WorldWideScience

Sample records for reveals genes underlying

  1. CRISPR Perturbation of Gene Expression Alters Bacterial Fitness under Stress and Reveals Underlying Epistatic Constraints.

    Science.gov (United States)

    Otoupal, Peter B; Erickson, Keesha E; Escalas-Bordoy, Antoni; Chatterjee, Anushree

    2017-01-20

    The evolution of antibiotic resistance has engendered an impending global health crisis that necessitates a greater understanding of how resistance emerges. The impact of nongenetic factors and how they influence the evolution of resistance is a largely unexplored area of research. Here we present a novel application of CRISPR-Cas9 technology for investigating how gene expression governs the adaptive pathways available to bacteria during the evolution of resistance. We examine the impact of gene expression changes on bacterial adaptation by constructing a library of deactivated CRISPR-Cas9 synthetic devices to tune the expression of a set of stress-response genes in Escherichia coli. We show that artificially inducing perturbations in gene expression imparts significant synthetic control over fitness and growth during stress exposure. We present evidence that these impacts are reversible; strains with synthetically perturbed gene expression regained wild-type growth phenotypes upon stress removal, while maintaining divergent growth characteristics under stress. Furthermore, we demonstrate a prevailing trend toward negative epistatic interactions when multiple gene perturbations are combined simultaneously, thereby posing an intrinsic constraint on gene expression underlying adaptive trajectories. Together, these results emphasize how CRISPR-Cas9 can be employed to engineer gene expression changes that shape bacterial adaptation, and present a novel approach to synthetically control the evolution of antimicrobial resistance.

  2. Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation

    Directory of Open Access Journals (Sweden)

    Hines Heather M

    2012-06-01

    Full Text Available Abstract Background Heliconius butterfly wing pattern diversity offers a unique opportunity to investigate how natural genetic variation can drive the evolution of complex adaptive phenotypes. Positional cloning and candidate gene studies have identified a handful of regulatory and pigmentation genes implicated in Heliconius wing pattern variation, but little is known about the greater developmental networks within which these genes interact to pattern a wing. Here we took a large-scale transcriptomic approach to identify the network of genes involved in Heliconius wing pattern development and variation. This included applying over 140 transcriptome microarrays to assay gene expression in dissected wing pattern elements across a range of developmental stages and wing pattern morphs of Heliconius erato. Results We identified a number of putative early prepattern genes with color-pattern related expression domains. We also identified 51 genes differentially expressed in association with natural color pattern variation. Of these, the previously identified color pattern “switch gene” optix was recovered as the first transcript to show color-specific differential expression. Most differentially expressed genes were transcribed late in pupal development and have roles in cuticle formation or pigment synthesis. These include previously undescribed transporter genes associated with ommochrome pigmentation. Furthermore, we observed upregulation of melanin-repressing genes such as ebony and Dat1 in non-melanic patterns. Conclusions This study identifies many new genes implicated in butterfly wing pattern development and provides a glimpse into the number and types of genes affected by variation in genes that drive color pattern evolution.

  3. Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis.

    Science.gov (United States)

    Jorgensen, Stacy A; Preston, Jill C

    2014-04-01

    Evolutionary transitions in growth habit and flowering time responses to variable environmental signals have occurred multiple times independently across angiosperms and have major impacts on plant fitness. Proteins in the SPL family of transcription factors collectively regulate flowering time genes that have been implicated in interspecific shifts in annuality/perenniality. However, their potential importance in the evolution of angiosperm growth habit has not been extensively investigated. Here we identify orthologs representative of the major SPL gene clades in annual Arabidopsis thaliana and Mimulus guttatus IM767, and perennial A. lyrata and M. guttatus PR, and characterize their expression. Spatio-temporal expression patterns are complex across both diverse tissues of the same taxa and comparable tissues of different taxa, consistent with genic sub- or neo-functionalization. However, our data are consistent with a general role for several SPL genes in the promotion of juvenile to adult phase change and/or flowering time in Mimulus and Arabidopsis. Furthermore, several candidate genes were identified for future study whose differential expression correlates with growth habit and architectural variation in annual versus perennial taxa. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses.

    Science.gov (United States)

    Karanja, Bernard Kinuthia; Fan, Lianxue; Xu, Liang; Wang, Yan; Zhu, Xianwen; Tang, Mingjia; Wang, Ronghua; Zhang, Fei; Muleke, Everlyne M'mbone; Liu, Liwang

    2017-11-01

    The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.

  5. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions.

    Science.gov (United States)

    Peter, Josephine J; Watson, Tommaso L; Walker, Michelle E; Gardner, Jennifer M; Lang, Tom A; Borneman, Anthony; Forgan, Angus; Tran, Tina; Jiranek, Vladimir

    2018-05-01

    A deficiency of nitrogenous nutrients in grape juice can cause stuck and sluggish alcoholic fermentation, which has long been a problem in winemaking. Nitrogen requirements vary between wine yeast strains, and the ability of yeast to assimilate nitrogen depends on the nature and concentration of nitrogen present in the medium. In this study, a wine yeast gene deletion collection (1844 deletants in the haploid AWRI1631 background) was screened to identify genes whose deletion resulted in a reduction in the time taken to utilise all sugars when grown in a chemically defined grape juice medium supplemented with limited nitrogen (75 mg L-1 as a free amino acid mixture). Through micro-scale and laboratory-scale fermentations, 15 deletants were identified that completed fermentation in a shorter time than the wildtype (c.a. 15%-59% time reduction). This group of genes was annotated to biological processes including protein modification, transport, metabolism and ubiquitination (UBC13, MMS2, UBP7, UBI4, BRO1, TPK2, EAR1, MRP17, MFA2 and MVB12), signalling (MFA2) and amino acid metabolism (AAT2). Deletion of MFA2, encoding mating factor-a, resulted in a 55% decrease in fermentation duration. Mfa2Δ was chosen for further investigation to understand how this gene deletion conferred fermentation efficiency in limited nitrogen conditions.

  6. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    KAUST Repository

    Jackson, Andrew P.

    2014-05-05

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.

  7. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    KAUST Repository

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.

  8. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host–parasite interaction

    Science.gov (United States)

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. PMID:24799432

  9. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction.

    Science.gov (United States)

    Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab

    2014-06-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Dung Tien Le

    Full Text Available The availability of complete genome sequence of soybean has allowed research community to design the 66 K Affymetrix Soybean Array GeneChip for genome-wide expression profiling of soybean. In this study, we carried out microarray analysis of leaf tissues of soybean plants, which were subjected to drought stress from late vegetative V6 and from full bloom reproductive R2 stages. Our data analyses showed that out of 46,093 soybean genes, which were predicted with high confidence among approximately 66,000 putative genes, 41,059 genes could be assigned with a known function. Using the criteria of a ratio change > = 2 and a q-value<0.05, we identified 1458 and 1818 upregulated and 1582 and 1688 downregulated genes in drought-stressed V6 and R2 leaves, respectively. These datasets were classified into 19 most abundant biological categories with similar proportions. There were only 612 and 463 genes that were overlapped among the upregulated and downregulated genes, respectively, in both stages, suggesting that both conserved and unconserved pathways might be involved in regulation of drought response in different stages of plant development. A comparative expression analysis using our datasets and that of drought stressed Arabidopsis leaves revealed the existence of both conserved and species-specific mechanisms that regulate drought responses. Many upregulated genes encode either regulatory proteins, such as transcription factors, including those with high homology to Arabidopsis DREB, NAC, AREB and ZAT/STZ transcription factors, kinases and two-component system members, or functional proteins, e.g. late embryogenesis-abundant proteins, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins. A detailed analysis of the GmNAC family and the hormone-related gene category showed that expression of many GmNAC and hormone-related genes was altered by drought in V6 and/or R2 leaves. Additionally, the downregulation of

  11. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.; Muskhelishvili, Levan; Rodriguez-Juarez, Rocio; Kovalchuk, Olga; Han Tao; Fuscoe, James C.; Ross, Sharon A.; Beland, Frederick A.

    2007-01-01

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. In the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G 1 to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen

  12. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification.

    Science.gov (United States)

    Yıldırım, Kubilay; Uylaş, Senem

    2016-12-01

    Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation responses of these trees to B toxicity have not been investigated yet. Here, B accumulation and tolerance level of black poplar clones were firstly tested in the current study. Rooted cutting of these clones were treated with elevated B toxicity to select the most B accumulator and tolerant genotype. Then we carried out a microarray based transcriptome experiment on the leaves and roots of this genotype to find out transcriptional networks, genes and molecular mechanisms behind B toxicity tolerance. The results of the study indicated that black poplar is quite suitable for phytoremediation of B pollution. It could resist 15 ppm soil B content and >1500 ppm B accumulation in leaves, which are highly toxic concentrations for almost all agricultural plants. Transcriptomics results of study revealed totally 1625 and 1419 altered probe sets under 15 ppm B toxicity in leaf and root tissues, respectively. The highest induction were recorded for the probes sets annotated to tyrosine aminotransferase, ATP binding cassette transporters, glutathione S transferases and metallochaperone proteins. Strong up regulation of these genes attributed to internal excretion of B into the cell vacuole and existence of B detoxification processes in black poplar. Many other candidate genes functional in signalling, gene regulation, antioxidation, B uptake and transport processes were also identified in this hyper B accumulator plant for the first time with the current study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Transcriptome Analysis of Two Rice Varieties Contrasting for Nitrogen Use Efficiency under Chronic N Starvation Reveals Differences in Chloroplast and Starch Metabolism-Related Genes

    Directory of Open Access Journals (Sweden)

    Subodh Kumar Sinha

    2018-04-01

    Full Text Available The nitrogen use efficiency (NUE of crop plants is limited and enhancing it in rice, a major cereal crop, would be beneficial for farmers and the environment alike. Here we report the genome-wide transcriptome analysis of two rice genotypes, IR 64 (IR64 and Nagina 22 (N22 under optimal (+N and chronic starvation (-N of nitrogen (N from 15-day-old root and shoot tissues. The two genotypes were found to be contrasting in their response to -N; IR64 root architecture and root dry weight remained almost equivalent to that under +N conditions, while N22 showed high foraging ability but a substantial reduction in biomass under -N. Similarly, the photosynthetic pigments showed a drastic reduction in N22 under low N, while IR64 was more resilient. Nitrate reductase showed significantly low specific activity under -N in both genotypes. Glutamate synthase (GOGAT and citrate synthase CS activity were highly reduced in N22 but not in IR64. Transcriptome analysis of these genotypes revealed nearly double the number of genes to be differentially expressed (DEGs in roots (1016 compared to shoots (571. The response of the two genotypes to N starvation was distinctly different reflecting their morphological/biochemical response with just two and eight common DEGs in the root and shoot tissues. There were a total of 385 nitrogen-responsive DEGs (106 in shoots and 279 in roots between the two genotypes. Fifty-two of the 89 DEGs identified as specific to N22 root tissues were also found to be differentially expressed between the two genotypes under -N. Most of these DEGs belonged to starch and chloroplast metabolism, followed by membrane and signaling proteins. Physical mapping of DEGs revealed 95 DEGs in roots and 76 in shoots to be present in quantitative trait loci (QTL known for NUE.

  14. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Science.gov (United States)

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  15. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Directory of Open Access Journals (Sweden)

    Yang Wang

    Full Text Available The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF, which can provide three apparent gravity levels (μ-g, 1-g, and 2-g, was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84 were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  16. Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L Walp.

    Directory of Open Access Journals (Sweden)

    Ehlers Jeffrey D

    2011-01-01

    Full Text Available Abstract Background Macrophomina phaseolina is an emerging and devastating fungal pathogen that causes significant losses in crop production under high temperatures and drought stress. An increasing number of disease incidence reports highlight the wide prevalence of the pathogen around the world and its contribution toward crop yield suppression. In cowpea [Vigna unguiculata (L Walp.], limited sources of low-level host resistance have been identified, the genetic basis of which is unknown. In this study we report on the identification of strong sources of host resistance to M. phaseolina and the genetic mapping of putative resistance loci on a cowpea genetic map comprised of gene-derived single nucleotide polymorphisms (SNPs and amplified fragment length polymorphisms (AFLPs. Results Nine quantitative trait loci (QTLs, accounting for between 6.1 and 40.0% of the phenotypic variance (R2, were identified using plant mortality data taken over three years in field experiments and disease severity scores taken from two greenhouse experiments. Based on annotated genic SNPs as well as synteny with soybean (Glycine max and Medicago truncatula, candidate resistance genes were found within mapped QTL intervals. QTL Mac-2 explained the largest percent R2 and was identified in three field and one greenhouse experiments where the QTL peak co-located with a SNP marker derived from a pectin esterase inhibitor encoding gene. Maturity effects on the expression of resistance were indicated by the co-location of Mac-6 and Mac-7 QTLs with maturity-related senescence QTLs Mat-2 and Mat-1, respectively. Homologs of the ELF4 and FLK flowering genes were found in corresponding syntenic soybean regions. Only three Macrophomina resistance QTLs co-located with delayed drought-induced premature senescence QTLs previously mapped in the same population, suggesting that largely different genetic mechanisms mediate cowpea response to drought stress and Macrophomina infection

  17. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures

    Directory of Open Access Journals (Sweden)

    Hayes Michael L

    2012-05-01

    Full Text Available Abstract Background Pentatricopeptide repeat (PPR proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82 and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. Results All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3’ UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. Conclusion PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative

  18. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures.

    Science.gov (United States)

    Hayes, Michael L; Giang, Karolyn; Mulligan, R Michael

    2012-05-14

    Pentatricopeptide repeat (PPR) proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82) and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3' UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative selection even in the absence of an editing site target

  19. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure.

    Science.gov (United States)

    Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen

    2016-07-01

    Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.

  20. Discovering genes underlying QTL

    Energy Technology Data Exchange (ETDEWEB)

    Vanavichit, Apichart [Kasetsart University, Kamphaengsaen, Nakorn Pathom (Thailand)

    2002-02-01

    A map-based approach has allowed scientists to discover few genes at a time. In addition, the reproductive barrier between cultivated rice and wild relatives has prevented us from utilizing the germ plasm by a map-based approach. Most genetic traits important to agriculture or human diseases are manifested as observable, quantitative phenotypes called Quantitative Trait Loci (QTL). In many instances, the complexity of the phenotype/genotype interaction and the general lack of clearly identifiable gene products render the direct molecular cloning approach ineffective, thus additional strategies like genome mapping are required to identify the QTL in question. Genome mapping requires no prior knowledge of the gene function, but utilizes statistical methods to identify the most likely gene location. To completely characterize genes of interest, the initially mapped region of a gene location will have to be narrowed down to a size that is suitable for cloning and sequencing. Strategies for gene identification within the critical region have to be applied after the sequencing of a potentially large clone or set of clones that contains this gene(s). Tremendous success of positional cloning has been shown for cloning many genes responsible for human diseases, including cystic fibrosis and muscular dystrophy as well as plant disease resistance genes. Genome and QTL mapping, positional cloning: the pre-genomics era, comparative approaches to gene identification, and positional cloning: the genomics era are discussed in the report. (M. Suetake)

  1. Transcriptional profiling of sugarcane leaves and roots under progressive osmotic stress reveals a regulated coordination of gene expression in a spatiotemporal manner.

    Directory of Open Access Journals (Sweden)

    Alejandro Pereira-Santana

    Full Text Available Sugarcane is one of the most important crops worldwide and is a key plant for the global production of sucrose. Sugarcane cultivation is severely affected by drought stress and it is considered as the major limiting factor for their productivity. In recent years, this plant has been subjected to intensive research focused on improving its resilience against water scarcity; particularly the molecular mechanisms in response to drought stress have become an underlying issue for its improvement. To better understand water stress and the molecular mechanisms we performed a de novo transcriptomic assembly of sugarcane (var. Mex 69-290. A total of 16 libraries were sequenced in a 2x100 bp configuration on a HiSeq-Illumina platform. A total of 536 and 750 genes were differentially up-regulated along with the stress treatments for leave and root tissues respectively, while 1093 and 531 genes were differentially down-regulated in leaves and roots respectively. Gene Ontology functional analysis showed that genes related to response of water deprivation, heat, abscisic acid, and flavonoid biosynthesis were enriched during stress treatment in our study. The reliability of the observed expression patterns was confirmed by RT-qPCR. Additionally, several physiological parameters of sugarcane were significantly affected due to stress imposition. The results of this study may help identify useful target genes and provide tissue-specific data set of genes that are differentially expressed in response to osmotic stress, as well as a complete analysis of the main groups is significantly enriched under this condition. This study provides a useful benchmark for improving drought tolerance in sugarcane and other economically important grass species.

  2. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq.

    Science.gov (United States)

    Dennenmoser, Stefan; Vamosi, Steven M; Nolte, Arne W; Rogers, Sean M

    2017-01-01

    Understanding the genomic basis of adaptive divergence in the presence of gene flow remains a major challenge in evolutionary biology. In prickly sculpin (Cottus asper), an abundant euryhaline fish in northwestern North America, high genetic connectivity among brackish-water (estuarine) and freshwater (tributary) habitats of coastal rivers does not preclude the build-up of neutral genetic differentiation and emergence of different life history strategies. Because these two habitats present different osmotic niches, we predicted high genetic differentiation at known teleost candidate genes underlying salinity tolerance and osmoregulation. We applied whole-genome sequencing of pooled DNA samples (Pool-Seq) to explore adaptive divergence between two estuarine and two tributary habitats. Paired-end sequence reads were mapped against genomic contigs of European Cottus, and the gene content of candidate regions was explored based on comparisons with the threespine stickleback genome. Genes showing signals of repeated differentiation among brackish-water and freshwater habitats included functions such as ion transport and structural permeability in freshwater gills, which suggests that local adaptation to different osmotic niches might contribute to genomic divergence among habitats. Overall, the presence of both repeated and unique signatures of differentiation across many loci scattered throughout the genome is consistent with polygenic adaptation from standing genetic variation and locally variable selection pressures in the early stages of life history divergence. © 2016 John Wiley & Sons Ltd.

  3. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls.

    Science.gov (United States)

    MacMillan, Colleen P; Birke, Hannah; Chuah, Aaron; Brill, Elizabeth; Tsuji, Yukiko; Ralph, John; Dennis, Elizabeth S; Llewellyn, Danny; Pettolino, Filomena A

    2017-07-18

    Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a 'typical' lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre. Transcriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue's lacking many of the gene transcripts normally associated with lignin biosynthesis. Our study in cotton confirmed some features of the currently accepted gene regulatory cascade for 'typical' plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in

  4. A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response.

    Science.gov (United States)

    Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H; Dandekar, Abhaya M; Granell, Antonio

    2014-01-01

    Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better

  5. A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response.

    Directory of Open Access Journals (Sweden)

    Clara Pons

    Full Text Available Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding

  6. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, Jonathan P; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome......, including cell surface proteins such as beta barrel porins, presumably because of the involvement of these genes in evolutionary arms races with other bacteria, phages, and/or the host immune system. Structural mapping of positively selected sites on trans-membrane beta barrel porins reveals...... that the residues under positive selection occur almost exclusively in the extracellular region of the proteins that are enriched with sites known to be targets of phages, colicins, or the host immune system. More surprisingly, we also find a number of other categories of genes that show very strong evidence...

  7. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq

    Science.gov (United States)

    Soybean is the second largest crop in the US. Its yield directly impacts US agricultural economics. Drought and flooding are two major causes for soybean yield loss. To better understand their underlying molecular regulatory mechanisms, we sequenced the transcriptomes of soybean grown in drought a...

  8. Genes and (Common) Pathways Underlying Drug Addiction

    Science.gov (United States)

    Li, Chuan-Yun; Mao, Xizeng; Wei, Liping

    2008-01-01

    Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn), the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction. PMID:18179280

  9. Genes and (common pathways underlying drug addiction.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2008-01-01

    Full Text Available Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn, the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction.

  10. A systems level approach reveals new gene regulatory modules in the developing ear

    OpenAIRE

    Chen, Jingchen; Tambalo, Monica; Barembaum, Meyer; Ranganathan, Ramya; Simões-Costa, Marcos; Bronner, Marianne E.; Streit, Andrea

    2017-01-01

    The inner ear is a complex vertebrate sense organ, yet it arises from a simple epithelium, the otic placode. Specification towards otic fate requires diverse signals and transcriptional inputs that act sequentially and/or in parallel. Using the chick embryo, we uncover novel genes in the gene regulatory network underlying otic commitment and reveal dynamic changes in gene expression. Functional analysis of selected transcription factors reveals the genetic hierarchy underlying the transition ...

  11. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks.

    Science.gov (United States)

    Saik, Olga V; Demenkov, Pavel S; Ivanisenko, Timofey V; Bragina, Elena Yu; Freidin, Maxim B; Goncharova, Irina A; Dosenko, Victor E; Zolotareva, Olga I; Hofestaedt, Ralf; Lavrik, Inna N; Rogaev, Evgeny I; Ivanisenko, Vladimir A

    2018-02-13

    Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in

  12. New quantum criticality revealed under pressure

    International Nuclear Information System (INIS)

    Watanabe, Shinji; Miyake, Kazumasa

    2017-01-01

    Unconventional quantum critical phenomena observed in Yb-based periodic crystals such as YbRh_2Si_2 and β-YbAlB_4 have been one of the central issues in strongly correlated electron systems. The common criticality has been discovered in the quasicrystal Yb_1_5Au_5_1Al_3_4, which surprisingly persists under pressure at least up to P = 1.5 GPa. The T/H scaling where the magnetic susceptibility can be expressed as a single scaling function of the ratio of the temperature T to the magnetic field H has been discovered in the quasicrystal, which is essentially the same as that observed in β-YbAlB_4. Recently, the T/H scaling as well as the common criticality has also been observed even in the approximant crystal Yb_1_4Au_5_1Al_3_5 under pressure. The theory of critical Yb-valence fluctuation gives a natural explanation for these striking phenomena in a unified way. (author)

  13. Characterization of the CrbS/R Two-Component System in Pseudomonas fluorescens Reveals a New Set of Genes under Its Control and a DNA Motif Required for CrbR-Mediated Transcriptional Activation

    Directory of Open Access Journals (Sweden)

    Edgardo Sepulveda

    2017-11-01

    Full Text Available The CrbS/R system is a two-component signal transduction system that regulates acetate utilization in Vibrio cholerae, P. aeruginosa, and P. entomophila. CrbS is a hybrid histidine kinase that belongs to a recently identified family, in which the signaling domain is fused to an SLC5 solute symporter domain through aSTAC domain. Upon activation by CrbS, CrbR activates transcription of the acs gene, which encodes an acetyl-CoA synthase (ACS, and the actP gene, which encodes an acetate/solute symporter. In this work, we characterized the CrbS/R system in Pseudomonas fluorescens SBW25. Through the quantitative proteome analysis of different mutants, we were able to identify a new set of genes under its control, which play an important role during growth on acetate. These results led us to the identification of a conserved DNA motif in the putative promoter region of acetate-utilization genes in the Gammaproteobacteria that is essential for the CrbR-mediated transcriptional activation of genes under acetate-utilizing conditions. Finally, we took advantage of the existence of a second SLC5-containing two-component signal transduction system in P. fluorescens, CbrA/B, to demonstrate that the activation of the response regulator by the histidine kinase is not dependent on substrate transport through the SLC5 domain.

  14. Comparative mapping reveals similar linkage of functional genes to ...

    Indian Academy of Sciences (India)

    genes between O. sativa and B. napus may have consistent function and control similar traits, which may be ..... acea chromosomes reveals islands of conserved organization. ... 1998 Conserved structure and function of the Arabidopsis flow-.

  15. Revealing gene action for production characteristics by inbreeding ...

    African Journals Online (AJOL)

    Revealing gene action for production characteristics by inbreeding, based on a long-term selection ... The gene action involved in the expression of production characters was investigated, using the effect of the theoretical inbreeding ..... and predicted selection responses for growth, fat and lean traits in mice. J. Anim. Sci.

  16. Genes Underlying Positive Influence Of Prenatal Environmental ...

    African Journals Online (AJOL)

    Genes Underlying Positive Influence Of Prenatal Environmental Enrichment And ... Prenatal environmental enrichment (EE) has been proven to positively affect but ... Conclusion: The negative-positive prenatal effect could contribute to altered ...

  17. Memory functions reveal structural properties of gene regulatory networks

    Science.gov (United States)

    Perez-Carrasco, Ruben

    2018-01-01

    Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs. PMID:29470492

  18. Reveal genes functionally associated with ACADS by a network study.

    Science.gov (United States)

    Chen, Yulong; Su, Zhiguang

    2015-09-15

    Establishing a systematic network is aimed at finding essential human gene-gene/gene-disease pathway by means of network inter-connecting patterns and functional annotation analysis. In the present study, we have analyzed functional gene interactions of short-chain acyl-coenzyme A dehydrogenase gene (ACADS). ACADS plays a vital role in free fatty acid β-oxidation and regulates energy homeostasis. Modules of highly inter-connected genes in disease-specific ACADS network are derived by integrating gene function and protein interaction data. Among the 8 genes in ACADS web retrieved from both STRING and GeneMANIA, ACADS is effectively conjoined with 4 genes including HAHDA, HADHB, ECHS1 and ACAT1. The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with ACADS are HAHDA, HADHB, ECHS1 and ACAT1. Interestingly, the ontological aspect of genes in the ACADS network reveals that ACADS, HAHDA and HADHB play equally vital roles in fatty acid metabolism. The gene ACAT1 together with ACADS indulges in ketone metabolism. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of ACADS, HAHDA, HADHB, ECHS1 and ACAT1 not only with lipid metabolism but also with infant death syndrome, skeletal myopathy, acute hepatic encephalopathy, Reye-like syndrome, episodic ketosis, and metabolic acidosis. The current study presents a comprehensible layout of ACADS network, its functional strategies and candidate disease approach associated with ACADS network. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.

  20. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  1. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  2. Genes but not genomes reveal bacterial domestication of Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Delphine Passerini

    Full Text Available BACKGROUND: The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE: The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable

  3. CRISPR loci reveal networks of gene exchange in archaea

    Directory of Open Access Journals (Sweden)

    Brodt Avital

    2011-12-01

    Full Text Available Abstract Background CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism. Results Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. Conclusions CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense. Open peer review This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten

  4. Genomic analysis of primordial dwarfism reveals novel disease genes.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  5. CRISPR loci reveal networks of gene exchange in archaea.

    Science.gov (United States)

    Brodt, Avital; Lurie-Weinberger, Mor N; Gophna, Uri

    2011-12-21

    CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats) loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism. Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense. This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten).

  6. Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks.

    Science.gov (United States)

    Mai, Hans-Jörg; Pateyron, Stéphanie; Bauer, Petra

    2016-10-03

    FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is the central regulator of iron uptake in Arabidopsis thaliana roots. We performed transcriptome analyses of six day-old seedlings and roots of six week-old plants using wild type, a fit knock-out mutant and a FIT over-expression line grown under iron-sufficient or iron-deficient conditions. We compared genes regulated in a FIT-dependent manner depending on the developmental stage of the plants. We assembled a high likelihood dataset which we used to perform co-expression and functional analysis of the most stably iron deficiency-induced genes. 448 genes were found FIT-regulated. Out of these, 34 genes were robustly FIT-regulated in root and seedling samples and included 13 novel FIT-dependent genes. Three hundred thirty-one genes showed differential regulation in response to the presence and absence of FIT only in the root samples, while this was the case for 83 genes in the seedling samples. We assembled a virtual dataset of iron-regulated genes based on a total of 14 transcriptomic analyses of iron-deficient and iron-sufficient wild-type plants to pinpoint the best marker genes for iron deficiency and analyzed this dataset in depth. Co-expression analysis of this dataset revealed 13 distinct regulons part of which predominantly contained functionally related genes. We could enlarge the list of FIT-dependent genes and discriminate between genes that are robustly FIT-regulated in roots and seedlings or only in one of those. FIT-regulated genes were mostly induced, few of them were repressed by FIT. With the analysis of a virtual dataset we could filter out and pinpoint new candidates among the most reliable marker genes for iron deficiency. Moreover, co-expression and functional analysis of this virtual dataset revealed iron deficiency-induced and functionally distinct regulons.

  7. Multilocus analysis reveals three candidate genes for Chinese migraine susceptibility.

    Science.gov (United States)

    An, X-K; Fang, J; Yu, Z-Z; Lin, Q; Lu, C-X; Qu, H-L; Ma, Q-L

    2017-08-01

    Several genome-wide association studies (GWASs) in Caucasian populations have identified 12 loci that are significantly associated with migraine. More evidence suggests that serotonin receptors are also involved in migraine pathophysiology. In the present study, a case-control study was conducted in a cohort of 581 migraine cases and 533 ethnically matched controls among a Chinese population. Eighteen polymorphisms from serotonin receptors and GWASs were selected, and genotyping was performed using a Sequenom MALDI-TOF mass spectrometry iPLEX platform. The genotypic and allelic distributions of MEF2D rs2274316 and ASTN2 rs6478241 were significantly different between migraine patients and controls. Univariate and multivariate analysis revealed significant associations of polymorphisms in the MEF2D and ASTN2 genes with migraine susceptibility. MEF2D, PRDM16 and ASTN2 were also found to be associated with migraine without aura (MO) and migraine with family history. And, MEF2D and ASTN2 also served as genetic risk factors for the migraine without family history. The generalized multifactor dimensionality reduction analysis identified that MEF2D and HTR2E constituted the two-factor interaction model. Our study suggests that the MEF2D, PRDM16 and ASTN2 genes from GWAS are associated with migraine susceptibility, especially MO, among Chinese patients. It appears that there is no association with serotonin receptor related genes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Rubisco activity and gene expression of tropical tree species under ...

    African Journals Online (AJOL)

    Young

    2013-05-15

    May 15, 2013 ... Proteomics analysis associated with gene expression of plants reveal .... Consequently, Rubisco enzyme plays a role in assi- milating into ... technique for examining gene expression encoded at the. mRNA level .... Ammonia.

  9. Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks

    Science.gov (United States)

    Jia, Chen; Qian, Hong; Chen, Min; Zhang, Michael Q.

    2018-03-01

    The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, characterized by the spectral gap of the Markov model, and the feedback sign of the underlying gene circuit. When a network has no feedback, the relaxation rate is exactly the decaying rate of the protein. We further show that positive feedback always slows down the relaxation kinetics while negative feedback always speeds it up. Numerical simulations demonstrate that this relation provides a possible method to infer the feedback topology of autoregulatory gene networks by using time-series data of gene expression.

  10. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  11. Listening to the Noise: Random Fluctuations Reveal Gene Network Parameters

    Science.gov (United States)

    Munsky, Brian; Trinh, Brooke; Khammash, Mustafa

    2010-03-01

    The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations exhibit cell-to-cell variability that can manifest significant prototypical differences. Noise induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified using flow cytometry, single molecule fluorescence in situ hybridization, time lapse fluorescence microscopy and other single cell and single molecule measurement techniques. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. We use theoretical investigations to establish experimental guidelines for the identification of gene regulatory networks, and we apply these guideline to experimentally identify predictive models for different regulatory mechanisms in bacteria and yeast.

  12. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    Science.gov (United States)

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  14. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    Science.gov (United States)

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.

  15. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    Science.gov (United States)

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  16. Computational integration of homolog and pathway gene module expression reveals general stemness signatures.

    Directory of Open Access Journals (Sweden)

    Martina Koeva

    Full Text Available The stemness hypothesis states that all stem cells use common mechanisms to regulate self-renewal and multi-lineage potential. However, gene expression meta-analyses at the single gene level have failed to identify a significant number of genes selectively expressed by a broad range of stem cell types. We hypothesized that stemness may be regulated by modules of homologs. While the expression of any single gene within a module may vary from one stem cell type to the next, it is possible that the expression of the module as a whole is required so that the expression of different, yet functionally-synonymous, homologs is needed in different stem cells. Thus, we developed a computational method to test for stem cell-specific gene expression patterns from a comprehensive collection of 49 murine datasets covering 12 different stem cell types. We identified 40 individual genes and 224 stemness modules with reproducible and specific up-regulation across multiple stem cell types. The stemness modules included families regulating chromatin remodeling, DNA repair, and Wnt signaling. Strikingly, the majority of modules represent evolutionarily related homologs. Moreover, a score based on the discovered modules could accurately distinguish stem cell-like populations from other cell types in both normal and cancer tissues. This scoring system revealed that both mouse and human metastatic populations exhibit higher stemness indices than non-metastatic populations, providing further evidence for a stem cell-driven component underlying the transformation to metastatic disease.

  17. Integrated bioinformatics analysis reveals key candidate genes and pathways in breast cancer.

    Science.gov (United States)

    Wang, Yuzhi; Zhang, Yi; Huang, Qian; Li, Chengwen

    2018-04-19

    Breast cancer (BC) is the leading malignancy in women worldwide, yet relatively little is known about the genes and signaling pathways involved in BC tumorigenesis and progression. The present study aimed to elucidate potential key candidate genes and pathways in BC. Five gene expression profile data sets (GSE22035, GSE3744, GSE5764, GSE21422 and GSE26910) were downloaded from the Gene Expression Omnibus (GEO) database, which included data from 113 tumorous and 38 adjacent non‑tumorous tissue samples. Differentially expressed genes (DEGs) were identified using t‑tests in the limma R package. These DEGs were subsequently investigated by pathway enrichment analysis and a protein‑protein interaction (PPI) network was constructed. The most significant module from the PPI network was selected for pathway enrichment analysis. In total, 227 DEGs were identified, of which 82 were upregulated and 145 were downregulated. Pathway enrichment analysis results revealed that the upregulated DEGs were mainly enriched in 'cell division', the 'proteinaceous extracellular matrix (ECM)', 'ECM structural constituents' and 'ECM‑receptor interaction', whereas downregulated genes were mainly enriched in 'response to drugs', 'extracellular space', 'transcriptional activator activity' and the 'peroxisome proliferator‑activated receptor signaling pathway'. The PPI network contained 174 nodes and 1,257 edges. DNA topoisomerase 2‑a, baculoviral inhibitor of apoptosis repeat‑containing protein 5, cyclin‑dependent kinase 1, G2/mitotic‑specific cyclin‑B1 and kinetochore protein NDC80 homolog were identified as the top 5 hub genes. Furthermore, the genes in the most significant module were predominantly involved in 'mitotic nuclear division', 'mid‑body', 'protein binding' and 'cell cycle'. In conclusion, the DEGs, relative pathways and hub genes identified in the present study may aid in understanding of the molecular mechanisms underlying BC progression and provide

  18. Novel algorithms reveal streptococcal transcriptomes and clues about undefined genes.

    Science.gov (United States)

    Ryan, Patricia A; Kirk, Brian W; Euler, Chad W; Schuch, Raymond; Fischetti, Vincent A

    2007-07-01

    Bacteria-host interactions are dynamic processes, and understanding transcriptional responses that directly or indirectly regulate the expression of genes involved in initial infection stages would illuminate the molecular events that result in host colonization. We used oligonucleotide microarrays to monitor (in vitro) differential gene expression in group A streptococci during pharyngeal cell adherence, the first overt infection stage. We present neighbor clustering, a new computational method for further analyzing bacterial microarray data that combines two informative characteristics of bacterial genes that share common function or regulation: (1) similar gene expression profiles (i.e., co-expression); and (2) physical proximity of genes on the chromosome. This method identifies statistically significant clusters of co-expressed gene neighbors that potentially share common function or regulation by coupling statistically analyzed gene expression profiles with the chromosomal position of genes. We applied this method to our own data and to those of others, and we show that it identified a greater number of differentially expressed genes, facilitating the reconstruction of more multimeric proteins and complete metabolic pathways than would have been possible without its application. We assessed the biological significance of two identified genes by assaying deletion mutants for adherence in vitro and show that neighbor clustering indeed provides biologically relevant data. Neighbor clustering provides a more comprehensive view of the molecular responses of streptococci during pharyngeal cell adherence.

  19. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

    Directory of Open Access Journals (Sweden)

    Peter Hevezi

    Full Text Available Efforts to unravel the mechanisms underlying taste sensation (gustation have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM procured fungiform (FG and circumvallate (CV taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.

  20. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2018-04-01

    Full Text Available Small auxin-upregulated RNAs (SAURs are genes regulated by auxin and environmental factors. In this study, we identified a SAUR gene in wheat, TaSAUR75. Under salt stress, TaSAUR75 is downregulated in wheat roots. Subcellular localization revealed that TaSAUR75 was localized in both the cytoplasm and nucleus. Overexpression of TaSAUR75 increased drought and salt tolerance in Arabidopsis. Transgenic lines showed higher root length and survival rate and higher expression of some stress-responsive genes than control plants under salt and drought stress. Less H2O2 accumulated in transgenic lines than in control plants under drought stress. Our findings reveal a positive regulatory role of the auxin-responsive gene TaSAUR75 in plant responses to drought and salt stress and provide a candidate gene for improvement of abiotic stress tolerance in crop breeding.

  1. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  2. Gene expression profiling reveals candidate genes related to residual feed intake in duodenum of laying ducks.

    Science.gov (United States)

    Zeng, T; Huang, L; Ren, J; Chen, L; Tian, Y; Huang, Y; Zhang, H; Du, J; Lu, L

    2017-12-01

    Feed represents two-thirds of the total costs of poultry production, especially in developing countries. Improvement in feed efficiency would reduce the amount of feed required for production (growth or laying), the production cost, and the amount of nitrogenous waste. The most commonly used measures for feed efficiency are feed conversion ratio (FCR) and residual feed intake (RFI). As a more suitable indicator assessing feed efficiency, RFI is defined as the difference between observed and expected feed intake based on maintenance and growth or laying. However, the genetic and biological mechanisms regulating RFI are largely unknown. Identifying molecular mechanisms explaining divergence in RFI in laying ducks would lead to the development of early detection methods for the selection of more efficient breeding poultry. The objective of this study was to identify duodenum genes and pathways through transcriptional profiling in 2 extreme RFI phenotypes (HRFI and LRFI) of the duck population. Phenotypic aspects of feed efficiency showed that RFI was strongly positive with FCR and feed intake (FI). Transcriptomic analysis identified 35 differentially expressed genes between LRFI and HRFI ducks. These genes play an important role in metabolism, digestibility, secretion, and innate immunity including (), (), (), β (), and (). These results improve our knowledge of the biological basis underlying RFI, which would be useful for further investigations of key candidate genes for RFI and for the development of biomarkers.

  3. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  4. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    Science.gov (United States)

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana.

    Science.gov (United States)

    Simon, Lauriane; Rabanal, Fernando A; Dubos, Tristan; Oliver, Cecilia; Lauber, Damien; Poulet, Axel; Vogt, Alexander; Mandlbauer, Ariane; Le Goff, Samuel; Sommer, Andreas; Duborjal, Hervé; Tatout, Christophe; Probst, Aline V

    2018-04-06

    Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.

  6. Functional gene polymorphism to reveal species history: the case of the CRTISO gene in cultivated carrots.

    Directory of Open Access Journals (Sweden)

    Vanessa Soufflet-Freslon

    Full Text Available Carrot is a vegetable cultivated worldwide for the consumption of its root. Historical data indicate that root colour has been differentially selected over time and according to geographical areas. Root pigmentation depends on the relative proportion of different carotenoids for the white, yellow, orange and red types but only internally for the purple one. The genetic control for root carotenoid content might be partially associated with carotenoid biosynthetic genes. Carotenoid isomerase (CRTISO has emerged as a regulatory step in the carotenoid biosynthesis pathway and could be a good candidate to show how a metabolic pathway gene reflects a species genetic history.In this study, the nucleotide polymorphism and the linkage disequilibrium among the complete CRTISO sequence, and the deviation from neutral expectation were analysed by considering population subdivision revealed with 17 microsatellite markers. A sample of 39 accessions, which represented different geographical origins and root colours, was used. Cultivated carrot was divided into two genetic groups: one from Middle East and Asia (Eastern group, and another one mainly from Europe (Western group. The Western and Eastern genetic groups were suggested to be differentially affected by selection: a signature of balancing selection was detected within the first group whereas the second one showed no selection. A focus on orange-rooted carrots revealed that cultivars cultivated in Asia were mainly assigned to the Western group but showed CRTISO haplotypes common to Eastern carrots.The carotenoid pathway CRTISO gene data proved to be complementary to neutral markers in order to bring critical insight in the cultivated carrot history. We confirmed the occurrence of two migration events since domestication. Our results showed a European background in material from Japan and Central Asia. While confirming the introduction of European carrots in Japanese resources, the history of Central Asia

  7. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    Science.gov (United States)

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  8. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Ence Yang

    2014-10-01

    Full Text Available Systemic dimorphic fungi cause more than one million new infections each year, ranking them among the significant public health challenges currently encountered. Penicillium marneffei is a systemic dimorphic fungus endemic to Southeast Asia. The temperature-dependent dimorphic phase transition between mycelium and yeast is considered crucial for the pathogenicity and transmission of P. marneffei, but the underlying mechanisms are still poorly understood. Here, we re-sequenced P. marneffei strain PM1 using multiple sequencing platforms and assembled the genome using hybrid genome assembly. We determined gene expression levels using RNA sequencing at the mycelial and yeast phases of P. marneffei, as well as during phase transition. We classified 2,718 genes with variable expression across conditions into 14 distinct groups, each marked by a signature expression pattern implicated at a certain stage in the dimorphic life cycle. Genes with the same expression patterns tend to be clustered together on the genome, suggesting orchestrated regulations of the transcriptional activities of neighboring genes. Using qRT-PCR, we validated expression levels of all genes in one of clusters highly expressed during the yeast-to-mycelium transition. These included madsA, a gene encoding MADS-box transcription factor whose gene family is exclusively expanded in P. marneffei. Over-expression of madsA drove P. marneffei to undergo mycelial growth at 37°C, a condition that restricts the wild-type in the yeast phase. Furthermore, analyses of signature expression patterns suggested diverse roles of secreted proteins at different developmental stages and the potential importance of non-coding RNAs in mycelium-to-yeast transition. We also showed that RNA structural transition in response to temperature changes may be related to the control of thermal dimorphism. Together, our findings have revealed multiple molecular mechanisms that may underlie the dimorphic transition

  9. Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins

    Directory of Open Access Journals (Sweden)

    Lek Monkol

    2010-07-01

    Full Text Available Abstract Background The ferlin gene family possesses a rare and identifying feature consisting of multiple tandem C2 domains and a C-terminal transmembrane domain. Much currently remains unknown about the fundamental function of this gene family, however, mutations in its two most well-characterised members, dysferlin and otoferlin, have been implicated in human disease. The availability of genome sequences from a wide range of species makes it possible to explore the evolution of the ferlin family, providing contextual insight into characteristic features that define the ferlin gene family in its present form in humans. Results Ferlin genes were detected from all species of representative phyla, with two ferlin subgroups partitioned within the ferlin phylogenetic tree based on the presence or absence of a DysF domain. Invertebrates generally possessed two ferlin genes (one with DysF and one without, with six ferlin genes in most vertebrates (three DysF, three non-DysF. Expansion of the ferlin gene family is evident between the divergence of lamprey (jawless vertebrates and shark (cartilaginous fish. Common to almost all ferlins is an N-terminal C2-FerI-C2 sandwich, a FerB motif, and two C-terminal C2 domains (C2E and C2F adjacent to the transmembrane domain. Preservation of these structural elements throughout eukaryotic evolution suggests a fundamental role of these motifs for ferlin function. In contrast, DysF, C2DE, and FerA are optional, giving rise to subtle differences in domain topologies of ferlin genes. Despite conservation of multiple C2 domains in all ferlins, the C-terminal C2 domains (C2E and C2F displayed higher sequence conservation and greater conservation of putative calcium binding residues across paralogs and orthologs. Interestingly, the two most studied non-mammalian ferlins (Fer-1 and Misfire in model organisms C. elegans and D. melanogaster, present as outgroups in the phylogenetic analysis, with results suggesting

  10. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis.

    Science.gov (United States)

    Hill, Jonathon T; Demarest, Bradley; Gorsi, Bushra; Smith, Megan; Yost, H Joseph

    2017-10-01

    During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5 , and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation. © 2017. Published by The Company of Biologists Ltd.

  11. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    Directory of Open Access Journals (Sweden)

    Antommattei Frances M

    2008-10-01

    Full Text Available Abstract Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70 homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively. Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors

  12. Genetic diversity and gene flow revealed by microsatellite DNA ...

    African Journals Online (AJOL)

    Dacryodes edulis is a multipurpose tree integrated in the cropping system of Central African region still dominated by subsistence agriculture. Some populations grown are wild which can provide information on the domestication process, and could also represent a potential source of gene flow. Leaves samples for DNA ...

  13. Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bruno Zeitouni

    2007-10-01

    Full Text Available Drosophila provides a powerful system for defining the complex genetic programs that drive organogenesis. Under control of the steroid hormone ecdysone, the adult heart in Drosophila forms during metamorphosis by a remodelling of the larval cardiac organ. Here, we evaluated the extent to which transcriptional signatures revealed by genomic approaches can provide new insights into the molecular pathways that underlie heart organogenesis. Whole-genome expression profiling at eight successive time-points covering adult heart formation revealed a highly dynamic temporal map of gene expression through 13 transcript clusters with distinct expression kinetics. A functional atlas of the transcriptome profile strikingly points to the genomic transcriptional response of the ecdysone cascade, and a sharp regulation of key components belonging to a few evolutionarily conserved signalling pathways. A reverse genetic analysis provided evidence that these specific signalling pathways are involved in discrete steps of adult heart formation. In particular, the Wnt signalling pathway is shown to participate in inflow tract and cardiomyocyte differentiation, while activation of the PDGF-VEGF pathway is required for cardiac valve formation. Thus, a detailed temporal map of gene expression can reveal signalling pathways responsible for specific developmental programs and provides here substantial grasp into heart formation.

  14. Whole genome transcript profiling of drug induced steatosis in rats reveals a gene signature predictive of outcome.

    Directory of Open Access Journals (Sweden)

    Nishika Sahini

    Full Text Available Drug induced steatosis (DIS is characterised by excess triglyceride accumulation in the form of lipid droplets (LD in liver cells. To explore mechanisms underlying DIS we interrogated the publically available microarray data from the Japanese Toxicogenomics Project (TGP to study comprehensively whole genome gene expression changes in the liver of treated rats. For this purpose a total of 17 and 12 drugs which are diverse in molecular structure and mode of action were considered based on their ability to cause either steatosis or phospholipidosis, respectively, while 7 drugs served as negative controls. In our efforts we focused on 200 genes which are considered to be mechanistically relevant in the process of lipid droplet biogenesis in hepatocytes as recently published (Sahini and Borlak, 2014. Based on mechanistic considerations we identified 19 genes which displayed dose dependent responses while 10 genes showed time dependency. Importantly, the present study defined 9 genes (ANGPTL4, FABP7, FADS1, FGF21, GOT1, LDLR, GK, STAT3, and PKLR as signature genes to predict DIS. Moreover, cross tabulation revealed 9 genes to be regulated ≥10 times amongst the various conditions and included genes linked to glucose metabolism, lipid transport and lipogenesis as well as signalling events. Additionally, a comparison between drugs causing phospholipidosis and/or steatosis revealed 26 genes to be regulated in common including 4 signature genes to predict DIS (PKLR, GK, FABP7 and FADS1. Furthermore, a comparison between in vivo single dose (3, 6, 9 and 24 h and findings from rat hepatocyte studies (2 h, 8 h, 24 h identified 10 genes which are regulated in common and contained 2 DIS signature genes (FABP7, FGF21. Altogether, our studies provide comprehensive information on mechanistically linked gene expression changes of a range of drugs causing steatosis and phospholipidosis and encourage the screening of DIS signature genes at the preclinical stage.

  15. Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion

    DEFF Research Database (Denmark)

    Hägglund, Martin; Dougherty, Kimberly J.; Borgius, Lotta

    2013-01-01

    flexor motor neuron pools can be recruited into bursting without any activity in other nearby flexor motor neuron pools. Our experiments differentiate among several proposed models for rhythm generation in the vertebrates and show that the basic structure underlying the locomotor network has...

  16. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    Science.gov (United States)

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  17. Network analysis reveals distinct clinical syndromes underlying acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    David P Hall

    Full Text Available Acute mountain sickness (AMS is a common problem among visitors at high altitude, and may progress to life-threatening pulmonary and cerebral oedema in a minority of cases. International consensus defines AMS as a constellation of subjective, non-specific symptoms. Specifically, headache, sleep disturbance, fatigue and dizziness are given equal diagnostic weighting. Different pathophysiological mechanisms are now thought to underlie headache and sleep disturbance during acute exposure to high altitude. Hence, these symptoms may not belong together as a single syndrome. Using a novel visual analogue scale (VAS, we sought to undertake a systematic exploration of the symptomatology of AMS using an unbiased, data-driven approach originally designed for analysis of gene expression. Symptom scores were collected from 292 subjects during 1110 subject-days at altitudes between 3650 m and 5200 m on Apex expeditions to Bolivia and Kilimanjaro. Three distinct patterns of symptoms were consistently identified. Although fatigue is a ubiquitous finding, sleep disturbance and headache are each commonly reported without the other. The commonest pattern of symptoms was sleep disturbance and fatigue, with little or no headache. In subjects reporting severe headache, 40% did not report sleep disturbance. Sleep disturbance correlates poorly with other symptoms of AMS (Mean Spearman correlation 0.25. These results challenge the accepted paradigm that AMS is a single disease process and describe at least two distinct syndromes following acute ascent to high altitude. This approach to analysing symptom patterns has potential utility in other clinical syndromes.

  18. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Science.gov (United States)

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).

  19. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions.

    Directory of Open Access Journals (Sweden)

    Valéria Mafra

    Full Text Available Real-time reverse transcription PCR (RT-qPCR has emerged as an accurate and widely used technique for expression profiling of selected genes. However, obtaining reliable measurements depends on the selection of appropriate reference genes for gene expression normalization. The aim of this work was to assess the expression stability of 15 candidate genes to determine which set of reference genes is best suited for transcript normalization in citrus in different tissues and organs and leaves challenged with five pathogens (Alternaria alternata, Phytophthora parasitica, Xylella fastidiosa and Candidatus Liberibacter asiaticus. We tested traditional genes used for transcript normalization in citrus and orthologs of Arabidopsis thaliana genes described as superior reference genes based on transcriptome data. geNorm and NormFinder algorithms were used to find the best reference genes to normalize all samples and conditions tested. Additionally, each biotic stress was individually analyzed by geNorm. In general, FBOX (encoding a member of the F-box family and GAPC2 (GAPDH was the most stable candidate gene set assessed under the different conditions and subsets tested, while CYP (cyclophilin, TUB (tubulin and CtP (cathepsin were the least stably expressed genes found. Validation of the best suitable reference genes for normalizing the expression level of the WRKY70 transcription factor in leaves infected with Candidatus Liberibacter asiaticus showed that arbitrary use of reference genes without previous testing could lead to misinterpretation of data. Our results revealed FBOX, SAND (a SAND family protein, GAPC2 and UPL7 (ubiquitin protein ligase 7 to be superior reference genes, and we recommend their use in studies of gene expression in citrus species and relatives. This work constitutes the first systematic analysis for the selection of superior reference genes for transcript normalization in different citrus organs and under biotic stress.

  20. Distinct soil bacterial communities revealed under a diversely managed agroecosystem.

    Directory of Open Access Journals (Sweden)

    Raymon S Shange

    Full Text Available Land-use change and management practices are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, their effect on the soil microbial community and their subsequent influence on soil function is still difficult to quantify. Recent applications of molecular techniques to soil biology, especially the use of 16S rRNA, are helping to bridge this gap. In this study, the influence of three land-use systems within a demonstration farm were evaluated with a view to further understand how these practices may impact observed soil bacterial communities. Replicate soil samples collected from the three land-use systems (grazed pine forest, cultivated crop, and grazed pasture on a single soil type. High throughput 16S rRNA gene pyrosequencing was used to generate sequence datasets. The different land use systems showed distinction in the structure of their bacterial communities with respect to the differences detected in cluster analysis as well as diversity indices. Specific taxa, particularly Actinobacteria, Acidobacteria, and classes of Proteobacteria, showed significant shifts across the land-use strata. Families belonging to these taxa broke with notions of copio- and oligotrphy at the class level, as many of the less abundant groups of families of Actinobacteria showed a propensity for soil environments with reduced carbon/nutrient availability. Orders Actinomycetales and Solirubrobacterales showed their highest abundance in the heavily disturbed cultivated system despite the lowest soil organic carbon (SOC values across the site. Selected soil properties ([SOC], total nitrogen [TN], soil texture, phosphodiesterase [PD], alkaline phosphatase [APA], acid phosphatase [ACP] activity, and pH also differed significantly across land-use regimes, with SOM, PD, and pH showing variation consistent with shifts in community structure and composition. These results suggest that use of

  1. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  2. Revealing gene action for production characteristics by inbreeding ...

    African Journals Online (AJOL)

    inbreeding coefficient on the mean of the characters in a two-way selection experiment for the slope (b) and intercept. (Ln (a)) of the ... ln (a) selection group, as well as average daily f-eed intake (Phase I and 2) of the b selection group. Die genewerking wat ..... exposed to natural selection for an extended period under con-.

  3. Network analysis of ChIP-Seq data reveals key genes in prostate cancer.

    Science.gov (United States)

    Zhang, Yu; Huang, Zhen; Zhu, Zhiqiang; Liu, Jianwei; Zheng, Xin; Zhang, Yuhai

    2014-09-03

    Prostate cancer (PC) is the second most common cancer among men in the United States, and it imposes a considerable threat to human health. A deep understanding of its underlying molecular mechanisms is the premise for developing effective targeted therapies. Recently, deep transcriptional sequencing has been used as an effective genomic assay to obtain insights into diseases and may be helpful in the study of PC. In present study, ChIP-Seq data for PC and normal samples were compared, and differential peaks identified, based upon fold changes (with P-values calculated with t-tests). Annotations of these peaks were performed. Protein-protein interaction (PPI) network analysis was performed with BioGRID and constructed with Cytoscape, following which the highly connected genes were screened. We obtained a total of 5,570 differential peaks, including 3,726 differentially enriched peaks in tumor samples and 1,844 differentially enriched peaks in normal samples. There were eight significant regions of the peaks. The intergenic region possessed the highest score (51%), followed by intronic (31%) and exonic (11%) regions. The analysis revealed the top 35 highly connected genes, which comprised 33 differential genes (such as YWHAQ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein and θ polypeptide) from ChIP-Seq data and 2 differential genes retrieved from the PPI network: UBA52 (ubiquitin A-52 residue ribosomal protein fusion product (1) and SUMO2 (SMT3 suppressor of mif two 3 homolog (2) . Our findings regarding potential PC-related genes increase the understanding of PC and provides direction for future research.

  4. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    Science.gov (United States)

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. DNA capture reveals transoceanic gene flow in endangered river sharks.

    Science.gov (United States)

    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T; Naylor, Gavin J P

    2015-10-27

    For over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks.

  7. Evaluation of Reference Genes to Analyze Gene Expression in Silverside Odontesthes humensis Under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Tony L. R. Silveira

    2018-03-01

    Full Text Available Some mammalian reference genes, which are widely used to normalize the qRT-PCR, could not be used for this purpose due to its high expression variation. The normalization with false reference genes leads to misinterpretation of results. The silversides (Odontesthes spp. has been used as models for evolutionary, osmoregulatory and environmental pollution studies but, up to now, there are no studies about reference genes in any Odontesthes species. Furthermore, many studies on silversides have used reference genes without previous validations. Thus, present study aimed to was to clone and sequence potential reference genes, thereby identifying the best ones in Odontesthes humensis considering different tissues, ages and conditions. For this purpose, animals belonging to three ages (adults, juveniles, and immature were exposed to control, Roundup®, and seawater treatments for 24 h. Blood samples were subjected to flow-cytometry and other collected tissues to RNA extraction; cDNA synthesis; molecular cloning; DNA sequencing; and qRT-PCR. The candidate genes tested included 18s, actb, ef1a, eif3g, gapdh, h3a, atp1a, and tuba. Gene expression results were analyzed using five algorithms that ranked the candidate genes. The flow-cytometry data showed that the environmental challenges could trigger a systemic response in the treated fish. Even during this systemic physiological disorder, the consensus analysis of gene expression revealed h3a to be the most stable gene expression when only the treatments were considered. On the other hand, tuba was the least stable gene in the control and gapdh was the least stable in both Roundup® and seawater groups. In conclusion, the consensus analyses of different tissues, ages, and treatments groups revealed that h3a is the most stable gene whereas gapdh and tuba are the least stable genes, even being considered two constitutive genes.

  8. Revealing the underlying drivers of disaster risk: a global analysis

    Science.gov (United States)

    Peduzzi, Pascal

    2017-04-01

    Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL

  9. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Directory of Open Access Journals (Sweden)

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  10. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

    Directory of Open Access Journals (Sweden)

    Kouji Satoh

    Full Text Available Rice (Oryza sativa L. is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE genes, 33K annotated non-expressed (ANE genes, and 5.5K non-annotated expressed (NAE genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.

  11. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.

    Directory of Open Access Journals (Sweden)

    Emre Guney

    Full Text Available Complex biological systems usually pose a trade-off between robustness and fragility where a small number of perturbations can substantially disrupt the system. Although biological systems are robust against changes in many external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization methods are based on the connectivity between known disease-gene associations, we have further used these methods to categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO analysis highlighted the role of functional diversity for such diseases.

  12. Digital Gene Expression Analysis Based on De Novo Transcriptome Assembly Reveals New Genes Associated with Floral Organ Differentiation of the Orchid Plant Cymbidium ensifolium.

    Directory of Open Access Journals (Sweden)

    Fengxi Yang

    Full Text Available Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms

  13. Constraints on genome dynamics revealed from gene distribution among the Ralstonia solanacearum species.

    Directory of Open Access Journals (Sweden)

    Pierre Lefeuvre

    Full Text Available Because it is suspected that gene content may partly explain host adaptation and ecology of pathogenic bacteria, it is important to study factors affecting genome composition and its evolution. While recent genomic advances have revealed extremely large pan-genomes for some bacterial species, it remains difficult to predict to what extent gene pool is accessible within or transferable between populations. As genomes bear imprints of the history of the organisms, gene distribution pattern analyses should provide insights into the forces and factors at play in the shaping and maintaining of bacterial genomes. In this study, we revisited the data obtained from a previous CGH microarrays analysis in order to assess the genomic plasticity of the R. solanacearum species complex. Gene distribution analyses demonstrated the remarkably dispersed genome of R. solanacearum with more than half of the genes being accessory. From the reconstruction of the ancestral genomes compositions, we were able to infer the number of gene gain and loss events along the phylogeny. Analyses of gene movement patterns reveal that factors associated with gene function, genomic localization and ecology delineate gene flow patterns. While the chromosome displayed lower rates of movement, the megaplasmid was clearly associated with hot-spots of gene gain and loss. Gene function was also confirmed to be an essential factor in gene gain and loss dynamics with significant differences in movement patterns between different COG categories. Finally, analyses of gene distribution highlighted possible highways of horizontal gene transfer. Due to sampling and design bias, we can only speculate on factors at play in this gene movement dynamic. Further studies examining precise conditions that favor gene transfer would provide invaluable insights in the fate of bacteria, species delineation and the emergence of successful pathogens.

  14. Global gene expression analysis of the zoonotic parasite Trichinella spiralis revealed novel genes in host parasite interaction.

    Directory of Open Access Journals (Sweden)

    Xiaolei Liu

    Full Text Available BACKGROUND: Trichinellosis is a typical food-borne zoonotic disease which is epidemic worldwide and the nematode Trichinella spiralis is the main pathogen. The life cycle of T. spiralis contains three developmental stages, i.e. adult worms, new borne larva (new borne L1 larva and muscular larva (infective L1 larva. Stage-specific gene expression in the parasites has been investigated with various immunological and cDNA cloning approaches, whereas the genome-wide transcriptome and expression features of the parasite have been largely unknown. The availability of the genome sequence information of T. spiralis has made it possible to deeply dissect parasite biology in association with global gene expression and pathogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we analyzed the global gene expression patterns in the three developmental stages of T. spiralis using digital gene expression (DGE analysis. Almost 15 million sequence tags were generated with the Illumina RNA-seq technology, producing expression data for more than 9,000 genes, covering 65% of the genome. The transcriptome analysis revealed thousands of differentially expressed genes within the genome, and importantly, a panel of genes encoding functional proteins associated with parasite invasion and immuno-modulation were identified. More than 45% of the genes were found to be transcribed from both strands, indicating the importance of RNA-mediated gene regulation in the development of the parasite. Further, based on gene ontological analysis, over 3000 genes were functionally categorized and biological pathways in the three life cycle stage were elucidated. CONCLUSIONS AND SIGNIFICANCE: The global transcriptome of T. spiralis in three developmental stages has been profiled, and most gene activity in the genome was found to be developmentally regulated. Many metabolic and biological pathways have been revealed. The findings of the differential expression of several protein

  15. NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss.

    Science.gov (United States)

    Ruhlman, Tracey A; Chang, Wan-Jung; Chen, Jeremy J W; Huang, Yao-Ting; Chan, Ming-Tsair; Zhang, Jin; Liao, De-Chih; Blazier, John C; Jin, Xiaohua; Shih, Ming-Che; Jansen, Robert K; Lin, Choun-Sea

    2015-04-11

    Key innovations have facilitated novel niche utilization, such as the movement of the algal predecessors of land plants into terrestrial habitats where drastic fluctuations in light intensity, ultraviolet radiation and water limitation required a number of adaptations. The NDH (NADH dehydrogenase-like) complex of Viridiplantae plastids participates in adapting the photosynthetic response to environmental stress, suggesting its involvement in the transition to terrestrial habitats. Although relatively rare, the loss or pseudogenization of plastid NDH genes is widely distributed across diverse lineages of photoautotrophic seed plants and mutants/transgenics lacking NDH function demonstrate little difference from wild type under non-stressed conditions. This study analyzes large transcriptomic and genomic datasets to evaluate the persistence and loss of NDH expression across plants. Nuclear expression profiles showed accretion of the NDH gene complement at key transitions in land plant evolution, such as the transition to land and at the base of the angiosperm lineage. While detection of transcripts for a selection of non-NDH, photosynthesis related proteins was independent of the state of NDH, coordinate, lineage-specific loss of plastid NDH genes and expression of nuclear-encoded NDH subunits was documented in Pinaceae, gnetophytes, Orchidaceae and Geraniales confirming the independent and complete loss of NDH in these diverse seed plant taxa. The broad phylogenetic distribution of NDH loss and the subtle phenotypes of mutants suggest that the NDH complex is of limited biological significance in contemporary plants. While NDH activity appears dispensable under favorable conditions, there were likely sufficiently frequent episodes of abiotic stress affecting terrestrial habitats to allow the retention of NDH activity. These findings reveal genetic factors influencing plant/environment interactions in a changing climate through 450 million years of land plant

  16. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  17. Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma.

    Science.gov (United States)

    Yang, Jun; Hou, Ziming; Wang, Changjiang; Wang, Hao; Zhang, Hongbing

    2018-04-23

    Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis

  18. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  19. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  20. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    Science.gov (United States)

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  1. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    Directory of Open Access Journals (Sweden)

    Heike Hadrys

    Full Text Available Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera. We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

  2. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Shan Goh

    Full Text Available BACKGROUND: Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. METHODOLOGY/PRINCIPAL FINDINGS: Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL(50. When applied to four growth essential genes, both RNA silencing methods resulted in MTL(50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. CONCLUSIONS: RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement.

  3. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs.

    Science.gov (United States)

    Gálvez, José Héctor; Tai, Helen H; Lagüe, Martin; Zebarth, Bernie J; Strömvik, Martina V

    2016-05-19

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency.

  4. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    Science.gov (United States)

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  5. Systematic Prioritization and Integrative Analysis of Copy Number Variations in Schizophrenia Reveal Key Schizophrenia Susceptibility Genes

    Science.gov (United States)

    Luo, Xiongjian; Huang, Liang; Han, Leng; Luo, Zhenwu; Hu, Fang; Tieu, Roger; Gan, Lin

    2014-01-01

    Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and

  6. Systems-level analysis of risk genes reveals the modular nature of schizophrenia.

    Science.gov (United States)

    Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing

    2018-05-19

    Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cross-species transcriptomic approach reveals genes in hamster implantation sites.

    Science.gov (United States)

    Lei, Wei; Herington, Jennifer; Galindo, Cristi L; Ding, Tianbing; Brown, Naoko; Reese, Jeff; Paria, Bibhash C

    2014-12-01

    The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS. © 2014 Society for Reproduction and Fertility.

  8. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    Science.gov (United States)

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.

    Science.gov (United States)

    Martin, Guiomar; Soy, Judit; Monte, Elena

    2016-01-01

    Members of the PIF quartet (PIFq; PIF1, PIF3, PIF4, and PIF5) collectively contribute to induce growth in Arabidopsis seedlings under short day (SD) conditions, specifically promoting elongation at dawn. Their action involves the direct regulation of growth-related and hormone-associated genes. However, a comprehensive definition of the PIFq-regulated transcriptome under SD is still lacking. We have recently shown that SD and free-running (LL) conditions correspond to "growth" and "no growth" conditions, respectively, correlating with greater abundance of PIF protein in SD. Here, we present a genomic analysis whereby we first define SD-regulated genes at dawn compared to LL in the wild type, followed by identification of those SD-regulated genes whose expression depends on the presence of PIFq. By using this sequential strategy, we have identified 349 PIF/SD-regulated genes, approximately 55% induced and 42% repressed by both SD and PIFq. Comparison with available databases indicates that PIF/SD-induced and PIF/SD-repressed sets are differently phased at dawn and mid-morning, respectively. In addition, we found that whereas rhythmicity of the PIF/SD-induced gene set is lost in LL, most PIF/SD-repressed genes keep their rhythmicity in LL, suggesting differential regulation of both gene sets by the circadian clock. Moreover, we also uncovered distinct overrepresented functions in the induced and repressed gene sets, in accord with previous studies in other examined PIF-regulated processes. Interestingly, promoter analyses showed that, whereas PIF/SD-induced genes are enriched in direct PIF targets, PIF/SD-repressed genes are mostly indirectly regulated by the PIFs and might be more enriched in ABA-regulated genes.

  10. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer.

    Science.gov (United States)

    Jaramillo, Vinicio D Armijos; Sukno, Serenella A; Thon, Michael R

    2015-01-02

    Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum. We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina. Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

  11. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions

    Directory of Open Access Journals (Sweden)

    Benech Philippe

    2009-08-01

    Full Text Available Abstract Background Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM. It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Results Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA and 5 heterozygous (GA PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses. Gene expression analysis revealed 129 genes significantly modulated (p Conclusion The main disorders observed in PSSM muscles could be related to mitochondrial dysfunctions, glycogenesis inhibition and the chronic hypoxia of the PSSM muscles.

  12. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times

    Directory of Open Access Journals (Sweden)

    Rao Nagesha AS

    2009-09-01

    Full Text Available Abstract Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST. They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months and long survivors (dogs with better prognosis: surviving 6 months or longer. Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the

  13. Weighted gene co-expression network analysis reveals potential genes involved in early metamorphosis process in sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Li, Yongxin; Kikuchi, Mani; Li, Xueyan; Gao, Qionghua; Xiong, Zijun; Ren, Yandong; Zhao, Ruoping; Mao, Bingyu; Kondo, Mariko; Irie, Naoki; Wang, Wen

    2018-01-01

    Sea cucumbers, one main class of Echinoderms, have a very fast and drastic metamorphosis process during their development. However, the molecular basis under this process remains largely unknown. Here we systematically examined the gene expression profiles of Japanese common sea cucumber (Apostichopus japonicus) for the first time by RNA sequencing across 16 developmental time points from fertilized egg to juvenile stage. Based on the weighted gene co-expression network analysis (WGCNA), we identified 21 modules. Among them, MEdarkmagenta was highly expressed and correlated with the early metamorphosis process from late auricularia to doliolaria larva. Furthermore, gene enrichment and differentially expressed gene analysis identified several genes in the module that may play key roles in the metamorphosis process. Our results not only provide a molecular basis for experimentally studying the development and morphological complexity of sea cucumber, but also lay a foundation for improving its emergence rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Prospective identification of malaria parasite genes under balancing selection.

    Directory of Open Access Journals (Sweden)

    Kevin K A Tetteh

    Full Text Available Endemic human pathogens are subject to strong immune selection, and interrogation of pathogen genome variation for signatures of balancing selection can identify important target antigens. Several major antigen genes in the malaria parasite Plasmodium falciparum have shown such signatures in polymorphism-versus-divergence indices (comparing with the chimpanzee parasite P. reichenowi, and in allele frequency based indices.To compare methods for prospective identification of genes under balancing selection, 26 additional genes known or predicted to encode surface-exposed proteins of the invasive blood stage merozoite were first sequenced from a panel of 14 independent P. falciparum cultured lines and P. reichenowi. Six genes at the positive extremes of one or both of the Hudson-Kreitman-Aguade (HKA and McDonald-Kreitman (MK indices were identified. Allele frequency based analysis was then performed on a Gambian P. falciparum population sample for these six genes and three others as controls. Tajima's D (TjD index was most highly positive for the msp3/6-like PF10_0348 (TjD = 1.96 as well as the positive control ama1 antigen gene (TjD = 1.22. Across the genes there was a strong correlation between population TjD values and the relative HKA indices (whether derived from the population or the panel of cultured laboratory isolates, but no correlation with the MK indices.Although few individual parasite genes show significant evidence of balancing selection, analysis of population genomic and comparative sequence data with the HKA and TjD indices should discriminate those that do, and thereby identify likely targets of immunity.

  15. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Science.gov (United States)

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  16. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Directory of Open Access Journals (Sweden)

    Jansen Rodrigo Pereira Santos

    Full Text Available Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN. Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  17. Molecular evolution and diversification of snake toxin genes, revealed by analysis of intron sequences.

    Science.gov (United States)

    Fujimi, T J; Nakajyo, T; Nishimura, E; Ogura, E; Tsuchiya, T; Tamiya, T

    2003-08-14

    The genes encoding erabutoxin (short chain neurotoxin) isoforms (Ea, Eb, and Ec), LsIII (long chain neurotoxin) and a novel long chain neurotoxin pseudogene were cloned from a Laticauda semifasciata genomic library. Short and long chain neurotoxin genes were also cloned from the genome of Laticauda laticaudata, a closely related species of L. semifasciata, by PCR. A putative matrix attached region (MAR) sequence was found in the intron I of the LsIII gene. Comparative analysis of 11 structurally relevant snake toxin genes (three-finger-structure toxins) revealed the molecular evolution of these toxins. Three-finger-structure toxin genes diverged from a common ancestor through two types of evolutionary pathways (long and short types), early in the course of evolution. At a later stage of evolution in each gene, the accumulation of mutations in the exons, especially exon II, by accelerated evolution may have caused the increased diversification in their functions. It was also revealed that the putative MAR sequence found in the LsIII gene was integrated into the gene after the species-level divergence.

  18. Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin.

    Science.gov (United States)

    Sato, Yuko; Hliscs, Marion; Dunst, Josefine; Goosmann, Christian; Brinkmann, Volker; Montagna, Georgina N; Matuschewski, Kai

    2016-07-15

    Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1-3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin-binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping. © 2016 Sato et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress.

    Science.gov (United States)

    Dmitriev, Alexey A; Kudryavtseva, Anna V; Krasnov, George S; Koroban, Nadezhda V; Speranskaya, Anna S; Krinitsina, Anastasia A; Belenikin, Maxim S; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Kishlyan, Natalya V; Rozhmina, Tatiana A; Yurkevich, Olga Yu; Muravenko, Olga V; Bolsheva, Nadezhda L; Melnikova, Nataliya V

    2016-11-16

    Cultivated flax (Linum usitatissimum L.) is widely used for production of textile, food, chemical and pharmaceutical products. However, various stresses decrease flax production. Search for genes, which are involved in stress response, is necessary for breeding of adaptive cultivars. Imbalanced concentration of nutrient elements in soil decrease flax yields and also results in heritable changes in some flax lines. The appearance of Linum Insertion Sequence 1 (LIS-1) is the most studied modification. However, LIS-1 function is still unclear. High-throughput sequencing of transcriptome of flax plants grown under normal (N), phosphate deficient (P), and nutrient excess (NPK) conditions was carried out using Illumina platform. The assembly of transcriptome was performed, and a total of 34924, 33797, and 33698 unique transcripts for N, P, and NPK sequencing libraries were identified, respectively. We have not revealed any LIS-1 derived mRNA in our sequencing data. The analysis of high-throughput sequencing data allowed us to identify genes with potentially differential expression under imbalanced nutrition. For further investigation with qPCR, 15 genes were chosen and their expression levels were evaluated in the extended sampling of 31 flax plants. Significant expression alterations were revealed for genes encoding WRKY and JAZ protein families under P and NPK conditions. Moreover, the alterations of WRKY family genes differed depending on LIS-1 presence in flax plant genome. Besides, we revealed slight and LIS-1 independent mRNA level changes of KRP2 and ING1 genes, which are adjacent to LIS-1, under nutrition stress. Differentially expressed genes were identified in flax plants, which were grown under phosphate deficiency and excess nutrition, on the basis of high-throughput sequencing and qPCR data. We showed that WRKY and JAS gene families participate in flax response to imbalanced nutrient content in soil. Besides, we have not identified any mRNA, which could be

  20. Gene expression profiling of flax (Linum usitatissimum L. under edaphic stress

    Directory of Open Access Journals (Sweden)

    Alexey A. Dmitriev

    2016-11-01

    Full Text Available Abstract Background Cultivated flax (Linum usitatissimum L. is widely used for production of textile, food, chemical and pharmaceutical products. However, various stresses decrease flax production. Search for genes, which are involved in stress response, is necessary for breeding of adaptive cultivars. Imbalanced concentration of nutrient elements in soil decrease flax yields and also results in heritable changes in some flax lines. The appearance of Linum Insertion Sequence 1 (LIS-1 is the most studied modification. However, LIS-1 function is still unclear. Results High-throughput sequencing of transcriptome of flax plants grown under normal (N, phosphate deficient (P, and nutrient excess (NPK conditions was carried out using Illumina platform. The assembly of transcriptome was performed, and a total of 34924, 33797, and 33698 unique transcripts for N, P, and NPK sequencing libraries were identified, respectively. We have not revealed any LIS-1 derived mRNA in our sequencing data. The analysis of high-throughput sequencing data allowed us to identify genes with potentially differential expression under imbalanced nutrition. For further investigation with qPCR, 15 genes were chosen and their expression levels were evaluated in the extended sampling of 31 flax plants. Significant expression alterations were revealed for genes encoding WRKY and JAZ protein families under P and NPK conditions. Moreover, the alterations of WRKY family genes differed depending on LIS-1 presence in flax plant genome. Besides, we revealed slight and LIS-1 independent mRNA level changes of KRP2 and ING1 genes, which are adjacent to LIS-1, under nutrition stress. Conclusions Differentially expressed genes were identified in flax plants, which were grown under phosphate deficiency and excess nutrition, on the basis of high-throughput sequencing and qPCR data. We showed that WRKY and JAS gene families participate in flax response to imbalanced nutrient content in soil

  1. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  2. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    Science.gov (United States)

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  3. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    Directory of Open Access Journals (Sweden)

    Davey Jennifer C

    2007-12-01

    Full Text Available Abstract Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT. The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for

  4. Inferring the gene network underlying the branching of tomato inflorescence.

    Directory of Open Access Journals (Sweden)

    Laura Astola

    Full Text Available The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior.

  5. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment.

    Science.gov (United States)

    Chen, Lin; Yang, Yang; Liu, Can; Zheng, Yanyan; Xu, Mingshuang; Wu, Na; Sheng, Jiping; Shen, Lin

    2015-08-28

    WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Homozygosity mapping and targeted sanger sequencing reveal genetic defects underlying inherited retinal disease in families from pakistan.

    Directory of Open Access Journals (Sweden)

    Maleeha Maria

    Full Text Available Homozygosity mapping has facilitated the identification of the genetic causes underlying inherited diseases, particularly in consanguineous families with multiple affected individuals. This knowledge has also resulted in a mutation dataset that can be used in a cost and time effective manner to screen frequent population-specific genetic variations associated with diseases such as inherited retinal disease (IRD.We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed with Leber congenital amaurosis (LCA, retinitis pigmentosa (RP, congenital stationary night blindness (CSNB, or cone dystrophy (CD. We employed genome-wide single nucleotide polymorphism (SNP array analysis to identify homozygous regions shared by affected individuals and performed Sanger sequencing of IRD-associated genes located in the sizeable homozygous regions. In addition, based on population specific mutation data we performed targeted Sanger sequencing (TSS of frequent variants in AIPL1, CEP290, CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families.Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the underlying mutations in 10 families. TSS revealed causative variants in three families. In these 13 families four novel mutations were identified in CNGA1, CNGB1, GUCY2D, and RPGRIP1.Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families, which is useful for genetic counseling as well as therapeutic interventions that are likely to become available in the near future.

  7. Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS.

    Directory of Open Access Journals (Sweden)

    Frank P Diekstra

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS have implicated a few susceptibility loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci. Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls were used to prioritize eQTLs identified in the first stage (162 ALS, 207 controls. These prioritized eQTLs were carried forward to the second sample with both gene-expression and genotyping data (161 ALS, 206 controls. Replicated eQTL SNPs were then tested for association in the second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest significance (lowest p = 1.27 × 10(-51 withstood multiple-testing correction in the second stage and modulated CYP27A1 gene expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible

  8. Rice sHsp genes: genomic organization and expression profiling under stress and development

    Directory of Open Access Journals (Sweden)

    Grover Anil

    2009-08-01

    Full Text Available Abstract Background Heat shock proteins (Hsps constitute an important component in the heat shock response of all living systems. Among the various plant Hsps (i.e. Hsp100, Hsp90, Hsp70 and Hsp20, Hsp20 or small Hsps (sHsps are expressed in maximal amounts under high temperature stress. The characteristic feature of the sHsps is the presence of α-crystallin domain (ACD at the C-terminus. sHsps cooperate with Hsp100/Hsp70 and co-chaperones in ATP-dependent manner in preventing aggregation of cellular proteins and in their subsequent refolding. Database search was performed to investigate the sHsp gene family across rice genome sequence followed by comprehensive expression analysis of these genes. Results We identified 40 α-crystallin domain containing genes in rice. Phylogenetic analysis showed that 23 out of these 40 genes constitute sHsps. The additional 17 genes containing ACD clustered with Acd proteins of Arabidopsis. Detailed scrutiny of 23 sHsp sequences enabled us to categorize these proteins in a revised scheme of classification constituting of 16 cytoplasmic/nuclear, 2 ER, 3 mitochondrial, 1 plastid and 1 peroxisomal genes. In the new classification proposed herein nucleo-cytoplasmic class of sHsps with 9 subfamilies is more complex in rice than in Arabidopsis. Strikingly, 17 of 23 rice sHsp genes were noted to be intronless. Expression analysis based on microarray and RT-PCR showed that 19 sHsp genes were upregulated by high temperature stress. Besides heat stress, expression of sHsp genes was up or downregulated by other abiotic and biotic stresses. In addition to stress regulation, various sHsp genes were differentially upregulated at different developmental stages of the rice plant. Majority of sHsp genes were expressed in seed. Conclusion We identified twenty three sHsp genes and seventeen Acd genes in rice. Three nucleocytoplasmic sHsp genes were found only in monocots. Analysis of expression profiling of sHsp genes revealed

  9. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    International Nuclear Information System (INIS)

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer

  10. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains

    DEFF Research Database (Denmark)

    Sun, Hongyan; Chen, Zhong-Hua; Chen, Fei

    2015-01-01

    Background Understanding the mechanism of low Cd accumulation in crops is crucial for sustainable safe food production in Cd-contaminated soils. Results Confocal microscopy, atomic absorption spectrometry, gas exchange and chlorophyll fluorescence analyses revealed a distinct difference in Cd...... with a substantial difference between the two genotypes. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd...... accumulation. Quantitative RT-PCR confirmed our microarray data. Furthermore, suppression of the zinc transporter genes HvZIP3 and HvZIP8 by RNAi silencing showed increased Cd accumulation and reduced Zn and Mn concentrations in barley grains. Thus, HvZIP3 and HvZIP8 could be candidate genes related to low...

  11. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease.

    Science.gov (United States)

    Modena, Brian D; Bleecker, Eugene R; Busse, William W; Erzurum, Serpil C; Gaston, Benjamin M; Jarjour, Nizar N; Meyers, Deborah A; Milosevic, Jadranka; Tedrow, John R; Wu, Wei; Kaminski, Naftali; Wenzel, Sally E

    2017-06-01

    Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. Identify networks of genes reflective of underlying biological processes that define SA. Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12-21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes.

  12. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  13. Gene Profiling in Patients with Systemic Sclerosis Reveals the Presence of Oncogenic Gene Signatures

    Directory of Open Access Journals (Sweden)

    Marzia Dolcino

    2018-03-01

    Full Text Available Systemic sclerosis (SSc is a rare connective tissue disease characterized by three pathogenetic hallmarks: vasculopathy, dysregulation of the immune system, and fibrosis. A particular feature of SSc is the increased frequency of some types of malignancies, namely breast, lung, and hematological malignancies. Moreover, SSc may also be a paraneoplastic disease, again indicating a strong link between cancer and scleroderma. The reason of this association is still unknown; therefore, we aimed at investigating whether particular genetic or epigenetic factors may play a role in promoting cancer development in patients with SSc and whether some features are shared by the two conditions. We therefore performed a gene expression profiling of peripheral blood mononuclear cells (PBMCs derived from patients with limited and diffuse SSc, showing that the various classes of genes potentially linked to the pathogenesis of SSc (such as apoptosis, endothelial cell activation, extracellular matrix remodeling, immune response, and inflammation include genes that directly participate in the development of malignancies or that are involved in pathways known to be associated with carcinogenesis. The transcriptional analysis was then complemented by a complex network analysis of modulated genes which further confirmed the presence of signaling pathways associated with carcinogenesis. Since epigenetic mechanisms, such as microRNAs (miRNAs, are believed to play a central role in the pathogenesis of SSc, we also evaluated whether specific cancer-related miRNAs could be deregulated in the serum of SSc patients. We focused our attention on miRNAs already found upregulated in SSc such as miR-21-5p, miR-92a-3p, and on miR-155-5p, miR 126-3p and miR-16-5p known to be deregulated in malignancies associated to SSc, i.e., breast, lung, and hematological malignancies. miR-21-5p, miR-92a-3p, miR-155-5p, and miR-16-5p expression was significantly higher in SSc sera compared to

  14. Bioinformatics analysis of RNA-seq data revealed critical genes in colon adenocarcinoma.

    Science.gov (United States)

    Xi, W-D; Liu, Y-J; Sun, X-B; Shan, J; Yi, L; Zhang, T-T

    2017-07-01

    RNA-seq data of colon adenocarcinoma (COAD) were analyzed with bioinformatics tools to discover critical genes in the disease. Relevant small molecule drugs, transcription factors (TFs) and microRNAs (miRNAs) were also investigated. RNA-seq data of COAD were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis was performed with package edgeR. False positive discovery (FDR) 1 were set as the cut-offs to screen out differentially expressed genes (DEGs). Gene coexpression network was constructed with package Ebcoexpress. GO enrichment analysis was performed for the DEGs in the gene coexpression network with DAVID. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was also performed for the genes with KOBASS 2.0. Modules were identified with MCODE of Cytoscape. Relevant small molecules drugs were predicted by Connectivity map. Relevant miRNAs and TFs were searched by WebGestalt. A total of 457 DEGs, including 255 up-regulated and 202 down-regulated genes, were identified from 437 COAD and 39 control samples. A gene coexpression network was constructed containing 40 DEGs and 101 edges. The genes were mainly associated with collagen fibril organization, extracellular matrix organization and translation. Two modules were identified from the gene coexpression network, which were implicated in muscle contraction and extracellular matrix organization, respectively. Several critical genes were disclosed, such as MYH11, COL5A2 and ribosomal proteins. Nine relevant small molecule drugs were identified, such as scriptaid and STOCK1N-35874. Accordingly, a total of 17 TFs and 10 miRNAs related to COAD were acquired, such as ETS2, NFAT, AP4, miR-124A, MiR-9, miR-96 and let-7. Several critical genes and relevant drugs, TFs and miRNAs were revealed in COAD. These findings could advance the understanding of the disease and benefit therapy development.

  15. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  16. Repeated adaptive introgression at a gene under multiallelic balancing selection.

    Directory of Open Access Journals (Sweden)

    Vincent Castric

    2008-08-01

    Full Text Available Recently diverged species typically have incomplete reproductive barriers, allowing introgression of genetic material from one species into the genomic background of the other. The role of natural selection in preventing or promoting introgression remains contentious. Because of genomic co-adaptation, some chromosomal fragments are expected to be selected against in the new background and resist introgression. In contrast, natural selection should favor introgression for alleles at genes evolving under multi-allelic balancing selection, such as the MHC in vertebrates, disease resistance, or self-incompatibility genes in plants. Here, we test the prediction that negative, frequency-dependent selection on alleles at the multi-allelic gene controlling pistil self-incompatibility specificity in two closely related species, Arabidopsis halleri and A. lyrata, caused introgression at this locus at a higher rate than the genomic background. Polymorphism at this gene is largely shared, and we have identified 18 pairs of S-alleles that are only slightly divergent between the two species. For these pairs of S-alleles, divergence at four-fold degenerate sites (K = 0.0193 is about four times lower than the genomic background (K = 0.0743. We demonstrate that this difference cannot be explained by differences in effective population size between the two types of loci. Rather, our data are most consistent with a five-fold increase of introgression rates for S-alleles as compared to the genomic background, making this study the first documented example of adaptive introgression facilitated by balancing selection. We suggest that this process plays an important role in the maintenance of high allelic diversity and divergence at the S-locus in flowering plant families. Because genes under balancing selection are expected to be among the last to stop introgressing, their comparison in closely related species provides a lower-bound estimate of the time since the

  17. RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies.

    Science.gov (United States)

    Mandal, Chanchal; Kim, Sun Hwa; Chai, Jin Choul; Oh, Seon Mi; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-01

    Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well characterized. In this present study, our aim is to profile important genes that regulate cellular development during fetal development. Human embryonic carcinoma cells (NCCIT) are cultured to form embryoid bodies and then treated in the presence and absence of ethanol (50 mM). We employed RNA sequencing to profile differentially expressed genes in the ethanol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. Functional annotation using bioinformatics tools reveal significant enrichment of differential cellular development and developmental disorders. Furthermore, a group of 42, 15 and 35 transcription factor-encoding genes are screened from all of the differentially expressed genes obtained from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. We validated relative gene expression levels of several transcription factors from these lists by quantitative real-time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of alcohol-mediated anomalies and ease further research.

  18. Gain and loss of phototrophic genes revealed by comparison of two Citromicrobium bacterial genomes.

    Directory of Open Access Journals (Sweden)

    Qiang Zheng

    Full Text Available Proteobacteria are thought to have diverged from a phototrophic ancestor, according to the scattered distribution of phototrophy throughout the proteobacterial clade, and so the occurrence of numerous closely related phototrophic and chemotrophic microorganisms may be the result of the loss of genes for phototrophy. A widespread form of bacterial phototrophy is based on the photochemical reaction center, encoded by puf and puh operons that typically are in a 'photosynthesis gene cluster' (abbreviated as the PGC with pigment biosynthesis genes. Comparison of two closely related Citromicrobial genomes (98.1% sequence identity of complete 16S rRNA genes, Citromicrobium sp. JL354, which contains two copies of reaction center genes, and Citromicrobium strain JLT1363, which is chemotrophic, revealed evidence for the loss of phototrophic genes. However, evidence of horizontal gene transfer was found in these two bacterial genomes. An incomplete PGC (pufLMC-puhCBA in strain JL354 was located within an integrating conjugative element, which indicates a potential mechanism for the horizontal transfer of genes for phototrophy.

  19. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis.

    Science.gov (United States)

    Chen, Wei; Zhao, Wenshan; Yang, Aiting; Xu, Anjian; Wang, Huan; Cong, Min; Liu, Tianhui; Wang, Ping; You, Hong

    2017-12-15

    -receptor interaction" were remarked significant (adjusted pfunctional miRNA-gene regulatory module that contains 7 miRNAs, 22 genes and 42 miRNA-gene connections. Gene interaction analysis based on String database revealed that 8 out of 22 genes were highly clustered. Finally, we experimentally confirmed a functional regulatory module containing 5 miRNAs (miR-130b-3p, miR-148a-3p, miR-345-5p, miR-378a-3p, and miR-422a) and 6 genes (COL6A1, COL6A2, COL6A3, PIK3R3, COL1A1, CCND2) associated with liver fibrosis. Our integrated analysis of miRNA and gene expression profiles highlighted a functional miRNA-gene regulatory module associated with liver fibrosis, which, to some extent, may provide important clues to better understand the underlying pathogenesis of liver fibrosis. Copyright © 2017. Published by Elsevier B.V.

  20. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides

    Science.gov (United States)

    Yin, Fugui; Yu, Hai; Lepp, Dion; Shi, Xuejiang; Yang, Xiaojian; Hu, Jielun; Leeson, Steve; Yang, Chengbo; Nie, Shaoping; Hou, Yongqing; Gong, Joshua

    2016-01-01

    Background & Aims Butyrate has been shown to potently regulate energy expenditure and lipid metabolism in animals, yet the underlying mechanisms remain to be fully understood. The aim of this study was to investigate the molecular mechanisms of butyrate (in the form of butyrate glycerides, BG)-induced lipid metabolism at the level of gene expression in the jejunum and liver of broilers. Methodology/Principal Findings Two animal experiments were included in this study. In Experiment 1, two hundred and forty male broiler chickens were equally allocated into two groups: 1) basal diet (BD), 2) BG diets (BD + BG). Growth performance was compared between treatments for the 41-day trial. In Experiment 2, forty male broiler chickens were equally allocated into two groups. The general experimental design, group and management were the same as described in Experiment 1 except for reduced bird numbers and 21-day duration of the trial. Growth performance, abdominal fat deposition, serum lipid profiles as well as serum and tissue concentrations of key enzymes involved in lipid metabolism were compared between treatments. RNA-seq was employed to identify both differentially expressed genes (DEGs) and treatment specifically expressed genes (TSEGs). Functional clustering of DEGs and TSEGs and signaling pathways associated with lipid metabolism were identified using Ingenuity Pathways Analysis (IPA) and DAVID Bioinformatics Resources 6.7 (DAVID-BR). Quantitative PCR (qPCR) assays were subsequently conducted to further examine the expression of genes in the peroxisome proliferator-activated receptors (PPAR) signaling pathway identified by DAVID-BR. Dietary BG intervention significantly reduced abdominal fat ratio (abdominal fat weight/final body weight) in broilers. The decreased fat deposition in BG-fed chickens was in accordance with serum lipid profiles as well as the level of lipid metabolism-related enzymes in the serum, abdominal adipose, jejunum and liver. RNA-seq analysis

  1. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures.

    Directory of Open Access Journals (Sweden)

    Moon Young Lee

    Full Text Available Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC, which serve as slow-wave electrical pacemakers for gastrointestinal (GI smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies.

  2. Gene expression profiles reveal key pathways and genes associated with neuropathic pain in patients with spinal cord injury.

    Science.gov (United States)

    He, Xijing; Fan, Liying; Wu, Zhongheng; He, Jiaxuan; Cheng, Bin

    2017-04-01

    Previous gene expression profiling studies of neuropathic pain (NP) following spinal cord injury (SCI) have predominantly been performed in animal models. The present study aimed to investigate gene alterations in patients with spinal cord injury and to further examine the mechanisms underlying NP following SCI. The GSE69901 gene expression profile was downloaded from the public Gene Expression Omnibus database. Samples of peripheral blood mononuclear cells (PBMCs) derived from 12 patients with intractable NP and 13 control patients without pain were analyzed to identify the differentially expressed genes (DEGs), followed by functional enrichment analysis and protein‑protein interaction (PPI) network construction. In addition, a transcriptional regulation network was constructed and functional gene clustering was performed. A total of 70 upregulated and 61 downregulated DEGs were identified in the PBMC samples from patients with NP. The upregulated and downregulated genes were significantly involved in different Gene Ontology terms and pathways, including focal adhesion, T cell receptor signaling pathway and mitochondrial function. Glycogen synthase kinase 3 β (GSK3B) was identified as a hub protein in the PPI network. In addition, ornithine decarboxylase 1 (ODC1) and ornithine aminotransferase (OAT) were regulated by additional transcription factors in the regulation network. GSK3B, OAT and ODC1 were significantly enriched in two functional gene clusters, the function of mitochondrial membrane and DNA binding. Focal adhesion and the T cell receptor signaling pathway may be significantly linked with NP, and GSK3B, OAT and ODC1 may be potential targets for the treatment of NP.

  3. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    Science.gov (United States)

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are

  4. Genomewide Expression and Functional Interactions of Genes under Drought Stress in Maize

    Directory of Open Access Journals (Sweden)

    Nepolean Thirunavukkarasu

    2017-01-01

    Full Text Available A genomewide transcriptome assay of two subtropical genotypes of maize was used to observe the expression of genes at seedling stage of drought stress. The number of genes expressed differentially was greater in HKI1532 (a drought tolerant genotype than in PC3 (a drought sensitive genotype, indicating primary differences at the transcriptional level in stress tolerance. The global coexpression networks of the two genotypes differed significantly with respect to the number of modules and the coexpression pattern within the modules. A total of 174 drought-responsive genes were selected from HKI1532, and their coexpression network revealed key correlations between different adaptive pathways, each cluster of the network representing a specific biological function. Transcription factors related to ABA-dependent stomatal closure, signalling, and phosphoprotein cascades work in concert to compensate for reduced photosynthesis. Under stress, water balance was maintained by coexpression of the genes involved in osmotic adjustments and transporter proteins. Metabolism was maintained by the coexpression of genes involved in cell wall modification and protein and lipid metabolism. The interaction of genes involved in crucial biological functions during stress was identified and the results will be useful in targeting important gene interactions to understand drought tolerance in greater detail.

  5. Gene expression profiling of mucolipidosis type IV fibroblasts reveals deregulation of genes with relevant functions in lysosome physiology.

    Science.gov (United States)

    Bozzato, Andrea; Barlati, Sergio; Borsani, Giuseppe

    2008-04-01

    Mucolipidosis type IV (MLIV, MIM 252650) is an autosomal recessive lysosomal storage disorder that causes mental and motor retardation as well as visual impairment. The lysosomal storage defect in MLIV is consistent with abnormalities of membrane traffic and organelle dynamics in the late endocytic pathway. MLIV is caused by mutations in the MCOLN1 gene, which codes for mucolipin-1 (MLN1), a member of the large family of transient receptor potential (TRP) cation channels. Although a number of studies have been performed on mucolipin-1, the pathological mechanisms underlying MLIV are not fully understood. To identify genes that characterize pathogenic changes in mucolipidosis type IV, we compared the expression profiles of three MLIV and three normal skin fibroblasts cell lines using oligonucleotide microarrays. Genes that were differentially expressed in patients' cells were identified. 231 genes were up-regulated, and 116 down-regulated. Real-Time RT-PCR performed on selected genes in six independent MLIV fibroblasts cell lines was generally consistent with the microarray findings. This study allowed to evidence the modulation at the transcriptional level of a discrete number of genes relevant in biological processes which are altered in the disease such as endosome/lysosome trafficking, lysosome biogenesis, organelle acidification and lipid metabolism.

  6. Exome sequencing in Jewish and Arab patients with rhabdomyolysis reveals single-gene etiology in 43% of cases.

    Science.gov (United States)

    Vivante, Asaf; Ityel, Hadas; Pode-Shakked, Ben; Chen, Jing; Shril, Shirlee; van der Ven, Amelie T; Mann, Nina; Schmidt, Johanna Magdalena; Segel, Reeval; Aran, Adi; Zeharia, Avraham; Staretz-Chacham, Orna; Bar-Yosef, Omer; Raas-Rothschild, Annick; Landau, Yuval E; Lifton, Richard P; Anikster, Yair; Hildebrandt, Friedhelm

    2017-12-01

    Rhabdomyolysis is a clinical emergency that may cause acute kidney injury (AKI). It can be acquired or due to monogenic mutations. Around 60 different rare monogenic forms of rhabdomyolysis have been reported to date. In the clinical setting, identifying the underlying molecular diagnosis is challenging due to nonspecific presentation, the high number of causative genes, and current lack of data on the prevalence of monogenic forms. We employed whole exome sequencing (WES) to reveal the percentage of rhabdomyolysis cases explained by single-gene (monogenic) mutations in one of 58 candidate genes. We investigated a cohort of 21 unrelated families with rhabdomyolysis, in whom no underlying etiology had been previously established. Using WES, we identified causative mutations in candidate genes in nine of the 21 families (43%). We detected disease-causing mutations in eight of 58 candidate genes, grouped into the following categories: (1) disorders of fatty acid metabolism (CPT2), (2) disorders of glycogen metabolism (PFKM and PGAM2), (3) disorders of abnormal skeletal muscle relaxation and contraction (CACNA1S, MYH3, RYR1 and SCN4A), and (4) disorders of purine metabolism (AHCY). Our findings demonstrate a very high detection rate for monogenic etiologies using WES and reveal broad genetic heterogeneity for rhabdomyolysis. These results highlight the importance of molecular genetic diagnostics for establishing an etiologic diagnosis. Because these patients are at risk for recurrent episodes of rhabdomyolysis and subsequent risk for AKI, WES allows adequate prophylaxis and treatment for these patients and their family members and enables a personalized medicine approach.

  7. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    Science.gov (United States)

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (pentropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    Directory of Open Access Journals (Sweden)

    Petar Petrov

    Full Text Available "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  9. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    Science.gov (United States)

    Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W

    2015-01-01

    "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  10. Gene Expression Analysis in Tubule Interstitial Compartments Reveals Candidate Agents for IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Jinling Wang

    2014-09-01

    Full Text Available Background/Aims: Our aim was to explore the molecular mechanism underlying development of IgA nephropathy and discover candidate agents for IgA nephropathy. Methods: The differentially expressed genes (DEGs between patients with IgA nephropathy and normal controls were identified by the data of GSE35488 downloaded from GEO (Gene Expression Omnibus database. The co-expressed gene pairs among DEGs were screened to construct the gene-gene interaction network. Gene Ontology (GO enrichment analysis was performed to analyze the functions of DEGs. The biologically active small molecules capable of targeting IgA nephropathy were identified using the Connectivity Map (cMap database. Results: A total of 55 genes involved in response to organic substance, transcription factor activity and response to steroid hormone stimulus were identified to be differentially expressed in IgA nephropathy patients compared to healthy individuals. A network with 45 co-expressed gene pairs was constructed. DEGs in the network were significantly enriched in response to organic substance. Additionally, a group of small molecules were identified, such as doxorubicin and thapsigargin. Conclusion: Our work provided a systematic insight in understanding the mechanism of IgA nephropathy. Small molecules such as thapsigargin might be potential candidate agents for the treatment of IgA nephropathy.

  11. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  12. An interspecific fungal hybrid reveals cross-kingdom rules for allopolyploid gene expression patterns.

    Directory of Open Access Journals (Sweden)

    Murray P Cox

    2014-03-01

    Full Text Available Polyploidy, a state in which the chromosome complement has undergone an increase, is a major force in evolution. Understanding the consequences of polyploidy has received much attention, and allopolyploids, which result from the union of two different parental genomes, are of particular interest because they must overcome a suite of biological responses to this merger, known as "genome shock." A key question is what happens to gene expression of the two gene copies following allopolyploidization, but until recently the tools to answer this question on a genome-wide basis were lacking. Here we utilize high throughput transcriptome sequencing to produce the first genome-wide picture of gene expression response to allopolyploidy in fungi. A novel pipeline for assigning sequence reads to the gene copies was used to quantify their expression in a fungal allopolyploid. We find that the transcriptional response to allopolyploidy is predominantly conservative: both copies of most genes are retained; over half the genes inherit parental gene expression patterns; and parental differential expression is often lost in the allopolyploid. Strikingly, the patterns of gene expression change are highly concordant with the genome-wide expression results of a cotton allopolyploid. The very different nature of these two allopolyploids implies a conserved, eukaryote-wide transcriptional response to genome merger. We provide evidence that the transcriptional responses we observe are mostly driven by intrinsic differences between the regulatory systems in the parent species, and from this propose a mechanistic model in which the cross-kingdom conservation in transcriptional response reflects conservation of the mutational processes underlying eukaryotic gene regulatory evolution. This work provides a platform to develop a universal understanding of gene expression response to allopolyploidy and suggests that allopolyploids are an exceptional system to investigate gene

  13. Transcriptome sequencing of Mycosphaerella fijiensis during association with Musa acuminata reveals candidate pathogenicity genes.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-08-30

    genes with higher expression in infected leaf tissue, suggesting that they may play a role in pathogenicity. For two other scaffolds, no transcripts were detected in either condition, and PCR assays support the hypothesis that at least one of these scaffolds corresponds to a dispensable chromosome that is not required for survival or pathogenicity. Our study revealed major changes in the transcriptome of Mycosphaerella fijiensis, when associating with its host compared to during saprophytic growth in medium. This analysis identified putative pathogenicity genes and also provides support for the existence of dispensable chromosomes in this fungus.

  14. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations

    Directory of Open Access Journals (Sweden)

    David Jean-Philippe

    2009-11-01

    Full Text Available Abstract Background Genome scans are becoming an increasingly popular approach to study the genetic basis of adaptation and speciation, but on their own, they are often helpless at identifying the specific gene(s or mutation(s targeted by selection. This shortcoming is hopefully bound to disappear in the near future, thanks to the wealth of new genomic resources that are currently being developed for many species. In this article, we provide a foretaste of this exciting new era by conducting a genome scan in the mosquito Aedes aegypti with the aim to look for candidate genes involved in resistance to Bacillus thuringiensis subsp. israelensis (Bti insecticidal toxins. Results The genome of a Bti-resistant and a Bti-susceptible strains was surveyed using about 500 MITE-based molecular markers, and the loci showing the highest inter-strain genetic differentiation were sequenced and mapped on the Aedes aegypti genome sequence. Several good candidate genes for Bti-resistance were identified in the vicinity of these highly differentiated markers. Two of them, coding for a cadherin and a leucine aminopeptidase, were further examined at the sequence and gene expression levels. In the resistant strain, the cadherin gene displayed patterns of nucleotide polymorphisms consistent with the action of positive selection (e.g. an excess of high compared to intermediate frequency mutations, as well as a significant under-expression compared to the susceptible strain. Conclusion Both sequence and gene expression analyses agree to suggest a role for positive selection in the evolution of this cadherin gene in the resistant strain. However, it is unlikely that resistance to Bti is conferred by this gene alone, and further investigation will be needed to characterize other genes significantly associated with Bti resistance in Ae. aegypti. Beyond these results, this article illustrates how genome scans can build on the body of new genomic information (here, full

  15. Transcriptome Analysis of Three Sheep Intestinal Regions reveals Key Pathways and Hub Regulatory Genes of Large Intestinal Lipid Metabolism.

    Science.gov (United States)

    Chao, Tianle; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Hou, Lei; Wang, Jin; Wang, Jianmin

    2017-07-13

    The large intestine, also known as the hindgut, is an important part of the animal digestive system. Recent studies on digestive system development in ruminants have focused on the rumen and the small intestine, but the molecular mechanisms underlying sheep large intestine metabolism remain poorly understood. To identify genes related to intestinal metabolism and to reveal molecular regulation mechanisms, we sequenced and compared the transcriptomes of mucosal epithelial tissues among the cecum, proximal colon and duodenum. A total of 4,221 transcripts from 3,254 genes were identified as differentially expressed transcripts. Between the large intestine and duodenum, differentially expressed transcripts were found to be significantly enriched in 6 metabolism-related pathways, among which PPAR signaling was identified as a key pathway. Three genes, CPT1A, LPL and PCK1, were identified as higher expression hub genes in the large intestine. Between the cecum and colon, differentially expressed transcripts were significantly enriched in 5 lipid metabolism related pathways, and CEPT1 and MBOAT1 were identified as hub genes. This study provides important information regarding the molecular mechanisms of intestinal metabolism in sheep and may provide a basis for further study.

  16. In Search of 'Birth Month Genes': Using Existing Data Repositories to Locate Genes Underlying Birth Month-Disease Relationships.

    Science.gov (United States)

    Boland, Mary Regina; Tatonetti, Nicholas P

    2016-01-01

    Prenatal and perinatal exposures vary seasonally (e.g., sunlight, allergens) and many diseases are linked with variance in exposure. Epidemiologists often measure these changes using birth month as a proxy for seasonal variance. Likewise, Genome-Wide Association Studies have associated or implicated these same diseases with many genes. Both disparate data types (epidemiological and genetic) can provide key insights into the underlying disease biology. We developed an algorithm that links 1) epidemiological data from birth month studies with 2) genetic data from published gene-disease association studies. Our framework uses existing data repositories - PubMed, DisGeNET and Gene Ontology - to produce a bipartite network that connects enriched seasonally varying biofactorss with birth month dependent diseases (BMDDs) through their overlapping developmental gene sets. As a proof-of-concept, we investigate 7 known BMDDs and highlight three important biological networks revealed by our algorithm and explore some interesting genetic mechanisms potentially responsible for the seasonal contribution to BMDDs.

  17. Comprehensive gene expression profiling reveals synergistic functional networks in cerebral vessels after hypertension or hypercholesterolemia.

    Directory of Open Access Journals (Sweden)

    Wei-Yi Ong

    Full Text Available Atherosclerotic stenosis of cerebral arteries or intracranial large artery disease (ICLAD is a major cause of stroke especially in Asians, Hispanics and Africans, but relatively little is known about gene expression changes in vessels at risk. This study compares comprehensive gene expression profiles in the middle cerebral artery (MCA of New Zealand White rabbits exposed to two stroke risk factors i.e. hypertension and/or hypercholesterolemia, by the 2-Kidney-1-Clip method, or dietary supplementation with cholesterol. Microarray and Ingenuity Pathway Analyses of the MCA of the hypertensive rabbits showed up-regulated genes in networks containing the node molecules: UBC (ubiquitin, P38 MAPK, ERK, NFkB, SERPINB2, MMP1 and APP (amyloid precursor protein; and down-regulated genes related to MAPK, ERK 1/2, Akt, 26 s proteasome, histone H3 and UBC. The MCA of hypercholesterolemic rabbits showed differentially expressed genes that are surprisingly, linked to almost the same node molecules as the hypertensive rabbits, despite a relatively low percentage of 'common genes' (21 and 7% between the two conditions. Up-regulated common genes were related to: UBC, SERPINB2, TNF, HNF4A (hepatocyte nuclear factor 4A and APP, and down-regulated genes, related to UBC. Increased HNF4A message and protein were verified in the aorta. Together, these findings reveal similar nodal molecules and gene pathways in cerebral vessels affected by hypertension or hypercholesterolemia, which could be a basis for synergistic action of risk factors in the pathogenesis of ICLAD.

  18. Peripheral blood transcriptome sequencing reveals rejection-relevant genes in long-term heart transplantation.

    Science.gov (United States)

    Chen, Yan; Zhang, Haibo; Xiao, Xue; Jia, Yixin; Wu, Weili; Liu, Licheng; Jiang, Jun; Zhu, Baoli; Meng, Xu; Chen, Weijun

    2013-10-03

    Peripheral blood-based gene expression patterns have been investigated as biomarkers to monitor the immune system and rule out rejection after heart transplantation. Recent advances in the high-throughput deep sequencing (HTS) technologies provide new leads in transcriptome analysis. By performing Solexa/Illumina's digital gene expression (DGE) profiling, we analyzed gene expression profiles of PBMCs from 6 quiescent (grade 0) and 6 rejection (grade 2R&3R) heart transplant recipients at more than 6 months after transplantation. Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR) was carried out in an independent validation cohort of 47 individuals from three rejection groups (ISHLT, grade 0,1R, 2R&3R). Through DGE sequencing and qPCR validation, 10 genes were identified as informative genes for detection of cardiac transplant rejection. A further clustering analysis showed that the 10 genes were not only effective for distinguishing patients with acute cardiac allograft rejection, but also informative for discriminating patients with renal allograft rejection based on both blood and biopsy samples. Moreover, PPI network analysis revealed that the 10 genes were connected to each other within a short interaction distance. We proposed a 10-gene signature for heart transplant patients at high-risk of developing severe rejection, which was found to be effective as well in other organ transplant. Moreover, we supposed that these genes function systematically as biomarkers in long-time allograft rejection. Further validation in broad transplant population would be required before the non-invasive biomarkers can be generally utilized to predict the risk of transplant rejection. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2009-11-01

    Full Text Available Abstract Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64% consisted of both mitochondrial and cytosolic (non-mitochondrial proteins (mt-cy families while the remaining 33 (36% were composed of mitochondrial proteins (mt-mt families. Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1 relocalization from mitochondria to cytosol, 2 from cytosol to mitochondria and 3 multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on

  20. Concerted evolution of sea anemone neurotoxin genes is revealed through analysis of the Nematostella vectensis genome.

    Science.gov (United States)

    Moran, Yehu; Weinberger, Hagar; Sullivan, James C; Reitzel, Adam M; Finnerty, John R; Gurevitz, Michael

    2008-04-01

    Gene families, which encode toxins, are found in many poisonous animals, yet there is limited understanding of their evolution at the nucleotide level. The release of the genome draft sequence for the sea anemone Nematostella vectensis enabled a comprehensive study of a gene family whose neurotoxin products affect voltage-gated sodium channels. All gene family members are clustered in a highly repetitive approximately 30-kb genomic region and encode a single toxin, Nv1. These genes exhibit extreme conservation at the nucleotide level which cannot be explained by purifying selection. This conservation greatly differs from the toxin gene families of other animals (e.g., snakes, scorpions, and cone snails), whose evolution was driven by diversifying selection, thereby generating a high degree of genetic diversity. The low nucleotide diversity at the Nv1 genes is reminiscent of that reported for DNA encoding ribosomal RNA (rDNA) and 2 hsp70 genes from Drosophila, which have evolved via concerted evolution. This evolutionary pattern was experimentally demonstrated in yeast rDNA and was shown to involve unequal crossing-over. Through sequence analysis of toxin genes from multiple N. vectensis populations and 2 other anemone species, Anemonia viridis and Actinia equina, we observed that the toxin genes for each sea anemone species are more similar to one another than to those of other species, suggesting they evolved by manner of concerted evolution. Furthermore, in 2 of the species (A. viridis and A. equina) we found genes that evolved under diversifying selection, suggesting that concerted evolution and accelerated evolution may occur simultaneously.

  1. Gene Expression Profiling Reveals Potential Players of Left-Right Asymmetry in Female Chicken Gonads

    Directory of Open Access Journals (Sweden)

    Zhiyi Wan

    2017-06-01

    Full Text Available Most female birds develop only a left ovary, whereas males develop bilateral testes. The mechanism underlying this process is still not completely understood. Here, we provide a comprehensive transcriptional analysis of female chicken gonads and identify novel candidate side-biased genes. RNA-Seq analysis was carried out on total RNA harvested from the left and right gonads on embryonic day 6 (E6, E12, and post-hatching day 1 (D1. By comparing the gene expression profiles between the left and right gonads, 347 differentially expressed genes (DEGs were obtained on E6, 3730 were obtained on E12, and 2787 were obtained on D1. Side-specific genes were primarily derived from the autosome rather than the sex chromosome. Gene ontology and pathway analysis showed that the DEGs were most enriched in the Piwi-interactiing RNA (piRNA metabolic process, germ plasm, chromatoid body, P granule, neuroactive ligand-receptor interaction, microbial metabolism in diverse environments, and methane metabolism. A total of 111 DEGs, five gene ontology (GO terms, and three pathways were significantly different between the left and right gonads among all the development stages. We also present the gene number and the percentage within eight development-dependent expression patterns of DEGs in the left and right gonads of female chicken.

  2. Peripheral blood RNA gene expression profiling in illicit methcathinone users reveals effect on immune system

    Directory of Open Access Journals (Sweden)

    Katrin eSikk

    2011-08-01

    Full Text Available Methcathinone (ephedrone is relatively easily accessible for abuse. Its users develop an extrapyramidal syndrome and it is not known if this is caused by methcathinone itself, by side-ingredients (manganese, or both. In the present study we aimed to clarify molecular mechanisms underlying this condition. We analyzed whole genome gene expression patterns of peripheral blood from 20 methcathinone users and 20 matched controls. Gene expression profile data was analyzed by Bayesian modelling and functional annotation. In order to verify the genechip results we performed quantitative real-time (RT PCR in selected genes. 326 out of analyzed 28,869 genes showed statistically significant differential expression with FDR adjusted p-values below 0.05. Quantitative RT-PCR confirmed differential expression for the most of selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation immunological disease, cellular movement and cardiovascular disease gene network (enrichment score 42. As HIV and HCV infections were confounding factors, we performed additional stratification of patients. A similar functional activation of the immunological disease pathway was evident when we compared patients according to the injection status (past versus current users, balanced for HIV and HCV infection. However, this difference was not large therefore the major effect was related to the HIV status of the patients. Mn-methcathinone abusers have blood transcriptional patterns mostly caused by their HIV and HCV infections.

  3. Gene Expression Profiling Reveals Potential Players of Left-Right Asymmetry in Female Chicken Gonads.

    Science.gov (United States)

    Wan, Zhiyi; Lu, Yanan; Rui, Lei; Yu, Xiaoxue; Yang, Fang; Tu, Chengfang; Li, Zandong

    2017-06-20

    Most female birds develop only a left ovary, whereas males develop bilateral testes. The mechanism underlying this process is still not completely understood. Here, we provide a comprehensive transcriptional analysis of female chicken gonads and identify novel candidate side-biased genes. RNA-Seq analysis was carried out on total RNA harvested from the left and right gonads on embryonic day 6 (E6), E12, and post-hatching day 1 (D1). By comparing the gene expression profiles between the left and right gonads, 347 differentially expressed genes (DEGs) were obtained on E6, 3730 were obtained on E12, and 2787 were obtained on D1. Side-specific genes were primarily derived from the autosome rather than the sex chromosome. Gene ontology and pathway analysis showed that the DEGs were most enriched in the Piwi-interactiing RNA (piRNA) metabolic process, germ plasm, chromatoid body, P granule, neuroactive ligand-receptor interaction, microbial metabolism in diverse environments, and methane metabolism. A total of 111 DEGs, five gene ontology (GO) terms, and three pathways were significantly different between the left and right gonads among all the development stages. We also present the gene number and the percentage within eight development-dependent expression patterns of DEGs in the left and right gonads of female chicken.

  4. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    Science.gov (United States)

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  5. Reanalysis of RNA-sequencing data reveals several additional fusion genes with multiple isoforms.

    Science.gov (United States)

    Kangaspeska, Sara; Hultsch, Susanne; Edgren, Henrik; Nicorici, Daniel; Murumägi, Astrid; Kallioniemi, Olli

    2012-01-01

    RNA-sequencing and tailored bioinformatic methodologies have paved the way for identification of expressed fusion genes from the chaotic genomes of solid tumors. We have recently successfully exploited RNA-sequencing for the discovery of 24 novel fusion genes in breast cancer. Here, we demonstrate the importance of continuous optimization of the bioinformatic methodology for this purpose, and report the discovery and experimental validation of 13 additional fusion genes from the same samples. Integration of copy number profiling with the RNA-sequencing results revealed that the majority of the gene fusions were promoter-donating events that occurred at copy number transition points or involved high-level DNA-amplifications. Sequencing of genomic fusion break points confirmed that DNA-level rearrangements underlie selected fusion transcripts. Furthermore, a significant portion (>60%) of the fusion genes were alternatively spliced. This illustrates the importance of reanalyzing sequencing data as gene definitions change and bioinformatic methods improve, and highlights the previously unforeseen isoform diversity among fusion transcripts.

  6. Reanalysis of RNA-sequencing data reveals several additional fusion genes with multiple isoforms.

    Directory of Open Access Journals (Sweden)

    Sara Kangaspeska

    Full Text Available RNA-sequencing and tailored bioinformatic methodologies have paved the way for identification of expressed fusion genes from the chaotic genomes of solid tumors. We have recently successfully exploited RNA-sequencing for the discovery of 24 novel fusion genes in breast cancer. Here, we demonstrate the importance of continuous optimization of the bioinformatic methodology for this purpose, and report the discovery and experimental validation of 13 additional fusion genes from the same samples. Integration of copy number profiling with the RNA-sequencing results revealed that the majority of the gene fusions were promoter-donating events that occurred at copy number transition points or involved high-level DNA-amplifications. Sequencing of genomic fusion break points confirmed that DNA-level rearrangements underlie selected fusion transcripts. Furthermore, a significant portion (>60% of the fusion genes were alternatively spliced. This illustrates the importance of reanalyzing sequencing data as gene definitions change and bioinformatic methods improve, and highlights the previously unforeseen isoform diversity among fusion transcripts.

  7. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  8. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.).

    Science.gov (United States)

    Dou, Junling; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhang, Lei; Ali, Aslam; Kuang, Hanhui; Liu, Wenge

    2018-04-01

    A 159 bp deletion in ClFS1 gene encoding IQD protein is responsible for fruit shape in watermelon. Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is known for its rich diversity in fruit size and shape. Fruit shape has been one of the major objectives of watermelon breeding. However, the candidate genes and the underlying genetic mechanism for such an important trait in watermelon are unknown. In this study, we identified a locus on chromosome 3 of watermelon genome controlling fruit shape. Segregation analysis in F 2 and BC 1 populations derived from a cross between two inbred lines "Duan125" (elongate fruit) and "Zhengzhouzigua" (spherical fruit) suggests that fruit shape of watermelon is controlled by a single locus and elongate fruit (OO) is incompletely dominant to spherical fruit (oo) with the heterozygote (Oo) being oval fruit. GWAS profiles among 315 accessions identified a major locus designated on watermelon chromosome 3, which was confirmed by BSA-seq mapping in the F 2 population. The candidate gene was mapped to a region 46 kb on chromosome 3. There were only four genes present in the corresponding region in the reference genome. Four candidate genes were sequenced in this region, revealing that the CDS of Cla011257 had a 159 bp deletion which resulted in the omission of 53 amino acids in elongate watermelon. An indel marker was derived from the 159 bp deletion to test the F 2 population and 105 watermelon accessions. The results showed that Cla011257 cosegregated with watermelon fruit shape. In addition, the Cla011257 expression was the highest at ovary formation stage. The predicted protein of the Cla011257 gene fitted in IQD protein family which was reported to have association with cell arrays and Ca 2+ -CaM signaling modules. Clear understanding of the genes facilitating the fruit shape along with marker association selection will be an effective way to develop new cultivars.

  9. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology

    DEFF Research Database (Denmark)

    Börnigen, Daniela; Pers, Tune Hannes; Thorrez, Lieven

    2013-01-01

    Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among prot...

  10. An excited state underlies gene regulation of a transcriptional riboswitch

    Science.gov (United States)

    Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi

    2017-01-01

    Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589

  11. Dissection of a locus on mouse chromosome 5 reveals arthritis promoting and inhibitory genes

    DEFF Research Database (Denmark)

    Lindvall, Therese; Karlsson, Jenny; Holmdahl, Rikard

    2009-01-01

    with Eae39 congenic- and sub-interval congenic mice, carrying RIIIS/J genes on the B10.RIII genetic background, revealed three loci within Eae39 that control disease and anti-collagen antibody titers. Two of the loci promoted disease and the third locus was protecting from collagen induced arthritis...... development. By further breeding of mice with small congenic fragments, we identified a 3.2 Megabasepair (Mbp) interval that regulates disease. CONCLUSIONS: Disease promoting- and protecting genes within the Eae39 locus on mouse chromosome 5, control susceptibility to collagen induced arthritis. A disease......-protecting locus in the telomeric part of Eae39 results in lower anti-collagen antibody responses. The study shows the importance of breeding sub-congenic mouse strains to reveal genetic effects on complex diseases....

  12. Comprehensive Gene Expression Profiling Reveals Synergistic Functional Networks in Cerebral Vessels after Hypertension or Hypercholesterolemia

    Science.gov (United States)

    Ong, Wei-Yi; Ng, Mary Pei-Ern; Loke, Sau-Yeen; Jin, Shalai; Wu, Ya-Jun; Tanaka, Kazuhiro; Wong, Peter Tsun-Hon

    2013-01-01

    Atherosclerotic stenosis of cerebral arteries or intracranial large artery disease (ICLAD) is a major cause of stroke especially in Asians, Hispanics and Africans, but relatively little is known about gene expression changes in vessels at risk. This study compares comprehensive gene expression profiles in the middle cerebral artery (MCA) of New Zealand White rabbits exposed to two stroke risk factors i.e. hypertension and/or hypercholesterolemia, by the 2-Kidney-1-Clip method, or dietary supplementation with cholesterol. Microarray and Ingenuity Pathway Analyses of the MCA of the hypertensive rabbits showed up-regulated genes in networks containing the node molecules: UBC (ubiquitin), P38 MAPK, ERK, NFkB, SERPINB2, MMP1 and APP (amyloid precursor protein); and down-regulated genes related to MAPK, ERK 1/2, Akt, 26 s proteasome, histone H3 and UBC. The MCA of hypercholesterolemic rabbits showed differentially expressed genes that are surprisingly, linked to almost the same node molecules as the hypertensive rabbits, despite a relatively low percentage of ‘common genes’ (21 and 7%) between the two conditions. Up-regulated common genes were related to: UBC, SERPINB2, TNF, HNF4A (hepatocyte nuclear factor 4A) and APP, and down-regulated genes, related to UBC. Increased HNF4A message and protein were verified in the aorta. Together, these findings reveal similar nodal molecules and gene pathways in cerebral vessels affected by hypertension or hypercholesterolemia, which could be a basis for synergistic action of risk factors in the pathogenesis of ICLAD. PMID:23874591

  13. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    Science.gov (United States)

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2018-01-01

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  14. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position

  15. Specific gene expression responses to parasite genotypes reveal redundancy of innate immunity in vertebrates.

    Directory of Open Access Journals (Sweden)

    David Haase

    Full Text Available Vertebrate innate immunity is the first line of defense against an invading pathogen and has long been assumed to be largely unspecific with respect to parasite/pathogen species. However, recent phenotypic evidence suggests that immunogenetic variation, i.e. allelic variability in genes associated with the immune system, results in host-parasite genotype-by-genotype interactions and thus specific innate immune responses. Immunogenetic variation is common in all vertebrate taxa and this reflects an effective immunological function in complex environments. However, the underlying variability in host gene expression patterns as response of innate immunity to within-species genetic diversity of macroparasites in vertebrates is unknown. We hypothesized that intra-specific variation among parasite genotypes must be reflected in host gene expression patterns. Here we used high-throughput RNA-sequencing to examine the effect of parasite genotypes on gene expression patterns of a vertebrate host, the three-spined stickleback (Gasterosteus aculeatus. By infecting naïve fish with distinct trematode genotypes of the species Diplostomum pseudospathaceum we show that gene activity of innate immunity in three-spined sticklebacks depended on the identity of an infecting macroparasite genotype. In addition to a suite of genes indicative for a general response against the trematode we also find parasite-strain specific gene expression, in particular in the complement system genes, despite similar infection rates of single clone treatments. The observed discrepancy between infection rates and gene expression indicates the presence of alternative pathways which execute similar functions. This suggests that the innate immune system can induce redundant responses specific to parasite genotypes.

  16. Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.

    Directory of Open Access Journals (Sweden)

    Helen L Ramsden

    2015-01-01

    Full Text Available Neural circuits in the medial entorhinal cortex (MEC encode an animal's position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations.

  17. A Deconvolution Protocol for ChIP-Seq Reveals Analogous Enhancer Structures on the Mouse and Human Ribosomal RNA Genes

    Directory of Open Access Journals (Sweden)

    Jean-Clement Mars

    2018-01-01

    Full Text Available The combination of Chromatin Immunoprecipitation and Massively Parallel Sequencing, or ChIP-Seq, has greatly advanced our genome-wide understanding of chromatin and enhancer structures. However, its resolution at any given genetic locus is limited by several factors. In applying ChIP-Seq to the study of the ribosomal RNA genes, we found that a major limitation to resolution was imposed by the underlying variability in sequence coverage that very often dominates the protein–DNA interaction profiles. Here, we describe a simple numerical deconvolution approach that, in large part, corrects for this variability, and significantly improves both the resolution and quantitation of protein–DNA interaction maps deduced from ChIP-Seq data. This approach has allowed us to determine the in vivo organization of the RNA polymerase I preinitiation complexes that form at the promoters and enhancers of the mouse (Mus musculus and human (Homo sapiens ribosomal RNA genes, and to reveal a phased binding of the HMG-box factor UBF across the rDNA. The data identify and map a “Spacer Promoter” and associated stalled polymerase in the intergenic spacer of the human ribosomal RNA genes, and reveal a very similar enhancer structure to that found in rodents and lower vertebrates.

  18. Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Annika eSpies

    2012-01-01

    Full Text Available Race-nonspecific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL and therefore difficult to handle in practice. Knowing the genes that underlie race-nonspecific resistance would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worlwide collection of spring barley accessions for candidate genes of race-nonspecific resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh and combined data with results from QTL-mapping- as well as functional-genomics approaches. This led to the idenfication of 11 associated genes with converging evidence for an important role in race-nonspecific resistance in the presence of the Mlo-gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches accelerates the discovery of genes underlying race-nonspecific resistance in barley and other crop plants.

  19. Integrated Metabolo-Transcriptomics Reveals Fusarium Head Blight Candidate Resistance Genes in Wheat QTL-Fhb2.

    Directory of Open Access Journals (Sweden)

    Dhananjay Dhokane

    Full Text Available Fusarium head blight (FHB caused by Fusarium graminearum not only causes severe losses in yield, but also reduces quality of wheat grain by accumulating mycotoxins. Breeding for host plant resistance is considered as the best strategy to manage FHB. Resistance in wheat to FHB is quantitative in nature, involving cumulative effects of many genes governing resistance. The poor understanding of genetics and lack of precise phenotyping has hindered the development of FHB resistant cultivars. Though more than 100 QTLs imparting FHB resistance have been reported, none discovered the specific genes localized within the QTL region, nor the underlying mechanisms of resistance.In our study recombinant inbred lines (RILs carrying resistant (R-RIL and susceptible (S-RIL alleles of QTL-Fhb2 were subjected to metabolome and transcriptome profiling to discover the candidate genes. Metabolome profiling detected a higher abundance of metabolites belonging to phenylpropanoid, lignin, glycerophospholipid, flavonoid, fatty acid, and terpenoid biosynthetic pathways in R-RIL than in S-RIL. Transcriptome analysis revealed up-regulation of several receptor kinases, transcription factors, signaling, mycotoxin detoxification and resistance related genes. The dissection of QTL-Fhb2 using flanking marker sequences, integrating metabolomic and transcriptomic datasets, identified 4-Coumarate: CoA ligase (4CL, callose synthase (CS, basic Helix Loop Helix (bHLH041 transcription factor, glutathione S-transferase (GST, ABC transporter-4 (ABC4 and cinnamyl alcohol dehydrogenase (CAD as putative resistance genes localized within the QTL-Fhb2 region.Some of the identified genes within the QTL region are associated with structural resistance through cell wall reinforcement, reducing the spread of pathogen through rachis within a spike and few other genes that detoxify DON, the virulence factor, thus eventually reducing disease severity. In conclusion, we report that the wheat

  20. Systems genomics study reveals expression quantitative trait loci, regulator genes and pathways associated with boar taint in pigs

    DEFF Research Database (Denmark)

    Drag, Markus; Hansen, Mathias B.; Kadarmideen, Haja N.

    2018-01-01

    Boar taint is an offensive odour and/or taste from a proportion of non-castrated male pigs caused by skatole and androstenone accumulation during sexual maturity. Castration is widely used to avoid boar taint but is currently under debate because of animal welfare concerns. This study aimed...... to identify expression quantitative trait loci (eQTLs) with potential effects on boar taint compounds to improve breeding possibilities for reduced boar taint. Danish Landrace male boars with low, medium and high genetic merit for skatole and human nose score (HNS) were slaughtered at similar to 100 kg. Gene...... and SSC14. Functional characterisation of eQTLs revealed functions within regulation of androgen and the intracellular steroid hormone receptor signalling pathway and of xenobiotic metabolism by cytochrome P450 system and cellular response to oestradiol. A QTL enrichment test revealed 89 QTL traits...

  1. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases.

    Science.gov (United States)

    Roth, Andrew; Kyzar, Evan J; Cachat, Jonathan; Stewart, Adam Michael; Green, Jeremy; Gaikwad, Siddharth; O'Leary, Timothy P; Tabakoff, Boris; Brown, Richard E; Kalueff, Allan V

    2013-01-10

    Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction.

    Science.gov (United States)

    Singh, Upinder; Brewer, Jeremy L; Boothroyd, John C

    2002-05-01

    Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.

  3. Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress.

    Science.gov (United States)

    Chen, Jingchao; Huang, Zhaofeng; Huang, Hongjuan; Wei, Shouhui; Liu, Yan; Jiang, Cuilan; Zhang, Jie; Zhang, Chaoxian

    2017-04-21

    Goosegrass (Eleusine indica) is one of the most serious annual grassy weeds worldwide, and its evolved herbicide-resistant populations are more difficult to control. Quantitative real-time PCR (qPCR) is a common technique for investigating the resistance mechanism; however, there is as yet no report on the systematic selection of stable reference genes for goosegrass. This study proposed to test the expression stability of 9 candidate reference genes in goosegrass in different tissues and developmental stages and under stress from three types of herbicide. The results show that for different developmental stages and organs (control), eukaryotic initiation factor 4 A (eIF-4) is the most stable reference gene. Chloroplast acetolactate synthase (ALS) is the most stable reference gene under glyphosate stress. Under glufosinate stress, eIF-4 is the best reference gene. Ubiquitin-conjugating enzyme (UCE) is the most stable reference gene under quizalofop-p-ethyl stress. The gene eIF-4 is the recommended reference gene for goosegrass under the stress of all three herbicides. Moreover, pairwise analysis showed that seven reference genes were sufficient to normalize the gene expression data under three herbicides treatment. This study provides a list of reliable reference genes for transcript normalization in goosegrass, which will facilitate resistance mechanism studies in this weed species.

  4. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea).

    Science.gov (United States)

    Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu

    2017-06-05

    Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage ( Brassica oleracea ) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2 , respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1 , seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380 ) were found, whereas in the region of BoHL2 , two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810 ) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.

  5. Characterization of the biocontrol activity of pseudomonas fluorescens strain X reveals novel genes regulated by glucose.

    Directory of Open Access Journals (Sweden)

    Gerasimos F Kremmydas

    Full Text Available Pseudomonas fluorescens strain X, a bacterial isolate from the rhizosphere of bean seedlings, has the ability to suppress damping-off caused by the oomycete Pythium ultimum. To determine the genes controlling the biocontrol activity of strain X, transposon mutagenesis, sequencing and complementation was performed. Results indicate that, biocontrol ability of this isolate is attributed to gcd gene encoding glucose dehydrogenase, genes encoding its co-enzyme pyrroloquinoline quinone (PQQ, and two genes (sup5 and sup6 which seem to be organized in a putative operon. This operon (named supX consists of five genes, one of which encodes a non-ribosomal peptide synthase. A unique binding site for a GntR-type transcriptional factor is localized upstream of the supX putative operon. Synteny comparison of the genes in supX revealed that they are common in the genus Pseudomonas, but with a low degree of similarity. supX shows high similarity only to the mangotoxin operon of Ps. syringae pv. syringae UMAF0158. Quantitative real-time PCR analysis indicated that transcription of supX is strongly reduced in the gcd and PQQ-minus mutants of Ps. fluorescens strain X. On the contrary, transcription of supX in the wild type is enhanced by glucose and transcription levels that appear to be higher during the stationary phase. Gcd, which uses PQQ as a cofactor, catalyses the oxidation of glucose to gluconic acid, which controls the activity of the GntR family of transcriptional factors. The genes in the supX putative operon have not been implicated before in the biocontrol of plant pathogens by pseudomonads. They are involved in the biosynthesis of an antimicrobial compound by Ps. fluorescens strain X and their transcription is controlled by glucose, possibly through the activity of a GntR-type transcriptional factor binding upstream of this putative operon.

  6. Gene array analysis of PD-1H overexpressing monocytes reveals a pro-inflammatory profile

    Directory of Open Access Journals (Sweden)

    Preeti Bharaj

    2018-02-01

    Full Text Available We have previously reported that overexpression of Programmed Death -1 Homolog (PD-1H in human monocytes leads to activation and spontaneous secretion of multiple pro inflammatory cytokines. Here we evaluate changes in monocytes gene expression after enforced PD-1H expression by gene array. The results show that there are significant alterations in 51 potential candidate genes that relate to immune response, cell adhesion and metabolism. Genes corresponding to pro-inflammatory cytokines showed the highest upregulation, 7, 3.2, 3.0, 5.8, 4.4 and 3.1 fold upregulation of TNF-α, IL-1 β, IFN-α, γ, λ and IL-27 relative to vector control. The data are in agreement with cytometric bead array analysis showing induction of proinflammatory cytokines, IL-6, IL-1β and TNF-α by PD-1H. Other genes related to inflammation, include transglutaminase 2 (TG2, NF-κB (p65 and p50 and toll like receptors (TLR 3 and 4 were upregulated 5, 4.5 and 2.5 fold, respectively. Gene set enrichment analysis (GSEA also revealed that signaling pathways related to inflammatory response, such as NFκB, AT1R, PYK2, MAPK, RELA, TNFR1, MTOR and proteasomal degradation, were significantly upregulated in response to PD-1H overexpression. We validated the results utilizing a standard inflammatory sepsis model in humanized BLT mice, finding that PD-1H expression was highly correlated with proinflammatory cytokine production. We therefore conclude that PD-1H functions to enhance monocyte activation and the induction of a pro-inflammatory gene expression profile.

  7. Global gene expression under nitrogen starvation in Xylella fastidiosa: contribution of the σ54 regulon

    Directory of Open Access Journals (Sweden)

    da Silva Neto José F

    2010-08-01

    Full Text Available Abstract Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase, was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon.

  8. Transcriptome profiling reveals the immune response of goose T cells under selenium stimuli.

    Science.gov (United States)

    Cao, Nan; Li, Wanyan; Li, Bingxin; Tian, Yunbo; Xu, Danning

    2017-12-01

    The goose is an economically important poultry species and a principal natural host of avian viruses. This study aimed to determine the effects of selenium on the immune response of geese. Under selenium stimulation, gene expression profiling was investigated using transcriptome sequencing. The selenoproteins were promoted by selenium stimulation, while the heat shock proteins, interleukin and interferons were mainly down-regulated. After comparison, 2228 differentially expressed genes were primarily involved in immune and environmental response, and infectious disease and genetic information processing related pathways were identified. Specifically, the enzymes of the lysosomes which acted as a safeguard in preventing pathogens were mostly up-regulated and six randomly selected differentially expressed genes were validated by quantitative polymerase chain reaction. In addition, the most proportional increased transcription factor family basic helix-loop-helix (bHLH) located in the 5' flank of selenoprotein P-like protein for selenium metabolism was identified by response to the selenium stimulation in this study. These analyses show that selenium can promote immune function by activating selenoproteins, transcript factors and lysosome pathway related genes, while weakening cytokine content genes in geese. © 2017 Japanese Society of Animal Science.

  9. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication

    Science.gov (United States)

    Li, Gang; Gandolfi, Barbara; Khan, Razib; Aken, Bronwen L.; Searle, Steven M. J.; Minx, Patrick; Hillier, LaDeana W.; Koboldt, Daniel C.; Davis, Brian W.; Driscoll, Carlos A.; Barr, Christina S.; Blackistone, Kevin; Quilez, Javier; Lorente-Galdos, Belen; Marques-Bonet, Tomas; Alkan, Can; Thomas, Gregg W. C.; Hahn, Matthew W.; Menotti-Raymond, Marilyn; O’Brien, Stephen J.; Wilson, Richard K.; Lyons, Leslie A.; Murphy, William J.; Warren, Wesley C.

    2014-01-01

    Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae. PMID:25385592

  10. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication.

    Science.gov (United States)

    Montague, Michael J; Li, Gang; Gandolfi, Barbara; Khan, Razib; Aken, Bronwen L; Searle, Steven M J; Minx, Patrick; Hillier, LaDeana W; Koboldt, Daniel C; Davis, Brian W; Driscoll, Carlos A; Barr, Christina S; Blackistone, Kevin; Quilez, Javier; Lorente-Galdos, Belen; Marques-Bonet, Tomas; Alkan, Can; Thomas, Gregg W C; Hahn, Matthew W; Menotti-Raymond, Marilyn; O'Brien, Stephen J; Wilson, Richard K; Lyons, Leslie A; Murphy, William J; Warren, Wesley C

    2014-12-02

    Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae.

  11. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo.

    Directory of Open Access Journals (Sweden)

    Gwenn-Aël Carré

    Full Text Available BACKGROUND: In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s involved in gonad differentiation is still incomplete. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of improving characterization of the molecular pathway(s involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. CONCLUSION/SIGNIFICANCE: This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors

  12. Gene Expression Profiling Reveals New Potential Players of Gonad Differentiation in the Chicken Embryo

    Science.gov (United States)

    Carré, Gwenn-Aël; Couty, Isabelle; Hennequet-Antier, Christelle; Govoroun, Marina S.

    2011-01-01

    Background In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. Methodology/Principal Findings With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. Conclusion/Significance This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad

  13. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  14. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  15. Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress.

    Science.gov (United States)

    Jiang, Qian-Tao; Liu, Tao; Ma, Jian; Wei, Yu-Ming; Lu, Zhen-Xiang; Lan, Xiu-Jin; Dai, Shou-Fen; Zheng, You-Liang

    2011-10-01

    The pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsis thaliana. In this study, we reported the identification and isolation of a novel Prp1 gene from barley, and further explored its expressional pattern by using real-time quantitative RTPCR, promoter prediction and analysis of microarray data. The putative barley Prp1 protein has a similar primary structure features to those of other known Prp1 protein in this family. The results of amino acid comparison indicated that Prp1 protein of barley and other plant species has a highly conserved 30 termnal region while their 50 sequences greatly varied. The results of expressional analysis revealed that the expression level of barley Prp1 gene is always stable in different vegetative tissues, except it is up-regulated at the mid- and late stages of seed development or under the condition of cold stress. This kind of expressional pattern for barley Prp1 is also supported by our results of comparison of microarray data from barley, rice and Arabidopsis. For the molecular mechanism of its expressional pattern, we conclude that the expression of Prp1 gene may be up-regulated by the increase of pre-mRNAs and not be constitutive or ubiquitous.

  16. A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks.

    Science.gov (United States)

    Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S

    2016-06-01

    Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Suppression subtractive hybridization reveals transcript profiling of Chlorella under heterotrophy to photoautotrophy transition.

    Directory of Open Access Journals (Sweden)

    Jianhua Fan

    Full Text Available Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear.In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1% from the forward library and 62 (21.8% from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense.The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to photoautotrophy, which holds great potential for further improving its lipid and

  18. [Exome sequencing revealed Allan-Herndon-Dudley syndrome underlying multiple disabilities].

    Science.gov (United States)

    Arvio, Maria; Philips, Anju K; Ahvenainen, Minna; Somer, Mirja; Kalscheuer, Vera; Järvelä, Irma

    2014-01-01

    Normal function of the thyroid gland is the cornerstone of a child's mental development and physical growth. We describe a Finnish family, in which the diagnosis of three brothers became clear after investigations that lasted for more than 30 years. Two of the sons have already died. DNA analysis of the third one, a 16-year-old boy, revealed in exome sequencing of the complete X chromosome a mutation in the SLC16A2 gene, i.e. MCT8, coding for a thyroid hormone transport protein. Allan-Herndon-Dudley syndrome was thus shown to be the cause of multiple disabilities.

  19. Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds.

    Directory of Open Access Journals (Sweden)

    Yao Xu

    Full Text Available Whole-genome sequencing provides a powerful tool to obtain more genetic variability that could produce a range of benefits for cattle breeding industry. Nanyang (Bos indicus and Qinchuan (Bos taurus are two important Chinese indigenous cattle breeds with distinct phenotypes. To identify the genetic characteristics responsible for variation in phenotypes between the two breeds, in the present study, we for the first time sequenced the genomes of four Nanyang and four Qinchuan cattle with 10 to 12 fold on average of 97.86% and 98.98% coverage of genomes, respectively. Comparison with the Bos_taurus_UMD_3.1 reference assembly yielded 9,010,096 SNPs for Nanyang, and 6,965,062 for Qinchuan cattle, 51% and 29% of which were novel SNPs, respectively. A total of 154,934 and 115,032 small indels (1 to 3 bp were found in the Nanyang and Qinchuan genomes, respectively. The SNP and indel distribution revealed that Nanyang showed a genetically high diversity as compared to Qinchuan cattle. Furthermore, a total of 2,907 putative cases of copy number variation (CNV were identified by aligning Nanyang to Qinchuan genome, 783 of which (27% encompassed the coding regions of 495 functional genes. The gene ontology (GO analysis revealed that many CNV genes were enriched in the immune system and environment adaptability. Among several CNV genes related to lipid transport and fat metabolism, Lepin receptor gene (LEPR overlapping with CNV_1815 showed remarkably higher copy number in Qinchuan than Nanyang (log2 (ratio = -2.34988; P value = 1.53E-102. Further qPCR and association analysis investigated that the copy number of the LEPR gene presented positive correlations with transcriptional expression and phenotypic traits, suggesting the LEPR CNV may contribute to the higher fat deposition in muscles of Qinchuan cattle. Our findings provide evidence that the distinct phenotypes of Nanyang and Qinchuan breeds may be due to the different genetic variations including SNPs

  20. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    International Nuclear Information System (INIS)

    Vanderslice, P.; Ballinger, S.M.; Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H.

    1990-01-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the ∼1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5' regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family

  1. Genomic characterisation of Wongabel virus reveals novel genes within the Rhabdoviridae.

    Science.gov (United States)

    Gubala, Aneta J; Proll, David F; Barnard, Ross T; Cowled, Chris J; Crameri, Sandra G; Hyatt, Alex D; Boyle, David B

    2008-06-20

    Viruses belonging to the family Rhabdoviridae infect a variety of different hosts, including insects, vertebrates and plants. Currently, there are approximately 200 ICTV-recognised rhabdoviruses isolated around the world. However, the majority remain poorly characterised and only a fraction have been definitively assigned to genera. The genomic and transcriptional complexity displayed by several of the characterised rhabdoviruses indicates large diversity and complexity within this family. To enable an improved taxonomic understanding of this family, it is necessary to gain further information about the poorly characterised members of this family. Here we present the complete genome sequence and predicted transcription strategy of Wongabel virus (WONV), a previously uncharacterised rhabdovirus isolated from biting midges (Culicoides austropalpalis) collected in northern Queensland, Australia. The 13,196 nucleotide genome of WONV encodes five typical rhabdovirus genes N, P, M, G and L. In addition, the WONV genome contains three genes located between the P and M genes (U1, U2, U3) and two open reading frames overlapping with the N and G genes (U4, U5). These five additional genes and their putative protein products appear to be novel, and their functions are unknown. Predictive analysis of the U5 gene product revealed characteristics typical of viroporins, and indicated structural similarities with the alpha-1 protein (putative viroporin) of viruses in the genus Ephemerovirus. Phylogenetic analyses of the N and G proteins of WONV indicated closest similarity with the avian-associated Flanders virus; however, the genomes of these two viruses are significantly diverged. WONV displays a novel and unique genome structure that has not previously been described for any animal rhabdovirus.

  2. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  3. Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids.

    Science.gov (United States)

    Sedeek, Khalid E M; Qi, Weihong; Schauer, Monica A; Gupta, Alok K; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P; Schlüter, Philipp M

    2013-01-01

    Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of

  4. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  5. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Reliable and rapid characterization of functional FCN2 gene variants reveals diverse geographical patterns

    Directory of Open Access Journals (Sweden)

    Ojurongbe Olusola

    2012-05-01

    Full Text Available Abstract Background Ficolin-2 coded by FCN2 gene is a soluble serum protein and an innate immune recognition element of the complement system. FCN2 gene polymorphisms reveal distinct geographical patterns and are documented to alter serum ficolin levels and modulate disease susceptibility. Methods We employed a real-time PCR based on Fluorescence Resonance Energy Transfer (FRET method to genotype four functional SNPs including -986 G > A (#rs3124952, -602 G > A (#rs3124953, -4A > G (#rs17514136 and +6424 G > T (#rs7851696 in the ficolin-2 (FCN2 gene. We characterized the FCN2 variants in individuals representing Brazilian (n = 176, Nigerian (n = 180, Vietnamese (n = 172 and European Caucasian ethnicity (n = 165. Results We observed that the genotype distribution of three functional SNP variants (−986 G > A, -602 G > A and -4A > G differ significantly between the populations investigated (p p  Conclusions The observed distribution of the FCN2 functional SNP variants may likely contribute to altered serum ficolin levels and this may depend on the different disease settings in world populations. To conclude, the use of FRET based real-time PCR especially for FCN2 gene will benefit a larger scientific community who extensively depend on rapid, reliable method for FCN2 genotyping.

  7. Spliced leader-based analyses reveal the effects of polycyclic aromatic hydrocarbons on gene expression in the copepod Pseudodiaptomus poplesia.

    Science.gov (United States)

    Zhuang, Yunyun; Yang, Feifei; Xu, Donghui; Chen, Hongju; Zhang, Huan; Liu, Guangxing

    2017-02-01

    exposure in P. poplesia. However, gene upregulation was followed by a reduction in expression level towards 96h, indicating a threshold value of exposure time that leads to depressed gene expression. Prolonged exposure may cause dysfunction of detoxification and antioxidant machinery in P. poplesia. The transcriptional responses of GST-T, GPX2 and GPX4 upon pyrene exposure were minimal. Our results reveal the different sensitivity of P. poplesia to two PAHs at both the individual and transcriptional levels. As the first attempt, this study proved that copepod spliced leader is useful for obtaining full-length cDNA in P. poplesia exposed to PAHs and provided a valuable gene resource for this non-model species. This approach can be applied to other calanoid copepods exposed to various stressors, particularly under field conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparative transcriptome and gene co-expression network analysis reveal genes and signaling pathways adaptively responsive to varied adverse stresses in the insect fungal pathogen, Beauveria bassiana.

    Science.gov (United States)

    He, Zhangjiang; Zhao, Xin; Lu, Zhuoyue; Wang, Huifang; Liu, Pengfei; Zeng, Fanqin; Zhang, Yongjun

    2018-01-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. The fungal pathogen unavoidably encounters a variety of adverse environmental stresses and defense response from the host insects during application of the fungal agents. However, few are known about the transcription response of the fungus to respond or adapt varied adverse stresses. Here, we comparatively analyzed the transcriptome of B. bassiana in globe genome under the varied stationary-phase stresses including osmotic agent (0.8 M NaCl), high temperature (32 °C), cell wall-perturbing agent (Congo red), and oxidative agents (H 2 O 2 or menadione). Total of 12,412 reads were obtained, and mapped to the 6767 genes of the B. bassiana. All of these stresses caused transcription responses involved in basal metabolism, cell wall construction, stress response or cell rescue/detoxification, signaling transduction and gene transcription regulation, and likely other cellular processes. An array of genes displayed similar transcription patterns in response to at least two of the five stresses, suggesting a shared transcription response to varied adverse stresses. Gene co-expression network analysis revealed that mTOR signaling pathway, but not HOG1 MAP kinase pathway, played a central role in regulation the varied adverse stress responses, which was verified by RNAi-mediated knockdown of TOR1. Our findings provided an insight of transcription response and gene co-expression network of B. bassiana in adaptation to varied environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-01-01

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  10. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  11. A mathematical model of weight loss under total starvation: evidence against the thrifty-gene hypothesis

    Directory of Open Access Journals (Sweden)

    John R. Speakman

    2013-01-01

    The thrifty-gene hypothesis (TGH posits that the modern genetic predisposition to obesity stems from a historical past where famine selected for genes that promote efficient fat deposition. It has been previously argued that such a scenario is unfeasible because under such strong selection any gene favouring fat deposition would rapidly move to fixation. Hence, we should all be predisposed to obesity: which we are not. The genetic architecture of obesity that has been revealed by genome-wide association studies (GWAS, however, calls into question such an argument. Obesity is caused by mutations in many hundreds (maybe thousands of genes, each with a very minor, independent and additive impact. Selection on such genes would probably be very weak because the individual advantages they would confer would be very small. Hence, the genetic architecture of the epidemic may indeed be compatible with, and hence support, the TGH. To evaluate whether this is correct, it is necessary to know the likely effects of the identified GWAS alleles on survival during starvation. This would allow definition of their advantage in famine conditions, and hence the likely selection pressure for such alleles to have spread over the time course of human evolution. We constructed a mathematical model of weight loss under total starvation using the established principles of energy balance. Using the model, we found that fatter individuals would indeed survive longer and, at a given body weight, females would survive longer than males, when totally starved. An allele causing deposition of an extra 80 g of fat would result in an extension of life under total starvation by about 1.1–1.6% in an individual with 10 kg of fat and by 0.25–0.27% in an individual carrying 32 kg of fat. A mutation causing a per allele effect of 0.25% would become completely fixed in a population with an effective size of 5 million individuals in 6000 selection events. Because there have probably been about 24

  12. RNA Sequencing and Coexpression Analysis Reveal Key Genes Involved in α-Linolenic Acid Biosynthesis in Perilla frutescens Seed

    Directory of Open Access Journals (Sweden)

    Tianyuan Zhang

    2017-11-01

    Full Text Available Perilla frutescen is used as traditional food and medicine in East Asia. Its seeds contain high levels of α-linolenic acid (ALA, which is important for health, but is scarce in our daily meals. Previous reports on RNA-seq of perilla seed had identified fatty acid (FA and triacylglycerol (TAG synthesis genes, but the underlying mechanism of ALA biosynthesis and its regulation still need to be further explored. So we conducted Illumina RNA-sequencing in seven temporal developmental stages of perilla seeds. Sequencing generated a total of 127 million clean reads, containing 15.88 Gb of valid data. The de novo assembly of sequence reads yielded 64,156 unigenes with an average length of 777 bp. A total of 39,760 unigenes were annotated and 11,693 unigenes were found to be differentially expressed in all samples. According to Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis, 486 unigenes were annotated in the “lipid metabolism” pathway. Of these, 150 unigenes were found to be involved in fatty acid (FA biosynthesis and triacylglycerol (TAG assembly in perilla seeds. A coexpression analysis showed that a total of 104 genes were highly coexpressed (r > 0.95. The coexpression network could be divided into two main subnetworks showing over expression in the medium or earlier and late phases, respectively. In order to identify the putative regulatory genes, a transcription factor (TF analysis was performed. This led to the identification of 45 gene families, mainly including the AP2-EREBP, bHLH, MYB, and NAC families, etc. After coexpression analysis of TFs with highly expression of FAD2 and FAD3 genes, 162 TFs were found to be significantly associated with two FAD genes (r > 0.95. Those TFs were predicted to be the key regulatory factors in ALA biosynthesis in perilla seed. The qRT-PCR analysis also verified the relevance of expression pattern between two FAD genes and partial candidate TFs. Although it has been reported that some TFs

  13. Longevity Genes Revealed by Integrative Analysis of Isoform-Specific daf-16/FoxO Mutants of Caenorhabditis elegans.

    Science.gov (United States)

    Chen, Albert Tzong-Yang; Guo, Chunfang; Itani, Omar A; Budaitis, Breane G; Williams, Travis W; Hopkins, Christopher E; McEachin, Richard C; Pande, Manjusha; Grant, Ana R; Yoshina, Sawako; Mitani, Shohei; Hu, Patrick J

    2015-10-01

    FoxO transcription factors promote longevity across taxa. How they do so is poorly understood. In the nematode Caenorhabditis elegans, the A- and F-isoforms of the FoxO transcription factor DAF-16 extend life span in the context of reduced DAF-2 insulin-like growth factor receptor (IGFR) signaling. To elucidate the mechanistic basis for DAF-16/FoxO-dependent life span extension, we performed an integrative analysis of isoform-specific daf-16/FoxO mutants. In contrast to previous studies suggesting that DAF-16F plays a more prominent role in life span control than DAF-16A, isoform-specific daf-16/FoxO mutant phenotypes and whole transcriptome profiling revealed a predominant role for DAF-16A over DAF-16F in life span control, stress resistance, and target gene regulation. Integration of these datasets enabled the prioritization of a subset of 92 DAF-16/FoxO target genes for functional interrogation. Among 29 genes tested, two DAF-16A-specific target genes significantly influenced longevity. A loss-of-function mutation in the conserved gene gst-20, which is induced by DAF-16A, reduced life span extension in the context of daf-2/IGFR RNAi without influencing longevity in animals subjected to control RNAi. Therefore, gst-20 promotes DAF-16/FoxO-dependent longevity. Conversely, a loss-of-function mutation in srr-4, a gene encoding a seven-transmembrane-domain receptor family member that is repressed by DAF-16A, extended life span in control animals, indicating that DAF-16/FoxO may extend life span at least in part by reducing srr-4 expression. Our discovery of new longevity genes underscores the efficacy of our integrative strategy while providing a general framework for identifying specific downstream gene regulatory events that contribute substantially to transcription factor functions. As FoxO transcription factors have conserved functions in promoting longevity and may be dysregulated in aging-related diseases, these findings promise to illuminate fundamental

  14. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    Science.gov (United States)

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms

  15. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data.

    Directory of Open Access Journals (Sweden)

    Shubhada R Hegde

    2008-11-01

    Full Text Available Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein:protein interactions might yield useful insights into the cellular responses. The large-scale protein interaction data sets are, however, unable to capture the changes in the profile of protein:protein interactions. In order to understand how these interactions change dynamically, we have constructed conditional protein linkages for Escherichia coli by integrating functional linkages and gene expression information. As a case study, we have chosen to analyze UV exposure in wild-type and SOS deficient E. coli at 20 minutes post irradiation. The conditional networks exhibit similar topological properties. Although the global topological properties of the networks are similar, many subtle local changes are observed, which are suggestive of the cellular response to the perturbations. Some such changes correspond to differences in the path lengths among the nodes of carbohydrate metabolism correlating with its loss in efficiency in the UV treated cells. Similarly, expression of hubs under unique conditions reflects the importance of these genes. Various centrality measures applied to the networks indicate increased importance for replication, repair, and other stress proteins for the cells under UV treatment, as anticipated. We thus propose a novel approach for studying an organism at the systems level by integrating genome-wide functional linkages and the gene expression data.

  16. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks.

    Directory of Open Access Journals (Sweden)

    Prasanna Vidyasekar

    Full Text Available Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated and 2542 (downregulated genes (>2 fold in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated and 444 (downregulated genes (>2 fold under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.

  17. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Helen J Renaud

    Full Text Available The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age. The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5-Day 5 (perinatal-enriched, Day 10-Day 20 (pre-weaning-enriched, and Day 25-Day 60 (adolescence/adulthood-enriched. Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty

  18. Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates.

    Directory of Open Access Journals (Sweden)

    Haisheng Nie

    Full Text Available BACKGROUND: The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. CONCLUSIONS: The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems

  19. Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Wieloch, Tadeusz; Gidö, Gunilla

    2006-01-01

    middle cerebral artery occlusion in the rat. K-means cluster analysis revealed two distinct biphasic gene expression patterns that contained 44 genes (including 18 immediate early genes), involved in cell signaling and plasticity (i.e. MAP2K7, Sprouty2, Irs-2, Homer1, GPRC5B, Grasp). The first gene...

  20. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kim Man-Sun

    2012-05-01

    Full Text Available Abstract Background Network motifs provided a “conceptual tool” for understanding the functional principles of biological networks, but such motifs have primarily been used to consider static network structures. Static networks, however, cannot be used to reveal time- and region-specific traits of biological systems. To overcome this limitation, we proposed the concept of a “spatiotemporal network motif,” a spatiotemporal sequence of network motifs of sub-networks which are active only at specific time points and body parts. Results On the basis of this concept, we analyzed the developmental gene regulatory network of the Drosophila melanogaster embryo. We identified spatiotemporal network motifs and investigated their distribution pattern in time and space. As a result, we found how key developmental processes are temporally and spatially regulated by the gene network. In particular, we found that nested feedback loops appeared frequently throughout the entire developmental process. From mathematical simulations, we found that mutual inhibition in the nested feedback loops contributes to the formation of spatial expression patterns. Conclusions Taken together, the proposed concept and the simulations can be used to unravel the design principle of developmental gene regulatory networks.

  1. Differential gene expression underlying ovarian phenotype determination in honey bee, Apis mellifera L., caste development.

    Science.gov (United States)

    Lago, Denyse Cavalcante; Humann, Fernanda Carvalho; Barchuk, Angel Roberto; Abraham, Kuruvilla Joseph; Hartfelder, Klaus

    2016-12-01

    Adult honey bee queens and workers drastically differ in ovary size. This adult ovary phenotype difference becomes established during the final larval instar, when massive programmed cell death leads to the degeneration of 95-99% of the ovariole anlagen in workers. The higher juvenile hormone (JH) levels in queen larvae protect the ovaries against such degeneration. To gain insights into the molecular architecture underlying this divergence critical for adult caste fate and worker sterility, we performed a microarray analysis on fourth and early fifth instar queen and worker ovaries. For the fourth instar we found nine differentially expressed genes (DEGs) with log 2 FC > 1.0, but this number increased to 56 in early fifth-instar ovaries. We selected 15 DEGs for quantitative PCR (RT-qPCR) analysis. Nine differed significantly by the variables caste and/or development. Interestingly, genes with enzyme functions were higher expressed in workers, while those related to transcription and signaling had higher transcript levels in queens. For the RT-qPCR confirmed genes we analyzed their response to JH. This revealed a significant up-regulation for two genes, a short chain dehydrogenase reductase (sdr) and a heat shock protein 90 (hsp90). Five other genes, including hsp60 and hexamerin 70b (hex70b), were significantly down-regulated by JH. The sdr gene had previously come up as differentially expressed in other transcriptome analyses on honey bee larvae and heat shock proteins are frequently involved in insect hormone responses, this making them interesting candidates for further functional assays. Copyright © 2016. Published by Elsevier Ltd.

  2. Transcriptomic Analysis and the Expression of Disease-Resistant Genes in Oryza meyeriana under Native Condition.

    Directory of Open Access Journals (Sweden)

    Bin He

    Full Text Available Oryza meyeriana (O. meyeriana, with a GG genome type (2n = 24, accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93-11 genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26 differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease

  3. Revealing Abrupt and Spontaneous Ruptures of Protein Native Structure under picoNewton Compressive Force Manipulation.

    Science.gov (United States)

    Chowdhury, S Roy; Cao, Jin; He, Yufan; Lu, H Peter

    2018-03-27

    Manipulating protein conformations for exploring protein structure-function relationship has shown great promise. Although protein conformational changes under pulling force manipulation have been extensively studied, protein conformation changes under a compressive force have not been explored quantitatively. The latter is even more biologically significant and relevant in revealing protein functions in living cells associated with protein crowdedness, distribution fluctuations, and cell osmotic stress. Here we report our experimental observations on abrupt ruptures of protein native structures under compressive force, demonstrated and studied by single-molecule AFM-FRET spectroscopic nanoscopy. Our results show that the protein ruptures are abrupt and spontaneous events occurred when the compressive force reaches a threshold of 12-75 pN, a force amplitude accessible from thermal fluctuations in a living cell. The abrupt ruptures are sensitive to local environment, likely a general and important pathway of protein unfolding in living cells.

  4. Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation.

    Directory of Open Access Journals (Sweden)

    Hongkai Ji

    Full Text Available The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP, global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs. We further document that a Myc core signature (MCS set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells.

  5. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes.

    Directory of Open Access Journals (Sweden)

    Carole Bougault

    Full Text Available Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK pathways and Smad2/3 (members of the canonical transforming growth factor (TGF-β pathways. A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how

  6. Metatranscriptome Sequencing Reveals Insights into the Gene Expression and Functional Potential of Rumen Wall Bacteria

    Directory of Open Access Journals (Sweden)

    Evelyne Mann

    2018-01-01

    Full Text Available Microbiota of the rumen wall constitute an important niche of rumen microbial ecology and their composition has been elucidated in different ruminants during the last years. However, the knowledge about the function of rumen wall microbes is still limited. Rumen wall biopsies were taken from three fistulated dairy cows under a standard forage-based diet and after 4 weeks of high concentrate feeding inducing a subacute rumen acidosis (SARA. Extracted RNA was used for metatranscriptome sequencing using Illumina HiSeq sequencing technology. The gene expression of the rumen wall microbial community was analyzed by mapping 35 million sequences against the Kyoto Encyclopedia for Genes and Genomes (KEGG database and determining differentially expressed genes. A total of 1,607 functional features were assigned with high expression of genes involved in central metabolism, galactose, starch and sucrose metabolism. The glycogen phosphorylase (EC:2.4.1.1 which degrades (1->4-alpha-D-glucans was among the highest expressed genes being transcribed by 115 bacterial genera. Energy metabolism genes were also highly expressed, including the pyruvate orthophosphate dikinase (EC:2.7.9.1 involved in pyruvate metabolism, which was covered by 177 genera. Nitrogen metabolism genes, in particular glutamate dehydrogenase (EC:1.4.1.4, glutamine synthetase (EC:6.3.1.2 and glutamate synthase (EC:1.4.1.13, EC:1.4.1.14 were also found to be highly expressed and prove rumen wall microbiota to be actively involved in providing host-relevant metabolites for exchange across the rumen wall. In addition, we found all four urease subunits (EC:3.5.1.5 transcribed by members of the genera Flavobacterium, Corynebacterium, Helicobacter, Clostridium, and Bacillus, and the dissimilatory sulfate reductase (EC 1.8.99.5 dsrABC, which is responsible for the reduction of sulfite to sulfide. We also provide in situ evidence for cellulose and cellobiose degradation, a key step in fiber-rich feed

  7. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain.

    Directory of Open Access Journals (Sweden)

    Rajini Sreenivasan

    Full Text Available BACKGROUND: Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. METHODOLOGY/PRINCIPAL FINDINGS: We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs, 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and 'rest-of-body' from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4 has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. CONCLUSIONS/SIGNIFICANCE: We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar

  8. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes

    Directory of Open Access Journals (Sweden)

    Shewmaker Christine K

    2010-10-01

    Full Text Available Abstract Background Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD 2 and fatty acid elongase (FAE 1, which revealed unexpected complexity in the C. sativa genome. Results In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. Conclusions There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general

  9. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  10. Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2α Gene

    Science.gov (United States)

    Macovei, Anca; Faè, Matteo; Biggiogera, Marco; de Sousa Araújo, Susana; Carbonera, Daniela; Balestrazzi, Alma

    2018-01-01

    The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2) involved in the repair of 5′-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively) and a control (CTRL) line carrying the empty vector were investigated. Transmission electron microscopy (TEM) revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL), the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL) and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells. PMID:29868059

  11. Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2α Gene

    Directory of Open Access Journals (Sweden)

    Anca Macovei

    2018-05-01

    Full Text Available The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2 involved in the repair of 5′-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively and a control (CTRL line carrying the empty vector were investigated. Transmission electron microscopy (TEM revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL, the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells.

  12. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control.

    Science.gov (United States)

    Zhang, Cheng-Cai; Wang, Li-Yuan; Wei, Kang; Wu, Li-Yun; Li, Hai-Lin; Zhang, Fen; Cheng, Hao; Ni, De-Jiang

    2016-05-17

    Self-incompatibility (SI) is under genetic control and prevents inbreeding depression in angiosperms. SI mechanisms are quite complicated and still poorly understood in many plants. Tea (Camellia sinensis L.) belonging to the family of Theaceae, exhibits high levels of SI and high heterozygosity. Uncovering the molecular basis of SI of the tea plant may enhance breeding and simplify genomics research for the whole family. The growth of pollen tubes following selfing and crossing was observed using fluorescence microscopy. Self-pollen tubes grew slower than cross treatments from 24 h to 72 h after pollination. RNA-seq was employed to explore the molecular mechanisms of SI and to identify SI-related genes in C. sinensis. Self and cross-pollinated styles were collected at 24 h, 48 h and 72 h after pollination. Six RNA-seq libraries (SP24, SP48, SP72, CP24 CP48 and CP72; SP = self-pollinated, CP = cross-pollinated) were constructed and separately sequenced. In total, 299.327 million raw reads were generated. Following assembly, 63,762 unigenes were identified, and 27,264 (42.76 %) unigenes were annotated in five public databases: NR, KOG, KEGG, Swiss-Port and GO. To identify SI-related genes, the fragments per kb per million mapped reads (FPKM) values of each unigene were evaluated. Comparisons of CP24 vs. SP24, CP48 vs. SP48 and CP72 vs. SP72 revealed differential expression of 3,182, 3,575 and 3,709 genes, respectively. Consequently, several ubiquitin-mediated proteolysis, Ca(2+) signaling, apoptosis and defense-associated genes were obtained. The temporal expression pattern of genes following CP and SP was analyzed; 6 peroxidase, 1 polyphenol oxidase and 7 salicylic acid biosynthetic process-related genes were identified. The RNA-seq data were validated by qRT-PCR of 15 unigenes. Finally, a unigene (CL25983Contig1) with strong homology to the S-RNase was analyzed. It was mainly expressed in styles, with dramatically higher expression in self

  13. A searchable cross-platform gene expression database reveals connections between drug treatments and disease

    Directory of Open Access Journals (Sweden)

    Williams Gareth

    2012-01-01

    Full Text Available Abstract Background Transcriptional data covering multiple platforms and species is collected and processed into a searchable platform independent expression database (SPIED. SPIED consists of over 100,000 expression fold profiles defined independently of control/treatment assignment and mapped to non-redundant gene lists. The database is thus searchable with query profiles defined over genes alone. The motivation behind SPIED is that transcriptional profiles can be quantitatively compared and ranked and thus serve as effective surrogates for comparing the underlying biological states across multiple experiments. Results Drug perturbation, cancer and neurodegenerative disease derived transcriptional profiles are shown to be effective descriptors of the underlying biology as they return related drugs and pathologies from SPIED. In the case of Alzheimer's disease there is high transcriptional overlap with other neurodegenerative conditions and rodent models of neurodegeneration and nerve injury. Combining the query signature with correlating profiles allows for the definition of a tight neurodegeneration signature that successfully highlights many neuroprotective drugs in the Broad connectivity map. Conclusions Quantitative querying of expression data from across the totality of deposited experiments is an effective way of discovering connections between different biological systems and in particular that between drug action and biological disease state. Examples in cancer and neurodegenerative conditions validate the utility of SPIED.

  14. Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress.

    Science.gov (United States)

    Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong

    2017-10-01

    An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress

    Directory of Open Access Journals (Sweden)

    He eLiu

    2014-10-01

    Full Text Available Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay (EMSA demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, SOD and catalase activity, and oxide detoxicating ability.

  16. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress.

    Science.gov (United States)

    Liu, He; Yang, Chun-Lan; Ge, Meng-Yu; Ibrahim, Muhammad; Li, Bin; Zhao, Wen-Jun; Chen, Gong-You; Zhu, Bo; Xie, Guan-Lin

    2014-01-01

    Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability.

  17. Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Shengyue

    2011-07-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is a worldwide malignant liver tumor with high incidence in China. Subchromosomal amplifications and deletions accounted for major genomic alterations occurred in HCC. Digital karyotyping was an effective method for analyzing genome-wide chromosomal aberrations at high resolution. Methods A digital karyotyping library of HCC was constructed and 454 Genome Sequencer FLX System (Roche was applied in large scale sequencing of the library. Digital Karyotyping Data Viewer software was used to analyze genomic amplifications and deletions. Genomic amplifications of genes detected by digital karyotyping were examined by real-time quantitative PCR. The mRNA expression level of these genes in tumorous and paired nontumorous tissues was also detected by real-time quantitative RT-PCR. Results A total of 821,252 genomic tags were obtained from the digital karyotyping library of HCC, with 529,162 tags (64% mapped to unique loci of human genome. Multiple subchromosomal amplifications and deletions were detected through analyzing the digital karyotyping data, among which the amplification of 7q21.3 drew our special attention. Validation of genes harbored within amplicons at 7q21.3 locus revealed that genomic amplification of SGCE, PEG10, DYNC1I1 and SLC25A13 occurred in 11 (21%, 11 (21%, 11 (21% and 23 (44% of the 52 HCC samples respectively. Furthermore, the mRNA expression level of SGCE, PEG10 and DYNC1I1 were significantly up-regulated in tumorous liver tissues compared with corresponding nontumorous counterparts. Conclusions Our results indicated that subchromosomal region of 7q21.3 was amplified in HCC, and SGCE, PEG10 and DYNC1I1 were probable protooncogenes located within the 7q21.3 locus.

  18. Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis

    Science.gov (United States)

    Stata, Matt; Wang, Wei; White, Merlin M.; Moncalvo, Jean-Marc

    2018-01-01

    ABSTRACT Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. PMID:29764946

  19. Transcriptomics reveal several gene expression patterns in the piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure.

    Directory of Open Access Journals (Sweden)

    Amira Amrani

    Full Text Available RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria.

  20. Separable roles of UFO during floral development revealed by conditional restoration of gene function.

    Science.gov (United States)

    Laufs, Patrick; Coen, Enrico; Kronenberger, Jocelyne; Traas, Jan; Doonan, John

    2003-02-01

    The UNUSUAL FLORAL ORGANS (UFO) gene is required for several aspects of floral development in Arabidopsis including specification of organ identity in the second and third whorls and the proper pattern of primordium initiation in the inner three whorls. UFO is expressed in a dynamic pattern during the early phases of flower development. Here we dissect the role of UFO by ubiquitously expressing it in ufo loss-of-function flowers at different developmental stages and for various durations using an ethanol-inducible expression system. The previously known functions of UFO could be separated and related to its expression at specific stages of development. We show that a 24- to 48-hour period of UFO expression from floral stage 2, before any floral organs are visible, is sufficient to restore normal petal and stamen development. The earliest requirement for UFO is during stage 2, when the endogenous UFO gene is transiently expressed in the centre of the wild-type flower and is required to specify the initiation patterns of petal, stamen and carpel primordia. Petal and stamen identity is determined during stages 2 or 3, when UFO is normally expressed in the presumptive second and third whorl. Although endogenous UFO expression is absent from the stamen whorl from stage 4 onwards, stamen identity can be restored by UFO activation up to stage 6. We also observed floral phenotypes not observed in loss-of-function or constitutive gain-of-function backgrounds, revealing additional roles of UFO in outgrowth of petal primordia.

  1. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    Science.gov (United States)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-06

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  2. Transcriptomics Reveal Several Gene Expression Patterns in the Piezophile Desulfovibrio hydrothermalis in Response to Hydrostatic Pressure

    Science.gov (United States)

    Amrani, Amira; Bergon, Aurélie; Holota, Hélène; Tamburini, Christian; Garel, Marc; Ollivier, Bernard; Imbert, Jean; Dolla, Alain; Pradel, Nathalie

    2014-01-01

    RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt) that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria. PMID:25215865

  3. In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Hedgehog (Hh signaling is highly conserved in all metazoan animals and plays critical roles in many developmental processes. Dysregulation of the Hh signaling cascade has been implicated in many diseases, including cancer. Although key components of the Hh pathway have been identified, significant gaps remain in our understanding of the regulation of individual Hh signaling molecules. Here, we report the identification of novel regulators of the Hh pathway, obtained from an in vivo RNA interference (RNAi screen in Drosophila. By selectively targeting critical genes functioning in post-translational modification systems utilizing ubiquitin (Ub and Ub-like proteins, we identify two novel genes (dUba3 and dUbc12 that negatively regulate Hh signaling activity. We provide in vivo and in vitro evidence illustrating that dUba3 and dUbc12 are essential components of the neddylation pathway; they function in an enzyme cascade to conjugate the ubiquitin-like NEDD8 modifier to Cullin proteins. Neddylation activates the Cullin-containing ubiquitin ligase complex, which in turn promotes the degradation of Cubitus interruptus (Ci, the downstream transcription factor of the Hh pathway. Our study reveals a conserved molecular mechanism of the neddylation pathway in Drosophila and sheds light on the complex post-translational regulations in Hh signaling.

  4. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  5. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

    Directory of Open Access Journals (Sweden)

    Singsuksawat Ekapot

    2010-06-01

    Full Text Available Abstract Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS. Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR. Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei.

  6. Testing Transgenic Aspen Plants with bar Gene for Herbicide Resistance under Semi-natural Conditions.

    Science.gov (United States)

    Lebedev, V G; Faskhiev, V N; Kovalenko, N P; Shestibratov, K A; Miroshnikov, A I

    2016-01-01

    Obtaining herbicide resistant plants is an important task in the genetic engineering of forest trees. Transgenic European aspen plants (Populus tremula L.) expressing the bar gene for phosphinothricin resistance have been produced using Agrobacterium tumefaciens-mediated transformation. Successful genetic transformation was confirmed by PCR analysis for thirteen lines derived from two elite genotypes. In 2014-2015, six lines were evaluated for resistance to herbicide treatment under semi-natural conditions. All selected transgenic lines were resistant to the herbicide Basta at doses equivalent to 10 l/ha (twofold normal field dosage) whereas the control plants died at 2.5 l/ha. Foliar NH4-N concentrations in transgenic plants did not change after treatment. Extremely low temperatures in the third ten-day period of October 2014 revealed differences in freeze tolerance between the lines obtained from Pt of f2 aspen genotypes. Stable expression of the bar gene after overwintering outdoors was confirmed by RT-PCR. On the basis of the tests, four transgenic aspen lines were selected. The bar gene could be used for retransformation of transgenic forest trees expressing valuable traits, such as increased productivity.

  7. Quantitative changes of main components of erythrocyte membranes which define architectonics of cells under pttg gene knockout

    Directory of Open Access Journals (Sweden)

    О. P. Kanyuka

    2014-04-01

    Full Text Available A pttg gene knockout affects the functional state of erythron in mice which could be associated with structural changes in the structure of erythrocyte membranes. The pttg gene knockout causes a significant modification of fatty acids composition of erythrocyte membrane lipids by reducing the content of palmitic acid and increasing of polyunsaturated fatty acids amount by 18%. Analyzing the erythrocyte surface architectonics of mice under pttg gene knockout, it was found that on the background of reduction of the functionally complete biconcave discs population one could observe an increase of the number of transformed cells at different degeneration stages. Researches have shown that in mice with a pttg gene knockout compared with a control group of animals cytoskeletal protein – β-spectrin was reduced by 17.03%. However, there is a reduction of membrane protein band 3 by 33.04%, simultaneously the content of anion transport protein band 4.5 increases by 35.2% and protein band 4.2 by 32.1%. The lectin blot analysis has helped to reveal changes in the structure of the carbohydrate determinants of ery­throcyte membrane glycoproteins under conditions of directed pttg gene inactivation, accompanied by changes in the type of communication, which joins the terminal residue in carbohydrate determinant of glycoproteins. Thus, a significant redistribution of protein and fatty acids contents in erythrocyte membranes that manifested in the increase of the deformed shape of red blood cells is observed under pttg gene knockout.

  8. DNA Methylation and Gene Expression Profiling of Ewing Sarcoma Primary Tumors Reveal Genes That Are Potential Targets of Epigenetic Inactivation

    Directory of Open Access Journals (Sweden)

    Nikul Patel

    2012-01-01

    Full Text Available The role of aberrant DNA methylation in Ewing sarcoma is not completely understood. The methylation status of 503 genes in 52 formalin-fixed paraffin-embedded EWS tumors and 3 EWS cell lines was compared to human mesenchymal stem cell primary cultures (hMSCs using bead chip methylation analysis. Relative expression of methylated genes was assessed in 5-Aza-2-deoxycytidine-(5-AZA-treated EWS cell lines and in a cohort of primary EWS samples and hMSCs by gene expression and quantitative RT-PCR. 129 genes demonstrated statistically significant hypermethylation in EWS tumors compared to hMSCs. Thirty-six genes were profoundly methylated in EWS and unmethylated in hMSCs. 5-AZA treatment of EWS cell lines resulted in upregulation of expression of hundreds of genes including 162 that were increased by at least 2-fold. The expression of 19 of 36 candidate hypermethylated genes was increased following 5-AZA. Analysis of gene expression from an independent cohort of tumors confirmed decreased expression of six of nineteen hypermethylated genes (AXL, COL1A1, CYP1B1, LYN, SERPINE1, and VCAN. Comparing gene expression and DNA methylation analyses proved to be an effective way to identify genes epigenetically regulated in EWS. Further investigation is ongoing to elucidate the role of these epigenetic alterations in EWS pathogenesis.

  9. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.

    Science.gov (United States)

    Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V

    2017-02-01

    Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease. The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high

  10. Antennal and Abdominal Transcriptomes Reveal Chemosensory Genes in the Asian Citrus Psyllid, Diaphorina citri.

    Science.gov (United States)

    Wu, Zhongzhen; Zhang, He; Bin, Shuying; Chen, Lei; Han, Qunxin; Lin, Jintian

    2016-01-01

    The Asian citrus psyllid, Diaphorina citri is the principal vector of the highly destructive citrus disease called Huanglongbing (HLB) or citrus greening, which is a major threat to citrus cultivation worldwide. More effective pest control strategies against this pest entail the identification of potential chemosensory proteins that could be used in the development of attractants or repellents. However, the molecular basis of olfaction in the Asian citrus psyllid is not completely understood. Therefore, we performed this study to analyze the antennal and abdominal transcriptome of the Asian citrus psyllid. We identified a large number of transcripts belonging to nine chemoreception-related gene families and compared their expression in male and female adult antennae and terminal abdomen. In total, 9 odorant binding proteins (OBPs), 12 chemosensory proteins (CSPs), 46 odorant receptors (ORs), 20 gustatory receptors (GRs), 35 ionotropic receptors (IRs), 4 sensory neuron membrane proteins (SNMPs) and 4 different gene families encoding odorant-degrading enzymes (ODEs): 80 cytochrome P450s (CYPs), 12 esterase (ESTs), and 5 aldehyde dehydrogenases (ADE) were annotated in the D. citri antennal and abdominal transcriptomes. Our results revealed that a large proportion of chemosensory genes exhibited no distinct differences in their expression patterns in the antennae and terminal abdominal tissues. Notably, RNA sequencing (RNA-seq) data and quantitative real time-PCR (qPCR) analyses showed that 4 DictOBPs, 4 DictCSPs, 4 DictIRs, 1 DictSNMP, and 2 DictCYPs were upregulated in the antennae relative to that in terminal abdominal tissues. Furthermore, 2 DictOBPs (DictOBP8 and DictOBP9), 2 DictCSPs (DictOBP8 and DictOBP12), 4 DictIRs (DictIR3, DictIR6, DictIR10, and DictIR35), and 1 DictCYP (DictCYP57) were expressed at higher levels in the male antennae than in the female antennae. Our study provides the first insights into the molecular basis of chemoreception in this insect

  11. Antennal and Abdominal Transcriptomes Reveal Chemosensory Genes in the Asian Citrus Psyllid, Diaphorina citri.

    Directory of Open Access Journals (Sweden)

    Zhongzhen Wu

    Full Text Available The Asian citrus psyllid, Diaphorina citri is the principal vector of the highly destructive citrus disease called Huanglongbing (HLB or citrus greening, which is a major threat to citrus cultivation worldwide. More effective pest control strategies against this pest entail the identification of potential chemosensory proteins that could be used in the development of attractants or repellents. However, the molecular basis of olfaction in the Asian citrus psyllid is not completely understood. Therefore, we performed this study to analyze the antennal and abdominal transcriptome of the Asian citrus psyllid. We identified a large number of transcripts belonging to nine chemoreception-related gene families and compared their expression in male and female adult antennae and terminal abdomen. In total, 9 odorant binding proteins (OBPs, 12 chemosensory proteins (CSPs, 46 odorant receptors (ORs, 20 gustatory receptors (GRs, 35 ionotropic receptors (IRs, 4 sensory neuron membrane proteins (SNMPs and 4 different gene families encoding odorant-degrading enzymes (ODEs: 80 cytochrome P450s (CYPs, 12 esterase (ESTs, and 5 aldehyde dehydrogenases (ADE were annotated in the D. citri antennal and abdominal transcriptomes. Our results revealed that a large proportion of chemosensory genes exhibited no distinct differences in their expression patterns in the antennae and terminal abdominal tissues. Notably, RNA sequencing (RNA-seq data and quantitative real time-PCR (qPCR analyses showed that 4 DictOBPs, 4 DictCSPs, 4 DictIRs, 1 DictSNMP, and 2 DictCYPs were upregulated in the antennae relative to that in terminal abdominal tissues. Furthermore, 2 DictOBPs (DictOBP8 and DictOBP9, 2 DictCSPs (DictOBP8 and DictOBP12, 4 DictIRs (DictIR3, DictIR6, DictIR10, and DictIR35, and 1 DictCYP (DictCYP57 were expressed at higher levels in the male antennae than in the female antennae. Our study provides the first insights into the molecular basis of chemoreception in this

  12. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster.

    Science.gov (United States)

    Tarazanova, Mariya; Beerthuyzen, Marke; Siezen, Roland; Fernandez-Gutierrez, Marcela M; de Jong, Anne; van der Meulen, Sjoerd; Kok, Jan; Bachmann, Herwig

    2016-01-01

    Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry are plasmid encoded. We sequenced the total DNA of strain NCDO712 and, contrary to earlier reports, revealed that the strain carries 6 rather than 5 plasmids. A new 50-kb plasmid, designated pNZ712, encodes functional nisin immunity (nisCIP) and copper resistance (lcoRSABC). The copper resistance could be used as a marker for the conjugation of pNZ712 to L. lactis MG1614. A genome comparison with the plasmid cured daughter strain MG1363 showed that the number of single nucleotide polymorphisms that accumulated in the laboratory since the strains diverted more than 30 years ago is limited to 11 of which only 5 lead to amino acid changes. The 16-kb plasmid pSH74 was found to contain a novel 8-kb pilus gene cluster spaCB-spaA-srtC1-srtC2, which is predicted to encode a pilin tip protein SpaC, a pilus basal subunit SpaB, and a pilus backbone protein SpaA. The sortases SrtC1/SrtC2 are most likely involved in pilus polymerization while the chromosomally encoded SrtA could act to anchor the pilus to peptidoglycan in the cell wall. Overexpression of the pilus gene cluster from a multi-copy plasmid in L. lactis MG1363 resulted in cell chaining, aggregation, rapid sedimentation and increased conjugation efficiency of the cells. Electron microscopy showed that the over-expression of the pilus gene cluster leads to appendices on the cell surfaces. A deletion of the gene encoding the putative basal protein spaB, by truncating spaCB, led to more pilus-like structures on the cell surface, but cell aggregation and cell chaining were no longer observed. This is consistent with the prediction that spaB is involved in the anchoring of the pili to the cell.

  13. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.

    Directory of Open Access Journals (Sweden)

    Lucila Traverso

    2017-02-01

    Full Text Available Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs, Cytochromes P450 (CYPs and Carboxyl/Cholinesterases (CCEs. Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease.The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms

  14. Gene Expression Patterns Underlying the Reinstatement of Plasticity in the Adult Visual System

    Directory of Open Access Journals (Sweden)

    Ettore Tiraboschi

    2013-01-01

    Full Text Available The nervous system is highly sensitive to experience during early postnatal life, but this phase of heightened plasticity decreases with age. Recent studies have demonstrated that developmental-like plasticity can be reactivated in the visual cortex of adult animals through environmental or pharmacological manipulations. These findings provide a unique opportunity to study the cellular and molecular mechanisms of adult plasticity. Here we used the monocular deprivation paradigm to investigate large-scale gene expression patterns underlying the reinstatement of plasticity produced by fluoxetine in the adult rat visual cortex. We found changes, confirmed with RT-PCRs, in gene expression in different biological themes, such as chromatin structure remodelling, transcription factors, molecules involved in synaptic plasticity, extracellular matrix, and excitatory and inhibitory neurotransmission. Our findings reveal a key role for several molecules such as the metalloproteases Mmp2 and Mmp9 or the glycoprotein Reelin and open up new insights into the mechanisms underlying the reopening of the critical periods in the adult brain.

  15. Chlorosis caused by two recessively interacting genes reveals a role of RNA helicase in hybrid breakdown in Arabidopsis thaliana.

    Science.gov (United States)

    Plötner, Björn; Nurmi, Markus; Fischer, Axel; Watanabe, Mutsumi; Schneeberger, Korbinian; Holm, Svante; Vaid, Neha; Schöttler, Mark Aurel; Walther, Dirk; Hoefgen, Rainer; Weigel, Detlef; Laitinen, Roosa A E

    2017-07-01

    Hybrids often differ in fitness from their parents. They may be superior, translating into hybrid vigour or heterosis, but they may also be markedly inferior, because of hybrid weakness or incompatibility. The underlying genetic causes for the latter can often be traced back to genes that evolve rapidly because of sexual or host-pathogen conflicts. Hybrid weakness may manifest itself only in later generations, in a phenomenon called hybrid breakdown. We have characterized a case of hybrid breakdown among two Arabidopsis thaliana accessions, Shahdara (Sha, Tajikistan) and Lövvik-5 (Lov-5, Northern Sweden). In addition to chlorosis, a fraction of the F 2 plants have defects in leaf and embryo development, and reduced photosynthetic efficiency. Hybrid chlorosis is due to two major-effect loci, of which one, originating from Lov-5, appears to encode an RNA helicase (AtRH18). To examine the role of the chlorosis allele in the Lövvik area, in addition to eight accessions collected in 2009, we collected another 240 accessions from 15 collections sites, including Lövvik, from Northern Sweden in 2015. Genotyping revealed that Lövvik collection site is separated from the rest. Crosses between 109 accessions from this area and Sha revealed 85 cases of hybrid chlorosis, indicating that the chlorosis-causing allele is common in this area. These results suggest that hybrid breakdown alleles not only occur at rapidly evolving loci, but also at genes that code for conserved processes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes.

    Science.gov (United States)

    Fabry, S; Müller, K; Lindauer, A; Park, P B; Cornelius, T; Schmitt, R

    1995-09-01

    The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A-H2B and H3-H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (< 300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox, the 3' untranslated regions contain no poly A signal, but a palindromic sequence (3' palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A-H2B pair. The H1 upstream region contains the octameric promoter element GGTTGACC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intron-free. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II

  17. Molecular cloning and functional characterization of a mouse gene upregulated by lipopolysaccharide treatment reveals alternative splicing

    Energy Technology Data Exchange (ETDEWEB)

    Du, Kejun; Chen, Yaoming; Dai, Zongming; Bi, Yuan; Cai, Tongjian [Department of Occupational and Environmental Health, Fourth Military Medical University, Xi' an 710032, Shaanxi Province (China); Hou, Lichao [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, Shaanxi Province (China); Chai, Yubo; Song, Qinghe; Chen, Sumin [Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi' an 710032, Shaanxi Province (China); Luo, Wenjing, E-mail: luowenj@fmmu.edu.cn [Department of Occupational and Environmental Health, Fourth Military Medical University, Xi' an 710032, Shaanxi Province (China); Chen, Jingyuan, E-mail: jy_chen@fmmu.edu.cn [Department of Occupational and Environmental Health, Fourth Military Medical University, Xi' an 710032, Shaanxi Province (China)

    2010-01-01

    Treatment of mouse cells with lipopolysaccharide (LPS) potently initiates an inflammatory response, but the underlying mechanisms are unclear. We therefore sought to characterize cDNA sequences of a new mouse LPS-responsive gene, and to evaluate the effects of MLrg. Full-length cDNAs were obtained from LPS-treated NIH3T3 cells. We report that the MLrg gene produces two alternative splice products (GenBank Accession Nos. (DQ316984) and (DQ320011)), respectively, encoding MLrgW and MLrgS polypeptides. Both proteins contain zinc finger and leucine zipper domains and are thus potential regulators of transcription. Expression of MLrgW and MLrgS were robustly upregulated following LPS treatment, and the proteins were localized predominantly in the nuclear membrane and cytoplasm. In stable transfectants over-expressing MLrgW the proportion of cells in G1 phase was significantly reduced, while in cells over-expressing MLrgS the proportion of cells in G2 was significantly increased; both proteins are thus potential regulators of cell cycle progression. Upregulation of MLrgW and MLrgS may be an important component of the LPS inflammatory pathway and of the host response to infection with GNB.

  18. Hox gene cluster of the ascidian, Halocynthia roretzi, reveals multiple ancient steps of cluster disintegration during ascidian evolution.

    Science.gov (United States)

    Sekigami, Yuka; Kobayashi, Takuya; Omi, Ai; Nishitsuji, Koki; Ikuta, Tetsuro; Fujiyama, Asao; Satoh, Noriyuki; Saiga, Hidetoshi

    2017-01-01

    Hox gene clusters with at least 13 paralog group (PG) members are common in vertebrate genomes and in that of amphioxus. Ascidians, which belong to the subphylum Tunicata (Urochordata), are phylogenetically positioned between vertebrates and amphioxus, and traditionally divided into two groups: the Pleurogona and the Enterogona. An enterogonan ascidian, Ciona intestinalis ( Ci ), possesses nine Hox genes localized on two chromosomes; thus, the Hox gene cluster is disintegrated. We investigated the Hox gene cluster of a pleurogonan ascidian, Halocynthia roretzi ( Hr ) to investigate whether Hox gene cluster disintegration is common among ascidians, and if so, how such disintegration occurred during ascidian or tunicate evolution. Our phylogenetic analysis reveals that the Hr Hox gene complement comprises nine members, including one with a relatively divergent Hox homeodomain sequence. Eight of nine Hr Hox genes were orthologous to Ci-Hox1 , 2, 3, 4, 5, 10, 12 and 13. Following the phylogenetic classification into 13 PGs, we designated Hr Hox genes as Hox1, 2, 3, 4, 5, 10, 11/12/13.a , 11/12/13.b and HoxX . To address the chromosomal arrangement of the nine Hox genes, we performed two-color chromosomal fluorescent in situ hybridization, which revealed that the nine Hox genes are localized on a single chromosome in Hr , distinct from their arrangement in Ci . We further examined the order of the nine Hox genes on the chromosome by chromosome/scaffold walking. This analysis suggested a gene order of Hox1 , 11/12/13.b, 11/12/13.a, 10, 5, X, followed by either Hox4, 3, 2 or Hox2, 3, 4 on the chromosome. Based on the present results and those previously reported in Ci , we discuss the establishment of the Hox gene complement and disintegration of Hox gene clusters during the course of ascidian or tunicate evolution. The Hox gene cluster and the genome must have experienced extensive reorganization during the course of evolution from the ancestral tunicate to Hr and Ci

  19. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach.

    Science.gov (United States)

    Borner, Janus; Pick, Christian; Thiede, Jenny; Kolawole, Olatunji Matthew; Kingsley, Manchang Tanyi; Schulze, Jana; Cottontail, Veronika M; Wellinghausen, Nele; Schmidt-Chanasit, Jonas; Bruchhaus, Iris; Burmester, Thorsten

    2016-01-01

    The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Comprehensive genomic characterization of campylobacter genus reveals some underlying mechanisms for its genomic diversification.

    Directory of Open Access Journals (Sweden)

    Yizhuang Zhou

    Full Text Available Campylobacter species.are phenotypically diverse in many aspects including host habitats and pathogenicities, which demands comprehensive characterization of the entire Campylobacter genus to study their underlying genetic diversification. Up to now, 34 Campylobacter strains have been sequenced and published in public databases, providing good opportunity to systemically analyze their genomic diversities. In this study, we first conducted genomic characterization, which includes genome-wide alignments, pan-genome analysis, and phylogenetic identification, to depict the genetic diversity of Campylobacter genus. Afterward, we improved the tetranucleotide usage pattern-based naïve Bayesian classifier to identify the abnormal composition fragments (ACFs, fragments with significantly different tetranucleotide frequency profiles from its genomic tetranucleotide frequency profiles including horizontal gene transfers (HGTs to explore the mechanisms for the genetic diversity of this organism. Finally, we analyzed the HGTs transferred via bacteriophage transductions. To our knowledge, this study is the first to use single nucleotide polymorphism information to construct liable microevolution phylogeny of 21 Campylobacter jejuni strains. Combined with the phylogeny of all the collected Campylobacter species based on genome-wide core gene information, comprehensive phylogenetic inference of all 34 Campylobacter organisms was determined. It was found that C. jejuni harbors a high fraction of ACFs possibly through intraspecies recombination, whereas other Campylobacter members possess numerous ACFs possibly via intragenus recombination. Furthermore, some Campylobacter strains have undergone significant ancient viral integration during their evolution process. The improved method is a powerful tool for bacterial genomic analysis. Moreover, the findings would provide useful information for future research on Campylobacter genus.

  1. Targeted next generation sequencing reveals a novel intragenic deletion of the TPO gene in a family with intellectual disability

    NARCIS (Netherlands)

    Iqbal, Z.; Neveling, K.; Razzaq, A.; Shahzad, M.; Zahoor, M.Y.; Qasim, M.; Gilissen, C.F.H.A.; Wieskamp, N.; Kwint, M.P.; Gijsen, S.; de Brouwer, A.P.; Veltman, J.A.; Riazuddin, S.; Bokhoven, J.H.L.M. van

    2012-01-01

    BACKGROUNDS AND AIMS: Next generation sequencing (NGS) approaches have revolutionized the identification of mutations underlying genetic disorders. This technology is particularly useful for the identification of mutations in known and new genes for conditions with extensive genetic heterogeneity.

  2. Altered patterns of gene expression underlying the enhanced immunogenicity of radiation-attenuated schistosomes.

    Directory of Open Access Journals (Sweden)

    Gary P Dillon

    2008-05-01

    Full Text Available Schistosome cercariae only elicit high levels of protective immunity against a challenge infection if they are optimally attenuated by exposure to ionising radiation that truncates their migration in the lungs. However, the underlying molecular mechanisms responsible for the altered phenotype of the irradiated parasite that primes for protection have yet to be identified.We have used a custom microarray comprising probes derived from lung-stage parasites to compare patterns of gene expression in schistosomula derived from normal and irradiated cercariae. These were transformed in vitro and cultured for four, seven, and ten days to correspond in development to the priming parasites, before RNA extraction. At these late times after the radiation insult, transcript suppression was the principal feature of the irradiated larvae. Individual gene analysis revealed that only seven were significantly down-regulated in the irradiated versus normal larvae at the three time-points; notably, four of the protein products are present in the tegument or associated with its membranes, perhaps indicating a perturbed function. Grouping of transcripts using Gene Ontology (GO and subsequent Gene Set Enrichment Analysis (GSEA proved more informative in teasing out subtle differences. Deficiencies in signalling pathways involving G-protein-coupled receptors suggest the parasite is less able to sense its environment. Reduction of cytoskeleton transcripts could indicate compromised structure which, coupled with a paucity of neuroreceptor transcripts, may mean the parasite is also unable to respond correctly to external stimuli.The transcriptional differences observed are concordant with the known extended transit of attenuated parasites through skin-draining lymph nodes and the lungs: prolonged priming of the immune system by the parasite, rather than over-expression of novel antigens, could thus explain the efficacy of the irradiated vaccine.

  3. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats.

    Directory of Open Access Journals (Sweden)

    B Alex Merrick

    Full Text Available Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1, a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG than microarray analysis, including low copy and novel transcripts related to AFB1's carcinogenic activity compared to feed controls (CTRL. Paired-end reads were mapped to the rat genome (Rn4 with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005 compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT's on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c

  4. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats.

    Science.gov (United States)

    Merrick, B Alex; Phadke, Dhiral P; Auerbach, Scott S; Mav, Deepak; Stiegelmeyer, Suzy M; Shah, Ruchir R; Tice, Raymond R

    2013-01-01

    Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related to AFB1's carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4) with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005) compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT's) on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c. We find the

  5. Genes expressed in grapevine leaves reveal latent wood infection by the fungal pathogen Neofusicoccum parvum.

    Directory of Open Access Journals (Sweden)

    Stefan Czemmel

    Full Text Available Some pathogenic species of the Botryosphaeriaceae have a latent phase, colonizing woody tissues while perennial hosts show no apparent symptoms until conditions for disease development become favorable. Detection of these pathogens is often limited to the later pathogenic phase. The latent phase is poorly characterized, despite the need for non-destructive detection tools and effective quarantine strategies, which would benefit from identification of host-based markers in leaves. Neofusicoccum parvum infects the wood of grapevines and other horticultural crops, killing the fruit-bearing shoots. We used light microscopy and high-resolution computed tomography (HRCT to examine the spatio-temporal relationship between pathogen colonization and anatomical changes in stem sections. To identify differentially-expressed grape genes, leaves from inoculated and non-inoculated plants were examined using RNA-Seq. The latent phase occurred between 0 and 1.5 months post-inoculation (MPI, during which time the pathogen did not spread significantly beyond the inoculation site nor were there differences in lesion lengths between inoculated and non-inoculated plants. The pathogenic phase occurred between 1.5 and 2 MPI, when recovery beyond the inoculation site increased and lesion lengths of inoculated plants tripled. By 2 MPI, inoculated plants also had decreased starch content in xylem fibers and rays, and increased levels of gel-occluded xylem vessels, the latter of which HRCT revealed at a higher frequency than microscopy. RNA-Seq and screening of 21 grape expression datasets identified 20 candidate genes that were transcriptionally-activated by infection during the latent phase, and confirmed that the four best candidates (galactinol synthase, abscisic acid-induced wheat plasma membrane polypeptide-19 ortholog, embryonic cell protein 63, BURP domain-containing protein were not affected by a range of common foliar and wood pathogens or abiotic stresses

  6. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions.

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhu

    Full Text Available Real-time reverse transcription PCR (RT-qPCR is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A, TBP1 (TATA binding protein 1 and TBP2 (TATA binding protein 2 genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2, 18S rRNA (18S ribosomal RNA and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental

  7. Evolutionary Conservation in Genes Underlying Human Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Lisa Michelle Ogawa

    2014-05-01

    Full Text Available Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago and thirty one non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant compared to their small-brained sister species. Evidence of differential selection in primates supports the hypothesis that schizophrenia and autism are a cost of higher brain function. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  8. RNA-seq reveals more consistent reference genes for gene expression studies in human non-melanoma skin cancers

    Directory of Open Access Journals (Sweden)

    Van L.T. Hoang

    2017-08-01

    Full Text Available Identification of appropriate reference genes (RGs is critical to accurate data interpretation in quantitative real-time PCR (qPCR experiments. In this study, we have utilised next generation RNA sequencing (RNA-seq to analyse the transcriptome of a panel of non-melanoma skin cancer lesions, identifying genes that are consistently expressed across all samples. Genes encoding ribosomal proteins were amongst the most stable in this dataset. Validation of this RNA-seq data was examined using qPCR to confirm the suitability of a set of highly stable genes for use as qPCR RGs. These genes will provide a valuable resource for the normalisation of qPCR data for the analysis of non-melanoma skin cancer.

  9. Meta-Analysis of Public Microarray Datasets Reveals Voltage-Gated Calcium Gene Signatures in Clinical Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Chih-Yang Wang

    Full Text Available Voltage-gated calcium channels (VGCCs are well documented to play roles in cell proliferation, migration, and apoptosis; however, whether VGCCs regulate the onset and progression of cancer is still under investigation. The VGCC family consists of five members, which are L-type, N-type, T-type, R-type and P/Q type. To date, no holistic approach has been used to screen VGCC family genes in different types of cancer. We analyzed the transcript expression of VGCCs in clinical cancer tissue samples by accessing ONCOMINE (www.oncomine.org, a web-based microarray database, to perform a systematic analysis. Every member of the VGCCs was examined across 21 different types of cancer by comparing mRNA expression in cancer to that in normal tissue. A previous study showed that altered expression of mRNA in cancer tissue may play an oncogenic role and promote tumor development; therefore, in the present findings, we focus only on the overexpression of VGCCs in different types of cancer. This bioinformatics analysis revealed that different subtypes of VGCCs (CACNA1C, CACNA1D, CACNA1B, CACNA1G, and CACNA1I are implicated in the development and progression of diverse types of cancer and show dramatic up-regulation in breast cancer. CACNA1F only showed high expression in testis cancer, whereas CACNA1A, CACNA1C, and CACNA1D were highly expressed in most types of cancer. The current analysis revealed that specific VGCCs likely play essential roles in specific types of cancer. Collectively, we identified several VGCC targets and classified them according to different cancer subtypes for prospective studies on the underlying carcinogenic mechanisms. The present findings suggest that VGCCs are possible targets for prospective investigation in cancer treatment.

  10. Systems genomics study reveals expression quantitative trait loci, regulator genes and pathways associated with boar taint in pigs.

    Directory of Open Access Journals (Sweden)

    Markus Drag

    Full Text Available Boar taint is an offensive odour and/or taste from a proportion of non-castrated male pigs caused by skatole and androstenone accumulation during sexual maturity. Castration is widely used to avoid boar taint but is currently under debate because of animal welfare concerns. This study aimed to identify expression quantitative trait loci (eQTLs with potential effects on boar taint compounds to improve breeding possibilities for reduced boar taint. Danish Landrace male boars with low, medium and high genetic merit for skatole and human nose score (HNS were slaughtered at ~100 kg. Gene expression profiles were obtained by RNA-Seq, and genotype data were obtained by an Illumina 60K Porcine SNP chip. Following quality control and filtering, 10,545 and 12,731 genes from liver and testis were included in the eQTL analysis, together with 20,827 SNP variants. A total of 205 and 109 single-tissue eQTLs associated with 102 and 58 unique genes were identified in liver and testis, respectively. By employing a multivariate Bayesian hierarchical model, 26 eQTLs were identified as significant multi-tissue eQTLs. The highest densities of eQTLs were found on pig chromosomes SSC12, SSC1, SSC13, SSC9 and SSC14. Functional characterisation of eQTLs revealed functions within regulation of androgen and the intracellular steroid hormone receptor signalling pathway and of xenobiotic metabolism by cytochrome P450 system and cellular response to oestradiol. A QTL enrichment test revealed 89 QTL traits curated by the Animal Genome PigQTL database to be significantly overlapped by the genomic coordinates of cis-acting eQTLs. Finally, a subset of 35 cis-acting eQTLs overlapped with known boar taint QTL traits. These eQTLs could be useful in the development of a DNA test for boar taint but careful monitoring of other overlapping QTL traits should be performed to avoid any negative consequences of selection.

  11. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Chung Jae

    2009-06-01

    Full Text Available Abstract Background Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition. Methods To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis. Results Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99 between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells. Conclusion Selective epigenetic disruption of distinct biological

  12. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L..

    Directory of Open Access Journals (Sweden)

    Hui Xue

    Full Text Available Pomegranate (Punica granatum L. belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7% were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  13. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.).

    Science.gov (United States)

    Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang

    2017-01-01

    Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  14. PageRank analysis reveals topologically expressed genes correspond to psoriasis and their functions are associated with apoptosis resistance.

    Science.gov (United States)

    Zeng, Xue; Zhao, Jingjing; Wu, Xiaohong; Shi, Hongbo; Liu, Wali; Cui, Bingnan; Yang, Li; Ding, Xu; Song, Ping

    2016-05-01

    Psoriasis is an inflammatory skin disease. Deceleration in keratinocyte apoptosis is the most significant pathological change observed in psoriasis. To detect a meaningful correlation between the genes and gene functions associated with the mechanism underlying psoriasis, 927 differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus database, GSE13355 [false discovery rate (FDR) 1] with the package in R langue. The selected DEGs were further constructed using the search tool for the retrieval of interacting genes, in order to analyze the interaction network between the DEGs. Subsequent to PageRank analysis, 14 topological hub genes were identified, and the functions and pathways in the hub genes network were analyzed. The top‑ranked hub gene, estrogen receptor‑1 (ESR1) is downregulated in psoriasis, exhibited binding sites enriched with genes possessing anti‑apoptotic functions. The ESR1 gene encodes estrogen receptor α (ERα); a reduced level of ERα expression provides a crucial foundation in response to the anti‑apoptotic activity of psoriatic keratinocytes by activating the expression of anti‑apoptotic genes. Furthermore, it was detected that the pathway that is associated most significantly with psoriasis is the pathways in cancer. Pathways in cancer may protect psoriatic cells from apoptosis by inhibition of ESR1 expression. The present study provides support towards the investigation of ESR1 gene function and elucidates that the interaction with anti‑apoptotic genes is involved in the underlying biological mechanisms of resistance to apoptosis in psoriasis. However, further investigation is required to confirm the present results.

  15. Transcriptional profiling of protein expression related genes of Pichia pastoris under simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Feng Qi

    Full Text Available The physiological responses and transcription profiling of Pichia pastoris GS115 to simulated microgravity (SMG were substantially changed compared with normal gravity (NG control. We previously reported that the recombinant P. pastoris grew faster under SMG than NG during methanol induction phase and the efficiencies of recombinant enzyme production and secretion were enhanced under SMG, which was considered as the consequence of changed transcriptional levels of some key genes. In this work, transcriptiome profiling of P. pastoris cultured under SMG and NG conditions at exponential and stationary phases were determined using next-generation sequencing (NGS technologies. Four categories of 141 genes function as methanol utilization, protein chaperone, RNA polymerase and protein transportation or secretion classified according to Gene Ontology (GO were chosen to be analyzed on the basis of NGS results. And 80 significantly changed genes were weighted and estimated by Cluster 3.0. It was found that most genes of methanol metabolism (85% of 20 genes and protein transportation or secretion (82.2% of 45 genes were significantly up-regulated under SMG. Furthermore the quantity and fold change of up-regulated genes in exponential phase of each category were higher than those of stationary phase. The results indicate that the up-regulated genes of methanol metabolism and protein transportation or secretion mainly contribute to enhanced production and secretion of the recombinant protein under SMG.

  16. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy.

    Directory of Open Access Journals (Sweden)

    Christine Bäuerl

    Full Text Available Epizootic Rabbit Enteropathy (ERE is a severe disease of unknown aetiology that mainly affects post-weaning animals. Its incidence can be prevented by antibiotic treatment suggesting that bacterial elements are crucial for the development of the disease. Microbial dynamics and host responses during the disease were studied. Cecal microbiota was characterized in three rabbit groups (ERE-affected, healthy and healthy pretreated with antibiotics, followed by transcriptional analysis of cytokines and mucins in the cecal mucosa and vermix by q-rtPCR. In healthy animals, cecal microbiota with or without antibiotic pretreatment was very similar and dominated by Alistipes and Ruminococcus. Proportions of both genera decreased in ERE rabbits whereas Bacteroides, Akkermansia and Rikenella increased, as well as Clostridium, γ-Proteobacteria and other opportunistic and pathogenic species. The ERE group displayed remarkable dysbiosis and reduced taxonomic diversity. Transcription rate of mucins and inflammatory cytokines was very high in ERE rabbits, except IL-2, and its analysis revealed the existence of two clearly different gene expression patterns corresponding to Inflammatory and (mucin Secretory Profiles. Furthermore, these profiles were associated to different bacterial species, suggesting that they may correspond to different stages of the disease. Other data obtained in this work reinforced the notion that ERE morbidity and mortality is possibly caused by an overgrowth of different pathogens in the gut of animals whose immune defence mechanisms seem not to be adequately responding.

  17. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus.

    Science.gov (United States)

    Derjuga, Anna; Gourley, Tania S; Holm, Teresa M; Heng, Henry H Q; Shivdasani, Ramesh A; Ahmed, Rafi; Andrews, Nancy C; Blank, Volker

    2004-04-01

    Cap'n'collar (CNC) family basic leucine zipper transcription factors play crucial roles in the regulation of mammalian gene expression and development. To determine the in vivo function of the CNC protein Nrf3 (NF-E2-related factor 3), we generated mice deficient in this transcription factor. We performed targeted disruption of two Nrf3 exons coding for CNC homology, basic DNA-binding, and leucine zipper dimerization domains. Nrf3 null mice developed normally and revealed no obvious phenotypic differences compared to wild-type animals. Nrf3(-/-) mice were fertile, and gross anatomy as well as behavior appeared normal. The mice showed normal age progression and did not show any apparent additional phenotype during their life span. We observed no differences in various blood parameters and chemistry values. We infected wild-type and Nrf3(-/-) mice with acute lymphocytic choriomeningitis virus and found no differences in these animals with respect to their number of virus-specific CD8 and CD4 T cells as well as their B-lymphocyte response. To determine whether the mild phenotype of Nrf3 null animals is due to functional redundancy, we generated mice deficient in multiple CNC factors. Contrary to our expectations, an absence of Nrf3 does not seem to cause additional lethality in compound Nrf3(-/-)/Nrf2(-/-) and Nrf3(-/-)/p45(-/-) mice. We hypothesize that the role of Nrf3 in vivo may become apparent only after appropriate challenge to the mice.

  18. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    Science.gov (United States)

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-02-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.

  19. Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates.

    Directory of Open Access Journals (Sweden)

    Yaron E Antebi

    2013-07-01

    Full Text Available Cell differentiation is typically directed by external signals that drive opposing regulatory pathways. Studying differentiation under polarizing conditions, with only one input signal provided, is limited in its ability to resolve the logic of interactions between opposing pathways. Dissection of this logic can be facilitated by mapping the system's response to mixtures of input signals, which are expected to occur in vivo, where cells are simultaneously exposed to various signals with potentially opposing effects. Here, we systematically map the response of naïve T cells to mixtures of signals driving differentiation into the Th1 and Th2 lineages. We characterize cell state at the single cell level by measuring levels of the two lineage-specific transcription factors (T-bet and GATA3 and two lineage characteristic cytokines (IFN-γ and IL-4 that are driven by these transcription regulators. We find a continuum of mixed phenotypes in which individual cells co-express the two lineage-specific master regulators at levels that gradually depend on levels of the two input signals. Using mathematical modeling we show that such tunable mixed phenotype arises if autoregulatory positive feedback loops in the gene network regulating this process are gradual and dominant over cross-pathway inhibition. We also find that expression of the lineage-specific cytokines follows two independent stochastic processes that are biased by expression levels of the master regulators. Thus, cytokine expression is highly heterogeneous under mixed conditions, with subpopulations of cells expressing only IFN-γ, only IL-4, both cytokines, or neither. The fraction of cells in each of these subpopulations changes gradually with input conditions, reproducing the continuous internal state at the cell population level. These results suggest a differentiation scheme in which cells reflect uncertainty through a continuously tuneable mixed phenotype combined with a biased

  20. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation

    KAUST Repository

    Monies, Dorota; Maddirevula, Sateesh; Kurdi, Wesam; Alanazy, Mohammed H.; Alkhalidi, Hisham; Al-Owain, Mohammed; Sulaiman, Raashda A.; Faqeih, Eissa; Goljan, Ewa; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Abouelhoda, Mohamed; Shaheen, Ranad; Arold, Stefan T.; Alkuraya, Fowzan S.

    2017-01-01

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance

  1. Genomewide analysis of MATE-type gene family in maize reveals ...

    Indian Academy of Sciences (India)

    Huasheng Zhu and Jiandong Wu contributed equally to this work. As a group of secondary active transporters, the MATE gene family consists of multiple genes that widely exist in ..... Roots of the stress-treated plants were collected at 0,.

  2. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition.

    Science.gov (United States)

    Wang, Y H; Garvin, D F; Kochian, L V

    2001-09-01

    A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (-nitrogen [N], -phosphorus, -potassium [K], -sulfur, -magnesium, -calcium, -iron, -zinc, and -copper) tomato plants. A subset of cDNAs was selected from this library based on mineral nutrient-related changes in expression. Additional cDNAs were selected from a second mineral-deficient tomato root library based on sequence homology to known genes. These selection processes yielded a set of 1,280 mineral nutrition-related cDNAs that were arrayed on nylon membranes for further analysis. These high-density arrays were hybridized with mRNA from tomato plants exposed to nitrate at different time points after N was withheld for 48 h, for plants that were grown on nitrate/ammonium for 5 weeks prior to the withholding of N. One hundred-fifteen genes were found to be up-regulated by nitrate resupply. Among these genes were several previously identified as nitrate responsive, including nitrate transporters, nitrate and nitrite reductase, and metabolic enzymes such as transaldolase, transketolase, malate dehydrogenase, asparagine synthetase, and histidine decarboxylase. We also identified 14 novel nitrate-inducible genes, including: (a) water channels, (b) root phosphate and K(+) transporters, (c) genes potentially involved in transcriptional regulation, (d) stress response genes, and (e) ribosomal protein genes. In addition, both families of nitrate transporters were also found to be inducible by phosphate, K, and iron deficiencies. The identification of these novel nitrate-inducible genes is providing avenues of research that will yield new insights into the molecular basis of plant N nutrition, as well as possible networking between the regulation of N, phosphorus, and K nutrition.

  3. Optimization of Saanen sperm genes amplification: evaluation of standardized protocols in genetically uncharacterized rural goats reared under a subtropical environment.

    Science.gov (United States)

    Barbour, Elie K; Saade, Maya F; Sleiman, Fawwak T; Hamadeh, Shady K; Mouneimne, Youssef; Kassaifi, Zeina; Kayali, Ghazi; Harakeh, Steve; Jaber, Lina S; Shaib, Houssam A

    2012-10-01

    The purpose of this research is to optimize quantitatively the amplification of specific sperm genes in reference genomically characterized Saanen goat and to evaluate the standardized protocols applicability on sperms of uncharacterized genome of rural goats reared under subtropical environment for inclusion in future selection programs. The optimization of the protocols in Saanen sperms included three production genes (growth hormone (GH) exons 2, 3, and 4, αS1-casein (CSN1S1), and α-lactalbumin) and two health genes (MHC class II DRB and prion (PrP)). The optimization was based on varying the primers concentrations and the inclusion of a PCR cosolvent (Triton X). The impact of the studied variables on statistically significant increase in the yield of amplicons was noticed in four out of five (80%) optimized protocols, namely in those related to GH, CSN1S1, α-lactalbumin, and PrP genes (P 0.05). The applicability of the optimized protocols of Saanen sperm genes on amplification of uncharacterized rural goat sperms revealed a 100% success in tested individuals for amplification of GH, CSN1S1, α-lactalbumin, and MHC class II DRB genes and a 75% success for the PrP gene. The significant success in applicability of the Saanen quantitatively optimized protocols to other uncharacterized genome of rural goats allows for their inclusion in future selection, targeting the sustainability of this farming system in a subtropical environment and the improvement of the farmers livelihood.

  4. Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families.

    Directory of Open Access Journals (Sweden)

    Sierra M Li

    Full Text Available Monoallelic expression is an integral component of regulation of a number of essential genes and gene families. To probe for allele-specific expression in cells of CNS origin, we used next-generation sequencing (RNA-seq to analyze four clonal neural stem cell (NSC lines derived from Mus musculus C57BL/6 (B6×Mus musculus molossinus (JF1 adult female mice. We established a JF1 cSNP library, then ascertained transcriptome-wide expression from B6 vs. JF1 alleles in the NSC lines. Validating the assay, we found that 262 of 268 X-linked genes evaluable in at least one cell line showed monoallelic expression (at least 85% expression of the predominant allele, p-value<0.05. For autosomal genes 170 of 7,198 genes (2.4% of the total showed monoallelic expression in at least 2 evaluable cell lines. The group included eight known imprinted genes with the expected pattern of allele-specific expression. Among the other autosomal genes with monoallelic expression were five members of the glutathione transferase gene superfamily, which processes xenobiotic compounds as well as carcinogens and cancer therapeutic agents. Monoallelic expression within this superfamily thus may play a functional role in the response to diverse and potentially lethal exogenous factors, as is the case for the immunoglobulin and olfactory receptor superfamilies. Other genes and gene families showing monoallelic expression include the annexin gene family and the Thy1 gene, both linked to inflammation and cancer, as well as genes linked to alcohol dependence (Gabrg1 and epilepsy (Kcnma1. The annotated set of genes will provide a resource for investigation of mechanisms underlying certain cases of these and other major disorders.

  5. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute

    2004-01-01

    in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported......Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly...

  6. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    Science.gov (United States)

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  7. Microarray analysis reveals key genes and pathways in Tetralogy of Fallot

    Science.gov (United States)

    He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai

    2017-01-01

    The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF

  8. Gene Expression Analysis Reveals New Possible Mechanisms of Vancomycin-Induced Nephrotoxicity and Identifies Gene Markers Candidates

    OpenAIRE

    Dieterich, Christine; Puey, Angela; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C.; Ng, Hanna H.

    2008-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and...

  9. Meta-analysis of differentiating mouse embryonic stem cell gene expression kinetics reveals early change of a small gene set.

    Directory of Open Access Journals (Sweden)

    Clive H Glover

    2006-11-01

    Full Text Available Stem cell differentiation involves critical changes in gene expression. Identification of these should provide endpoints useful for optimizing stem cell propagation as well as potential clues about mechanisms governing stem cell maintenance. Here we describe the results of a new meta-analysis methodology applied to multiple gene expression datasets from three mouse embryonic stem cell (ESC lines obtained at specific time points during the course of their differentiation into various lineages. We developed methods to identify genes with expression changes that correlated with the altered frequency of functionally defined, undifferentiated ESC in culture. In each dataset, we computed a novel statistical confidence measure for every gene which captured the certainty that a particular gene exhibited an expression pattern of interest within that dataset. This permitted a joint analysis of the datasets, despite the different experimental designs. Using a ranking scheme that favored genes exhibiting patterns of interest, we focused on the top 88 genes whose expression was consistently changed when ESC were induced to differentiate. Seven of these (103728_at, 8430410A17Rik, Klf2, Nr0b1, Sox2, Tcl1, and Zfp42 showed a rapid decrease in expression concurrent with a decrease in frequency of undifferentiated cells and remained predictive when evaluated in additional maintenance and differentiating protocols. Through a novel meta-analysis, this study identifies a small set of genes whose expression is useful for identifying changes in stem cell frequencies in cultures of mouse ESC. The methods and findings have broader applicability to understanding the regulation of self-renewal of other stem cell types.

  10. Sequencing analysis reveals a unique gene organization in the gyrB region of Mycoplasma hominis

    DEFF Research Database (Denmark)

    Ladefoged, Søren; Christiansen, Gunna

    1994-01-01

    of which showed similarity to that which encodes the LicA protein of Haemophilus influenzae. The organization of the genes in the region showed no resemblance to that in the corresponding regions of other bacteria sequenced so far. The gyrA gene was mapped 35 kb downstream from the gyrB gene.......The homolog of the gyrB gene, which has been reported to be present in the vicinity of the initiation site of replication in bacteria, was mapped on the Mycoplasma hominis genome, and the region was subsequently sequenced. Five open reading frames were identified flanking the gyrB gene, one...

  11. Comparative Genomic Analysis of Transgenic Poplar Dwarf Mutant Reveals Numerous Differentially Expressed Genes Involved in Energy Flow

    Directory of Open Access Journals (Sweden)

    Su Chen

    2014-09-01

    Full Text Available In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481 was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development.

  12. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    Science.gov (United States)

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-06

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather.

  13. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent.

    Science.gov (United States)

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2011-06-01

    Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.

  14. Identification of Spt5 target genes in zebrafish development reveals its dual activity in vivo.

    Directory of Open Access Journals (Sweden)

    Keerthi Krishnan

    Full Text Available Spt5 is a conserved essential protein that represses or stimulates transcription elongation in vitro. Immunolocalization studies on Drosophila polytene chromosomes suggest that Spt5 is associated with many loci throughout the genome. However, little is known about the prevalence and identity of Spt5 target genes in vivo during development. Here, we identify direct target genes of Spt5 using fog(sk8 zebrafish mutant, which disrupts the foggy/spt5 gene. We identified that fog(sk8 and their wildtype siblings differentially express less than 5% of genes examined. These genes participate in diverse biological processes from stress response to cell fate specification. Up-regulated genes exhibit shorter overall gene length compared to all genes examined. Through chromatin immunoprecipitation in zebrafish embryos, we identified a subset of developmentally critical genes that are bound by both Spt5 and RNA polymerase II. The protein occupancy patterns on these genes are characteristic of both repressive and stimulatory elongation regulation. Together our findings establish Spt5 as a dual regulator of transcription elongation in vivo and identify a small but diverse set of target genes critically dependent on Spt5 during development.

  15. Bioinformatics Analysis Reveals Genes Involved in the Pathogenesis of Ameloblastoma and Keratocystic Odontogenic Tumor.

    Science.gov (United States)

    Santos, Eliane Macedo Sobrinho; Santos, Hércules Otacílio; Dos Santos Dias, Ivoneth; Santos, Sérgio Henrique; Batista de Paula, Alfredo Maurício; Feltenberger, John David; Sena Guimarães, André Luiz; Farias, Lucyana Conceição

    2016-01-01

    Pathogenesis of odontogenic tumors is not well known. It is important to identify genetic deregulations and molecular alterations. This study aimed to investigate, through bioinformatic analysis, the possible genes involved in the pathogenesis of ameloblastoma (AM) and keratocystic odontogenic tumor (KCOT). Genes involved in the pathogenesis of AM and KCOT were identified in GeneCards. Gene list was expanded, and the gene interactions network was mapped using the STRING software. "Weighted number of links" (WNL) was calculated to identify "leader genes" (highest WNL). Genes were ranked by K-means method and Kruskal-Wallis test was used (Preview data was used to corroborate the bioinformatics data. CDK1 was identified as leader gene for AM. In KCOT group, results show PCNA and TP53 . Both tumors exhibit a power law behavior. Our topological analysis suggested leader genes possibly important in the pathogenesis of AM and KCOT, by clustering coefficient calculated for both odontogenic tumors (0.028 for AM, zero for KCOT). The results obtained in the scatter diagram suggest an important relationship of these genes with the molecular processes involved in AM and KCOT. Ontological analysis for both AM and KCOT demonstrated different mechanisms. Bioinformatics analyzes were confirmed through literature review. These results may suggest the involvement of promising genes for a better understanding of the pathogenesis of AM and KCOT.

  16. RNA-Seq reveals spliceosome and proteasome genes as most consistent transcripts in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Tara Macrae

    Full Text Available Accurate quantification of gene expression by qRT-PCR relies on normalization against a consistently expressed control gene. However, control genes in common use often vary greatly between samples, especially in cancer. The advent of Next Generation Sequencing technology offers the possibility to better select control genes with the least cell to cell variability in steady state transcript levels. Here we analyze the transcriptomes of 55 leukemia samples to identify the most consistent genes. This list is enriched for components of the proteasome (ex. PSMA1 and spliceosome (ex. SF3B2, and also includes the translation initiation factor EIF4H, and many heterogeneous nuclear ribonucleoprotein genes (ex. HNRNPL. We have validated the consistency of our new control genes in 1933 cancer and normal tissues using publically available RNA-seq data, and their usefulness in qRT-PCR analysis is clearly demonstrated.

  17. Differential Gene Expression of Longan Under Simulated Acid Rain Stress.

    Science.gov (United States)

    Zheng, Shan; Pan, Tengfei; Ma, Cuilan; Qiu, Dongliang

    2017-05-01

    Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.

  18. Metabolite analysis of Mycobacterium species under aerobic and hypoxic conditions reveals common metabolic traits.

    Science.gov (United States)

    Drapal, Margit; Wheeler, Paul R; Fraser, Paul D

    2016-08-01

    A metabolite profiling approach has been implemented to elucidate metabolic adaptation at set culture conditions in five Mycobacterium species (two fast- and three slow-growing) with the potential to act as model organisms for Mycobacterium tuberculosis (Mtb). Analysis has been performed over designated growth phases and under representative environments (nutrient and oxygen depletion) experienced by Mtb during infection. The procedure was useful in determining a range of metabolites (60-120 compounds) covering nucleotides, amino acids, organic acids, saccharides, fatty acids, glycerols, -esters, -phosphates and isoprenoids. Among these classes of compounds, key biomarker metabolites, which can act as indicators of pathway/process activity, were identified. In numerous cases, common metabolite traits were observed for all five species across the experimental conditions (e.g. uracil indicating DNA repair). Amino acid content, especially glutamic acid, highlighted the different properties between the fast- and slow-growing mycobacteria studied (e.g. nitrogen assimilation). The greatest similarities in metabolite composition between fast- and slow-growing mycobacteria were apparent under hypoxic conditions. A comparison to previously reported transcriptomic data revealed a strong correlation between changes in transcription and metabolite content. Collectively, these data validate the changes in the transcription at the metabolite level, suggesting transcription exists as one of the predominant modes of cellular regulation in Mycobacterium. Sectors with restricted correlation between metabolites and transcription (e.g. hypoxic cultivation) warrant further study to elucidate and exploit post-transcriptional modes of regulation. The strong correlation between the laboratory conditions used and data derived from in vivo conditions, indicate that the approach applied is a valuable addition to our understanding of cell regulation in these Mycobacterium species.

  19. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Gottelt, Marco; Kol, Stefan; Gomez-Escribano, Juan Pablo; Bibb, Mervyn; Takano, Eriko

    Genome sequencing of Streptomyces coelicolor A3(2) revealed an uncharacterized type I polyketide synthase gene cluster (cpk) Here we describe the discovery of a novel antibacterial activity (abCPK) and a yellow-pigmented secondary metabolite (yCPK) after deleting a presumed pathway-specific

  20. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile.

    Science.gov (United States)

    Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao

    2012-03-01

    High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Learning gene networks under SNP perturbations using eQTL datasets.

    Directory of Open Access Journals (Sweden)

    Lingxue Zhang

    2014-02-01

    Full Text Available The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs that perturb this network. While our statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast eQTL datasets. In particular, the yeast gene network

  2. Diffusion Modelling Reveals the Decision Making Processes Underlying Negative Judgement Bias in Rats.

    Directory of Open Access Journals (Sweden)

    Claire A Hales

    Full Text Available Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142, and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward.

  3. Diffusion Modelling Reveals the Decision Making Processes Underlying Negative Judgement Bias in Rats.

    Science.gov (United States)

    Hales, Claire A; Robinson, Emma S J; Houghton, Conor J

    2016-01-01

    Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142), and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward.

  4. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis.

    Science.gov (United States)

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-07-14

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.

  5. Digital signal processing reveals circadian baseline oscillation in majority of mammalian genes.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2007-06-01

    Full Text Available In mammals, circadian periodicity has been described for gene expression in the hypothalamus and multiple peripheral tissues. It is accepted that 10%-15% of all genes oscillate in a daily rhythm, regulated by an intrinsic molecular clock. Statistical analyses of periodicity are limited by the small size of datasets and high levels of stochastic noise. Here, we propose a new approach applying digital signal processing algorithms separately to each group of genes oscillating in the same phase. Combined with the statistical tests for periodicity, this method identifies circadian baseline oscillation in almost 100% of all expressed genes. Consequently, circadian oscillation in gene expression should be evaluated in any study related to biological pathways. Changes in gene expression caused by mutations or regulation of environmental factors (such as photic stimuli or feeding should be considered in the context of changes in the amplitude and phase of genetic oscillations.

  6. Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization

    CSIR Research Space (South Africa)

    Gcebe, N

    2017-04-01

    Full Text Available Journal of Systematic and Evolutionary Microbiology: DOI 10.1099/ijsem.0.001678 Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization Gcebe N Rutten V Gey...

  7. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  8. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  9. Gene-Environment Correlation Underlying the Association between Parental Negativity and Adolescent Externalizing Problems

    Science.gov (United States)

    Marceau, Kristine; Horwitz, Briana N.; Narusyte, Jurgita; Ganiban, Jody M.; Spotts, Erica L.; Reiss, David; Neiderhiser, Jenae M.

    2013-01-01

    Studies of adolescent or parent-based twins suggest that gene-environment correlation (rGE) is an important mechanism underlying parent-adolescent relationships. However, information on how parents' and children's genes and environments influence correlated parent "and" child behaviors is needed to distinguish types of rGE. The present…

  10. Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including Amyloid beta Precursor Protein

    Directory of Open Access Journals (Sweden)

    Deussing Jan M

    2010-10-01

    Full Text Available Abstract Background The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses. Results Forced swimming as acute stressor was applied to C57BL/6J and DBA/2J mice and resulted in sets of regulated genes in the paraventricular nucleus of the hypothalamus (PVN, 4 h or 8 h after stress. Although the expression changes between the mouse strains were quite different, they unfolded in phases over time in both strains. Our search for connections between the regulated genes resulted in potential novel signalling pathways in stress. In particular, Guanine nucleotide binding protein, alpha inhibiting 2 (GNAi2 and Amyloid β (A4 precursor protein (APP were detected as stress-regulated genes, and together with other genes, seem to be integrated into stress-responsive pathways and gene networks in the PVN. Conclusions This search for stress-regulated genes in the PVN revealed its impact on interesting genes (GNAi2 and APP and a novel gene network. In particular the expression of APP in the PVN that is governing stress hormone balance, is of great interest. The reported neuroprotective role of this molecule in the CNS supports the idea that a short acute stress can elicit positive adaptational effects in the brain.

  11. Characterization of small HSPs from Anemonia viridis reveals insights into molecular evolution of alpha crystallin genes among cnidarians.

    Directory of Open Access Journals (Sweden)

    Aldo Nicosia

    Full Text Available Gene family encoding small Heat-Shock Proteins (sHSPs containing α-crystallin domain are found both in prokaryotic and eukaryotic organisms; however, there is limited knowledge of their evolution. In this study, two small HSP genes termed AvHSP28.6 and AvHSP27, both organized in one intron and two exons, were characterised in the Mediterranean snakelocks anemone Anemonia viridis. The release of the genome sequence of Hydra magnipapillata and Nematostella vectensis enabled a comprehensive study of the molecular evolution of α-crystallin gene family among cnidarians. Most of the H. magnipapillata sHSP genes share the same gene organization described for AvHSP28.6 and AvHSP27, differing from the sHSP genes of N. vectensis which mainly show an intronless architecture. The different genomic organization of sHSPs, the phylogenetic analyses based on protein sequences, and the relationships among Cnidarians, suggest that the A.viridis sHSPs represent the common ancestor from which H. magnipapillata genes directly evolved through segmental genome duplication. Additionally retroposition events may be considered responsible for the divergence of sHSP genes of N. vectensis from A. viridis. Analyses of transcriptional expression profile showed that AvHSP28.6 was constitutively expressed among different tissues from both ectodermal and endodermal layers of the adult sea anemones, under normal physiological conditions and also under different stress condition. Specifically, we profiled the transcriptional activation of AvHSP28.6 after challenges with different abiotic/biotic stresses showing induction by extreme temperatures, heavy metals exposure and immune stimulation. Conversely, no AvHSP27 transcript was detected in such dissected tissues, in adult whole body cDNA library or under stress conditions. Hence, the involvement of AvHSP28.6 gene in the sea anemone defensome is strongly suggested.

  12. Characterization of small HSPs from Anemonia viridis reveals insights into molecular evolution of alpha crystallin genes among cnidarians.

    Science.gov (United States)

    Nicosia, Aldo; Maggio, Teresa; Mazzola, Salvatore; Gianguzza, Fabrizio; Cuttitta, Angela; Costa, Salvatore

    2014-01-01

    Gene family encoding small Heat-Shock Proteins (sHSPs containing α-crystallin domain) are found both in prokaryotic and eukaryotic organisms; however, there is limited knowledge of their evolution. In this study, two small HSP genes termed AvHSP28.6 and AvHSP27, both organized in one intron and two exons, were characterised in the Mediterranean snakelocks anemone Anemonia viridis. The release of the genome sequence of Hydra magnipapillata and Nematostella vectensis enabled a comprehensive study of the molecular evolution of α-crystallin gene family among cnidarians. Most of the H. magnipapillata sHSP genes share the same gene organization described for AvHSP28.6 and AvHSP27, differing from the sHSP genes of N. vectensis which mainly show an intronless architecture. The different genomic organization of sHSPs, the phylogenetic analyses based on protein sequences, and the relationships among Cnidarians, suggest that the A.viridis sHSPs represent the common ancestor from which H. magnipapillata genes directly evolved through segmental genome duplication. Additionally retroposition events may be considered responsible for the divergence of sHSP genes of N. vectensis from A. viridis. Analyses of transcriptional expression profile showed that AvHSP28.6 was constitutively expressed among different tissues from both ectodermal and endodermal layers of the adult sea anemones, under normal physiological conditions and also under different stress condition. Specifically, we profiled the transcriptional activation of AvHSP28.6 after challenges with different abiotic/biotic stresses showing induction by extreme temperatures, heavy metals exposure and immune stimulation. Conversely, no AvHSP27 transcript was detected in such dissected tissues, in adult whole body cDNA library or under stress conditions. Hence, the involvement of AvHSP28.6 gene in the sea anemone defensome is strongly suggested.

  13. Neonatal maternal deprivation response and developmental changes in gene expression revealed by hypothalamic gene expression profiling in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Neonatal feeding problems are observed in several genetic diseases including Prader-Willi syndrome (PWS. Later in life, individuals with PWS develop hyperphagia and obesity due to lack of appetite control. We hypothesized that failure to thrive in infancy and later-onset hyperphagia are related and could be due to a defect in the hypothalamus. In this study, we performed gene expression microarray analysis of the hypothalamic response to maternal deprivation in neonatal wild-type and Snord116del mice, a mouse model for PWS in which a cluster of imprinted C/D box snoRNAs is deleted. The neonatal starvation response in both strains was dramatically different from that reported in adult rodents. Genes that are affected by adult starvation showed no expression change in the hypothalamus of 5 day-old pups after 6 hours of maternal deprivation. Unlike in adult rodents, expression levels of Nanos2 and Pdk4 were increased, and those of Pgpep1, Ndp, Brms1l, Mett10d, and Snx1 were decreased after neonatal deprivation. In addition, we compared hypothalamic gene expression profiles at postnatal days 5 and 13 and observed significant developmental changes. Notably, the gene expression profiles of Snord116del deletion mice and wild-type littermates were very similar at all time points and conditions, arguing against a role of Snord116 in feeding regulation in the neonatal period.

  14. Kidney gene expression analysis in a rat model of intrauterine growth restriction reveals massive alterations of coagulation genes.

    Science.gov (United States)

    Buffat, Christophe; Boubred, Farid; Mondon, Françoise; Chelbi, Sonia T; Feuerstein, Jean-Marc; Lelièvre-Pégorier, Martine; Vaiman, Daniel; Simeoni, Umberto

    2007-11-01

    In this study, low birth weight was induced in rats by feeding the dams with a low-protein diet during pregnancy. Kidneys from the fetuses at the end of gestation were collected and showed a reduction in overall and relative weight, in parallel with other tissues (heart and liver). This reduction was associated with a reduction in nephrons number. To better understand the molecular basis of this observation, a transcriptome analysis contrasting kidneys from control and protein-deprived rats was performed, using a platform based upon long isothermic oligonucleotides, strengthening the robustness of the results. We could identify over 1800 transcripts modified more than twice (772 induced and 1040 repressed). Genes of either category were automatically classified according to functional criteria, making it possible to bring to light a large cluster of genes involved in coagulation and complement cascades. The promoters of the most induced and most repressed genes were contrasted for their composition in putative transcription factor binding sites, suggesting an overrepresentation of the AP1R binding site, together with the transcription induction of factors actually binding to this site in the set of induced genes. The induction of coagulation cascades in the kidney of low-birth-weight rats provides a putative rationale for explaining thrombo-endothelial disorders also observed in intrauterine growth-restricted human newborns. These alterations in the kidneys have been reported as a probable cause for cardiovascular diseases in the adult.

  15. Gene Discovery in the Apicomplexa as Revealed by EST Sequencing and Assembly of a Comparative Gene Database

    Science.gov (United States)

    Li, Li; Brunk, Brian P.; Kissinger, Jessica C.; Pape, Deana; Tang, Keliang; Cole, Robert H.; Martin, John; Wylie, Todd; Dante, Mike; Fogarty, Steven J.; Howe, Daniel K.; Liberator, Paul; Diaz, Carmen; Anderson, Jennifer; White, Michael; Jerome, Maria E.; Johnson, Emily A.; Radke, Jay A.; Stoeckert, Christian J.; Waterston, Robert H.; Clifton, Sandra W.; Roos, David S.; Sibley, L. David

    2003-01-01

    Large-scale EST sequencing projects for several important parasites within the phylum Apicomplexa were undertaken for the purpose of gene discovery. Included were several parasites of medical importance (Plasmodium falciparum, Toxoplasma gondii) and others of veterinary importance (Eimeria tenella, Sarcocystis neurona, and Neospora caninum). A total of 55,192 ESTs, deposited into dbEST/GenBank, were included in the analyses. The resulting sequences have been clustered into nonredundant gene assemblies and deposited into a relational database that supports a variety of sequence and text searches. This database has been used to compare the gene assemblies using BLAST similarity comparisons to the public protein databases to identify putative genes. Of these new entries, ∼15%–20% represent putative homologs with a conservative cutoff of p neurona: , , , , , , , , , , , , , –, –, –, –, –. Eimeria tenella: –, –, –, –, –, –, –, –, – , –, –, –, –, –, –, –, –, –, –, –. Neospora caninum: –, –, , – , –, –.] PMID:12618375

  16. A systematic analysis of genetic dilated cardiomyopathy reveals numerous ubiquitously expressed and muscle-specific genes

    NARCIS (Netherlands)

    Harakalova, Magdalena; Kummeling, GJM; Sammani, Arjan; Linschoten, Marijke; Baas, AF; van der Smagt, Jasper; Doevendans, Pieter A.; van Tintelen, J. Peter; Dooijes, Dennis; Mokry, Michal; Asselbergs, Folkert W.

    AimsDespite considerable progress being made in genetic diagnostics for dilated cardiomyopathy (DCM) using panels of the most prevalent genes, the cause remains unsolved in a substantial percentage of patients. We hypothesize that several previously described DCM genes with low or unknown prevalence

  17. A systematic analysis of genetic dilated cardiomyopathy reveals numerous ubiquitously expressed and muscle-specific genes

    NARCIS (Netherlands)

    Harakalova, Magdalena; Kummeling, Gijs; Sammani, Arjan; Linschoten, Marijke; Baas, Annette F.; van der Smagt, Jasper; Doevendans, Pieter A.; van Tintelen, J. Peter; Dooijes, Dennis; Mokry, Michal; Asselbergs, Folkert W.

    2015-01-01

    Despite considerable progress being made in genetic diagnostics for dilated cardiomyopathy (DCM) using panels of the most prevalent genes, the cause remains unsolved in a substantial percentage of patients. We hypothesize that several previously described DCM genes with low or unknown prevalence

  18. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes

    Directory of Open Access Journals (Sweden)

    Elvezia Maria Paraboschi

    2015-09-01

    Full Text Available Abnormalities in RNA metabolism and alternative splicing (AS are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls, followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p = 0.0015 by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.

  19. Comprehensive expression profiling of rice tetraspanin genes reveals diverse roles during development and abiotic stress

    Directory of Open Access Journals (Sweden)

    Balaji eM

    2015-12-01

    Full Text Available Tetraspanin family is comprised of evolutionarily conserved integral membrane proteins. The incredible ability of tetraspanins to form ‘micro domain complexes’ and their preferential targeting to membranes emphasizes their active association with signal recognition and communication with neighboring cells, thus acting as key modulators of signaling cascades. In animals, tetraspanins are associated with multitude of cellular processes. Unlike animals, the biological relevance of tetraspanins in plants has not been well investigated. In Arabidopsis tetraspanins are known to contribute in important plant development processes such as leaf morphogenesis, root and floral organ formation. In the present study we investigated the genomic organization, chromosomal distribution, phylogeny and domain structure of 15 rice tetraspanin proteins (OsTETs. OsTET proteins had similar domain structure and signature ‘GCCK/R’ motif as reported in Arabidopsis. Comprehensive expression profiling of OsTET genes suggested their possible involvement during rice development. While OsTET9 and 10 accumulated predominantly in flowers, OsTET5, 8 and 12 were preferentially expressed in root tissues. Noticeably, seven OsTETs exhibited more than 2-fold up regulation at early stages of flag leaf senescence in rice. Furthermore, several OsTETs were differentially regulated in rice seedlings exposed to abiotic stresses, exogenous treatment of hormones and nutrient deprivation. Transient subcellular localization studies of eight OsTET proteins in tobacco epidermal cells showed that these proteins localized in plasma membrane. The present study provides valuable insights into the possible roles of tetraspanins in regulating development and defining response to abiotic stresses in rice. Targeted proteomic studies would be useful in identification of their interacting partners under different conditions and ultimately their biological function in plants

  20. A Chinese Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differentiation and Gene Expression of Cultured Osteosarcoma Cells: Genomic Approach to Reveal Specific Gene Activation

    Directory of Open Access Journals (Sweden)

    Roy C. Y. Choi

    2011-01-01

    Full Text Available Danggui Buxue Tang (DBT, a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA and Radix Angelicae Sinensis (Danggui; RAS. When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation.

  1. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn; Straight, Paul

    2014-02-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305-310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis.

  2. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data.

    Directory of Open Access Journals (Sweden)

    Daniel Ramsköld

    2009-12-01

    Full Text Available The parts of the genome transcribed by a cell or tissue reflect the biological processes and functions it carries out. We characterized the features of mammalian tissue transcriptomes at the gene level through analysis of RNA deep sequencing (RNA-Seq data across human and mouse tissues and cell lines. We observed that roughly 8,000 protein-coding genes were ubiquitously expressed, contributing to around 75% of all mRNAs by message copy number in most tissues. These mRNAs encoded proteins that were often intracellular, and tended to be involved in metabolism, transcription, RNA processing or translation. In contrast, genes for secreted or plasma membrane proteins were generally expressed in only a subset of tissues. The distribution of expression levels was broad but fairly continuous: no support was found for the concept of distinct expression classes of genes. Expression estimates that included reads mapping to coding exons only correlated better with qRT-PCR data than estimates which also included 3' untranslated regions (UTRs. Muscle and liver had the least complex transcriptomes, in that they expressed predominantly ubiquitous genes and a large fraction of the transcripts came from a few highly expressed genes, whereas brain, kidney and testis expressed more complex transcriptomes with the vast majority of genes expressed and relatively small contributions from the most expressed genes. mRNAs expressed in brain had unusually long 3'UTRs, and mean 3'UTR length was higher for genes involved in development, morphogenesis and signal transduction, suggesting added complexity of UTR-based regulation for these genes. Our results support a model in which variable exterior components feed into a large, densely connected core composed of ubiquitously expressed intracellular proteins.

  3. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  4. Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm.

    Science.gov (United States)

    Nakaoka, Hirofumi; Tajima, Atsushi; Yoneyama, Taku; Hosomichi, Kazuyoshi; Kasuya, Hidetoshi; Mizutani, Tohru; Inoue, Ituro

    2014-08-01

    The rupture of intracranial aneurysm (IA) causes subarachnoid hemorrhage associated with high morbidity and mortality. We compared gene expression profiles in aneurysmal domes between unruptured IAs and ruptured IAs (RIAs) to elucidate biological mechanisms predisposing to the rupture of IA. We determined gene expression levels of 8 RIAs, 5 unruptured IAs, and 10 superficial temporal arteries with the Agilent microarrays. To explore biological heterogeneity of IAs, we classified the samples into subgroups showing similar gene expression patterns, using clustering methods. The clustering analysis identified 4 groups: superficial temporal arteries and unruptured IAs were aggregated into their own clusters, whereas RIAs segregated into 2 distinct subgroups (early and late RIAs). Comparing gene expression levels between early RIAs and unruptured IAs, we identified 430 upregulated and 617 downregulated genes in early RIAs. The upregulated genes were associated with inflammatory and immune responses and phagocytosis including S100/calgranulin genes (S100A8, S100A9, and S100A12). The downregulated genes suggest mechanical weakness of aneurysm walls. The expressions of Krüppel-like family of transcription factors (KLF2, KLF12, and KLF15), which were anti-inflammatory regulators, and CDKN2A, which was located on chromosome 9p21 that was the most consistently replicated locus in genome-wide association studies of IA, were also downregulated. We demonstrate that gene expression patterns of RIAs were different according to the age of patients. The results suggest that macrophage-mediated inflammation is a key biological pathway for IA rupture. The identified genes can be good candidates for molecular markers of rupture-prone IAs and therapeutic targets. © 2014 American Heart Association, Inc.

  5. Transcriptome Comparative Profiling of Barley eibi1 Mutant Reveals Pleiotropic Effects of HvABCG31 Gene on Cuticle Biogenesis and Stress Responsive Pathways

    Directory of Open Access Journals (Sweden)

    Eviatar Nevo

    2013-10-01

    Full Text Available Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.

  6. De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana.

    Directory of Open Access Journals (Sweden)

    Guodong Rao

    Full Text Available Salix matsudana Koidz. is a deciduous, rapidly growing, and drought resistant tree and is one of the most widely distributed and commonly cultivated willow species in China. Currently little transcriptomic and small RNAomic data are available to reveal the genes involve in the stress resistant in S. matsudana. Here, we report the RNA-seq analysis results of both transcriptome and small RNAome data using Illumina deep sequencing of shoot tips from two willow variants(Salix. matsudana and Salix matsudana Koidz. cultivar 'Tortuosa'. De novo gene assembly was used to generate the consensus transcriptome and small RNAome, which contained 106,403 unique transcripts with an average length of 944 bp and a total length of 100.45 MB, and 166 known miRNAs representing 35 miRNA families. Comparison of transcriptomes and small RNAomes combined with quantitative real-time PCR from the two Salix libraries revealed a total of 292 different expressed genes(DEGs and 36 different expressed miRNAs (DEMs. Among the DEGs and DEMs, 196 genes and 24 miRNAs were up regulated, 96 genes and 12 miRNA were down regulated in S. matsudana. Functional analysis of DEGs and miRNA targets showed that many genes were involved in stress resistance in S. matsudana. Our global gene expression profiling presents a comprehensive view of the transcriptome and small RNAome which provide valuable information and sequence resources for uncovering the stress response genes in S. matsudana. Moreover the transcriptome and small RNAome data provide a basis for future study of genetic resistance in Salix.

  7. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Riley, Caroline Hasselbalch; Thomassen, Mads

    2013-01-01

    Gene expression profiling studies in the Philadelphia-negative chronic myeloproliferative neoplasms have revealed significant deregulation of several immune and inflammation genes that might be of importance for clonal evolution due to defective tumor immune surveillance. Other mechanisms might b...

  8. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum.

    Science.gov (United States)

    Rao, Soumya; Nandineni, Madhusudan R

    2017-01-01

    Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.

  9. A Δ11 desaturase gene genealogy reveals two divergent allelic classes within the European corn borer (Ostrinia nubilalis

    Directory of Open Access Journals (Sweden)

    Harrison Richard G

    2010-04-01

    Full Text Available Abstract Background Moth pheromone mating systems have been characterized at the molecular level, allowing evolutionary biologists to study how changes in protein sequence or gene expression affect pheromone phenotype, patterns of mating, and ultimately, the formation of barriers to gene exchange. Recent studies of Ostrinia pheromones have focused on the diversity of sex pheromone desaturases and their role in the specificity of pheromone production. Here we produce a Δ11 desaturase genealogy within Ostrinia nubilalis. We ask what has been the history of this gene, and whether this history suggests that changes in Δ11 desaturase have been involved in the divergence of the E and Z O. nubilalis pheromone strains. Results The Δ11 desaturase gene genealogy does not differentiate O. nubilalis pheromone strains. However, we find two distinct clades, separated by 2.9% sequence divergence, that do not sort with pheromone strain, geographic origin, or emergence time. We demonstrate that these clades do not represent gene duplicates, but rather allelic variation at a single gene locus. Conclusions Analyses of patterns of variation at the Δ11 desaturase gene in ECB suggest that this enzyme does not contribute to reproductive isolation between pheromone strains (E and Z. However, our genealogy reveals two deeply divergent allelic classes. Standing variation at loci that contribute to mate choice phenotypes may permit novel pheromone mating systems to arise in the presence of strong stabilizing selection.

  10. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness

    Science.gov (United States)

    Bauer, Christopher R; Li, Shuang; Siegal, Mark L

    2015-01-01

    The concept of robustness in biology has gained much attention recently, but a mechanistic understanding of how genetic networks regulate phenotypic variation has remained elusive. One approach to understand the genetic architecture of variability has been to analyze dispensable gene deletions in model organisms; however, the most important genes cannot be deleted. Here, we have utilized two systems in yeast whereby essential genes have been altered to reduce expression. Using high-throughput microscopy and image analysis, we have characterized a large number of morphological phenotypes, and their associated variation, for the majority of essential genes in yeast. Our results indicate that phenotypic robustness is more highly dependent upon the expression of essential genes than on the presence of dispensable genes. Morphological robustness appears to be a general property of a genotype that is closely related to pleiotropy. While the fitness profile across a range of expression levels is idiosyncratic to each gene, the global pattern indicates that there is a window in which phenotypic variation can be released before fitness effects are observable. PMID:25609648

  11. Placental gene-expression profiles of intrahepatic cholestasis of pregnancy reveal involvement of multiple molecular pathways in blood vessel formation and inflammation.

    Science.gov (United States)

    Du, QiaoLing; Pan, YouDong; Zhang, YouHua; Zhang, HaiLong; Zheng, YaJuan; Lu, Ling; Wang, JunLei; Duan, Tao; Chen, JianFeng

    2014-07-07

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-associated liver disease with potentially deleterious consequences for the fetus, particularly when maternal serum bile-acid concentration >40 μM. However, the etiology and pathogenesis of ICP remain elusive. To reveal the underlying molecular mechanisms for the association of maternal serum bile-acid level and fetal outcome in ICP patients, DNA microarray was applied to characterize the whole-genome expression profiles of placentas from healthy women and women diagnosed with ICP. Thirty pregnant women recruited in this study were categorized evenly into three groups: healthy group; mild ICP, with serum bile-acid concentration ranging from 10-40 μM; and severe ICP, with bile-acid concentration >40 μM. Gene Ontology analysis in combination with construction of gene-interaction and gene co-expression networks were applied to identify the core regulatory genes associated with ICP pathogenesis, which were further validated by quantitative real-time PCR and histological staining. The core regulatory genes were mainly involved in immune response, VEGF signaling pathway and G-protein-coupled receptor signaling, implying essential roles of immune response, vasculogenesis and angiogenesis in ICP pathogenesis. This implication was supported by the observed aggregated immune-cell infiltration and deficient blood vessel formation in ICP placentas. Our study provides a system-level insight into the placental gene-expression profiles of women with mild or severe ICP, and reveals multiple molecular pathways in immune response and blood vessel formation that might contribute to ICP pathogenesis.

  12. Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2012-07-01

    Full Text Available This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa, namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1 and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2 was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

  13. Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks

    Directory of Open Access Journals (Sweden)

    Kohane Isaac S

    2005-09-01

    Full Text Available Abstract Background Biological processes are carried out by coordinated modules of interacting molecules. As clustering methods demonstrate that genes with similar expression display increased likelihood of being associated with a common functional module, networks of coexpressed genes provide one framework for assigning gene function. This has informed the guilt-by-association (GBA heuristic, widely invoked in functional genomics. Yet although the idea of GBA is accepted, the breadth of GBA applicability is uncertain. Results We developed methods to systematically explore the breadth of GBA across a large and varied corpus of expression data to answer the following question: To what extent is the GBA heuristic broadly applicable to the transcriptome and conversely how broadly is GBA captured by a priori knowledge represented in the Gene Ontology (GO? Our study provides an investigation of the functional organization of five coexpression networks using data from three mammalian organisms. Our method calculates a probabilistic score between each gene and each Gene Ontology category that reflects coexpression enrichment of a GO module. For each GO category we use Receiver Operating Curves to assess whether these probabilistic scores reflect GBA. This methodology applied to five different coexpression networks demonstrates that the signature of guilt-by-association is ubiquitous and reproducible and that the GBA heuristic is broadly applicable across the population of nine hundred Gene Ontology categories. We also demonstrate the existence of highly reproducible patterns of coexpression between some pairs of GO categories. Conclusion We conclude that GBA has universal value and that transcriptional control may be more modular than previously realized. Our analyses also suggest that methodologies combining coexpression measurements across multiple genes in a biologically-defined module can aid in characterizing gene function or in characterizing

  14. RNA-Seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem.

    Directory of Open Access Journals (Sweden)

    Michele Gusberti

    Full Text Available Ontogenic scab resistance in apple leaves and fruits is a horizontal resistance against the plant pathogen Venturia inaequalis and is expressed as a decrease in disease symptoms and incidence with the ageing of the leaves. Several studies at the biochemical level tried to unveil the nature of this resistance; however, no conclusive results were reported. We decided therefore to investigate the genetic origin of this phenomenon by performing a full quantitative transcriptome sequencing and comparison of young (susceptible and old (ontogenic resistant leaves, infected or not with the pathogen. Two time points at 72 and 96 hours post-inoculation were chosen for RNA sampling and sequencing. Comparison between the different conditions (young and old leaves, inoculated or not should allow the identification of differentially expressed genes which may represent different induced plant defence reactions leading to ontogenic resistance or may be the cause of a constitutive (uninoculated with the pathogen shift toward resistance in old leaves. Differentially expressed genes were then characterised for their function by homology to A. thaliana and other plant genes, particularly looking for genes involved in pathways already suspected of appertaining to ontogenic resistance in apple or other hosts, or to plant defence mechanisms in general. IN THIS WORK, FIVE CANDIDATE GENES PUTATIVELY INVOLVED IN THE ONTOGENIC RESISTANCE OF APPLE WERE IDENTIFIED: a gene encoding an "enhanced disease susceptibility 1 protein" was found to be down-regulated in both uninoculated and inoculated old leaves at 96 hpi, while the other four genes encoding proteins (metallothionein3-like protein, lipoxygenase, lipid transfer protein, and a peroxidase 3 were found to be constitutively up-regulated in inoculated and uninoculated old leaves. The modulation of the five candidate genes has been validated using the real-time quantitative PCR. Thus, ontogenic resistance may be the result

  15. Whole genome sequencing reveals a novel deletion variant in the KIT gene in horses with white spotted coat colour phenotypes.

    Science.gov (United States)

    Dürig, N; Jude, R; Holl, H; Brooks, S A; Lafayette, C; Jagannathan, V; Leeb, T

    2017-08-01

    White spotting phenotypes in horses can range in severity from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for such phenotypes in horses. For the present study, we re-investigated a large horse family segregating a variable white spotting phenotype, for which conventional Sanger sequencing of the candidate genes' individual exons had failed to reveal the causative variant. We obtained whole genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~1.9-kb deletion spanning exons 10-13 of the KIT gene (chr3:77,740,239_77,742,136del1898insTATAT). In continuity with previously named equine KIT variants we propose to designate the newly identified deletion variant W22. We had access to 21 horses carrying the W22 allele. Four of them were compound heterozygous W20/W22 and had a completely white phenotype. Our data suggest that W22 represents a true null allele of the KIT gene, whereas the previously identified W20 leads to a partial loss of function. These findings will enable more precise genetic testing for depigmentation phenotypes in horses. © 2017 Stichting International Foundation for Animal Genetics.

  16. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity

    Science.gov (United States)

    Schoggins, John W.; MacDuff, Donna A.; Imanaka, Naoko; Gainey, Maria D.; Shrestha, Bimmi; Eitson, Jennifer L.; Mar, Katrina B.; Richardson, R. Blake; Ratushny, Alexander V.; Litvak, Vladimir; Dabelic, Rea; Manicassamy, Balaji; Aitchison, John D.; Aderem, Alan; Elliott, Richard M.; García-Sastre, Adolfo; Racaniello, Vincent; Snijder, Eric J.; Yokoyama, Wayne M.; Diamond, Michael S.; Virgin, Herbert W.; Rice, Charles M.

    2014-01-01

    The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.

  17. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    Science.gov (United States)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  18. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling.

    Science.gov (United States)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute; Blake, Jonathon; Schwager, Christian; Ansorge, Wilhelm; Nielsen, John E; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Leffers, Henrik

    2004-07-15

    Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly expressed in testicular CIS, including many never reported in testicular neoplasms. Expression was further verified by semiquantitative reverse transcription-PCR and in situ hybridization. Among the highest expressed genes were NANOG and POU5F1, and reverse transcription-PCR revealed possible changes in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported as unstable in cultured ESCs. The close similarity between CIS and ESCs explains the pluripotency of CIS. Moreover, the findings are consistent with an early prenatal origin of TGCTs and thus suggest that etiologic factors operating in utero are of primary importance for the incidence trends of TGCTs. Finally, some of the highly expressed genes identified in this study are promising candidates for new diagnostic markers for CIS and/or TGCTs.

  19. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  20. Differential evolution of antiretroviral restriction factors in pteropid bats as revealed by APOBEC3 gene complexity.

    Science.gov (United States)

    Hayward, Joshua A; Tachedjian, Mary; Cui, Jie; Cheng, Adam Z; Johnson, Adam; Baker, Michelle; Harris, Reuben S; Wang, Lin-Fa; Tachedjian, Gilda

    2018-03-29

    Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals.

  1. Knowledge Discovery in Biological Databases for Revealing Candidate Genes Linked to Complex Phenotypes.

    Science.gov (United States)

    Hassani-Pak, Keywan; Rawlings, Christopher

    2017-06-13

    Genetics and "omics" studies designed to uncover genotype to phenotype relationships often identify large numbers of potential candidate genes, among which the causal genes are hidden. Scientists generally lack the time and technical expertise to review all relevant information available from the literature, from key model species and from a potentially wide range of related biological databases in a variety of data formats with variable quality and coverage. Computational tools are needed for the integration and evaluation of heterogeneous information in order to prioritise candidate genes and components of interaction networks that, if perturbed through potential interventions, have a positive impact on the biological outcome in the whole organism without producing negative side effects. Here we review several bioinformatics tools and databases that play an important role in biological knowledge discovery and candidate gene prioritization. We conclude with several key challenges that need to be addressed in order to facilitate biological knowledge discovery in the future.

  2. RNA-seq analysis of clinical-grade osteochondral allografts reveals activation of early response genes

    NARCIS (Netherlands)

    Lin, Yang; Lewallen, Eric A.; Camilleri, Emily T.; Bonin, Carolina A.; Jones, Dakota L.; Dudakovic, Amel; Galeano-Garces, Catalina; Wang, Wei; Karperien, Marcel J.; Larson, Annalise N.; Dahm, Diane L.; Stuart, Michael J.; Levy, Bruce A.; Smith, Jay; Ryssman, Daniel B.; Westendorf, Jennifer J.; Im, Hee-Jeong; van Wijnen, Andre J.; Riester, Scott M.; Krych, Aaron J.

    2016-01-01

    Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression

  3. Targeted and genome-scale methylomics reveals gene body signatures in human cell lines

    Science.gov (United States)

    Ball, Madeleine Price; Li, Jin Billy; Gao, Yuan; Lee, Je-Hyuk; LeProust, Emily; Park, In-Hyun; Xie, Bin; Daley, George Q.; Church, George M.

    2012-01-01

    Cytosine methylation, an epigenetic modification of DNA, is a target of growing interest for developing high throughput profiling technologies. Here we introduce two new, complementary techniques for cytosine methylation profiling utilizing next generation sequencing technology: bisulfite padlock probes (BSPPs) and methyl sensitive cut counting (MSCC). In the first method, we designed a set of ~10,000 BSPPs distributed over the ENCODE pilot project regions to take advantage of existing expression and chromatin immunoprecipitation data. We observed a pattern of low promoter methylation coupled with high gene body methylation in highly expressed genes. Using the second method, MSCC, we gathered genome-scale data for 1.4 million HpaII sites and confirmed that gene body methylation in highly expressed genes is a consistent phenomenon over the entire genome. Our observations highlight the usefulness of techniques which are not inherently or intentionally biased in favor of only profiling particular subsets like CpG islands or promoter regions. PMID:19329998

  4. Random transposon mutagenesis of the Saccharopolyspora erythraea genome reveals additional genes influencing erythromycin biosynthesis

    Science.gov (United States)

    Fedashchin, Andrij; Cernota, William H.; Gonzalez, Melissa C.; Leach, Benjamin I.; Kwan, Noelle; Wesley, Roy K.; Weber, J. Mark

    2015-01-01

    A single cycle of strain improvement was performed in Saccharopolyspora erythraea mutB and 15 genotypes influencing erythromycin production were found. Genotypes generated by transposon mutagenesis appeared in the screen at a frequency of ∼3%. Mutations affecting central metabolism and regulatory genes were found, as well as hydrolases, peptidases, glycosyl transferases and unknown genes. Only one mutant retained high erythromycin production when scaled-up from micro-agar plug fermentations to shake flasks. This mutant had a knockout of the cwh1 gene (SACE_1598), encoding a cell-wall-associated hydrolase. The cwh1 knockout produced visible growth and morphological defects on solid medium. This study demonstrated that random transposon mutagenesis uncovers strain improvement-related genes potentially useful for strain engineering. PMID:26468041

  5. Complete genome sequence of Fer-de-Lance Virus reveals a novel gene in reptilian Paramyxoviruses

    Science.gov (United States)

    Kurath, G.; Batts, W.N.; Ahne, W.; Winton, J.R.

    2004-01-01

    The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3??? N-U-P-M-F-HN-L 5???, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species.

  6. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients.

    Science.gov (United States)

    Chang, Lixian; Yuan, Weiping; Zeng, Huimin; Zhou, Quanquan; Wei, Wei; Zhou, Jianfeng; Li, Miaomiao; Wang, Xiaomin; Xu, Mingjiang; Yang, Fengchun; Yang, Yungui; Cheng, Tao; Zhu, Xiaofan

    2014-05-15

    Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients' clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology.

  7. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale.

    Science.gov (United States)

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobiumofficinale (Orchidaceae) is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e(-5)). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

  8. ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale

    Science.gov (United States)

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobium officinale (Orchidaceae) is one of the world’s most endangered plants with great medicinal value. In nature, D . officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D . officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D . officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D . officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D . officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids. PMID:23967335

  9. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale.

    Directory of Open Access Journals (Sweden)

    Ming-Ming Zhao

    Full Text Available Dendrobiumofficinale (Orchidaceae is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs were clustered to 1074 Unigenes (including 902 singletons and 172 contigs, which were searched against the NCBI non-redundant (NR protein database (E-value cutoff, e(-5. Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO, Clusters of orthologous Groups of proteins (COGs and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS. The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs, which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS, were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

  10. Gene expression profiling, pathway analysis and subtype classification reveal molecular heterogeneity in hepatocellular carcinoma and suggest subtype specific therapeutic targets.

    Science.gov (United States)

    Agarwal, Rahul; Narayan, Jitendra; Bhattacharyya, Amitava; Saraswat, Mayank; Tomar, Anil Kumar

    2017-10-01

    A very low 5-year survival rate among hepatocellular carcinoma (HCC) patients is mainly due to lack of early stage diagnosis, distant metastasis and high risk of postoperative recurrence. Hence ascertaining novel biomarkers for early diagnosis and patient specific therapeutics is crucial and urgent. Here, we have performed a comprehensive analysis of the expression data of 423 HCC patients (373 tumors and 50 controls) downloaded from The Cancer Genome Atlas (TCGA) followed by pathway enrichment by gene ontology annotations, subtype classification and overall survival analysis. The differential gene expression analysis using non-parametric Wilcoxon test revealed a total of 479 up-regulated and 91 down-regulated genes in HCC compared to controls. The list of top differentially expressed genes mainly consists of tumor/cancer associated genes, such as AFP, THBS4, LCN2, GPC3, NUF2, etc. The genes over-expressed in HCC were mainly associated with cell cycle pathways. In total, 59 kinases associated genes were found over-expressed in HCC, including TTK, MELK, BUB1, NEK2, BUB1B, AURKB, PLK1, CDK1, PKMYT1, PBK, etc. Overall four distinct HCC subtypes were predicted using consensus clustering method. Each subtype was unique in terms of gene expression, pathway enrichment and median survival. Conclusively, this study has exposed a number of interesting genes which can be exploited in future as potential markers of HCC, diagnostic as well as prognostic and subtype classification may guide for improved and specific therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Exomic sequencing of immune-related genes reveals novel candidate variants associated with alopecia universalis.

    Directory of Open Access Journals (Sweden)

    Seungbok Lee

    Full Text Available Alopecia areata (AA is a common autoimmune disorder mostly presented as round patches of hair loss and subclassified into alopecia totalis/alopecia universalis (AT/AU based on the area of alopecia. Although AA is relatively common, only 5% of AA patients progress to AT/AU, which affect the whole scalp and whole body respectively. To determine genetic determinants of this orphan disease, we undertook whole-exome sequencing of 6 samples from AU patients, and 26 variants in immune-related genes were selected as candidates. When an additional 14 AU samples were genotyped for these candidates, 6 of them remained at the level of significance in comparison with 155 Asian controls (p<1.92×10(-3. Linkage disequilibrium was observed between some of the most significant SNPs, including rs41559420 of HLA-DRB5 (p<0.001, OR 44.57 and rs28362679 of BTNL2 (p<0.001, OR 30.21. While BTNL2 was reported as a general susceptibility gene of AA previously, HLA-DRB5 has not been implicated in AA. In addition, we found several genetic variants in novel genes (HLA-DMB, TLR1, and PMS2 and discovered an additional locus on HLA-A, a known susceptibility gene of AA. This study provides further evidence for the association of previously reported genes with AA and novel findings such as HLA-DRB5, which might represent a hidden culprit gene for AU.

  12. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor.

    Science.gov (United States)

    Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao

    2016-06-01

    Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.

  13. Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper

    Science.gov (United States)

    Yin, Wei; Wang, Zong-ji; Li, Qi-ye; Lian, Jin-ming; Zhou, Yang; Lu, Bing-zheng; Jin, Li-jun; Qiu, Peng-xin; Zhang, Pei; Zhu, Wen-bo; Wen, Bo; Huang, Yi-jun; Lin, Zhi-long; Qiu, Bi-tao; Su, Xing-wen; Yang, Huan-ming; Zhang, Guo-jie; Yan, Guang-mei; Zhou, Qi

    2016-01-01

    Snakes have numerous features distinctive from other tetrapods and a rich history of genome evolution that is still obscure. Here, we report the high-quality genome of the five-pacer viper, Deinagkistrodon acutus, and comparative analyses with other representative snake and lizard genomes. We map the evolutionary trajectories of transposable elements (TEs), developmental genes and sex chromosomes onto the snake phylogeny. TEs exhibit dynamic lineage-specific expansion, and many viper TEs show brain-specific gene expression along with their nearby genes. We detect signatures of adaptive evolution in olfactory, venom and thermal-sensing genes and also functional degeneration of genes associated with vision and hearing. Lineage-specific relaxation of functional constraints on respective Hox and Tbx limb-patterning genes supports fossil evidence for a successive loss of forelimbs then hindlimbs during snake evolution. Finally, we infer that the ZW sex chromosome pair had undergone at least three recombination suppression events in the ancestor of advanced snakes. These results altogether forge a framework for our deep understanding into snakes' history of molecular evolution. PMID:27708285

  14. Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes.

    Directory of Open Access Journals (Sweden)

    Luka Ausec

    Full Text Available Fungal laccases have been used in various fields ranging from processes in wood and paper industries to environmental applications. Although a few bacterial laccases have been characterized in recent years, prokaryotes have largely been neglected as a source of novel enzymes, in part due to the lack of knowledge about the diversity and distribution of laccases within Bacteria. In this work genes for laccase-like enzymes were searched for in over 2,200 complete and draft bacterial genomes and four metagenomic datasets, using the custom profile Hidden Markov Models for two- and three-domain laccases. More than 1,200 putative genes for laccase-like enzymes were retrieved from chromosomes and plasmids of diverse bacteria. In 76% of the genes, signal peptides were predicted, indicating that these bacterial laccases may be exported from the cytoplasm, which contrasts with the current belief. Moreover, several examples of putatively horizontally transferred bacterial laccase genes were described. Many metagenomic sequences encoding fragments of laccase-like enzymes could not be phylogenetically assigned, indicating considerable novelty. Laccase-like genes were also found in anaerobic bacteria, autotrophs and alkaliphiles, thus opening new hypotheses regarding their ecological functions. Bacteria identified as carrying laccase genes represent potential sources for future biotechnological applications.

  15. RNA-Seq Reveals Infection-Related Gene Expression Changes in Phytophthora capsici

    Science.gov (United States)

    Chen, Xiao-Ren; Xing, Yu-Ping; Li, Yan-Peng; Tong, Yun-Hui; Xu, Jing-You

    2013-01-01

    Phytophthora capsici is a soilborne plant pathogen capable of infecting a wide range of plants, including many solanaceous crops. However, genetic resistance and fungicides often fail to manage P. capsici due to limited knowledge on the molecular biology and basis of P. capsici pathogenicity. To begin to rectify this situation, Illumina RNA-Seq was used to perform massively parallel sequencing of three cDNA samples derived from P. capsici mycelia (MY), zoospores (ZO) and germinating cysts with germ tubes (GC). Over 11 million reads were generated for each cDNA library analyzed. After read mapping to the gene models of P. capsici reference genome, 13,901, 14,633 and 14,695 putative genes were identified from the reads of the MY, ZO and GC libraries, respectively. Comparative analysis between two of samples showed major differences between the expressed gene content of MY, ZO and GC stages. A large number of genes associated with specific stages and pathogenicity were identified, including 98 predicted effector genes. The transcriptional levels of 19 effector genes during the developmental and host infection stages of P. capsici were validated by RT-PCR. Ectopic expression in Nicotiana benthamiana showed that P. capsici RXLR and Crinkler effectors can suppress host cell death triggered by diverse elicitors including P. capsici elicitin and NLP effectors. This study provides a first look at the transcriptome and effector arsenal of P. capsici during the important pre-infection stages. PMID:24019970

  16. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  17. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    Science.gov (United States)

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (Pexpression level and breadth (Pimplied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors.

  18. Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes

    Directory of Open Access Journals (Sweden)

    Reverter Antonio

    2008-09-01

    Full Text Available Abstract Background The tissue specificity of gene expression has been linked to a number of significant outcomes including level of expression, and differential rates of polymorphism, evolution and disease association. Recent studies have also shown the importance of exploring differential gene connectivity and sequence conservation in the identification of disease-associated genes. However, no study relates gene interactions with tissue specificity and disease association. Methods We adopted an a priori approach making as few assumptions as possible to analyse the interplay among gene-gene interactions with tissue specificity and its subsequent likelihood of association with disease. We mined three large datasets comprising expression data drawn from massively parallel signature sequencing across 32 tissues, describing a set of 55,606 true positive interactions for 7,197 genes, and microarray expression results generated during the profiling of systemic inflammation, from which 126,543 interactions among 7,090 genes were reported. Results Amongst the myriad of complex relationships identified between expression, disease, connectivity and tissue specificity, some interesting patterns emerged. These include elevated rates of expression and network connectivity in housekeeping and disease-associated tissue-specific genes. We found that disease-associated genes are more likely to show tissue specific expression and most frequently interact with other disease genes. Using the thresholds defined in these observations, we develop a guilt-by-association algorithm and discover a group of 112 non-disease annotated genes that predominantly interact with disease-associated genes, impacting on disease outcomes. Conclusion We conclude that parameters such as tissue specificity and network connectivity can be used in combination to identify a group of genes, not previously confirmed as disease causing, that are involved in interactions with disease causing

  19. RNA-Seq using two populations reveals genes and alleles controlling wood traits and growth in Eucalyptus nitens.

    Directory of Open Access Journals (Sweden)

    Saravanan Thavamanikumar

    Full Text Available Eucalyptus nitens is a perennial forest tree species grown mainly for kraft pulp production in many parts of the world. Kraft pulp yield (KPY is a key determinant of plantation profitability and increasing the KPY of trees grown in plantations is a major breeding objective. To speed up the breeding process, molecular markers that can predict KPY are desirable. To achieve this goal, we carried out RNA-Seq studies on trees at extremes of KPY in two different trials to identify genes and alleles whose expression correlated with KPY. KPY is positively correlated with growth measured as diameter at breast height (DBH in both trials. In total, six RNA bulks from two treatments were sequenced on an Illumina HiSeq platform. At 5% false discovery rate level, 3953 transcripts showed differential expression in the same direction in both trials; 2551 (65% were down-regulated and 1402 (35% were up-regulated in low KPY samples. The genes up-regulated in low KPY trees were largely involved in biotic and abiotic stress response reflecting the low growth among low KPY trees. Genes down-regulated in low KPY trees mainly belonged to gene categories involved in wood formation and growth. Differential allelic expression was observed in 2103 SNPs (in 1068 genes and of these 640 SNPs (30% occurred in 313 unique genes that were also differentially expressed. These SNPs may represent the cis-acting regulatory variants that influence total gene expression. In addition we also identified 196 genes which had Ka/Ks ratios greater than 1.5, suggesting that these genes are under positive selection. Candidate genes and alleles identified in this study will provide a valuable resource for future association studies aimed at identifying molecular markers for KPY and growth.

  20. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library.

    Science.gov (United States)

    Laia, Marcelo L; Moreira, Leandro M; Dezajacomo, Juliana; Brigati, Joice B; Ferreira, Cristiano B; Ferro, Maria I T; Silva, Ana C R; Ferro, Jesus A; Oliveira, Julio C F

    2009-01-16

    Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed that some of the

  1. An integrated linkage map reveals candidate genes underlying adaptive variation in Chinook salmon (Oncorhynchus tshawytscha)

    DEFF Research Database (Denmark)

    Mckinney, G. J.; Seeb, L. W.; Larson, W. A.

    2016-01-01

    Salmonids are an important cultural and ecological resource exhibiting near worldwide distribution between their native and introduced range. Previous research has generated linkage maps and genomic resources for several species as well as genome assemblies for two species. We first leveraged...

  2. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Poterlowicz

    2017-09-01

    Full Text Available Mammalian genomes contain several dozens of large (>0.5 Mbp lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene

  3. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    Energy Technology Data Exchange (ETDEWEB)

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  4. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory

    KAUST Repository

    Tadi, Monika; Allaman, Igor; Lengacher, Sylvain; Grenningloh, Gabriele; Magistretti, Pierre J.

    2015-01-01

    We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte)-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA) paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4), alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  5. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development.

    Science.gov (United States)

    Foerst-Potts, L; Sadler, T W

    1997-05-01

    In mouse embryos, the muscle segment homeobox genes, Msx-1 and Msx-2 are expressed during critical stages of neural tube, neural crest, and craniofacial development, suggesting that these genes play important roles in organogenesis and cell differentiation. Although the patterns of expression are intriguing, little is known about the function of these genes in vertebrate embryonic development. Therefore, the expression of both genes, separately and together, was disrupted using antisense oligodeoxynucleotides and whole embryo culture techniques. Antisense attenuation of Msx-1 during early stages of neurulation produced hypoplasia of the maxillary, mandibular, and frontonasal prominences, eye anomalies, and somite and neural tube abnormalities. Eye defects consisted of enlarged optic vesicles, which may ultimately result in micropthalmia similar to that observed in Small eye mice homozygous for mutations in the Pax-6 gene. Histological sections and SEM analysis revealed a thinning of the neuroepithelium in the diencephalon and optic vesicle and mesenchymal deficiencies in the craniofacial region. Injections of Msx-2 antisense oligodeoxynucleotides produced similar malformations as those targeting Msx-1, with the exception that there was an increase in number and severity of neural tube and somite defects. Embryos injected with the combination of Msx-1 + Msx-2 antisense oligodeoxynucleotides showed no novel abnormalities, suggesting that the genes do not operate in a redundant manner.

  6. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment

    Directory of Open Access Journals (Sweden)

    Salvador eMirete

    2015-10-01

    Full Text Available Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes involved in salt resistance from the microbial communities of brines and the rhizosphere from the Es Trenc saltern (Mallorca, Spain. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain Escherichia coli MKH13, and screened for salt resistance. As a result, eleven genes that conferred salt resistance were identified, some encoding for well known proteins previously related to osmoadaptation as a glycerol and a proton pump, whereas others encoded for proteins not previously related to this function in microorganisms as DNA/RNA helicases, an endonuclease III (Nth and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also exhibited salt resistance in this bacterium, broadening the spectrum of bacterial species where these genes can operate. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment.

  7. Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships

    Directory of Open Access Journals (Sweden)

    Maggie CY Lau

    2014-10-01

    Full Text Available Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1 screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S and N; (2 to characterize the biodiversity represented by the common functional genes; (3 to investigate the subsurface biogeography as revealed by this subset of genes; and (4 to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAP reductase, NifH, NifD, NifK, NifE and NifN genes. Although these 8 common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with either geographical, environmental or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes.

  8. RNA-Seq reveals seven promising candidate genes affecting the proportion of thick egg albumen in layer-type chickens.

    Science.gov (United States)

    Wan, Yi; Jin, Sihua; Ma, Chendong; Wang, Zhicheng; Fang, Qi; Jiang, Runshen

    2017-12-22

    Eggs with a much higher proportion of thick albumen are preferred in the layer industry, as they are favoured by consumers. However, the genetic factors affecting the thick egg albumen trait have not been elucidated. Using RNA sequencing, we explored the magnum transcriptome in 9 Rhode Island white layers: four layers with phenotypes of extremely high ratios of thick to thin albumen (high thick albumen, HTA) and five with extremely low ratios (low thick albumen, LTA). A total of 220 genes were differentially expressed, among which 150 genes were up-regulated and 70 were down-regulated in the HTA group compared with the LTA group. Gene Ontology (GO) analysis revealed that the up-regulated genes in HTA were mainly involved in a wide range of regulatory functions. In addition, a large number of these genes were related to glycosphingolipid biosynthesis, focal adhesion, ECM-receptor interactions and cytokine-cytokine receptor interactions. Based on functional analysis, ST3GAL4, FUT4, ITGA2, SDC3, PRLR, CDH4 and GALNT9 were identified as promising candidate genes for thick albumen synthesis and metabolism during egg formation. These results provide new insights into the molecular mechanisms of egg albumen traits and may contribute to future breeding strategies that optimise the proportion of thick egg albumen.

  9. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts.

    Science.gov (United States)

    Viñuelas, José; Kaneko, Gaël; Coulon, Antoine; Vallin, Elodie; Morin, Valérie; Mejia-Pous, Camila; Kupiec, Jean-Jacques; Beslon, Guillaume; Gandrillon, Olivier

    2013-02-25

    A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells. For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the closed state, and that the agents we used mainly seem to act on the opening probability. In this study, we report biological experiments combined with computational modeling, highlighting the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with long (hours to days) periods of quiet state.

  10. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory.

    Directory of Open Access Journals (Sweden)

    Monika Tadi

    Full Text Available We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4, alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  11. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory

    KAUST Repository

    Tadi, Monika

    2015-10-29

    We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte)-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA) paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4), alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  12. Phylogeography of var gene repertoires reveals fine-scale geospatial clustering of Plasmodium falciparum populations in a highly endemic area.

    Science.gov (United States)

    Tessema, Sofonias K; Monk, Stephanie L; Schultz, Mark B; Tavul, Livingstone; Reeder, John C; Siba, Peter M; Mueller, Ivo; Barry, Alyssa E

    2015-01-01

    Plasmodium falciparum malaria is a major global health problem that is being targeted for progressive elimination. Knowledge of local disease transmission patterns in endemic countries is critical to these elimination efforts. To investigate fine-scale patterns of malaria transmission, we have compared repertoires of rapidly evolving var genes in a highly endemic area. A total of 3680 high-quality DBLα-sequences were obtained from 68 P. falciparum isolates from ten villages spread over two distinct catchment areas on the north coast of Papua New Guinea (PNG). Modelling of the extent of var gene diversity in the two parasite populations predicts more than twice as many var gene alleles circulating within each catchment (Mugil = 906; Wosera = 1094) than previously recognized in PNG (Amele = 369). In addition, there were limited levels of var gene sharing between populations, consistent with local parasite population structure. Phylogeographic analyses demonstrate that while neutrally evolving microsatellite markers identified population structure only at the catchment level, var gene repertoires reveal further fine-scale geospatial clustering of parasite isolates. The clustering of parasite isolates by village in Mugil, but not in Wosera was consistent with the physical and cultural isolation of the human populations in the two catchments. The study highlights the microheterogeneity of P. falciparum transmission in highly endemic areas and demonstrates the potential of var genes as markers of local patterns of parasite population structure. © 2014 John Wiley & Sons Ltd.

  13. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth.

    Science.gov (United States)

    Kohnen, Markus V; Schmid-Siegert, Emanuel; Trevisan, Martine; Petrolati, Laure Allenbach; Sénéchal, Fabien; Müller-Moulé, Patricia; Maloof, Julin; Xenarios, Ioannis; Fankhauser, Christian

    2016-12-01

    In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs. © 2016 American Society of Plant Biologists. All rights reserved.

  14. New insight on FGFR3-related chondrodysplasias molecular physiopathology revealed by human chondrocyte gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Laurent Schibler

    Full Text Available Endochondral ossification is the process by which the appendicular skeleton, facial bones, vertebrae and medial clavicles are formed and relies on the tight control of chondrocyte maturation. Fibroblast growth factor receptor (FGFR3 plays a role in bone development and maintenance and belongs to a family of proteins which differ in their ligand affinities and tissue distribution. Activating mutations of the FGFR3 gene lead to craniosynostosis and multiple types of skeletal dysplasia with varying degrees of severity: thanatophoric dysplasia (TD, achondroplasia and hypochondroplasia. Despite progress in the characterization of FGFR3-mediated regulation of cartilage development, many aspects remain unclear. The aim and the novelty of our study was to examine whole gene expression differences occurring in primary human chondrocytes isolated from normal cartilage or pathological cartilage from TD-affected fetuses, using Affymetrix technology. The phenotype of the primary cells was confirmed by the high expression of chondrocytic markers. Altered expression of genes associated with many cellular processes was observed, including cell growth and proliferation, cell cycle, cell adhesion, cell motility, metabolic pathways, signal transduction, cell cycle process and cell signaling. Most of the cell cycle process genes were down-regulated and consisted of genes involved in cell cycle progression, DNA biosynthesis, spindle dynamics and cytokinesis. About eight percent of all modulated genes were found to impact extracellular matrix (ECM structure and turnover, especially glycosaminoglycan (GAG and proteoglycan biosynthesis and sulfation. Altogether, the gene expression analyses provide new insight into the consequences of FGFR3 mutations in cell cycle regulation, onset of pre-hypertrophic differentiation and concomitant metabolism changes. Moreover, impaired motility and ECM properties may also provide clues about growth plate disorganization. These

  15. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes.

    Directory of Open Access Journals (Sweden)

    Tiffany Langewisch

    Full Text Available In this Genomics Era, vast amounts of next-generation sequencing data have become publicly available for multiple genomes across hundreds of species. Analyses of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset and among different datasets or organisms. To facilitate the exploration of allelic variation and diversity, we have developed and deployed an in-house computer software to categorize and visualize these haplotypes. The SNPViz software enables users to analyze region-specific haplotypes from single nucleotide polymorphism (SNP datasets for different sequenced genomes. The examination of allelic variation and diversity of important soybean [Glycine max (L. Merr.] flowering time and maturity genes may provide additional insight into flowering time regulation and enhance researchers' ability to target soybean breeding for particular environments. For this study, we utilized two available soybean genomic datasets for a total of 72 soybean genotypes encompassing cultivars, landraces, and the wild species Glycine soja. The major soybean maturity genes E1, E2, E3, and E4 along with the Dt1 gene for plant growth architecture were analyzed in an effort to determine the number of major haplotypes for each gene, to evaluate the consistency of the haplotypes with characterized variant alleles, and to identify evidence of artificial selection. The results indicated classification of a small number of predominant haplogroups for each gene and important insights into possible allelic diversity for each gene within the context of known causative mutations. The software has both a stand-alone and web-based version and can be used to analyze other genes, examine additional soybean datasets, and view similar genome sequence and SNP datasets from other species.

  16. Transcriptome profiling of the Plutella xylostella (Lepidoptera: Plutellidae) ovary reveals genes involved in oogenesis.

    Science.gov (United States)

    Peng, Lu; Wang, Lei; Yang, Yi-Fan; Zou, Ming-Min; He, Wei-Yi; Wang, Yue; Wang, Qing; Vasseur, Liette; You, Min-Sheng

    2017-12-30

    As a specialized organ, the insect ovary performs valuable functions by ensuring fecundity and population survival. Oogenesis is the complex physiological process resulting in the production of mature eggs, which are involved in epigenetic programming, germ cell behavior, cell cycle regulation, etc. Identification of the genes involved in ovary development and oogenesis is critical to better understand the reproductive biology and screening for the potential molecular targets in Plutella xylostella, a worldwide destructive pest of economically major crops. Based on transcriptome sequencing, a total of 7.88Gb clean nucleotides was obtained, with 19,934 genes and 1861 new transcripts being identified. Expression profiling indicated that 61.7% of the genes were expressed (FPKM≥1) in the P. xylostella ovary. GO annotation showed that the pathways of multicellular organism reproduction and multicellular organism reproduction process, as well as gamete generation and chorion were significantly enriched. Processes that were most likely relevant to reproduction included the spliceosome, ubiquitin mediated proteolysis, endocytosis, PI3K-Akt signaling pathway, insulin signaling pathway, cAMP signaling pathway, and focal adhesion were identified in the top 20 'highly represented' KEGG pathways. Functional genes involved in oogenesis were further analyzed and validated by qRT-PCR to show their potential predominant roles in P. xylostella reproduction. Our newly developed P. xylostella ovary transcriptome provides an overview of the gene expression profiling in this specialized tissue and the functional gene network closely related to the ovary development and oogenesis. This is the first genome-wide transcriptome dataset of P. xylostella ovary that includes a subset of functionally activated genes. This global approach will be the basis for further studies on molecular mechanisms of P. xylostella reproduction aimed at screening potential molecular targets for integrated pest

  17. Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed

    Science.gov (United States)

    Giuliani, Alessandro; Tomita, Masaru

    2010-01-01

    Cell fate decision remarkably generates specific cell differentiation path among the multiple possibilities that can arise through the complex interplay of high-dimensional genome activities. The coordinated action of thousands of genes to switch cell fate decision has indicated the existence of stable attractors guiding the process. However, origins of the intracellular mechanisms that create “cellular attractor” still remain unknown. Here, we examined the collective behavior of genome-wide expressions for neutrophil differentiation through two different stimuli, dimethyl sulfoxide (DMSO) and all-trans-retinoic acid (atRA). To overcome the difficulties of dealing with single gene expression noises, we grouped genes into ensembles and analyzed their expression dynamics in correlation space defined by Pearson correlation and mutual information. The standard deviation of correlation distributions of gene ensembles reduces when the ensemble size is increased following the inverse square root law, for both ensembles chosen randomly from whole genome and ranked according to expression variances across time. Choosing the ensemble size of 200 genes, we show the two probability distributions of correlations of randomly selected genes for atRA and DMSO responses overlapped after 48 hours, defining the neutrophil attractor. Next, tracking the ranked ensembles' trajectories, we noticed that only certain, not all, fall into the attractor in a fractal-like manner. The removal of these genome elements from the whole genomes, for both atRA and DMSO responses, destroys the attractor providing evidence for the existence of specific genome elements (named “genome vehicle”) responsible for the neutrophil attractor. Notably, within the genome vehicles, genes with low or moderate expression changes, which are often considered noisy and insignificant, are essential components for the creation of the neutrophil attractor. Further investigations along with our findings might

  18. Transcriptomic Analysis Reveals Candidate Genes for Female Sterility in Pomegranate Flowers

    Directory of Open Access Journals (Sweden)

    Lina Chen

    2017-08-01

    Full Text Available Pomegranate has two types of flowers on the same plant: functional male flowers (FMF and bisexual flowers (BF. BF are female-fertile flowers that can set fruits. FMF are female-sterile flowers that fail to set fruit and that eventually drop. The putative cause of pomegranate FMF female sterility is abnormal ovule development. However, the key stage at which the FMF pomegranate ovules become abnormal and the mechanism of regulation of pomegranate female sterility remain unknown. Here, we studied ovule development in FMF and BF, using scanning electron microscopy to explore the key stage at which ovule development was terminated and then analyzed genes differentially expressed (differentially expressed genes – DEGs between FMF and BF to investigate the mechanism responsible for pomegranate female sterility. Ovule development in FMF ceased following the formation of the inner integument primordium. The key stage for the termination of FMF ovule development was when the bud vertical diameter was 5.0–13.0 mm. Candidate genes influencing ovule development may be crucial factors in pomegranate female sterility. INNER OUTER (INO/YABBY4 (Gglean016270 and AINTEGUMENTA (ANT homolog genes (Gglean003340 and Gglean011480, which regulate the development of the integument, showed down-regulation in FMF at the key stage of ovule development cessation (ATNSII. Their upstream regulator genes, such as AGAMOUS-like (AG-like (Gglean028014, Gglean026618, and Gglean028632 and SPOROCYTELESS (SPL homolog genes (Gglean005812, also showed differential expression pattern between BF and FMF at this key stage. The differential expression of the ethylene response signal genes, ETR (ethylene-resistant (Gglean022853 and ERF1/2 (ethylene-responsive factor (Gglean022880, between FMF and BF indicated that ethylene signaling may also be an important factor in the development of pomegranate female sterility. The increase in BF observed after spraying with ethephon supported this

  19. Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs.

    Directory of Open Access Journals (Sweden)

    Kunzhe Dong

    Full Text Available High altitude environments are of particular interest in the studies of local adaptation as well as their implications in physiology and clinical medicine in human. Some Chinese pig breeds, such as Tibetan pig (TBP that is well adapted to the high altitude and Dahe pig (DHP that dwells at the moderate altitude, provide ideal materials to study local adaptation to altitudes. Yet, it is still short of in-depth analysis and understanding of the genetic adaptation to high altitude in the two pig populations. In this study we conducted a genomic scan for selective sweeps using FST to identify genes showing evidence of local adaptations in TBP and DHP, with Wuzhishan pig (WZSP as the low-altitude reference. Totally, we identified 12 specific selective genes (CCBE1, F2RL1, AGGF1, ZFPM2, IL2, FGF5, PLA2G4A, ADAMTS9, NRBF2, JMJD1C, VEGFC and ADAM19 for TBP and six (OGG1, FOXM, FLT3, RTEL1, CRELD1 and RHOG for DHP. In addition, six selective genes (VPS13A, GNA14, GDAP1, PARP8, FGF10 and ADAMTS16 were shared by the two pig breeds. Among these selective genes, three (VEGFC, FGF10 and ADAMTS9 were previously reported to be linked to the local adaptation to high altitudes in pigs, while many others were newly identified by this study. Further bioinformatics analysis demonstrated that majority of these selective signatures have some biological functions relevant to the altitude adaptation, for examples, response to hypoxia, development of blood vessels, DNA repair and several hematological involvements. These results suggest that the local adaptation to high altitude environments is sophisticated, involving numerous genes and multiple biological processes, and the shared selective signatures by the two pig breeds may provide an effective avenue to identify the common adaptive mechanisms to different altitudes.

  20. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2016-06-01

    Full Text Available Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA. The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062 and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total

  1. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout

    Science.gov (United States)

    Cai, Bei; Zhou, Shiwei; Zhu, Haijing; Qu, Lei; Wang, Xiaolong

    2017-01-01

    Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the

  2. Cell-Specific PEAR1 Methylation Studies Reveal a Locus that Coordinates Expression of Multiple Genes

    Directory of Open Access Journals (Sweden)

    Benedetta Izzi

    2018-04-01

    Full Text Available Chromosomal interactions connect distant enhancers and promoters on the same chromosome, activating or repressing gene expression. PEAR1 encodes the Platelet-Endothelial Aggregation Receptor 1, a contact receptor involved in platelet function and megakaryocyte and endothelial cell proliferation. PEAR1 expression during megakaryocyte differentiation is controlled by DNA methylation at its first CpG island. We identified a PEAR1 cell-specific methylation sensitive region in endothelial cells and megakaryocytes that showed strong chromosomal interactions with ISGL20L2, RRNAD1, MRLP24, HDGF and PRCC, using available promoter capture Hi-C datasets. These genes are involved in ribosome processing, protein synthesis, cell cycle and cell proliferation. We next studied the methylation and expression profile of these five genes in Human Umbilical Vein Endothelial Cells (HUVECs and megakaryocyte precursors. While cell-specific PEAR1 methylation corresponded to variability in expression for four out of five genes, no methylation change was observed in their promoter regions across cell types. Our data suggest that PEAR1 cell-type specific methylation changes may control long distance interactions with other genes. Further studies are needed to show whether such interaction data might be relevant for the genome-wide association data that showed a role for non-coding PEAR1 variants in the same region and platelet function, platelet count and cardiovascular risk.

  3. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation

    KAUST Repository

    Monies, Dorota

    2017-04-06

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance of these genes both phenotypically and mechanistically. The Saudi population is enriched for autozygosity, which enhances the homozygous occurrence of alleles, including pathogenic alleles in genes that have been associated only with a dominant inheritance pattern.Exome sequencing of patients from consanguineous families with likely recessive phenotypes was performed. In one family, the genotype of the deceased children was inferred from their parents due to lack of available samples.We describe the identification of 11 recessive variants (5 of which are reported here for the first time) in 11 genes for which only dominant disease or risk alleles have been reported. The observed phenotypes for these recessive variants were novel (e.g., FBN2-related myopathy and CSF1R-related brain malformation and osteopetrosis), typical (e.g., ACTG2-related visceral myopathy), or an apparently healthy state (e.g., PDE11A), consistent with the corresponding mouse knockout phenotypes.Our results show that, in the era of genomic sequencing and

  4. Deep sequencing of the Camellia chekiangoleosa transcriptome revealed candidate genes for anthocyanin biosynthesis.

    Science.gov (United States)

    Wang, Zhong-Wei; Jiang, Cong; Wen, Qiang; Wang, Na; Tao, Yuan-Yuan; Xu, Li-An

    2014-03-15

    Camellia chekiangoleosa is an important species of genus Camellia. It provides high-quality edible oil and has great ornamental value. The flowers are big and red which bloom between February and March. Flower pigmentation is closely related to the accumulation of anthocyanin. Although anthocyanin biosynthesis has been studied extensively in herbaceous plants, little molecular information on the anthocyanin biosynthesis pathway of C. chekiangoleosa is yet known. In the present study, a cDNA library was constructed to obtain detailed and general data from the flowers of C. chekiangoleosa. To explore the transcriptome of C. chekiangoleosa and investigate genes involved in anthocyanin biosynthesis, a 454 GS FLX Titanium platform was used to generate an EST dataset. About 46,279 sequences were obtained, and 24,593 (53.1%) were annotated. Using Blast search against the AGRIS, 1740 unigenes were found homologous to 599 Arabidopsis transcription factor genes. Based on the transcriptome dataset, nine anthocyanin biosynthesis pathway genes (PAL, CHS1, CHS2, CHS3, CHI, F3H, DFR, ANS, and UFGT) were identified and cloned. The spatio-temporal expression patterns of these genes were also analyzed using quantitative real-time polymerase chain reaction. The study results not only enrich the gene resource but also provide valuable information for further studies concerning anthocyanin biosynthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The complete mitochondrial genome of Sesarmops sinensis reveals gene rearrangements and phylogenetic relationships in Brachyura.

    Science.gov (United States)

    Tang, Bo-Ping; Xin, Zhao-Zhe; Liu, Yu; Zhang, Dai-Zhen; Wang, Zheng-Fei; Zhang, Hua-Bin; Chai, Xin-Yue; Zhou, Chun-Lin; Liu, Qiu-Ning

    2017-01-01

    Mitochondrial genome (mitogenome) is very important to understand molecular evolution and phylogenetics. Herein, in this study, the complete mitogenome of Sesarmops sinensis was reported. The mitogenome was 15,905 bp in size, and contained 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region (CR). The AT skew and the GC skew are both negative in the mitogenomes of S. sinensis. The nucleotide composition of the S. sinensis mitogenome was also biased toward A + T nucleotides (75.7%). All tRNA genes displayed a typical mitochondrial tRNA cloverleaf structure, except for the trnS1 gene, which lacked a dihydroxyuridine arm. S. sinensis exhibits a novel rearrangement compared with the Pancrustacean ground pattern and other Brachyura species. Based on the 13 PCGs, the phylogenetic analysis showed that S. sinensis and Sesarma neglectum were clustered on one branch with high nodal support values, indicating that S. sinensis and S. neglectum have a sister group relationship. The group (S. sinensis + S. neglectum) was sister to (Parasesarmops tripectinis + Metopaulias depressus), suggesting that S. sinensis belongs to Grapsoidea, Sesarmidae. Phylogenetic trees based on amino acid sequences and nucleotide sequences of mitochondrial 13 PCGs using BI and ML respectively indicate that section Eubrachyura consists of four groups clearly. The resulting phylogeny supports the establishment of a separate subsection Potamoida. These four groups correspond to four subsections of Raninoida, Heterotremata, Potamoida, and Thoracotremata.

  6. Deep sequence analysis reveals the ovine rumen as a reservoir of antibiotic resistance genes.

    Science.gov (United States)

    Hitch, Thomas C A; Thomas, Ben J; Friedersdorff, Jessica C A; Ougham, Helen; Creevey, Christopher J

    2018-04-01

    Antibiotic resistance is an increasingly important environmental pollutant with direct consequences for human health. Identification of environmental sources of antibiotic resistance genes (ARGs) makes it possible to follow their evolution and prevent their entry into the clinical setting. ARGs have been found in environmental sources exogenous to the original source and previous studies have shown that these genes are capable of being transferred from livestock to humans. Due to the nature of farming and the slaughter of ruminants for food, humans interact with these animals in close proximity, and for this reason it is important to consider the risks to human health. In this study, we characterised the ARG populations in the ovine rumen, termed the resistome. This was done using the Comprehensive Antibiotic Resistance Database (CARD) to identify the presence of genes conferring resistance to antibiotics within the rumen. Genes were successfully mapped to those that confer resistance to a total of 30 different antibiotics. Daptomycin was identified as the most common antibiotic for which resistance is present, suggesting that ruminants may be a source of daptomycin ARGs. Colistin resistance, conferred by the gene pmrE, was also found to be present within all samples, with an average abundance of 800 counts. Due to the high abundance of some ARGs (against daptomycin) and the presence of rare ARGs (against colistin), we suggest further study and monitoring of the rumen resistome as a possible source of clinically relevant ARGs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Different gene expression patterns between leaves and flowers in Lonicera japonica revealed by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Libin eZhang

    2016-05-01

    Full Text Available The perennial and evergreen twining vine, Lonicera japonica is an important herbal medicine with great economic value. However, gene expression information for flowers and leaves of L. japonica remains elusive, which greatly impedes functional genomics research on this species. In this study, transcriptome profiles from leaves and flowers of L. japonica were examined using next-generation sequencing technology. A total of 239.41 million clean reads were used for de novo assembly with Trinity software, which generated 150,523 unigenes with N50 containing 947 bp. All the unigenes were annotated using Nr, SwissProt, COGs (Clusters of Orthologous Groups, GO (Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes databases. A total of 35,327 differentially expressed genes (DEGs, P≤0.05 between leaves and flowers were detected. Among them, a total of 6,602 DEGs were assigned with important biological processes including Metabolic process, Response to stimulus, Cellular process and etc. KEGG analysis showed that three possible enzymes involved in the biosynthesis of chlorogenic acid were up-regulated in flowers. Furthermore, the TF-based regulation network in L. japonica identified three differentially expressed transcription factors between leaves and flowers, suggesting distinct regulatory roles in L. japonica. Taken together, this study has provided a global picture of differential gene expression patterns between leaves and flowers in L japonica, providing a useful genomic resource that can also be used for functional genomics research on L. japonica in the future.

  8. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation.

    Science.gov (United States)

    Arnardottir, Erna S; Nikonova, Elena V; Shockley, Keith R; Podtelezhnikov, Alexei A; Anafi, Ron C; Tanis, Keith Q; Maislin, Greg; Stone, David J; Renger, John J; Winrow, Christopher J; Pack, Allan I

    2014-10-01

    To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Sleep laboratory. Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Thirty-eight hours of continuous wakefulness. We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. © 2014 Associated Professional Sleep Societies, LLC.

  9. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.

    Science.gov (United States)

    Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir

    2017-06-01

    Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies. No claim to original US government works. New Phytologist © 2017 New Phytologist Trust.

  10. Identification of a gene expression core signature for Duchenne Muscular Dystrophy (DMD) via integrative analysis reveals novel potential compounds for treatment

    KAUST Repository

    Ichim-Moreno, Norú

    2010-05-01

    Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy and one of the most prevalent genetic disorders of childhood. DMD is characterized by rapid progression of muscle degeneration, and ultimately death. Currently, glucocorticoids are the only available treatment for DMD, but they have been shown to result in serious side effects. The purpose of this research was to define a core signature of gene expression related to DMD via integrative analysis of mouse and human datasets. This core signature was subsequently used to screen for novel potential compounds that antagonistically affect the expression of signature genes. With this approach we were able to identify compounds that are 1) already used to treat DMD, 2) currently under investigation for treatment, and 3) so far unknown but promising candidates. Our study highlights the potential of meta-analyses through the combination of datasets to unravel previously unrecognized associations and reveal new relationships. © IEEE.

  11. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Piyatrakul Piyanuch

    2012-12-01

    Full Text Available Abstract Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult.

  12. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2010-12-01

    Full Text Available Abstract Background Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B. However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B. Results Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B. Conclusion Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.

  13. RNA deep sequencing reveals novel candidate genes and polymorphisms in boar testis and liver tissues with divergent androstenone levels.

    Directory of Open Access Journals (Sweden)

    Asep Gunawan

    Full Text Available Boar taint is an unpleasant smell and taste of pork meat derived from some entire male pigs. The main causes of boar taint are the two compounds androstenone (5α-androst-16-en-3-one and skatole (3-methylindole. It is crucial to understand the genetic mechanism of boar taint to select pigs for lower androstenone levels and thus reduce boar taint. The aim of the present study was to investigate transcriptome differences in boar testis and liver tissues with divergent androstenone levels using RNA deep sequencing (RNA-Seq. The total number of reads produced for each testis and liver sample ranged from 13,221,550 to 33,206,723 and 12,755,487 to 46,050,468, respectively. In testis samples 46 genes were differentially regulated whereas 25 genes showed differential expression in the liver. The fold change values ranged from -4.68 to 2.90 in testis samples and -2.86 to 3.89 in liver samples. Differentially regulated genes in high androstenone testis and liver samples were enriched in metabolic processes such as lipid metabolism, small molecule biochemistry and molecular transport. This study provides evidence for transcriptome profile and gene polymorphisms of boars with divergent androstenone level using RNA-Seq technology. Digital gene expression analysis identified candidate genes in flavin monooxygenease family, cytochrome P450 family and hydroxysteroid dehydrogenase family. Moreover, polymorphism and association analysis revealed mutation in IRG6, MX1, IFIT2, CYP7A1, FMO5 and KRT18 genes could be potential candidate markers for androstenone levels in boars. Further studies are required for proving the role of candidate genes to be used in genomic selection against boar taint in pig breeding programs.

  14. Gene expression profiling reveals novel regulation by bisphenol-A in estrogen receptor-α-positive human cells

    International Nuclear Information System (INIS)

    Singleton, David W.; Feng, Yuxin; Yang, Jun; Puga, Alvaro; Lee, Adrian V.; Khan, Sohaib A.

    2006-01-01

    Bisphenol-A (BPA) shows proliferative actions in uterus and mammary glands and may influence the development of male and female reproductive tracts in utero or during early postnatal life. Because of its ability to function as an estrogen receptor (ER) agonist, BPA has the potential to disrupt normal endocrine signaling through regulation of ER target genes. Some genes are regulated by both estradiol (E2) and BPA, but those exclusive to either agent have not been described. Using a yeast strain incorporating a vitellogenin A2 ERE-LacZ reporter gene into the genome, we found that BPA induced expression of the reporter in colonies transformed with the ERα expression plasmid, illustrating BPA-mediated regulation within a chromatin context. Additionally, a reporter gene transiently transfected into the endometrial cancer (Ishikawa) cell line also showed BPA activity, although at 100-fold less potency than E2. To compare global gene expression in response to BPA and E2, we used a variant of the MCF-7 breast cancer cell line stably expressing HA-tagged ERα. Cultures were treated for 3 h with an ethanol vehicle, E2 (10 -8 M), or BPA (10 -6 M), followed by isolation of RNA and microarray analysis with the human U95A probe array (Affymetrix, Santa Clara, CA, USA). More than 300 genes were changed 2-fold or more by either or both agents, with roughly half being up-regulated and half down-regulated. A number of growth- and development-related genes, such as HOXC1 and C6, Wnt5A, Frizzled, TGFβ-2, and STAT inhibitor 2, were found to be affected exclusively by BPA. We used quantitative real-time PCR to verify regulation of the HOXC6 gene, which showed decreased expression of approximately 2.5-fold by BPA. These results reveal novel effects by BPA and E2, raising interesting possibilities regarding the role of endocrine disruptors in sexual development

  15. Comparative Transcriptomics Reveals Differential Gene Expression Related to Colletotrichum gloeosporioides Resistance in the Octoploid Strawberry

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-05-01

    Full Text Available The strawberry is an important fruit worldwide; however, the development of the strawberry industry is limited by fungal disease. Anthracnose is caused by the pathogen Colletotrichum gloeosporioides and leads to large-scale losses in strawberry quality and production. However, the transcriptional response of strawberry to infection with C. gloeosporioides is poorly understood. In the present study, the strawberry leaf transcriptome of the ‘Yanli’ and ‘Benihoppe’ cultivars were deep sequenced via an RNA-seq analysis to study C. gloeosporioides resistance in strawberry. Among the sequences, differentially expressed genes were annotated with Gene Ontology terms and subjected to pathway enrichment analysis. Significant categories included defense, plant–pathogen interactions and flavonoid biosynthesis were identified. The comprehensive transcriptome data set provides molecular insight into C. gloeosporioides resistance genes in resistant and susceptible strawberry cultivars. Our findings can enhance breeding efforts in strawberry.

  16. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients

    DEFF Research Database (Denmark)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke

    2016-01-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven...... inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown...... in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying....

  17. Combined Analysis of the Fruit Metabolome and Transcriptome Reveals Candidate Genes Involved in Flavonoid Biosynthesis in Actinidia arguta.

    Science.gov (United States)

    Li, Yukuo; Fang, Jinbao; Qi, Xiujuan; Lin, Miaomiao; Zhong, Yunpeng; Sun, Leiming; Cui, Wen

    2018-05-15

    To assess the interrelation between the change of metabolites and the change of fruit color, we performed a combined metabolome and transcriptome analysis of the flesh in two different Actinidia arguta cultivars: "HB" ("Hongbaoshixing") and "YF" ("Yongfengyihao") at two different fruit developmental stages: 70d (days after full bloom) and 100d (days after full bloom). Metabolite and transcript profiling was obtained by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometer and high-throughput RNA sequencing, respectively. The identification and quantification results of metabolites showed that a total of 28,837 metabolites had been obtained, of which 13,715 were annotated. In comparison of HB100 vs. HB70, 41 metabolites were identified as being flavonoids, 7 of which, with significant difference, were identified as bracteatin, luteolin, dihydromyricetin, cyanidin, pelargonidin, delphinidin and (-)-epigallocatechin. Association analysis between metabolome and transcriptome revealed that there were two metabolic pathways presenting significant differences during fruit development, one of which was flavonoid biosynthesis, in which 14 structural genes were selected to conduct expression analysis, as well as 5 transcription factor genes obtained by transcriptome analysis. RT-qPCR results and cluster analysis revealed that AaF3H , AaLDOX , AaUFGT , AaMYB , AabHLH , and AaHB2 showed the best possibility of being candidate genes. A regulatory network of flavonoid biosynthesis was established to illustrate differentially expressed candidate genes involved in accumulation of metabolites with significant differences, inducing red coloring during fruit development. Such a regulatory network linking genes and flavonoids revealed a system involved in the pigmentation of all-red-fleshed and all-green-fleshed A. arguta , suggesting this conjunct analysis approach is not only useful in understanding the relationship between genotype and phenotype

  18. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    Science.gov (United States)

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William

    2013-01-01

    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  19. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.

    Science.gov (United States)

    Glessner, Joseph T; Wang, Kai; Cai, Guiqing; Korvatska, Olena; Kim, Cecilia E; Wood, Shawn; Zhang, Haitao; Estes, Annette; Brune, Camille W; Bradfield, Jonathan P; Imielinski, Marcin; Frackelton, Edward C; Reichert, Jennifer; Crawford, Emily L; Munson, Jeffrey; Sleiman, Patrick M A; Chiavacci, Rosetta; Annaiah, Kiran; Thomas, Kelly; Hou, Cuiping; Glaberson, Wendy; Flory, James; Otieno, Frederick; Garris, Maria; Soorya, Latha; Klei, Lambertus; Piven, Joseph; Meyer, Kacie J; Anagnostou, Evdokia; Sakurai, Takeshi; Game, Rachel M; Rudd, Danielle S; Zurawiecki, Danielle; McDougle, Christopher J; Davis, Lea K; Miller, Judith; Posey, David J; Michaels, Shana; Kolevzon, Alexander; Silverman, Jeremy M; Bernier, Raphael; Levy, Susan E; Schultz, Robert T; Dawson, Geraldine; Owley, Thomas; McMahon, William M; Wassink, Thomas H; Sweeney, John A; Nurnberger, John I; Coon, Hilary; Sutcliffe, James S; Minshew, Nancy J; Grant, Struan F A; Bucan, Maja; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Schellenberg, Gerard D; Hakonarson, Hakon

    2009-05-28

    Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with approximately 550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 x 10(-3)). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 x 10(-3)). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 x 10(-6)). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.

  20. Modularity of gene-regulatory networks revealed in sea-star development

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2011-01-01

    Full Text Available Abstract Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star, but in a completely different developmental context (the animal-vegetal axis. This observation has implications for hypotheses on the type of development present in the deuterostome common ancestor. See research article: http://www.biomedcentral.com/1741-7007/8/143/abstract

  1. Female Drosophila melanogaster gene expression and mate choice: the X chromosome harbours candidate genes underlying sexual isolation.

    Directory of Open Access Journals (Sweden)

    Richard I Bailey

    2011-02-01

    Full Text Available The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown.We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean versus less (Cosmopolitan strain preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations.Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized.

  2. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin.

    Directory of Open Access Journals (Sweden)

    Charles W Higdon

    Full Text Available In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.

  3. Integrated Genomics Reveals Convergent Transcriptomic Networks Underlying Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Kusko, Rebecca L; Brothers, John F; Tedrow, John; Pandit, Kusum; Huleihel, Luai; Perdomo, Catalina; Liu, Gang; Juan-Guardela, Brenda; Kass, Daniel; Zhang, Sherry; Lenburg, Marc; Martinez, Fernando; Quackenbush, John; Sciurba, Frank; Limper, Andrew; Geraci, Mark; Yang, Ivana; Schwartz, David A; Beane, Jennifer; Spira, Avrum; Kaminski, Naftali

    2016-10-15

    Despite shared environmental exposures, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease are usually studied in isolation, and the presence of shared molecular mechanisms is unknown. We applied an integrative genomic approach to identify convergent transcriptomic pathways in emphysema and IPF. We defined the transcriptional repertoire of chronic obstructive pulmonary disease, IPF, or normal histology lungs using RNA-seq (n = 87). Genes increased in both emphysema and IPF relative to control were enriched for the p53/hypoxia pathway, a finding confirmed in an independent cohort using both gene expression arrays and the nCounter Analysis System (n = 193). Immunohistochemistry confirmed overexpression of HIF1A, MDM2, and NFKBIB members of this pathway in tissues from patients with emphysema or IPF. Using reads aligned across splice junctions, we determined that alternative splicing of p53/hypoxia pathway-associated molecules NUMB and PDGFA occurred more frequently in IPF or emphysema compared with control and validated these findings by quantitative polymerase chain reaction and the nCounter Analysis System on an independent sample set (n = 193). Finally, by integrating parallel microRNA and mRNA-Seq data on the same samples, we identified MIR96 as a key novel regulatory hub in the p53/hypoxia gene-expression network and confirmed that modulation of MIR96 in vitro recapitulates the disease-associated gene-expression network. Our results suggest convergent transcriptional regulatory hubs in diseases as varied phenotypically as chronic obstructive pulmonary disease and IPF and suggest that these hubs may represent shared key responses of the lung to environmental stresses.

  4. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis FlowersW

    NARCIS (Netherlands)

    Ginglinger, J.F.; Boachon, B.; Hofer, R.; Paetz, C.; Kollner, T.G.; Miesch, L.; Lugan, R.; Baltenweck, R.; Mutterer, J.; Ullman, P.; Verstappen, F.W.A.; Bouwmeester, H.J.

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus

  5. Phylogenetic analysis reveals conservation and diversification of micro RNA166 genes among diverse plant species.

    Science.gov (United States)

    Barik, Suvakanta; SarkarDas, Shabari; Singh, Archita; Gautam, Vibhav; Kumar, Pramod; Majee, Manoj; Sarkar, Ananda K

    2014-01-01

    Similar to the majority of the microRNAs, mature miR166s are derived from multiple members of MIR166 genes (precursors) and regulate various aspects of plant development by negatively regulating their target genes (Class III HD-ZIP). The evolutionary conservation or functional diversification of miRNA166 family members remains elusive. Here, we show the phylogenetic relationships among MIR166 precursor and mature sequences from three diverse model plant species. Despite strong conservation, some mature miR166 sequences, such as ppt-miR166m, have undergone sequence variation. Critical sequence variation in ppt-miR166m has led to functional diversification, as it targets non-HD-ZIPIII gene transcript (s). MIR166 precursor sequences have diverged in a lineage specific manner, and both precursors and mature osa-miR166i/j are highly conserved. Interestingly, polycistronic MIR166s were present in Physcomitrella and Oryza but not in Arabidopsis. The nature of cis-regulatory motifs on the upstream promoter sequences of MIR166 genes indicates their possible contribution to the functional variation observed among miR166 species. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. RNA Sequencing Reveals that Kaposi Sarcoma-Associated Herpesvirus Infection Mimics Hypoxia Gene Expression Signature

    Science.gov (United States)

    Viollet, Coralie; Davis, David A.