensation-seeking individuals. People vary in their preference for intense sensory experiences. Here, we investigated how different individuals evaluate the prospect of an unusual sensory experience (electric shock), compared with the opportunity to gain a more traditional reward (money). We found that in a subset of individuals who sought out such unusual sensory stimulation, anticipation of the sensory outcome was encoded in the same way as that of monetary gain, in the ventromedial prefrontal cortex

  5. Two Pathways to Stimulus Encoding in Category Learning?

    Science.gov (United States)

    Davis, Tyler; Love, Bradley C.; Maddox, W. Todd

    2008-01-01

    Category learning theorists tacitly assume that stimuli are encoded by a single pathway. Motivated by theories of object recognition, we evaluate a dual-pathway account of stimulus encoding. The part-based pathway establishes mappings between sensory input and symbols that encode discrete stimulus features, whereas the image-based pathway applies holistic templates to sensory input. Our experiments use rule-plus-exception structures in which one exception item in each category violates a salient regularity and must be distinguished from other items. In Experiment 1, we find that discrete representations are crucial for recognition of exceptions following brief training. Experiments 2 and 3 involve multi-session training regimens designed to encourage either part or image-based encoding. We find that both pathways are able to support exception encoding, but have unique characteristics. We speculate that one advantage of the part-based pathway is the ability to generalize across domains, whereas the image-based pathway provides faster and more effortless recognition. PMID:19460948

  6. The neural encoding of guesses in the human brain.

    Science.gov (United States)

    Bode, Stefan; Bogler, Carsten; Soon, Chun Siong; Haynes, John-Dylan

    2012-01-16

    Human perception depends heavily on the quality of sensory information. When objects are hard to see we often believe ourselves to be purely guessing. Here we investigated whether such guesses use brain networks involved in perceptual decision making or independent networks. We used a combination of fMRI and pattern classification to test how visibility affects the signals, which determine choices. We found that decisions regarding clearly visible objects are predicted by signals in sensory brain regions, whereas different regions in parietal cortex became predictive when subjects were shown invisible objects and believed themselves to be purely guessing. This parietal network was highly overlapping with regions, which have previously been shown to encode free decisions. Thus, the brain might use a dedicated network for determining choices when insufficient sensory information is available. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Descriptive sensory evaluations

    DEFF Research Database (Denmark)

    Dehlholm, Christian

    A recent trend in descriptive sensory evaluation methodology has been the application of rapid evaluation techniques. The ease in use makes the techniques extremely easy to implement by industry and university environments. Thus, one might not consider validity in the choice of method. The overall...... aim of this thesis is to compare and evaluate selected rapid evaluation techniques for sensory profiling. Method variations have been suggested for evaluations in product development and quality control, and method insight is provided. The thesis includes three original studies, designed...... as a consequence of the current practices and needs faced in the industry. Study I compared applicability and validity of rapid methods across several panels of trained assessors. Two rapid approaches were introduced for the evaluation of foods. The first method, ‘Free Multiple Sorting’, allows subjects to perform...

  8. Molecular evidence for the coordination of nitrogen and carbon metabolisms, revealed by a study on the transcriptional regulation of the agl3EFG operon that encodes a putative carbohydrate transporter in Streptomyces coelicolor.

    Science.gov (United States)

    Cen, Xu-Feng; Wang, Jing-Zhi; Zhao, Guo-Ping; Wang, Ying; Wang, Jin

    2016-03-18

    In the agl3EFGXYZ operon (SCO7167-SCO7162, abbreviated as agl3 operon) of Streptomyces coelicolor M145, agl3EFG genes encode a putative ABC-type carbohydrate transporter. The transcription of this operon has been proved to be repressed by Agl3R (SCO7168), a neighboring GntR-family regulator, and this repression can be released by growth on poor carbon sources. Here in this study, we prove that the transcription of agl3 operon is also directly repressed by GlnR, a central regulator governing the nitrogen metabolism in S. coelicolor. The electrophoretic mobility shift assay (EMSA) employing the agl3 promoter and mixtures of purified recombinant GlnR and Agl3R indicates that GlnR and Agl3R bind to different DNA sequences within the promoter region of agl3 operon, which is further confirmed by the DNase I footprinting assay. As Agl3R and GlnR have been demonstrated to sense the extracellular carbon and nitrogen supplies, respectively, it is hypothesized that the transcription of agl3 operon is stringently governed by the availabilities of extracellular carbon and nitrogen sources. Consistent with the hypothesis, the agl3 operon is further found to be derepressed only under the condition of poor carbon and rich nitrogen supplies, when both regulators are inactivated. It is believed that activation of the expression of agl3 operon may facilitate the absorption of extracellular carbohydrates to balance the ratio of intracellular carbon to nitrogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Attention modulates sensory suppression during back movements.

    Science.gov (United States)

    Van Hulle, Lore; Juravle, Georgiana; Spence, Charles; Crombez, Geert; Van Damme, Stefaan

    2013-06-01

    Tactile perception is often impaired during movement. The present study investigated whether such sensory suppression also occurs during back movements, and whether this would be modulated by attention. In two tactile detection experiments, participants simultaneously engaged in a movement task, in which they executed a back-bending movement, and a perceptual task, consisting of the detection of subtle tactile stimuli administered to their upper or lower back. The focus of participants' attention was manipulated by raising the probability that one of the back locations would be stimulated. The results revealed that tactile detection was suppressed during the execution of the back movements. Furthermore, the results of Experiment 2 revealed that when the stimulus was always presented to the attended location, tactile suppression was substantially reduced, suggesting that sensory suppression can be modulated by top-down attentional processes. The potential of this paradigm for studying tactile information processing in clinical populations is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.

    Science.gov (United States)

    Cullen, Kathleen E; Brooks, Jessica X

    2015-02-01

    During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new

  11. Regulation of the Na,K-ATPase gamma-subunit FXYD2 by Runx1 and Ret signaling in normal and injured non-peptidergic nociceptive sensory neurons.

    Directory of Open Access Journals (Sweden)

    Stéphanie Ventéo

    Full Text Available Dorsal root ganglia (DRGs contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury.

  12. Effects of Arousal on Mouse Sensory Cortex Depend on Modality

    Directory of Open Access Journals (Sweden)

    Daisuke Shimaoka

    2018-03-01

    Full Text Available Summary: Changes in arousal modulate the activity of mouse sensory cortex, but studies in different mice and different sensory areas disagree on whether this modulation enhances or suppresses activity. We measured this modulation simultaneously in multiple cortical areas by imaging mice expressing voltage-sensitive fluorescent proteins (VSFP. VSFP imaging estimates local membrane potential across large portions of cortex. We used temporal filters to predict local potential from running speed or from pupil dilation, two measures of arousal. The filters provided good fits and revealed that the effects of arousal depend on modality. In the primary visual cortex (V1 and auditory cortex (Au, arousal caused depolarization followed by hyperpolarization. In the barrel cortex (S1b and a secondary visual area (LM, it caused only hyperpolarization. In all areas, nonetheless, arousal reduced the phasic responses to trains of sensory stimuli. These results demonstrate diverse effects of arousal across sensory cortex but similar effects on sensory responses. : Shimaoka et al. use voltage-sensitive imaging to show that the effects of arousal on the mouse cortex are markedly different across areas and over time. In all the sensory areas studied, nonetheless, arousal reduced the phasic voltage responses to trains of sensory stimuli. Keywords: cerebral cortex, cortical state, locomotion, sensory processing, widefield imaging

  13. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2.

    Science.gov (United States)

    Rivière, Jean-Baptiste; Ramalingam, Siriram; Lavastre, Valérie; Shekarabi, Masoud; Holbert, Sébastien; Lafontaine, Julie; Srour, Myriam; Merner, Nancy; Rochefort, Daniel; Hince, Pascale; Gaudet, Rébecca; Mes-Masson, Anne-Marie; Baets, Jonathan; Houlden, Henry; Brais, Bernard; Nicholson, Garth A; Van Esch, Hilde; Nafissi, Shahriar; De Jonghe, Peter; Reilly, Mary M; Timmerman, Vincent; Dion, Patrick A; Rouleau, Guy A

    2011-08-12

    Hereditary sensory and autonomic neuropathy type II (HSANII) is a rare autosomal-recessive disorder characterized by peripheral nerve degeneration resulting in a severe distal sensory loss. Although mutations in FAM134B and the HSN2 exon of WNK1 were associated with HSANII, the etiology of a substantial number of cases remains unexplained. In addition, the functions of WNK1/HSN2 and FAM134B and their role in the peripheral nervous system remain poorly understood. Using a yeast two-hybrid screen, we found that KIF1A, an axonal transporter of synaptic vesicles, interacts with the domain encoded by the HSN2 exon. In parallel to this screen, we performed genome-wide homozygosity mapping in a consanguineous Afghan family affected by HSANII and identified a unique region of homozygosity located on chromosome 2q37.3 and spanning the KIF1A gene locus. Sequencing of KIF1A in this family revealed a truncating mutation segregating with the disease phenotype. Subsequent sequencing of KIF1A in a series of 112 unrelated patients with features belonging to the clinical spectrum of ulcero-mutilating sensory neuropathies revealed truncating mutations in three additional families, thus indicating that mutations in KIF1A are a rare cause of HSANII. Similarly to WNK1 mutations, pathogenic mutations in KIF1A were almost exclusively restricted to an alternatively spliced exon. This study provides additional insights into the molecular pathogenesis of HSANII and highlights the potential biological relevance of alternative splicing in the peripheral sensory nervous system. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Dissociating sensory from decision processes in human perceptual decision making

    OpenAIRE

    Mostert, Pim; Kok, Peter; de Lange, Floris P.

    2015-01-01

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a funct...

  15. a permutation encoding te algorithm solution of reso tation encoding

    African Journals Online (AJOL)

    eobe

    Keywords: Genetic algorithm, resource constrained. 1. INTRODUCTION. 1. .... Nigerian Journal of Technology. Vol. 34, No. 1, January 2015. 128 ... 4. ENCODING OF CHROMOSOME. ENCODING OF CHROMOSOME .... International Multi conference of Engineers and ... method”, Naval Research Logistics, vol 48, issue 2,.

  16. Creativity and sensory gating indexed by the P50: selective versus leaky sensory gating in divergent thinkers and creative achievers.

    Science.gov (United States)

    Zabelina, Darya L; O'Leary, Daniel; Pornpattananangkul, Narun; Nusslock, Robin; Beeman, Mark

    2015-03-01

    Creativity has previously been linked with atypical attention, but it is not clear what aspects of attention, or what types of creativity are associated. Here we investigated specific neural markers of a very early form of attention, namely sensory gating, indexed by the P50 ERP, and how it relates to two measures of creativity: divergent thinking and real-world creative achievement. Data from 84 participants revealed that divergent thinking (assessed with the Torrance Test of Creative Thinking) was associated with selective sensory gating, whereas real-world creative achievement was associated with "leaky" sensory gating, both in zero-order correlations and when controlling for academic test scores in a regression. Thus both creativity measures related to sensory gating, but in opposite directions. Additionally, divergent thinking and real-world creative achievement did not interact in predicting P50 sensory gating, suggesting that these two creativity measures orthogonally relate to P50 sensory gating. Finally, the ERP effect was specific to the P50 - neither divergent thinking nor creative achievement were related to later components, such as the N100 and P200. Overall results suggest that leaky sensory gating may help people integrate ideas that are outside of focus of attention, leading to creativity in the real world; whereas divergent thinking, measured by divergent thinking tests which emphasize numerous responses within a limited time, may require selective sensory processing more than previously thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Endogenous opioids encode relative taste preference.

    Science.gov (United States)

    Taha, Sharif A; Norsted, Ebba; Lee, Lillian S; Lang, Penelope D; Lee, Brian S; Woolley, Joshua D; Fields, Howard L

    2006-08-01

    Endogenous opioid signaling contributes to the neural control of food intake. Opioid signaling is thought to regulate palatability, the reward value of a food item as determined by orosensory cues such as taste and texture. The reward value of a food reflects not only these sensory properties but also the relative value of competing food choices. In the present experiment, we used a consummatory contrast paradigm to manipulate the relative value of a sucrose solution for two groups of rats. Systemic injection of the nonspecific opioid antagonist naltrexone suppressed sucrose intake; for both groups, however, this suppression was selective, occurring only for the relatively more valuable sucrose solution. Our results indicate that endogenous opioid signaling contributes to the encoding of relative reward value.

  18. The changing sensory room

    DEFF Research Database (Denmark)

    2018-01-01

    In 2017 the kindergarten The Milky Way in the city Vejle in Denmark made a sensory room that has the special ability change whenever wanted by the children and social educators. Kjetil Sandvik (to the right) from Copenhagen University and Klaus Thestrup from Aarhus University reflects upon what...... they saw, took part in and talked with the social educators about. Jacob Knudsen from VIFIN filmed the two gentlemen and organised the project. it is a room composed around common experiments, many self-made objects, open narrative structures. and a combination of digital and analogue elements....

  19. Parallel encoders for pixel detectors

    International Nuclear Information System (INIS)

    Nikityuk, N.M.

    1991-01-01

    A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs

  20. [Neurophysiological investigations of information processing in the somato-sensory system].

    Science.gov (United States)

    Kunesch, E

    2009-08-01

    The ability of the human hand to perform complex sensorimotor tasks such as tactile exploration and grasping is based on 1. exact encoding of somatosensory information by cutaneous mechanoreceptors, 2. elaborated processing of afferent signals in somatosensory relay stations and cortex fields, 3. rapid and effective interaction of sensory feedback with motor programs, and 4. different modes of sensory control, which can be switched over. (c) Georg Thieme Verlag KG Stuttgart-New York.

  1. Goldberg-Shprintzen megacolon syndrome with associated sensory motor axonal neuropathy.

    Science.gov (United States)

    Dafsari, Hormos Salimi; Byrne, Susan; Lin, Jean-Pierre; Pitt, Matthew; Jongbloed, Jan Dh; Flinter, Frances; Jungbluth, Heinz

    2015-06-01

    Goldberg-Shprintzen megacolon syndrome (GOSHS) (OMIM 609460) is characterized by a combination of learning difficulties, characteristic dysmorphic features and Hirschsprung's disease. Variable clinical features include iris coloboma, congenital heart defects and central nervous system abnormalities, in particular polymicrogyria. GOSHS has been attributed to recessive mutations in KIAA1279, encoding kinesin family member (KIF)-binding protein (KBP) with a crucial role in neuronal microtubule dynamics. Here we report on a 7-year-old girl with GOSHS as a result of a homozygous deletion of exons 5 and 6 of the KIAA1279 gene. She had been referred with the suspicion of an underlying neuromuscular disorder before the genetic diagnosis was established, prompted by the findings of motor developmental delay, hypotonia, ptosis and absent reflexes. Neurophysiological studies revealed unequivocal evidence of a peripheral axonal sensory motor neuropathy. We hypothesize that an axonal sensory motor neuropathy may be part of the phenotypical spectrum of KIAA1279-related GOSHS, probably reflecting the effects of reduced KBP protein expression on peripheral neuronal function. © 2015 Wiley Periodicals, Inc.

  2. Dynamical encoding of looming, receding, and focussing

    Science.gov (United States)

    Longtin, Andre; Clarke, Stephen Elisha; Maler, Leonard; CenterNeural Dynamics Collaboration

    This talk will discuss a non-conventional neural coding task that may apply more broadly to many senses in higher vertebrates. We ask whether and how a non-visual sensory system can focus on an object. We present recent experimental and modeling work that shows how the early sensory circuitry of electric sense can perform such neuronal focusing that is manifested behaviorally. This sense is the main one used by weakly electric fish to navigate, locate prey and communicate in the murky waters of their natural habitat. We show that there is a distance at which the Fisher information of a neuron's response to a looming and receding object is maximized, and that this distance corresponds to a behaviorally relevant one chosen by these animals. Strikingly, this maximum occurs at a bifurcation between tonic firing and bursting. We further discuss how the invariance of this distance to signal attributes can arise, a process that first involves power-law spike frequency adaptation. The talk will also highlight the importance of expanding the classic dual neural encoding of contrast using ON and OFF cells in the context of looming and receding stimuli. The authors acknowledge support from CIHR and NSERC.

  3. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  4. Audiovisual semantic congruency during encoding enhances memory performance.

    Science.gov (United States)

    Heikkilä, Jenni; Alho, Kimmo; Hyvönen, Heidi; Tiippana, Kaisa

    2015-01-01

    Studies of memory and learning have usually focused on a single sensory modality, although human perception is multisensory in nature. In the present study, we investigated the effects of audiovisual encoding on later unisensory recognition memory performance. The participants were to memorize auditory or visual stimuli (sounds, pictures, spoken words, or written words), each of which co-occurred with either a semantically congruent stimulus, incongruent stimulus, or a neutral (non-semantic noise) stimulus in the other modality during encoding. Subsequent memory performance was overall better when the stimulus to be memorized was initially accompanied by a semantically congruent stimulus in the other modality than when it was accompanied by a neutral stimulus. These results suggest that semantically congruent multisensory experiences enhance encoding of both nonverbal and verbal materials, resulting in an improvement in their later recognition memory.

  5. SENSORY AND CONSUMER TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — These laboratories conduct a wide range of studies to characterize the sensory properties of and consumer responses to foods, beverages, and other consumer products....

  6. Variable sensory perception in autism.

    Science.gov (United States)

    Haigh, Sarah M

    2018-03-01

    Autism is associated with sensory and cognitive abnormalities. Individuals with autism generally show normal or superior early sensory processing abilities compared to healthy controls, but deficits in complex sensory processing. In the current opinion paper, it will be argued that sensory abnormalities impact cognition by limiting the amount of signal that can be used to interpret and interact with environment. There is a growing body of literature showing that individuals with autism exhibit greater trial-to-trial variability in behavioural and cortical sensory responses. If multiple sensory signals that are highly variable are added together to process more complex sensory stimuli, then this might destabilise later perception and impair cognition. Methods to improve sensory processing have shown improvements in more general cognition. Studies that specifically investigate differences in sensory trial-to-trial variability in autism, and the potential changes in variability before and after treatment, could ascertain if trial-to-trial variability is a good mechanism to target for treatment in autism. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. HIV Associated Sensory Neuropathy.

    Science.gov (United States)

    G, Amruth; S, Praveen-Kumar; B, Nataraju; Bs, Nagaraja

    2014-07-01

    In the era of highly active antiretroviral therapy, sensory neuropathies have increased in prevalence. We have documented the frequency and profile of the two most common forms of sensory neuropathies associated with Human Immunodeficiency Virus (HIV) infection and looked into clinicoelectrophysiological correlates to differentiate the two entities. The study population comprised of all consecutive patients detected to be HIV positive and attending the Neurology outpatient department (from March 2011 to March 2012) who were aged ≥ 18 years and were able to give informed consent. The data were collected from the patient records (including CD4 counts and treatment details) and questionnaire based interview with each patient. All patients underwent detailed clinical examination and nerve conduction studies (NCSs). Among the total study population of 50 patients, there were 31 men and 19 women. Thirty two patients were in age range of 21 - 40 years and rest were above 40 years. 25 were on antiretroviral therapy (18 on regimen containing zidovudine; seven on regimen containing stavudine). The mean duration of antiretroviral therapy was 16.6±8.4 months. Low CD4 counts ( 40 years. Subclinical neuropathy was common in those on antiretroviral therapy. Axonal neuropathy was the commonest pattern noted in patients who were receiving antiretroviral therapy and demyelinating neuropathy in patients not on antiretroviral therapy. Surprisingly no significant correlation was found between low CD4 counts and symptomatic neuropathy.

  8. Dynamic encoding of speech sequence probability in human temporal cortex.

    Science.gov (United States)

    Leonard, Matthew K; Bouchard, Kristofer E; Tang, Claire; Chang, Edward F

    2015-05-06

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. Copyright © 2015 the authors 0270-6474/15/357203-12$15.00/0.

  9. The critical events for motor-sensory temporal recalibration

    Directory of Open Access Journals (Sweden)

    Derek Henry Arnold

    2012-08-01

    Full Text Available Determining if we, or another agent, were responsible for a sensory event can require an accurate sense of timing. Our sense of appropriate timing relationships must, however, be malleable as there is a variable delay between the physical timing of an event and when sensory signals concerning that event are encoded in the brain. One dramatic demonstration of such malleability involves having people repeatedly press a button thereby causing a beep. If a delay is inserted between button presses and beeps, when it is subsequently taken away beeps can seem to precede the button presses that caused them. For this to occur it is important that people feel they were responsible for instigating the beeps. In terms of their timing, as yet it is not clear what combination of events is important for motor-sensory temporal recalibration. Here, by introducing ballistic reaches of short or longer extent before a button press, we varied the delay between the intention to act and the sensory consequence of that action. This manipulation failed to modulate recalibration magnitude. By contrast, introducing a similarly lengthened delay between button presses and consequent beeps eliminated recalibration. Thus it would seem that the critical timing relationship for motor-sensory temporal recalibration is between tactile signals relating to the completion of an action and the subsequent auditory percept.

  10. Cloning, expression and characterisation of a novel gene encoding ...

    African Journals Online (AJOL)

    微软用户

    2012-01-12

    Jan 12, 2012 ... ... characterisation of a novel gene encoding a chemosensory protein from Bemisia ... The genomic DNA sequence comparisons revealed a 1490 bp intron ... have several conserved sequence motifs, including the. N-terminal ...

  11. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning.

    Science.gov (United States)

    Iglesias, Sandra; Mathys, Christoph; Brodersen, Kay H; Kasper, Lars; Piccirelli, Marco; den Ouden, Hanneke E M; Stephan, Klaas E

    2013-10-16

    In Bayesian brain theories, hierarchically related prediction errors (PEs) play a central role for predicting sensory inputs and inferring their underlying causes, e.g., the probabilistic structure of the environment and its volatility. Notably, PEs at different hierarchical levels may be encoded by different neuromodulatory transmitters. Here, we tested this possibility in computational fMRI studies of audio-visual learning. Using a hierarchical Bayesian model, we found that low-level PEs about visual stimulus outcome were reflected by widespread activity in visual and supramodal areas but also in the midbrain. In contrast, high-level PEs about stimulus probabilities were encoded by the basal forebrain. These findings were replicated in two groups of healthy volunteers. While our fMRI measures do not reveal the exact neuron types activated in midbrain and basal forebrain, they suggest a dichotomy between neuromodulatory systems, linking dopamine to low-level PEs about stimulus outcome and acetylcholine to more abstract PEs about stimulus probabilities. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Sensory characteristics of camphor.

    Science.gov (United States)

    Green, B G

    1990-05-01

    The perceptual effects of camphor on hairy skin were measured in a psychophysical experiment. Subjects rated the intensity and quality of sensations produced when a solution of 20% camphor (in a vehicle of ethanol and deionized H2O) was applied topically to the volar forearm. Under conditions in which skin temperature was varied either from 33-43 degrees C or from 33-18 degrees C, it was found that camphor increased the perceived intensity of the cutaneous sensations produced during heating and cooling. Although camphor's effect appeared to be greater during warming, neither effect was large. Camphor also produced a significant increase in the frequency of reports of "burning." It is concluded that camphor is a relatively weak sensory irritant that may have a modest excitatory effect on thermosensitive (and perhaps nociceptive) cutaneous fibers.

  13. Assessment of Sensory Processing Characteristics in Children between 3 and 11 Years Old: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Sara Jorquera-Cabrera

    2017-03-01

    Full Text Available The assessment of sensory perception, discrimination, integration, modulation, praxis, and other motor skills, such as posture, balance, and bilateral motor coordination, is necessary to identify the sensory and motor factors influencing the development of personal autonomy. The aim of this work is to study the assessment tools currently available for identifying different patterns of sensory processing. There are 15 tests available that have psychometric properties, primarily for the US population. Nine of them apply to children in preschool and up to grade 12. The assessment of sensory processing is a process that includes the use of standardized tests, administration of caregiver questionnaires, and clinical observations. The review of different studies using PRISMA criteria or Osteba Critical Appraisal Cards reveals that the most commonly used tools are the Sensory Integration and Praxis Test, the Sensory Processing Measure, and the Sensory Profile.

  14. Tic Modulation Using Sensory Tricks

    Directory of Open Access Journals (Sweden)

    Rebecca W. Gilbert

    2013-04-01

    Full Text Available Background: A sensory trick, or geste antagoniste, is defined as a physical gesture (such as a touch on a particular body part that mitigates the production of an involuntary movement. This phenomenon is most commonly described as a feature of dystonia. Here we present a case of successful modulation of tics using sensory tricks.Case Report:: A case report and video are presented. The case and video demonstrate a 19-year-old male who successfully controlled his tics with various sensory tricks.Discussion: It is underappreciated by movement disorder physicians that sensory tricks can play a role in tics. Introducing this concept to patients could potentially help in tic control. In addition, understanding the pathophysiological underpinnings of sensory tricks could help in the understanding of the pathophysiology of tics.

  15. Sensory analysis of pet foods.

    Science.gov (United States)

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities. © 2014 Society of Chemical Industry.

  16. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  17. Behavioral guides for sensory neurophysiology.

    Science.gov (United States)

    Konishi, M

    2006-06-01

    The study of natural behavior is important for understanding the coding schemes of sensory systems. The jamming avoidance response of the weakly electric fish Eigenmannia is an excellent example of a bottom-up approach, in which behavioral analyses guided neurophysiological studies. These studies started from the electroreceptive sense organs to the motor output consisting of pacemaker neurons. Going in the opposite direction, from the central nervous system to lower centers, is the characteristic of the top-down approach. Although this approach is perhaps more difficult than the bottom-up approach, it was successfully employed in the neuroethological analysis of sound localization in the barn owl. In the latter studies, high-order neurons selective for complex natural stimuli led to the discovery of neural pathways and networks responsible for the genesis of the stimulus selectivity. Comparison of Eigenmannia and barn owls, and their neural systems, has revealed similarities in network designs, such as parallel pathways and their convergence to produce stimulus selectivity necessary for detection of natural stimuli.

  18. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Sung

    Full Text Available This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr. Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05, shortened strength-duration time constant (P<0.01, increased superexcitability (P<0.01, decreased subexcitability (P<0.05, decreased accommodation to depolarizing current (P<0.01, and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1-8 and G2+3 (TNSr 9-24 groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01 in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  19. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  20. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere.

    Science.gov (United States)

    Yoncheva, Yuliya; Maurer, Urs; Zevin, Jason D; McCandliss, Bruce D

    2014-08-15

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective attention to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by manipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data-driven source localization analyses revealed that selective attention to phonology led to significantly greater recruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings suggest a key role for selective attention in on-line phonological computations. Furthermore, these findings motivate future research on the role that neural mechanisms of attention may

  1. Blocking of irrelevant memories by posterior alpha activity boosts memory encoding.

    Science.gov (United States)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jensen, Ole

    2014-08-01

    In our daily lives, we are confronted with a large amount of information. Because only a small fraction can be encoded in long-term memory, the brain must rely on powerful mechanisms to filter out irrelevant information. To understand the neuronal mechanisms underlying the gating of information into long-term memory, we employed a paradigm where the encoding was directed by a "Remember" or a "No-Remember" cue. We found that posterior alpha activity increased prior to the "No-Remember" stimuli, whereas it decreased prior to the "Remember" stimuli. The sources were localized in the parietal cortex included in the dorsal attention network. Subjects with a larger cue-modulation of the alpha activity had better memory for the to-be-remembered items. Interestingly, alpha activity reflecting successful inhibition following the "No-Remember" cue was observed in the frontal midline structures suggesting preparatory inhibition was mediated by anterior parts of the dorsal attention network. During the presentation of the memory items, there was more gamma activity for the "Remember" compared to the "No-Remember" items in the same regions. Importantly, the anticipatory alpha power during cue predicted the gamma power during item. Our findings suggest that top-down controlled alpha activity reflects attentional inhibition of sensory processing in the dorsal attention network, which then finally gates information to long-term memory. This gating is achieved by inhibiting the processing of visual information reflected by neuronal synchronization in the gamma band. In conclusion, the functional architecture revealed by region-specific changes in the alpha activity reflects attentional modulation which has consequences for long-term memory encoding. Copyright © 2014 Wiley Periodicals, Inc.

  2. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere

    Science.gov (United States)

    Yoncheva; Maurer, Urs; Zevin, Jason; McCandliss, Bruce

    2015-01-01

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective atten tion to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by ma nipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data- driven source localization analyses revealed that selective attention to phonology led to significantly greater re cruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings support the key role of selective attention to phonology in the development of literacy and motivate future research on the neural bases of the interaction between phonological

  3. Sensory and aromatic characteristics of tongue sole by-products hydrolysates (Cynoglossus senegalensis)

    OpenAIRE

    Sylla, K. S. B.; Berge, Jean-pascal; Prost, Carole; Musabyemariya, B.; Seydi, Mg

    2009-01-01

    Tongue sole by-products coming from fish-filleting plant were hydrolyzed by Protamex® protease. To identify the future application of hydrolysates, a sensory analysis was carried out.The sensory profile was performed with a jury of 14 specialized judges.11 profiles were found by this panel of tasting. In addition, the aromatic characterization revealed that 57 molecules are responsible for these odours described in sensory analysis.The description of these aromatic compounds opens potentia...

  4. Sensory Alterations in Patients with Isolated Idiopathic Dystonia: An Exploratory Quantitative Sensory Testing Analysis.

    Science.gov (United States)

    Paracka, Lejla; Wegner, Florian; Blahak, Christian; Abdallat, Mahmoud; Saryyeva, Assel; Dressler, Dirk; Karst, Matthias; Krauss, Joachim K

    2017-01-01

    Abnormalities in the somatosensory system are increasingly being recognized in patients with dystonia. The aim of this study was to investigate whether sensory abnormalities are confined to the dystonic body segments or whether there is a wider involvement in patients with idiopathic dystonia. For this purpose, we recruited 20 patients, 8 had generalized, 5 had segmental dystonia with upper extremity involvement, and 7 had cervical dystonia. In total, there were 13 patients with upper extremity involvement. We used Quantitative Sensory Testing (QST) at the back of the hand in all patients and at the shoulder in patients with cervical dystonia. The main finding on the hand QST was impaired cold detection threshold (CDT), dynamic mechanical allodynia (DMA), and thermal sensory limen (TSL). The alterations were present on both hands, but more pronounced on the side more affected with dystonia. Patients with cervical dystonia showed a reduced CDT and hot detection threshold (HDT), enhanced TSL and DMA at the back of the hand, whereas the shoulder QST only revealed increased cold pain threshold and DMA. In summary, QST clearly shows distinct sensory abnormalities in patients with idiopathic dystonia, which may also manifest in body regions without evident dystonia. Further studies with larger groups of dystonia patients are needed to prove the consistency of these findings.

  5. A New Conceptualization of Human Visual Sensory-Memory.

    Science.gov (United States)

    Öğmen, Haluk; Herzog, Michael H

    2016-01-01

    Memory is an essential component of cognition and disorders of memory have significant individual and societal costs. The Atkinson-Shiffrin "modal model" forms the foundation of our understanding of human memory. It consists of three stores: Sensory Memory (SM), whose visual component is called iconic memory, Short-Term Memory (STM; also called working memory, WM), and Long-Term Memory (LTM). Since its inception, shortcomings of all three components of the modal model have been identified. While the theories of STM and LTM underwent significant modifications to address these shortcomings, models of the iconic memory remained largely unchanged: A high capacity but rapidly decaying store whose contents are encoded in retinotopic coordinates, i.e., according to how the stimulus is projected on the retina. The fundamental shortcoming of iconic memory models is that, because contents are encoded in retinotopic coordinates, the iconic memory cannot hold any useful information under normal viewing conditions when objects or the subject are in motion. Hence, half-century after its formulation, it remains an unresolved problem whether and how the first stage of the modal model serves any useful function and how subsequent stages of the modal model receive inputs from the environment. Here, we propose a new conceptualization of human visual sensory memory by introducing an additional component whose reference-frame consists of motion-grouping based coordinates rather than retinotopic coordinates. We review data supporting this new model and discuss how it offers solutions to the paradoxes of the traditional model of sensory memory.

  6. Exploring the influence of encoding format on subsequent memory.

    Science.gov (United States)

    Turney, Indira C; Dennis, Nancy A; Maillet, David; Rajah, M Natasha

    2017-05-01

    Distinctive encoding is greatly influenced by gist-based processes and has been shown to suffer when highly similar items are presented in close succession. Thus, elucidating the mechanisms underlying how presentation format affects gist processing is essential in determining the factors that influence these encoding processes. The current study utilised multivariate partial least squares (PLS) analysis to identify encoding networks directly associated with retrieval performance in a blocked and intermixed presentation condition. Subsequent memory analysis for successfully encoded items indicated no significant differences between reaction time and retrieval performance and presentation format. Despite no significant behavioural differences, behaviour PLS revealed differences in brain-behaviour correlations and mean condition activity in brain regions associated with gist-based vs. distinctive encoding. Specifically, the intermixed format encouraged more distinctive encoding, showing increased activation of regions associated with strategy use and visual processing (e.g., frontal and visual cortices, respectively). Alternatively, the blocked format exhibited increased gist-based processes, accompanied by increased activity in the right inferior frontal gyrus. Together, results suggest that the sequence that information is presented during encoding affects the degree to which distinctive encoding is engaged. These findings extend our understanding of the Fuzzy Trace Theory and the role of presentation format on encoding processes.

  7. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Science.gov (United States)

    Phan, Mimi L.; Bieszczad, Kasia M.

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded. PMID:26881129

  8. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation.

    Science.gov (United States)

    Phan, Mimi L; Bieszczad, Kasia M

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  9. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Directory of Open Access Journals (Sweden)

    Mimi L. Phan

    2016-01-01

    Full Text Available Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  10. Is the auditory sensory memory sensitive to visual information?

    Science.gov (United States)

    Besle, Julien; Fort, Alexandra; Giard, Marie-Hélène

    2005-10-01

    The mismatch negativity (MMN) component of auditory event-related brain potentials can be used as a probe to study the representation of sounds in auditory sensory memory (ASM). Yet it has been shown that an auditory MMN can also be elicited by an illusory auditory deviance induced by visual changes. This suggests that some visual information may be encoded in ASM and is accessible to the auditory MMN process. It is not known, however, whether visual information affects ASM representation for any audiovisual event or whether this phenomenon is limited to specific domains in which strong audiovisual illusions occur. To highlight this issue, we have compared the topographies of MMNs elicited by non-speech audiovisual stimuli deviating from audiovisual standards on the visual, the auditory, or both dimensions. Contrary to what occurs with audiovisual illusions, each unimodal deviant elicited sensory-specific MMNs, and the MMN to audiovisual deviants included both sensory components. The visual MMN was, however, different from a genuine visual MMN obtained in a visual-only control oddball paradigm, suggesting that auditory and visual information interacts before the MMN process occurs. Furthermore, the MMN to audiovisual deviants was significantly different from the sum of the two sensory-specific MMNs, showing that the processes of visual and auditory change detection are not completely independent.

  11. Sensory memory during physiological aging indexed by mismatch negativity (MMN).

    Science.gov (United States)

    Ruzzoli, Manuela; Pirulli, Cornelia; Brignani, Debora; Maioli, Claudio; Miniussi, Carlo

    2012-03-01

    Physiological aging affects early sensory-perceptual processes. The aim of this experiment was to evaluate changes in auditory sensory memory in physiological aging using the Mismatch Negativity (MMN) paradigm as index. The MMN is a marker recorded through the electroencephalogram and is used to evaluate the integrity of the memory system. We adopted a new, faster paradigm to look for differences between 3 groups of subjects of different ages (young, middle age and older adults) as a function of short or long intervals between stimuli. We found that older adults did not show MMN at long interval condition and that the duration of MMN varied according to the participants' age. The current study provides electrophysiological evidence supporting the theory that the encoding of stimuli is preserved during normal aging, whereas the maintenance of sensory memory is impaired. Considering the advantage offered by the MMN paradigm used here, these data might be a useful reference point for the assessment of auditory sensory memory in pathological aging (e.g., in neurodegenerative diseases). Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Analyzing sensory data with R

    CERN Document Server

    Le, Sebastien

    2014-01-01

    Quantitative Descriptive Approaches When panelists rate products according to one single list of attributes Data, sensory issues, notations In practice For experienced users: Measuring the impact of the experimental design on the perception of the products? When products are rated according to one single list of attributesData, sensory issues, notations In practice For experienced users: Adding supplementary information to the product space When products are rated according to several lists

  13. Sensory Dissonance Using Memory Model

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2015-01-01

    Music may occur concurrently or in temporal sequences. Current machine-based methods for the estimation of qualities of the music are unable to take into account the influence of temporal context. A method for calculating dissonance from audio, called sensory dissonance is improved by the use of ...... of a memory model. This approach is validated here by the comparison of the sensory dissonance using memory model to data obtained using human subjects....

  14. The Significance of Memory in Sensory Cortex.

    Science.gov (United States)

    Muckli, Lars; Petro, Lucy S

    2017-05-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. The significance of memory in sensory cortex

    OpenAIRE

    Muckli, Lars; Petro, Lucy S.

    2017-01-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing.

  16. Impacts of Ocean Acidification on Sensory Function in Marine Organisms.

    Science.gov (United States)

    Ashur, Molly M; Johnston, Nicole K; Dixson, Danielle L

    2017-07-01

    Ocean acidification has been identified as a major contributor to ocean ecosystem decline, impacting the calcification, survival, and behavior of marine organisms. Numerous studies have observed altered sensory perception of chemical, auditory, and visual cues after exposure to elevated CO2. Sensory systems enable the observation of the external environment and therefore play a critical role in survival, communication, and behavior of marine organisms. This review seeks to (1) summarize the current knowledge of sensory impairment caused by ocean acidification, (2) discuss potential mechanisms behind this disruption, and (3) analyze the expected taxa differences in sensitivities to elevated CO2 conditions. Although a lack of standardized methodology makes cross-study comparisons challenging, trends and biases arise from this synthesis including a substantial focus on vertebrates, larvae or juveniles, the reef ecosystem, and chemosensory perception. Future studies must broaden the scope of the field by diversifying the taxa and ecosystems studied, incorporating ontogenetic comparisons, and focusing on cryptic sensory systems such as electroreception, magnetic sense, and the lateral line system. A discussion of possible mechanisms reveals GABAA receptor reversal as the conspicuous physiological mechanism. However, the potential remains for alternative disruption through structure or cue changes. Finally, a taxonomic comparison of physiological complexity reveals few trends in sensory sensitivities to lowered pH, but we hypothesize potential correlations relating to habitat, life history or relative use of sensory systems. Elevated CO2, in concordance with other global and local stressors, has the potential to drastically shift community composition and structure. Therefore research addressing the extent of sensory impairment, the underlying mechanisms, and the differences between taxa is vital for improved predictions of organismal response to ocean acidification.

  17. The olfactory tubercle encodes odor valence in behaving mice.

    Science.gov (United States)

    Gadziola, Marie A; Tylicki, Kate A; Christian, Diana L; Wesson, Daniel W

    2015-03-18

    Sensory information acquires meaning to adaptively guide behaviors. Despite odors mediating a number of vital behaviors, the components of the olfactory system responsible for assigning meaning to odors remain unclear. The olfactory tubercle (OT), a ventral striatum structure that receives monosynaptic input from the olfactory bulb, is uniquely positioned to transform odor information into behaviorally relevant neural codes. No information is available, however, on the coding of odors among OT neurons in behaving animals. In recordings from mice engaged in an odor discrimination task, we report that the firing rate of OT neurons robustly and flexibly encodes the valence of conditioned odors over identity, with rewarded odors evoking greater firing rates. This coding of rewarded odors occurs before behavioral decisions and represents subsequent behavioral responses. We predict that the OT is an essential region whereby odor valence is encoded in the mammalian brain to guide goal-directed behaviors. Copyright © 2015 the authors 0270-6474/15/354515-13$15.00/0.

  18. Social gating of sensory information during ongoing communication.

    Science.gov (United States)

    Anders, Silke; Heussen, Yana; Sprenger, Andreas; Haynes, John-Dylan; Ethofer, Thomas

    2015-01-01

    Social context plays an important role in human communication. Depending on the nature of the source, the same communication signal might be processed in fundamentally different ways. However, the selective modulation (or "gating") of the flow of neural information during communication is not fully understood. Here, we use multivoxel pattern analysis (MVPA) and multivoxel connectivity analysis (MVCA), a novel technique that allows to analyse context-dependent changes of the strength interregional coupling between ensembles of voxels, to examine how the human brain differentially gates content-specific sensory information during ongoing perception of communication signals. In a simulated electronic communication experiment, participants received two alternative text messages during fMRI ("happy" or "sad") which they believed had been sent either by their real-life friend outside the scanner or by a computer. A region in the dorsal medial prefrontal cortex (dmPFC) selectively increased its functional coupling with sensory-content encoding regions in the visual cortex when a text message was perceived as being sent by the participant's friend, and decreased its functional coupling with these regions when a text message was perceived as being sent by the computer. Furthermore, the strength of neural encoding of content-specific information of text messages in the dmPFC was modulated by the social tie between the participant and her friend: the more of her spare time a participant reported to spend with her friend the stronger was the neural encoding. This suggests that the human brain selectively gates sensory information into the relevant network for processing the mental states of others, depending on the source of the communication signal. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Emotional Intelligence Levels of Students with Sensory Impairment

    Science.gov (United States)

    Al-Tal, Suhair; AL-Jawaldeh, Fuad; AL-Taj, Heyam; Maharmeh, Lina

    2017-01-01

    This study aimed at revealing the emotional intelligence levels of students with sensory disability in Amman in Jordan. The participants of the study were 200 students; 140 hearing impaired students and 60 visual impaired students enrolled in the special education schools and centers for the academic year 2016-2017. The study adopted the…

  20. Molecular cloning and functional analysis of the gene encoding ...

    African Journals Online (AJOL)

    Here we report for the first time the cloning of a full-length cDNA encoding GGPPS (Jc-GGPPS) from Jatropha curcas L. The full-length cDNA was 1414 base pair (bp), with an 1110-bp open reading frame (ORF) encoding a 370- amino-acids polypeptide. Bioinformatic analysis revealed that Jc-GGPPS is a member of the ...

  1. Sensory overload: A concept analysis.

    Science.gov (United States)

    Scheydt, Stefan; Müller Staub, Maria; Frauenfelder, Fritz; Nielsen, Gunnar H; Behrens, Johann; Needham, Ian

    2017-04-01

    In the context of mental disorders sensory overload is a widely described phenomenon used in conjunction with psychiatric interventions such as removal from stimuli. However, the theoretical foundation of sensory overload as addressed in the literature can be described as insufficient and fragmentary. To date, the concept of sensory overload has not yet been sufficiently specified or analyzed. The aim of the study was to analyze the concept of sensory overload in mental health care. A literature search was undertaken using specific electronic databases, specific journals and websites, hand searches, specific library catalogues, and electronic publishing databases. Walker and Avant's method of concept analysis was used to analyze the sources included in the analysis. All aspects of the method of Walker and Avant were covered in this concept analysis. The conceptual understanding has become more focused, the defining attributes, influencing factors and consequences are described and empirical referents identified. The concept analysis is a first step in the development of a middle-range descriptive theory of sensory overload based on social scientific and stress-theoretical approaches. This specification may serve as a fundament for further research, for the development of a nursing diagnosis or for guidelines. © 2017 Australian College of Mental Health Nurses Inc.

  2. Temporal encoding in a nervous system.

    Directory of Open Access Journals (Sweden)

    Zane N Aldworth

    2011-05-01

    Full Text Available We examined the extent to which temporal encoding may be implemented by single neurons in the cercal sensory system of the house cricket Acheta domesticus. We found that these neurons exhibit a greater-than-expected coding capacity, due in part to an increased precision in brief patterns of action potentials. We developed linear and non-linear models for decoding the activity of these neurons. We found that the stimuli associated with short-interval patterns of spikes (ISIs of 8 ms or less could be predicted better by second-order models as compared to linear models. Finally, we characterized the difference between these linear and second-order models in a low-dimensional subspace, and showed that modification of the linear models along only a few dimensions improved their predictive power to parity with the second order models. Together these results show that single neurons are capable of using temporal patterns of spikes as fundamental symbols in their neural code, and that they communicate specific stimulus distributions to subsequent neural structures.

  3. The effects of selective and divided attention on sensory precision and integration.

    Science.gov (United States)

    Odegaard, Brian; Wozny, David R; Shams, Ladan

    2016-02-12

    In our daily lives, our capacity to selectively attend to stimuli within or across sensory modalities enables enhanced perception of the surrounding world. While previous research on selective attention has studied this phenomenon extensively, two important questions still remain unanswered: (1) how selective attention to a single modality impacts sensory integration processes, and (2) the mechanism by which selective attention improves perception. We explored how selective attention impacts performance in both a spatial task and a temporal numerosity judgment task, and employed a Bayesian Causal Inference model to investigate the computational mechanism(s) impacted by selective attention. We report three findings: (1) in the spatial domain, selective attention improves precision of the visual sensory representations (which were relatively precise), but not the auditory sensory representations (which were fairly noisy); (2) in the temporal domain, selective attention improves the sensory precision in both modalities (both of which were fairly reliable to begin with); (3) in both tasks, selective attention did not exert a significant influence over the tendency to integrate sensory stimuli. Therefore, it may be postulated that a sensory modality must possess a certain inherent degree of encoding precision in order to benefit from selective attention. It also appears that in certain basic perceptual tasks, the tendency to integrate crossmodal signals does not depend significantly on selective attention. We conclude with a discussion of how these results relate to recent theoretical considerations of selective attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Analysing and Comparing Encodability Criteria

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2015-08-01

    Full Text Available Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.

  5. Fatty acid composition and its association with chemical and sensory analysis of boar taint.

    Science.gov (United States)

    Liu, Xiaoye; Trautmann, Johanna; Wigger, Ruth; Zhou, Guanghong; Mörlein, Daniel

    2017-09-15

    A certain level of disagreement between the chemical analysis of androstenone and skatole and the human perception of boar taint has been found in many studies. Here we analyze whether the fatty acid composition can explain such inconsistency between sensory evaluation and chemical analysis of boar taint compounds. Therefore, back fat samples (n=143) were selected according to their sensory evaluation by a 10-person sensory panel, and the chemical analysis (stable isotope dilution analysis with headspace solid-phase microextraction and gas chromatography-mass spectrometry) of androstenone and skatole. Subsequently a quantification of fatty acids using gas chromatography-flame ionization detection was conducted. The correlation analyses revealed that several fatty acids are significantly correlated with androstenone, skatole, and the sensory rating. However, multivariate analyses (principal component analysis) revealed no explanation of the fatty acid composition with respect to the (dis-)agreement between sensory and chemical analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sensory analysis in grapes benitaka

    Energy Technology Data Exchange (ETDEWEB)

    Santillo, Amanda G.; Rodrigues, Flavio T.; Arthur, Paula B.; Villavicencio, Ana Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Abstract Sensory analysis is considered one of the main techniques when you want to know the organoleptic qualities of foods. Marketing strategies, showing that some foods produced organically is more nutritious, flavorful than conventional ones are affecting some consumers. The advantages of using radiation in sensory analysis are not the formation of waste, the less nutritional loss and little change in taste of food. The possibility that the fruit is harvested at more advanced maturity, when all characteristics of flavor and external appearance are fully developed is another advantage. The possibility of fruits being packed irradiated prevents contamination after processing. This type of study, ionizing radiation associated with sensory evaluation scarce, making it necessary for future discoveries. The objective this paper was to evaluate the quality of grapes Benitaka after the irradiation process with doses 0,5; 1; 1,5 e 2 kGy. (author)

  7. Sensory analysis in grapes benitaka

    International Nuclear Information System (INIS)

    Santillo, Amanda G.; Rodrigues, Flavio T.; Arthur, Paula B.; Villavicencio, Ana Lucia C.H.

    2011-01-01

    Abstract Sensory analysis is considered one of the main techniques when you want to know the organoleptic qualities of foods. Marketing strategies, showing that some foods produced organically is more nutritious, flavorful than conventional ones are affecting some consumers. The advantages of using radiation in sensory analysis are not the formation of waste, the less nutritional loss and little change in taste of food. The possibility that the fruit is harvested at more advanced maturity, when all characteristics of flavor and external appearance are fully developed is another advantage. The possibility of fruits being packed irradiated prevents contamination after processing. This type of study, ionizing radiation associated with sensory evaluation scarce, making it necessary for future discoveries. The objective this paper was to evaluate the quality of grapes Benitaka after the irradiation process with doses 0,5; 1; 1,5 e 2 kGy. (author)

  8. Localization of SSeCKS in unmyelinated primary sensory neurons

    Directory of Open Access Journals (Sweden)

    Siegel Sandra M

    2008-03-01

    Full Text Available Abstract Background SSeCKS (Src SupprEssed C Kinase Substrate is a proposed protein kinase C substrate/A kinase anchoring protein (AKAP that has recently been characterized in the rat peripheral nervous system. It has been shown that approximately 40% of small primary sensory neurons contain SSeCKS-immunoreactivity in a population largely separate from substance P (95.2%, calcitonin gene related peptide (95.3%, or fluoride resistant acid phosphatase (55.0% labeled cells. In the spinal cord, it was found that SSeCKS-immunoreactive axon collaterals terminate in the dorsal third of lamina II outer in a region similar to that of unmyelinated C-, or small diameter myelinated Aδ-, fibers. However, the precise characterization of the anatomical profile of the primary sensory neurons containing SSeCKS remains to be determined. Here, immunohistochemical labeling at the light and ultrastructural level is used to clarify the myelination status of SSeCKS-containing sensory neuron axons and to further clarify the morphometric, and provide insight into the functional, classification of SSeCKS-IR sensory neurons. Methods Colocalization studies of SSeCKS with myelination markers, ultrastructural localization of SSeCKS labeling and ablation of largely unmyelinated sensory fibers by neonatal capsaicin administration were all used to establish whether SSeCKS containing sensory neurons represent a subpopulation of unmyelinated primary sensory C-fibers. Results Double labeling studies of SSeCKS with CNPase in the dorsal horn and Pzero in the periphery showed that SSeCKS immunoreactivity was observed predominantly in association with unmyelinated primary sensory fibers. At the ultrastructural level, SSeCKS immunoreactivity was most commonly associated with axonal membrane margins of unmyelinated fibers. In capsaicin treated rats, SSeCKS immunoreactivity was essentially obliterated in the dorsal horn while in dorsal root ganglia quantitative analysis revealed a 43

  9. Sensory outcome of fingertip replantations without nerve repair.

    Science.gov (United States)

    Ozcelik, Ismail Bulent; Tuncer, Serdar; Purisa, Husrev; Sezer, Ilker; Mersa, Berkan; Kabakas, Fatih; Celikdelen, Pinar

    2008-01-01

    The sensory recovery outcomes of fingertip replantations without nerve repair were retrospectively studied. Between 2000 and 2006, 112 fingertip replantations with only arterial repair were carried out in 98 patients. About 76 of the replants survived totally, with a success rate of 67.8%. Evaluation of sensory recovery was possible in 31 patients (38 replantations). Sensory evaluation was made with Semmes-Weinstein, static and dynamic two-point discrimination, and vibration sense tests. Fingertip atrophy, nail deformities, and return to work were also evaluated. According to the Semmes-Weinstein test, 29.0% (11/38) of the fingers had normal sense, 60.5% (23/38) had diminished light touch, 7.9% (3/38) had diminished protective sensation, and 2.6% (1/38) had loss of protective sensation. Mean static and dynamic two-point discriminations were 7.2 mm (3-11 mm), and 4.60 mm (3-6 mm), respectively. Vibratory testing revealed increased vibration in 42.1% of the fingers, decreased vibration in 36.8%, and equal vibration when compared with the non-injured fingers in 21.1%. Atrophy was present in 14 (36.8%) fingers and negatively affected the results. Nail deformities, cold intolerance, return to work, and the effect of sensory education were investigated. Comparison of crush and clean cut injuries did not yield any significant difference in any of the parameters. Patients who received sensory education had significantly better results in sensory testing. The results were classified as excellent, good, and poor based on results of two-point discrimination tests. The outcome was excellent in 18 fingers and good in 20 fingers. Overall, satisfactory sensory recovery was achieved in fingertip replantations without nerve repair. (c) 2008 Wiley-Liss, Inc.

  10. How the visual brain encodes and keeps track of time.

    Science.gov (United States)

    Salvioni, Paolo; Murray, Micah M; Kalmbach, Lysiann; Bueti, Domenica

    2013-07-24

    Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT come into play simultaneously and seem to be functionally linked during interval encoding, whereas they operate serially (V1 followed by V5/MT) and seem to be independent while maintaining temporal information in working memory. These data help to refine our knowledge of the functional properties of human visual cortex, highlighting the contribution and the temporal dynamics of V1 and V5/MT in the processing of the temporal aspects of visual information.

  11. Disentangling the role of floral sensory stimuli in pollination networks

    DEFF Research Database (Denmark)

    Kantsa, Aphrodite; Raguso, Robert A.; Dyer, Adrian G.

    2018-01-01

    Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use...... a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering...... period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role...

  12. Sensory and motor neuropathy in a Border Collie.

    Science.gov (United States)

    Harkin, Kenneth R; Cash, Walter C; Shelton, G Diane

    2005-10-15

    A 5-month-old female Border Collie was evaluated because of progressive hind limb ataxia. The predominant clinical findings suggested a sensory neuropathy. Sensory nerve conduction velocity was absent in the tibial, common peroneal, and radial nerves and was decreased in the ulnar nerve; motor nerve conduction velocity was decreased in the tibial, common peroneal, and ulnar nerves. Histologic examination of nerve biopsy specimens revealed considerable nerve fiber depletion; some tissue sections had myelin ovoids, foamy macrophages, and axonal degeneration in remaining fibers. Marked depletion of most myelinated fibers within the peroneal nerve (a mixed sensory and motor nerve) supported the electrodiagnostic findings indicative of sensorimotor neuropathy. Progressive deterioration in motor function occurred over the following 19 months until the dog was euthanatized. A hereditary link was not established, but a littermate was similarly affected. The hereditary characteristic of this disease requires further investigation.

  13. Sensory feedback, error correction, and remapping in a multiple oscillator model of place cell activity

    Directory of Open Access Journals (Sweden)

    Joseph D. Monaco

    2011-09-01

    Full Text Available Mammals navigate by integrating self-motion signals (‘path integration’ and occasionally fixing on familiar environmental landmarks. The rat hippocampus is a model system of spatial representation in which place cells are thought to integrate both sensory and spatial information from entorhinal cortex. The localized firing fields of hippocampal place cells and entorhinal grid cells demonstrate a phase relationship with the local theta (6–10 Hz rhythm that may be a temporal signature of path integration. However, encoding self-motion in the phase of theta oscillations requires high temporal precision and is susceptible to idiothetic noise, neuronal variability, and a changing environment. We present a model based on oscillatory interference theory, previously studied in the context of grid cells, in which transient temporal synchronization among a pool of path-integrating theta oscillators produces hippocampal-like place fields. We hypothesize that a spatiotemporally extended sensory interaction with external cues modulates feedback to the theta oscillators. We implement a form of this cue-driven feedback and show that it can retrieve fixed points in the phase code of position. A single cue can smoothly reset oscillator phases to correct for both systematic errors and continuous noise in path integration. Further, simulations in which local and global cues are rotated against each other reveal a phase-code mechanism in which conflicting cue arrangements can reproduce experimentally observed distributions of ‘partial remapping’ responses. This abstract model demonstrates that phase-code feedback can provide stability to the temporal coding of position during navigation and may contribute to the context-dependence of hippocampal spatial representations. While the anatomical substrates of these processes have not been fully characterized, our findings suggest several signatures that can be evaluated in future experiments.

  14. Cloning of an epoxide hydrolase encoding gene from Rhodotorula mucilaginosa and functional expresion in Yarrowia lipolytica

    CSIR Research Space (South Africa)

    Labuschagne, M

    2007-01-01

    Full Text Available , were used to amplify the genomic EH-encoding gene from Rhodotorula mucilaginosa. The 2347 bp genomic sequence revealed a 1979 bp ORF containing nine introns. The cDNA sequence revealed an 1185 bp EH-encoding gene that translates into a 394 amino acid...

  15. Relationships among Sensory Responsiveness, Anxiety, and Ritual Behaviors in Children with and without Atypical Sensory Responsiveness.

    Science.gov (United States)

    Bart, Orit; Bar-Shalita, Tami; Mansour, Hanin; Dar, Reuven

    2017-08-01

    To explore relationships between sensory responsiveness, anxiety, and ritual behaviors in boys with typical and atypical sensory responsiveness. Forty-eight boys, ages 5-9 participated in the study (28 boys with atypical sensory responsiveness and 20 controls). Atypical sensory responsiveness was defined as a score of ≤154 on the Short Sensory Profile. Parents completed the Sensory Profile, the Screen for Child Anxiety Related Emotional Disorders, and the Childhood Routines Inventory. Children with atypical sensory responsiveness had significantly higher levels of anxiety and a higher frequency of ritual behaviors than controls. Atypical sensory responsiveness was significantly related to both anxiety and ritual behaviors, with anxiety mediating the relationship between sensory modulation and ritual behaviors. The findings elucidate the potential consequences of atypical sensory responsiveness and could support the notion that ritual behaviors develop as a coping mechanism in response to anxiety stemming from primary difficulty in modulating sensory input.

  16. Multidimensionally encoded magnetic resonance imaging.

    Science.gov (United States)

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  17. Multi-sensory Sculpting (MSS)

    DEFF Research Database (Denmark)

    von Wallpach, Sylvia; Kreuzer, Maria

    2013-01-01

    -conscious and modality-specific level and use multi-sensory metaphors to express embodied knowledge. Retrieving embodied brand knowledge requires methods that (a) stimulate various senses that have been involved in brand knowledge formation and (b) give consumers the opportunity to express themselves metaphorically...

  18. Validity of Sensory Systems as Distinct Constructs

    OpenAIRE

    Su, Chia-Ting; Parham, L. Diane

    2014-01-01

    Confirmatory factor analysis testing whether sensory questionnaire items represented distinct sensory system constructs found, using data from two age groups, that such constructs can be measured validly using questionnaire data.

  19. Memorable Audiovisual Narratives Synchronize Sensory and Supramodal Neural Responses

    Science.gov (United States)

    2016-01-01

    Abstract Our brains integrate information across sensory modalities to generate perceptual experiences and form memories. However, it is difficult to determine the conditions under which multisensory stimulation will benefit or hinder the retrieval of everyday experiences. We hypothesized that the determining factor is the reliability of information processing during stimulus presentation, which can be measured through intersubject correlation of stimulus-evoked activity. We therefore presented biographical auditory narratives and visual animations to 72 human subjects visually, auditorily, or combined, while neural activity was recorded using electroencephalography. Memory for the narrated information, contained in the auditory stream, was tested 3 weeks later. While the visual stimulus alone led to no meaningful retrieval, this related stimulus improved memory when it was combined with the story, even when it was temporally incongruent with the audio. Further, individuals with better subsequent memory elicited neural responses during encoding that were more correlated with their peers. Surprisingly, portions of this predictive synchronized activity were present regardless of the sensory modality of the stimulus. These data suggest that the strength of sensory and supramodal activity is predictive of memory performance after 3 weeks, and that neural synchrony may explain the mnemonic benefit of the functionally uninformative visual context observed for these real-world stimuli. PMID:27844062

  20. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  1. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila

    Science.gov (United States)

    Aso, Yoshinori; Sitaraman, Divya; Ichinose, Toshiharu; Kaun, Karla R; Vogt, Katrin; Belliart-Guérin, Ghislain; Plaçais, Pierre-Yves; Robie, Alice A; Yamagata, Nobuhiro; Schnaitmann, Christopher; Rowell, William J; Johnston, Rebecca M; Ngo, Teri-T B; Chen, Nan; Korff, Wyatt; Nitabach, Michael N; Heberlein, Ulrike; Preat, Thomas; Branson, Kristin M; Tanimoto, Hiromu; Rubin, Gerald M

    2014-01-01

    Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection. DOI: http://dx.doi.org/10.7554/eLife.04580.001 PMID:25535794

  2. Theory of multisource crosstalk reduction by phase-encoded statics

    KAUST Repository

    Schuster, Gerard T.

    2011-03-01

    Formulas are derived that relate the strength of the crosstalk noise in supergather migration images to the variance of time, amplitude and polarity shifts in encoding functions. A supergather migration image is computed by migrating an encoded supergather, where the supergather is formed by stacking a large number of encoded shot gathers. Analysis reveals that for temporal source static shifts in each shot gather, the crosstalk noise is exponentially reduced with increasing variance of the static shift and the square of source frequency. This is not too surprising because larger time shifts lead to less correlation between traces in different shot gathers, and so should tend to reduce the crosstalk noise. Analysis also reveals that combining both polarity and time statics is a superior encoding strategy compared to using either polarity statics or time statics alone. Signal-to-noise (SNR) estimates show that for a standard migration image and for an image computed by migrating a phase-encoded supergather; here, G is the number of traces in a shot gather, I is the number of stacking iterations in the supergather and S is the number of encoded/blended shot gathers that comprise the supergather. If the supergather can be uniformly divided up into Q unique sub-supergathers, then the resulting SNR of the final image is, which means that we can enhance image quality but at the expense of Q times more cost. The importance of these formulas is that they provide a precise understanding between different phase encoding strategies and image quality. Finally, we show that iterative migration of phase-encoded supergathers is a special case of passive seismic interferometry. We suggest that the crosstalk noise formulas can be helpful in designing optimal strategies for passive seismic interferometry and efficient extraction of Green\\'s functions from simulated supergathers. © 2011 The Authors Geophysical Journal International © 2011 RAS.

  3. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets.......A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...

  4. Cortical plasticity as a mechanism for storing Bayesian priors in sensory perception.

    Science.gov (United States)

    Köver, Hania; Bao, Shaowen

    2010-05-05

    Human perception of ambiguous sensory signals is biased by prior experiences. It is not known how such prior information is encoded, retrieved and combined with sensory information by neurons. Previous authors have suggested dynamic encoding mechanisms for prior information, whereby top-down modulation of firing patterns on a trial-by-trial basis creates short-term representations of priors. Although such a mechanism may well account for perceptual bias arising in the short-term, it does not account for the often irreversible and robust changes in perception that result from long-term, developmental experience. Based on the finding that more frequently experienced stimuli gain greater representations in sensory cortices during development, we reasoned that prior information could be stored in the size of cortical sensory representations. For the case of auditory perception, we use a computational model to show that prior information about sound frequency distributions may be stored in the size of primary auditory cortex frequency representations, read-out by elevated baseline activity in all neurons and combined with sensory-evoked activity to generate a perception that conforms to Bayesian integration theory. Our results suggest an alternative neural mechanism for experience-induced long-term perceptual bias in the context of auditory perception. They make the testable prediction that the extent of such perceptual prior bias is modulated by both the degree of cortical reorganization and the magnitude of spontaneous activity in primary auditory cortex. Given that cortical over-representation of frequently experienced stimuli, as well as perceptual bias towards such stimuli is a common phenomenon across sensory modalities, our model may generalize to sensory perception, rather than being specific to auditory perception.

  5. Thought probes during prospective memory encoding: Evidence for perfunctory processes

    Science.gov (United States)

    McDaniel, Mark A.; Dasse, Michelle N.; Lee, Ji hae; Kurinec, Courtney A.; Tami, Claudina; Krueger, Madison L.

    2018-01-01

    For nearly 50 years, psychologists have studied prospective memory, or the ability to execute delayed intentions. Yet, there remains a gap in understanding as to whether initial encoding of the intention must be elaborative and strategic, or whether some components of successful encoding can occur in a perfunctory, transient manner. In eight studies (N = 680), we instructed participants to remember to press the Q key if they saw words representing fruits (cue) during an ongoing lexical decision task. They then typed what they were thinking and responded whether they encoded fruits as a general category, as specific exemplars, or hardly thought about it at all. Consistent with the perfunctory view, participants often reported mind wandering (42.9%) and hardly thinking about the prospective memory task (22.5%). Even though participants were given a general category cue, many participants generated specific category exemplars (34.5%). Bayesian analyses of encoding durations indicated that specific exemplars came to mind in a perfunctory manner rather than via strategic, elaborative mechanisms. Few participants correctly guessed the research hypotheses and changing from fruit category cues to initial-letter cues eliminated reports of specific exemplar generation, thereby arguing against demand characteristics in the thought probe procedure. In a final experiment, encoding duration was unrelated to prospective memory performance; however, specific-exemplar encoders outperformed general-category encoders with no ongoing task monitoring costs. Our findings reveal substantial variability in intention encoding, and demonstrate that some components of prospective memory encoding can be done “in passing.” PMID:29874277

  6. Sensory sensitivity and identification and hedonic assessment ofolfactory stimuli

    Directory of Open Access Journals (Sweden)

    Borys Ruszpel

    2012-06-01

    Full Text Available Conducted research had an exploratory character. It was focused on connections between temperament and olfactory functioning – in particular, identification and affective assessment of olfactory stimuli. Main research question dealt with potential correlations between sensory sensitivity (dimension of temperamental questionnaire FCZ‑KT with declarative and objective ability to identify presented odours and their assessment. Fifty four schoolgirls from one of the Warsaw sec‑ ondary schools participated in the research and they were asked for filling in the FCZ‑KT questionnaire and evaluating each of 16 smell samples. Analyses revealed a significant positive correlation between declared familiarity and accurate odours’ identification (odours that were subjectively known were recognized more accurately than unknown and a posi‑ tive correlation between declared familiarity and affective assessment (odours that were known were assessed as more pleasant than unknown. Sensory sensitivity was not correlated neither with declarative nor real ability to identify smells, however sensory sensitivity was positively correlated with affective assessment (the higher scores on sensory sensitivity dimension, the more pleasantly assessed odours in general. Analyses revealed a number of connections between other dimensions of FCZ‑KT questionnaire (perseverance, liveliness, stamina and the ability (both objective and subjective to correctly identify odours which were most difficult to recognize. Completed project might be perceived as a starting point for further research concerning relationships between temperament, olfactory functioning, and food preferences among patients diagnosed with eating disorders such as anorexia nervosa, bulimia nervosa, and obesity.

  7. A New Conceptualization of Human Visual Sensory-Memory

    Science.gov (United States)

    Öğmen, Haluk; Herzog, Michael H.

    2016-01-01

    Memory is an essential component of cognition and disorders of memory have significant individual and societal costs. The Atkinson–Shiffrin “modal model” forms the foundation of our understanding of human memory. It consists of three stores: Sensory Memory (SM), whose visual component is called iconic memory, Short-Term Memory (STM; also called working memory, WM), and Long-Term Memory (LTM). Since its inception, shortcomings of all three components of the modal model have been identified. While the theories of STM and LTM underwent significant modifications to address these shortcomings, models of the iconic memory remained largely unchanged: A high capacity but rapidly decaying store whose contents are encoded in retinotopic coordinates, i.e., according to how the stimulus is projected on the retina. The fundamental shortcoming of iconic memory models is that, because contents are encoded in retinotopic coordinates, the iconic memory cannot hold any useful information under normal viewing conditions when objects or the subject are in motion. Hence, half-century after its formulation, it remains an unresolved problem whether and how the first stage of the modal model serves any useful function and how subsequent stages of the modal model receive inputs from the environment. Here, we propose a new conceptualization of human visual sensory memory by introducing an additional component whose reference-frame consists of motion-grouping based coordinates rather than retinotopic coordinates. We review data supporting this new model and discuss how it offers solutions to the paradoxes of the traditional model of sensory memory. PMID:27375519

  8. Motor-sensory confluence in tactile perception.

    Science.gov (United States)

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  9. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae.

    Science.gov (United States)

    Frye, Mitchell D; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2017-02-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Modality-specific alpha modulations facilitate long-term memory encoding in the presence of distracters.

    Science.gov (United States)

    Jiang, Haiteng; van Gerven, Marcel A J; Jensen, Ole

    2015-03-01

    It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it reflects the functional disengagement of specific regions in attention and memory tasks. We here ask if such allocation of resources by alpha oscillations generalizes to long-term memory encoding in a cross-modal setting in which we acquired the ongoing brain activity using magnetoencephalography. Participants were asked to encode pictures while ignoring simultaneously presented words and vice versa. We quantified the brain activity during rehearsal reflecting subsequent memory in the different attention conditions. The key finding was that successful long-term memory encoding is reflected by alpha power decreases in the sensory region of the to-be-attended modality and increases in the sensory region of the to-be-ignored modality to suppress distraction during rehearsal period. Our results corroborate related findings from attention studies by demonstrating that alpha activity is also important for the allocation of resources during long-term memory encoding in the presence of distracters.

  11. Photoreceptor Sensory Cilium: Traversing the Ciliary Gate

    Directory of Open Access Journals (Sweden)

    Hemant Khanna

    2015-10-01

    Full Text Available Cilia are antenna-like extensions of the plasma membrane found in nearly all cell types. In the retina of the eye, photoreceptors develop unique sensory cilia. Not much was known about the mechanisms underlying the formation and function of photoreceptor cilia, largely because of technical limitations and the specific structural and functional modifications that cannot be modeled in vitro. With recent advances in microscopy techniques and molecular and biochemical approaches, we are now beginning to understand the molecular basis of photoreceptor ciliary architecture, ciliary function and its involvement in human diseases. Here, I will discuss the studies that have revealed new knowledge of how photoreceptor cilia regulate their identity and function while coping with high metabolic and trafficking demands associated with processing light signal.

  12. Sensory modulation disorders in childhood epilepsy.

    Science.gov (United States)

    van Campen, Jolien S; Jansen, Floor E; Kleinrensink, Nienke J; Joëls, Marian; Braun, Kees Pj; Bruining, Hilgo

    2015-01-01

    Altered sensory sensitivity is generally linked to seizure-susceptibility in childhood epilepsy but may also be associated to the highly prevalent problems in behavioral adaptation. This association is further suggested by the frequent overlap of childhood epilepsy with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), conditions in which altered behavioral responses to sensory stimuli have been firmly established. A continuum of sensory processing defects due to imbalanced neuronal inhibition and excitation across these disorders has been hypothesizedthat may lead to common symptoms of inadequate modulation of behavioral responses to sensory stimuli. Here, we investigated the prevalence of sensory modulation disorders among children with epilepsy and their relation with symptomatology of neurodevelopmental disorders. We used the Sensory Profile questionnaire to assess behavioral responses to sensory stimuli and categorize sensory modulation disorders in children with active epilepsy (aged 4-17 years). We related these outcomes to epilepsy characteristics and tested their association with comorbid symptoms of ASD (Social Responsiveness Scale) and ADHD (Strengths and Difficulties Questionnaire). Sensory modulation disorders were reported in 49 % of the 158 children. Children with epilepsy reported increased behavioral responses associated with sensory "sensitivity," "sensory avoidance," and "poor registration" but not "sensory seeking." Comorbidity of ASD and ADHD was associated with more severe sensory modulation problems, although 27 % of typically developing children with epilepsy also reported a sensory modulation disorder. Sensory modulation disorders are an under-recognized problem in children with epilepsy. The extent of the modulation difficulties indicates a substantial burden on daily functioning and may explain an important part of the behavioral distress associated with childhood epilepsy.

  13. Prestimulus influences on auditory perception from sensory representations and decision processes.

    Science.gov (United States)

    Kayser, Stephanie J; McNair, Steven W; Kayser, Christoph

    2016-04-26

    The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task.

  14. Hereditary sensory ataxic neuropathy associated with proximal muscle weakness in the lower extremities.

    Science.gov (United States)

    Murakami, Tatsufumi; Fukai, Yuta; Rikimaru, Mitsue; Henmi, Shoji; Ohsawa, Yutaka; Sunada, Yoshihide

    2010-04-15

    We describe three patients from the same family with hereditary sensory ataxic neuropathy followed by proximal muscle weakness in the lower extremities. Sensory ataxic gait began as an initial symptom when patients were in their 50s. Mild proximal weakness in the lower extremities appeared several years later. Serum creatine kinase was mildly elevated. Nerve conduction studies revealed sensory dominant axonal neuropathy, and short sensory evoked potentials showed involvement of the sensory nerve axon, dorsal root ganglia and posterior funiculus of the spinal cord. Needle electromyography showed fibrillation, positive sharp waves, and multiple giant motor unit potentials, suggesting the involvement of anterior horn motor neurons or the anterior root. Autosomal recessive inheritance was considered, because of consanguinity. The disorder described here may be a new clinical entity with unique clinical manifestations. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Differential Survival between Visual Environments Supports a Role of Divergent Sensory Drive in Cichlid Fish Speciation.

    Science.gov (United States)

    Maan, Martine E; Seehausen, Ole; Groothuis, Ton G G

    2017-01-01

    Identifying the selective forces that initiate ecological speciation is a major challenge in evolutionary biology. Sensory drive has been implicated in speciation in various taxa, largely based on phenotype-environment correlations and signatures of selection in sensory genes. Here, we present a reciprocal transplant experiment revealing species differences in performance in alternative visual environments, consistent with speciation by divergent sensory drive. The closely related cichlids Pundamilia pundamilia and Pundamilia nyererei inhabit different visual environments in Lake Victoria and show associated differences in visual system properties. Mimicking the two light environments in the laboratory, we find a substantial reduction in survival of both species when reared in the other species' visual environment. This implies that the observed differences in Pundamilia color vision are indeed adaptive and substantiates the implicit assumption in sensory drive speciation models that divergent environmental selection is strong enough to drive divergence in sensory properties.

  16. Nontargeted metabolite profiles and sensory properties of strawberry cultivars grown both organically and conventionally.

    Science.gov (United States)

    Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; Karjalainen, Reijo O; Sandell, Mari

    2015-01-28

    Strawberry (Fragaria × ananassa Duch.) contains many secondary metabolites potentially beneficial for human health, and several of these compounds contribute to strawberry sensory properties, as well. In this study, three strawberry cultivars grown both conventionally and organically were subjected to nontargeted metabolite profiling analysis with LC-qTOF-ESI-MS and to descriptive sensory evaluation by a trained panel. Combined metabolome and sensory data (PLS model) revealed that 79% variation in the metabolome explained 88% variation in the sensory profiles. Flavonoids and condensed and hydrolyzable tannins determined the orosensory properties, and fatty acids contributed to the odor attributes of strawberry. Overall, the results indicated that the chemical composition and sensory quality of strawberries grown in different cultivation systems vary mostly according to cultivar. Organic farming practices may enhance the accumulation of some plant metabolites in specific strawberry genotypes. Careful cultivar selection is a key factor for the improvement of nutritional quality and marketing value of organic strawberries.

  17. Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila

    Science.gov (United States)

    Hampel, Stefanie; McKellar, Claire E

    2017-01-01

    A central model that describes how behavioral sequences are produced features a neural architecture that readies different movements simultaneously, and a mechanism where prioritized suppression between the movements determines their sequential performance. We previously described a model whereby suppression drives a Drosophila grooming sequence that is induced by simultaneous activation of different sensory pathways that each elicit a distinct movement (Seeds et al., 2014). Here, we confirm this model using transgenic expression to identify and optogenetically activate sensory neurons that elicit specific grooming movements. Simultaneous activation of different sensory pathways elicits a grooming sequence that resembles the naturally induced sequence. Moreover, the sequence proceeds after the sensory excitation is terminated, indicating that a persistent trace of this excitation induces the next grooming movement once the previous one is performed. This reveals a mechanism whereby parallel sensory inputs can be integrated and stored to elicit a delayed and sequential grooming response. PMID:28887878

  18. Sensory Substitution and Multimodal Mental Imagery.

    Science.gov (United States)

    Nanay, Bence

    2017-09-01

    Many philosophers use findings about sensory substitution devices in the grand debate about how we should individuate the senses. The big question is this: Is "vision" assisted by (tactile) sensory substitution really vision? Or is it tactile perception? Or some sui generis novel form of perception? My claim is that sensory substitution assisted "vision" is neither vision nor tactile perception, because it is not perception at all. It is mental imagery: visual mental imagery triggered by tactile sensory stimulation. But it is a special form of mental imagery that is triggered by corresponding sensory stimulation in a different sense modality, which I call "multimodal mental imagery."

  19. Encoding and Decoding Models in Cognitive Electrophysiology

    Directory of Open Access Journals (Sweden)

    Christopher R. Holdgraf

    2017-09-01

    Full Text Available Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of “Encoding” models, in which stimulus features are used to model brain activity, and “Decoding” models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses.

  20. Sensory augmentation for the blind

    Directory of Open Access Journals (Sweden)

    Silke Manuela Kärcher

    2012-03-01

    Full Text Available Enacted theories of consciousness conjecture that perception and cognition arise from an active experience of the regular relations that are tying together the sensory stimulation of different modalities and associated motor actions. Previous experiments investigated this concept by employing the technique of sensory substitution. Building on these studies, here we test a set of hypotheses derived from this framework and investigate the utility of sensory augmentation in handicapped people. We provide a late blind subject with a new set of sensorimotor laws: A vibro-tactile belt continually signals the direction of magnetic north. The subject completed a set of behavioral tests before and after an extended training period. The tests were complemented by questionnaires and interviews. This newly supplied information improved performance on different time scales. In a pointing task we demonstrate an instant improvement of performance based on the signal provided by the device. Furthermore, the signal was helpful in relevant daily tasks, often complicated for the blind, such as keeping a direction over longer distances or taking shortcuts in familiar environments. A homing task with an additional attentional load demonstrated a significant improvement after training. The subject found the directional information highly expedient for the adjustment of his inner maps of familiar environments and describes an increase in his feeling of security when exploring unfamiliar environments with the belt. The results give evidence for a firm integration of the newly supplied signals into the behavior of this late blind subject with better navigational performance and more courageous behavior in unfamiliar environments. Most importantly, the complementary information provided by the belt lead to a positive emotional impact with enhanced feeling of security. This experimental approach demonstrates the potential of sensory augmentation devices for the help of

  1. Sensory properties of irradiated foods

    International Nuclear Information System (INIS)

    Plestenjak, A.

    1997-01-01

    Food irradiation is a simple and effective preservation technique. The changes caused by irradiation depend on composition of food, on the absorbed dose, the water content and temperature during and after irradiation. In this paper the changes of food components caused by irradiation, doses for various food irradiation treatments, foods and countries where the irradiation is allowed, and sensory properties of irradiated food are reviewed

  2. Development of Metallic Sensory Alloys

    Science.gov (United States)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  3. Sensory impacts of food-packaging interactions.

    Science.gov (United States)

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials.

  4. The Chemical Background for Sensory Quality

    DEFF Research Database (Denmark)

    Zhang, Shujuan

    compounds and consequently change the sensory quality in wine which provide the useful information of wine quality management to winemakers to as well as knowledge on the behaviour of wine oxidation. Additional, studies focused on understanding the development of volatiles during accelerated cheese ripening......In the food industry, high sensory quality and stability of products are crucial factors for consumer satisfaction and market shares. Sensory quality is normally being evaluated by two major approaches: instrumental (volatile and nonvolatile compounds) approach and sensory approach by trained...... and sensory methods in understanding the pre-fermentation treatment on sensory quality of wine (Study 3). In Study 4, the RATA method was used to provide the intensity of significant sensory descriptors that discriminate the significant differences between chocolate samples. Part three step by step moves...

  5. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia

    OpenAIRE

    Philippe Albouy; Marion Cousineau; Anne Caclin; Barbara Tillmann; Isabelle Peretz

    2016-01-01

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participa...

  6. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination

    OpenAIRE

    Zhe Charles Zhou; Chunxiu Yu; Kristin K. Sellers; Flavio Fröhlich

    2016-01-01

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contr...

  7. Stimulus encoding and feature extraction by multiple pyramidal cells in the hindbrain of weakly electric fish

    OpenAIRE

    Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter

    2002-01-01

    Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly el...

  8. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...

  9. Neutral details associated with emotional events are encoded: evidence from a cued recall paradigm.

    Science.gov (United States)

    Mickley Steinmetz, Katherine R; Knight, Aubrey G; Kensinger, Elizabeth A

    2016-11-01

    Enhanced emotional memory often comes at the cost of memory for surrounding background information. Narrowed-encoding theories suggest that this is due to narrowed attention for emotional information at encoding, leading to impaired encoding of background information. Recent work has suggested that an encoding-based theory may be insufficient. Here, we examined whether cued recall-instead of previously used recognition memory tasks-would reveal evidence that non-emotional information associated with emotional information was effectively encoded. Participants encoded positive, negative, or neutral objects on neutral backgrounds. At retrieval, they were given either the item or the background as a memory cue and were asked to recall the associated scene element. Counter to narrowed-encoding theories, emotional items were more likely than neutral items to trigger recall of the associated background. This finding suggests that there is a memory trace of this contextual information and that emotional cues may facilitate retrieval of this information.

  10. Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.

    Science.gov (United States)

    Rungratsameetaweemana, Nuttida; Itthipuripat, Sirawaj; Salazar, Annalisa; Serences, John T

    2018-06-13

    Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well documented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electroencephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations primarily influence decisions by modulating post-perceptual stages of information processing. SIGNIFICANCE STATEMENT Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical

  11. When noise is beneficial for sensory encoding: Noise adaptation can improve face processing.

    Science.gov (United States)

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Redies, Christoph; Németh, Kornél; Kovács, Gyula

    2017-10-01

    The presence of noise usually impairs the processing of a stimulus. Here, we studied the effects of noise on face processing and show, for the first time, that adaptation to noise patterns has beneficial effects on face perception. We used noiseless faces that were either surrounded by random noise or presented on a uniform background as stimuli. In addition, the faces were either preceded by noise adaptors or not. Moreover, we varied the statistics of the noise so that its spectral slope either matched that of the faces or it was steeper or shallower. Results of parallel ERP recordings showed that the background noise reduces the amplitude of the face-evoked N170, indicating less intensive face processing. Adaptation to a noise pattern, however, led to reduced P1 and enhanced N170 amplitudes as well as to a better behavioral performance in two of the three noise conditions. This effect was also augmented by the presence of background noise around the target stimuli. Additionally, the spectral slope of the noise pattern affected the size of the P1, N170 and P2 amplitudes. We reason that the observed effects are due to the selective adaptation of noise-sensitive neurons present in the face-processing cortical areas, which may enhance the signal-to-noise-ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Exploratory sensory profiling of three culinary preparations of potatoes (Solanum tuberosum L.).

    Science.gov (United States)

    Seefeldt, Helene F; Tønning, Erik; Thybo, Anette K

    2011-01-15

    A consumer-oriented description of potato quality with regard to culinary preparation could increase potato consumption. The aim of this study was to investigate the sensory attributes in 11 potato varieties grown at two locations and used for three culinary preparations. Sensory evaluation of the potatoes served either as boiled, oven-fried or mashed were performed using 15-19 descriptors for appearance, flavour and texture attributes. A principal component analysis revealed that 45% of the variation in the sensory data was related to variety differences, which was ascribed to variation in appearance, dry matter content and texture. Growing location also significantly affected appearance and texture. The sensory panel judged the sensory attributes 'yellowness', 'hardness', 'adhesiveness' and 'moistness' to be important quality descriptors in all three culinary preparations. Internal references showed the high reproducibility of the sensory evaluations. The potatoes grown in a sandy location had higher content of dry matter compared to those grown in a clay location, affecting the quality. This study showed that it was possible to do reliable and reproducible sensory profiles in a potato material with a large span in quality. Sensory information based on few attributes can be used to describe culinary quality of potato varieties. Copyright © 2010 Society of Chemical Industry.

  13. Segmental sensory disturbance in brain stem infarctions of the lateral lower pons and lateral medulla

    International Nuclear Information System (INIS)

    Matsumoto, Sadayuki; Yamasaki, Masahiro; Maya, Kiyomi; Imai, Terukuni; Okuda, Bungo.

    1987-01-01

    We reported on seven cases of brainstem infarctions of the lateral lower pons and lateral medulla, the sensory deficit manifested over the trunk or the leg namely segmental sensory disturbances. All patients showed dissociated sensory disturbance of pain and temperature with retained deep sensations except two cases in which touch was also slightly impaired. The sensory distribution was classified into two types. The first ''crossed type'', ipsilatral face and contralateral trunk and leg below the level was involved in 4 cases, and the second ''unilateral type'' contralateral face and trunk above the level in 3 cases. Clinico-anatomical evaluation was executed by MRI. Lesions were detected in the lateral lower pons in two cases and in the lateral medulla in one case. The location of lesions by MRI revealed more lateral lesions showed ''crossed type'' of segmental sensory disturbance and more medial lesions ''unilateral type''. It was shown that the segmental sensory disturbance could be explained by the partial involvement of the lateral spinothalamic tract, which is arranged with the fibers from the sacral segments most lateral. We considered it very important to differentiate the segmental sensory disturbance by brainstem lesion in practical clinical diagnosis. We also emphasize the type of segmental sensory disturbance could be a localizing sign in the lateral brainstem as such, ''crossed type'' indicating the lesion of the lateral portion and ''unilateral type'' the medial portion of the lateral lower brainstem. (author)

  14. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.

    Science.gov (United States)

    Hofmann, Volker; Sanguinetti-Scheck, Juan I; Künzel, Silke; Geurten, Bart; Gómez-Sena, Leonel; Engelmann, Jacob

    2013-07-01

    Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.

  15. Sensory over responsivity and obsessive compulsive symptoms: A cluster analysis.

    Science.gov (United States)

    Ben-Sasson, Ayelet; Podoly, Tamar Yonit

    2017-02-01

    Several studies have examined the sensory component in Obsesseive Compulsive Disorder (OCD) and described an OCD subtype which has a unique profile, and that Sensory Phenomena (SP) is a significant component of this subtype. SP has some commonalities with Sensory Over Responsivity (SOR) and might be in part a characteristic of this subtype. Although there are some studies that have examined SOR and its relation to Obsessive Compulsive Symptoms (OCS), literature lacks sufficient data on this interplay. First to further examine the correlations between OCS and SOR, and to explore the correlations between SOR modalities (i.e. smell, touch, etc.) and OCS subscales (i.e. washing, ordering, etc.). Second, to investigate the cluster analysis of SOR and OCS dimensions in adults, that is, to classify the sample using the sensory scores to find whether a sensory OCD subtype can be specified. Our third goal was to explore the psychometric features of a new sensory questionnaire: the Sensory Perception Quotient (SPQ). A sample of non clinical adults (n=350) was recruited via e-mail, social media and social networks. Participants completed questionnaires for measuring SOR, OCS, and anxiety. SOR and OCI-F scores were moderately significantly correlated (n=274), significant correlations between all SOR modalities and OCS subscales were found with no specific higher correlation between one modality to one OCS subscale. Cluster analysis revealed four distinct clusters: (1) No OC and SOR symptoms (NONE; n=100), (2) High OC and SOR symptoms (BOTH; n=28), (3) Moderate OC symptoms (OCS; n=63), (4) Moderate SOR symptoms (SOR; n=83). The BOTH cluster had significantly higher anxiety levels than the other clusters, and shared OC subscales scores with the OCS cluster. The BOTH cluster also reported higher SOR scores across tactile, vision, taste and olfactory modalities. The SPQ was found reliable and suitable to detect SOR, the sample SPQ scores was normally distributed (n=350). SOR is a

  16. Nutritional, physico-chemical and sensory properties of Robo (A ...

    African Journals Online (AJOL)

    The vitamins – thiamine, riboflavin and niacin in the melon robo were 2.87, 0.65 and 1.28 mg/100 g while sesame robo contained 2.13, 1.05 and 0.56 mg/100 g respectively. The phytate and oxalate concentrations were relatively low in all the samples. The sensory evaluation results revealed that melon robo was rated ...

  17. Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior.

    Science.gov (United States)

    Panzeri, Stefano; Harvey, Christopher D; Piasini, Eugenio; Latham, Peter E; Fellin, Tommaso

    2017-02-08

    The two basic processes underlying perceptual decisions-how neural responses encode stimuli, and how they inform behavioral choices-have mainly been studied separately. Thus, although many spatiotemporal features of neural population activity, or "neural codes," have been shown to carry sensory information, it is often unknown whether the brain uses these features for perception. To address this issue, we propose a new framework centered on redefining the neural code as the neural features that carry sensory information used by the animal to drive appropriate behavior; that is, the features that have an intersection between sensory and choice information. We show how this framework leads to a new statistical analysis of neural activity recorded during behavior that can identify such neural codes, and we discuss how to combine intersection-based analysis of neural recordings with intervention on neural activity to determine definitively whether specific neural activity features are involved in a task. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Encoding information into precipitation structures

    International Nuclear Information System (INIS)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-01-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A + + B – → C reaction–diffusion processes. Our main result, based on simulating the reaction–diffusion–precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm

  19. Abnormalities of brain response during encoding into verbal working memory among euthymic patients with bipolar disorder.

    Science.gov (United States)

    McKenna, Benjamin S; Sutherland, Ashley N; Legenkaya, Anna P; Eyler, Lisa T

    2014-05-01

    Individuals with bipolar disorder (BD) have trait-like deficits in attention and working memory (WM). A fundamental dissociation for most verbal WM theories involves the separation of sensory-perceptual encoding, reliant upon attention, from the maintenance of this information in WM proper. The present study examined if patients with BD demonstrate differential neural changes in encoding and maintenance WM processes that underlie cognitive impairment. Event-related functional magnetic resonance imaging during a delayed match-to-sample WM paradigm was employed in 23 inter-episode medicated patients with BD and 23 demographically similar healthy comparison participants. We examined brain regions during encoding and maintenance task intervals to identify regions that demonstrated differential effects between groups. Medication effects and functional connectivity between prefrontal cortex and basal ganglia/thalamus were examined during the encoding interval due to the importance of these regions and the connection among them for encoding into WM. Patients with BD exhibited deficits in task accuracy and attenuated brain response during the encoding interval in areas of the prefrontal cortex, caudate, thalamus, and posterior visual regions. In contrast, patients with BD exhibited hyperactivation in posterior sensory regions during the maintenance interval. Among the BD group, those with greater medication load exhibited the greatest brain response within the prefrontal cortex. Reduction in activation during the encoding interval suggests that attentional deficits underlie WM deficits in patients with BD. These deficits appear to be trait-like in so far as they were observed during periods of euthymia in patients with BD. Medication effects remain to be further explored as there was evidence of prefrontal changes dependent on medication load. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Measurement of pharyngeal sensory cortical processing: technique and physiologic implications

    Directory of Open Access Journals (Sweden)

    Ringelstein E Bernd

    2009-07-01

    Full Text Available Abstract Background Dysphagia is a major complication of different diseases affecting both the central and peripheral nervous system. Pharyngeal sensory impairment is one of the main features of neurogenic dysphagia. Therefore an objective technique to examine the cortical processing of pharyngeal sensory input would be a helpful diagnostic tool in this context. We developed a simple paradigm to perform pneumatic stimulation to both sides of the pharyngeal wall. Whole-head MEG was employed to study changes in cortical activation during this pharyngeal stimulation in nine healthy subjects. Data were analyzed by means of synthetic aperture magnetometry (SAM and the group analysis of individual SAM data was performed using a permutation test. Results Our results revealed bilateral activation of the caudolateral primary somatosensory cortex following sensory pharyngeal stimulation with a slight lateralization to the side of stimulation. Conclusion The method introduced here is simple and easy to perform and might be applicable in the clinical setting. The results are in keeping with previous findings showing bihemispheric involvement in the complex task of sensory pharyngeal processing. They might also explain changes in deglutition after hemispheric strokes. The ipsilaterally lateralized processing is surprising and needs further investigation.

  1. Sensory properties of wine tannin fractions: implications for in-mouth sensory properties.

    Science.gov (United States)

    McRae, Jacqui M; Schulkin, Alex; Kassara, Stella; Holt, Helen E; Smith, Paul A

    2013-01-23

    Different molecular structures of grape tannins have been shown to influence astringency, however, the in-mouth sensory effects of different molecular structures in red wine tannins remains to be established. The objective of this research was to assess the impact of wine tannin structure on in-mouth sensory properties. Wine tannin was isolated from Cabernet Sauvignon wines of two vintages (3 and 7 years old) and separated into two structurally distinct subfractions with liquid-liquid fractionation using butanol and water. The aqueous subfractions had greater mean degree of polymerization (mDp) and contained a higher proportion of epigallocatechin subunits than the butanol-soluble subfractions, while the older wine tannin fractions showed fewer epicatechin gallate subunits than the younger tannin fractions. The red wine had approximately 3:1 mass ratio of the aqueous and butanol tannin subfractions which approximated an equimolar ratio of tannin in each subfraction. Descriptive sensory analysis of the tannin subfractions in model wine at equimolar concentrations revealed that the larger, more water-soluble wine tannin subfractions from both wines were perceived as more astringent than the smaller, more hydrophobic and more highly pigmented butanol-soluble subfractions, which were perceived as hotter and more bitter. Partial least squares analysis indicated that the greater hydrophobicity and color incorporation in the butanol fractions was negatively associated with astringency, and these characteristics are also associated with aged wine tannins. As the larger, water-soluble tannins had a greater impact on the overall wine astringency, winemaking processes that modulate concentrations of these are likely to most significantly influence astringency.

  2. Sensory evaluation of Regina freestone peaches treated with low doses of gamma radiation

    International Nuclear Information System (INIS)

    O'Mahony, M.; Wong, S.Y.; Odbert, N.

    1985-01-01

    Sensory appraisal of low post-harvest gamma irradiation dosing (65-75 Krad) of a single batch of peaches revealed significant differences in aroma and in taste components not associated with sweetness, but only slight differences in firmness and appearance. A panel of practiced judges evaluated irradiated and non-irradiated peaches using a technique of minimal cross-sensory inference. The significant differences in aroma and taste also were detected by untrained judges

  3. Hereditary sensory neuropathy type I

    Directory of Open Access Journals (Sweden)

    Auer-Grumbach Michaela

    2008-03-01

    Full Text Available Abstract Hereditary sensory neuropathy type I (HSN I is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7 identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN, especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra

  4. Hereditary sensory neuropathy type I.

    Science.gov (United States)

    Auer-Grumbach, Michaela

    2008-03-18

    Hereditary sensory neuropathy type I (HSN I) is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances) are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7) identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN), especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra neuropathy, or decaying skin

  5. Sensory characteristics of different cod products

    DEFF Research Database (Denmark)

    Sveinsdottir, K.; Martinsdottir, E.; Hyldig, Grethe

    2010-01-01

    atmosphere) were evaluated with quantitative descriptive analysis by a trained sensory panel. Signal-to-noise analysis, p*MSE (discrimination and repeatability) and line plots proved to be very useful in studying panelists' performance. Most sensory attributes described significant differences between...... the products, and principal component analysis provided an overview of the differences and similarities between the products with regard to sensory characteristics. Farmed cod had different sensory characteristics compared with wild cod, such as more meat flavor, and rubbery and meaty texture. Different...... storage methods had minor influence on sensory characteristics of cod fillets after short storage time, but after extended storage, the groups were different with regard to most attributes. PRACTICAL APPLICATIONS This paper presents different ways of analyzing sensory data. The process of analysis...

  6. Multivariate analysis of data in sensory science

    CERN Document Server

    Naes, T; Risvik, E

    1996-01-01

    The state-of-the-art of multivariate analysis in sensory science is described in this volume. Both methods for aggregated and individual sensory profiles are discussed. Processes and results are presented in such a way that they can be understood not only by statisticians but also by experienced sensory panel leaders and users of sensory analysis. The techniques presented are focused on examples and interpretation rather than on the technical aspects, with an emphasis on new and important methods which are possibly not so well known to scientists in the field. Important features of the book are discussions on the relationship among the methods with a strong accent on the connection between problems and methods. All procedures presented are described in relation to sensory data and not as completely general statistical techniques. Sensory scientists, applied statisticians, chemometricians, those working in consumer science, food scientists and agronomers will find this book of value.

  7. Hall effect encoding of brushless dc motors

    Science.gov (United States)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  8. Experienced Sensory Modalities in Dream Recall

    OpenAIRE

    岡田, 斉

    2000-01-01

    The purpose of the present study is to survey the frequency of visual, auditory, kinaesthetic, cutaneous, organic, gustatory, and olfactory experience in dream recall. A total of 1267 undergraduate students completed a dream recall frequency questionnaire, which contained a question about dream recall frequency and about recall frequency of seven sensory modalities. Results showed that seven sensory modalities were divided into two groups; normally perceived sensory modalities in dreaming, wh...

  9. Effects of acupuncture on sensory perception: a systematic review and meta-analysis.

    Science.gov (United States)

    Baeumler, Petra I; Fleckenstein, Johannes; Takayama, Shin; Simang, Michael; Seki, Takashi; Irnich, Dominik

    2014-01-01

    The effect of acupuncture on sensory perception has never been systematically reviewed; although, studies on acupuncture mechanisms are frequently based on the idea that changes in sensory thresholds reflect its effect on the nervous system. Pubmed, EMBASE and Scopus were screened for studies investigating the effect of acupuncture on thermal or mechanical detection or pain thresholds in humans published in English or German. A meta-analysis of high quality studies was performed. Out of 3007 identified articles 85 were included. Sixty five studies showed that acupuncture affects at least one sensory threshold. Most studies assessed the pressure pain threshold of which 80% reported an increase after acupuncture. Significant short- and long-term effects on the pressure pain threshold in pain patients were revealed by two meta-analyses including four and two high quality studies, respectively. In over 60% of studies, acupuncture reduced sensitivity to noxious thermal stimuli, but measuring methods might influence results. Few but consistent data indicate that acupuncture reduces pin-prick like pain but not mechanical detection. Results on thermal detection are heterogeneous. Sensory threshold changes were equally frequent reported after manual acupuncture as after electroacupuncture. Among 48 sham-controlled studies, 25 showed stronger effects on sensory thresholds through verum than through sham acupuncture, but in 9 studies significant threshold changes were also observed after sham acupuncture. Overall, there is a lack of high quality acupuncture studies applying comprehensive assessments of sensory perception. Our findings indicate that acupuncture affects sensory perception. Results are most compelling for the pressure pain threshold, especially in pain conditions associated with tenderness. Sham acupuncture can also cause such effects. Future studies should incorporate comprehensive, standardized assessments of sensory profiles in order to fully characterize its

  10. Flipped-Adversarial AutoEncoders

    OpenAIRE

    Zhang, Jiyi; Dang, Hung; Lee, Hwee Kuan; Chang, Ee-Chien

    2018-01-01

    We propose a flipped-Adversarial AutoEncoder (FAAE) that simultaneously trains a generative model G that maps an arbitrary latent code distribution to a data distribution and an encoder E that embodies an "inverse mapping" that encodes a data sample into a latent code vector. Unlike previous hybrid approaches that leverage adversarial training criterion in constructing autoencoders, FAAE minimizes re-encoding errors in the latent space and exploits adversarial criterion in the data space. Exp...

  11. Encoding, storage and judgment of experienced frequency and duration

    Directory of Open Access Journals (Sweden)

    Tilmann Betsch

    2010-08-01

    Full Text Available This paper examines conditions that do or do not lead to accurate judgments of frequency (JOF and judgments of duration (JOD. In three experiments, duration and frequency of visually presented stimuli are varied orthogonally in a within-subjects design. Experiment 1 reveals an asymmetric judgment pattern. JOFs reflected actual presentation frequency quite accurately and were unbiased by exposure duration. Conversely, JODs were almost insensitive to actual exposure duration and were systematically biased by presentation frequency. We show, however, that a tendency towards a symmetric judgment pattern can be obtained by manipulating encoding conditions. Sustaining attention during encoding (Experiment 2 or enhancing richness of the encoded stimuli (Experiment 3 increases judgment sensitivity in JOD and yields biases in both directions (JOF biased by exposure duration, JOD biased by presentation frequency. The implications of these findings for underlying memory mechanisms are discussed.

  12. Do Birds Experience Sensory Pleasure?

    Directory of Open Access Journals (Sweden)

    Michel Cabanac

    2009-01-01

    Full Text Available To answer the question of whether sensory pleasure exists in birds, I trained an African-gray parrot (Psittacus erythacus named Aristote to speak. Stage 1 of the study consisted in gaining Aristote's affection. In Stage 2 Aristote was taught to speak, following Irene Pepperberg's triangular method: another person and I would talk together and look at Aristote only when it used understandable French words. Thus Aristote learned to say a few words for obtaining toys or getting my attention; e.g. “donne bouchon” (give cork or “donne gratte” (give scratch/tickle, with the appropriate reward. In Stage 3, the word bon (good was added to the short list of words used by Aristote. I said “bon” when giving Aristote the stimuli it requested and which would, presumably, be pleasurable; e.g. gratte bon. Aristote started to use short sentences such as “yaourt bon” (good yogurt. Eventually, Aristote transferred the word bon to new stimuli such as raisin (grape, an association I myself had never made. Such a use of vocabulary, and moreover its transfer, likely shows that this bird experienced sensory pleasure.

  13. Sensorial evaluation of irradiated mangoes

    International Nuclear Information System (INIS)

    Broisler, Paula Olhe; Cruz, Juliana Nunes da; Sabato, Susy Frey

    2007-01-01

    Mango (Mangifera indica L.) is a tropical fruit of great economical relevance in the world, mainly for tropical countries like Brazil. It consists in the second tropical fruit more important grown in the world. On the other hand it is a very perishable fruit and its delivery to distant points is restricted due to short shelf life at environmental temperature. Food irradiation process is applied to fruits for their preservation, once it promotes disinfestation and even maturation retard, among other mechanisms. The Brazilian legislation permits the food irradiation and does not restrict the doses to be delivered. In order to verify eventual changes, sensorial evaluation is very important to study how irradiation affects the quality of the fruit and its acceptability. Mangoes were irradiated in a Cobalto-60 source, from the Radiation Technology Center, CTR, of IPEN/CNEN-SP at doses 0,5 kGy e 0,75 kGy. The sensorial evaluation was measured through Acceptance Test where irradiated samples were offered together with control sample to the tasters who answered their perception through hedonic scale. The parameters Color, Odor, Flavor and Texture were analyzed. Statistical analysis showed that only Odor parameter was different from control (sample irradiated at 0.5 kGy). Few tasters indicated that irradiated mangoes had fewer odors in relation to non-irradiated samples. (author)

  14. Sensorial evaluation of irradiated mangoes

    Energy Technology Data Exchange (ETDEWEB)

    Broisler, Paula Olhe; Cruz, Juliana Nunes da; Sabato, Susy Frey [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: paulabroisler@hotmail.com; juliananc@ig.com.br; sfsabato@ipen.br

    2007-07-01

    Mango (Mangifera indica L.) is a tropical fruit of great economical relevance in the world, mainly for tropical countries like Brazil. It consists in the second tropical fruit more important grown in the world. On the other hand it is a very perishable fruit and its delivery to distant points is restricted due to short shelf life at environmental temperature. Food irradiation process is applied to fruits for their preservation, once it promotes disinfestation and even maturation retard, among other mechanisms. The Brazilian legislation permits the food irradiation and does not restrict the doses to be delivered. In order to verify eventual changes, sensorial evaluation is very important to study how irradiation affects the quality of the fruit and its acceptability. Mangoes were irradiated in a Cobalto-60 source, from the Radiation Technology Center, CTR, of IPEN/CNEN-SP at doses 0,5 kGy e 0,75 kGy. The sensorial evaluation was measured through Acceptance Test where irradiated samples were offered together with control sample to the tasters who answered their perception through hedonic scale. The parameters Color, Odor, Flavor and Texture were analyzed. Statistical analysis showed that only Odor parameter was different from control (sample irradiated at 0.5 kGy). Few tasters indicated that irradiated mangoes had fewer odors in relation to non-irradiated samples. (author)

  15. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. School-aged children can benefit from audiovisual semantic congruency during memory encoding.

    Science.gov (United States)

    Heikkilä, Jenni; Tiippana, Kaisa

    2016-05-01

    Although we live in a multisensory world, children's memory has been usually studied concentrating on only one sensory modality at a time. In this study, we investigated how audiovisual encoding affects recognition memory. Children (n = 114) from three age groups (8, 10 and 12 years) memorized auditory or visual stimuli presented with a semantically congruent, incongruent or non-semantic stimulus in the other modality during encoding. Subsequent recognition memory performance was better for auditory or visual stimuli initially presented together with a semantically congruent stimulus in the other modality than for stimuli accompanied by a non-semantic stimulus in the other modality. This congruency effect was observed for pictures presented with sounds, for sounds presented with pictures, for spoken words presented with pictures and for written words presented with spoken words. The present results show that semantically congruent multisensory experiences during encoding can improve memory performance in school-aged children.

  17. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations.

    Science.gov (United States)

    Hawking, Thomas G; Gerdjikov, Todor V

    2013-01-01

    Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45-90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state.

  18. Quantum control mechanism analysis through field based Hamiltonian encoding

    International Nuclear Information System (INIS)

    Mitra, Abhra; Rabitz, Herschel

    2006-01-01

    Optimal control of quantum dynamics in the laboratory is proving to be increasingly successful. The control fields can be complex, and the mechanisms by which they operate have often remained obscure. Hamiltonian encoding (HE) has been proposed as a method for understanding mechanisms in quantum dynamics. In this context mechanism is defined in terms of the dominant quantum pathways leading to the final state of the controlled system. HE operates by encoding a special modulation into the Hamiltonian and decoding its signature in the dynamics to determine the dominant pathway amplitudes. Earlier work encoded the modulation directly into the Hamiltonian operators. This present work introduces the alternative scheme of field based HE, where the modulation is encoded into the control field and not directly into the Hamiltonian operators. This distinct form of modulation yields a new perspective on mechanism and is computationally faster than the earlier approach. Field based encoding is also an important step towards a laboratory based algorithm for HE as it is the only form of encoding that may be experimentally executed. HE is also extended to cover systems with noise and uncertainty and finally, a hierarchical algorithm is introduced to reveal mechanism in a stepwise fashion of ever increasing detail as desired. This new hierarchical algorithm is an improvement over earlier approaches to HE where the entire mechanism was determined in one stroke. The improvement comes from the use of less complex modulation schemes, which leads to fewer evaluations of Schroedinger's equation. A number of simulations are presented on simple systems to illustrate the new field based encoding technique for mechanism assessment

  19. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Science.gov (United States)

    Chiabrando, Deborah; Castori, Marco; di Rocco, Maja; Ungelenk, Martin; Gießelmann, Sebastian; Di Capua, Matteo; Madeo, Annalisa; Grammatico, Paola; Bartsch, Sophie; Hübner, Christian A; Altruda, Fiorella; Silengo, Lorenzo; Tolosano, Emanuela; Kurth, Ingo

    2016-12-01

    Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs). Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1) gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  20. Anatomical Inputs From the Sensory and Value Structures to the Tail of the Rat Striatum

    Directory of Open Access Journals (Sweden)

    Haiyan Jiang

    2018-05-01

    Full Text Available The caudal region of the rodent striatum, called the tail of the striatum (TS, is a relatively small area but might have a distinct function from other striatal subregions. Recent primate studies showed that this part of the striatum has a unique function in encoding long-term value memory of visual objects for habitual behavior. This function might be due to its specific connectivity. We identified inputs to the rat TS and compared those with inputs to the dorsomedial striatum (DMS in the same animals. The TS directly received anatomical inputs from both sensory structures and value-coding regions, but the DMS did not. First, inputs from the sensory cortex and sensory thalamus to the TS were found; visual, auditory, somatosensory and gustatory cortex and thalamus projected to the TS but not to the DMS. Second, two value systems innervated the TS; dopamine and serotonin neurons in the lateral part of the substantia nigra pars compacta (SNc and dorsal raphe nucleus projected to the TS, respectively. The DMS received inputs from the separate group of dopamine neurons in the medial part of the SNc. In addition, learning-related regions of the limbic system innervated the TS; the temporal areas and the basolateral amygdala selectively innervated the TS, but not the DMS. Our data showed that both sensory and value-processing structures innervated the TS, suggesting its plausible role in value-guided sensory-motor association for habitual behavior.

  1. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Directory of Open Access Journals (Sweden)

    Deborah Chiabrando

    2016-12-01

    Full Text Available Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs. Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1 gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  2. Heterogeneous sensory innervation and extensive intrabulbar connections of olfactory necklace glomeruli.

    Directory of Open Access Journals (Sweden)

    Renee E Cockerham

    Full Text Available The mammalian nose employs several olfactory subsystems to recognize and transduce diverse chemosensory stimuli. These subsystems differ in their anatomical position within the nasal cavity, their targets in the olfactory forebrain, and the transduction mechanisms they employ. Here we report that they can also differ in the strategies they use for stimulus coding. Necklace glomeruli are the sole main olfactory bulb (MOB targets of an olfactory sensory neuron (OSN subpopulation distinguished by its expression of the receptor guanylyl cyclase GC-D and the phosphodiesterase PDE2, and by its chemosensitivity to the natriuretic peptides uroguanylin and guanylin and the gas CO(2. In stark contrast to the homogeneous sensory innervation of canonical MOB glomeruli from OSNs expressing the same odorant receptor (OR, we find that each necklace glomerulus of the mouse receives heterogeneous innervation from at least two distinct sensory neuron populations: one expressing GC-D and PDE2, the other expressing olfactory marker protein. In the main olfactory system it is thought that odor identity is encoded by a combinatorial strategy and represented in the MOB by a pattern of glomerular activation. This combinatorial coding scheme requires functionally homogeneous sensory inputs to individual glomeruli by OSNs expressing the same OR and displaying uniform stimulus selectivity; thus, activity in each glomerulus reflects the stimulation of a single OSN type. The heterogeneous sensory innervation of individual necklace glomeruli by multiple, functionally distinct, OSN subtypes precludes a similar combinatorial coding strategy in this olfactory subsystem.

  3. Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.

    Science.gov (United States)

    Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein

    2012-10-15

    Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Graph Regularized Auto-Encoders for Image Representation.

    Science.gov (United States)

    Yiyi Liao; Yue Wang; Yong Liu

    2017-06-01

    Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.

  5. Sensory reactivity, empathizing and systemizing in autism spectrum conditions and sensory processing disorder

    Directory of Open Access Journals (Sweden)

    Teresa Tavassoli

    2018-01-01

    Full Text Available Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD. To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ to measure autistic traits, and the Empathy Quotient (EQ and Systemizing Quotient (SQ to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Keywords: Autism spectrum conditions, Sensory processing disorder, Sensory symptoms, Empathy, Systemizing

  6. Why do unusual novel foods like insects lack sensory appeal? Investigating the underlying sensory perceptions

    NARCIS (Netherlands)

    Tan Hui Shan, Grace; Tibboel, Claudia Joyce; Stieger, Markus

    2017-01-01

    Unusual novel foods like insects generally hold little sensory appeal for consumers, but little is known about the underlying sensory perceptions and how the properties of the food contribute to acceptance. This study examined the sensory perceptions of 3 unusual novel foods (lamb brain, frog

  7. Antiretroviral Therapy-Associated Acute Motor and Sensory Axonal Neuropathy

    Directory of Open Access Journals (Sweden)

    Kimberly N. Capers

    2011-01-01

    Full Text Available Guillain-Barré syndrome (GBS has been reported in HIV-infected patients in association with the immune reconstitution syndrome whose symptoms can be mimicked by highly active antiretroviral therapy (HAART-mediated mitochondrial toxicity. We report a case of a 17-year-old, HIV-infected patient on HAART with a normal CD4 count and undetectable viral load, presenting with acute lower extremity weakness associated with lactatemia. Electromyography/nerve conduction studies revealed absent sensory potentials and decreased compound muscle action potentials, consistent with a diagnosis of acute motor and sensory axonal neuropathy. Lactatemia resolved following cessation of HAART; however, neurological deficits minimally improved over several months in spite of immune modulatory therapy. This case highlights the potential association between HAART, mitochondrial toxicity and acute axonal neuropathies in HIV-infected patients, distinct from the immune reconstitution syndrome.

  8. Sensory experience modifies feature map relationships in visual cortex

    Science.gov (United States)

    Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S

    2016-01-01

    The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531

  9. Thermodynamic limits to information harvesting by sensory systems

    International Nuclear Information System (INIS)

    Bo, Stefano; Giudice, Marco Del; Celani, Antonio

    2015-01-01

    In view of the relation between information and thermodynamics we investigate how much information about an external protocol can be stored in the memory of a stochastic measurement device given an energy budget. We consider a layered device with a memory component storing information about the external environment by monitoring the history of a sensory part coupled to the environment. We derive an integral fluctuation theorem for the entropy production and a measure of the information accumulated in the memory device. Its most immediate consequence is that the amount of information is bounded by the average thermodynamic entropy produced by the process. At equilibrium no entropy is produced and therefore the memory device does not add any information about the environment to the sensory component. Consequently, if the system operates at equilibrium the addition of a memory component is superfluous. Such a device can be used to model the sensing process of a cell measuring the external concentration of a chemical compound and encoding the measurement in the amount of phosphorylated cytoplasmic proteins. (paper)

  10. Sensory profiles of chocolates produced from cocoa cultivars resistant to Moniliophtora Perniciosa

    Directory of Open Access Journals (Sweden)

    Paula Bacelar Leite

    2013-06-01

    Full Text Available The present study evaluated the sensory quality of chocolates obtained from two cocoa cultivars (PH16 and SR162 resistant to Moniliophtora perniciosa mould comparing to a conventional cocoa that is not resistant to the disease. The acceptability of the chocolates was assessed and the promising cultivars with relevant sensory and commercial attributes could be indicated to cocoa producers and chocolate manufacturers. The descriptive terminology and the sensory profile of chocolates were developed by Quantitative Descriptive Analysis (QDA. Ten panelists, selected on the basis of their discriminatory capacity and reproducibility, defined eleven sensory descriptors, their respective reference materials and the descriptive evaluation ballot. The data were analyzed using ANOVA, Principal Component Analysis (PCA and Tukey's test to compare the means. The results revealed significant differences among the sensory profiles of the chocolates. Chocolates from the PH16 cultivar were characterized by a darker brown color, more intense flavor and odor of chocolate, bitterness and a firmer texture, which are important sensory and commercial attributes. Chocolates from the SR162 cultivar were characterized by a greater sweetness and melting quality and chocolates from the conventional treatment presented intermediate sensory characteristics between those of the other two chocolates. All samples indicated high acceptance, but chocolates from the PH16 and conventional cultivars obtained higher purchase intention scores.

  11. Sensory handedness is not reflected in cortical responses after basic nerve stimulation: a MEG study.

    Science.gov (United States)

    Chen, Andrew C N; Theuvenet, Peter J; de Munck, Jan C; Peters, Maria J; van Ree, Jan M; Lopes da Silva, Fernando L

    2012-04-01

    Motor dominance is well established, but sensory dominance is much less clear. We therefore studied the cortical evoked magnetic fields using magnetoencephalography (MEG) in a group of 20 healthy right handed subjects in order to examine whether standard electrical stimulation of the median and ulnar nerve demonstrated sensory lateralization. The global field power (GFP) curves, as an indication of cortical activation, did not depict sensory lateralization to the dominant left hemisphere. Comparison of the M20, M30, and M70 peak latencies and GFP values exhibited no statistical differences between the hemispheres, indicating no sensory hemispherical dominance at these latencies for each nerve. Field maps at these latencies presented a first and second polarity reversal for both median and ulnar stimulation. Spatial dipole position parameters did not reveal statistical left-right differences at the M20, M30 and M70 peaks for both nerves. Neither did the dipolar strengths at M20, M30 and M70 show a statistical left-right difference for both nerves. Finally, the Laterality Indices of the M20, M30 and M70 strengths did not indicate complete lateralization to one of the hemispheres. After electrical median and ulnar nerve stimulation no evidence was found for sensory hand dominance in brain responses of either hand, as measured by MEG. The results can provide a new assessment of patients with sensory dysfunctions or perceptual distortion when sensory dominance occurs way beyond the estimated norm.

  12. Sensory memory consolidation observed: Increased specificity of detail over days

    Science.gov (United States)

    Weinberger, Norman M.; Miasnikov, Alexandre A.; Chen, Jemmy C.

    2010-01-01

    Memories are usually multidimensional, including contents such as sensory details, motivational state and emotional overtones. Memory contents generally change over time, most often reported as a loss in the specificity of detail. To study the temporal changes in the sensory contents of associative memory without motivational and emotional contents, we induced memory for acoustic frequency by pairing a tone with stimulation of the cholinergic nucleus basalis. Adult male rats were first tested for behavioral responses (disruption of ongoing respiration) to tones (1–15 kHz), yielding pre-training behavioral frequency generalization gradients (BFGG). They next received three days of training consisting of a conditioned stimulus (CS) tone (8.00 kHz, 70 dB, 2 s) either Paired (n = 5) or Unpaired (n = 5) with weak electrical stimulation (~48 μA) of the nucleus basalis (100 Hz, 0.2 s, co-terminating with CS offset). Testing for behavioral memory was performed by obtaining post-training BFGGs at two intervals, 24 and 96 h after training. At 24 h post-training, the Paired group exhibited associative behavioral memory manifested by significantly larger responses to tone than the Unpaired group. However, they exhibited no specificity in memory for the frequency of the tonal CS, as indexed by a flat BFGG. In contrast, after 96 h post-training the Paired group did exhibit specificity of memory as revealed by tuned BFGGs with a peak at the CS-band of frequencies. This increased detail of memory developed due to a loss of response to lower and higher frequency side-bands, without any change in the absolute magnitude of response to CS-band frequencies. These findings indicate that the sensory contents of associative memory can be revealed to become more specific, through temporal consolidation in the absence of non-sensory factors such as motivation and emotion. PMID:19038352

  13. Sensory memory consolidation observed: increased specificity of detail over days.

    Science.gov (United States)

    Weinberger, Norman M; Miasnikov, Alexandre A; Chen, Jemmy C

    2009-03-01

    Memories are usually multidimensional, including contents such as sensory details, motivational state and emotional overtones. Memory contents generally change over time, most often reported as a loss in the specificity of detail. To study the temporal changes in the sensory contents of associative memory without motivational and emotional contents, we induced memory for acoustic frequency by pairing a tone with stimulation of the cholinergic nucleus basalis. Adult male rats were first tested for behavioral responses (disruption of ongoing respiration) to tones (1-15 kHz), yielding pre-training behavioral frequency generalization gradients (BFGG). They next received three days of training consisting of a conditioned stimulus (CS) tone (8.00 kHz, 70 dB, 2 s) either Paired (n=5) or Unpaired (n=5) with weak electrical stimulation (approximately 48 microA) of the nucleus basalis (100 Hz, 0.2 s, co-terminating with CS offset). Testing for behavioral memory was performed by obtaining post-training BFGGs at two intervals, 24 and 96 h after training. At 24 h post-training, the Paired group exhibited associative behavioral memory manifested by significantly larger responses to tone than the Unpaired group. However, they exhibited no specificity in memory for the frequency of the tonal CS, as indexed by a flat BFGG. In contrast, after 96 h post-training the Paired group did exhibit specificity of memory as revealed by tuned BFGGs with a peak at the CS-band of frequencies. This increased detail of memory developed due to a loss of response to lower and higher frequency side-bands, without any change in the absolute magnitude of response to CS-band frequencies. These findings indicate that the sensory contents of associative memory can be revealed to become more specific, through temporal consolidation in the absence of non-sensory factors such as motivation and emotion.

  14. Multisensory integration, sensory substitution and visual rehabilitation

    DEFF Research Database (Denmark)

    Proulx, Michael J; Ptito, Maurice; Amedi, Amir

    2014-01-01

    Sensory substitution has advanced remarkably over the past 35 years since first introduced to the scientific literature by Paul Bach-y-Rita. In this issue dedicated to his memory, we describe a collection of reviews that assess the current state of neuroscience research on sensory substitution...

  15. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  16. CHEMICAL, SENSORY AND MICROBIOLOGICAL CHANGES OF ...

    African Journals Online (AJOL)

    Dr Adesola Osibona

    Presently, there are numerous problems facing the field of fisheries, some of which are related to the keeping ... The two main methods of assessing fish quality are sensory and non-sensory ... MATERIALS AND METHODS. Sample ..... The initial lag phase of micro-organisms in the stored fish was followed by an increase in ...

  17. Sensory testing of the human gastrointestinal tract.

    NARCIS (Netherlands)

    Brock, C.; Arendt-Nielsen, L.; Wilder-Smith, O.H.G.; Drewes, A.M.

    2009-01-01

    The objective of this appraisal is to shed light on the various approaches to screen sensory information in the human gut. Understanding and characterization of sensory symptoms in gastrointestinal disorders is poor. Experimental methods allowing the investigator to control stimulus intensity and

  18. A THEORY OF MAXIMIZING SENSORY INFORMATION

    NARCIS (Netherlands)

    Hateren, J.H. van

    1992-01-01

    A theory is developed on the assumption that early sensory processing aims at maximizing the information rate in the channels connecting the sensory system to more central parts of the brain, where it is assumed that these channels are noisy and have a limited dynamic range. Given a stimulus power

  19. Artificial sensory organs: latest progress.

    Science.gov (United States)

    Nakamura, Tatsuo; Inada, Yuji; Shigeno, Keiji

    2018-03-01

    This study introduces the latest progress on the study of artificial sensory organs, with a special emphasis on the clinical results of artificial nerves and the concept of in situ tissue engineering. Peripheral nerves have a strong potential for regeneration. An artificial nerve uses this potential to recover a damaged peripheral nerve. The polyglycolic acid collagen tube (PGA-C tube) is a bio-absorbable tube stuffed with collagen of multi-chamber structure that consists of thin collagen films. The clinical application of the PGA-C tube began in 2002 in Japan. The number of PGA-C tubes used is now beyond 300, and satisfactory results have been reported on peripheral nerve repairs. This PGA-C tube is also effective for patients suffering from neuropathic pain.

  20. [Sensory integration: hierarchy and synchronization].

    Science.gov (United States)

    Kriukov, V I

    2005-01-01

    This is the first in the series of mini-reviews devoted to the basic problems and most important effects of attention in terms of neuronal modeling. We believe that the absence of the unified view on wealth of new date on attention is the main obstacle for further understanding of higher nervous activity. The present work deals with the main ground problem of reconciling two competing architectures designed to integrate the sensory information in the brain. The other mini-reviews will be concerned with the remaining five or six problems of attention, all of them to be ultimately resolved uniformly in the framework of small modification of dominant model of attention and memory.

  1. Sensory Metrics of Neuromechanical Trust.

    Science.gov (United States)

    Softky, William; Benford, Criscillia

    2017-09-01

    that individuals can improve sensory and sociosensory resolution through deliberate sensory reintegration practices. We conclude that we humans are the victims of our own success, our hands so skilled they fill the world with captivating things, our eyes so innocent they follow eagerly.

  2. A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis.

    Science.gov (United States)

    Herget, Meike; Scheibinger, Mirko; Guo, Zhaohua; Jan, Taha A; Adams, Christopher M; Cheng, Alan G; Heller, Stefan

    2013-01-01

    Mechanosensitive hair cells and supporting cells comprise the sensory epithelia of the inner ear. The paucity of both cell types has hampered molecular and cell biological studies, which often require large quantities of purified cells. Here, we report a strategy allowing the enrichment of relatively pure populations of vestibular hair cells and non-sensory cells including supporting cells. We utilized specific uptake of fluorescent styryl dyes for labeling of hair cells. Enzymatic isolation and flow cytometry was used to generate pure populations of sensory hair cells and non-sensory cells. We applied mass spectrometry to perform a qualitative high-resolution analysis of the proteomic makeup of both the hair cell and non-sensory cell populations. Our conservative analysis identified more than 600 proteins with a false discovery rate of Analysis of proteins exclusively detected in either population revealed 64 proteins that were specific to hair cells and 103 proteins that were only detectable in non-sensory cells. Statistical analyses extended these groups by 53 proteins that are strongly upregulated in hair cells versus non-sensory cells and vice versa by 68 proteins. Our results demonstrate that enzymatic dissociation of styryl dye-labeled sensory hair cells and non-sensory cells is a valid method to generate pure enough cell populations for flow cytometry and subsequent molecular analyses.

  3. Sensory profile of eleven peach cultivars

    Directory of Open Access Journals (Sweden)

    Francine Lorena Cuquel

    2012-03-01

    Full Text Available The goal of this study was to evaluate the sensory profile of eleven peach cultivars grown in an experimental orchard located in the city of Lapa (PR, Brazil in two seasons. The peach cultivars analyzed were Aurora I, Chimarrita, Chiripá, Coral, Eldorado, Granada, Leonense, Maciel, Marli, Premier, and Vanguarda. The sensory analysis was performed by previously trained panelists; 20 of them in the first season and 10 in the second season. The sensory evaluation was performed using Quantitative Descriptive Analysis, in which the following attributes were measured: appearance, aroma, flesh color, flesh firmness, flavor, and juiciness. The results showed preference for sweet, soft, and juicy fruits. Chimarrita, Chiripá, and Coral fruits showed better sensorial performance than the other peach cultivars. It was also verified that the analysis of the attributes aroma, flesh firmness, and flavor is enough for performing the sensory profile of peach fruits for in natura consumption.

  4. Sensory feedback in upper limb prosthetics.

    Science.gov (United States)

    Antfolk, Christian; D'Alonzo, Marco; Rosén, Birgitta; Lundborg, Göran; Sebelius, Fredrik; Cipriani, Christian

    2013-01-01

    One of the challenges facing prosthetic designers and engineers is to restore the missing sensory function inherit to hand amputation. Several different techniques can be employed to provide amputees with sensory feedback: sensory substitution methods where the recorded stimulus is not only transferred to the amputee, but also translated to a different modality (modality-matched feedback), which transfers the stimulus without translation and direct neural stimulation, which interacts directly with peripheral afferent nerves. This paper presents an overview of the principal works and devices employed to provide upper limb amputees with sensory feedback. The focus is on sensory substitution and modality matched feedback; the principal features, advantages and disadvantages of the different methods are presented.

  5. Sensory quality criteria for five fish species

    DEFF Research Database (Denmark)

    Warm, Karin; Nielsen, Jette; Hyldig, Grethe

    2000-01-01

    Sensory profiling has been used to develop one sensory vocabulary for five fish species: cod (Gadus morhua), saithe (Pollachius virens), rainbow trout (Salmo gardineri), herring (Clupea harengus) and flounder (Platichthys flessus). A nine- member trained panel assessed 18 samples with variation i...... variation and by presenting references, panel discussions and interpreting plots from multivariate data analysis. The developed profile can be used as a sensory wheel for these species, and with minor changes it may be adapted to similar species......Sensory profiling has been used to develop one sensory vocabulary for five fish species: cod (Gadus morhua), saithe (Pollachius virens), rainbow trout (Salmo gardineri), herring (Clupea harengus) and flounder (Platichthys flessus). A nine- member trained panel assessed 18 samples with variation...

  6. Tagging, Encoding, and Jones Optimality

    DEFF Research Database (Denmark)

    Danvy, Olivier; Lopez, Pablo E. Martinez

    2003-01-01

    A partial evaluator is said to be Jones-optimal if the result of specializing a self-interpreter with respect to a source program is textually identical to the source program, modulo renaming. Jones optimality has already been obtained if the self-interpreter is untyped. If the selfinterpreter...... is typed, however, residual programs are cluttered with type tags. To obtain the original source program, these tags must be removed. A number of sophisticated solutions have already been proposed. We observe, however, that with a simple representation shift, ordinary partial evaluation is already Jones......-optimal, modulo an encoding. The representation shift amounts to reading the type tags as constructors for higherorder abstract syntax. We substantiate our observation by considering a typed self-interpreter whose input syntax is higher-order. Specializing this interpreter with respect to a source program yields...

  7. Automatic encoding of polyphonic melodies in musicians and nonmusicians.

    Science.gov (United States)

    Fujioka, Takako; Trainor, Laurel J; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo

    2005-10-01

    In music, multiple musical objects often overlap in time. Western polyphonic music contains multiple simultaneous melodic lines (referred to as "voices") of equal importance. Previous electrophysiological studies have shown that pitch changes in a single melody are automatically encoded in memory traces, as indexed by mismatch negativity (MMN) and its magnetic counterpart (MMNm), and that this encoding process is enhanced by musical experience. In the present study, we examined whether two simultaneous melodies in polyphonic music are represented as separate entities in the auditory memory trace. Musicians and untrained controls were tested in both magnetoencephalogram and behavioral sessions. Polyphonic stimuli were created by combining two melodies (A and B), each consisting of the same five notes but in a different order. Melody A was in the high voice and Melody B in the low voice in one condition, and this was reversed in the other condition. On 50% of trials, a deviant final (5th) note was played either in the high or in the low voice, and it either went outside the key of the melody or remained within the key. These four deviations occurred with equal probability of 12.5% each. Clear MMNm was obtained for most changes in both groups, despite the 50% deviance level, with a larger amplitude in musicians than in controls. The response pattern was consistent across groups, with larger MMNm for deviants in the high voice than in the low voice, and larger MMNm for in-key than out-of-key changes, despite better behavioral performance for out-of-key changes. The results suggest that melodic information in each voice in polyphonic music is encoded in the sensory memory trace, that the higher voice is more salient than the lower, and that tonality may be processed primarily at cognitive stages subsequent to MMN generation.

  8. [Two cases of hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P)].

    Science.gov (United States)

    Mori, Chiaki; Saito, Tomoko; Saito, Toshio; Fujimura, Harutoshi; Sakoda, Saburo

    2015-01-01

    We, herein, report two independent cases with hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) inherited in an autosomal dominant fashion. Their common clinical features are slowly progressive proximal dominant muscular atrophy, fasciculations and mild to moderate distal sensory disturbance with areflexia. Nerve conduction study revealed an absence of sensory nerve action potentials, in contrast to almost normal compound muscle action potentials. Gene analysis in both patients elucidated heterozygous mutation (c.854C>T, p.Pro285Leu) in the TFG, which is an identical mutation, already described by Ishiura et al. Okinawa and Shiga are two foci of HMSN-P in Japan. Eventually, one patient is from Okinawa and the other is from a mountain village in Shiga prefecture. When we see a patient who has symptoms suggestive of motor neuron disease with sensory neuropathy, HMSN-P should be considered as a differential diagnosis despite the patient's actual resident place.

  9. Prenatal VPA exposure and changes in sensory processing by the superior colliculus

    Directory of Open Access Journals (Sweden)

    Georgia eDendrinos

    2011-10-01

    Full Text Available Disorders involving dysfunctional sensory processing are characterized by an inability to filter sensory information, particularly simultaneously arriving multimodal inputs. We examined the effects of prenatal exposure to valproic acid (VPA, a teratogen linked to sensory dysfunction, on the behavior of juvenile and adult rats, and on the anatomy of the superior colliculus, a critical multisensory integration center in the brain. VPA-exposed rats showed deficits in colliculus-dependent behaviors including startle response, prepulse inhibition and nociceptive responses. Some deficits reversed with age. Stereological analyses revealed that colliculi of VPA-treated rats had significantly fewer parvalbumin-positive neurons, a subset of GABAergic cells. These results suggest that prenatal VPA treatment affects the development of the superior colliculus and leads to persistent anatomical changes evidenced by aberrant behavior in tasks that require sensory processing.

  10. Sensory stimulation - a way of creating mutual relations in dementia care.

    Science.gov (United States)

    Lykkeslet, Else; Gjengedal, Eva; Skrondal, Torill; Storjord, May-Britt

    2014-01-01

    The overall aim of this 2-year Norwegian action research study was to improve the interaction between care workers and patients with dementia in a nursing home by means of sensory stimulation. Furthermore, the aim was to investigate how the staff experienced the interaction with patients suffering from behavioral and psychological symptoms of dementia before, under, and after introduction of sensory stimulation methods in clinical practice. An intervention program consisting of lectures and practical guiding in sensory stimulation was implemented. The care workers participated in group meetings to reflect on the progress. Focus group interviews and participant observations were conducted initially to map exciting practice, and at the end to evaluate potential changes in attitude and skills. Observation notes and interview transcripts were analyzed by means of thematic analysis which revealed a gradual emergence of person-centered care. A phenomenological life-world perspective may serve as a theoretical basis to deepen the understanding of the use of sensory stimulation.

  11. Sensory nerve action potentials and sensory perception in women with arthritis of the hand.

    Science.gov (United States)

    Calder, Kristina M; Martin, Alison; Lydiate, Jessica; MacDermid, Joy C; Galea, Victoria; MacIntyre, Norma J

    2012-05-10

    Arthritis of the hand can limit a person's ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception.

  12. Sensory perception: lessons from synesthesia: using synesthesia to inform the understanding of sensory perception.

    Science.gov (United States)

    Harvey, Joshua Paul

    2013-06-01

    Synesthesia, the conscious, idiosyncratic, repeatable, and involuntary sensation of one sensory modality in response to another, is a condition that has puzzled both researchers and philosophers for centuries. Much time has been spent proving the condition's existence as well as investigating its etiology, but what can be learned from synesthesia remains a poorly discussed topic. Here, synaesthesia is presented as a possible answer rather than a question to the current gaps in our understanding of sensory perception. By first appreciating the similarities between normal sensory perception and synesthesia, one can use what is known about synaesthesia, from behavioral and imaging studies, to inform our understanding of "normal" sensory perception. In particular, in considering synesthesia, one can better understand how and where the different sensory modalities interact in the brain, how different sensory modalities can interact without confusion - the binding problem - as well as how sensory perception develops.

  13. Intersubject information mapping: revealing canonical representations of complex natural stimuli

    Directory of Open Access Journals (Sweden)

    Nikolaus Kriegeskorte

    2015-03-01

    Full Text Available Real-world time-continuous stimuli such as video promise greater naturalism for studies of brain function. However, modeling the stimulus variation is challenging and introduces a bias in favor of particular descriptive dimensions. Alternatively, we can look for brain regions whose signal is correlated between subjects, essentially using one subject to model another. Intersubject correlation mapping (ICM allows us to find brain regions driven in a canonical manner across subjects by a complex natural stimulus. However, it requires a direct voxel-to-voxel match between the spatiotemporal activity patterns and is thus only sensitive to common activations sufficiently extended to match up in Talairach space (or in an alternative, e.g. cortical-surface-based, common brain space. Here we introduce the more general approach of intersubject information mapping (IIM. For each brain region, IIM determines how much information is shared between the subjects' local spatiotemporal activity patterns. We estimate the intersubject mutual information using canonical correlation analysis applied to voxels within a spherical searchlight centered on each voxel in turn. The intersubject information estimate is invariant to linear transforms including spatial rearrangement of the voxels within the searchlight. This invariance to local encoding will be crucial in exploring fine-grained brain representations, which cannot be matched up in a common space and, more fundamentally, might be unique to each individual – like fingerprints. IIM yields a continuous brain map, which reflects intersubject information in fine-grained patterns. Performed on data from functional magnetic resonance imaging (fMRI of subjects viewing the same television show, IIM and ICM both highlighted sensory representations, including primary visual and auditory cortices. However, IIM revealed additional regions in higher association cortices, namely temporal pole and orbitofrontal cortex. These

  14. Genetics Home Reference: hereditary sensory neuropathy type IA

    Science.gov (United States)

    ... sensory neuropathy type IA Hereditary sensory neuropathy type IA Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Hereditary sensory neuropathy type IA is a condition characterized by nerve abnormalities in ...

  15. touché is required for touch evoked generator potentials within vertebrate sensory neurons

    Science.gov (United States)

    Low, Sean E.; Ryan, Joel; Sprague, Shawn M.; Hirata, Hiromi; Cui, Wilson W.; Zhou, Weibin; Hume, Richard I.; Kuwada, John Y.; Saint-Amant, Louis

    2010-01-01

    The process by which light-touch in vertebrates is transformed into an electrical response in cutaneous mechanosensitive neurons is a largely unresolved question. To address this question we undertook a forward genetic screen in zebrafish (Danio rerio) to identify mutants exhibiting abnormal touch-evoked behaviors, despite the presence of sensory neurons and peripheral neurites. One family, subsequently named touché, was found to harbor a recessive mutation which produced offspring that were unresponsive to light-touch, but responded to a variety of other sensory stimuli. The optogenetic activation of motor behaviors by touché mutant sensory neurons expressing ChannelRhodopsin-2 suggested that the synaptic output of sensory neurons was intact, consistent with a defect in sensory neuron activation. To explore sensory neuron activation we developed an in vivo preparation permitting the precise placement of a combined electrical and tactile stimulating probe upon eGFP positive peripheral neurites. In wild type larva electrical and tactile stimulation of peripheral neurites produced action potentials detectable within the cell body. In a subset of these sensory neurons an underlying generator potential could be observed in response to subthreshold tactile stimuli. A closer examination revealed that the amplitude of the generator potential was proportional to the stimulus amplitude. When assayed touché mutant sensory neurons also responded to electrical stimulation of peripheral neurites similar to wild type larvae, however tactile stimulation of these neurites failed to uncover a subset of sensory neurons possessing generator potentials. These findings suggest that touché is required for generator potentials, and that generator potentials underlie responsiveness to light-touch in zebrafish. PMID:20631165

  16. Emotional arousal and memory after deep encoding.

    Science.gov (United States)

    Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica

    2018-05-22

    Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.

  17. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    Directory of Open Access Journals (Sweden)

    Benjamin C Hitz

    Full Text Available The Encyclopedia of DNA elements (ENCODE project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data has been released as a separate Python package.

  18. Shared memories reveal shared structure in neural activity across individuals

    Science.gov (United States)

    Chen, J.; Leong, Y.C.; Honey, C.J.; Yong, C.H.; Norman, K.A.; Hasson, U.

    2016-01-01

    Our lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? Participants viewed a fifty-minute movie, then verbally described the events during functional MRI, producing unguided detailed descriptions lasting up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated in default-network, medial-temporal, and high-level visual areas. Individual event patterns were both highly discriminable from one another and similar between people, suggesting consistent spatial organization. In many high-order areas, patterns were more similar between people recalling the same event than between recall and perception, indicating systematic reshaping of percept into memory. These results reveal the existence of a common spatial organization for memories in high-level cortical areas, where encoded information is largely abstracted beyond sensory constraints; and that neural patterns during perception are altered systematically across people into shared memory representations for real-life events. PMID:27918531

  19. Sensory and Working Memory Representations of Small and Large Numerosities in the Crow Endbrain.

    Science.gov (United States)

    Ditz, Helen M; Nieder, Andreas

    2016-11-23

    Neurons in the avian nidopallium caudolaterale (NCL), an endbrain structure that originated independently from the mammalian neocortex, process visual numerosities. To clarify the code for number in this anatomically distinct endbrain area in birds, neuronal responses to a broad range of numerosities were analyzed. We recorded single-neuron activity from the NCL of crows performing a delayed match-to-sample task with visual numerosities as discriminanda. The responses of >20% of randomly selected neurons were modulated significantly by numerosities ranging from one to 30 items. Numerosity-selective neurons showed bell-shaped tuning curves with one of the presented numerosities as preferred numerosity regardless of the physical appearance of the items. The resulting labeled-line code exhibited logarithmic compression obeying the Weber-Fechner law for magnitudes. Comparable proportions of selective neurons were found, not only during stimulus presentation, but also in the delay phase, indicating a dominant role of the NCL in numerical working memory. Both during sensory encoding and memorization of numerosities in working memory, NCL activity predicted the crows' number discrimination performance. These neuronal data reveal striking similarities across vertebrate taxa in their code for number despite convergently evolved and anatomically distinct endbrain structures. Birds are known for their capabilities to process numerical quantity. However, birds lack a six-layered neocortex that enables primates with numerical competence. We aimed to decipher the neuronal code for numerical quantity in the independently and distinctly evolved endbrain of birds. We recorded the activity of neurons in an endbrain association area termed nidopallium caudolaterale (NCL) from crows that assessed and briefly memorized numerosities from one to 30 dots. We report a neuronal code for sensory representation and working memory of numerosities in the crow NCL exhibiting several

  20. Some Motivational Properties of Sensory Stimulation in Psychotic Children

    Science.gov (United States)

    Rincover, Arnold; And Others

    1977-01-01

    This experiment assessed the reinforcing properties of sensory stimulation for autistic children using three different types of sensory stimulation: music, visual flickering, and visual movement. (SB)

  1. MicroRNA-encoding long non-coding RNAs

    Directory of Open Access Journals (Sweden)

    Zhu Xiaopeng

    2008-05-01

    Full Text Available Abstract Background Recent analysis of the mouse transcriptional data has revealed the existence of ~34,000 messenger-like non-coding RNAs (ml-ncRNAs. Whereas the functional properties of these ml-ncRNAs are beginning to be unravelled, no functional information is available for the large majority of these transcripts. Results A few ml-ncRNA have been shown to have genomic loci that overlap with microRNA loci, leading us to suspect that a fraction of ml-ncRNA may encode microRNAs. We therefore developed an algorithm (PriMir for specifically detecting potential microRNA-encoding transcripts in the entire set of 34,030 mouse full-length ml-ncRNAs. In combination with mouse-rat sequence conservation, this algorithm detected 97 (80 of them were novel strong miRNA-encoding candidates, and for 52 of these we obtained experimental evidence for the existence of their corresponding mature microRNA by microarray and stem-loop RT-PCR. Sequence analysis of the microRNA-encoding RNAs revealed an internal motif, whose presence correlates strongly (R2 = 0.9, P-value = 2.2 × 10-16 with the occurrence of stem-loops with characteristics of known pre-miRNAs, indicating the presence of a larger number microRNA-encoding RNAs (from 300 up to 800 in the ml-ncRNAs population. Conclusion Our work highlights a unique group of ml-ncRNAs and offers clues to their functions.

  2. Sensory Prioritization in Rats: Behavioral Performance and Neuronal Correlates.

    Science.gov (United States)

    Lee, Conrad C Y; Diamond, Mathew E; Arabzadeh, Ehsan

    2016-03-16

    Operating with some finite quantity of processing resources, an animal would benefit from prioritizing the sensory modality expected to provide key information in a particular context. The present study investigated whether rats dedicate attentional resources to the sensory modality in which a near-threshold event is more likely to occur. We manipulated attention by controlling the likelihood with which a stimulus was presented from one of two modalities. In a whisker session, 80% of trials contained a brief vibration stimulus applied to whiskers and the remaining 20% of trials contained a brief change of luminance. These likelihoods were reversed in a visual session. When a stimulus was presented in the high-likelihood context, detection performance increased and was faster compared with the same stimulus presented in the low-likelihood context. Sensory prioritization was also reflected in neuronal activity in the vibrissal area of primary somatosensory cortex: single units responded differentially to the whisker vibration stimulus when presented with higher probability compared with lower probability. Neuronal activity in the vibrissal cortex displayed signatures of multiplicative gain control and enhanced response to vibration stimuli during the whisker session. In conclusion, rats allocate priority to the more likely stimulus modality and the primary sensory cortex may participate in the redistribution of resources. Detection of low-amplitude events is critical to survival; for example, to warn prey of predators. To formulate a response, decision-making systems must extract minute neuronal signals from the sensory modality that provides key information. Here, we identify the behavioral and neuronal correlates of sensory prioritization in rats. Rats were trained to detect whisker vibrations or visual flickers. Stimuli were embedded in two contexts in which either visual or whisker modality was more likely to occur. When a stimulus was presented in the high

  3. NMDA receptors and memory encoding.

    Science.gov (United States)

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  4. Translating working memory into action: behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences.

    Science.gov (United States)

    Langner, Robert; Sternkopf, Melanie A; Kellermann, Tanja S; Grefkes, Christian; Kurth, Florian; Schneider, Frank; Zilles, Karl; Eickhoff, Simon B

    2014-07-01

    The neurobiological organization of action-oriented working memory is not well understood. To elucidate the neural correlates of translating visuo-spatial stimulus sequences into delayed (memory-guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand-specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor-related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to-be-reproduced visuo-spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi-component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for. Copyright © 2013 Wiley Periodicals, Inc.

  5. Active inference, sensory attenuation and illusions.

    Science.gov (United States)

    Brown, Harriet; Adams, Rick A; Parees, Isabel; Edwards, Mark; Friston, Karl

    2013-11-01

    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference

  6. Sensory description of marine oils through development of a sensory wheel and vocabulary.

    Science.gov (United States)

    Larssen, W E; Monteleone, E; Hersleth, M

    2018-04-01

    The Omega-3 industry lacks a defined methodology and a vocabulary for evaluating the sensory quality of marine oils. This study was conducted to identify the sensory descriptors of marine oils and organize them in a sensory wheel for use as a tool in quality assessment. Samples of marine oils were collected from six of the largest producers of omega-3 products in Norway. The oils were selected to cover as much variation in sensory characteristics as possible, i.e. oils with different fatty acid content originating from different species. Oils were evaluated by six industry expert panels and one trained sensory panel to build up a vocabulary through a series of language sessions. A total of 184 aroma (odor by nose), flavor, taste and mouthfeel descriptors were generated. A sensory wheel based on 60 selected descriptors grouped together in 21 defined categories was created to form a graphical presentation of the sensory vocabulary. A selection of the oil samples was also evaluated by a trained sensory panel using descriptive analysis. Chemical analysis showed a positive correlation between primary and secondary oxidation products and sensory properties such as rancidity, chemical flavor and process flavor and a negative correlation between primary oxidation products and acidic. This research is a first step towards the broader objective of standardizing the sensory terminology related to marine oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Age-related differences in associative memory: the role of sensory decline.

    Science.gov (United States)

    Naveh-Benjamin, Moshe; Kilb, Angela

    2014-09-01

    Numerous studies show age-related decline in episodic memory. One of the explanations for this decline points to older adults' deficit in associative memory, reflecting the difficulties they have in binding features of episodes into cohesive entities and retrieving these bindings. Here, we evaluate the degree to which this deficit may be mediated by sensory loss associated with increased age. In 2 experiments, young adults studied word pairs that were degraded at encoding either visually (Experiment 1) or auditorily (Experiment 2). We then tested their memory for both the component words and the associations with recognition tests. For both experiments, young adults under nondegraded conditions showed an advantage in associative over item memory, relative to a group of older adults. In contrast, under perceptually degraded conditions younger adults performed similarly to the older adults who were tested under nondegraded conditions. More specifically, under perceptual degradation, young adults' associative memory declined and their component memory improved somewhat, resulting in an associative deficit, similar to that shown by older adults. This evidence is consistent with a sensory acuity decline in old age being one mediator in the associative deficit of older adults. These results broaden our understanding of age-related memory changes and how sensory and cognitive processes interact to shape these changes. The theoretical implications of these results are discussed with respect to mechanisms underlying age-related changes in episodic memory and resource tradeoffs in the encoding of component and associative memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons

    Directory of Open Access Journals (Sweden)

    Steve Yaeli

    2010-10-01

    Full Text Available Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.

  9. Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons.

    Science.gov (United States)

    Yaeli, Steve; Meir, Ron

    2010-01-01

    Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.

  10. Encoder designed to work in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Toop, L.

    2007-05-15

    Dynapar has developed the Acuro AX71 absolute encoder for use on offshore or land-based oil rig operations. It provides feedback on the operation of automated systems such as draw works, racking systems, rotary tables and top drives. By ensuring that automated systems function properly, this encoder responds to a need by the oil and gas industry to keep workers safe and improve efficiency, particularly for operations in rugged situations. The encoder provides feedback from motor systems to controllers, giving information about position and speed of downhole drill bits. This newly developed encoder is better than commonly used incremental encoders which are not precise in strong electrical noise environments. Rather, the absolute encoder uses a different method of reporting to the controller. A digital signal is transmitted constantly as the device operates. It is less susceptible to noise issues. It is highly accurate, tolerant of noise and is not affected by power outages. However, the absolute encoder is generally more delicate in drilling applications with high ambient temperatures and shock levels. Dynapar addressed this issue by developing compact stainless steel housing that is useful for corrosion resistance in marine applications. The AX71 absolute encoder can withstand up to 100 G of mechanical shock and ambient temperatures of up to 60 degrees C. The encoder is ATEX certified without barriers, and offers the high resolution feedback of 4,000 counts of multiturn rotation and 16,000 counts of position. 1 fig.

  11. The role of encoding and attention in facial emotion memory: an EEG investigation.

    Science.gov (United States)

    Brenner, Colleen A; Rumak, Samuel P; Burns, Amy M N; Kieffaber, Paul D

    2014-09-01

    Facial expressions are encoded via sensory mechanisms, but meaning extraction and salience of these expressions involve cognitive functions. We investigated the time course of sensory encoding and subsequent maintenance in memory via EEG. Twenty-nine healthy participants completed a facial emotion delayed match-to-sample task. P100, N170 and N250 ERPs were measured in response to the first stimulus, and evoked theta power (4-7Hz) was measured during the delay interval. Negative facial expressions produced larger N170 amplitudes and greater theta power early in the delay. N170 amplitude correlated with theta power, however larger N170 amplitude coupled with greater theta power only predicted behavioural performance for one emotion condition (very happy) out of six tested (see Supplemental Data). These findings indicate that the N170 ERP may be sensitive to emotional facial expressions when task demands require encoding and retention of this information. Furthermore, sustained theta activity may represent continued attentional processing that supports short-term memory, especially of negative facial stimuli. Further study is needed to investigate the potential influence of these measures, and their interaction, on behavioural performance. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  12. Age as a factor in sensory integration function in Taiwanese children

    Directory of Open Access Journals (Sweden)

    Lin CK

    2013-07-01

    Full Text Available Chin-Kai Lin,1 Huey-Min Wu,2 Hsin-Yi Wang,3 Mei-Hui Tseng,4,5 Chung-Hui Lin61Department of Early Childhood Education, National Taichung University of Education, Taichung, Taiwan; 2Research Center for Testing and Assessment, National Academy for Educational Research, New Taipei, Taiwan; 3Department of Special Education, National Taichung University of Education, Taichung, Taiwan; 4School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; 5Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan; 6School of Occupational Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, TaiwanObjective: Sensory integration progresses along a normal developmental sequence. However, few studies have explored how age difference affects the way sensory integration functions in Taiwanese children as they develop. Therefore, this study aims to pinpoint the role of age in sensory integration.Method: A purposive sampling plan was employed. The study population comprised 1,000 Chinese children aged 36 to 131 months (mean = 74.48 months, standard deviation = 25.69 months. Subjects were scored on seven subsets of the Test of Sensory Integration Function (TSIF. An analysis of variance (ANOVA was used to identify differences between four age groups (ages 3−4, 5−6, 7−8, and 9−10 years, in the categories of the TSIF.Results: ANOVA revealed that age is a significant factor in each of the seven tasks of sensory integration associated with various stages of development. The effect of age was significant in all four groups for the subscale of Bilateral Integration Sequences. The function of sensory integration for the children aged 5−8 years did not produce statistically significant results for the subscale of Postural Movement, Sensory Discrimination, Sensory Seeking, or Attention and Activity. For the subscale of Sensory Modulation and Emotional

  13. Electromagnetic Characterization Of Metallic Sensory Alloy

    Science.gov (United States)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  14. Understanding the sensory irregularities of esophageal disease.

    Science.gov (United States)

    Farmer, Adam D; Brock, Christina; Frøkjaer, Jens Brøndum; Gregersen, Hans; Khan, Sheeba; Lelic, Dina; Lottrup, Christian; Drewes, Asbjørn Mohr

    2016-08-01

    Symptoms relating to esophageal sensory abnormalities can be encountered in the clinical environment. Such sensory abnormalities may be present in demonstrable disease, such as erosive esophagitis, and in the ostensibly normal esophagus, such as non-erosive reflux disease or functional chest pain. In this review, the authors discuss esophageal sensation and the esophageal pain system. In addition, the authors provide a primer concerning the techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of esophageal sensory function. Such technological advances, whilst not readily available in the clinic may facilitate the stratification and individualization of therapy in disorders of esophageal sensation in the future.

  15. How well do you see what you hear? The acuity of visual-to-auditory sensory substitution

    Directory of Open Access Journals (Sweden)

    Alastair eHaigh

    2013-06-01

    Full Text Available Sensory substitution devices (SSDs aim to compensate for the loss of a sensory modality, typically vision, by converting information from the lost modality into stimuli in a remaining modality. The vOICe is a visual-to-auditory SSD which encodes images taken by a camera worn by the user into soundscapes such that an experienced user can extract information about their surroundings. Here we investigated how much detail was resolvable during the early induction stages by testing the acuity of blindfolded sighted, naïve vOICe users. Initial performance was well above chance. Participants who took the test twice as a form of minimal training showed a marked improvement on the second test. Acuity was slightly but not significantly impaired when participants wore a camera and judged letter orientations live. A positive correlation was found between participants’ musical training and their acuity. The relationship between auditory expertise via musical training and the lack of a relationship with visual imagery, suggests that early use of a sensory substitution device draws primarily on the mechanisms of the sensory modality being used rather than the one being substituted. If vision is lost, audition represents the sensory channel of highest bandwidth of those remaining. The level of acuity found here, and the fact it was achieved with very little experience in sensory substitution by naïve users is promising.

  16. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings

    Science.gov (United States)

    Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Stroh, Albrecht

    2015-01-01

    Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. PMID:26661247

  17. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings.

    Science.gov (United States)

    Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Faber, Cornelius; Stroh, Albrecht

    2016-11-01

    Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca 2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca 2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca 2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca 2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. © The Author(s) 2015.

  18. Sensory optimization by stochastic tuning.

    Science.gov (United States)

    Jurica, Peter; Gepshtein, Sergei; Tyukin, Ivan; van Leeuwen, Cees

    2013-10-01

    Individually, visual neurons are each selective for several aspects of stimulation, such as stimulus location, frequency content, and speed. Collectively, the neurons implement the visual system's preferential sensitivity to some stimuli over others, manifested in behavioral sensitivity functions. We ask how the individual neurons are coordinated to optimize visual sensitivity. We model synaptic plasticity in a generic neural circuit and find that stochastic changes in strengths of synaptic connections entail fluctuations in parameters of neural receptive fields. The fluctuations correlate with uncertainty of sensory measurement in individual neurons: The higher the uncertainty the larger the amplitude of fluctuation. We show that this simple relationship is sufficient for the stochastic fluctuations to steer sensitivities of neurons toward a characteristic distribution, from which follows a sensitivity function observed in human psychophysics and which is predicted by a theory of optimal allocation of receptive fields. The optimal allocation arises in our simulations without supervision or feedback about system performance and independently of coupling between neurons, making the system highly adaptive and sensitive to prevailing stimulation. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  19. Sensorial saturation for infants' pain.

    Science.gov (United States)

    Bellieni, Carlo Valerio; Tei, Monica; Coccina, Francesca; Buonocore, Giuseppe

    2012-04-01

    Sensorial saturation (SS) is a multisensorial stimulation consisting of delicate tactile, gustative, auditory and visual stimuli. This procedure consists of simultaneously: attracting the infant's attention by massaging the infant's face; speaking to the infant gently, but firmly, and instilling a sweet solution on the infant's tongue. We performed a systematic Medline search of for articles focusing on human neonatal studies related to SS. The search was performed within the last 10 years and was current as of January 2012. We retrieved 8 articles that used a complete form of SS and 2 articles with an incomplete SS. Data show that the use of SS is effective in relieving newborns' pain. Oral solution alone are less effective than SS, but the stimuli without oral sweet solution are ineffective. the partial forms of SS have some effectiveness, but minor than the complete SS. Only one article showed lack of SS as analgesic method, after endotracheal suctioning. SS can be used for all newborns undergoing blood samples or other minor painful procedures. It is more effective than oral sugar alone. SS also promotes interaction between nurse and infant and is a simple effective form of analgesia for the neonatal intensive care unit.

  20. Frequency of sensory motor neuropathy in type 2 diabetics

    International Nuclear Information System (INIS)

    Ather, N.A.; Sattar, R.A.; Ara, J.

    2008-01-01

    To determine the frequency of sensory motor neuropathy in type 2 diabetics at the time of presentation to the hospital. The study was conducted at Medical Unit-1, Jinnah Postgraduate Medical Center, Karachi, from November 2005 to April 2006. Patients of different ages and either gender with history of confirmed diabetes for ten years and above, on regular follow up were included. Those with non-diabetic causes of hyperglycemia or neuropathy were excluded. Relevant features like age, gender, treatment, symptoms , signs, nerve conduction study (NCS) results, duration of Diabetes mellitus (DM), fasting blood sugar (FBS) and serum values of glycosylated hemoglobin (HB1Ac) were recorded. Out of a total of 300 patients, there were 111 female and 189 male patients. Mean age was 58 +- 11.23 years. Mean duration of diabetes was 13.6+-5.48 years. One hundred and twenty three patients had symptoms of neuropathy. Clinical examination revealed mixed sensory and motor signs in 135 (45%) patients. Nerve conduction studies revealed abnormalities in 159 (53%) patients. Among patients having an abnormal NCS, the fasting blood glucose (FBS) was 120mg/dl in 147 (91%) patients. The glycosylated hemoglobin ranged from 4-15% with mean of 8.1% and standard deviation of 2.5%. This showed significant association (p <0.001) of peripheral neuropathy with abnormal FBS, HB1Ac and duration of diabetes. NCS diagnosed the neuropathy in more than half of the total number of patients, including both symptomatic and asymptomatic patients. Majority of the patients revealed symmetrical and a mixed type (motor and sensory) polyneuropathy. This shows that nerve conduction may not be concordant with the clinical signs and symptoms. NCS detects neuropathy much earlier, before it becomes evident clinically. The neuropathy is associated with abonromal fasting blood sugar, HBIAC and duration of diabetes. (author)

  1. Terminal changes in hereditary sensory and autonomic neuropathy: a long-term follow-up of a sporadic case.

    Science.gov (United States)

    Lee, Sang-Soo; Lee, Sung-Hyun; Han, Seol-Heui

    2003-07-01

    We describe terminal changes in a long-term follow-up of a 51-year-old man with sporadic hereditary sensory and autonomic neuropathy (HSAN). From the age of 15 years onwards, he suffered from multiple painless ulcers of his feet and fingers, necessitating amputation. Neurological studies revealed almost complete sensory loss affecting all modalities in the upper and lower limbs, minimal involvement of motor fibers, and areflexia. A neurophysiological abnormality involved an absence of sensory action potentials with relatively normal motor nerve conduction velocities. Biopsy of the sural nerve showed almost total loss of myelinated fibers with a mild decrease in unmyelinated fibers. Despite the late onset of the disease, the progressive course, and the lancinating pain, the terminal features of this patient, which involved a selective loss of myelinated fibers and widespread sensory loss, seem to be symptomatic of HSAN II, the progressive form of autosomal recessive sensory neuropathy, and emphasize the clinical heterogeneity of HSAN.

  2. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds.

    Science.gov (United States)

    Bell, Luke; Methven, Lisa; Signore, Angelo; Oruna-Concha, Maria Jose; Wagstaff, Carol

    2017-03-01

    Sensory and chemical analyses were performed on accessions of rocket (Eruca sativa) to determine phytochemical influences on sensory attributes. A trained panel was used to evaluate leaves, and chemical data were obtained for polyatomic ions, amino acids, sugars and organic acids. These chemical data (and data of glucosinolates, flavonols and headspace volatiles previously reported) were used in Principal Component Analysis (PCA) to determine variables statistically important to sensory traits. Significant differences were observed between samples for polyatomic ion and amino acid concentrations. PCA revealed strong, positive correlations between glucosinolates, isothiocyanates and sulfur compounds with bitterness, mustard, peppery, warming and initial heat mouthfeel traits. The ratio between glucosinolates and sugars inferred reduced perception of bitter aftereffects. We highlight the diversity of E. sativa accessions from a sensory and phytochemical standpoint, and the potential for breeders to create varieties that are nutritionally and sensorially superior to existing ones. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  4. Extraordinarily adaptive properties of the genetically encoded amino acids.

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves, H James

    2015-03-24

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or "chemistry space." Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set.

  5. Hypocretin/Orexin Peptides Alter Spike Encoding by Serotonergic Dorsal Raphe Neurons through Two Distinct Mechanisms That Increase the Late Afterhyperpolarization.

    Science.gov (United States)

    Ishibashi, Masaru; Gumenchuk, Iryna; Miyazaki, Kenichi; Inoue, Takafumi; Ross, William N; Leonard, Christopher S

    2016-09-28

    Orexins (hypocretins) are neuropeptides that regulate multiple homeostatic processes, including reward and arousal, in part by exciting serotonergic dorsal raphe neurons, the major source of forebrain serotonin. Here, using mouse brain slices, we found that, instead of simply depolarizing these neurons, orexin-A altered the spike encoding process by increasing the postspike afterhyperpolarization (AHP) via two distinct mechanisms. This orexin-enhanced AHP (oeAHP) was mediated by both OX1 and OX2 receptors, required Ca(2+) influx, reversed near EK, and decayed with two components, the faster of which resulted from enhanced SK channel activation, whereas the slower component decayed like a slow AHP (sAHP), but was not blocked by UCL2077, an antagonist of sAHPs in some neurons. Intracellular phospholipase C inhibition (U73122) blocked the entire oeAHP, but neither component was sensitive to PKC inhibition or altered PKA signaling, unlike classical sAHPs. The enhanced SK current did not depend on IP3-mediated Ca(2+) release but resulted from A-current inhibition and the resultant spike broadening, which increased Ca(2+) influx and Ca(2+)-induced-Ca(2+) release, whereas the slower component was insensitive to these factors. Functionally, the oeAHP slowed and stabilized orexin-induced firing compared with firing produced by a virtual orexin conductance lacking the oeAHP. The oeAHP also reduced steady-state firing rate and firing fidelity in response to stimulation, without affecting the initial rate or fidelity. Collectively, these findings reveal a new orexin action in serotonergic raphe neurons and suggest that, when orexin is released during arousal and reward, it enhances the spike encoding of phasic over tonic inputs, such as those related to sensory, motor, and reward events. Orexin peptides are known to excite neurons via slow postsynaptic depolarizations. Here we elucidate a significant new orexin action that increases and prolongs the postspike

  6. Parietal and early visual cortices encode working memory content across mental transformations.

    Science.gov (United States)

    Christophel, Thomas B; Cichy, Radoslaw M; Hebart, Martin N; Haynes, John-Dylan

    2015-02-01

    Active and flexible manipulations of memory contents "in the mind's eye" are believed to occur in a dedicated neural workspace, frequently referred to as visual working memory. Such a neural workspace should have two important properties: The ability to store sensory information across delay periods and the ability to flexibly transform sensory information. Here we used a combination of functional MRI and multivariate decoding to indentify such neural representations. Subjects were required to memorize a complex artificial pattern for an extended delay, then rotate the mental image as instructed by a cue and memorize this transformed pattern. We found that patterns of brain activity already in early visual areas and posterior parietal cortex encode not only the initially remembered image, but also the transformed contents after mental rotation. Our results thus suggest that the flexible and general neural workspace supporting visual working memory can be realized within posterior brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. ß-catenin, a transcription factor activated by canonical Wnt signaling, is expressed in sensory neurons of calves latently infected with bovine herpesvirus 1

    Science.gov (United States)

    Like many a-herpesvirinae subfamily members, bovine herpes virus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons: the latency-related (LR) RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch mediate...

  8. Specialized Cilia in Mammalian Sensory Systems

    Directory of Open Access Journals (Sweden)

    Nathalie Falk

    2015-09-01

    Full Text Available Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.

  9. Sensory determinants of the autonomous sensory meridian response (ASMR): Understanding the triggers

    OpenAIRE

    Barratt, EL; Spence, CJ; Davis, NJ

    2017-01-01

    The autonomous sensory meridian response (ASMR) is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audio-visual, stimuli. The current study used an online questionnaire, completed by 130 people who self-reported experiencing ASMR. We aimed to extend preliminary investigations into the experience, and establish key multisensory factors contributing to the successful induction of ASMR through online media. Aspects such as...

  10. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

    Science.gov (United States)

    Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M

    2015-01-01

    PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.

  11. Language-universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese.

    Science.gov (United States)

    Goswami, Usha; Wang, H-L Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina

    2011-02-01

    Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of phonological processing, the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific difficulty with the neural representation of the phonological structure of speech. The identification of a robust sensory marker of phonological difficulties would enable early identification of risk for developmental dyslexia and early targeted intervention. Here, we explore whether phonological processing difficulties are associated with difficulties in processing acoustic cues to speech rhythm. Speech rhythm is used across languages by infants to segment the speech stream into words and syllables. Early difficulties in perceiving auditory sensory cues to speech rhythm and prosody could lead developmentally to impairments in phonology. We compared matched samples of children with and without dyslexia, learning three very different spoken and written languages, English, Spanish, and Chinese. The key sensory cue measured was rate of onset of the amplitude envelope (rise time), known to be critical for the rhythmic timing of speech. Despite phonological and orthographic differences, for each language, rise time sensitivity was a significant predictor of phonological awareness, and rise time was the only consistent predictor of reading acquisition. The data support a language-universal theory of the neural basis of developmental dyslexia on the basis of rhythmic perception and syllable segmentation. They also suggest that novel remediation strategies on the basis of rhythm and music may offer benefits for phonological and linguistic development.

  12. [Characterization of stem cells derived from the neonatal auditory sensory epithelium].

    Science.gov (United States)

    Diensthuber, M; Heller, S

    2010-11-01

    In contrast to regenerating hair cell-bearing organs of nonmammalian vertebrates the adult mammalian organ of Corti appears to have lost its ability to maintain stem cells. The result is a lack of regenerative ability and irreversible hearing loss following auditory hair cell death. Unexpectedly, the neonatal auditory sensory epithelium has recently been shown to harbor cells with stem cell features. The origin of these cells within the cochlea's sensory epithelium is unknown. We applied a modified neurosphere assay to identify stem cells within distinct subregions of the neonatal mouse auditory sensory epithelium. Sphere cells were characterized by multiple markers and morphologic techniques. Our data reveal that both the greater and the lesser epithelial ridge contribute to the sphere-forming stem cell population derived from the auditory sensory epithelium. These self-renewing sphere cells express a variety of markers for neural and otic progenitor cells and mature inner ear cell types. Stem cells can be isolated from specific regions of the auditory sensory epithelium. The distinct features of these cells imply a potential application in the development of a cell replacement therapy to regenerate the damaged sensory epithelium.

  13. An exploration of sensory and movement differences from the perspective of individuals with autism

    Directory of Open Access Journals (Sweden)

    Jodi eRobledo

    2012-11-01

    Full Text Available Parents, teachers, and people who themselves experience sensory and movement differences have consistently reported disturbances of sensation and movement associated with autism. Our review of the literature has revealed both historical and recent references to and research about sensory and movement difference characteristics and symptoms for individuals with autism. What is notably infrequent in this literature, however, is research that highlights the perspective of the individual with autism. If we wish to truly understand the experience of sensory and movement differences for individuals with autism, we must explore their experiences and perspectives. This study presents a qualitative analysis of more than 40 hours in-depth inquiry into the lives of five individuals with the autism label. Data were sorted into six categories: perception, action, posture, emotion, communication, and cognition. The insights into sensory and movement differences and autism offered by these individuals was illuminating. We found that the data strongly supported the presence of disruption of organization and regulation of sensory and movement differences in the lived experience of these participants with autism. The present data suggests that in autism this disruption of organization and regulation is amplified in terms of quantity, quality, intensity, and may affect everyday life. These data contribute to a more expansive view of autism that incorporates the possibility that autism is a disorder that affects motor planning, behavior, communication, the sensory motor system, and the dynamic interaction of all of these.

  14. Multi-Sensory Integration Impairment in Patients with Minimal Hepatic Encephalopathy.

    Science.gov (United States)

    Seo, Kyoungwon; Jun, Dae Won; Kim, Jae-Kwan; Ryu, Hokyoung

    2017-11-02

    Paper-and-pencil-based psychometric tests are the gold standard for diagnosis of cognitive dysfunction in liver disease. However, they take time, can be affected by demographic factors, and lack ecological validity. This study explored multi-sensory integration ability to discriminate cognitive dysfunction in cirrhosis. Thirty-two healthy controls and 30 cirrhotic patients were recruited. The sensory integration test presents stimuli from two different modalities (e.g., image/sound) with a short time lag, and subjects judge which stimuli appeared first. Repetitive tests reveal the sensory integration capability. Performance in the sensory integration test, psychometric tests, and functional near-infrared spectroscopy for patients was compared to controls. Sensory integration capability, the perceptual threshold to discriminate the time gap between an image and sound stimulus, was significantly impaired in cirrhotic patients with minimal hepatic encephalopathy (MHE) compared to controls (p integration test showed good correlation with psychometric tests (NCT-A, r = 0.383, p = 0.002; NCT-B, r = 0.450, p integration test was not affected. The sensory integration test, where a cut-off value for the perceptual threshold was 133.3ms, recognized MHE patients at 90% sensitivity and 86.5% specificity.

  15. Differential effects of ADORA2A gene variations in pre-attentive visual sensory memory subprocesses.

    Science.gov (United States)

    Beste, Christian; Stock, Ann-Kathrin; Ness, Vanessa; Epplen, Jörg T; Arning, Larissa

    2012-08-01

    The ADORA2A gene encodes the adenosine A(2A) receptor that is highly expressed in the striatum where it plays a role in modulating glutamatergic and dopaminergic transmission. Glutamatergic signaling has been suggested to play a pivotal role in cognitive functions related to the pre-attentive processing of external stimuli. Yet, the precise molecular mechanism of these processes is poorly understood. Therefore, we aimed to investigate whether ADORA2A gene variation has modulating effects on visual pre-attentive sensory memory processing. Studying two polymorphisms, rs5751876 and rs2298383, in 199 healthy control subjects who performed a partial-report paradigm, we find that ADORA2A variation is associated with differences in the efficiency of pre-attentive sensory memory sub-processes. We show that especially the initial visual availability of stimulus information is rendered more efficiently in the homozygous rare genotype groups. Processes related to the transfer of information into working memory and the duration of visual sensory (iconic) memory are compromised in the homozygous rare genotype groups. Our results show a differential genotype-dependent modulation of pre-attentive sensory memory sub-processes. Hence, we assume that this modulation may be due to differential effects of increased adenosine A(2A) receptor signaling on glutamatergic transmission and striatal medium spiny neuron (MSN) interaction. Copyright © 2011 Elsevier B.V. and ECNP. All rights reserved.

  16. Using hardware models to quantify sensory data acquisition across the rat vibrissal array.

    Science.gov (United States)

    Gopal, Venkatesh; Hartmann, Mitra J Z

    2007-12-01

    Our laboratory investigates how animals acquire sensory data to understand the neural computations that permit complex sensorimotor behaviors. We use the rat whisker system as a model to study active tactile sensing; our aim is to quantitatively describe the spatiotemporal structure of incoming sensory information to place constraints on subsequent neural encoding and processing. In the first part of this paper we describe the steps in the development of a hardware model (a 'sensobot') of the rat whisker array that can perform object feature extraction. We show how this model provides insights into the neurophysiology and behavior of the real animal. In the second part of this paper, we suggest that sensory data acquisition across the whisker array can be quantified using the complete derivative. We use the example of wall-following behavior to illustrate that computing the appropriate spatial gradients across a sensor array would enable an animal or mobile robot to predict the sensory data that will be acquired at the next time step.

  17. Sensory deprivation leading to late onset psychosis

    Directory of Open Access Journals (Sweden)

    Swapnajeet Sahoo

    2016-01-01

    Full Text Available Sensory deprivation is understood as diminution or absence of perceptual experiences to the usual external stimuli. Sensory deprivation in elderly is reported to be associated with depression, anxiety, psychosis, dementia, etc. In this report, we present the case of an 84-year- elderly man who developed auditory hallucination and after 1 year of onset of hearing difficulties. He was managed with quetiapine, with which he showed significant improvement.

  18. Sensory marketing strategies. Case study: Oltenia

    OpenAIRE

    Aurelia-Felicia STĂNCIOIU; Mihail-Cristian DIŢOIU; Nicolae TEODORESCU; Lucian-Florin ONIŞOR; Ion PÂRGARU

    2014-01-01

    From the perspective of the tourist, sensory marketing strategies may result in an experience improvement which leads, in time, to acquiring a positive destination image, and, from the perspective of the destination, to furthering its harmonious development. Even though it appears that sensory marketing strategies can be considered as alternatives for marketing strategies, they actually are complementary, and their objective (increasing product quality by “turning to the beginning”, where per...

  19. Internal models of limb dynamics and the encoding of limb state

    Science.gov (United States)

    Hwang, Eun Jung; Shadmehr, Reza

    2005-09-01

    Studies of reaching suggest that humans adapt to novel arm dynamics by building internal models that transform planned sensory states of the limb, e.g., desired limb position and its derivatives, into motor commands, e.g., joint torques. Earlier work modeled this computation via a population of basis elements and used system identification techniques to estimate the tuning properties of the bases from the patterns of generalization. Here we hypothesized that the neural representation of planned sensory states in the internal model might resemble the signals from the peripheral sensors. These sensors normally encode the limb's actual sensory state in which movement errors occurred. We developed a set of equations based on properties of muscle spindles that estimated spindle discharge as a function of the limb's state during reaching and drawing of circles. We then implemented a simulation of a two-link arm that learned to move in various force fields using these spindle-like bases. The system produced a pattern of adaptation and generalization that accounted for a wide range of previously reported behavioral results. In particular, the bases showed gain-field interactions between encoding of limb position and velocity, very similar to the gain fields inferred from behavioral studies. The poor sensitivity of the bases to limb acceleration predicted behavioral results that were confirmed by experiment. We suggest that the internal model of limb dynamics is computed by the brain with neurons that encode the state of the limb in a manner similar to that expected of muscle spindle afferents.

  20. Bioinspired sensory systems for local flow characterization

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  1. [Treatment of sensory information in neurodevelopmental disorders].

    Science.gov (United States)

    Zoenen, D; Delvenne, V

    2018-01-01

    The processing of information coming from the elementary sensory systems conditions the development and fulfilment of a child's abilities. A dysfunction in the sensory stimuli processing may generate behavioural patterns that might affect a child's learning capacities as well as his relational sphere. The DSM-5 recognizes the sensory abnormalities as part of the symptomatology of Autism Spectrum Disorders. However, similar features are observed in other neurodevelopmental disorders. Over the years, these conditions have been the subject of numerous controversies. Nowadays, they are all grouped together under the term of Neurodevelopmental Disorders in DSM-5. The semiology of these disorders is rich and complex due to the frequent presence of comorbidities and their impact on cognitive, behavioural, and sensorimotor organization but also on a child's personality, as well as his family, his school, or his social relationships. We carried out a review of the literature on the alterations in the treatment of sensory information in ASD but also on the different neurodevelopmental clinical panels in order to show their impact on child development. Atypical sensory profiles have been demonstrated in several neurodevelopmental clinical populations such as Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorders, Dysphasia and Intellectual Disability. Abnomalies in the processing of sensory information should be systematically evaluated in child developmental disorders.

  2. Neuropathic pain: is quantitative sensory testing helpful?

    Science.gov (United States)

    Krumova, Elena K; Geber, Christian; Westermann, Andrea; Maier, Christoph

    2012-08-01

    Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system and is characterised by a combination of positive and negative sensory symptoms. Quantitative sensory testing (QST) examines the sensory perception after application of different mechanical and thermal stimuli of controlled intensity and the function of both large (A-beta) and small (A-delta and C) nerve fibres, including the corresponding central pathways. QST can be used to determine detection, pain thresholds and stimulus-response curves and can thus detect both negative and positive sensory signs, the second ones not being assessed by other methods. Similarly to all other psychophysical tests QST requires standardised examination, instructions and data evaluation to receive valid and reliable results. Since normative data are available, QST can contribute also to the individual diagnosis of neuropathy, especially in the case of isolated small-fibre neuropathy, in contrast to the conventional electrophysiology which assesses only large myelinated fibres. For example, detection of early stages of subclinical neuropathy in symptomatic or asymptomatic patients with diabetes mellitus can be helpful to optimise treatment and identify diabetic foot at risk of ulceration. QST assessed the individual's sensory profile and thus can be valuable to evaluate the underlying pain mechanisms which occur in different frequencies even in the same neuropathic pain syndromes. Furthermore, assessing the exact sensory phenotype by QST might be useful in the future to identify responders to certain treatments in accordance to the underlying pain mechanisms.

  3. RAW CHICKEN LEG AND BREAST SENSORY EVALUATION

    Directory of Open Access Journals (Sweden)

    Octavian Baston

    2010-01-01

    Full Text Available In the paper we presented a method of sensorial evaluation for chicken meat (red and white. This is a descriptive method of analysis. It was perform with trained assessors for chicken refrigerated raw meat organoleptical evaluation. The sensorial attributes considered were: external aspect of anatomical part of chicken analyzed by slime, the surface odor, the skin and muscle color and muscular elasticity. Color was determined for the skin and white and red muscles. Our scale of analysis is formed by three values that characterize each quality attribute. The trained assessor appreciated the sensorial quality of raw anatomical part of chicken as excellent, acceptable and unacceptable. The objectives were: to establish the sensorial attributes to be analyzed for each type of muscular fiber, to describe the quality of each considered attribute and to realize a sensorial scale of quantification for the considered sensorial attributes. Our purpose was to determine the quality of the red and white refrigerated raw chicken anatomical parts (respectively for legs and breasts after one week of storage.

  4. Altered functional magnetic resonance imaging responses to nonpainful sensory stimulation in fibromyalgia patients.

    Science.gov (United States)

    López-Solà, Marina; Pujol, Jesus; Wager, Tor D; Garcia-Fontanals, Alba; Blanco-Hinojo, Laura; Garcia-Blanco, Susana; Poca-Dias, Violant; Harrison, Ben J; Contreras-Rodríguez, Oren; Monfort, Jordi; Garcia-Fructuoso, Ferran; Deus, Joan

    2014-11-01

    Fibromyalgia (FM) is a disorder characterized by chronic pain and enhanced responses to acute noxious events. However, the sensory systems affected in FM may extend beyond pain itself, as FM patients show reduced tolerance to non-nociceptive sensory stimulation. Characterizing the neural substrates of multisensory hypersensitivity in FM may thus provide important clues about the underlying pathophysiology of the disorder. The aim of this study was to characterize brain responses to non-nociceptive sensory stimulation in FM patients and their relationship to subjective sensory sensitivity and clinical pain severity. Functional magnetic resonance imaging (MRI) was used to assess brain response to auditory, visual, and tactile motor stimulation in 35 women with FM and 25 matched controls. Correlation and mediation analyses were performed to establish the relationship between brain responses and 3 types of outcomes: subjective hypersensitivity to daily sensory stimulation, spontaneous pain, and functional disability. Patients reported increased subjective sensitivity (increased unpleasantness) in response to multisensory stimulation in daily life. Functional MRI revealed that patients showed reduced task-evoked activation in primary/secondary visual and auditory areas and augmented responses in the insula and anterior lingual gyrus. Reduced responses in visual and auditory areas were correlated with subjective sensory hypersensitivity and clinical severity measures. FM patients showed strong attenuation of brain responses to nonpainful events in early sensory cortices, accompanied by an amplified response at later stages of sensory integration in the insula. These abnormalities are associated with core FM symptoms, suggesting that they may be part of the pathophysiology of the disease. Copyright © 2014 by the American College of Rheumatology.

  5. The Arabic Diatessaron Project: Digitalizing, Encoding, Lemmatization

    Directory of Open Access Journals (Sweden)

    Giuliano Lancioni

    2016-04-01

    Full Text Available The Arabic Diatessaron Project (henceforth ADP is an international research project in Digital Humanities that aims to collect, digitalise and encode all known manuscripts of the Arabic Diatessaron (henceforth AD, a text that has been relatively neglected in scholarly research. ADP’s final goal is to provide a number of tools that can enable scholars to effectively query, compare and investigate all known variants of the text that will be encoded as far as possible in compliance with the Text Encoding Initiative (TEI guidelines. The paper addresses a number of issues involved in the process of digitalising manuscripts included in the two existing editions (Ciasca 1888 and Marmardji 1935, adding variants in unedited manuscripts, encoding and lemmatising the text. Issues involved in the design of the ADP include presentation of variants, choice of the standard text, applicability of TEI guidelines, automatic translation between different encodings, cross-edition concordances and principles of lemmatisation.

  6. Encoding efficiency of suprathreshold stochastic resonance on stimulus-specific information

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Fabing, E-mail: fabing.duan@gmail.com [Institute of Complexity Science, Qingdao University, Qingdao 266071 (China); Chapeau-Blondeau, François, E-mail: chapeau@univ-angers.fr [Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d' Angers, 62 avenue Notre Dame du Lac, 49000 Angers (France); Abbott, Derek, E-mail: derek.abbott@adelaide.edu.au [Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, SA 5005 (Australia)

    2016-01-08

    In this paper, we evaluate the encoding efficiency of suprathreshold stochastic resonance (SSR) based on a local information-theoretic measure of stimulus-specific information (SSI), which is the average specific information of responses associated with a particular stimulus. The theoretical and numerical analyses of SSIs reveal that noise can improve neuronal coding efficiency for a large population of neurons, which leads to produce increased information-rich responses. The SSI measure, in contrast to the global measure of average mutual information, can characterize the noise benefits in finer detail for describing the enhancement of neuronal encoding efficiency of a particular stimulus, which may be of general utility in the design and implementation of a SSR coding scheme. - Highlights: • Evaluating the noise-enhanced encoding efficiency via stimulus-specific information. • New form of stochastic resonance based on the measure of encoding efficiency. • Analyzing neural encoding schemes from suprathreshold stochastic resonance detailedly.

  7. 38 CFR 17.149 - Sensori-neural aids.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact lenses...

  8. Proficiency testing for sensory profile panels : measuring panel performance

    NARCIS (Netherlands)

    Mcewan, J.A.; Hunter, E.A.; Gemert, L.J. van; Lea, P.

    2002-01-01

    Proficiency testing in sensory analysis is an important step towards demonstrating that results from one sensory panel are consistent with the results of other sensory panels. The uniqueness of sensory analysis poses some specific problems for measuring the proficiency of the human instrument

  9. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  10. Stepping stability: effects of sensory perturbation

    Directory of Open Access Journals (Sweden)

    Krebs David E

    2005-05-01

    Full Text Available Abstract Background Few tools exist for quantifying locomotor stability in balance impaired populations. The objective of this study was to develop and evaluate a technique for quantifying stability of stepping in healthy people and people with peripheral (vestibular hypofunction, VH and central (cerebellar pathology, CB balance dysfunction by means a sensory (auditory perturbation test. Methods Balance impaired and healthy subjects performed a repeated bench stepping task. The perturbation was applied by suddenly changing the cadence of the metronome (100 beat/min to 80 beat/min at a predetermined time (but unpredictable by the subject during the trial. Perturbation response was quantified by computing the Euclidian distance, expressed as a fractional error, between the anterior-posterior center of gravity attractor trajectory before and after the perturbation was applied. The error immediately after the perturbation (Emax, error after recovery (Emin and the recovery response (Edif were documented for each participant, and groups were compared with ANOVA. Results Both balance impaired groups exhibited significantly higher Emax (p = .019 and Emin (p = .028 fractional errors compared to the healthy (HE subjects, but there were no significant differences between CB and VH groups. Although response recovery was slower for CB and VH groups compared to the HE group, the difference was not significant (p = .051. Conclusion The findings suggest that individuals with balance impairment have reduced ability to stabilize locomotor patterns following perturbation, revealing the fragility of their impairment adaptations and compensations. These data suggest that auditory perturbations applied during a challenging stepping task may be useful for measuring rehabilitation outcomes.

  11. TRIAD OF SENSORY FINDINGS LOCALISES TO CORTEX- ANALYSIS OF 5 CASES

    Directory of Open Access Journals (Sweden)

    Beena Vasanthy Vijayan

    2018-02-01

    Full Text Available BACKGROUND A fifty-two-year-old man presented with acute onset right lower facial and ear numbness and facial weakness, after two weeks of the onset of symptoms. Examination revealed right central facial palsy, depressed corneal reflex and hemifacial sensory loss (mild over forehead, severe over lower cheek, jaw & pinna Localization was proposed in brainstem Vs Cerebellopontine angle. MRI Brain revealed infarct in peri Rolandic area; four more patients had similar presentation over next few years. 1 Core findings were ipsilateral graded facial sensory impairment with central facial palsy, ear involvement & impaired corneal reflex. Four had spastic hand. Hypothesis- Cortical lesions can have LMN- like presentation; impairment of facial and external ear (pinna sensations, and attenuated corneal reflex. MATERIALS AND METHODS Settings and Design- Patients presenting to the Neurology OPD with facial weakness and isolated sensory loss of face were admitted and evaluated with detailed neurological examination, including facial & ear sensations and corneal reflex; Stroke work up & MRI Brain with MRA was done. They were treated and kept under follow up. RESULTS Patients with post central gyrus infarct had uniformity in presentation, graded sensory loss over face, depressed corneal reflex & ear involvement, had uniformity in presentations and medical help seeking usually were delayed. Two had lower face (mandibular region severely affected; while three had maxillary involvement. Spastic hand weakness was found in four. CONCLUSION Cortical lesions can produce LMN-like sensory phenomena, of face. Corneal reflex abnormality & ear involvement occur in cortical lesions. Ear representation is closer to lower face in sensory cortex. Four out of five patients had spastic hand in this series. Hence in spastic hand due to cortical lesions, triad of sensory findings should be specifically elicited.

  12. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Science.gov (United States)

    Gunasekaran, Manojkumar; Chatterjee, Prodyot K.; Shih, Andrew; Imperato, Gavin H.; Addorisio, Meghan; Kumar, Gopal; Lee, Annette; Graf, John F.; Meyer, Dan; Marino, Michael; Puleo, Christopher; Ashe, Jeffrey; Cox, Maureen A.; Mak, Tak W.; Bouton, Chad; Sherry, Barbara; Diamond, Betty; Andersson, Ulf; Coleman, Thomas R.; Metz, Christine N.; Tracey, Kevin J.; Chavan, Sangeeta S.

    2018-01-01

    The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses. PMID:29755449

  13. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Manojkumar Gunasekaran

    2018-04-01

    Full Text Available The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR, dorsal root ganglion (DRG sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM into wild-type (WT mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.

  14. A Novel Audio Cryptosystem Using Chaotic Maps and DNA Encoding

    Directory of Open Access Journals (Sweden)

    S. J. Sheela

    2017-01-01

    Full Text Available Chaotic maps have good potential in security applications due to their inherent characteristics relevant to cryptography. This paper introduces a new audio cryptosystem based on chaotic maps, hybrid chaotic shift transform (HCST, and deoxyribonucleic acid (DNA encoding rules. The scheme uses chaotic maps such as two-dimensional modified Henon map (2D-MHM and standard map. The 2D-MHM which has sophisticated chaotic behavior for an extensive range of control parameters is used to perform HCST. DNA encoding technology is used as an auxiliary tool which enhances the security of the cryptosystem. The performance of the algorithm is evaluated for various speech signals using different encryption/decryption quality metrics. The simulation and comparison results show that the algorithm can achieve good encryption results and is able to resist several cryptographic attacks. The various types of analysis revealed that the algorithm is suitable for narrow band radio communication and real-time speech encryption applications.

  15. Restoring the encoding properties of a stochastic neuron model by an exogenous noise

    Science.gov (United States)

    Paffi, Alessandra; Camera, Francesca; Apollonio, Francesca; d'Inzeo, Guglielmo; Liberti, Micaela

    2015-01-01

    Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR) phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed. PMID:25999845

  16. Restoring the encoding properties of a stochastic neuron model by an exogenous noise

    Directory of Open Access Journals (Sweden)

    Alessandra ePaffi

    2015-05-01

    Full Text Available Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed.

  17. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia.

    Science.gov (United States)

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-06

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.

  18. Autonomic Dysregulation during Sensory Stimulation in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Schaaf, Roseann C.; Benevides, Teal W.; Leiby, Benjamin E.; Sendecki, Jocelyn A.

    2015-01-01

    Autonomic nervous system (ANS) activity during sensory stimulation was measured in 59 children with autism spectrum disorder (ASD) ages 6-9 in comparison to 30 typically developing controls. Multivariate comparisons revealed significant differences between groups in the respiratory sinus arrhythmia (parasympathetic measure) vector of means across…

  19. Conscious and unconscious sensory inflows allow effective control of the functions of the human brain and heart at the initial ageing stage.

    Science.gov (United States)

    Bykov, Anatolij T; Malyarenko, Tatyana N; Malyarenko, Yurij E; Terentjev, Vladimir P; Dyuzhikov, Alexandr A

    2006-11-01

    The authors of the present article based their assumption on the concept that the sensory systems are the "windows to the brain" through which various functions of the human organism can be controlled. Comprehension of the fundamental mechanisms of the optimization of the sensory systems, brain, and cardiac functions has increased based on the prolonged sensory flows using conscious and unconscious aromatherapy and multimodal sensory activation. Sensory flow evoked stable systemic responses, including adaptive alteration of psycho-emotional state, attention, memory, sensorimotor reactions, intersensory interaction, visual information processing, statokinetic stability, and autonomic heart rhythm control. The efficacy and expediency of the use of sensory flow for non-medicinal correction of vital functions of the human organism at the initial stages of ageing was revealed.

  20. Encoding of coordination complexes with XML.

    Science.gov (United States)

    Vinoth, P; Sankar, P

    2017-09-01

    An in-silico system to encode structure, bonding and properties of coordination complexes is developed. The encoding is achieved through a semantic XML markup frame. Composition of the coordination complexes is captured in terms of central atom and ligands. Structural information of central atom is detailed in terms of electron status of valence electron orbitals. The ligands are encoded with specific reference to the electron environment of ligand centre atoms. Behaviour of ligands to form low or high spin complexes is accomplished by assigning a Ligand Centre Value to every ligand based on the electronic environment of ligand centre atom. Chemical ontologies are used for categorization purpose and to control different hybridization schemes. Complexes formed by the central atoms of transition metal, non-transition elements belonging to s-block, p-block and f-block are encoded with a generic encoding platform. Complexes of homoleptic, heteroleptic and bridged types are also covered by this encoding system. Utility of the encoded system to predict redox electron transfer reaction in the coordination complexes is demonstrated with a simple application. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. On the relationships between generative encodings, regularity, and learning abilities when evolving plastic artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Paul Tonelli

    Full Text Available A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1 the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2 synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT. Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1 in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2 whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.

  2. Physical exercise during encoding improves vocabulary learning in young female adults: a neuroendocrinological study.

    Science.gov (United States)

    Schmidt-Kassow, Maren; Deusser, Marie; Thiel, Christian; Otterbein, Sascha; Montag, Christian; Reuter, Martin; Banzer, Winfried; Kaiser, Jochen

    2013-01-01

    Acute physical activity has been repeatedly shown to improve various cognitive functions. However, there have been no investigations comparing the effects of exercise during verbal encoding versus exercise prior to encoding on long-term memory performance. In this current psychoneuroendocrinological study we aim to test whether light to moderate ergometric bicycling during vocabulary encoding enhances subsequent recall compared to encoding during physical rest and encoding after being physically active. Furthermore, we examined the kinetics of brain-derived neurotrophic factor (BDNF) in serum which has been previously shown to correlate with learning performance. We also controlled for the BDNF val66met polymorphism. We found better vocabulary test performance for subjects that were physically active during the encoding phase compared to sedentary subjects. Post-hoc tests revealed that this effect was particularly present in initially low performers. BDNF in serum and BDNF genotype failed to account for the current result. Our data indicates that light to moderate simultaneous physical activity during encoding, but not prior to encoding, is beneficial for subsequent recall of new items.

  3. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    Science.gov (United States)

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  4. Encoding entanglement-assisted quantum stabilizer codes

    International Nuclear Information System (INIS)

    Wang Yun-Jiang; Bai Bao-Ming; Li Zhuo; Xiao He-Ling; Peng Jin-Ye

    2012-01-01

    We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n 2 ) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers. (general)

  5. Diagnostic value of the near-nerve needle sensory nerve conduction in sensory inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Odabasi, Zeki; Oh, Shin J

    2018-03-01

    In this study we report the diagnostic value of the near-nerve needle sensory nerve conduction study (NNN-SNCS) in sensory inflammatory demyelinating polyneuropathy (IDP) in which the routine nerve conduction study was normal or non-diagnostic. The NNN-SNCS was performed to identify demyelination in the plantar nerves in 14 patients and in the median or ulnar nerve in 2 patients with sensory IDP. In 16 patients with sensory IDP, routine NCSs were either normal or non-diagnostic for demyelination. Demyelination was identified by NNN-SNCS by dispersion and/or slow nerve conduction velocity (NCV) below the demyelination marker. Immunotherapy was initiated in 11 patients, 10 of whom improved or remained stable. NNN-SNCS played an essential role in identifying demyelinaton in 16 patients with sensory IDP, leading to proper treatment. Muscle Nerve 57: 414-418, 2018. © 2017 Wiley Periodicals, Inc.

  6. Sensory profiling: a method for describing the sensory characteristics of virgin olive oil

    Directory of Open Access Journals (Sweden)

    Lyon, David H.

    1994-04-01

    Full Text Available Sensory profiling is an objective, descriptive technique which uses a panel of trained assessors. It was used at Campden to differentiate olive oil which differed in terms of the country of origin, variety, ripeness and extraction techniques. The data were related to similar results from the Netherlands and Italy. The results indicated that all three sensory panels perceived the samples in the same way, however, the differed in the way the oils were described.
    The new European legislation on olive oil is partially concerned with the sensory aspects of the oil. The sensory grading takes into account the 'positive' and 'negative' attributes in the oil before giving an overall quality grade. These attributes do not reflect the consumer requirements, therefore, the grading should be restricted to the assessment of the presence or absence of sensory defects.

  7. A gain-field encoding of limb position and velocity in the internal model of arm dynamics.

    Directory of Open Access Journals (Sweden)

    Eun Jung Hwang

    2003-11-01

    Full Text Available Adaptability of reaching movements depends on a computation in the brain that transforms sensory cues, such as those that indicate the position and velocity of the arm, into motor commands. Theoretical consideration shows that the encoding properties of neural elements implementing this transformation dictate how errors should generalize from one limb position and velocity to another. To estimate how sensory cues are encoded by these neural elements, we designed experiments that quantified spatial generalization in environments where forces depended on both position and velocity of the limb. The patterns of error generalization suggest that the neural elements that compute the transformation encode limb position and velocity in intrinsic coordinates via a gain-field; i.e., the elements have directionally dependent tuning that is modulated monotonically with limb position. The gain-field encoding makes the counterintuitive prediction of hypergeneralization: there should be growing extrapolation beyond the trained workspace. Furthermore, nonmonotonic force patterns should be more difficult to learn than monotonic ones. We confirmed these predictions experimentally.

  8. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  9. Sensory Quality Preservation of Coated Walnuts.

    Science.gov (United States)

    Grosso, Antonella L; Asensio, Claudia M; Grosso, Nelson R; Nepote, Valeria

    2017-01-01

    The objective of this study was to evaluate the sensory stability of coated walnuts during storage. Four walnut samples were prepared: uncoated (NC), and samples coated with carboxymethyl cellulose (NCMC), methyl cellulose (NMC), or whey protein (NPS). The samples were stored at room temperature for 210 d and were periodically removed from storage to perform a sensory descriptive analysis. A consumer acceptance test was carried out on the fresh product (storage day 0) to evaluate flavor. All samples exhibited significant differences in their sensory attributes initially and after storage. Intensity ratings for oxidized and cardboard flavors increased during storage. NC showed the highest oxidized and cardboard intensity ratings (39 and 22, respectively) and NMC exhibited the lowest intensity ratings for these negative attributes (8 and 17, respectively) after 210 d of storage. Alternatively, the intensity ratings for sweetness and walnut flavors were decreased for all samples. NMC had the lowest decrease at the end of storage for these positive attributes (75.86 in walnut flavor and 12.09 in sweetness). The results of this study suggest a protective effect of the use of an edible coating to preserve sensory attributes during storage, especially for samples coated with MC. The results of the acceptance test showed that addition of the coating negatively affected the flavor acceptance for NMC and NCMC coated walnuts. Edible coatings help to preserve sensory attributes in walnuts, improving their shelf-life, however, these coatings may affect consumer acceptance in some cases. © 2016 Institute of Food Technologists®.

  10. Neural interface methods and apparatus to provide artificial sensory capabilities to a subject

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, Stephen P.; Olsson, III, Roy H.; Wojciechowski, Kenneth E.; Novick, David K.; Kholwadwala, Deepesh K.

    2017-01-24

    Embodiments of neural interfaces according to the present invention comprise sensor modules for sensing environmental attributes beyond the natural sensory capability of a subject, and communicating the attributes wirelessly to an external (ex-vivo) portable module attached to the subject. The ex-vivo module encodes and communicates the attributes via a transcutaneous inductively coupled link to an internal (in-vivo) module implanted within the subject. The in-vivo module converts the attribute information into electrical neural stimuli that are delivered to a peripheral nerve bundle within the subject, via an implanted electrode. Methods and apparatus according to the invention incorporate implantable batteries to power the in-vivo module allowing for transcutaneous bidirectional communication of low voltage (e.g. on the order of 5 volts) encoded signals as stimuli commands and neural responses, in a robust, low-error rate, communication channel with minimal effects to the subjects' skin.

  11. The Effects of Emotional Visual Context on the Encoding and Retrieval of Body Odor Information.

    Science.gov (United States)

    Parma, Valentina; Macedo, Stephanie; Rocha, Marta; Alho, Laura; Ferreira, Jacqueline; Soares, Sandra C

    2018-04-01

    Conditions during information encoding and retrieval are known to influence the sensory material stored and its recapitulation. However, little is known about such processes in olfaction. Here, we capitalized on the uniqueness of body odors (BOs) which, similar to fingerprints, allow for the identification of a specific person, by associating their presentation to a negative or a neutral emotional context. One hundred twenty-five receivers (68 F) were exposed to a male BO while watching either criminal or neutral videos (encoding phase) and were subsequently asked to recognize the target BO within either a congruent or an incongruent visual context (retrieval phase). The results showed that criminal videos were rated as more vivid, unpleasant, and arousing than neutral videos both at encoding and retrieval. Moreover, in terms of BO ratings, we found that odor intensity and arousal allow to distinguish the target from the foils when congruent criminal information is presented at encoding and retrieval. Finally, the accuracy performance was not significantly different from chance level for either condition. These findings provide insights on how olfactory memories are processed in emotional situations.

  12. Sensorial evaluation genuineness of wine

    Directory of Open Access Journals (Sweden)

    Ivo Tomášek

    2008-01-01

    seems less typical and characteristic substitute in evaluation.Riesling rhine – the most suitable location was chosen vineyard Šobes by judges, which gives incommutable features to smell and taste by sandy soils of Dyje massif above river Dyje. A specimen No. 9 represented the smell; specimens No. 10 and 11 were evaluated as average and untypical. They had quite different features in recognizing vintages.The authenticity was extended by sensorial evaluation and at the same time the outstanding locations were chosen, which can give wines of unusual quantity every year in connecting certain variety. The most suitable locations for singular type of wine with extending authenticity are Riesling rhine – vineyard Šobes, Sauvignon blanc – vineyard Knížecí vrch, Veltliner grun – vineyard Weinperky.

  13. Chemical Space of DNA-Encoded Libraries.

    Science.gov (United States)

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  14. Encoding information using laguerre gaussian modes

    CSIR Research Space (South Africa)

    Trichili, A

    2015-08-01

    Full Text Available The authors experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information...

  15. Molecular mechanisms for protein-encoded inheritance

    Science.gov (United States)

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  16. Rheological behaviour, sensory properties and syneresis of probiotic yoghurt supplemented with various prebiotics

    DEFF Research Database (Denmark)

    Heydari, Somayeh; Amiri-Rigi, Atefeh; Ehsani, Mohammad Reza

    2018-01-01

    The main aim of this study was to investigate the effects of addition of six different prebiotic compounds (inulin, lactulose, lactitol, Hi-maize, maltodextrin and β-glucan) on syneresis, sensory attributes and rheological characteristics (elastic modulus, viscous modulus, loss tangent, complex...... modules) of probiotic yoghurt. The results revealed that the inclusion of the prebiotic compounds into the probiotic yoghurt profoundly affected the products' syneresis, as well as the sensory and rheological characteristics of the probiotic yoghurts compared with control samples. On the whole, production...

  17. Agreeable smellers and sensitive neurotics--correlations among personality traits and sensory thresholds.

    Science.gov (United States)

    Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N B; Hummel, Thomas

    2011-04-27

    Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.

  18. Agreeable Smellers and Sensitive Neurotics – Correlations among Personality Traits and Sensory Thresholds

    Science.gov (United States)

    Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N. B.; Hummel, Thomas

    2011-01-01

    Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality. PMID:21556139

  19. Agreeable smellers and sensitive neurotics--correlations among personality traits and sensory thresholds.

    Directory of Open Access Journals (Sweden)

    Ilona Croy

    Full Text Available Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124 completed a personality inventory (NEO-FFI and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.

  20. Sensory integration of a light touch reference in human standing balance

    Science.gov (United States)

    Smith, Craig P.; Reynolds, Raymond F.

    2018-01-01

    In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting. PMID:29874252

  1. Quantum Logical Operations on Encoded Qubits

    International Nuclear Information System (INIS)

    Zurek, W.H.; Laflamme, R.

    1996-01-01

    We show how to carry out quantum logical operations (controlled-not and Toffoli gates) on encoded qubits for several encodings which protect against various 1-bit errors. This improves the reliability of these operations by allowing one to correct for 1-bit errors which either preexisted or occurred in the course of operation. The logical operations we consider allow one to carry out the vast majority of the steps in the quantum factoring algorithm. copyright 1996 The American Physical Society

  2. Using XML to encode TMA DES metadata

    Directory of Open Access Journals (Sweden)

    Oliver Lyttleton

    2011-01-01

    Full Text Available Background: The Tissue Microarray Data Exchange Specification (TMA DES is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  3. Using XML to encode TMA DES metadata.

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  4. Using XML to encode TMA DES metadata

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  5. Decomposition of BOLD Activity into Tuned and Untuned Components Reveals Cohabitation of Stimulus and Choice Information in V1

    Directory of Open Access Journals (Sweden)

    Kyoung Whan Choe

    2012-10-01

    Full Text Available Recent studies on V1 report top-down modulation of input-driven responses of sensory neurons, implying that exogenous sensory drives and endogenous top-down drives jointly determine V1 responses. By measuring fMRI responses in conjunction with a classification task on ambiguous ring stimuli, we sought to understand how V1 carries out its encoding operation on afferent currents while being adaptively modulated by top-down currents associated with perceptual tasks. Population activity of V1, as in its raw eccentricity profiles, failed to resolve the threshold differences between the ring stimuli due to large moment-to-moment fluctuations. The analysis of variance indicated that stimulus-evoked responses explain only one-fifth of the total variance and fMRI responses were highly correlated among eccentricity-bins, implying that a substantial fraction of V1 responses fluctuate as a whole. This led us to decompose the raw fMRI responses into untuned and tuned components: average response across eccentricity-bins and residual responses from the average, respectively, the former varying only in time and the latter varying in both space and time. The tuned responses revealed the veridical encoding operation of V1 by readily distinguishing between the ring stimuli, which was impossible with the raw fMRI responses. In contrast, the untuned were correlated with two major aspects of choice behavior—inter-trial variability in response time and inter-subject variability in response bias. We propose that this cohabitation of stimulus and choice information in V1 indicates the presence of top-down exertion of gain modulation on the early processing stage by the high-tier stage that accumulates evidence for perceptual choices.

  6. Heterogeneous sensory processing in persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Brandsborg, Birgitte; Jensen, Troels Staehelin

    2010-01-01

    hinders evaluation of potential subgroups for further investigation and/or treatment allocation. Thus we used a standardized QST protocol to evaluate sensory functions in PPP and pain-free control patients, to allow individual sensory characterization of pain patients from calculated Z-values. Seventy PPP...... patients with pain related impairment of everyday activities were compared with normative data from 40 pain-free postherniotomy patients operated>1 year previously. Z-values showed a large variation in sensory disturbances ranging from pronounced detection hypoesthesia (Z=6, cold) to pain hyperalgesia (Z......=-8, pressure). Hyperalgesia for various modalities were found in 80% of patients, with pressure hyperalgesia in approximately 65%, and cutaneous (mechanical or thermal) hyperalgesia in approximately 35% of patients. The paradoxical combination of tactile hypoesthesia and hyperalgesia was seen...

  7. Composite foods: from structure to sensory perception.

    Science.gov (United States)

    Scholten, Elke

    2017-02-22

    An understanding of the effect of structural features of foods in terms of specific sensory attributes is necessary to design foods with specific functionalities, such as reduced fat or increased protein content, and increased feeling of satiety or liking. Although the bulk rheological properties of both liquid and solid foods can be related to textural attributes such as thickness and firmness, they do not always correlate to more complex sensory attributes, such as creamy and smooth. These attributes are often a result of different contributions, including lubrication aspects and interactions between food and components present in the oral cavity. In this review, the different contributions for a variety of composite foods, such as dispersions, emulsions and emulsion-filled gels, are discussed. The rheological properties are discussed in relation to specific structural characteristics of the foods, which are then linked to lubrication aspects and sensory perception.

  8. Accurate metacognition for visual sensory memory representations.

    Science.gov (United States)

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.

  9. Age differences in visual sensory memory.

    Science.gov (United States)

    Walsh, D A; Thompson, L W

    1978-05-01

    Age differences in visual sensory memory were studied using the direct measure procedure of Haber and Standing (1969) -- the longest interstimulus interval at which subjects reported a single stimulus as continuous was measured. The visual storage of the young (mean age 24 years) was found to persist for 289 msec compared to 248 for the old (mean age 67 years). Similar estimates of sensory memory duration were obtained when either monoptic or dichoptic stimulus presentations were employed, supporting the idea that visual storage is centrally mediated for both age groups. The relevance of these findings for age differences in the registration of information into primary and secondary memory and their implications for the stimulus persistence hypothesis are considered. The appropriateness and validity of the persistence of form task for studies of sensory memory and aging are also discussed.

  10. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Directory of Open Access Journals (Sweden)

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  11. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory.

    Science.gov (United States)

    Hawk, Josh D; Calvo, Ana C; Liu, Ping; Almoril-Porras, Agustin; Aljobeh, Ahmad; Torruella-Suárez, María Luisa; Ren, Ivy; Cook, Nathan; Greenwood, Joel; Luo, Linjiao; Wang, Zhao-Wen; Samuel, Aravinthan D T; Colón-Ramos, Daniel A

    2018-01-17

    Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory. Sensory adaptation adjusts the temperature range of the sensory neuron (called AFD) to optimize detection of temperature fluctuations associated with migration. Presynaptic plasticity in AFD is regulated by the conserved kinase nPKCε and transforms thermosensory information into a behavioral preference. Bypassing AFD presynaptic plasticity predictably changes learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct neuroplasticity mechanisms function together through a single-cell logic system to enact thermotactic behavior. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Sensory Synergy as Environmental Input Integration

    Directory of Open Access Journals (Sweden)

    Fady eAlnajjar

    2015-01-01

    Full Text Available The development of a method to feed proper environmental inputs back to the central nervous system (CNS remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with 9 healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis’ sensory system to make the controller simpler

  13. Sensory synergy as environmental input integration.

    Science.gov (United States)

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2014-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler.

  14. Rheological and sensory behaviors of parboiled pasta cooked using a microwave pasteurization process.

    Science.gov (United States)

    Joyner, Helen S; Jones, Kari E; Rasco, Barbara A

    2017-10-01

    Pasta hydration and cooking requirements make in-package microwave pasteurization of pasta a processing challenge. The objective of this study was to assess instrumental and sensory attributes of microwave-treated pasta in comparison to conventionally cooked pasta. Fettuccine pasta was parboiled for 0, 3, 6, 9, or 12 min, pasteurized by microwaves at 915 MHz, then stored under refrigeration for 1 week. Pastas were evaluated by a trained sensory panel and with rheometry. Total pasta heat treatment affected both rheological and sensory behaviors; these differences were attributed to ultrastructure differences. Significant nonlinear behavior and dominant fluid-like behavior was observed in all pastas at strains >1%. Sensory results suggested microwave pasteurization may intensify the attributes associated with the aging of pasta such as retrogradation. A clear trend between magnitude of heat treatment and attribute intensity was not observed for all sensory attributes tested. The microwave pasta with the longest parboil time showed rheological behavior most similar to conventionally cooked pasta. Principal component analysis revealed that no microwave-treated pasta was similar to the control pasta. However, pasta parboiled for 9 min before microwave treatment had the greatest number of similar sensory attributes, followed by pasta parboiled for 6 or 12 min. Further study is needed to determine overall consumer acceptance of microwave-treated pasta and whether the differences in sensory and rheological behavior would impact consumer liking. The results of this study may be applied to optimize microwave pasteurization processes for cooked pasta and similar products, such as rice. The measurement and analysis procedures can be used to evaluate processing effects on a variety of different foods to determine overall palatability. © 2017 Wiley Periodicals, Inc.

  15. Complex interaction of sensory and motor signs and symptoms in chronic CRPS.

    Science.gov (United States)

    Huge, Volker; Lauchart, Meike; Magerl, Walter; Beyer, Antje; Moehnle, Patrick; Kaufhold, Wibke; Schelling, Gustav; Azad, Shahnaz Christina

    2011-04-29

    Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia.

  16. Complex interaction of sensory and motor signs and symptoms in chronic CRPS.

    Directory of Open Access Journals (Sweden)

    Volker Huge

    Full Text Available Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS. This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months. Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss and central factors (pain/disability/stress/depression predicting motor dysfunction and hyperalgesia.

  17. Current physical activity improves balance control during sensory conflicting conditions in older adults.

    Science.gov (United States)

    Buatois, S; Gauchard, G C; Aubry, C; Benetos, A; Perrin, P

    2007-01-01

    Aging process is characterized by difficulties in ensuring balance control, especially in conditions of reduced or conflicting sensory information, leading to an increased risk of falling. Conversely, the practise of physical activities (PA) has been recognized as a good approach to improve the quality of balance control. This study aimed to investigate the influence of current and/or past PA on balance-related neurosensorial organization in older adults on the maintenance of the upright stance, especially during sensory conflicting situations. Postural control was evaluated by means of the Sensory Organization Test on 130 healthy noninstitutionalized volunteers aged over 65, split into four groups according to the presence or absence of PA before or after retirement. Subjects who practised PA for a long time (Gr1) and subjects who started PA after retirement (Gr2) displayed the best postural performances and better managed sensory conflicting situations compared to subjects who had stopped PA for many years (Gr3) and subjects who had never practised PA (Gr4). Multiple regression analyses revealed that current PA was the major determinant for postural parameters during sensorial conflict compared to age, gender, body mass index and past PA. Regular PA, even when started late in life, allows appropriate reorganization of the different components of postural control during sensory conflicting situations. Indeed, active subjects were more able to compensate for suppressed or perturbed sensory information by an increased usage of another referential and so to correct their posture by adopting a more appropriate balance strategy. Thus, PA counteracts the age-related decline of postural control and could consequently reduce the risk of falling.

  18. Natural variation in sensory-motor white matter organization influences manifestations of Huntington's disease.

    Science.gov (United States)

    Orth, Michael; Gregory, Sarah; Scahill, Rachael I; Mayer, Isabella Sm; Minkova, Lora; Klöppel, Stefan; Seunarine, Kiran K; Boyd, Lara; Borowsky, Beth; Reilmann, Ralf; Bernhard Landwehrmeyer, G; Leavitt, Blair R; Roos, Raymund Ac; Durr, Alexandra; Rees, Geraint; Rothwell, John C; Langbehn, Douglas; Tabrizi, Sarah J

    2016-12-01

    While the HTT CAG-repeat expansion mutation causing Huntington's disease (HD) is highly correlated with the rate of pathogenesis leading to disease onset, considerable variance in age-at-onset remains unexplained. Therefore, other factors must influence the pathogenic process. We asked whether these factors were related to natural biological variation in the sensory-motor system. In 243 participants (96 premanifest and 35 manifest HD; 112 controls), sensory-motor structural MRI, tractography, resting-state fMRI, electrophysiology (including SEP amplitudes), motor score ratings, and grip force as sensory-motor performance were measured. Following individual modality analyses, we used principal component analysis (PCA) to identify patterns associated with sensory-motor performance, and manifest versus premanifest HD discrimination. We did not detect longitudinal differences over 12 months. PCA showed a pattern of loss of caudate, grey and white matter volume, cortical thickness in premotor and sensory cortex, and disturbed diffusivity in sensory-motor white matter tracts that was connected to CAG repeat length. Two further major principal components appeared in controls and HD individuals indicating that they represent natural biological variation unconnected to the HD mutation. One of these components did not influence HD while the other non-CAG-driven component of axial versus radial diffusivity contrast in white matter tracts were associated with sensory-motor performance and manifest HD. The first component reflects the expected CAG expansion effects on HD pathogenesis. One non-CAG-driven component reveals an independent influence on pathogenesis of biological variation in white matter tracts and merits further investigation to delineate the underlying mechanism and the potential it offers for disease modification. Hum Brain Mapp 37:4615-4628, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef.

    Science.gov (United States)

    Zhao, Ming; Nian, Yingqun; Allen, Paul; Downey, Gerard; Kerry, Joseph P; O'Donnell, Colm P

    2018-05-01

    This work aims to develop a rapid analytical technique to predict beef sensory attributes using Raman spectroscopy (RS) and to investigate correlations between sensory attributes using chemometric analysis. Beef samples (n = 72) were obtained from young dairy bulls (Holstein-Friesian and Jersey×Holstein-Friesian) slaughtered at 15 and 19 months old. Trained sensory panel evaluation and Raman spectral data acquisition were both carried out on the same longissimus thoracis muscles after ageing for 21 days. The best prediction results were obtained using a Raman frequency range of 1300-2800 cm -1 . Prediction performance of partial least squares regression (PLSR) models developed using all samples were moderate to high for all sensory attributes (R 2 CV values of 0.50-0.84 and RMSECV values of 1.31-9.07) and were particularly high for desirable flavour attributes (R 2 CVs of 0.80-0.84, RMSECVs of 4.21-4.65). For PLSR models developed on subsets of beef samples i.e. beef of an identical age or breed type, significant improvements on prediction performances were achieved for overall sensory attributes (R 2 CVs of 0.63-0.89 and RMSECVs of 0.38-6.88 for each breed type; R 2 CVs of 0.52-0.89 and RMSECVs of 0.96-6.36 for each age group). Chemometric analysis revealed strong correlations between sensory attributes. Raman spectroscopy combined with chemometric analysis was demonstrated to have high potential as a rapid and non-destructive technique to predict the sensory quality traits of young dairy bull beef. Copyright © 2018. Published by Elsevier Ltd.

  20. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  1. Estrabismo sensorial: estudo de 191 casos

    OpenAIRE

    Oliveira,Bráulio Folco Telles de; Bigolin,Silvane; Souza,Murilo Barreto; Polati,Mariza

    2006-01-01

    OBJETIVO: Avaliar os prontuários dos pacientes com estrabismo sensorial em aspectos variados, como etiologia, tipo e medida do desvio, correlação do tipo do desvio com a idade de aparecimento da doença de base, e resultado cirúrgico dos casos operados. MÉTODOS: Avaliação dos prontuários médicos dos pacientes com estrabismo sensorial atendidos no Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - USP - no setor de Motilidade Ocular Extrínseca, no período de setembro ...

  2. Dorsal and ventral streams across sensory modalities

    Institute of Scientific and Technical Information of China (English)

    Anna Sedda; Federica Scarpina

    2012-01-01

    In this review,we describe the current models of dorsal and ventral streams in vision,audition and touch.Available theories take their first steps from the model of Milner and Goodale,which was developed to explain how human actions can be efficiently carried out using visual information.Since then,similar concepts have also been applied to other sensory modalities.We propose that advances in the knowledge of brain functioning can be achieved through models explaining action and perception patterns independently from sensory modalities.

  3. Dissociable effects of top-down and bottom-up attention during episodic encoding

    Science.gov (United States)

    Uncapher, Melina R.; Hutchinson, J. Benjamin; Wagner, Anthony D.

    2011-01-01

    It is well established that the formation of memories for life’s experiences—episodic memory—is influenced by how we attend to those experiences, yet the neural mechanisms by which attention shapes episodic encoding are still unclear. We investigated how top-down and bottom-up attention contribute to memory encoding of visual objects in humans by manipulating both types of attention during functional magnetic resonance imaging (fMRI) of episodic memory formation. We show that dorsal parietal cortex—specifically, intraparietal sulcus (IPS)—was engaged during top-down attention and was also recruited during the successful formation of episodic memories. By contrast, bottom-up attention engaged ventral parietal cortex—specifically, temporoparietal junction (TPJ)—and was also more active during encoding failure. Functional connectivity analyses revealed further dissociations in how top-down and bottom-up attention influenced encoding: while both IPS and TPJ influenced activity in perceptual cortices thought to represent the information being encoded (fusiform/lateral occipital cortex), they each exerted opposite effects on memory encoding. Specifically, during a preparatory period preceding stimulus presentation, a stronger drive from IPS was associated with a higher likelihood that the subsequently attended stimulus would be encoded. By contrast, during stimulus processing, stronger connectivity with TPJ was associated with a lower likelihood the stimulus would be successfully encoded. These findings suggest that during encoding of visual objects into episodic memory, top-down and bottom-up attention can have opposite influences on perceptual areas that subserve visual object representation, suggesting that one manner in which attention modulates memory is by altering the perceptual processing of to-be-encoded stimuli. PMID:21880922

  4. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study.

    Science.gov (United States)

    Amyotte, Beatrice; Bowen, Amy J; Banks, Travis; Rajcan, Istvan; Somers, Daryl J

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants.

  5. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    Science.gov (United States)

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants. PMID:28231290

  6. Sensory Profiles and Volatile Compounds of Wheat Species, Landraces and Modern Varieties

    DEFF Research Database (Denmark)

    Starr, Gerrard

    as cooked wheat grain, flour porridge and for eight of these varieties, baked bread. Descriptors for odours of cocoa, oat porridge and øllebrød1) and flavours of sweet, bitter, oat porridge and øllebrød1) were common to all three wheat products. Wheat porridge shared 6 odour and 10 flavour descriptors...... be connected. This Ph. D. project aims to study sensory attributes and volatile compounds of wheat and its products in order to investigate variations between wheat species, landraces and modern varieties and to reveal their impact on bread odours and flavours. Furthermore to examine whether bread could......) were used to analyse sensory and GC-MS data. Differences in odours and flavours were found in all wheat products. Variation also occurred between volatile peak-areas of wheat grain- and bread samples. Twenty four selected wheat species, landraces and varieties were evaluated by trained sensory panels...

  7. Morphology and nanomechanics of sensory neurons growth cones following peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Marta Martin

    Full Text Available A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins.

  8. Developing Healthy Food Preferences in Preschool Children Through Taste Exposure, Sensory Learning, and Nutrition Education.

    Science.gov (United States)

    Nekitsing, Chandani; Hetherington, Marion M; Blundell-Birtill, Pam

    2018-03-01

    The present review was undertaken in order to summarize and evaluate recent research investigating taste exposure, sensory learning, and nutrition education interventions for promoting vegetable intake in preschool children. Overall, taste exposure interventions yielded the best outcomes for increasing vegetable intake in early childhood. Evidence from sensory learning strategies such as visual exposure and experiential learning also show some success. While nutrition education remains the most common approach used in preschool settings, additional elements are needed to strengthen the educational program for increasing vegetable intake. There is a substantial gap in the evidence base to promote vegetable intake in food fussy children. The present review reveals the relative importance of different intervention strategies for promoting vegetable intake. To strengthen intervention effects for improving vegetable intake in preschool children, future research could consider integrating taste exposure and sensory learning strategies with nutrition education within the preschool curriculum.

  9. Sport Skill-Specific Expertise Biases Sensory Integration for Spatial Referencing and Postural Control.

    Science.gov (United States)

    Thalassinos, Michalis; Fotiadis, Giorgos; Arabatzi, Fotini; Isableu, Brice; Hatzitaki, Vassilia

    2017-09-15

    The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill-specific bias in the reweighing of sensory inputs for spatial orientation and postural control.

  10. Olfactory short-term memory encoding and maintenance - an event-related potential study.

    Science.gov (United States)

    Lenk, Steffen; Bluschke, Annet; Beste, Christian; Iannilli, Emilia; Rößner, Veit; Hummel, Thomas; Bender, Stephan

    2014-09-01

    This study examined whether the memory encoding and short term maintenance of olfactory stimuli is associated with neurophysiological activation patterns which parallel those described for sensory modalities such as vision and auditory. We examined olfactory event-related potentials in an olfactory change detection task in twenty-four healthy adults and compared the measured activation to that found during passive olfactory stimulation. During the early olfactory post-processing phase, we found a sustained negativity over bilateral frontotemporal areas in the passive perception condition which was enhanced in the active memory task. There was no significant lateralization in either experimental condition. During the maintenance interval at the end of the delay period, we still found sustained activation over bilateral frontotemporal areas which was more negative in trials with correct - as compared to incorrect - behavioural responses. This was complemented by a general significantly stronger frontocentral activation. Summarizing, we were able to show that olfactory short term memory involves a parallel sequence of activation as found in other sensory modalities. In addition to olfactory-specific frontotemporal activations in the memory encoding phase, we found slow cortical potentials over frontocentral areas during the memory maintenance phase indicating the activation of a supramodal memory maintenance system. These findings could represent the neurophysiological underpinning of the 'olfactory flacon', the olfactory counter-part to the visual sketchpad and phonological loop embedded in Baddeley's working memory model. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Spatial encoding in spinal sensorimotor circuits differs in different wild type mice strains

    Directory of Open Access Journals (Sweden)

    Schouenborg Jens

    2008-05-01

    Full Text Available Abstract Background Previous studies in the rat have shown that the spatial organisation of the receptive fields of nociceptive withdrawal reflex (NWR system are functionally adapted through experience dependent mechanisms, termed somatosensory imprinting, during postnatal development. Here we wanted to clarify 1 if mice exhibit a similar spatial encoding of sensory input to NWR as previously found in the rat and 2 if mice strains with a poor learning capacity in various behavioural tests, associated with deficient long term potention, also exhibit poor adaptation of NWR. The organisation of the NWR system in two adult wild type mouse strains with normal long term potentiation (LTP in hippocampus and two adult wild type mouse strains exhibiting deficiencies in corresponding LTP were used and compared to previous results in the rat. Receptive fields of reflexes in single hindlimb muscles were mapped with CO2 laser heat pulses. Results While the spatial organisation of the nociceptive receptive fields in mice with normal LTP were very similar to those in rats, the LTP impaired strains exhibited receptive fields of NWRs with aberrant sensitivity distributions. However, no difference was found in NWR thresholds or onset C-fibre latencies suggesting that the mechanisms determining general reflex sensitivity and somatosensory imprinting are different. Conclusion Our results thus confirm that sensory encoding in mice and rat NWR is similar, provided that mice strains with a good learning capability are studied and raise the possibility that LTP like mechanisms are involved in somatosensory imprinting.

  12. Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages

    Science.gov (United States)

    Krizman, Jennifer; Marian, Viorica; Shook, Anthony; Skoe, Erika; Kraus, Nina

    2012-01-01

    Bilingualism profoundly affects the brain, yielding functional and structural changes in cortical regions dedicated to language processing and executive function [Crinion J, et al. (2006) Science 312:1537–1540; Kim KHS, et al. (1997) Nature 388:171–174]. Comparatively, musical training, another type of sensory enrichment, translates to expertise in cognitive processing and refined biological processing of sound in both cortical and subcortical structures. Therefore, we asked whether bilingualism can also promote experience-dependent plasticity in subcortical auditory processing. We found that adolescent bilinguals, listening to the speech syllable [da], encoded the stimulus more robustly than age-matched monolinguals. Specifically, bilinguals showed enhanced encoding of the fundamental frequency, a feature known to underlie pitch perception and grouping of auditory objects. This enhancement was associated with executive function advantages. Thus, through experience-related tuning of attention, the bilingual auditory system becomes highly efficient in automatically processing sound. This study provides biological evidence for system-wide neural plasticity in auditory experts that facilitates a tight coupling of sensory and cognitive functions. PMID:22547804

  13. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation.

    Science.gov (United States)

    Yuan, Junhui; Matsuura, Eiji; Higuchi, Yujiro; Hashiguchi, Akihiro; Nakamura, Tomonori; Nozuma, Satoshi; Sakiyama, Yusuke; Yoshimura, Akiko; Izumo, Shuji; Takashima, Hiroshi

    2013-04-30

    To identify the clinical features of Japanese patients with suspected hereditary sensory and autonomic neuropathy (HSAN) on the basis of genetic diagnoses. On the basis of clinical, in vivo electrophysiologic, and pathologic findings, 9 Japanese patients with sensory and autonomic nervous dysfunctions were selected. Eleven known HSAN disease-causing genes and 5 related genes were screened using a next-generation sequencer. A homozygous mutation, c.3993delGinsTT, was identified in exon 22 of SCN9A from 2 patients/families. The clinical phenotype was characterized by adolescent or congenital onset with loss of pain and temperature sensation, autonomic nervous dysfunctions, hearing loss, and hyposmia. Subsequently, this mutation was discovered in one of patient 1's sisters, who also exhibited sensory and autonomic nervous system dysfunctions, with recurrent fractures being the most predominant feature. Nerve conduction studies revealed definite asymmetric sensory nerve involvement in patient 1. In addition, sural nerve pathologic findings showed loss of large myelinated fibers in patient 1, whereas the younger patient showed normal sural nerve pathology. We identified a novel homozygous mutation in SCN9A from 2 Japanese families with autosomal recessive HSAN. This loss-of-function SCN9A mutation results in disturbances in the sensory, olfactory, and autonomic nervous systems. We propose that SCN9A mutation results in the new entity of HSAN type IID, with additional symptoms including hyposmia, hearing loss, bone dysplasia, and hypogeusia.

  14. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.

    Science.gov (United States)

    Kitagawa, Masaya; Dokko, Daniell; Okamura, Allison M; Yuh, David D

    2005-01-01

    Direct haptic (force or tactile) feedback is not yet available in commercial robotic surgical systems. Previous work by our group and others suggests that haptic feedback might significantly enhance the execution of surgical tasks requiring fine suture manipulation, specifically those encountered in cardiothoracic surgery. We studied the effects of substituting direct haptic feedback with visual and auditory cues to provide the operating surgeon with a representation of the forces he or she is applying with robotic telemanipulators. Using the robotic da Vinci surgical system (Intuitive Surgical, Inc, Sunnyvale, Calif), we compared applied forces during a standardized surgical knot-tying task under 4 different sensory-substitution scenarios: no feedback, auditory feedback, visual feedback, and combined auditory-visual feedback. The forces applied with these sensory-substitution modes more closely approximate suture tensions achieved under ideal haptic conditions (ie, hand ties) than forces applied without such sensory feedback. The consistency of applied forces during robot-assisted suture tying aided by visual feedback or combined auditory-visual feedback sensory substitution is superior to that achieved with hand ties. Robot-assisted ties aided with auditory feedback revealed levels of consistency that were generally equivalent or superior to those attained with hand ties. Visual feedback and auditory feedback improve the consistency of robotically applied forces. Sensory substitution, in the form of visual feedback, auditory feedback, or both, confers quantifiable advantages in applied force accuracy and consistency during the performance of a simple surgical task.

  15. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses

    Science.gov (United States)

    Gilbert, Jessica L.; Guthart, Matthew J.; Gezan, Salvador A.; Pisaroglo de Carvalho, Melissa; Schwieterman, Michael L.; Colquhoun, Thomas A.; Bartoshuk, Linda M.; Sims, Charles A.; Clark, David G.; Olmstead, James W.

    2015-01-01

    Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (Panalysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is worthwhile. PMID:26378911

  16. Encoding model of temporal processing in human visual cortex.

    Science.gov (United States)

    Stigliani, Anthony; Jeska, Brianna; Grill-Spector, Kalanit

    2017-12-19

    How is temporal information processed in human visual cortex? Visual input is relayed to V1 through segregated transient and sustained channels in the retina and lateral geniculate nucleus (LGN). However, there is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. The prevailing view associates transient processing predominately with motion-sensitive regions and sustained processing with ventral stream regions, while the opposing view suggests that both temporal channels contribute to neural processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli and then implemented a two temporal channel-encoding model to evaluate the contributions of each channel. Different from the general linear model of fMRI that predicts responses directly from the stimulus, the encoding approach first models neural responses to the stimulus from which fMRI responses are derived. This encoding approach not only predicts cortical responses to time-varying stimuli from milliseconds to seconds but also, reveals differential contributions of temporal channels across visual cortex. Consistent with the prevailing view, motion-sensitive regions and adjacent lateral occipitotemporal regions are dominated by transient responses. However, ventral occipitotemporal regions are driven by both sustained and transient channels, with transient responses exceeding the sustained. These findings propose a rethinking of temporal processing in the ventral stream and suggest that transient processing may contribute to rapid extraction of the content of the visual input. Importantly, our encoding approach has vast implications, because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain. Copyright © 2017 the Author(s). Published by PNAS.

  17. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    Science.gov (United States)

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  18. Multichannel compressive sensing MRI using noiselet encoding.

    Directory of Open Access Journals (Sweden)

    Kamlesh Pawar

    Full Text Available The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS. In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.

  19. Learning from sensory and reward prediction errors during motor adaptation.

    Science.gov (United States)

    Izawa, Jun; Shadmehr, Reza

    2011-03-01

    Voluntary motor commands produce two kinds of consequences. Initially, a sensory consequence is observed in terms of activity in our primary sensory organs (e.g., vision, proprioception). Subsequently, the brain evaluates the sensory feedback and produces a subjective measure of utility or usefulness of the motor commands (e.g., reward). As a result, comparisons between predicted and observed consequences of motor commands produce two forms of prediction error. How do these errors contribute to changes in motor commands? Here, we considered a reach adaptation protocol and found that when high quality sensory feedback was available, adaptation of motor commands was driven almost exclusively by sensory prediction errors. This form of learning had a distinct signature: as motor commands adapted, the subjects altered their predictions regarding sensory consequences of motor commands, and generalized this learning broadly to neighboring motor commands. In contrast, as the quality of the sensory feedback degraded, adaptation of motor commands became more dependent on reward prediction errors. Reward prediction errors produced comparable changes in the motor commands, but produced no change in the predicted sensory consequences of motor commands, and generalized only locally. Because we found that there was a within subject correlation between generalization patterns and sensory remapping, it is plausible that during adaptation an individual's relative reliance on sensory vs. reward prediction errors could be inferred. We suggest that while motor commands change because of sensory and reward prediction errors, only sensory prediction errors produce a change in the neural system that predicts sensory consequences of motor commands.

  20. The effect of encoding duration on implicit and explicit eyewitness memory.

    Science.gov (United States)

    Carol, Rolando N; Schreiber Compo, Nadja

    2018-05-01

    The present study investigated the effect of encoding duration on implicit and explicit eyewitness memory. Participants (N = 227) viewed a mock crime (brief, 15-s vs. long, 30-s vs. irrelevant/control) and were then tested with both implicit and explicit memory prompts or with explicit memory prompts only. Brief-encoding participants revealed more critical details implicitly than long-encoding or control participants. Further, the number and percentage of accurate details recalled explicitly were higher for long-encoding than for brief-encoding participants. Implicit testing prior to explicit recall-as compared to completing a filler task-was detrimental to free recall performance. Interestingly, brief-encoding participants were significantly more likely to remember critical details implicitly but not explicitly than long-encoding participants. This is the first study to investigate implicit eyewitness memory for a multimodal mock crime. Findings are theoretically consistent with prior research on cognition while expanding upon the extant eyewitness memory and investigative interviewing literature. Published by Elsevier Inc.

  1. Sensory modulation of movement, posture and locomotion.

    Science.gov (United States)

    Saradjian, A H

    2015-11-01

    During voluntary movement, there exists a well known functional sensory attenuation of afferent inputs, which allows us to discriminate between information related to our own movements and those arising from the external environment. This attenuation or 'gating' prevents some signals from interfering with movement elaboration and production. However, there are situations in which certain task-relevant sensory inputs may not be gated. This review begins by identifying the prevalent findings in the literature with specific regard to the somatosensory modality, and reviews the many cases of classical sensory gating phenomenon accompanying voluntary movement and their neural basis. This review also focuses on the newer axes of research that demonstrate that task-specific sensory information may be disinhibited or even facilitated during engagement in voluntary actions. Finally, a particular emphasis will be placed on postural and/or locomotor tasks involving strong somatosensory demands, especially for the setting of the anticipatory postural adjustments observed prior the initiation of locomotion. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Sensory Perception, Rationalism and Outdoor Environmental Education

    Science.gov (United States)

    Auer, Matthew R.

    2008-01-01

    There is a strong emphasis on sensory perception and "hands-on" learning in the outdoor environmental education of children. In addition, normative concerns infuse children's environmental curricula, and in particular, the notion that environmental education is not a passive undertaking; when one appreciates the essential value of the…

  3. Heterogeneous sensory processing in persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Brandsborg, Birgitte; Jensen, Troels Staehelin

    2010-01-01

    (rho=0.58, p=0.002) to the hyperalgesic level on the painful side, again suggesting central nervous mechanisms in PPP. In conclusion, this study shows that a standardized trauma results in heterogeneous combinations of hypo- and hyperalgesia. Z-score evaluation of sensory function identifies...

  4. Sensory source strength of used ventilation filters

    DEFF Research Database (Denmark)

    Clausen, Geo; Alm, Ole Martin; Fanger, Povl Ole

    2002-01-01

    A two-year-old filter was placed in a ventilation system recirculating the air in an experimental space. Via glass tubes supplied with a small fan it was possible to extract air upstream and downstream of the filter to an adjacent room. A panel could thus perform sensory assessments of the air fr...

  5. Sensorial differences according to sex and ages.

    Science.gov (United States)

    da Silva, L A; Lin, S M; Teixeira, M J; de Siqueira, J T T; Jacob Filho, W; de Siqueira, S R D T

    2014-04-01

    To investigate age and sex differences in orofacial sensory detection. One hundred and twenty-six (126) healthy subjects were divided into five groups according to their ages. They were assessed with a quantitative sensory testing protocol for gustative, olfactory, thermal (cold/warm), mechanical (tactile/vibration/electric), and pain (deep/superficial) detection thresholds. The corneal reflex was also evaluated. Data were analyzed with the one-way ANOVA, chi-squared, Fisher's exact, Mann-Whitney, and Kruskal-Wallis tests. The groups of subjects over 61 years old had higher olfactory (P sweet P = 0.004, salty P = 0.007, sour P = 0.006), thermal (warm P sweet P = 0.020, salty P = 0.002, sour P < 0.001, and bitter P = 0.002), olfactory (P = 0.010), warm (P < 0.001) and deep (P < 0.001), and superficial pain (P = 0.008) detection thresholds than men, and men from all age groups had lower vibratory detection thresholds (P = 0.006) than women. High sensory detection thresholds were observed in subjects over the 6th decade of life, and women had a more accurate sensory perception than men. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Improving Maladaptive Behaviors Using Sensory Integration Techniques.

    Science.gov (United States)

    Shuman, Theresa

    A study examined the use of sensory integration techniques to reduce the maladaptive behaviors that interfered with the learning of nine high school students with mental impairments attending a special school. Maladaptive behaviors identified included rocking, toe walking, echolalia, resistance to change, compulsive behaviors, aggression,…

  7. Learning of Sensory Sequences in Cerebellar Patients

    Science.gov (United States)

    Frings, Markus; Boenisch, Raoul; Gerwig, Marcus; Diener, Hans-Christoph; Timmann, Dagmar

    2004-01-01

    A possible role of the cerebellum in detecting and recognizing event sequences has been proposed. The present study sought to determine whether patients with cerebellar lesions are impaired in the acquisition and discrimination of sequences of sensory stimuli of different modalities. A group of 26 cerebellar patients and 26 controls matched for…

  8. Physicochemical and sensory characteristics of yoghurt produce ...

    African Journals Online (AJOL)

    Objective: To evaluate the physicochemical and sensory acceptability of yoghurt produced from ewe, goat and a mixture of ewe milk and goat milk in Nigeria in order for the populace to harness the nutritional and therapeutic benefits of the milks. Methods: Samples of whole cow milk (WCM) as standard, goat milk (GM), ewe ...

  9. Accurate metacognition for visual sensory memory representations

    NARCIS (Netherlands)

    Vandenbroucke, A.R.E.; Sligte, I.G.; Barrett, A.B.; Seth, A.K.; Fahrenfort, J.J.; Lamme, V.A.F.

    2014-01-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the

  10. The Sensory Neocortex and Associative Memory.

    Science.gov (United States)

    Aschauer, Dominik; Rumpel, Simon

    2018-01-01

    Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.

  11. Sensory and motor effects of etomidate anesthesia

    NARCIS (Netherlands)

    Engelmann, J.; Bacelo, J.; Burg, E.H. van den; Grant, K.

    2006-01-01

    The effects of anesthesia with etomidate on the cellular mechanisms of sensory processing and sensorimotor coordination have been studied in the active electric sense of the mormyrid fish Gnathonemus petersii. Like many anesthetics, etomidate is known to potentiate GABA(A) receptors, but little is

  12. Disrupted sensory gating in pathological gambling.

    Science.gov (United States)

    Stojanov, Wendy; Karayanidis, Frini; Johnston, Patrick; Bailey, Andrew; Carr, Vaughan; Schall, Ulrich

    2003-08-15

    Some neurochemical evidence as well as recent studies on molecular genetics suggest that pathologic gambling may be related to dysregulated dopamine neurotransmission. The current study examined sensory (motor) gating in pathologic gamblers as a putative measure of endogenous brain dopamine activity with prepulse inhibition of the acoustic startle eye-blink response and the auditory P300 event-related potential. Seventeen pathologic gamblers and 21 age- and gender-matched healthy control subjects were assessed. Both prepulse inhibition measures were recorded under passive listening and two-tone prepulse discrimination conditions. Compared to the control group, pathologic gamblers exhibited disrupted sensory (motor) gating on all measures of prepulse inhibition. Sensory motor gating deficits of eye-blink responses were most profound at 120-millisecond prepulse lead intervals in the passive listening task and at 240-millisecond prepulse lead intervals in the two-tone prepulse discrimination task. Sensory gating of P300 was also impaired in pathologic gamblers, particularly at 500-millisecond lead intervals, when performing the discrimination task on the prepulse. In the context of preclinical studies on the disruptive effects of dopamine agonists on prepulse inhibition, our findings suggest increased endogenous brain dopamine activity in pathologic gambling in line with previous neurobiological findings.

  13. Abnormal Sensory Experiences, Synaesthesia, and Neurodevelopmental Disorders

    Science.gov (United States)

    Fluegge, Keith

    2017-01-01

    Preliminary evidence suggests that sensory processing may be affected in autism spectrum disorders (ASD). The purpose of this letter is to highlight a few recent studies on the topic and tie the findings to a recently identified epidemiological risk factor for ASD, principally environmental exposure to the air pollutant, nitrous oxide (N[subscript…

  14. Proximate composition, bread characteristics and sensory ...

    African Journals Online (AJOL)

    This study was carried out to investigate proximate composition, bread characteristics and sensory evaluation of cocoyam-wheat composite breads at different levels of cocoyam flour substitution for human consumption.A whole wheat bread (WWB) and cocoyam-composite breads (CCB1,CCB 2 and CCB 3) were prepared ...

  15. Correlations among sensory characteristics and relationships ...

    African Journals Online (AJOL)

    The objective of the current study was to determine the correlations among sensory characteristics and relationships between flavour scores and off-flavour descriptors of chevon. Forty-eight male 6-months old Xhosa lop-eared, Nguni, Xhosa-Boer cross and Boer goat kids were kept at the University of Fort Hare Farm until ...

  16. Sensory modulation disorders in childhood epilepsy

    NARCIS (Netherlands)

    van Campen, Jolien S; Jansen, Floor E; Kleinrensink, Nienke J; Joëls, Marian; Braun, Kees Pj; Bruining, Hilgo

    2015-01-01

    BACKGROUND: Altered sensory sensitivity is generally linked to seizure-susceptibility in childhood epilepsy but may also be associated to the highly prevalent problems in behavioral adaptation. This association is further suggested by the frequent overlap of childhood epilepsy with autism spectrum

  17. Sex differences in chemosensation: sensory or cognitive?

    Directory of Open Access Journals (Sweden)

    Kathrin eOhla

    2013-09-01

    Full Text Available Although the first sex-dependent differences for chemosensory processing were reported in the scientific literature over 60 years ago, the underlying mechanisms are still unknown. Generally, more pronounced sex-dependent differences are noted with increased task difficulty or with increased levels of intranasal irritation produced by the stimulus. Whether differences between the sexes arise from differences in chemosensory sensitivity of the two intranasal sensory systems involved or from differences in cognitive processing associated with emotional evaluation of the stimulants is still not known. We used simultaneous and complementary measures of electrophysiological (EEG, psychophysiological, and psychological responses to stimuli varying in intranasal irritation and oldorousness to investigate whether sex differences in the processing of intranasal irritation are mediated by varying sensitivity of the involved sensory systems or by differences in cognitive and/or emotional evaluation of the irritants. Women perceived all stimulants more irritating and they exhibited larger amplitudes of the late positive deflection of the event-related potential than men. No significant differences in sensory sensitivity, anxiety and arousal responses could be detected. Our findings suggest that men and women process intranasal irritation differently. Importantly, the differences cannot be explained by variation in sensory sensitivity to irritants, differences in anxiety or differences in physiological arousal. We propose that women allocate attention stronger to potentially noxious stimuli, which eventually causes differences in cognitive appraisal and subjective perception.

  18. Carotenoid content, sensory properties and microbiological quality ...

    African Journals Online (AJOL)

    The carotenoid content, sensory properties and microbiological assessment of stored cassava fufu from two cultivars of yellow cassava (TMS 01/1368 and TMS 01/1412) being multiplied for distribution in South-East and South-South Nigeria were investigated using standard techniques. There is scanty information on ...

  19. Visual sensory networks and effective information transfer in animal groups.

    Science.gov (United States)

    Strandburg-Peshkin, Ariana; Twomey, Colin R; Bode, Nikolai W F; Kao, Albert B; Katz, Yael; Ioannou, Christos C; Rosenthal, Sara B; Torney, Colin J; Wu, Hai Shan; Levin, Simon A; Couzin, Iain D

    2013-09-09

    Social transmission of information is vital for many group-living animals, allowing coordination of motion and effective response to complex environments. Revealing the interaction networks underlying information flow within these groups is a central challenge. Previous work has modeled interactions between individuals based directly on their relative spatial positions: each individual is considered to interact with all neighbors within a fixed distance (metric range), a fixed number of nearest neighbors (topological range), a 'shell' of near neighbors (Voronoi range), or some combination (Figure 1A). However, conclusive evidence to support these assumptions is lacking. Here, we employ a novel approach that considers individual movement decisions to be based explicitly on the sensory information available to the organism. In other words, we consider that while spatial relations do inform interactions between individuals, they do so indirectly, through individuals' detection of sensory cues. We reconstruct computationally the visual field of each individual throughout experiments designed to investigate information propagation within fish schools (golden shiners, Notemigonus crysoleucas). Explicitly considering visual sensing allows us to more accurately predict the propagation of behavioral change in these groups during leadership events. Furthermore, we find that structural properties of visual interaction networks differ markedly from those of metric and topological counterparts, suggesting that previous assumptions may not appropriately reflect information flow in animal groups. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Analysis of Umami Taste Compounds in a Fermented Corn Sauce by Means of Sensory-Guided Fractionation.

    Science.gov (United States)

    Charve, Joséphine; Manganiello, Sonia; Glabasnia, Arne

    2018-02-28

    Corn sauce, an ingredient obtained from the fermentation of enzymatically hydrolyzed corn starch and used in culinary applications to provide savory taste, was investigated in this study. The links between its sensory properties and taste compounds were assessed using a combination of analytical and sensory approaches. The analyses revealed that glutamic acid, sodium chloride, and acetic acid were the most abundant compounds, but they could not explain entirely the savory taste. The addition of other compounds, found at subthreshold concentrations (alanine, glutamyl peptides, and one Amadori compound), contributed partly to close the sensory gap between the re-engineered sample and the original product. Further chemical breakdown, by a sensory-guided fractionation approach, led to the isolation of two fractions with taste-modulating effects. Analyses by mass spectrometry and nuclear magnetic resonance showed that the fractions contained glutamyl peptides, pyroglutamic acid, glutamic acid, valine, N-formyl-glutamic acid, and N-acetyl-glutamine.

  1. Escherichia coli rpiA gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment was seque......The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment...

  2. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE.

    Science.gov (United States)

    Trinh, Quang M; Jen, Fei-Yang Arthur; Zhou, Ziru; Chu, Kar Ming; Perry, Marc D; Kephart, Ellen T; Contrino, Sergio; Ruzanov, Peter; Stein, Lincoln D

    2013-07-22

    Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around.

  3. Comment entrainer la memoire sensorielle (How to Train Sensory Memory).

    Science.gov (United States)

    Llorca, Regine

    1993-01-01

    At the University of Queensland (Australia), second-language instruction techniques involving principles of sensory training are being used experimentally. The method promotes sensory integration of speech events through auditory, visual, and kinesthetic memory. (MSE)

  4. Sensory evaluation of food: statistical methods and procedures

    National Research Council Canada - National Science Library

    O'Mahony, Michael

    1986-01-01

    The aim of this book is to provide basic knowledge of the logic and computation of statistics for the sensory evaluation of food, or for other forms of sensory measurement encountered in, say, psychophysics...

  5. Receptors for sensory neuropeptides in human inflammatory diseases: Implications for the effector role of sensory neurons

    International Nuclear Information System (INIS)

    Mantyh, P.W.; Catton, M.D.; Boehmer, C.G.; Welton, M.L.; Passaro, E.P. Jr.; Maggio, J.E.; Vigna, S.R.

    1989-01-01

    Glutamate and several neuropeptides are synthesized and released by subpopulations of primary afferent neurons. These sensory neurons play a role in regulating the inflammatory and immune responses in peripheral tissues. Using quantitative receptor autoradiography we have explored what changes occur in the location and concentration of receptor binding sites for sensory neurotransmitters in the colon in two human inflammatory diseases, ulcerative colitis and Crohn's disease. The sensory neurotransmitter receptors examined included bombesin, calcitonin gene related peptide-alpha, cholecystokinin, galanin, glutamate, somatostatin, neurokinin A (substance K), substance P, and vasoactive intestinal polypeptide. Of the nine receptor binding sites examined only substance P binding sites associated with arterioles, venules and lymph nodules were dramatically up-regulated in the inflamed tissue. These data suggest that substance P is involved in regulating the inflammatory and immune responses in human inflammatory diseases and indicate a specificity of efferent action for each sensory neurotransmitter in peripheral tissues

  6. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl

    2011-02-01

    Full Text Available The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1 in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG, we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  7. Recognition memory is improved by a structured temporal framework during encoding

    Directory of Open Access Journals (Sweden)

    Sathesan eThavabalasingam

    2016-01-01

    Full Text Available In order to function optimally within our environment, we continuously extract temporal patterns from our experiences and formulate expectations that facilitate adaptive behavior. Given that our memories are embedded within spatiotemporal contexts, an intriguing possibility is that mnemonic processes are sensitive to the temporal structure of events. To test this hypothesis, in a series of behavioral experiments we manipulated the regularity of interval durations at encoding to create temporally structured and unstructured frameworks. Our findings revealed enhanced recognition memory (d’ for stimuli that were explicitly encoded within a temporally structured versus unstructured framework. Encoding information within a temporally structured framework was also associated with a reduction in the negative effects of proactive interference and was linked to greater recollective recognition memory. Furthermore, rhythmic temporal structure was found to enhance recognition memory for incidentally encoded information. Collectively, these results support the possibility that we possess a greater capacity to learn and subsequently remember temporally structured information.

  8. Security of BB84 with weak randomness and imperfect qubit encoding

    Science.gov (United States)

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Fang, Xi; Han, Zheng-Fu; Huang, Wei

    2018-03-01

    The main threats for the well-known Bennett-Brassard 1984 (BB84) practical quantum key distribution (QKD) systems are that its encoding is inaccurate and measurement device may be vulnerable to particular attacks. Thus, a general physical model or security proof to tackle these loopholes simultaneously and quantitatively is highly desired. Here we give a framework on the security of BB84 when imperfect qubit encoding and vulnerability of measurement device are both considered. In our analysis, the potential attacks to measurement device are generalized by the recently proposed weak randomness model which assumes the input random numbers are partially biased depending on a hidden variable planted by an eavesdropper. And the inevitable encoding inaccuracy is also introduced here. From a fundamental view, our work reveals the potential information leakage due to encoding inaccuracy and weak randomness input. For applications, our result can be viewed as a useful tool to quantitatively evaluate the security of a practical QKD system.

  9. The Sensory Perception Quotient (SPQ): development and validation of a new sensory questionnaire for adults with and without autism.

    Science.gov (United States)

    Tavassoli, Teresa; Hoekstra, Rosa A; Baron-Cohen, Simon

    2014-01-01

    Questionnaire-based studies suggest atypical sensory perception in over 90% of individuals with autism spectrum conditions (ASC). Sensory questionnaire-based studies in ASC mainly record parental reports of their child's sensory experience; less is known about sensory reactivity in adults with ASC. Given the DSM-5 criteria for ASC now include sensory reactivity, there is a need for an adult questionnaire investigating basic sensory functioning. We aimed to develop and validate the Sensory Perception Quotient (SPQ), which assesses basic sensory hyper- and hyposensitivity across all five modalities. A total of 359 adults with (n = 196) and without (n = 163) ASC were asked to fill in the SPQ, the Sensory Over-Responsivity Inventory (SensOR) and the Autism-Spectrum Quotient (AQ) online. Adults with ASC reported more sensory hypersensitivity on the SPQ compared to controls (P sensory hypersensitivity. The SPQ showed high internal consistency for both the total SPQ (Cronbach's alpha = .92) and the reduced 35-item version (alpha = .93). The SPQ was significantly correlated with the SensOR across groups (r = -.46) and within the ASC (r = -.49) and control group (r = -.21). The SPQ shows good internal consistency and concurrent validity and differentiates between adults with and without ASC. Adults with ASC report more sensitivity to sensory stimuli on the SPQ. Finally, greater sensory sensitivity is associated with more autistic traits. The SPQ provides a new tool to measure individual differences on this dimension.

  10. Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory.

    Science.gov (United States)

    Katus, Tobias; Grubert, Anna; Eimer, Martin

    2015-12-01

    Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Impairments of Multisensory Integration and Cross-Sensory Learning as Pathways to Dyslexia

    Science.gov (United States)

    Hahn, Noemi; Foxe, John J.; Molholm, Sophie

    2014-01-01

    Two sensory systems are intrinsic to learning to read. Written words enter the brain through the visual system and associated sounds through the auditory system. The task before the beginning reader is quite basic. She must learn correspondences between orthographic tokens and phonemic utterances, and she must do this to the point that there is seamless automatic ‘connection’ between these sensorially distinct units of language. It is self-evident then that learning to read requires formation of cross-sensory associations to the point that deeply encoded multisensory representations are attained. While the majority of individuals manage this task to a high degree of expertise, some struggle to attain even rudimentary capabilities. Why do dyslexic individuals, who learn well in myriad other domains, fail at this particular task? Here, we examine the literature as it pertains to multisensory processing in dyslexia. We find substantial support for multisensory deficits in dyslexia, and make the case that to fully understand its neurological basis, it will be necessary to thoroughly probe the integrity of auditory-visual integration mechanisms. PMID:25265514

  12. Cross-Modal Correspondences Enhance Performance on a Colour-to-Sound Sensory Substitution Device.

    Science.gov (United States)

    Hamilton-Fletcher, Giles; Wright, Thomas D; Ward, Jamie

    Visual sensory substitution devices (SSDs) can represent visual characteristics through distinct patterns of sound, allowing a visually impaired user access to visual information. Previous SSDs have avoided colour and when they do encode colour, have assigned sounds to colour in a largely unprincipled way. This study introduces a new tablet-based SSD termed the ‘Creole’ (so called because it combines tactile scanning with image sonification) and a new algorithm for converting colour to sound that is based on established cross-modal correspondences (intuitive mappings between different sensory dimensions). To test the utility of correspondences, we examined the colour–sound associative memory and object recognition abilities of sighted users who had their device either coded in line with or opposite to sound–colour correspondences. Improved colour memory and reduced colour-errors were made by users who had the correspondence-based mappings. Interestingly, the colour–sound mappings that provided the highest improvements during the associative memory task also saw the greatest gains for recognising realistic objects that also featured these colours, indicating a transfer of abilities from memory to recognition. These users were also marginally better at matching sounds to images varying in luminance, even though luminance was coded identically across the different versions of the device. These findings are discussed with relevance for both colour and correspondences for sensory substitution use.

  13. Noise level and MPEG-2 encoder statistics

    Science.gov (United States)

    Lee, Jungwoo

    1997-01-01

    Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.

  14. Indirect Encoding in Neuroevolutionary Ship Handling

    Directory of Open Access Journals (Sweden)

    Miroslaw Lacki

    2018-03-01

    Full Text Available In this paper the author compares the efficiency of two encoding schemes for artificial intelligence methods used in the neuroevolutionary ship maneuvering system. This may be also be seen as the ship handling system that simulates a learning process of a group of artificial helmsmen - autonomous control units, created with an artificial neural network. The helmsman observes input signals derived form an enfironment and calculates the values of required parameters of the vessel maneuvering in confined waters. In neuroevolution such units are treated as individuals in population of artificial neural networks, which through environmental sensing and evolutionary algorithms learn to perform given task efficiently. The main task of this project is to evolve a population of helmsmen with indirect encoding and compare results of simulation with direct encoding method.

  15. An Information Theoretic Characterisation of Auditory Encoding

    Science.gov (United States)

    Overath, Tobias; Cusack, Rhodri; Kumar, Sukhbinder; von Kriegstein, Katharina; Warren, Jason D; Grube, Manon; Carlyon, Robert P; Griffiths, Timothy D

    2007-01-01

    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content. PMID:17958472

  16. Sensory Evaluation of the Selected Coffee Products Using Fuzzy Approach

    OpenAIRE

    M.A. Lazim; M. Suriani

    2009-01-01

    Knowing consumers' preferences and perceptions of the sensory evaluation of drink products are very significant to manufacturers and retailers alike. With no appropriate sensory analysis, there is a high risk of market disappointment. This paper aims to rank the selected coffee products and also to determine the best of quality attribute through sensory evaluation using fuzzy decision making model. Three products of coffee drinks were used for sensory evaluation. Data wer...

  17. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    Directory of Open Access Journals (Sweden)

    Jimmy eStehberg

    2014-09-01

    Full Text Available Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI and primary visual (VI. It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA and retrograde (CTb tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging and cortical parcellation are discussed.

  18. Incremental phonological encoding during unscripted sentence production

    Directory of Open Access Journals (Sweden)

    Florian T Jaeger

    2012-11-01

    Full Text Available We investigate phonological encoding during unscripted sentence production, focusing on the effect of phonological overlap on phonological encoding. Previous work on this question has almost exclusively employed isolated word production or highly scripted multiword production. These studies have led to conflicting results: some studies found that phonological overlap between two words facilitates phonological encoding, while others found inhibitory effects. One worry with many of these paradigms is that they involve processes that are not typical to everyday language use, which calls into question to what extent their findings speak to the architectures and mechanisms underlying language production. We present a paradigm to investigate the consequences of phonological overlap between words in a sentence while leaving speakers much of the lexical and structural choices typical in everyday language use. Adult native speakers of English described events in short video clips. We annotated the presence of disfluencies and the speech rate at various points throughout the sentence, as well as the constituent order. We find that phonological overlap has an inhibitory effect on phonological encoding. Specifically, if adjacent content words share their phonological onset (e.g., hand the hammer, they are preceded by production difficulty, as reflected in fluency and speech rate. We also find that this production difficulty affects speakers’ constituent order preferences during grammatical encoding. We discuss our results and previous works to isolate the properties of other paradigms that resulted in facilitatory or inhibitory results. The data from our paradigm also speak to questions about the scope of phonological planning in unscripted speech and as to whether phonological and grammatical encoding interact.

  19. Oropharyngeal and laryngeal sensory innervation in the pathophysiology of swallowing disorders and sensory stimulation treatments.

    Science.gov (United States)

    Alvarez-Berdugo, Daniel; Rofes, Laia; Casamitjana, J Francesc; Padrón, Andreína; Quer, Miquel; Clavé, Pere

    2016-09-01

    Oropharyngeal dysphagia (OD) affects older and neurological patients, causing malnutrition and dehydration and increasing the risk for aspiration pneumonia. There is evidence that sensory deficits in those populations are closely related to swallowing disorders, and several research groups are developing new therapies based on sensory stimulation of this area. More information on the sensory innervation participating in the swallow response is needed to better understand the pathophysiology of OD and to develop new treatments. This review focuses on the sensory innervation of the human oropharynx and larynx in healthy people compared with patients with swallowing disorders in order to unravel the abnormalities that may lead to the loss of sensitivity in patients with OD. We also hypothesize the pathway through which active sensory-enhancement treatments may elicit their therapeutic effect on patients with swallowing dysfunctions. As far as we know, this is the first time a review covers the anatomy, histology, ultrastructure, and molecular biology of the sensory innervation of the swallowing function. © 2016 New York Academy of Sciences.

  20. Encoding of Touch Intensity But Not Pleasantness in Human Primary Somatosensory Cortex

    Science.gov (United States)

    Laubacher, Claire M.; Olausson, Håkan; Wang, Binquan; Spagnolo, Primavera A.; Bushnell, M. Catherine

    2016-01-01

    Growing interest in affective touch has delineated a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, have cast doubt on the segregation of touch discrimination and affect, suggesting that S1 also encodes affective qualities. We used functional magnetic resonance imaging (fMRI) and repetitive transcranial magnetic stimulation (rTMS) to examine the role of S1 in processing touch intensity and pleasantness. Twenty-six healthy human adults rated brushing on the hand during fMRI. Intensity ratings significantly predicted activation in S1, whereas pleasantness ratings predicted activation only in the anterior cingulate cortex. Nineteen subjects also received inhibitory rTMS over right hemisphere S1 and the vertex (control). After S1 rTMS, but not after vertex rTMS, sensory discrimination was reduced and subjects with reduced sensory discrimination rated touch as more intense. In contrast, rTMS did not alter ratings of touch pleasantness. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. SIGNIFICANCE STATEMENT Growing interest in affective touch has identified a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, cast doubt on the separation of touch discrimination and affect. We used functional magnetic resonance imaging and repetitive transcranial magnetic stimulation to demonstrate the representation of touch discrimination and intensity in S1, but the representation of pleasantness in the anterior cingulate cortex, not S1. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. Our study contributes to growing delineation of the affective touch system, a crucial step in understanding its dysregulation in numerous clinical conditions such as autism, eating disorders, depression, and chronic pain. PMID:27225773

  1. Entire Sound Representations Are Time-Compressed in Sensory Memory: Evidence from MMN.

    Science.gov (United States)

    Tamakoshi, Seiji; Minoura, Nanako; Katayama, Jun'ichi; Yagi, Akihiro

    2016-01-01

    In order to examine the encoding of partial silence included in a sound stimulus in neural representation, time flow of the sound representations was investigated using mismatch negativity (MMN), an ERP component that reflects neural representation in auditory sensory memory. Previous work suggested that time flow of auditory stimuli is compressed in neural representations. The stimuli used were a full-stimulus of 170 ms duration, an early-gap stimulus with silence for a 20-50 ms segment (i.e., an omitted segment), and a late-gap stimulus with an omitted segment of 110-140 ms. Peak MMNm latencies from oddball sequences of these stimuli, with a 500 ms SOA, did not reflect time point of the physical gap, suggesting that temporal information can be compressed in sensory memory. However, it was not clear whether the whole stimulus duration or only the omitted segment duration is compressed. Thus, stimuli were used in which the gap was replaced by a tone segment with a 1/4 sound pressure level (filled), as well as the gap stimuli. Combinations of full-stimuli and one of four gapped or filled stimuli (i.e., early gap, late gap, early filled, and late filled) were presented in an oddball sequence (85 vs. 15%). If compression occurs only for the gap duration, MMN latency for filled stimuli should show a different pattern from those for gap stimuli. MMN latencies for the filled conditions showed the same pattern as those for the gap conditions, indicating that the whole stimulus duration rather than only gap duration is compressed in sensory memory neural representation. These results suggest that temporal aspects of silence are encoded in the same manner as physical sound.

  2. Optical encoder based on a nondiffractive beam

    International Nuclear Information System (INIS)

    Lutenberg, Ariel; Perez-Quintian, Fernando; Rebollo, Maria A.

    2008-01-01

    Optical encoders are used in industrial and laboratory motion equipment to measure rotations and linear displacements. We introduce a design of an optical encoder based on a nondiffractive beam. We expect that the invariant profile and radial symmetry of the nondiffractive beam provide the design with remarkable tolerance to mechanical perturbations. We experimentally demonstrate that the proposed design generates a suitable output sinusoidal signal with low harmonic distortion. Moreover, we present a numerical model of the system based on the angular spectrum approximation whose predictions are in excellent agreement with the experimental results

  3. Product perception from sensory stimuli: the case of vacuum cleaner.

    Science.gov (United States)

    Almeida e Silva, Caio Márcio; Okimoto, Maria Lúciar R L; Tanure, Raffaela Leane Zenni

    2012-01-01

    This paper discusses the importance of consideration of different sensory stimuli in the perception of the product. So we conducted an experiment that examined whether there is a difference between the perception of sensory stimuli from artificially isolated. The result is an analysis of the different sensory modalities, relating them to product an between them.

  4. Brief Report: Further Evidence of Sensory Subtypes in Autism

    Science.gov (United States)

    Lane, Alison E.; Dennis, Simon J.; Geraghty, Maureen E.

    2011-01-01

    Distinct sensory processing (SP) subtypes in autism have been reported previously. This study sought to replicate the previous findings in an independent sample of thirty children diagnosed with an Autism Spectrum Disorder. Model-based cluster analysis of parent-reported sensory functioning (measured using the Short Sensory Profile) confirmed the…

  5. Sensory Pedagogy: Understanding and Encountering Children through the Senses

    Science.gov (United States)

    Johansson, Eva; Løkken, Gunvor

    2014-01-01

    In the present article we aim to explore the link between Merleau-Pontyan phenomenology and what we call sensory pedagogy. The latter connects to recent sensory ethnography as presented by S. Pink ("Sensory ethnography." London: Sage; 2009). We discuss how these thoughts can be put to work in toddler pedagogy. This kind of sensory…

  6. Cell-cell junctions: a target of acoustic overstimulation in the sensory epithelium of the cochlea

    Directory of Open Access Journals (Sweden)

    Zheng Guiliang

    2012-06-01

    Full Text Available Abstract Background Exposure to intense noise causes the excessive movement of the organ of Corti, stretching the organ and compromising sensory cell functions. We recently revealed changes in the transcriptional expression of multiple adhesion-related genes during the acute phases of cochlear damage, suggesting that the disruption of cell-cell junctions is an early event in the process of cochlear pathogenesis. However, the functional state of cell junctions in the sensory epithelium is not clear. Here, we employed graded dextran-FITC, a macromolecule tracer that is impermeable to the organ of Corti under physiological conditions, to evaluate the barrier function of cell junctions in normal and noise-traumatized cochlear sensory epithelia. Results Exposure to an impulse noise of 155 dB (peak sound pressure level caused a site-specific disruption in the intercellular junctions within the sensory epithelium of the chinchilla cochlea. The most vulnerable sites were the junctions among the Hensen cells and between the Hensen and Deiters cells within the outer zone of the sensory epithelium. The junction clefts that formed in the reticular lamina were permeable to 40 and 500 but not 2,000 kDa dextran-FITC macromolecules. Moreover, this study showed that the interruption of junction integrity occurred in the reticular lamina and also in the basilar membrane, a site that had been considered to be resistant to acoustic injury. Finally, our study revealed a general spatial correlation between the site of sensory cell damage and the site of junction disruption. However, the two events lacked a strict one-to-one correlation, suggesting that the disruption of cell-cell junctions is a contributing, but not the sole, factor for initiating acute sensory cell death. Conclusions Impulse noise causes the functional disruption of intercellular junctions in the sensory epithelium of the chinchilla cochlea. This disruption occurs at an early phase of cochlear

  7. Sensory, physicochemical and microbiological quality of irradiated minimally processed cauliflower

    International Nuclear Information System (INIS)

    Bib, Nizakat; Khan, Misal; Badshah, Amal; Ashraf Chaudry, Muhammad

    2005-01-01

    Minimally processed cauliflower samples were irradiated, stored at 5 deg C for 2 weeks and analyzed for sensory, physicochemical and microbiological qualities at 0th, 7th and 14th days. The data showed highest mean values of 7.93 and 7.57 for appearance and flavor, respectively, for 1.0 kGy treated samples. The D 10 values of contaminating microorganisms on cauliflower were 0.20 (Escherischia coli) and 0.24 kGy (Salmonella paratyphae A.) and the resulting 5D 10 value was 1.2 kGy. The study revealed that a dose of 1.5 kGy is enough for retention of quality and reduction of microbial load to 5D 10 values in cauliflower during 2 weeks storage at refrigerated temperature

  8. National Survey of Sensory Features in Children with ASD: Factor Structure of the Sensory Experience Questionnaire (3.0)

    Science.gov (United States)

    Ausderau, Karla; Sideris, John; Furlong, Melissa; Little, Lauren M.; Bulluck, John; Baranek, Grace T.

    2014-01-01

    This national online survey study characterized sensory features in 1,307 children with autism spectrum disorder (ASD) ages 2-12 years using the Sensory Experiences Questionnaire Version 3.0 (SEQ-3.0). Using the SEQ-3.0, a confirmatory factor analytic model with four substantive factors of hypothesized sensory response patterns (i.e.,…

  9. Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation.

    Science.gov (United States)

    Hudson, Todd E; Landy, Michael S

    2016-02-01

    A coordinate system is composed of an encoding, defining the dimensions of the space, and an origin. We examine the coordinate encoding used to update motor plans during sensory-motor adaptation to center-out reaches. Adaptation is induced using a novel paradigm in which feedback of reach endpoints is perturbed following a sinewave pattern over trials; the perturbed dimensions of the feedback were the axes of a Cartesian coordinate system in one session and a polar coordinate system in another session. For center-out reaches to randomly chosen target locations, reach errors observed at one target will require different corrections at other targets within Cartesian- and polar-coded systems. The sinewave adaptation technique allowed us to simultaneously adapt both dimensions of each coordinate system (x-y, or reach gain and angle), and identify the contributions of each perturbed dimension by adapting each at a distinct temporal frequency. The efficiency of this technique further allowed us to employ perturbations that were a fraction the size normally used, which avoids confounding automatic adaptive processes with deliberate adjustments made in response to obvious experimental manipulations. Subjects independently corrected errors in each coordinate in both sessions, suggesting that the nervous system encodes both a Cartesian- and polar-coordinate-based internal representation for motor adaptation. The gains and phase lags of the adaptive responses are not readily explained by current theories of sensory-motor adaptation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  11. Visual Memory : The Price of Encoding Details

    NARCIS (Netherlands)

    Nieuwenstein, Mark; Kromm, Maria

    2017-01-01

    Studies on visual long-term memory have shown that we have a tremendous capacity for remembering pictures of objects, even at a highly detailed level. What remains unclear, however, is whether encoding objects at such a detailed level comes at any cost. In the current study, we examined how the

  12. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  13. 47 CFR 11.32 - EAS Encoder.

    Science.gov (United States)

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) Equipment Requirements § 11... operation. (vi) Indicator Display. The encoder shall be provided with a visual and/or aural indicator which... to +50 degrees C and a range of relative humidity of up to 95%. (c) Primary Supply Voltage Variation...

  14. Toward Chemical Implementation of Encoded Combinatorial Libraries

    DEFF Research Database (Denmark)

    Nielsen, John; Janda, Kim D.

    1994-01-01

    The recent application of "combinatorial libraries" to supplement existing drug screening processes might simplify and accelerate the search for new lead compounds or drugs. Recently, a scheme for encoded combinatorial chemistry was put forward to surmount a number of the limitations possessed...

  15. Lexical references to sensory modalities in verbal descriptions of people and objects by congenitally blind, late blind and sighted adults.

    Science.gov (United States)

    Chauvey, Valérie; Hatwell, Yvette; Verine, Bertrand; Kaminski, Gwenael; Gentaz, Edouard

    2012-01-01

    Some previous studies have revealed that while congenitally blind people have a tendency to refer to visual attributes ('verbalism'), references to auditory and tactile attributes are scarcer. However, this statement may be challenged by current theories claiming that cognition is linked to the perceptions and actions from which it derives. Verbal productions by the blind could therefore differ from those of the sighted because of their specific perceptual experience. The relative weight of each sense in oral descriptions was compared in three groups with different visual experience Congenitally blind (CB), late blind (LB) and blindfolded sighted (BS) adults. Participants were asked to give an oral description of their mother and their father, and of four familiar manually-explored objects. The number of visual references obtained when describing people was relatively high, and was the same in the CB and BS groups ("verbalism" in the CB). While references to touch were scarce in all groups, the CB referred to audition more frequently than the LB and the BS groups. There were, by contrast, no differences between groups in descriptions of objects, and references to touch dominated the other modalities. The relative weight of each modality varies according to the cognitive processes involved in each task. Long term memory, internal representations and information acquired through social communication, are at work in the People task, seem to favour visual references in both the blind and the sighted, whereas the congenitally blind also refer often to audition. By contrast, the perceptual encoding and working memory at work in the Objects task enhance sensory references to touch in a similar way in all groups. These results attenuate the impact of verbalism in blindness, and support (albeit moderately) the idea that the perceptual experience of the congenitally blind is to some extent reflected in their cognition.

  16. Lexical references to sensory modalities in verbal descriptions of people and objects by congenitally blind, late blind and sighted adults.

    Directory of Open Access Journals (Sweden)

    Valérie Chauvey

    Full Text Available BACKGROUND: Some previous studies have revealed that while congenitally blind people have a tendency to refer to visual attributes ('verbalism', references to auditory and tactile attributes are scarcer. However, this statement may be challenged by current theories claiming that cognition is linked to the perceptions and actions from which it derives. Verbal productions by the blind could therefore differ from those of the sighted because of their specific perceptual experience. The relative weight of each sense in oral descriptions was compared in three groups with different visual experience Congenitally blind (CB, late blind (LB and blindfolded sighted (BS adults. METHODOLOGY/PRINCIPAL FINDINGS: Participants were asked to give an oral description of their mother and their father, and of four familiar manually-explored objects. The number of visual references obtained when describing people was relatively high, and was the same in the CB and BS groups ("verbalism" in the CB. While references to touch were scarce in all groups, the CB referred to audition more frequently than the LB and the BS groups. There were, by contrast, no differences between groups in descriptions of objects, and references to touch dominated the other modalities. CONCLUSION/SIGNIFICANCE: The relative weight of each modality varies according to the cognitive processes involved in each task. Long term memory, internal representations and information acquired through social communication, are at work in the People task, seem to favour visual references in both the blind and the sighted, whereas the congenitally blind also refer often to audition. By contrast, the perceptual encoding and working memory at work in the Objects task enhance sensory references to touch in a similar way in all groups. These results attenuate the impact of verbalism in blindness, and support (albeit moderately the idea that the perceptual experience of the congenitally blind is to some extent

  17. Haptic and Olfactory Experiences of the Perth Foreshore: Case Studies in Sensory History

    Directory of Open Access Journals (Sweden)

    Saren Reid

    2015-11-01

    Full Text Available The liminal zone where a city meets ‘the water’s edge’ is a place of heightened sensory experiences. In Australia, these settings have been continually reshaped and experienced, individually and collectively, both before and after European settlement, and so they provide a physical domain for reinterpreting Australian history. In Perth, Western Australia, at the turn of the twentieth century, two recreational buildings on the foreshore, the Perth City Baths (1898–1914 and the Water Chute (1905–unknown, promoted new aquatic leisure practices that provided heightened sensory experiences of the Swan River and the city foreshore. These buildings are examined from the perspective of ‘sensory history’, an alternative form of cultural and environmental analysis that has been garnering interest from a range of disciplines over the past several decades (see, for example, the work of Constance Classen, Alain Corbin, David Howes and Mark M Smith. Sensory history seeks to reveal through historical inquiry the informative and exploratory nature of the senses in specific contexts. The potential value of sensory history to studies of built and natural environments lies in drawing attention away from the overweening and frequently generalising dominance of ‘the visual’ as a critical category in humanities research. The case studies explore how evolving swimming practices at the City Baths and ‘shooting the chutes’ at the Water Chute provided novel, exciting and sometimes unpleasant haptic and olfactory experiences and consider how changing forms of recreation allowed for broadly sensuous rather than primarily visual experiences of the foreshore and Swan River. These case studies are part of a larger body of research that seeks to ‘make sense’ of the Perth foreshore and, more broadly, Australian urban waterfronts as sites of varied and evolving sensory experience.

  18. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient.

    Science.gov (United States)

    Kilgard, Michael P; Rennaker, Robert L; Alexander, Jen; Dawson, Jesse

    2018-01-01

    Recent studies indicate that vagus nerve stimulation (VNS) paired with rehabilitation can enhance neural plasticity in the primary sensory and motor cortices, improve forelimb function after stroke in animal models and improve motor function in patients with arm weakness after stroke. To gain "first-in-man" experience of VNS paired with tactile training in a patient with severe sensory impairment after stroke. During the long-term follow-up phase of a clinical trial of VNS paired with motor rehabilitation, a 71-year-old man who had made good motor recovery had ongoing severe sensory loss in his left hand and arm. He received VNS paired with tactile therapy in an attempt to improve his sensory function. During twenty 2-hour sessions, each passive and active tactile event was paired with a 0.5 second burst of 0.8 mA VNS. Sensory function was measured before, halfway through, and after this therapy. The patient did not report any side effects during or following VNS+Tactile therapy. Quantitative measures revealed lasting and clinically meaningful improvements in tactile threshold, proprioception, and stereognosis. After VNS+Tactile therapy, the patient was able to detect tactile stimulation to his affected hand that was eight times less intense, identify the joint position of his fingers in the affected hand three times more often, and identify everyday objects using his affected hand seven times more often, compared to baseline. Sensory function significantly improved in this man following VNS paired with tactile stimulation. This approach merits further study in controlled clinical trials.

  19. Sensory organisation and reactive balance control of amateur rugby players: A cross-sectional study.

    Science.gov (United States)

    Chow, Gary C C; Chung, Joanne W Y; Ma, Ada W W; Macfarlane, Duncan J; Fong, Shirley S M

    2017-05-01

    This study compared the sensory organisation and reactive balance control of amateur rugby players and a control group. Forty-one amateur rugby players (22 males: 19 females; mean height ± SD = 168.8 ± 8.8 cm; mean weight ± SD = 63.9 ± 12.5 kg) and 31 control participants (22 males: 9 females; mean height ± SD = 171.5 ± 10.3 cm; mean weight ± SD = 63.8 ± 10.3 kg) completed the study. Their sensory organisation and standing balance performance were evaluated using a sensory organisation test (SOT), and their reactive balance performance was quantified using a motor control test (MCT). The SOT equilibrium scores (ES) and sensory ratios and the MCT motor response latencies were the major outcome measures. The results revealed that compared to the controls, amateur rugby players had lower SOT ESs under different sensory environments (P rugby group (P = .005, [Formula: see text] = 0.107 and 0.108, respectively). No significant difference was found in the somatosensory ratio (P = .853, [Formula: see text] rugby players demonstrated inferior standing balance performance compared to their non-trained counterparts. They relied less heavily on vestibular and visual inputs to maintain standing balance under different sensory environments. In addition, they reacted more slowly to postural disturbance, reflecting their suboptimal reactive balance ability in standing.

  20. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies

    Science.gov (United States)

    Stopfer, Mark; Bhagavan, Seetha; Smith, Brian H.; Laurent, Gilles

    1997-11-01

    Stimulus-evoked oscillatory synchronization of neural assemblies has been described in the olfactory and visual systems of several vertebrates and invertebrates. In locusts, information about odour identity is contained in the timing of action potentials in an oscillatory population response, suggesting that oscillations may reflect a common reference for messages encoded in time. Although the stimulus-evoked oscillatory phenomenon is reliable, its roles in sensation, perception, memory formation and pattern recognition remain to be demonstrated - a task requiring a behavioural paradigm. Using honeybees, we now demonstrate that odour encoding involves, as it does in locusts, the oscillatory synchronization of assemblies of projection neurons and that this synchronization is also selectively abolished by picrotoxin, an antagonist of the GABAA (γ-aminobutyric acid) receptor. By using a behavioural learning paradigm, we show that picrotoxin-induced desynchronization impairs the discrimination of molecularly similar odorants, but not that of dissimilar odorants. It appears, therefore, that oscillatory synchronization of neuronal assemblies is functionally relevant, and essential for fine sensory discrimination. This suggests that oscillatory synchronization and the kind of temporal encoding it affords provide an additional dimension by which the brain could segment spatially overlapping stimulus representations.

  1. Parietal cortex integrates contextual and saliency signals during the encoding of natural scenes in working memory.

    Science.gov (United States)

    Santangelo, Valerio; Di Francesco, Simona Arianna; Mastroberardino, Serena; Macaluso, Emiliano

    2015-12-01

    The Brief presentation of a complex scene entails that only a few objects can be selected, processed indepth, and stored in memory. Both low-level sensory salience and high-level context-related factors (e.g., the conceptual match/mismatch between objects and scene context) contribute to this selection process, but how the interplay between these factors affects memory encoding is largely unexplored. Here, during fMRI we presented participants with pictures of everyday scenes. After a short retention interval, participants judged the position of a target object extracted from the initial scene. The target object could be either congruent or incongruent with the context of the scene, and could be located in a region of the image with maximal or minimal salience. Behaviourally, we found a reduced impact of saliency on visuospatial working memory performance when the target was out-of-context. Encoding-related fMRI results showed that context-congruent targets activated dorsoparietal regions, while context-incongruent targets de-activated the ventroparietal cortex. Saliency modulated activity both in dorsal and ventral regions, with larger context-related effects for salient targets. These findings demonstrate the joint contribution of knowledge-based and saliency-driven attention for memory encoding, highlighting a dissociation between dorsal and ventral parietal regions. © 2015 Wiley Periodicals, Inc.

  2. Stratifying patients with peripheral neuropathic pain based on sensory profiles

    DEFF Research Database (Denmark)

    Vollert, Jan; Maier, Christoph; Attal, Nadine

    2017-01-01

    In a recent cluster analysis, it has been shown that patients with peripheral neuropathic pain can be grouped into 3 sensory phenotypes based on quantitative sensory testing profiles, which are mainly characterized by either sensory loss, intact sensory function and mild thermal hyperalgesia and...... populations that need to be screened to reach a subpopulation large enough to conduct a phenotype-stratified study. The most common phenotype in diabetic polyneuropathy was sensory loss (83%), followed by mechanical hyperalgesia (75%) and thermal hyperalgesia (34%, note that percentages are overlapping...

  3. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait.

    Science.gov (United States)

    Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas

    2014-12-01

    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.

  4. Genes for hereditary sensory and autonomic neuropathies: a genotype–phenotype correlation

    Science.gov (United States)

    Rotthier, Annelies; Baets, Jonathan; Vriendt, Els De; Jacobs, An; Auer-Grumbach, Michaela; Lévy, Nicolas; Bonello-Palot, Nathalie; Kilic, Sara Sebnem; Weis, Joachim; Nascimento, Andrés; Swinkels, Marielle; Kruyt, Moyo C.; Jordanova, Albena; De Jonghe, Peter

    2009-01-01

    Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype–phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis. PMID:19651702

  5. Radiofrequency contact currents: sensory responses and dosimetry

    International Nuclear Information System (INIS)

    Kavet, Robert; Tell, R.A.; Olsen, R.G.

    2014-01-01

    The process of setting science-based exposure standards (or guidelines) for radiofrequency (RF) contact current exposure has been disadvantaged by a lack of relevant data. The authors first review the essential features and results of the available studies and illustrate the apparent discrepancies among them. Then, they examine the manner in which current was administered in these studies and suggest as to how the physical relationship of a contacting finger to the current electrode may play a role in affecting sensory thresholds specific to those configurations. A major factor in this analysis relates to whether current density is uniformly distributed across the contact area or whether an electrode's 'edge effects' enhance currents with a net effect of decreasing apparent thresholds, when expressed as the bulk current entering a subject. For an exposure with a clear hazard potential, thresholds of human sensory response to RF currents require further investigation. (authors)

  6. Sensory Experience Memory in Resource Therapy.

    Science.gov (United States)

    Emmerson, Gordon J

    2017-01-01

    A sensory experience memory (SEM) is an emotional memory that may be either connected to an intellectual memory or it may have become dissociated from its corresponding intellectual memory. Sensory experience memories are the cause of a number of pathologies, including PTSD, panic disorder, and anxiety. When a personality state that holds a negative SEM assumes the conscious, the client may display negative emotional reactions that appear unwarranted. SEMs can also play a central role in therapy to resolve pathology. Resource therapy (RT) incorporates the understanding of SEMs in both diagnosis and treatment. RT will be used in this article to illustrate the importance of working with SEMs, but therapists can translate the use of SEMs to other therapeutic modalities.

  7. Sensory differentiation of commercially produced spaghetti

    Directory of Open Access Journals (Sweden)

    Pestorić Mladenka V.

    2015-01-01

    Full Text Available This work was focused on the performance of trained and untrained panel in evaluating the texture of nine commercially produced wheat spaghetti. Several sensory methods were applied in order to investigate the performance of different panel groups. In order to avoid the loss of information obtained by non-parametric methods, data were scaled according to contingency tables. This analysis showed that significant differences existed between the two panels for the given products. On the basis of these results, it can be concluded that the used panels cannot be a good alternative to each other in providing sensory texture profiling of commercial spaghetti, except in the case when the properties of spaghetti were evaluated using the control sample.

  8. Sensory loss amongst old family members

    DEFF Research Database (Denmark)

    Rasmussen, Jon Dag; Winther, Ida Wentzel

    2018-01-01

    and their close family. Our tentative findings point towards a prominence of different insecurities and discomforts in social life that directly links to the decreased sensory abilities. Experiences of being ‘lost’, ‘set afloat’ and disconnected in everyday life interactions are broadly described by all...... on the old people suffering a decline in sensory abilities, but also on family members as individual loss becomes collective loss in the context of family and kinship. The paper presentation takes its point of departure in rough pieces of empirical material (e.g. film-clips, sound......-clips/montage and ethnographic description) and through exposition of tentative analysis and research findings we aim to initiate a discussion around central themes of the work....

  9. Approximate Sensory Data Collection: A Survey.

    Science.gov (United States)

    Cheng, Siyao; Cai, Zhipeng; Li, Jianzhong

    2017-03-10

    With the rapid development of the Internet of Things (IoTs), wireless sensor networks (WSNs) and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many approximate data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of approximatedatacollectionalgorithms. Weclassifythemintothreecategories: themodel-basedones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted.

  10. Approximate Sensory Data Collection: A Survey

    Directory of Open Access Journals (Sweden)

    Siyao Cheng

    2017-03-01

    Full Text Available With the rapid development of the Internet of Things (IoTs, wireless sensor networks (WSNs and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many approximate data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of approximatedatacollectionalgorithms. Weclassifythemintothreecategories: themodel-basedones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted.

  11. Overlapping structures in sensory-motor mappings.

    Directory of Open Access Journals (Sweden)

    Kevin Earland

    Full Text Available This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots.

  12. The sensory wheel of virgin olive oil

    Directory of Open Access Journals (Sweden)

    Mojet, Jos

    1994-04-01

    Full Text Available During a 3-year FLAIR study extra virgin olive oils, varying in species, degree of ripeness and extraction method, were evaluated by 6 different institutes according to QDA or GDI-methods in order to identify parameters related to the quality of extra virgin olive oil. The current COI-method yields a poor between-panel reproducibility. This could well be caused by a difference in the perception of positive quality aspects. Whereas the QDA-method is especially suitable for determining sensory profiles according to the perception of the consumer, the COI-method should be tailored to detect possible defects only.
    In order to cluster all attributes to one condensed set of sensory attributes for describing virgin olive oil, the COI and QDA data of ail panels were pooled and analyzed separately for appearance, texture and flavour. This approach resulted in a set of 3 appearance, 3 texture and 12 flavour descriptors which can be conveniently represented graphically in the form of a "sensory wheel".
    On the basis of the findings it is recommended to base the "extra virgin" qualification for olive oils solely on the absence of defects. The between-panel reproducibility of such a simplified COI-test can be assessed by means of ring tests and improved by training with reference products. When an oil passes this screening it can be profiled subsequently using the attributes of the sensory wheel. Such a profile can be linked to preferential profiles derived from consumer studies enabling the production of most preferred olive oils.

  13. On sensory loss amongst old family members

    DEFF Research Database (Denmark)

    Winther, Ida Wentzel; Rasmussen, Jon Dag

    family. Our tentative findings point towards a prominence of different insecurities and discomforts in social life that directly links to the decreased sensory abilities. Experiences of being ‘lost’, ‘set afloat’ and disconnected in everyday life interactions are broadly described by all of the followed...... exposition of tentative analysis and research findings we aim to initiate a discussion around central themes of the work....

  14. Olfactory Receptor Database: a sensory chemoreceptor resource

    OpenAIRE

    Skoufos, Emmanouil; Marenco, Luis; Nadkarni, Prakash M.; Miller, Perry L.; Shepherd, Gordon M.

    2000-01-01

    The Olfactory Receptor Database (ORDB) is a WWW-accessible database that has been expanded from an olfactory receptor resource to a chemoreceptor resource. It stores data on six classes of G-protein-coupled sensory chemoreceptors: (i) olfactory receptor-like proteins, (ii) vomeronasal receptors, (iii) insect olfactory receptors, (iv) worm chemoreceptors, (v) taste papilla receptors and (vi) fungal pheromone receptors. A complementary database of the ligands of these receptors (OdorDB) has bee...

  15. Adaptive stimulus optimization for sensory systems neuroscience

    OpenAIRE

    DiMattina, Christopher; Zhang, Kechen

    2013-01-01

    In this paper, we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical optimal stimulus paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the iso-response paradigm which finds sets of stimuli giving rise to constant responses, and the system...

  16. The sensory basis of the epistemic gap

    DEFF Research Database (Denmark)

    Fazekas, Peter; Jakab, Zoltán

    2016-01-01

    The phenomenal character of conscious experience has long been regarded as the major problem for physicalist accounts of consciousness. In recent years, defenders of physicalism have typically been relying on the so-called Phenomenal Concept Strategy (PCS) to avoid dualism. In this paper, we argue...... in terms of the features of the sensory-perceptual representations underlying conscious experiences, namely that some, but not all, of these states are representationally unstructured....

  17. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  18. Desynchronizing electrical and sensory coordinated reset neuromodulation.

    Science.gov (United States)

    Popovych, Oleksandr V; Tass, Peter A

    2012-01-01

    Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS), to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated) excitatory and inhibitory stimulation. Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronal synchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals) and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers) of deep brain CR neuromodulation may be similar or even identical. Furthermore, our results indicate that an effective desynchronization and anti-kindling can even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders.

  19. Desynchronizing Electrical and Sensory Coordinated Reset Neuromodulation

    Directory of Open Access Journals (Sweden)

    Oleksandr V. Popovych

    2012-03-01

    Full Text Available Coordinated reset (CR stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS,to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling. Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated excitatory and inhibitory stimulation.Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronalsynchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers of deep brain CR neuromodulation may be similar or even identical. Furthermore, ourresults indicate that an effective desynchronization and anti-kindlingcan even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders.

  20. Influence of Sensory Dependence on Postural Control

    Science.gov (United States)

    Santana, Patricia A.; Mulavara, Ajitkumar P.; Fiedler, Matthew J.

    2011-01-01

    The current project is part of an NSBRI funded project, "Development of Countermeasures to Aid Functional Egress from the Crew Exploration Vehicle Following Long-Duration Spaceflight." The development of this countermeasure is based on the use of imperceptible levels of electrical stimulation to the balance organs of the inner ear to assist and enhance the response of a person s sensorimotor function. These countermeasures could be used to increase an astronaut s re-adaptation rate to Earth s gravity following long-duration space flight. The focus of my project is to evaluate and examine the correlation of sensory preferences for vision and vestibular systems. Disruption of the sensorimotor functions following space flight affects posture, locomotion and spatial orientation tasks in astronauts. The Group Embedded Figures Test (GEFT), the Rod and Frame Test (RFT) and the Computerized Dynamic Posturography Test (CDP) are measurements used to examine subjects visual and vestibular sensory preferences. The analysis of data from these tasks will assist in relating the visual dependence measures recognized in the GEFT and RFT with vestibular dependence measures recognized in the stability measures obtained during CDP. Studying the impact of sensory dependence on the performance in varied tasks will help in the development of targeted countermeasures to help astronauts readapt to gravitational changes after long duration space flight.